1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGValue.h"
20 #include "CodeGenFunction.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>    // std::sort
33 
34 using namespace clang;
35 using namespace CodeGen;
36 
37 // Helper for coercing an aggregate argument or return value into an integer
38 // array of the same size (including padding) and alignment.  This alternate
39 // coercion happens only for the RenderScript ABI and can be removed after
40 // runtimes that rely on it are no longer supported.
41 //
42 // RenderScript assumes that the size of the argument / return value in the IR
43 // is the same as the size of the corresponding qualified type. This helper
44 // coerces the aggregate type into an array of the same size (including
45 // padding).  This coercion is used in lieu of expansion of struct members or
46 // other canonical coercions that return a coerced-type of larger size.
47 //
48 // Ty          - The argument / return value type
49 // Context     - The associated ASTContext
50 // LLVMContext - The associated LLVMContext
51 static ABIArgInfo coerceToIntArray(QualType Ty,
52                                    ASTContext &Context,
53                                    llvm::LLVMContext &LLVMContext) {
54   // Alignment and Size are measured in bits.
55   const uint64_t Size = Context.getTypeSize(Ty);
56   const uint64_t Alignment = Context.getTypeAlign(Ty);
57   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
58   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
59   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
60 }
61 
62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
63                                llvm::Value *Array,
64                                llvm::Value *Value,
65                                unsigned FirstIndex,
66                                unsigned LastIndex) {
67   // Alternatively, we could emit this as a loop in the source.
68   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
69     llvm::Value *Cell =
70         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
71     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
72   }
73 }
74 
75 static bool isAggregateTypeForABI(QualType T) {
76   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
77          T->isMemberFunctionPointerType();
78 }
79 
80 ABIArgInfo
81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
82                                  llvm::Type *Padding) const {
83   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
84                                  ByRef, Realign, Padding);
85 }
86 
87 ABIArgInfo
88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
89   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
90                                       /*ByRef*/ false, Realign);
91 }
92 
93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
94                              QualType Ty) const {
95   return Address::invalid();
96 }
97 
98 ABIInfo::~ABIInfo() {}
99 
100 /// Does the given lowering require more than the given number of
101 /// registers when expanded?
102 ///
103 /// This is intended to be the basis of a reasonable basic implementation
104 /// of should{Pass,Return}IndirectlyForSwift.
105 ///
106 /// For most targets, a limit of four total registers is reasonable; this
107 /// limits the amount of code required in order to move around the value
108 /// in case it wasn't produced immediately prior to the call by the caller
109 /// (or wasn't produced in exactly the right registers) or isn't used
110 /// immediately within the callee.  But some targets may need to further
111 /// limit the register count due to an inability to support that many
112 /// return registers.
113 static bool occupiesMoreThan(CodeGenTypes &cgt,
114                              ArrayRef<llvm::Type*> scalarTypes,
115                              unsigned maxAllRegisters) {
116   unsigned intCount = 0, fpCount = 0;
117   for (llvm::Type *type : scalarTypes) {
118     if (type->isPointerTy()) {
119       intCount++;
120     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
121       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
122       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
123     } else {
124       assert(type->isVectorTy() || type->isFloatingPointTy());
125       fpCount++;
126     }
127   }
128 
129   return (intCount + fpCount > maxAllRegisters);
130 }
131 
132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
133                                              llvm::Type *eltTy,
134                                              unsigned numElts) const {
135   // The default implementation of this assumes that the target guarantees
136   // 128-bit SIMD support but nothing more.
137   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
138 }
139 
140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
141                                               CGCXXABI &CXXABI) {
142   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143   if (!RD)
144     return CGCXXABI::RAA_Default;
145   return CXXABI.getRecordArgABI(RD);
146 }
147 
148 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
149                                               CGCXXABI &CXXABI) {
150   const RecordType *RT = T->getAs<RecordType>();
151   if (!RT)
152     return CGCXXABI::RAA_Default;
153   return getRecordArgABI(RT, CXXABI);
154 }
155 
156 /// Pass transparent unions as if they were the type of the first element. Sema
157 /// should ensure that all elements of the union have the same "machine type".
158 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
159   if (const RecordType *UT = Ty->getAsUnionType()) {
160     const RecordDecl *UD = UT->getDecl();
161     if (UD->hasAttr<TransparentUnionAttr>()) {
162       assert(!UD->field_empty() && "sema created an empty transparent union");
163       return UD->field_begin()->getType();
164     }
165   }
166   return Ty;
167 }
168 
169 CGCXXABI &ABIInfo::getCXXABI() const {
170   return CGT.getCXXABI();
171 }
172 
173 ASTContext &ABIInfo::getContext() const {
174   return CGT.getContext();
175 }
176 
177 llvm::LLVMContext &ABIInfo::getVMContext() const {
178   return CGT.getLLVMContext();
179 }
180 
181 const llvm::DataLayout &ABIInfo::getDataLayout() const {
182   return CGT.getDataLayout();
183 }
184 
185 const TargetInfo &ABIInfo::getTarget() const {
186   return CGT.getTarget();
187 }
188 
189 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
190   return CGT.getCodeGenOpts();
191 }
192 
193 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
194 
195 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
196   return false;
197 }
198 
199 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
200                                                 uint64_t Members) const {
201   return false;
202 }
203 
204 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
205   return false;
206 }
207 
208 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
209   raw_ostream &OS = llvm::errs();
210   OS << "(ABIArgInfo Kind=";
211   switch (TheKind) {
212   case Direct:
213     OS << "Direct Type=";
214     if (llvm::Type *Ty = getCoerceToType())
215       Ty->print(OS);
216     else
217       OS << "null";
218     break;
219   case Extend:
220     OS << "Extend";
221     break;
222   case Ignore:
223     OS << "Ignore";
224     break;
225   case InAlloca:
226     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
227     break;
228   case Indirect:
229     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
230        << " ByVal=" << getIndirectByVal()
231        << " Realign=" << getIndirectRealign();
232     break;
233   case Expand:
234     OS << "Expand";
235     break;
236   case CoerceAndExpand:
237     OS << "CoerceAndExpand Type=";
238     getCoerceAndExpandType()->print(OS);
239     break;
240   }
241   OS << ")\n";
242 }
243 
244 // Dynamically round a pointer up to a multiple of the given alignment.
245 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
246                                                   llvm::Value *Ptr,
247                                                   CharUnits Align) {
248   llvm::Value *PtrAsInt = Ptr;
249   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
250   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
251   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
252         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
253   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
254            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
255   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
256                                         Ptr->getType(),
257                                         Ptr->getName() + ".aligned");
258   return PtrAsInt;
259 }
260 
261 /// Emit va_arg for a platform using the common void* representation,
262 /// where arguments are simply emitted in an array of slots on the stack.
263 ///
264 /// This version implements the core direct-value passing rules.
265 ///
266 /// \param SlotSize - The size and alignment of a stack slot.
267 ///   Each argument will be allocated to a multiple of this number of
268 ///   slots, and all the slots will be aligned to this value.
269 /// \param AllowHigherAlign - The slot alignment is not a cap;
270 ///   an argument type with an alignment greater than the slot size
271 ///   will be emitted on a higher-alignment address, potentially
272 ///   leaving one or more empty slots behind as padding.  If this
273 ///   is false, the returned address might be less-aligned than
274 ///   DirectAlign.
275 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
276                                       Address VAListAddr,
277                                       llvm::Type *DirectTy,
278                                       CharUnits DirectSize,
279                                       CharUnits DirectAlign,
280                                       CharUnits SlotSize,
281                                       bool AllowHigherAlign) {
282   // Cast the element type to i8* if necessary.  Some platforms define
283   // va_list as a struct containing an i8* instead of just an i8*.
284   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
285     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
286 
287   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
288 
289   // If the CC aligns values higher than the slot size, do so if needed.
290   Address Addr = Address::invalid();
291   if (AllowHigherAlign && DirectAlign > SlotSize) {
292     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
293                                                  DirectAlign);
294   } else {
295     Addr = Address(Ptr, SlotSize);
296   }
297 
298   // Advance the pointer past the argument, then store that back.
299   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
300   llvm::Value *NextPtr =
301     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
302                                            "argp.next");
303   CGF.Builder.CreateStore(NextPtr, VAListAddr);
304 
305   // If the argument is smaller than a slot, and this is a big-endian
306   // target, the argument will be right-adjusted in its slot.
307   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
308       !DirectTy->isStructTy()) {
309     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
310   }
311 
312   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
313   return Addr;
314 }
315 
316 /// Emit va_arg for a platform using the common void* representation,
317 /// where arguments are simply emitted in an array of slots on the stack.
318 ///
319 /// \param IsIndirect - Values of this type are passed indirectly.
320 /// \param ValueInfo - The size and alignment of this type, generally
321 ///   computed with getContext().getTypeInfoInChars(ValueTy).
322 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
323 ///   Each argument will be allocated to a multiple of this number of
324 ///   slots, and all the slots will be aligned to this value.
325 /// \param AllowHigherAlign - The slot alignment is not a cap;
326 ///   an argument type with an alignment greater than the slot size
327 ///   will be emitted on a higher-alignment address, potentially
328 ///   leaving one or more empty slots behind as padding.
329 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
330                                 QualType ValueTy, bool IsIndirect,
331                                 std::pair<CharUnits, CharUnits> ValueInfo,
332                                 CharUnits SlotSizeAndAlign,
333                                 bool AllowHigherAlign) {
334   // The size and alignment of the value that was passed directly.
335   CharUnits DirectSize, DirectAlign;
336   if (IsIndirect) {
337     DirectSize = CGF.getPointerSize();
338     DirectAlign = CGF.getPointerAlign();
339   } else {
340     DirectSize = ValueInfo.first;
341     DirectAlign = ValueInfo.second;
342   }
343 
344   // Cast the address we've calculated to the right type.
345   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
346   if (IsIndirect)
347     DirectTy = DirectTy->getPointerTo(0);
348 
349   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
350                                         DirectSize, DirectAlign,
351                                         SlotSizeAndAlign,
352                                         AllowHigherAlign);
353 
354   if (IsIndirect) {
355     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
356   }
357 
358   return Addr;
359 
360 }
361 
362 static Address emitMergePHI(CodeGenFunction &CGF,
363                             Address Addr1, llvm::BasicBlock *Block1,
364                             Address Addr2, llvm::BasicBlock *Block2,
365                             const llvm::Twine &Name = "") {
366   assert(Addr1.getType() == Addr2.getType());
367   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
368   PHI->addIncoming(Addr1.getPointer(), Block1);
369   PHI->addIncoming(Addr2.getPointer(), Block2);
370   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
371   return Address(PHI, Align);
372 }
373 
374 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
375 
376 // If someone can figure out a general rule for this, that would be great.
377 // It's probably just doomed to be platform-dependent, though.
378 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
379   // Verified for:
380   //   x86-64     FreeBSD, Linux, Darwin
381   //   x86-32     FreeBSD, Linux, Darwin
382   //   PowerPC    Linux, Darwin
383   //   ARM        Darwin (*not* EABI)
384   //   AArch64    Linux
385   return 32;
386 }
387 
388 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
389                                      const FunctionNoProtoType *fnType) const {
390   // The following conventions are known to require this to be false:
391   //   x86_stdcall
392   //   MIPS
393   // For everything else, we just prefer false unless we opt out.
394   return false;
395 }
396 
397 void
398 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
399                                              llvm::SmallString<24> &Opt) const {
400   // This assumes the user is passing a library name like "rt" instead of a
401   // filename like "librt.a/so", and that they don't care whether it's static or
402   // dynamic.
403   Opt = "-l";
404   Opt += Lib;
405 }
406 
407 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
408   // OpenCL kernels are called via an explicit runtime API with arguments
409   // set with clSetKernelArg(), not as normal sub-functions.
410   // Return SPIR_KERNEL by default as the kernel calling convention to
411   // ensure the fingerprint is fixed such way that each OpenCL argument
412   // gets one matching argument in the produced kernel function argument
413   // list to enable feasible implementation of clSetKernelArg() with
414   // aggregates etc. In case we would use the default C calling conv here,
415   // clSetKernelArg() might break depending on the target-specific
416   // conventions; different targets might split structs passed as values
417   // to multiple function arguments etc.
418   return llvm::CallingConv::SPIR_KERNEL;
419 }
420 
421 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
422     llvm::PointerType *T, QualType QT) const {
423   return llvm::ConstantPointerNull::get(T);
424 }
425 
426 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
427                                                    const VarDecl *D) const {
428   assert(!CGM.getLangOpts().OpenCL &&
429          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
430          "Address space agnostic languages only");
431   return D ? D->getType().getAddressSpace() : LangAS::Default;
432 }
433 
434 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
435     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
436     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
437   // Since target may map different address spaces in AST to the same address
438   // space, an address space conversion may end up as a bitcast.
439   if (auto *C = dyn_cast<llvm::Constant>(Src))
440     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
441   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
442 }
443 
444 llvm::Constant *
445 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
446                                         LangAS SrcAddr, LangAS DestAddr,
447                                         llvm::Type *DestTy) const {
448   // Since target may map different address spaces in AST to the same address
449   // space, an address space conversion may end up as a bitcast.
450   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
451 }
452 
453 llvm::SyncScope::ID
454 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
455   return C.getOrInsertSyncScopeID(""); /* default sync scope */
456 }
457 
458 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
459 
460 /// isEmptyField - Return true iff a the field is "empty", that is it
461 /// is an unnamed bit-field or an (array of) empty record(s).
462 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
463                          bool AllowArrays) {
464   if (FD->isUnnamedBitfield())
465     return true;
466 
467   QualType FT = FD->getType();
468 
469   // Constant arrays of empty records count as empty, strip them off.
470   // Constant arrays of zero length always count as empty.
471   if (AllowArrays)
472     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
473       if (AT->getSize() == 0)
474         return true;
475       FT = AT->getElementType();
476     }
477 
478   const RecordType *RT = FT->getAs<RecordType>();
479   if (!RT)
480     return false;
481 
482   // C++ record fields are never empty, at least in the Itanium ABI.
483   //
484   // FIXME: We should use a predicate for whether this behavior is true in the
485   // current ABI.
486   if (isa<CXXRecordDecl>(RT->getDecl()))
487     return false;
488 
489   return isEmptyRecord(Context, FT, AllowArrays);
490 }
491 
492 /// isEmptyRecord - Return true iff a structure contains only empty
493 /// fields. Note that a structure with a flexible array member is not
494 /// considered empty.
495 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
496   const RecordType *RT = T->getAs<RecordType>();
497   if (!RT)
498     return false;
499   const RecordDecl *RD = RT->getDecl();
500   if (RD->hasFlexibleArrayMember())
501     return false;
502 
503   // If this is a C++ record, check the bases first.
504   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
505     for (const auto &I : CXXRD->bases())
506       if (!isEmptyRecord(Context, I.getType(), true))
507         return false;
508 
509   for (const auto *I : RD->fields())
510     if (!isEmptyField(Context, I, AllowArrays))
511       return false;
512   return true;
513 }
514 
515 /// isSingleElementStruct - Determine if a structure is a "single
516 /// element struct", i.e. it has exactly one non-empty field or
517 /// exactly one field which is itself a single element
518 /// struct. Structures with flexible array members are never
519 /// considered single element structs.
520 ///
521 /// \return The field declaration for the single non-empty field, if
522 /// it exists.
523 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
524   const RecordType *RT = T->getAs<RecordType>();
525   if (!RT)
526     return nullptr;
527 
528   const RecordDecl *RD = RT->getDecl();
529   if (RD->hasFlexibleArrayMember())
530     return nullptr;
531 
532   const Type *Found = nullptr;
533 
534   // If this is a C++ record, check the bases first.
535   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
536     for (const auto &I : CXXRD->bases()) {
537       // Ignore empty records.
538       if (isEmptyRecord(Context, I.getType(), true))
539         continue;
540 
541       // If we already found an element then this isn't a single-element struct.
542       if (Found)
543         return nullptr;
544 
545       // If this is non-empty and not a single element struct, the composite
546       // cannot be a single element struct.
547       Found = isSingleElementStruct(I.getType(), Context);
548       if (!Found)
549         return nullptr;
550     }
551   }
552 
553   // Check for single element.
554   for (const auto *FD : RD->fields()) {
555     QualType FT = FD->getType();
556 
557     // Ignore empty fields.
558     if (isEmptyField(Context, FD, true))
559       continue;
560 
561     // If we already found an element then this isn't a single-element
562     // struct.
563     if (Found)
564       return nullptr;
565 
566     // Treat single element arrays as the element.
567     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
568       if (AT->getSize().getZExtValue() != 1)
569         break;
570       FT = AT->getElementType();
571     }
572 
573     if (!isAggregateTypeForABI(FT)) {
574       Found = FT.getTypePtr();
575     } else {
576       Found = isSingleElementStruct(FT, Context);
577       if (!Found)
578         return nullptr;
579     }
580   }
581 
582   // We don't consider a struct a single-element struct if it has
583   // padding beyond the element type.
584   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
585     return nullptr;
586 
587   return Found;
588 }
589 
590 namespace {
591 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
592                        const ABIArgInfo &AI) {
593   // This default implementation defers to the llvm backend's va_arg
594   // instruction. It can handle only passing arguments directly
595   // (typically only handled in the backend for primitive types), or
596   // aggregates passed indirectly by pointer (NOTE: if the "byval"
597   // flag has ABI impact in the callee, this implementation cannot
598   // work.)
599 
600   // Only a few cases are covered here at the moment -- those needed
601   // by the default abi.
602   llvm::Value *Val;
603 
604   if (AI.isIndirect()) {
605     assert(!AI.getPaddingType() &&
606            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
607     assert(
608         !AI.getIndirectRealign() &&
609         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
610 
611     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
612     CharUnits TyAlignForABI = TyInfo.second;
613 
614     llvm::Type *BaseTy =
615         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
616     llvm::Value *Addr =
617         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
618     return Address(Addr, TyAlignForABI);
619   } else {
620     assert((AI.isDirect() || AI.isExtend()) &&
621            "Unexpected ArgInfo Kind in generic VAArg emitter!");
622 
623     assert(!AI.getInReg() &&
624            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
625     assert(!AI.getPaddingType() &&
626            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
627     assert(!AI.getDirectOffset() &&
628            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
629     assert(!AI.getCoerceToType() &&
630            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
631 
632     Address Temp = CGF.CreateMemTemp(Ty, "varet");
633     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
634     CGF.Builder.CreateStore(Val, Temp);
635     return Temp;
636   }
637 }
638 
639 /// DefaultABIInfo - The default implementation for ABI specific
640 /// details. This implementation provides information which results in
641 /// self-consistent and sensible LLVM IR generation, but does not
642 /// conform to any particular ABI.
643 class DefaultABIInfo : public ABIInfo {
644 public:
645   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
646 
647   ABIArgInfo classifyReturnType(QualType RetTy) const;
648   ABIArgInfo classifyArgumentType(QualType RetTy) const;
649 
650   void computeInfo(CGFunctionInfo &FI) const override {
651     if (!getCXXABI().classifyReturnType(FI))
652       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
653     for (auto &I : FI.arguments())
654       I.info = classifyArgumentType(I.type);
655   }
656 
657   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
658                     QualType Ty) const override {
659     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
660   }
661 };
662 
663 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
664 public:
665   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
666     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
667 };
668 
669 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
670   Ty = useFirstFieldIfTransparentUnion(Ty);
671 
672   if (isAggregateTypeForABI(Ty)) {
673     // Records with non-trivial destructors/copy-constructors should not be
674     // passed by value.
675     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
676       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
677 
678     return getNaturalAlignIndirect(Ty);
679   }
680 
681   // Treat an enum type as its underlying type.
682   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
683     Ty = EnumTy->getDecl()->getIntegerType();
684 
685   return (Ty->isPromotableIntegerType() ?
686           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
687 }
688 
689 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
690   if (RetTy->isVoidType())
691     return ABIArgInfo::getIgnore();
692 
693   if (isAggregateTypeForABI(RetTy))
694     return getNaturalAlignIndirect(RetTy);
695 
696   // Treat an enum type as its underlying type.
697   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
698     RetTy = EnumTy->getDecl()->getIntegerType();
699 
700   return (RetTy->isPromotableIntegerType() ?
701           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
702 }
703 
704 //===----------------------------------------------------------------------===//
705 // WebAssembly ABI Implementation
706 //
707 // This is a very simple ABI that relies a lot on DefaultABIInfo.
708 //===----------------------------------------------------------------------===//
709 
710 class WebAssemblyABIInfo final : public DefaultABIInfo {
711 public:
712   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
713       : DefaultABIInfo(CGT) {}
714 
715 private:
716   ABIArgInfo classifyReturnType(QualType RetTy) const;
717   ABIArgInfo classifyArgumentType(QualType Ty) const;
718 
719   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
720   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
721   // overload them.
722   void computeInfo(CGFunctionInfo &FI) const override {
723     if (!getCXXABI().classifyReturnType(FI))
724       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
725     for (auto &Arg : FI.arguments())
726       Arg.info = classifyArgumentType(Arg.type);
727   }
728 
729   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
730                     QualType Ty) const override;
731 };
732 
733 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
734 public:
735   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
736       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
737 };
738 
739 /// \brief Classify argument of given type \p Ty.
740 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
741   Ty = useFirstFieldIfTransparentUnion(Ty);
742 
743   if (isAggregateTypeForABI(Ty)) {
744     // Records with non-trivial destructors/copy-constructors should not be
745     // passed by value.
746     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
747       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
748     // Ignore empty structs/unions.
749     if (isEmptyRecord(getContext(), Ty, true))
750       return ABIArgInfo::getIgnore();
751     // Lower single-element structs to just pass a regular value. TODO: We
752     // could do reasonable-size multiple-element structs too, using getExpand(),
753     // though watch out for things like bitfields.
754     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
755       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
756   }
757 
758   // Otherwise just do the default thing.
759   return DefaultABIInfo::classifyArgumentType(Ty);
760 }
761 
762 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
763   if (isAggregateTypeForABI(RetTy)) {
764     // Records with non-trivial destructors/copy-constructors should not be
765     // returned by value.
766     if (!getRecordArgABI(RetTy, getCXXABI())) {
767       // Ignore empty structs/unions.
768       if (isEmptyRecord(getContext(), RetTy, true))
769         return ABIArgInfo::getIgnore();
770       // Lower single-element structs to just return a regular value. TODO: We
771       // could do reasonable-size multiple-element structs too, using
772       // ABIArgInfo::getDirect().
773       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
774         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
775     }
776   }
777 
778   // Otherwise just do the default thing.
779   return DefaultABIInfo::classifyReturnType(RetTy);
780 }
781 
782 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
783                                       QualType Ty) const {
784   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
785                           getContext().getTypeInfoInChars(Ty),
786                           CharUnits::fromQuantity(4),
787                           /*AllowHigherAlign=*/ true);
788 }
789 
790 //===----------------------------------------------------------------------===//
791 // le32/PNaCl bitcode ABI Implementation
792 //
793 // This is a simplified version of the x86_32 ABI.  Arguments and return values
794 // are always passed on the stack.
795 //===----------------------------------------------------------------------===//
796 
797 class PNaClABIInfo : public ABIInfo {
798  public:
799   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
800 
801   ABIArgInfo classifyReturnType(QualType RetTy) const;
802   ABIArgInfo classifyArgumentType(QualType RetTy) const;
803 
804   void computeInfo(CGFunctionInfo &FI) const override;
805   Address EmitVAArg(CodeGenFunction &CGF,
806                     Address VAListAddr, QualType Ty) const override;
807 };
808 
809 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
810  public:
811   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
812     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
813 };
814 
815 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
816   if (!getCXXABI().classifyReturnType(FI))
817     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
818 
819   for (auto &I : FI.arguments())
820     I.info = classifyArgumentType(I.type);
821 }
822 
823 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
824                                 QualType Ty) const {
825   // The PNaCL ABI is a bit odd, in that varargs don't use normal
826   // function classification. Structs get passed directly for varargs
827   // functions, through a rewriting transform in
828   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
829   // this target to actually support a va_arg instructions with an
830   // aggregate type, unlike other targets.
831   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
832 }
833 
834 /// \brief Classify argument of given type \p Ty.
835 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
836   if (isAggregateTypeForABI(Ty)) {
837     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
838       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
839     return getNaturalAlignIndirect(Ty);
840   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
841     // Treat an enum type as its underlying type.
842     Ty = EnumTy->getDecl()->getIntegerType();
843   } else if (Ty->isFloatingType()) {
844     // Floating-point types don't go inreg.
845     return ABIArgInfo::getDirect();
846   }
847 
848   return (Ty->isPromotableIntegerType() ?
849           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
850 }
851 
852 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
853   if (RetTy->isVoidType())
854     return ABIArgInfo::getIgnore();
855 
856   // In the PNaCl ABI we always return records/structures on the stack.
857   if (isAggregateTypeForABI(RetTy))
858     return getNaturalAlignIndirect(RetTy);
859 
860   // Treat an enum type as its underlying type.
861   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
862     RetTy = EnumTy->getDecl()->getIntegerType();
863 
864   return (RetTy->isPromotableIntegerType() ?
865           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
866 }
867 
868 /// IsX86_MMXType - Return true if this is an MMX type.
869 bool IsX86_MMXType(llvm::Type *IRType) {
870   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
871   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
872     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
873     IRType->getScalarSizeInBits() != 64;
874 }
875 
876 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
877                                           StringRef Constraint,
878                                           llvm::Type* Ty) {
879   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
880                      .Cases("y", "&y", "^Ym", true)
881                      .Default(false);
882   if (IsMMXCons && Ty->isVectorTy()) {
883     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
884       // Invalid MMX constraint
885       return nullptr;
886     }
887 
888     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
889   }
890 
891   // No operation needed
892   return Ty;
893 }
894 
895 /// Returns true if this type can be passed in SSE registers with the
896 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
897 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
898   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
899     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
900       if (BT->getKind() == BuiltinType::LongDouble) {
901         if (&Context.getTargetInfo().getLongDoubleFormat() ==
902             &llvm::APFloat::x87DoubleExtended())
903           return false;
904       }
905       return true;
906     }
907   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
908     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
909     // registers specially.
910     unsigned VecSize = Context.getTypeSize(VT);
911     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
912       return true;
913   }
914   return false;
915 }
916 
917 /// Returns true if this aggregate is small enough to be passed in SSE registers
918 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
919 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
920   return NumMembers <= 4;
921 }
922 
923 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
924 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
925   auto AI = ABIArgInfo::getDirect(T);
926   AI.setInReg(true);
927   AI.setCanBeFlattened(false);
928   return AI;
929 }
930 
931 //===----------------------------------------------------------------------===//
932 // X86-32 ABI Implementation
933 //===----------------------------------------------------------------------===//
934 
935 /// \brief Similar to llvm::CCState, but for Clang.
936 struct CCState {
937   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
938 
939   unsigned CC;
940   unsigned FreeRegs;
941   unsigned FreeSSERegs;
942 };
943 
944 enum {
945   // Vectorcall only allows the first 6 parameters to be passed in registers.
946   VectorcallMaxParamNumAsReg = 6
947 };
948 
949 /// X86_32ABIInfo - The X86-32 ABI information.
950 class X86_32ABIInfo : public SwiftABIInfo {
951   enum Class {
952     Integer,
953     Float
954   };
955 
956   static const unsigned MinABIStackAlignInBytes = 4;
957 
958   bool IsDarwinVectorABI;
959   bool IsRetSmallStructInRegABI;
960   bool IsWin32StructABI;
961   bool IsSoftFloatABI;
962   bool IsMCUABI;
963   unsigned DefaultNumRegisterParameters;
964 
965   static bool isRegisterSize(unsigned Size) {
966     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
967   }
968 
969   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
970     // FIXME: Assumes vectorcall is in use.
971     return isX86VectorTypeForVectorCall(getContext(), Ty);
972   }
973 
974   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
975                                          uint64_t NumMembers) const override {
976     // FIXME: Assumes vectorcall is in use.
977     return isX86VectorCallAggregateSmallEnough(NumMembers);
978   }
979 
980   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
981 
982   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
983   /// such that the argument will be passed in memory.
984   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
985 
986   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
987 
988   /// \brief Return the alignment to use for the given type on the stack.
989   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
990 
991   Class classify(QualType Ty) const;
992   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
993   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
994 
995   /// \brief Updates the number of available free registers, returns
996   /// true if any registers were allocated.
997   bool updateFreeRegs(QualType Ty, CCState &State) const;
998 
999   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1000                                 bool &NeedsPadding) const;
1001   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1002 
1003   bool canExpandIndirectArgument(QualType Ty) const;
1004 
1005   /// \brief Rewrite the function info so that all memory arguments use
1006   /// inalloca.
1007   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1008 
1009   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1010                            CharUnits &StackOffset, ABIArgInfo &Info,
1011                            QualType Type) const;
1012   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1013                              bool &UsedInAlloca) const;
1014 
1015 public:
1016 
1017   void computeInfo(CGFunctionInfo &FI) const override;
1018   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1019                     QualType Ty) const override;
1020 
1021   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1022                 bool RetSmallStructInRegABI, bool Win32StructABI,
1023                 unsigned NumRegisterParameters, bool SoftFloatABI)
1024     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1025       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1026       IsWin32StructABI(Win32StructABI),
1027       IsSoftFloatABI(SoftFloatABI),
1028       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1029       DefaultNumRegisterParameters(NumRegisterParameters) {}
1030 
1031   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1032                                     bool asReturnValue) const override {
1033     // LLVM's x86-32 lowering currently only assigns up to three
1034     // integer registers and three fp registers.  Oddly, it'll use up to
1035     // four vector registers for vectors, but those can overlap with the
1036     // scalar registers.
1037     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1038   }
1039 
1040   bool isSwiftErrorInRegister() const override {
1041     // x86-32 lowering does not support passing swifterror in a register.
1042     return false;
1043   }
1044 };
1045 
1046 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1047 public:
1048   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1049                           bool RetSmallStructInRegABI, bool Win32StructABI,
1050                           unsigned NumRegisterParameters, bool SoftFloatABI)
1051       : TargetCodeGenInfo(new X86_32ABIInfo(
1052             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1053             NumRegisterParameters, SoftFloatABI)) {}
1054 
1055   static bool isStructReturnInRegABI(
1056       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1057 
1058   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1059                            CodeGen::CodeGenModule &CGM,
1060                            ForDefinition_t IsForDefinition) const override;
1061 
1062   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1063     // Darwin uses different dwarf register numbers for EH.
1064     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1065     return 4;
1066   }
1067 
1068   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1069                                llvm::Value *Address) const override;
1070 
1071   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1072                                   StringRef Constraint,
1073                                   llvm::Type* Ty) const override {
1074     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1075   }
1076 
1077   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1078                                 std::string &Constraints,
1079                                 std::vector<llvm::Type *> &ResultRegTypes,
1080                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1081                                 std::vector<LValue> &ResultRegDests,
1082                                 std::string &AsmString,
1083                                 unsigned NumOutputs) const override;
1084 
1085   llvm::Constant *
1086   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1087     unsigned Sig = (0xeb << 0) |  // jmp rel8
1088                    (0x06 << 8) |  //           .+0x08
1089                    ('v' << 16) |
1090                    ('2' << 24);
1091     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1092   }
1093 
1094   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1095     return "movl\t%ebp, %ebp"
1096            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1097   }
1098 };
1099 
1100 }
1101 
1102 /// Rewrite input constraint references after adding some output constraints.
1103 /// In the case where there is one output and one input and we add one output,
1104 /// we need to replace all operand references greater than or equal to 1:
1105 ///     mov $0, $1
1106 ///     mov eax, $1
1107 /// The result will be:
1108 ///     mov $0, $2
1109 ///     mov eax, $2
1110 static void rewriteInputConstraintReferences(unsigned FirstIn,
1111                                              unsigned NumNewOuts,
1112                                              std::string &AsmString) {
1113   std::string Buf;
1114   llvm::raw_string_ostream OS(Buf);
1115   size_t Pos = 0;
1116   while (Pos < AsmString.size()) {
1117     size_t DollarStart = AsmString.find('$', Pos);
1118     if (DollarStart == std::string::npos)
1119       DollarStart = AsmString.size();
1120     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1121     if (DollarEnd == std::string::npos)
1122       DollarEnd = AsmString.size();
1123     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1124     Pos = DollarEnd;
1125     size_t NumDollars = DollarEnd - DollarStart;
1126     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1127       // We have an operand reference.
1128       size_t DigitStart = Pos;
1129       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1130       if (DigitEnd == std::string::npos)
1131         DigitEnd = AsmString.size();
1132       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1133       unsigned OperandIndex;
1134       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1135         if (OperandIndex >= FirstIn)
1136           OperandIndex += NumNewOuts;
1137         OS << OperandIndex;
1138       } else {
1139         OS << OperandStr;
1140       }
1141       Pos = DigitEnd;
1142     }
1143   }
1144   AsmString = std::move(OS.str());
1145 }
1146 
1147 /// Add output constraints for EAX:EDX because they are return registers.
1148 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1149     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1150     std::vector<llvm::Type *> &ResultRegTypes,
1151     std::vector<llvm::Type *> &ResultTruncRegTypes,
1152     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1153     unsigned NumOutputs) const {
1154   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1155 
1156   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1157   // larger.
1158   if (!Constraints.empty())
1159     Constraints += ',';
1160   if (RetWidth <= 32) {
1161     Constraints += "={eax}";
1162     ResultRegTypes.push_back(CGF.Int32Ty);
1163   } else {
1164     // Use the 'A' constraint for EAX:EDX.
1165     Constraints += "=A";
1166     ResultRegTypes.push_back(CGF.Int64Ty);
1167   }
1168 
1169   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1170   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1171   ResultTruncRegTypes.push_back(CoerceTy);
1172 
1173   // Coerce the integer by bitcasting the return slot pointer.
1174   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1175                                                   CoerceTy->getPointerTo()));
1176   ResultRegDests.push_back(ReturnSlot);
1177 
1178   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1179 }
1180 
1181 /// shouldReturnTypeInRegister - Determine if the given type should be
1182 /// returned in a register (for the Darwin and MCU ABI).
1183 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1184                                                ASTContext &Context) const {
1185   uint64_t Size = Context.getTypeSize(Ty);
1186 
1187   // For i386, type must be register sized.
1188   // For the MCU ABI, it only needs to be <= 8-byte
1189   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1190    return false;
1191 
1192   if (Ty->isVectorType()) {
1193     // 64- and 128- bit vectors inside structures are not returned in
1194     // registers.
1195     if (Size == 64 || Size == 128)
1196       return false;
1197 
1198     return true;
1199   }
1200 
1201   // If this is a builtin, pointer, enum, complex type, member pointer, or
1202   // member function pointer it is ok.
1203   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1204       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1205       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1206     return true;
1207 
1208   // Arrays are treated like records.
1209   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1210     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1211 
1212   // Otherwise, it must be a record type.
1213   const RecordType *RT = Ty->getAs<RecordType>();
1214   if (!RT) return false;
1215 
1216   // FIXME: Traverse bases here too.
1217 
1218   // Structure types are passed in register if all fields would be
1219   // passed in a register.
1220   for (const auto *FD : RT->getDecl()->fields()) {
1221     // Empty fields are ignored.
1222     if (isEmptyField(Context, FD, true))
1223       continue;
1224 
1225     // Check fields recursively.
1226     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1227       return false;
1228   }
1229   return true;
1230 }
1231 
1232 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1233   // Treat complex types as the element type.
1234   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1235     Ty = CTy->getElementType();
1236 
1237   // Check for a type which we know has a simple scalar argument-passing
1238   // convention without any padding.  (We're specifically looking for 32
1239   // and 64-bit integer and integer-equivalents, float, and double.)
1240   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1241       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1242     return false;
1243 
1244   uint64_t Size = Context.getTypeSize(Ty);
1245   return Size == 32 || Size == 64;
1246 }
1247 
1248 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1249                           uint64_t &Size) {
1250   for (const auto *FD : RD->fields()) {
1251     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1252     // argument is smaller than 32-bits, expanding the struct will create
1253     // alignment padding.
1254     if (!is32Or64BitBasicType(FD->getType(), Context))
1255       return false;
1256 
1257     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1258     // how to expand them yet, and the predicate for telling if a bitfield still
1259     // counts as "basic" is more complicated than what we were doing previously.
1260     if (FD->isBitField())
1261       return false;
1262 
1263     Size += Context.getTypeSize(FD->getType());
1264   }
1265   return true;
1266 }
1267 
1268 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1269                                  uint64_t &Size) {
1270   // Don't do this if there are any non-empty bases.
1271   for (const CXXBaseSpecifier &Base : RD->bases()) {
1272     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1273                               Size))
1274       return false;
1275   }
1276   if (!addFieldSizes(Context, RD, Size))
1277     return false;
1278   return true;
1279 }
1280 
1281 /// Test whether an argument type which is to be passed indirectly (on the
1282 /// stack) would have the equivalent layout if it was expanded into separate
1283 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1284 /// optimizations.
1285 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1286   // We can only expand structure types.
1287   const RecordType *RT = Ty->getAs<RecordType>();
1288   if (!RT)
1289     return false;
1290   const RecordDecl *RD = RT->getDecl();
1291   uint64_t Size = 0;
1292   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1293     if (!IsWin32StructABI) {
1294       // On non-Windows, we have to conservatively match our old bitcode
1295       // prototypes in order to be ABI-compatible at the bitcode level.
1296       if (!CXXRD->isCLike())
1297         return false;
1298     } else {
1299       // Don't do this for dynamic classes.
1300       if (CXXRD->isDynamicClass())
1301         return false;
1302     }
1303     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1304       return false;
1305   } else {
1306     if (!addFieldSizes(getContext(), RD, Size))
1307       return false;
1308   }
1309 
1310   // We can do this if there was no alignment padding.
1311   return Size == getContext().getTypeSize(Ty);
1312 }
1313 
1314 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1315   // If the return value is indirect, then the hidden argument is consuming one
1316   // integer register.
1317   if (State.FreeRegs) {
1318     --State.FreeRegs;
1319     if (!IsMCUABI)
1320       return getNaturalAlignIndirectInReg(RetTy);
1321   }
1322   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1323 }
1324 
1325 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1326                                              CCState &State) const {
1327   if (RetTy->isVoidType())
1328     return ABIArgInfo::getIgnore();
1329 
1330   const Type *Base = nullptr;
1331   uint64_t NumElts = 0;
1332   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1333        State.CC == llvm::CallingConv::X86_RegCall) &&
1334       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1335     // The LLVM struct type for such an aggregate should lower properly.
1336     return ABIArgInfo::getDirect();
1337   }
1338 
1339   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1340     // On Darwin, some vectors are returned in registers.
1341     if (IsDarwinVectorABI) {
1342       uint64_t Size = getContext().getTypeSize(RetTy);
1343 
1344       // 128-bit vectors are a special case; they are returned in
1345       // registers and we need to make sure to pick a type the LLVM
1346       // backend will like.
1347       if (Size == 128)
1348         return ABIArgInfo::getDirect(llvm::VectorType::get(
1349                   llvm::Type::getInt64Ty(getVMContext()), 2));
1350 
1351       // Always return in register if it fits in a general purpose
1352       // register, or if it is 64 bits and has a single element.
1353       if ((Size == 8 || Size == 16 || Size == 32) ||
1354           (Size == 64 && VT->getNumElements() == 1))
1355         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1356                                                             Size));
1357 
1358       return getIndirectReturnResult(RetTy, State);
1359     }
1360 
1361     return ABIArgInfo::getDirect();
1362   }
1363 
1364   if (isAggregateTypeForABI(RetTy)) {
1365     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1366       // Structures with flexible arrays are always indirect.
1367       if (RT->getDecl()->hasFlexibleArrayMember())
1368         return getIndirectReturnResult(RetTy, State);
1369     }
1370 
1371     // If specified, structs and unions are always indirect.
1372     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1373       return getIndirectReturnResult(RetTy, State);
1374 
1375     // Ignore empty structs/unions.
1376     if (isEmptyRecord(getContext(), RetTy, true))
1377       return ABIArgInfo::getIgnore();
1378 
1379     // Small structures which are register sized are generally returned
1380     // in a register.
1381     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1382       uint64_t Size = getContext().getTypeSize(RetTy);
1383 
1384       // As a special-case, if the struct is a "single-element" struct, and
1385       // the field is of type "float" or "double", return it in a
1386       // floating-point register. (MSVC does not apply this special case.)
1387       // We apply a similar transformation for pointer types to improve the
1388       // quality of the generated IR.
1389       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1390         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1391             || SeltTy->hasPointerRepresentation())
1392           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1393 
1394       // FIXME: We should be able to narrow this integer in cases with dead
1395       // padding.
1396       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1397     }
1398 
1399     return getIndirectReturnResult(RetTy, State);
1400   }
1401 
1402   // Treat an enum type as its underlying type.
1403   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1404     RetTy = EnumTy->getDecl()->getIntegerType();
1405 
1406   return (RetTy->isPromotableIntegerType() ?
1407           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1408 }
1409 
1410 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1411   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1412 }
1413 
1414 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1415   const RecordType *RT = Ty->getAs<RecordType>();
1416   if (!RT)
1417     return 0;
1418   const RecordDecl *RD = RT->getDecl();
1419 
1420   // If this is a C++ record, check the bases first.
1421   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1422     for (const auto &I : CXXRD->bases())
1423       if (!isRecordWithSSEVectorType(Context, I.getType()))
1424         return false;
1425 
1426   for (const auto *i : RD->fields()) {
1427     QualType FT = i->getType();
1428 
1429     if (isSSEVectorType(Context, FT))
1430       return true;
1431 
1432     if (isRecordWithSSEVectorType(Context, FT))
1433       return true;
1434   }
1435 
1436   return false;
1437 }
1438 
1439 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1440                                                  unsigned Align) const {
1441   // Otherwise, if the alignment is less than or equal to the minimum ABI
1442   // alignment, just use the default; the backend will handle this.
1443   if (Align <= MinABIStackAlignInBytes)
1444     return 0; // Use default alignment.
1445 
1446   // On non-Darwin, the stack type alignment is always 4.
1447   if (!IsDarwinVectorABI) {
1448     // Set explicit alignment, since we may need to realign the top.
1449     return MinABIStackAlignInBytes;
1450   }
1451 
1452   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1453   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1454                       isRecordWithSSEVectorType(getContext(), Ty)))
1455     return 16;
1456 
1457   return MinABIStackAlignInBytes;
1458 }
1459 
1460 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1461                                             CCState &State) const {
1462   if (!ByVal) {
1463     if (State.FreeRegs) {
1464       --State.FreeRegs; // Non-byval indirects just use one pointer.
1465       if (!IsMCUABI)
1466         return getNaturalAlignIndirectInReg(Ty);
1467     }
1468     return getNaturalAlignIndirect(Ty, false);
1469   }
1470 
1471   // Compute the byval alignment.
1472   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1473   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1474   if (StackAlign == 0)
1475     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1476 
1477   // If the stack alignment is less than the type alignment, realign the
1478   // argument.
1479   bool Realign = TypeAlign > StackAlign;
1480   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1481                                  /*ByVal=*/true, Realign);
1482 }
1483 
1484 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1485   const Type *T = isSingleElementStruct(Ty, getContext());
1486   if (!T)
1487     T = Ty.getTypePtr();
1488 
1489   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1490     BuiltinType::Kind K = BT->getKind();
1491     if (K == BuiltinType::Float || K == BuiltinType::Double)
1492       return Float;
1493   }
1494   return Integer;
1495 }
1496 
1497 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1498   if (!IsSoftFloatABI) {
1499     Class C = classify(Ty);
1500     if (C == Float)
1501       return false;
1502   }
1503 
1504   unsigned Size = getContext().getTypeSize(Ty);
1505   unsigned SizeInRegs = (Size + 31) / 32;
1506 
1507   if (SizeInRegs == 0)
1508     return false;
1509 
1510   if (!IsMCUABI) {
1511     if (SizeInRegs > State.FreeRegs) {
1512       State.FreeRegs = 0;
1513       return false;
1514     }
1515   } else {
1516     // The MCU psABI allows passing parameters in-reg even if there are
1517     // earlier parameters that are passed on the stack. Also,
1518     // it does not allow passing >8-byte structs in-register,
1519     // even if there are 3 free registers available.
1520     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1521       return false;
1522   }
1523 
1524   State.FreeRegs -= SizeInRegs;
1525   return true;
1526 }
1527 
1528 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1529                                              bool &InReg,
1530                                              bool &NeedsPadding) const {
1531   // On Windows, aggregates other than HFAs are never passed in registers, and
1532   // they do not consume register slots. Homogenous floating-point aggregates
1533   // (HFAs) have already been dealt with at this point.
1534   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1535     return false;
1536 
1537   NeedsPadding = false;
1538   InReg = !IsMCUABI;
1539 
1540   if (!updateFreeRegs(Ty, State))
1541     return false;
1542 
1543   if (IsMCUABI)
1544     return true;
1545 
1546   if (State.CC == llvm::CallingConv::X86_FastCall ||
1547       State.CC == llvm::CallingConv::X86_VectorCall ||
1548       State.CC == llvm::CallingConv::X86_RegCall) {
1549     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1550       NeedsPadding = true;
1551 
1552     return false;
1553   }
1554 
1555   return true;
1556 }
1557 
1558 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1559   if (!updateFreeRegs(Ty, State))
1560     return false;
1561 
1562   if (IsMCUABI)
1563     return false;
1564 
1565   if (State.CC == llvm::CallingConv::X86_FastCall ||
1566       State.CC == llvm::CallingConv::X86_VectorCall ||
1567       State.CC == llvm::CallingConv::X86_RegCall) {
1568     if (getContext().getTypeSize(Ty) > 32)
1569       return false;
1570 
1571     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1572         Ty->isReferenceType());
1573   }
1574 
1575   return true;
1576 }
1577 
1578 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1579                                                CCState &State) const {
1580   // FIXME: Set alignment on indirect arguments.
1581 
1582   Ty = useFirstFieldIfTransparentUnion(Ty);
1583 
1584   // Check with the C++ ABI first.
1585   const RecordType *RT = Ty->getAs<RecordType>();
1586   if (RT) {
1587     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1588     if (RAA == CGCXXABI::RAA_Indirect) {
1589       return getIndirectResult(Ty, false, State);
1590     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1591       // The field index doesn't matter, we'll fix it up later.
1592       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1593     }
1594   }
1595 
1596   // Regcall uses the concept of a homogenous vector aggregate, similar
1597   // to other targets.
1598   const Type *Base = nullptr;
1599   uint64_t NumElts = 0;
1600   if (State.CC == llvm::CallingConv::X86_RegCall &&
1601       isHomogeneousAggregate(Ty, Base, NumElts)) {
1602 
1603     if (State.FreeSSERegs >= NumElts) {
1604       State.FreeSSERegs -= NumElts;
1605       if (Ty->isBuiltinType() || Ty->isVectorType())
1606         return ABIArgInfo::getDirect();
1607       return ABIArgInfo::getExpand();
1608     }
1609     return getIndirectResult(Ty, /*ByVal=*/false, State);
1610   }
1611 
1612   if (isAggregateTypeForABI(Ty)) {
1613     // Structures with flexible arrays are always indirect.
1614     // FIXME: This should not be byval!
1615     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1616       return getIndirectResult(Ty, true, State);
1617 
1618     // Ignore empty structs/unions on non-Windows.
1619     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1620       return ABIArgInfo::getIgnore();
1621 
1622     llvm::LLVMContext &LLVMContext = getVMContext();
1623     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1624     bool NeedsPadding = false;
1625     bool InReg;
1626     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1627       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1628       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1629       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1630       if (InReg)
1631         return ABIArgInfo::getDirectInReg(Result);
1632       else
1633         return ABIArgInfo::getDirect(Result);
1634     }
1635     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1636 
1637     // Expand small (<= 128-bit) record types when we know that the stack layout
1638     // of those arguments will match the struct. This is important because the
1639     // LLVM backend isn't smart enough to remove byval, which inhibits many
1640     // optimizations.
1641     // Don't do this for the MCU if there are still free integer registers
1642     // (see X86_64 ABI for full explanation).
1643     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1644         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1645       return ABIArgInfo::getExpandWithPadding(
1646           State.CC == llvm::CallingConv::X86_FastCall ||
1647               State.CC == llvm::CallingConv::X86_VectorCall ||
1648               State.CC == llvm::CallingConv::X86_RegCall,
1649           PaddingType);
1650 
1651     return getIndirectResult(Ty, true, State);
1652   }
1653 
1654   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1655     // On Darwin, some vectors are passed in memory, we handle this by passing
1656     // it as an i8/i16/i32/i64.
1657     if (IsDarwinVectorABI) {
1658       uint64_t Size = getContext().getTypeSize(Ty);
1659       if ((Size == 8 || Size == 16 || Size == 32) ||
1660           (Size == 64 && VT->getNumElements() == 1))
1661         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1662                                                             Size));
1663     }
1664 
1665     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1666       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1667 
1668     return ABIArgInfo::getDirect();
1669   }
1670 
1671 
1672   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1673     Ty = EnumTy->getDecl()->getIntegerType();
1674 
1675   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1676 
1677   if (Ty->isPromotableIntegerType()) {
1678     if (InReg)
1679       return ABIArgInfo::getExtendInReg();
1680     return ABIArgInfo::getExtend();
1681   }
1682 
1683   if (InReg)
1684     return ABIArgInfo::getDirectInReg();
1685   return ABIArgInfo::getDirect();
1686 }
1687 
1688 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1689                                           bool &UsedInAlloca) const {
1690   // Vectorcall x86 works subtly different than in x64, so the format is
1691   // a bit different than the x64 version.  First, all vector types (not HVAs)
1692   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1693   // This differs from the x64 implementation, where the first 6 by INDEX get
1694   // registers.
1695   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1696   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1697   // first take up the remaining YMM/XMM registers. If insufficient registers
1698   // remain but an integer register (ECX/EDX) is available, it will be passed
1699   // in that, else, on the stack.
1700   for (auto &I : FI.arguments()) {
1701     // First pass do all the vector types.
1702     const Type *Base = nullptr;
1703     uint64_t NumElts = 0;
1704     const QualType& Ty = I.type;
1705     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1706         isHomogeneousAggregate(Ty, Base, NumElts)) {
1707       if (State.FreeSSERegs >= NumElts) {
1708         State.FreeSSERegs -= NumElts;
1709         I.info = ABIArgInfo::getDirect();
1710       } else {
1711         I.info = classifyArgumentType(Ty, State);
1712       }
1713       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1714     }
1715   }
1716 
1717   for (auto &I : FI.arguments()) {
1718     // Second pass, do the rest!
1719     const Type *Base = nullptr;
1720     uint64_t NumElts = 0;
1721     const QualType& Ty = I.type;
1722     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1723 
1724     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1725       // Assign true HVAs (non vector/native FP types).
1726       if (State.FreeSSERegs >= NumElts) {
1727         State.FreeSSERegs -= NumElts;
1728         I.info = getDirectX86Hva();
1729       } else {
1730         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1731       }
1732     } else if (!IsHva) {
1733       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1734       I.info = classifyArgumentType(Ty, State);
1735       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1736     }
1737   }
1738 }
1739 
1740 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1741   CCState State(FI.getCallingConvention());
1742   if (IsMCUABI)
1743     State.FreeRegs = 3;
1744   else if (State.CC == llvm::CallingConv::X86_FastCall)
1745     State.FreeRegs = 2;
1746   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1747     State.FreeRegs = 2;
1748     State.FreeSSERegs = 6;
1749   } else if (FI.getHasRegParm())
1750     State.FreeRegs = FI.getRegParm();
1751   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1752     State.FreeRegs = 5;
1753     State.FreeSSERegs = 8;
1754   } else
1755     State.FreeRegs = DefaultNumRegisterParameters;
1756 
1757   if (!getCXXABI().classifyReturnType(FI)) {
1758     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1759   } else if (FI.getReturnInfo().isIndirect()) {
1760     // The C++ ABI is not aware of register usage, so we have to check if the
1761     // return value was sret and put it in a register ourselves if appropriate.
1762     if (State.FreeRegs) {
1763       --State.FreeRegs;  // The sret parameter consumes a register.
1764       if (!IsMCUABI)
1765         FI.getReturnInfo().setInReg(true);
1766     }
1767   }
1768 
1769   // The chain argument effectively gives us another free register.
1770   if (FI.isChainCall())
1771     ++State.FreeRegs;
1772 
1773   bool UsedInAlloca = false;
1774   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1775     computeVectorCallArgs(FI, State, UsedInAlloca);
1776   } else {
1777     // If not vectorcall, revert to normal behavior.
1778     for (auto &I : FI.arguments()) {
1779       I.info = classifyArgumentType(I.type, State);
1780       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1781     }
1782   }
1783 
1784   // If we needed to use inalloca for any argument, do a second pass and rewrite
1785   // all the memory arguments to use inalloca.
1786   if (UsedInAlloca)
1787     rewriteWithInAlloca(FI);
1788 }
1789 
1790 void
1791 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1792                                    CharUnits &StackOffset, ABIArgInfo &Info,
1793                                    QualType Type) const {
1794   // Arguments are always 4-byte-aligned.
1795   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1796 
1797   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1798   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1799   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1800   StackOffset += getContext().getTypeSizeInChars(Type);
1801 
1802   // Insert padding bytes to respect alignment.
1803   CharUnits FieldEnd = StackOffset;
1804   StackOffset = FieldEnd.alignTo(FieldAlign);
1805   if (StackOffset != FieldEnd) {
1806     CharUnits NumBytes = StackOffset - FieldEnd;
1807     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1808     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1809     FrameFields.push_back(Ty);
1810   }
1811 }
1812 
1813 static bool isArgInAlloca(const ABIArgInfo &Info) {
1814   // Leave ignored and inreg arguments alone.
1815   switch (Info.getKind()) {
1816   case ABIArgInfo::InAlloca:
1817     return true;
1818   case ABIArgInfo::Indirect:
1819     assert(Info.getIndirectByVal());
1820     return true;
1821   case ABIArgInfo::Ignore:
1822     return false;
1823   case ABIArgInfo::Direct:
1824   case ABIArgInfo::Extend:
1825     if (Info.getInReg())
1826       return false;
1827     return true;
1828   case ABIArgInfo::Expand:
1829   case ABIArgInfo::CoerceAndExpand:
1830     // These are aggregate types which are never passed in registers when
1831     // inalloca is involved.
1832     return true;
1833   }
1834   llvm_unreachable("invalid enum");
1835 }
1836 
1837 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1838   assert(IsWin32StructABI && "inalloca only supported on win32");
1839 
1840   // Build a packed struct type for all of the arguments in memory.
1841   SmallVector<llvm::Type *, 6> FrameFields;
1842 
1843   // The stack alignment is always 4.
1844   CharUnits StackAlign = CharUnits::fromQuantity(4);
1845 
1846   CharUnits StackOffset;
1847   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1848 
1849   // Put 'this' into the struct before 'sret', if necessary.
1850   bool IsThisCall =
1851       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1852   ABIArgInfo &Ret = FI.getReturnInfo();
1853   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1854       isArgInAlloca(I->info)) {
1855     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1856     ++I;
1857   }
1858 
1859   // Put the sret parameter into the inalloca struct if it's in memory.
1860   if (Ret.isIndirect() && !Ret.getInReg()) {
1861     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1862     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1863     // On Windows, the hidden sret parameter is always returned in eax.
1864     Ret.setInAllocaSRet(IsWin32StructABI);
1865   }
1866 
1867   // Skip the 'this' parameter in ecx.
1868   if (IsThisCall)
1869     ++I;
1870 
1871   // Put arguments passed in memory into the struct.
1872   for (; I != E; ++I) {
1873     if (isArgInAlloca(I->info))
1874       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1875   }
1876 
1877   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1878                                         /*isPacked=*/true),
1879                   StackAlign);
1880 }
1881 
1882 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1883                                  Address VAListAddr, QualType Ty) const {
1884 
1885   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1886 
1887   // x86-32 changes the alignment of certain arguments on the stack.
1888   //
1889   // Just messing with TypeInfo like this works because we never pass
1890   // anything indirectly.
1891   TypeInfo.second = CharUnits::fromQuantity(
1892                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1893 
1894   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1895                           TypeInfo, CharUnits::fromQuantity(4),
1896                           /*AllowHigherAlign*/ true);
1897 }
1898 
1899 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1900     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1901   assert(Triple.getArch() == llvm::Triple::x86);
1902 
1903   switch (Opts.getStructReturnConvention()) {
1904   case CodeGenOptions::SRCK_Default:
1905     break;
1906   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1907     return false;
1908   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1909     return true;
1910   }
1911 
1912   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1913     return true;
1914 
1915   switch (Triple.getOS()) {
1916   case llvm::Triple::DragonFly:
1917   case llvm::Triple::FreeBSD:
1918   case llvm::Triple::OpenBSD:
1919   case llvm::Triple::Win32:
1920     return true;
1921   default:
1922     return false;
1923   }
1924 }
1925 
1926 void X86_32TargetCodeGenInfo::setTargetAttributes(
1927     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
1928     ForDefinition_t IsForDefinition) const {
1929   if (!IsForDefinition)
1930     return;
1931   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1932     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1933       // Get the LLVM function.
1934       llvm::Function *Fn = cast<llvm::Function>(GV);
1935 
1936       // Now add the 'alignstack' attribute with a value of 16.
1937       llvm::AttrBuilder B;
1938       B.addStackAlignmentAttr(16);
1939       Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
1940     }
1941     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1942       llvm::Function *Fn = cast<llvm::Function>(GV);
1943       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1944     }
1945   }
1946 }
1947 
1948 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1949                                                CodeGen::CodeGenFunction &CGF,
1950                                                llvm::Value *Address) const {
1951   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1952 
1953   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1954 
1955   // 0-7 are the eight integer registers;  the order is different
1956   //   on Darwin (for EH), but the range is the same.
1957   // 8 is %eip.
1958   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1959 
1960   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1961     // 12-16 are st(0..4).  Not sure why we stop at 4.
1962     // These have size 16, which is sizeof(long double) on
1963     // platforms with 8-byte alignment for that type.
1964     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1965     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1966 
1967   } else {
1968     // 9 is %eflags, which doesn't get a size on Darwin for some
1969     // reason.
1970     Builder.CreateAlignedStore(
1971         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1972                                CharUnits::One());
1973 
1974     // 11-16 are st(0..5).  Not sure why we stop at 5.
1975     // These have size 12, which is sizeof(long double) on
1976     // platforms with 4-byte alignment for that type.
1977     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1978     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1979   }
1980 
1981   return false;
1982 }
1983 
1984 //===----------------------------------------------------------------------===//
1985 // X86-64 ABI Implementation
1986 //===----------------------------------------------------------------------===//
1987 
1988 
1989 namespace {
1990 /// The AVX ABI level for X86 targets.
1991 enum class X86AVXABILevel {
1992   None,
1993   AVX,
1994   AVX512
1995 };
1996 
1997 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1998 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1999   switch (AVXLevel) {
2000   case X86AVXABILevel::AVX512:
2001     return 512;
2002   case X86AVXABILevel::AVX:
2003     return 256;
2004   case X86AVXABILevel::None:
2005     return 128;
2006   }
2007   llvm_unreachable("Unknown AVXLevel");
2008 }
2009 
2010 /// X86_64ABIInfo - The X86_64 ABI information.
2011 class X86_64ABIInfo : public SwiftABIInfo {
2012   enum Class {
2013     Integer = 0,
2014     SSE,
2015     SSEUp,
2016     X87,
2017     X87Up,
2018     ComplexX87,
2019     NoClass,
2020     Memory
2021   };
2022 
2023   /// merge - Implement the X86_64 ABI merging algorithm.
2024   ///
2025   /// Merge an accumulating classification \arg Accum with a field
2026   /// classification \arg Field.
2027   ///
2028   /// \param Accum - The accumulating classification. This should
2029   /// always be either NoClass or the result of a previous merge
2030   /// call. In addition, this should never be Memory (the caller
2031   /// should just return Memory for the aggregate).
2032   static Class merge(Class Accum, Class Field);
2033 
2034   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2035   ///
2036   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2037   /// final MEMORY or SSE classes when necessary.
2038   ///
2039   /// \param AggregateSize - The size of the current aggregate in
2040   /// the classification process.
2041   ///
2042   /// \param Lo - The classification for the parts of the type
2043   /// residing in the low word of the containing object.
2044   ///
2045   /// \param Hi - The classification for the parts of the type
2046   /// residing in the higher words of the containing object.
2047   ///
2048   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2049 
2050   /// classify - Determine the x86_64 register classes in which the
2051   /// given type T should be passed.
2052   ///
2053   /// \param Lo - The classification for the parts of the type
2054   /// residing in the low word of the containing object.
2055   ///
2056   /// \param Hi - The classification for the parts of the type
2057   /// residing in the high word of the containing object.
2058   ///
2059   /// \param OffsetBase - The bit offset of this type in the
2060   /// containing object.  Some parameters are classified different
2061   /// depending on whether they straddle an eightbyte boundary.
2062   ///
2063   /// \param isNamedArg - Whether the argument in question is a "named"
2064   /// argument, as used in AMD64-ABI 3.5.7.
2065   ///
2066   /// If a word is unused its result will be NoClass; if a type should
2067   /// be passed in Memory then at least the classification of \arg Lo
2068   /// will be Memory.
2069   ///
2070   /// The \arg Lo class will be NoClass iff the argument is ignored.
2071   ///
2072   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2073   /// also be ComplexX87.
2074   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2075                 bool isNamedArg) const;
2076 
2077   llvm::Type *GetByteVectorType(QualType Ty) const;
2078   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2079                                  unsigned IROffset, QualType SourceTy,
2080                                  unsigned SourceOffset) const;
2081   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2082                                      unsigned IROffset, QualType SourceTy,
2083                                      unsigned SourceOffset) const;
2084 
2085   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2086   /// such that the argument will be returned in memory.
2087   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2088 
2089   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2090   /// such that the argument will be passed in memory.
2091   ///
2092   /// \param freeIntRegs - The number of free integer registers remaining
2093   /// available.
2094   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2095 
2096   ABIArgInfo classifyReturnType(QualType RetTy) const;
2097 
2098   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2099                                   unsigned &neededInt, unsigned &neededSSE,
2100                                   bool isNamedArg) const;
2101 
2102   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2103                                        unsigned &NeededSSE) const;
2104 
2105   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2106                                            unsigned &NeededSSE) const;
2107 
2108   bool IsIllegalVectorType(QualType Ty) const;
2109 
2110   /// The 0.98 ABI revision clarified a lot of ambiguities,
2111   /// unfortunately in ways that were not always consistent with
2112   /// certain previous compilers.  In particular, platforms which
2113   /// required strict binary compatibility with older versions of GCC
2114   /// may need to exempt themselves.
2115   bool honorsRevision0_98() const {
2116     return !getTarget().getTriple().isOSDarwin();
2117   }
2118 
2119   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2120   /// classify it as INTEGER (for compatibility with older clang compilers).
2121   bool classifyIntegerMMXAsSSE() const {
2122     // Clang <= 3.8 did not do this.
2123     if (getCodeGenOpts().getClangABICompat() <=
2124         CodeGenOptions::ClangABI::Ver3_8)
2125       return false;
2126 
2127     const llvm::Triple &Triple = getTarget().getTriple();
2128     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2129       return false;
2130     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2131       return false;
2132     return true;
2133   }
2134 
2135   X86AVXABILevel AVXLevel;
2136   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2137   // 64-bit hardware.
2138   bool Has64BitPointers;
2139 
2140 public:
2141   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2142       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2143       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2144   }
2145 
2146   bool isPassedUsingAVXType(QualType type) const {
2147     unsigned neededInt, neededSSE;
2148     // The freeIntRegs argument doesn't matter here.
2149     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2150                                            /*isNamedArg*/true);
2151     if (info.isDirect()) {
2152       llvm::Type *ty = info.getCoerceToType();
2153       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2154         return (vectorTy->getBitWidth() > 128);
2155     }
2156     return false;
2157   }
2158 
2159   void computeInfo(CGFunctionInfo &FI) const override;
2160 
2161   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2162                     QualType Ty) const override;
2163   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2164                       QualType Ty) const override;
2165 
2166   bool has64BitPointers() const {
2167     return Has64BitPointers;
2168   }
2169 
2170   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2171                                     bool asReturnValue) const override {
2172     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2173   }
2174   bool isSwiftErrorInRegister() const override {
2175     return true;
2176   }
2177 };
2178 
2179 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2180 class WinX86_64ABIInfo : public SwiftABIInfo {
2181 public:
2182   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2183       : SwiftABIInfo(CGT),
2184         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2185 
2186   void computeInfo(CGFunctionInfo &FI) const override;
2187 
2188   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2189                     QualType Ty) const override;
2190 
2191   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2192     // FIXME: Assumes vectorcall is in use.
2193     return isX86VectorTypeForVectorCall(getContext(), Ty);
2194   }
2195 
2196   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2197                                          uint64_t NumMembers) const override {
2198     // FIXME: Assumes vectorcall is in use.
2199     return isX86VectorCallAggregateSmallEnough(NumMembers);
2200   }
2201 
2202   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2203                                     bool asReturnValue) const override {
2204     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2205   }
2206 
2207   bool isSwiftErrorInRegister() const override {
2208     return true;
2209   }
2210 
2211 private:
2212   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2213                       bool IsVectorCall, bool IsRegCall) const;
2214   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2215                                       const ABIArgInfo &current) const;
2216   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2217                              bool IsVectorCall, bool IsRegCall) const;
2218 
2219     bool IsMingw64;
2220 };
2221 
2222 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2223 public:
2224   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2225       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2226 
2227   const X86_64ABIInfo &getABIInfo() const {
2228     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2229   }
2230 
2231   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2232     return 7;
2233   }
2234 
2235   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2236                                llvm::Value *Address) const override {
2237     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2238 
2239     // 0-15 are the 16 integer registers.
2240     // 16 is %rip.
2241     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2242     return false;
2243   }
2244 
2245   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2246                                   StringRef Constraint,
2247                                   llvm::Type* Ty) const override {
2248     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2249   }
2250 
2251   bool isNoProtoCallVariadic(const CallArgList &args,
2252                              const FunctionNoProtoType *fnType) const override {
2253     // The default CC on x86-64 sets %al to the number of SSA
2254     // registers used, and GCC sets this when calling an unprototyped
2255     // function, so we override the default behavior.  However, don't do
2256     // that when AVX types are involved: the ABI explicitly states it is
2257     // undefined, and it doesn't work in practice because of how the ABI
2258     // defines varargs anyway.
2259     if (fnType->getCallConv() == CC_C) {
2260       bool HasAVXType = false;
2261       for (CallArgList::const_iterator
2262              it = args.begin(), ie = args.end(); it != ie; ++it) {
2263         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2264           HasAVXType = true;
2265           break;
2266         }
2267       }
2268 
2269       if (!HasAVXType)
2270         return true;
2271     }
2272 
2273     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2274   }
2275 
2276   llvm::Constant *
2277   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2278     unsigned Sig = (0xeb << 0) | // jmp rel8
2279                    (0x06 << 8) | //           .+0x08
2280                    ('v' << 16) |
2281                    ('2' << 24);
2282     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2283   }
2284 
2285   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2286                            CodeGen::CodeGenModule &CGM,
2287                            ForDefinition_t IsForDefinition) const override {
2288     if (!IsForDefinition)
2289       return;
2290     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2291       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2292         // Get the LLVM function.
2293         auto *Fn = cast<llvm::Function>(GV);
2294 
2295         // Now add the 'alignstack' attribute with a value of 16.
2296         llvm::AttrBuilder B;
2297         B.addStackAlignmentAttr(16);
2298         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
2299       }
2300       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2301         llvm::Function *Fn = cast<llvm::Function>(GV);
2302         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2303       }
2304     }
2305   }
2306 };
2307 
2308 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2309 public:
2310   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2311     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2312 
2313   void getDependentLibraryOption(llvm::StringRef Lib,
2314                                  llvm::SmallString<24> &Opt) const override {
2315     Opt = "\01";
2316     // If the argument contains a space, enclose it in quotes.
2317     if (Lib.find(" ") != StringRef::npos)
2318       Opt += "\"" + Lib.str() + "\"";
2319     else
2320       Opt += Lib;
2321   }
2322 };
2323 
2324 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2325   // If the argument does not end in .lib, automatically add the suffix.
2326   // If the argument contains a space, enclose it in quotes.
2327   // This matches the behavior of MSVC.
2328   bool Quote = (Lib.find(" ") != StringRef::npos);
2329   std::string ArgStr = Quote ? "\"" : "";
2330   ArgStr += Lib;
2331   if (!Lib.endswith_lower(".lib"))
2332     ArgStr += ".lib";
2333   ArgStr += Quote ? "\"" : "";
2334   return ArgStr;
2335 }
2336 
2337 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2338 public:
2339   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2340         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2341         unsigned NumRegisterParameters)
2342     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2343         Win32StructABI, NumRegisterParameters, false) {}
2344 
2345   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2346                            CodeGen::CodeGenModule &CGM,
2347                            ForDefinition_t IsForDefinition) const override;
2348 
2349   void getDependentLibraryOption(llvm::StringRef Lib,
2350                                  llvm::SmallString<24> &Opt) const override {
2351     Opt = "/DEFAULTLIB:";
2352     Opt += qualifyWindowsLibrary(Lib);
2353   }
2354 
2355   void getDetectMismatchOption(llvm::StringRef Name,
2356                                llvm::StringRef Value,
2357                                llvm::SmallString<32> &Opt) const override {
2358     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2359   }
2360 };
2361 
2362 static void addStackProbeSizeTargetAttribute(const Decl *D,
2363                                              llvm::GlobalValue *GV,
2364                                              CodeGen::CodeGenModule &CGM) {
2365   if (D && isa<FunctionDecl>(D)) {
2366     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2367       llvm::Function *Fn = cast<llvm::Function>(GV);
2368 
2369       Fn->addFnAttr("stack-probe-size",
2370                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2371     }
2372   }
2373 }
2374 
2375 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2376     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
2377     ForDefinition_t IsForDefinition) const {
2378   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
2379   if (!IsForDefinition)
2380     return;
2381   addStackProbeSizeTargetAttribute(D, GV, CGM);
2382 }
2383 
2384 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2385 public:
2386   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2387                              X86AVXABILevel AVXLevel)
2388       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2389 
2390   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2391                            CodeGen::CodeGenModule &CGM,
2392                            ForDefinition_t IsForDefinition) const override;
2393 
2394   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2395     return 7;
2396   }
2397 
2398   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2399                                llvm::Value *Address) const override {
2400     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2401 
2402     // 0-15 are the 16 integer registers.
2403     // 16 is %rip.
2404     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2405     return false;
2406   }
2407 
2408   void getDependentLibraryOption(llvm::StringRef Lib,
2409                                  llvm::SmallString<24> &Opt) const override {
2410     Opt = "/DEFAULTLIB:";
2411     Opt += qualifyWindowsLibrary(Lib);
2412   }
2413 
2414   void getDetectMismatchOption(llvm::StringRef Name,
2415                                llvm::StringRef Value,
2416                                llvm::SmallString<32> &Opt) const override {
2417     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2418   }
2419 };
2420 
2421 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2422     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
2423     ForDefinition_t IsForDefinition) const {
2424   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
2425   if (!IsForDefinition)
2426     return;
2427   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2428     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2429       // Get the LLVM function.
2430       auto *Fn = cast<llvm::Function>(GV);
2431 
2432       // Now add the 'alignstack' attribute with a value of 16.
2433       llvm::AttrBuilder B;
2434       B.addStackAlignmentAttr(16);
2435       Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
2436     }
2437     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2438       llvm::Function *Fn = cast<llvm::Function>(GV);
2439       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2440     }
2441   }
2442 
2443   addStackProbeSizeTargetAttribute(D, GV, CGM);
2444 }
2445 }
2446 
2447 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2448                               Class &Hi) const {
2449   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2450   //
2451   // (a) If one of the classes is Memory, the whole argument is passed in
2452   //     memory.
2453   //
2454   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2455   //     memory.
2456   //
2457   // (c) If the size of the aggregate exceeds two eightbytes and the first
2458   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2459   //     argument is passed in memory. NOTE: This is necessary to keep the
2460   //     ABI working for processors that don't support the __m256 type.
2461   //
2462   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2463   //
2464   // Some of these are enforced by the merging logic.  Others can arise
2465   // only with unions; for example:
2466   //   union { _Complex double; unsigned; }
2467   //
2468   // Note that clauses (b) and (c) were added in 0.98.
2469   //
2470   if (Hi == Memory)
2471     Lo = Memory;
2472   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2473     Lo = Memory;
2474   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2475     Lo = Memory;
2476   if (Hi == SSEUp && Lo != SSE)
2477     Hi = SSE;
2478 }
2479 
2480 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2481   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2482   // classified recursively so that always two fields are
2483   // considered. The resulting class is calculated according to
2484   // the classes of the fields in the eightbyte:
2485   //
2486   // (a) If both classes are equal, this is the resulting class.
2487   //
2488   // (b) If one of the classes is NO_CLASS, the resulting class is
2489   // the other class.
2490   //
2491   // (c) If one of the classes is MEMORY, the result is the MEMORY
2492   // class.
2493   //
2494   // (d) If one of the classes is INTEGER, the result is the
2495   // INTEGER.
2496   //
2497   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2498   // MEMORY is used as class.
2499   //
2500   // (f) Otherwise class SSE is used.
2501 
2502   // Accum should never be memory (we should have returned) or
2503   // ComplexX87 (because this cannot be passed in a structure).
2504   assert((Accum != Memory && Accum != ComplexX87) &&
2505          "Invalid accumulated classification during merge.");
2506   if (Accum == Field || Field == NoClass)
2507     return Accum;
2508   if (Field == Memory)
2509     return Memory;
2510   if (Accum == NoClass)
2511     return Field;
2512   if (Accum == Integer || Field == Integer)
2513     return Integer;
2514   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2515       Accum == X87 || Accum == X87Up)
2516     return Memory;
2517   return SSE;
2518 }
2519 
2520 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2521                              Class &Lo, Class &Hi, bool isNamedArg) const {
2522   // FIXME: This code can be simplified by introducing a simple value class for
2523   // Class pairs with appropriate constructor methods for the various
2524   // situations.
2525 
2526   // FIXME: Some of the split computations are wrong; unaligned vectors
2527   // shouldn't be passed in registers for example, so there is no chance they
2528   // can straddle an eightbyte. Verify & simplify.
2529 
2530   Lo = Hi = NoClass;
2531 
2532   Class &Current = OffsetBase < 64 ? Lo : Hi;
2533   Current = Memory;
2534 
2535   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2536     BuiltinType::Kind k = BT->getKind();
2537 
2538     if (k == BuiltinType::Void) {
2539       Current = NoClass;
2540     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2541       Lo = Integer;
2542       Hi = Integer;
2543     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2544       Current = Integer;
2545     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2546       Current = SSE;
2547     } else if (k == BuiltinType::LongDouble) {
2548       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2549       if (LDF == &llvm::APFloat::IEEEquad()) {
2550         Lo = SSE;
2551         Hi = SSEUp;
2552       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2553         Lo = X87;
2554         Hi = X87Up;
2555       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2556         Current = SSE;
2557       } else
2558         llvm_unreachable("unexpected long double representation!");
2559     }
2560     // FIXME: _Decimal32 and _Decimal64 are SSE.
2561     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2562     return;
2563   }
2564 
2565   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2566     // Classify the underlying integer type.
2567     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2568     return;
2569   }
2570 
2571   if (Ty->hasPointerRepresentation()) {
2572     Current = Integer;
2573     return;
2574   }
2575 
2576   if (Ty->isMemberPointerType()) {
2577     if (Ty->isMemberFunctionPointerType()) {
2578       if (Has64BitPointers) {
2579         // If Has64BitPointers, this is an {i64, i64}, so classify both
2580         // Lo and Hi now.
2581         Lo = Hi = Integer;
2582       } else {
2583         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2584         // straddles an eightbyte boundary, Hi should be classified as well.
2585         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2586         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2587         if (EB_FuncPtr != EB_ThisAdj) {
2588           Lo = Hi = Integer;
2589         } else {
2590           Current = Integer;
2591         }
2592       }
2593     } else {
2594       Current = Integer;
2595     }
2596     return;
2597   }
2598 
2599   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2600     uint64_t Size = getContext().getTypeSize(VT);
2601     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2602       // gcc passes the following as integer:
2603       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2604       // 2 bytes - <2 x char>, <1 x short>
2605       // 1 byte  - <1 x char>
2606       Current = Integer;
2607 
2608       // If this type crosses an eightbyte boundary, it should be
2609       // split.
2610       uint64_t EB_Lo = (OffsetBase) / 64;
2611       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2612       if (EB_Lo != EB_Hi)
2613         Hi = Lo;
2614     } else if (Size == 64) {
2615       QualType ElementType = VT->getElementType();
2616 
2617       // gcc passes <1 x double> in memory. :(
2618       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2619         return;
2620 
2621       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2622       // pass them as integer.  For platforms where clang is the de facto
2623       // platform compiler, we must continue to use integer.
2624       if (!classifyIntegerMMXAsSSE() &&
2625           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2626            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2627            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2628            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2629         Current = Integer;
2630       else
2631         Current = SSE;
2632 
2633       // If this type crosses an eightbyte boundary, it should be
2634       // split.
2635       if (OffsetBase && OffsetBase != 64)
2636         Hi = Lo;
2637     } else if (Size == 128 ||
2638                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2639       // Arguments of 256-bits are split into four eightbyte chunks. The
2640       // least significant one belongs to class SSE and all the others to class
2641       // SSEUP. The original Lo and Hi design considers that types can't be
2642       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2643       // This design isn't correct for 256-bits, but since there're no cases
2644       // where the upper parts would need to be inspected, avoid adding
2645       // complexity and just consider Hi to match the 64-256 part.
2646       //
2647       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2648       // registers if they are "named", i.e. not part of the "..." of a
2649       // variadic function.
2650       //
2651       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2652       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2653       Lo = SSE;
2654       Hi = SSEUp;
2655     }
2656     return;
2657   }
2658 
2659   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2660     QualType ET = getContext().getCanonicalType(CT->getElementType());
2661 
2662     uint64_t Size = getContext().getTypeSize(Ty);
2663     if (ET->isIntegralOrEnumerationType()) {
2664       if (Size <= 64)
2665         Current = Integer;
2666       else if (Size <= 128)
2667         Lo = Hi = Integer;
2668     } else if (ET == getContext().FloatTy) {
2669       Current = SSE;
2670     } else if (ET == getContext().DoubleTy) {
2671       Lo = Hi = SSE;
2672     } else if (ET == getContext().LongDoubleTy) {
2673       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2674       if (LDF == &llvm::APFloat::IEEEquad())
2675         Current = Memory;
2676       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2677         Current = ComplexX87;
2678       else if (LDF == &llvm::APFloat::IEEEdouble())
2679         Lo = Hi = SSE;
2680       else
2681         llvm_unreachable("unexpected long double representation!");
2682     }
2683 
2684     // If this complex type crosses an eightbyte boundary then it
2685     // should be split.
2686     uint64_t EB_Real = (OffsetBase) / 64;
2687     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2688     if (Hi == NoClass && EB_Real != EB_Imag)
2689       Hi = Lo;
2690 
2691     return;
2692   }
2693 
2694   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2695     // Arrays are treated like structures.
2696 
2697     uint64_t Size = getContext().getTypeSize(Ty);
2698 
2699     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2700     // than eight eightbytes, ..., it has class MEMORY.
2701     if (Size > 512)
2702       return;
2703 
2704     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2705     // fields, it has class MEMORY.
2706     //
2707     // Only need to check alignment of array base.
2708     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2709       return;
2710 
2711     // Otherwise implement simplified merge. We could be smarter about
2712     // this, but it isn't worth it and would be harder to verify.
2713     Current = NoClass;
2714     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2715     uint64_t ArraySize = AT->getSize().getZExtValue();
2716 
2717     // The only case a 256-bit wide vector could be used is when the array
2718     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2719     // to work for sizes wider than 128, early check and fallback to memory.
2720     //
2721     if (Size > 128 &&
2722         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2723       return;
2724 
2725     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2726       Class FieldLo, FieldHi;
2727       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2728       Lo = merge(Lo, FieldLo);
2729       Hi = merge(Hi, FieldHi);
2730       if (Lo == Memory || Hi == Memory)
2731         break;
2732     }
2733 
2734     postMerge(Size, Lo, Hi);
2735     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2736     return;
2737   }
2738 
2739   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2740     uint64_t Size = getContext().getTypeSize(Ty);
2741 
2742     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2743     // than eight eightbytes, ..., it has class MEMORY.
2744     if (Size > 512)
2745       return;
2746 
2747     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2748     // copy constructor or a non-trivial destructor, it is passed by invisible
2749     // reference.
2750     if (getRecordArgABI(RT, getCXXABI()))
2751       return;
2752 
2753     const RecordDecl *RD = RT->getDecl();
2754 
2755     // Assume variable sized types are passed in memory.
2756     if (RD->hasFlexibleArrayMember())
2757       return;
2758 
2759     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2760 
2761     // Reset Lo class, this will be recomputed.
2762     Current = NoClass;
2763 
2764     // If this is a C++ record, classify the bases first.
2765     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2766       for (const auto &I : CXXRD->bases()) {
2767         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2768                "Unexpected base class!");
2769         const CXXRecordDecl *Base =
2770           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2771 
2772         // Classify this field.
2773         //
2774         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2775         // single eightbyte, each is classified separately. Each eightbyte gets
2776         // initialized to class NO_CLASS.
2777         Class FieldLo, FieldHi;
2778         uint64_t Offset =
2779           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2780         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2781         Lo = merge(Lo, FieldLo);
2782         Hi = merge(Hi, FieldHi);
2783         if (Lo == Memory || Hi == Memory) {
2784           postMerge(Size, Lo, Hi);
2785           return;
2786         }
2787       }
2788     }
2789 
2790     // Classify the fields one at a time, merging the results.
2791     unsigned idx = 0;
2792     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2793            i != e; ++i, ++idx) {
2794       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2795       bool BitField = i->isBitField();
2796 
2797       // Ignore padding bit-fields.
2798       if (BitField && i->isUnnamedBitfield())
2799         continue;
2800 
2801       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2802       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2803       //
2804       // The only case a 256-bit wide vector could be used is when the struct
2805       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2806       // to work for sizes wider than 128, early check and fallback to memory.
2807       //
2808       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2809                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2810         Lo = Memory;
2811         postMerge(Size, Lo, Hi);
2812         return;
2813       }
2814       // Note, skip this test for bit-fields, see below.
2815       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2816         Lo = Memory;
2817         postMerge(Size, Lo, Hi);
2818         return;
2819       }
2820 
2821       // Classify this field.
2822       //
2823       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2824       // exceeds a single eightbyte, each is classified
2825       // separately. Each eightbyte gets initialized to class
2826       // NO_CLASS.
2827       Class FieldLo, FieldHi;
2828 
2829       // Bit-fields require special handling, they do not force the
2830       // structure to be passed in memory even if unaligned, and
2831       // therefore they can straddle an eightbyte.
2832       if (BitField) {
2833         assert(!i->isUnnamedBitfield());
2834         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2835         uint64_t Size = i->getBitWidthValue(getContext());
2836 
2837         uint64_t EB_Lo = Offset / 64;
2838         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2839 
2840         if (EB_Lo) {
2841           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2842           FieldLo = NoClass;
2843           FieldHi = Integer;
2844         } else {
2845           FieldLo = Integer;
2846           FieldHi = EB_Hi ? Integer : NoClass;
2847         }
2848       } else
2849         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2850       Lo = merge(Lo, FieldLo);
2851       Hi = merge(Hi, FieldHi);
2852       if (Lo == Memory || Hi == Memory)
2853         break;
2854     }
2855 
2856     postMerge(Size, Lo, Hi);
2857   }
2858 }
2859 
2860 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2861   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2862   // place naturally.
2863   if (!isAggregateTypeForABI(Ty)) {
2864     // Treat an enum type as its underlying type.
2865     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2866       Ty = EnumTy->getDecl()->getIntegerType();
2867 
2868     return (Ty->isPromotableIntegerType() ?
2869             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2870   }
2871 
2872   return getNaturalAlignIndirect(Ty);
2873 }
2874 
2875 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2876   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2877     uint64_t Size = getContext().getTypeSize(VecTy);
2878     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2879     if (Size <= 64 || Size > LargestVector)
2880       return true;
2881   }
2882 
2883   return false;
2884 }
2885 
2886 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2887                                             unsigned freeIntRegs) const {
2888   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2889   // place naturally.
2890   //
2891   // This assumption is optimistic, as there could be free registers available
2892   // when we need to pass this argument in memory, and LLVM could try to pass
2893   // the argument in the free register. This does not seem to happen currently,
2894   // but this code would be much safer if we could mark the argument with
2895   // 'onstack'. See PR12193.
2896   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2897     // Treat an enum type as its underlying type.
2898     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2899       Ty = EnumTy->getDecl()->getIntegerType();
2900 
2901     return (Ty->isPromotableIntegerType() ?
2902             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2903   }
2904 
2905   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2906     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2907 
2908   // Compute the byval alignment. We specify the alignment of the byval in all
2909   // cases so that the mid-level optimizer knows the alignment of the byval.
2910   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2911 
2912   // Attempt to avoid passing indirect results using byval when possible. This
2913   // is important for good codegen.
2914   //
2915   // We do this by coercing the value into a scalar type which the backend can
2916   // handle naturally (i.e., without using byval).
2917   //
2918   // For simplicity, we currently only do this when we have exhausted all of the
2919   // free integer registers. Doing this when there are free integer registers
2920   // would require more care, as we would have to ensure that the coerced value
2921   // did not claim the unused register. That would require either reording the
2922   // arguments to the function (so that any subsequent inreg values came first),
2923   // or only doing this optimization when there were no following arguments that
2924   // might be inreg.
2925   //
2926   // We currently expect it to be rare (particularly in well written code) for
2927   // arguments to be passed on the stack when there are still free integer
2928   // registers available (this would typically imply large structs being passed
2929   // by value), so this seems like a fair tradeoff for now.
2930   //
2931   // We can revisit this if the backend grows support for 'onstack' parameter
2932   // attributes. See PR12193.
2933   if (freeIntRegs == 0) {
2934     uint64_t Size = getContext().getTypeSize(Ty);
2935 
2936     // If this type fits in an eightbyte, coerce it into the matching integral
2937     // type, which will end up on the stack (with alignment 8).
2938     if (Align == 8 && Size <= 64)
2939       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2940                                                           Size));
2941   }
2942 
2943   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2944 }
2945 
2946 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2947 /// register. Pick an LLVM IR type that will be passed as a vector register.
2948 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2949   // Wrapper structs/arrays that only contain vectors are passed just like
2950   // vectors; strip them off if present.
2951   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2952     Ty = QualType(InnerTy, 0);
2953 
2954   llvm::Type *IRType = CGT.ConvertType(Ty);
2955   if (isa<llvm::VectorType>(IRType) ||
2956       IRType->getTypeID() == llvm::Type::FP128TyID)
2957     return IRType;
2958 
2959   // We couldn't find the preferred IR vector type for 'Ty'.
2960   uint64_t Size = getContext().getTypeSize(Ty);
2961   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2962 
2963   // Return a LLVM IR vector type based on the size of 'Ty'.
2964   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2965                                Size / 64);
2966 }
2967 
2968 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2969 /// is known to either be off the end of the specified type or being in
2970 /// alignment padding.  The user type specified is known to be at most 128 bits
2971 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2972 /// classification that put one of the two halves in the INTEGER class.
2973 ///
2974 /// It is conservatively correct to return false.
2975 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2976                                   unsigned EndBit, ASTContext &Context) {
2977   // If the bytes being queried are off the end of the type, there is no user
2978   // data hiding here.  This handles analysis of builtins, vectors and other
2979   // types that don't contain interesting padding.
2980   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2981   if (TySize <= StartBit)
2982     return true;
2983 
2984   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2985     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2986     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2987 
2988     // Check each element to see if the element overlaps with the queried range.
2989     for (unsigned i = 0; i != NumElts; ++i) {
2990       // If the element is after the span we care about, then we're done..
2991       unsigned EltOffset = i*EltSize;
2992       if (EltOffset >= EndBit) break;
2993 
2994       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2995       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2996                                  EndBit-EltOffset, Context))
2997         return false;
2998     }
2999     // If it overlaps no elements, then it is safe to process as padding.
3000     return true;
3001   }
3002 
3003   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3004     const RecordDecl *RD = RT->getDecl();
3005     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3006 
3007     // If this is a C++ record, check the bases first.
3008     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3009       for (const auto &I : CXXRD->bases()) {
3010         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3011                "Unexpected base class!");
3012         const CXXRecordDecl *Base =
3013           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3014 
3015         // If the base is after the span we care about, ignore it.
3016         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3017         if (BaseOffset >= EndBit) continue;
3018 
3019         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3020         if (!BitsContainNoUserData(I.getType(), BaseStart,
3021                                    EndBit-BaseOffset, Context))
3022           return false;
3023       }
3024     }
3025 
3026     // Verify that no field has data that overlaps the region of interest.  Yes
3027     // this could be sped up a lot by being smarter about queried fields,
3028     // however we're only looking at structs up to 16 bytes, so we don't care
3029     // much.
3030     unsigned idx = 0;
3031     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3032          i != e; ++i, ++idx) {
3033       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3034 
3035       // If we found a field after the region we care about, then we're done.
3036       if (FieldOffset >= EndBit) break;
3037 
3038       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3039       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3040                                  Context))
3041         return false;
3042     }
3043 
3044     // If nothing in this record overlapped the area of interest, then we're
3045     // clean.
3046     return true;
3047   }
3048 
3049   return false;
3050 }
3051 
3052 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3053 /// float member at the specified offset.  For example, {int,{float}} has a
3054 /// float at offset 4.  It is conservatively correct for this routine to return
3055 /// false.
3056 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3057                                   const llvm::DataLayout &TD) {
3058   // Base case if we find a float.
3059   if (IROffset == 0 && IRType->isFloatTy())
3060     return true;
3061 
3062   // If this is a struct, recurse into the field at the specified offset.
3063   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3064     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3065     unsigned Elt = SL->getElementContainingOffset(IROffset);
3066     IROffset -= SL->getElementOffset(Elt);
3067     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3068   }
3069 
3070   // If this is an array, recurse into the field at the specified offset.
3071   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3072     llvm::Type *EltTy = ATy->getElementType();
3073     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3074     IROffset -= IROffset/EltSize*EltSize;
3075     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3076   }
3077 
3078   return false;
3079 }
3080 
3081 
3082 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3083 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3084 llvm::Type *X86_64ABIInfo::
3085 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3086                    QualType SourceTy, unsigned SourceOffset) const {
3087   // The only three choices we have are either double, <2 x float>, or float. We
3088   // pass as float if the last 4 bytes is just padding.  This happens for
3089   // structs that contain 3 floats.
3090   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3091                             SourceOffset*8+64, getContext()))
3092     return llvm::Type::getFloatTy(getVMContext());
3093 
3094   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3095   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3096   // case.
3097   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3098       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3099     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3100 
3101   return llvm::Type::getDoubleTy(getVMContext());
3102 }
3103 
3104 
3105 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3106 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3107 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3108 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3109 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3110 /// etc).
3111 ///
3112 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3113 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3114 /// the 8-byte value references.  PrefType may be null.
3115 ///
3116 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3117 /// an offset into this that we're processing (which is always either 0 or 8).
3118 ///
3119 llvm::Type *X86_64ABIInfo::
3120 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3121                        QualType SourceTy, unsigned SourceOffset) const {
3122   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3123   // returning an 8-byte unit starting with it.  See if we can safely use it.
3124   if (IROffset == 0) {
3125     // Pointers and int64's always fill the 8-byte unit.
3126     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3127         IRType->isIntegerTy(64))
3128       return IRType;
3129 
3130     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3131     // goodness in the source type is just tail padding.  This is allowed to
3132     // kick in for struct {double,int} on the int, but not on
3133     // struct{double,int,int} because we wouldn't return the second int.  We
3134     // have to do this analysis on the source type because we can't depend on
3135     // unions being lowered a specific way etc.
3136     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3137         IRType->isIntegerTy(32) ||
3138         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3139       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3140           cast<llvm::IntegerType>(IRType)->getBitWidth();
3141 
3142       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3143                                 SourceOffset*8+64, getContext()))
3144         return IRType;
3145     }
3146   }
3147 
3148   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3149     // If this is a struct, recurse into the field at the specified offset.
3150     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3151     if (IROffset < SL->getSizeInBytes()) {
3152       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3153       IROffset -= SL->getElementOffset(FieldIdx);
3154 
3155       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3156                                     SourceTy, SourceOffset);
3157     }
3158   }
3159 
3160   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3161     llvm::Type *EltTy = ATy->getElementType();
3162     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3163     unsigned EltOffset = IROffset/EltSize*EltSize;
3164     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3165                                   SourceOffset);
3166   }
3167 
3168   // Okay, we don't have any better idea of what to pass, so we pass this in an
3169   // integer register that isn't too big to fit the rest of the struct.
3170   unsigned TySizeInBytes =
3171     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3172 
3173   assert(TySizeInBytes != SourceOffset && "Empty field?");
3174 
3175   // It is always safe to classify this as an integer type up to i64 that
3176   // isn't larger than the structure.
3177   return llvm::IntegerType::get(getVMContext(),
3178                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3179 }
3180 
3181 
3182 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3183 /// be used as elements of a two register pair to pass or return, return a
3184 /// first class aggregate to represent them.  For example, if the low part of
3185 /// a by-value argument should be passed as i32* and the high part as float,
3186 /// return {i32*, float}.
3187 static llvm::Type *
3188 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3189                            const llvm::DataLayout &TD) {
3190   // In order to correctly satisfy the ABI, we need to the high part to start
3191   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3192   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3193   // the second element at offset 8.  Check for this:
3194   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3195   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3196   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3197   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3198 
3199   // To handle this, we have to increase the size of the low part so that the
3200   // second element will start at an 8 byte offset.  We can't increase the size
3201   // of the second element because it might make us access off the end of the
3202   // struct.
3203   if (HiStart != 8) {
3204     // There are usually two sorts of types the ABI generation code can produce
3205     // for the low part of a pair that aren't 8 bytes in size: float or
3206     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3207     // NaCl).
3208     // Promote these to a larger type.
3209     if (Lo->isFloatTy())
3210       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3211     else {
3212       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3213              && "Invalid/unknown lo type");
3214       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3215     }
3216   }
3217 
3218   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3219 
3220   // Verify that the second element is at an 8-byte offset.
3221   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3222          "Invalid x86-64 argument pair!");
3223   return Result;
3224 }
3225 
3226 ABIArgInfo X86_64ABIInfo::
3227 classifyReturnType(QualType RetTy) const {
3228   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3229   // classification algorithm.
3230   X86_64ABIInfo::Class Lo, Hi;
3231   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3232 
3233   // Check some invariants.
3234   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3235   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3236 
3237   llvm::Type *ResType = nullptr;
3238   switch (Lo) {
3239   case NoClass:
3240     if (Hi == NoClass)
3241       return ABIArgInfo::getIgnore();
3242     // If the low part is just padding, it takes no register, leave ResType
3243     // null.
3244     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3245            "Unknown missing lo part");
3246     break;
3247 
3248   case SSEUp:
3249   case X87Up:
3250     llvm_unreachable("Invalid classification for lo word.");
3251 
3252     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3253     // hidden argument.
3254   case Memory:
3255     return getIndirectReturnResult(RetTy);
3256 
3257     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3258     // available register of the sequence %rax, %rdx is used.
3259   case Integer:
3260     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3261 
3262     // If we have a sign or zero extended integer, make sure to return Extend
3263     // so that the parameter gets the right LLVM IR attributes.
3264     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3265       // Treat an enum type as its underlying type.
3266       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3267         RetTy = EnumTy->getDecl()->getIntegerType();
3268 
3269       if (RetTy->isIntegralOrEnumerationType() &&
3270           RetTy->isPromotableIntegerType())
3271         return ABIArgInfo::getExtend();
3272     }
3273     break;
3274 
3275     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3276     // available SSE register of the sequence %xmm0, %xmm1 is used.
3277   case SSE:
3278     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3279     break;
3280 
3281     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3282     // returned on the X87 stack in %st0 as 80-bit x87 number.
3283   case X87:
3284     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3285     break;
3286 
3287     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3288     // part of the value is returned in %st0 and the imaginary part in
3289     // %st1.
3290   case ComplexX87:
3291     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3292     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3293                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3294     break;
3295   }
3296 
3297   llvm::Type *HighPart = nullptr;
3298   switch (Hi) {
3299     // Memory was handled previously and X87 should
3300     // never occur as a hi class.
3301   case Memory:
3302   case X87:
3303     llvm_unreachable("Invalid classification for hi word.");
3304 
3305   case ComplexX87: // Previously handled.
3306   case NoClass:
3307     break;
3308 
3309   case Integer:
3310     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3311     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3312       return ABIArgInfo::getDirect(HighPart, 8);
3313     break;
3314   case SSE:
3315     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3316     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3317       return ABIArgInfo::getDirect(HighPart, 8);
3318     break;
3319 
3320     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3321     // is passed in the next available eightbyte chunk if the last used
3322     // vector register.
3323     //
3324     // SSEUP should always be preceded by SSE, just widen.
3325   case SSEUp:
3326     assert(Lo == SSE && "Unexpected SSEUp classification.");
3327     ResType = GetByteVectorType(RetTy);
3328     break;
3329 
3330     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3331     // returned together with the previous X87 value in %st0.
3332   case X87Up:
3333     // If X87Up is preceded by X87, we don't need to do
3334     // anything. However, in some cases with unions it may not be
3335     // preceded by X87. In such situations we follow gcc and pass the
3336     // extra bits in an SSE reg.
3337     if (Lo != X87) {
3338       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3339       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3340         return ABIArgInfo::getDirect(HighPart, 8);
3341     }
3342     break;
3343   }
3344 
3345   // If a high part was specified, merge it together with the low part.  It is
3346   // known to pass in the high eightbyte of the result.  We do this by forming a
3347   // first class struct aggregate with the high and low part: {low, high}
3348   if (HighPart)
3349     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3350 
3351   return ABIArgInfo::getDirect(ResType);
3352 }
3353 
3354 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3355   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3356   bool isNamedArg)
3357   const
3358 {
3359   Ty = useFirstFieldIfTransparentUnion(Ty);
3360 
3361   X86_64ABIInfo::Class Lo, Hi;
3362   classify(Ty, 0, Lo, Hi, isNamedArg);
3363 
3364   // Check some invariants.
3365   // FIXME: Enforce these by construction.
3366   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3367   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3368 
3369   neededInt = 0;
3370   neededSSE = 0;
3371   llvm::Type *ResType = nullptr;
3372   switch (Lo) {
3373   case NoClass:
3374     if (Hi == NoClass)
3375       return ABIArgInfo::getIgnore();
3376     // If the low part is just padding, it takes no register, leave ResType
3377     // null.
3378     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3379            "Unknown missing lo part");
3380     break;
3381 
3382     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3383     // on the stack.
3384   case Memory:
3385 
3386     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3387     // COMPLEX_X87, it is passed in memory.
3388   case X87:
3389   case ComplexX87:
3390     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3391       ++neededInt;
3392     return getIndirectResult(Ty, freeIntRegs);
3393 
3394   case SSEUp:
3395   case X87Up:
3396     llvm_unreachable("Invalid classification for lo word.");
3397 
3398     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3399     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3400     // and %r9 is used.
3401   case Integer:
3402     ++neededInt;
3403 
3404     // Pick an 8-byte type based on the preferred type.
3405     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3406 
3407     // If we have a sign or zero extended integer, make sure to return Extend
3408     // so that the parameter gets the right LLVM IR attributes.
3409     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3410       // Treat an enum type as its underlying type.
3411       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3412         Ty = EnumTy->getDecl()->getIntegerType();
3413 
3414       if (Ty->isIntegralOrEnumerationType() &&
3415           Ty->isPromotableIntegerType())
3416         return ABIArgInfo::getExtend();
3417     }
3418 
3419     break;
3420 
3421     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3422     // available SSE register is used, the registers are taken in the
3423     // order from %xmm0 to %xmm7.
3424   case SSE: {
3425     llvm::Type *IRType = CGT.ConvertType(Ty);
3426     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3427     ++neededSSE;
3428     break;
3429   }
3430   }
3431 
3432   llvm::Type *HighPart = nullptr;
3433   switch (Hi) {
3434     // Memory was handled previously, ComplexX87 and X87 should
3435     // never occur as hi classes, and X87Up must be preceded by X87,
3436     // which is passed in memory.
3437   case Memory:
3438   case X87:
3439   case ComplexX87:
3440     llvm_unreachable("Invalid classification for hi word.");
3441 
3442   case NoClass: break;
3443 
3444   case Integer:
3445     ++neededInt;
3446     // Pick an 8-byte type based on the preferred type.
3447     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3448 
3449     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3450       return ABIArgInfo::getDirect(HighPart, 8);
3451     break;
3452 
3453     // X87Up generally doesn't occur here (long double is passed in
3454     // memory), except in situations involving unions.
3455   case X87Up:
3456   case SSE:
3457     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3458 
3459     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3460       return ABIArgInfo::getDirect(HighPart, 8);
3461 
3462     ++neededSSE;
3463     break;
3464 
3465     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3466     // eightbyte is passed in the upper half of the last used SSE
3467     // register.  This only happens when 128-bit vectors are passed.
3468   case SSEUp:
3469     assert(Lo == SSE && "Unexpected SSEUp classification");
3470     ResType = GetByteVectorType(Ty);
3471     break;
3472   }
3473 
3474   // If a high part was specified, merge it together with the low part.  It is
3475   // known to pass in the high eightbyte of the result.  We do this by forming a
3476   // first class struct aggregate with the high and low part: {low, high}
3477   if (HighPart)
3478     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3479 
3480   return ABIArgInfo::getDirect(ResType);
3481 }
3482 
3483 ABIArgInfo
3484 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3485                                              unsigned &NeededSSE) const {
3486   auto RT = Ty->getAs<RecordType>();
3487   assert(RT && "classifyRegCallStructType only valid with struct types");
3488 
3489   if (RT->getDecl()->hasFlexibleArrayMember())
3490     return getIndirectReturnResult(Ty);
3491 
3492   // Sum up bases
3493   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3494     if (CXXRD->isDynamicClass()) {
3495       NeededInt = NeededSSE = 0;
3496       return getIndirectReturnResult(Ty);
3497     }
3498 
3499     for (const auto &I : CXXRD->bases())
3500       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3501               .isIndirect()) {
3502         NeededInt = NeededSSE = 0;
3503         return getIndirectReturnResult(Ty);
3504       }
3505   }
3506 
3507   // Sum up members
3508   for (const auto *FD : RT->getDecl()->fields()) {
3509     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3510       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3511               .isIndirect()) {
3512         NeededInt = NeededSSE = 0;
3513         return getIndirectReturnResult(Ty);
3514       }
3515     } else {
3516       unsigned LocalNeededInt, LocalNeededSSE;
3517       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3518                                LocalNeededSSE, true)
3519               .isIndirect()) {
3520         NeededInt = NeededSSE = 0;
3521         return getIndirectReturnResult(Ty);
3522       }
3523       NeededInt += LocalNeededInt;
3524       NeededSSE += LocalNeededSSE;
3525     }
3526   }
3527 
3528   return ABIArgInfo::getDirect();
3529 }
3530 
3531 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3532                                                     unsigned &NeededInt,
3533                                                     unsigned &NeededSSE) const {
3534 
3535   NeededInt = 0;
3536   NeededSSE = 0;
3537 
3538   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3539 }
3540 
3541 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3542 
3543   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3544 
3545   // Keep track of the number of assigned registers.
3546   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3547   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3548   unsigned NeededInt, NeededSSE;
3549 
3550   if (!getCXXABI().classifyReturnType(FI)) {
3551     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3552         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3553       FI.getReturnInfo() =
3554           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3555       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3556         FreeIntRegs -= NeededInt;
3557         FreeSSERegs -= NeededSSE;
3558       } else {
3559         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3560       }
3561     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3562       // Complex Long Double Type is passed in Memory when Regcall
3563       // calling convention is used.
3564       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3565       if (getContext().getCanonicalType(CT->getElementType()) ==
3566           getContext().LongDoubleTy)
3567         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3568     } else
3569       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3570   }
3571 
3572   // If the return value is indirect, then the hidden argument is consuming one
3573   // integer register.
3574   if (FI.getReturnInfo().isIndirect())
3575     --FreeIntRegs;
3576 
3577   // The chain argument effectively gives us another free register.
3578   if (FI.isChainCall())
3579     ++FreeIntRegs;
3580 
3581   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3582   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3583   // get assigned (in left-to-right order) for passing as follows...
3584   unsigned ArgNo = 0;
3585   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3586        it != ie; ++it, ++ArgNo) {
3587     bool IsNamedArg = ArgNo < NumRequiredArgs;
3588 
3589     if (IsRegCall && it->type->isStructureOrClassType())
3590       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3591     else
3592       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3593                                       NeededSSE, IsNamedArg);
3594 
3595     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3596     // eightbyte of an argument, the whole argument is passed on the
3597     // stack. If registers have already been assigned for some
3598     // eightbytes of such an argument, the assignments get reverted.
3599     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3600       FreeIntRegs -= NeededInt;
3601       FreeSSERegs -= NeededSSE;
3602     } else {
3603       it->info = getIndirectResult(it->type, FreeIntRegs);
3604     }
3605   }
3606 }
3607 
3608 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3609                                          Address VAListAddr, QualType Ty) {
3610   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3611       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3612   llvm::Value *overflow_arg_area =
3613     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3614 
3615   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3616   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3617   // It isn't stated explicitly in the standard, but in practice we use
3618   // alignment greater than 16 where necessary.
3619   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3620   if (Align > CharUnits::fromQuantity(8)) {
3621     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3622                                                       Align);
3623   }
3624 
3625   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3626   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3627   llvm::Value *Res =
3628     CGF.Builder.CreateBitCast(overflow_arg_area,
3629                               llvm::PointerType::getUnqual(LTy));
3630 
3631   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3632   // l->overflow_arg_area + sizeof(type).
3633   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3634   // an 8 byte boundary.
3635 
3636   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3637   llvm::Value *Offset =
3638       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3639   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3640                                             "overflow_arg_area.next");
3641   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3642 
3643   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3644   return Address(Res, Align);
3645 }
3646 
3647 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3648                                  QualType Ty) const {
3649   // Assume that va_list type is correct; should be pointer to LLVM type:
3650   // struct {
3651   //   i32 gp_offset;
3652   //   i32 fp_offset;
3653   //   i8* overflow_arg_area;
3654   //   i8* reg_save_area;
3655   // };
3656   unsigned neededInt, neededSSE;
3657 
3658   Ty = getContext().getCanonicalType(Ty);
3659   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3660                                        /*isNamedArg*/false);
3661 
3662   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3663   // in the registers. If not go to step 7.
3664   if (!neededInt && !neededSSE)
3665     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3666 
3667   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3668   // general purpose registers needed to pass type and num_fp to hold
3669   // the number of floating point registers needed.
3670 
3671   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3672   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3673   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3674   //
3675   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3676   // register save space).
3677 
3678   llvm::Value *InRegs = nullptr;
3679   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3680   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3681   if (neededInt) {
3682     gp_offset_p =
3683         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3684                                     "gp_offset_p");
3685     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3686     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3687     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3688   }
3689 
3690   if (neededSSE) {
3691     fp_offset_p =
3692         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3693                                     "fp_offset_p");
3694     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3695     llvm::Value *FitsInFP =
3696       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3697     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3698     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3699   }
3700 
3701   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3702   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3703   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3704   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3705 
3706   // Emit code to load the value if it was passed in registers.
3707 
3708   CGF.EmitBlock(InRegBlock);
3709 
3710   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3711   // an offset of l->gp_offset and/or l->fp_offset. This may require
3712   // copying to a temporary location in case the parameter is passed
3713   // in different register classes or requires an alignment greater
3714   // than 8 for general purpose registers and 16 for XMM registers.
3715   //
3716   // FIXME: This really results in shameful code when we end up needing to
3717   // collect arguments from different places; often what should result in a
3718   // simple assembling of a structure from scattered addresses has many more
3719   // loads than necessary. Can we clean this up?
3720   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3721   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3722       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3723                                   "reg_save_area");
3724 
3725   Address RegAddr = Address::invalid();
3726   if (neededInt && neededSSE) {
3727     // FIXME: Cleanup.
3728     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3729     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3730     Address Tmp = CGF.CreateMemTemp(Ty);
3731     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3732     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3733     llvm::Type *TyLo = ST->getElementType(0);
3734     llvm::Type *TyHi = ST->getElementType(1);
3735     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3736            "Unexpected ABI info for mixed regs");
3737     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3738     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3739     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3740     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3741     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3742     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3743 
3744     // Copy the first element.
3745     // FIXME: Our choice of alignment here and below is probably pessimistic.
3746     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3747         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3748         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3749     CGF.Builder.CreateStore(V,
3750                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3751 
3752     // Copy the second element.
3753     V = CGF.Builder.CreateAlignedLoad(
3754         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3755         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3756     CharUnits Offset = CharUnits::fromQuantity(
3757                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3758     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3759 
3760     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3761   } else if (neededInt) {
3762     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3763                       CharUnits::fromQuantity(8));
3764     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3765 
3766     // Copy to a temporary if necessary to ensure the appropriate alignment.
3767     std::pair<CharUnits, CharUnits> SizeAlign =
3768         getContext().getTypeInfoInChars(Ty);
3769     uint64_t TySize = SizeAlign.first.getQuantity();
3770     CharUnits TyAlign = SizeAlign.second;
3771 
3772     // Copy into a temporary if the type is more aligned than the
3773     // register save area.
3774     if (TyAlign.getQuantity() > 8) {
3775       Address Tmp = CGF.CreateMemTemp(Ty);
3776       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3777       RegAddr = Tmp;
3778     }
3779 
3780   } else if (neededSSE == 1) {
3781     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3782                       CharUnits::fromQuantity(16));
3783     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3784   } else {
3785     assert(neededSSE == 2 && "Invalid number of needed registers!");
3786     // SSE registers are spaced 16 bytes apart in the register save
3787     // area, we need to collect the two eightbytes together.
3788     // The ABI isn't explicit about this, but it seems reasonable
3789     // to assume that the slots are 16-byte aligned, since the stack is
3790     // naturally 16-byte aligned and the prologue is expected to store
3791     // all the SSE registers to the RSA.
3792     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3793                                 CharUnits::fromQuantity(16));
3794     Address RegAddrHi =
3795       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3796                                              CharUnits::fromQuantity(16));
3797     llvm::Type *DoubleTy = CGF.DoubleTy;
3798     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy);
3799     llvm::Value *V;
3800     Address Tmp = CGF.CreateMemTemp(Ty);
3801     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3802     V = CGF.Builder.CreateLoad(
3803                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3804     CGF.Builder.CreateStore(V,
3805                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3806     V = CGF.Builder.CreateLoad(
3807                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3808     CGF.Builder.CreateStore(V,
3809           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3810 
3811     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3812   }
3813 
3814   // AMD64-ABI 3.5.7p5: Step 5. Set:
3815   // l->gp_offset = l->gp_offset + num_gp * 8
3816   // l->fp_offset = l->fp_offset + num_fp * 16.
3817   if (neededInt) {
3818     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3819     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3820                             gp_offset_p);
3821   }
3822   if (neededSSE) {
3823     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3824     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3825                             fp_offset_p);
3826   }
3827   CGF.EmitBranch(ContBlock);
3828 
3829   // Emit code to load the value if it was passed in memory.
3830 
3831   CGF.EmitBlock(InMemBlock);
3832   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3833 
3834   // Return the appropriate result.
3835 
3836   CGF.EmitBlock(ContBlock);
3837   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3838                                  "vaarg.addr");
3839   return ResAddr;
3840 }
3841 
3842 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3843                                    QualType Ty) const {
3844   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3845                           CGF.getContext().getTypeInfoInChars(Ty),
3846                           CharUnits::fromQuantity(8),
3847                           /*allowHigherAlign*/ false);
3848 }
3849 
3850 ABIArgInfo
3851 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3852                                     const ABIArgInfo &current) const {
3853   // Assumes vectorCall calling convention.
3854   const Type *Base = nullptr;
3855   uint64_t NumElts = 0;
3856 
3857   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3858       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3859     FreeSSERegs -= NumElts;
3860     return getDirectX86Hva();
3861   }
3862   return current;
3863 }
3864 
3865 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3866                                       bool IsReturnType, bool IsVectorCall,
3867                                       bool IsRegCall) const {
3868 
3869   if (Ty->isVoidType())
3870     return ABIArgInfo::getIgnore();
3871 
3872   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3873     Ty = EnumTy->getDecl()->getIntegerType();
3874 
3875   TypeInfo Info = getContext().getTypeInfo(Ty);
3876   uint64_t Width = Info.Width;
3877   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3878 
3879   const RecordType *RT = Ty->getAs<RecordType>();
3880   if (RT) {
3881     if (!IsReturnType) {
3882       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3883         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3884     }
3885 
3886     if (RT->getDecl()->hasFlexibleArrayMember())
3887       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3888 
3889   }
3890 
3891   const Type *Base = nullptr;
3892   uint64_t NumElts = 0;
3893   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3894   // other targets.
3895   if ((IsVectorCall || IsRegCall) &&
3896       isHomogeneousAggregate(Ty, Base, NumElts)) {
3897     if (IsRegCall) {
3898       if (FreeSSERegs >= NumElts) {
3899         FreeSSERegs -= NumElts;
3900         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3901           return ABIArgInfo::getDirect();
3902         return ABIArgInfo::getExpand();
3903       }
3904       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3905     } else if (IsVectorCall) {
3906       if (FreeSSERegs >= NumElts &&
3907           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3908         FreeSSERegs -= NumElts;
3909         return ABIArgInfo::getDirect();
3910       } else if (IsReturnType) {
3911         return ABIArgInfo::getExpand();
3912       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3913         // HVAs are delayed and reclassified in the 2nd step.
3914         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3915       }
3916     }
3917   }
3918 
3919   if (Ty->isMemberPointerType()) {
3920     // If the member pointer is represented by an LLVM int or ptr, pass it
3921     // directly.
3922     llvm::Type *LLTy = CGT.ConvertType(Ty);
3923     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3924       return ABIArgInfo::getDirect();
3925   }
3926 
3927   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3928     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3929     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3930     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3931       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3932 
3933     // Otherwise, coerce it to a small integer.
3934     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3935   }
3936 
3937   // Bool type is always extended to the ABI, other builtin types are not
3938   // extended.
3939   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3940   if (BT && BT->getKind() == BuiltinType::Bool)
3941     return ABIArgInfo::getExtend();
3942 
3943   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3944   // passes them indirectly through memory.
3945   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3946     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3947     if (LDF == &llvm::APFloat::x87DoubleExtended())
3948       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3949   }
3950 
3951   return ABIArgInfo::getDirect();
3952 }
3953 
3954 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3955                                              unsigned FreeSSERegs,
3956                                              bool IsVectorCall,
3957                                              bool IsRegCall) const {
3958   unsigned Count = 0;
3959   for (auto &I : FI.arguments()) {
3960     // Vectorcall in x64 only permits the first 6 arguments to be passed
3961     // as XMM/YMM registers.
3962     if (Count < VectorcallMaxParamNumAsReg)
3963       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3964     else {
3965       // Since these cannot be passed in registers, pretend no registers
3966       // are left.
3967       unsigned ZeroSSERegsAvail = 0;
3968       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
3969                         IsVectorCall, IsRegCall);
3970     }
3971     ++Count;
3972   }
3973 
3974   for (auto &I : FI.arguments()) {
3975     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
3976   }
3977 }
3978 
3979 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3980   bool IsVectorCall =
3981       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3982   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3983 
3984   unsigned FreeSSERegs = 0;
3985   if (IsVectorCall) {
3986     // We can use up to 4 SSE return registers with vectorcall.
3987     FreeSSERegs = 4;
3988   } else if (IsRegCall) {
3989     // RegCall gives us 16 SSE registers.
3990     FreeSSERegs = 16;
3991   }
3992 
3993   if (!getCXXABI().classifyReturnType(FI))
3994     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3995                                   IsVectorCall, IsRegCall);
3996 
3997   if (IsVectorCall) {
3998     // We can use up to 6 SSE register parameters with vectorcall.
3999     FreeSSERegs = 6;
4000   } else if (IsRegCall) {
4001     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4002     FreeSSERegs = 16;
4003   }
4004 
4005   if (IsVectorCall) {
4006     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4007   } else {
4008     for (auto &I : FI.arguments())
4009       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4010   }
4011 
4012 }
4013 
4014 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4015                                     QualType Ty) const {
4016 
4017   bool IsIndirect = false;
4018 
4019   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4020   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4021   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4022     uint64_t Width = getContext().getTypeSize(Ty);
4023     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4024   }
4025 
4026   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4027                           CGF.getContext().getTypeInfoInChars(Ty),
4028                           CharUnits::fromQuantity(8),
4029                           /*allowHigherAlign*/ false);
4030 }
4031 
4032 // PowerPC-32
4033 namespace {
4034 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4035 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4036   bool IsSoftFloatABI;
4037 
4038   CharUnits getParamTypeAlignment(QualType Ty) const;
4039 
4040 public:
4041   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4042       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4043 
4044   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4045                     QualType Ty) const override;
4046 };
4047 
4048 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4049 public:
4050   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4051       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4052 
4053   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4054     // This is recovered from gcc output.
4055     return 1; // r1 is the dedicated stack pointer
4056   }
4057 
4058   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4059                                llvm::Value *Address) const override;
4060 };
4061 }
4062 
4063 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4064   // Complex types are passed just like their elements
4065   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4066     Ty = CTy->getElementType();
4067 
4068   if (Ty->isVectorType())
4069     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4070                                                                        : 4);
4071 
4072   // For single-element float/vector structs, we consider the whole type
4073   // to have the same alignment requirements as its single element.
4074   const Type *AlignTy = nullptr;
4075   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4076     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4077     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4078         (BT && BT->isFloatingPoint()))
4079       AlignTy = EltType;
4080   }
4081 
4082   if (AlignTy)
4083     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4084   return CharUnits::fromQuantity(4);
4085 }
4086 
4087 // TODO: this implementation is now likely redundant with
4088 // DefaultABIInfo::EmitVAArg.
4089 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4090                                       QualType Ty) const {
4091   if (getTarget().getTriple().isOSDarwin()) {
4092     auto TI = getContext().getTypeInfoInChars(Ty);
4093     TI.second = getParamTypeAlignment(Ty);
4094 
4095     CharUnits SlotSize = CharUnits::fromQuantity(4);
4096     return emitVoidPtrVAArg(CGF, VAList, Ty,
4097                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4098                             /*AllowHigherAlign=*/true);
4099   }
4100 
4101   const unsigned OverflowLimit = 8;
4102   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4103     // TODO: Implement this. For now ignore.
4104     (void)CTy;
4105     return Address::invalid(); // FIXME?
4106   }
4107 
4108   // struct __va_list_tag {
4109   //   unsigned char gpr;
4110   //   unsigned char fpr;
4111   //   unsigned short reserved;
4112   //   void *overflow_arg_area;
4113   //   void *reg_save_area;
4114   // };
4115 
4116   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4117   bool isInt =
4118       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4119   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4120 
4121   // All aggregates are passed indirectly?  That doesn't seem consistent
4122   // with the argument-lowering code.
4123   bool isIndirect = Ty->isAggregateType();
4124 
4125   CGBuilderTy &Builder = CGF.Builder;
4126 
4127   // The calling convention either uses 1-2 GPRs or 1 FPR.
4128   Address NumRegsAddr = Address::invalid();
4129   if (isInt || IsSoftFloatABI) {
4130     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4131   } else {
4132     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4133   }
4134 
4135   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4136 
4137   // "Align" the register count when TY is i64.
4138   if (isI64 || (isF64 && IsSoftFloatABI)) {
4139     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4140     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4141   }
4142 
4143   llvm::Value *CC =
4144       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4145 
4146   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4147   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4148   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4149 
4150   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4151 
4152   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4153   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4154 
4155   // Case 1: consume registers.
4156   Address RegAddr = Address::invalid();
4157   {
4158     CGF.EmitBlock(UsingRegs);
4159 
4160     Address RegSaveAreaPtr =
4161       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4162     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4163                       CharUnits::fromQuantity(8));
4164     assert(RegAddr.getElementType() == CGF.Int8Ty);
4165 
4166     // Floating-point registers start after the general-purpose registers.
4167     if (!(isInt || IsSoftFloatABI)) {
4168       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4169                                                    CharUnits::fromQuantity(32));
4170     }
4171 
4172     // Get the address of the saved value by scaling the number of
4173     // registers we've used by the number of
4174     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4175     llvm::Value *RegOffset =
4176       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4177     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4178                                             RegAddr.getPointer(), RegOffset),
4179                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4180     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4181 
4182     // Increase the used-register count.
4183     NumRegs =
4184       Builder.CreateAdd(NumRegs,
4185                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4186     Builder.CreateStore(NumRegs, NumRegsAddr);
4187 
4188     CGF.EmitBranch(Cont);
4189   }
4190 
4191   // Case 2: consume space in the overflow area.
4192   Address MemAddr = Address::invalid();
4193   {
4194     CGF.EmitBlock(UsingOverflow);
4195 
4196     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4197 
4198     // Everything in the overflow area is rounded up to a size of at least 4.
4199     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4200 
4201     CharUnits Size;
4202     if (!isIndirect) {
4203       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4204       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4205     } else {
4206       Size = CGF.getPointerSize();
4207     }
4208 
4209     Address OverflowAreaAddr =
4210       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4211     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4212                          OverflowAreaAlign);
4213     // Round up address of argument to alignment
4214     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4215     if (Align > OverflowAreaAlign) {
4216       llvm::Value *Ptr = OverflowArea.getPointer();
4217       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4218                                                            Align);
4219     }
4220 
4221     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4222 
4223     // Increase the overflow area.
4224     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4225     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4226     CGF.EmitBranch(Cont);
4227   }
4228 
4229   CGF.EmitBlock(Cont);
4230 
4231   // Merge the cases with a phi.
4232   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4233                                 "vaarg.addr");
4234 
4235   // Load the pointer if the argument was passed indirectly.
4236   if (isIndirect) {
4237     Result = Address(Builder.CreateLoad(Result, "aggr"),
4238                      getContext().getTypeAlignInChars(Ty));
4239   }
4240 
4241   return Result;
4242 }
4243 
4244 bool
4245 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4246                                                 llvm::Value *Address) const {
4247   // This is calculated from the LLVM and GCC tables and verified
4248   // against gcc output.  AFAIK all ABIs use the same encoding.
4249 
4250   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4251 
4252   llvm::IntegerType *i8 = CGF.Int8Ty;
4253   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4254   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4255   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4256 
4257   // 0-31: r0-31, the 4-byte general-purpose registers
4258   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4259 
4260   // 32-63: fp0-31, the 8-byte floating-point registers
4261   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4262 
4263   // 64-76 are various 4-byte special-purpose registers:
4264   // 64: mq
4265   // 65: lr
4266   // 66: ctr
4267   // 67: ap
4268   // 68-75 cr0-7
4269   // 76: xer
4270   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4271 
4272   // 77-108: v0-31, the 16-byte vector registers
4273   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4274 
4275   // 109: vrsave
4276   // 110: vscr
4277   // 111: spe_acc
4278   // 112: spefscr
4279   // 113: sfp
4280   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4281 
4282   return false;
4283 }
4284 
4285 // PowerPC-64
4286 
4287 namespace {
4288 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4289 class PPC64_SVR4_ABIInfo : public ABIInfo {
4290 public:
4291   enum ABIKind {
4292     ELFv1 = 0,
4293     ELFv2
4294   };
4295 
4296 private:
4297   static const unsigned GPRBits = 64;
4298   ABIKind Kind;
4299   bool HasQPX;
4300   bool IsSoftFloatABI;
4301 
4302   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4303   // will be passed in a QPX register.
4304   bool IsQPXVectorTy(const Type *Ty) const {
4305     if (!HasQPX)
4306       return false;
4307 
4308     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4309       unsigned NumElements = VT->getNumElements();
4310       if (NumElements == 1)
4311         return false;
4312 
4313       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4314         if (getContext().getTypeSize(Ty) <= 256)
4315           return true;
4316       } else if (VT->getElementType()->
4317                    isSpecificBuiltinType(BuiltinType::Float)) {
4318         if (getContext().getTypeSize(Ty) <= 128)
4319           return true;
4320       }
4321     }
4322 
4323     return false;
4324   }
4325 
4326   bool IsQPXVectorTy(QualType Ty) const {
4327     return IsQPXVectorTy(Ty.getTypePtr());
4328   }
4329 
4330 public:
4331   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4332                      bool SoftFloatABI)
4333       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4334         IsSoftFloatABI(SoftFloatABI) {}
4335 
4336   bool isPromotableTypeForABI(QualType Ty) const;
4337   CharUnits getParamTypeAlignment(QualType Ty) const;
4338 
4339   ABIArgInfo classifyReturnType(QualType RetTy) const;
4340   ABIArgInfo classifyArgumentType(QualType Ty) const;
4341 
4342   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4343   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4344                                          uint64_t Members) const override;
4345 
4346   // TODO: We can add more logic to computeInfo to improve performance.
4347   // Example: For aggregate arguments that fit in a register, we could
4348   // use getDirectInReg (as is done below for structs containing a single
4349   // floating-point value) to avoid pushing them to memory on function
4350   // entry.  This would require changing the logic in PPCISelLowering
4351   // when lowering the parameters in the caller and args in the callee.
4352   void computeInfo(CGFunctionInfo &FI) const override {
4353     if (!getCXXABI().classifyReturnType(FI))
4354       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4355     for (auto &I : FI.arguments()) {
4356       // We rely on the default argument classification for the most part.
4357       // One exception:  An aggregate containing a single floating-point
4358       // or vector item must be passed in a register if one is available.
4359       const Type *T = isSingleElementStruct(I.type, getContext());
4360       if (T) {
4361         const BuiltinType *BT = T->getAs<BuiltinType>();
4362         if (IsQPXVectorTy(T) ||
4363             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4364             (BT && BT->isFloatingPoint())) {
4365           QualType QT(T, 0);
4366           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4367           continue;
4368         }
4369       }
4370       I.info = classifyArgumentType(I.type);
4371     }
4372   }
4373 
4374   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4375                     QualType Ty) const override;
4376 };
4377 
4378 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4379 
4380 public:
4381   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4382                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4383                                bool SoftFloatABI)
4384       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4385                                                  SoftFloatABI)) {}
4386 
4387   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4388     // This is recovered from gcc output.
4389     return 1; // r1 is the dedicated stack pointer
4390   }
4391 
4392   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4393                                llvm::Value *Address) const override;
4394 };
4395 
4396 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4397 public:
4398   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4399 
4400   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4401     // This is recovered from gcc output.
4402     return 1; // r1 is the dedicated stack pointer
4403   }
4404 
4405   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4406                                llvm::Value *Address) const override;
4407 };
4408 
4409 }
4410 
4411 // Return true if the ABI requires Ty to be passed sign- or zero-
4412 // extended to 64 bits.
4413 bool
4414 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4415   // Treat an enum type as its underlying type.
4416   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4417     Ty = EnumTy->getDecl()->getIntegerType();
4418 
4419   // Promotable integer types are required to be promoted by the ABI.
4420   if (Ty->isPromotableIntegerType())
4421     return true;
4422 
4423   // In addition to the usual promotable integer types, we also need to
4424   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4425   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4426     switch (BT->getKind()) {
4427     case BuiltinType::Int:
4428     case BuiltinType::UInt:
4429       return true;
4430     default:
4431       break;
4432     }
4433 
4434   return false;
4435 }
4436 
4437 /// isAlignedParamType - Determine whether a type requires 16-byte or
4438 /// higher alignment in the parameter area.  Always returns at least 8.
4439 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4440   // Complex types are passed just like their elements.
4441   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4442     Ty = CTy->getElementType();
4443 
4444   // Only vector types of size 16 bytes need alignment (larger types are
4445   // passed via reference, smaller types are not aligned).
4446   if (IsQPXVectorTy(Ty)) {
4447     if (getContext().getTypeSize(Ty) > 128)
4448       return CharUnits::fromQuantity(32);
4449 
4450     return CharUnits::fromQuantity(16);
4451   } else if (Ty->isVectorType()) {
4452     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4453   }
4454 
4455   // For single-element float/vector structs, we consider the whole type
4456   // to have the same alignment requirements as its single element.
4457   const Type *AlignAsType = nullptr;
4458   const Type *EltType = isSingleElementStruct(Ty, getContext());
4459   if (EltType) {
4460     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4461     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4462          getContext().getTypeSize(EltType) == 128) ||
4463         (BT && BT->isFloatingPoint()))
4464       AlignAsType = EltType;
4465   }
4466 
4467   // Likewise for ELFv2 homogeneous aggregates.
4468   const Type *Base = nullptr;
4469   uint64_t Members = 0;
4470   if (!AlignAsType && Kind == ELFv2 &&
4471       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4472     AlignAsType = Base;
4473 
4474   // With special case aggregates, only vector base types need alignment.
4475   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4476     if (getContext().getTypeSize(AlignAsType) > 128)
4477       return CharUnits::fromQuantity(32);
4478 
4479     return CharUnits::fromQuantity(16);
4480   } else if (AlignAsType) {
4481     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4482   }
4483 
4484   // Otherwise, we only need alignment for any aggregate type that
4485   // has an alignment requirement of >= 16 bytes.
4486   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4487     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4488       return CharUnits::fromQuantity(32);
4489     return CharUnits::fromQuantity(16);
4490   }
4491 
4492   return CharUnits::fromQuantity(8);
4493 }
4494 
4495 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4496 /// aggregate.  Base is set to the base element type, and Members is set
4497 /// to the number of base elements.
4498 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4499                                      uint64_t &Members) const {
4500   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4501     uint64_t NElements = AT->getSize().getZExtValue();
4502     if (NElements == 0)
4503       return false;
4504     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4505       return false;
4506     Members *= NElements;
4507   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4508     const RecordDecl *RD = RT->getDecl();
4509     if (RD->hasFlexibleArrayMember())
4510       return false;
4511 
4512     Members = 0;
4513 
4514     // If this is a C++ record, check the bases first.
4515     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4516       for (const auto &I : CXXRD->bases()) {
4517         // Ignore empty records.
4518         if (isEmptyRecord(getContext(), I.getType(), true))
4519           continue;
4520 
4521         uint64_t FldMembers;
4522         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4523           return false;
4524 
4525         Members += FldMembers;
4526       }
4527     }
4528 
4529     for (const auto *FD : RD->fields()) {
4530       // Ignore (non-zero arrays of) empty records.
4531       QualType FT = FD->getType();
4532       while (const ConstantArrayType *AT =
4533              getContext().getAsConstantArrayType(FT)) {
4534         if (AT->getSize().getZExtValue() == 0)
4535           return false;
4536         FT = AT->getElementType();
4537       }
4538       if (isEmptyRecord(getContext(), FT, true))
4539         continue;
4540 
4541       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4542       if (getContext().getLangOpts().CPlusPlus &&
4543           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4544         continue;
4545 
4546       uint64_t FldMembers;
4547       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4548         return false;
4549 
4550       Members = (RD->isUnion() ?
4551                  std::max(Members, FldMembers) : Members + FldMembers);
4552     }
4553 
4554     if (!Base)
4555       return false;
4556 
4557     // Ensure there is no padding.
4558     if (getContext().getTypeSize(Base) * Members !=
4559         getContext().getTypeSize(Ty))
4560       return false;
4561   } else {
4562     Members = 1;
4563     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4564       Members = 2;
4565       Ty = CT->getElementType();
4566     }
4567 
4568     // Most ABIs only support float, double, and some vector type widths.
4569     if (!isHomogeneousAggregateBaseType(Ty))
4570       return false;
4571 
4572     // The base type must be the same for all members.  Types that
4573     // agree in both total size and mode (float vs. vector) are
4574     // treated as being equivalent here.
4575     const Type *TyPtr = Ty.getTypePtr();
4576     if (!Base) {
4577       Base = TyPtr;
4578       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4579       // so make sure to widen it explicitly.
4580       if (const VectorType *VT = Base->getAs<VectorType>()) {
4581         QualType EltTy = VT->getElementType();
4582         unsigned NumElements =
4583             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4584         Base = getContext()
4585                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4586                    .getTypePtr();
4587       }
4588     }
4589 
4590     if (Base->isVectorType() != TyPtr->isVectorType() ||
4591         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4592       return false;
4593   }
4594   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4595 }
4596 
4597 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4598   // Homogeneous aggregates for ELFv2 must have base types of float,
4599   // double, long double, or 128-bit vectors.
4600   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4601     if (BT->getKind() == BuiltinType::Float ||
4602         BT->getKind() == BuiltinType::Double ||
4603         BT->getKind() == BuiltinType::LongDouble) {
4604       if (IsSoftFloatABI)
4605         return false;
4606       return true;
4607     }
4608   }
4609   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4610     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4611       return true;
4612   }
4613   return false;
4614 }
4615 
4616 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4617     const Type *Base, uint64_t Members) const {
4618   // Vector types require one register, floating point types require one
4619   // or two registers depending on their size.
4620   uint32_t NumRegs =
4621       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4622 
4623   // Homogeneous Aggregates may occupy at most 8 registers.
4624   return Members * NumRegs <= 8;
4625 }
4626 
4627 ABIArgInfo
4628 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4629   Ty = useFirstFieldIfTransparentUnion(Ty);
4630 
4631   if (Ty->isAnyComplexType())
4632     return ABIArgInfo::getDirect();
4633 
4634   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4635   // or via reference (larger than 16 bytes).
4636   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4637     uint64_t Size = getContext().getTypeSize(Ty);
4638     if (Size > 128)
4639       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4640     else if (Size < 128) {
4641       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4642       return ABIArgInfo::getDirect(CoerceTy);
4643     }
4644   }
4645 
4646   if (isAggregateTypeForABI(Ty)) {
4647     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4648       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4649 
4650     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4651     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4652 
4653     // ELFv2 homogeneous aggregates are passed as array types.
4654     const Type *Base = nullptr;
4655     uint64_t Members = 0;
4656     if (Kind == ELFv2 &&
4657         isHomogeneousAggregate(Ty, Base, Members)) {
4658       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4659       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4660       return ABIArgInfo::getDirect(CoerceTy);
4661     }
4662 
4663     // If an aggregate may end up fully in registers, we do not
4664     // use the ByVal method, but pass the aggregate as array.
4665     // This is usually beneficial since we avoid forcing the
4666     // back-end to store the argument to memory.
4667     uint64_t Bits = getContext().getTypeSize(Ty);
4668     if (Bits > 0 && Bits <= 8 * GPRBits) {
4669       llvm::Type *CoerceTy;
4670 
4671       // Types up to 8 bytes are passed as integer type (which will be
4672       // properly aligned in the argument save area doubleword).
4673       if (Bits <= GPRBits)
4674         CoerceTy =
4675             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4676       // Larger types are passed as arrays, with the base type selected
4677       // according to the required alignment in the save area.
4678       else {
4679         uint64_t RegBits = ABIAlign * 8;
4680         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4681         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4682         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4683       }
4684 
4685       return ABIArgInfo::getDirect(CoerceTy);
4686     }
4687 
4688     // All other aggregates are passed ByVal.
4689     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4690                                    /*ByVal=*/true,
4691                                    /*Realign=*/TyAlign > ABIAlign);
4692   }
4693 
4694   return (isPromotableTypeForABI(Ty) ?
4695           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4696 }
4697 
4698 ABIArgInfo
4699 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4700   if (RetTy->isVoidType())
4701     return ABIArgInfo::getIgnore();
4702 
4703   if (RetTy->isAnyComplexType())
4704     return ABIArgInfo::getDirect();
4705 
4706   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4707   // or via reference (larger than 16 bytes).
4708   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4709     uint64_t Size = getContext().getTypeSize(RetTy);
4710     if (Size > 128)
4711       return getNaturalAlignIndirect(RetTy);
4712     else if (Size < 128) {
4713       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4714       return ABIArgInfo::getDirect(CoerceTy);
4715     }
4716   }
4717 
4718   if (isAggregateTypeForABI(RetTy)) {
4719     // ELFv2 homogeneous aggregates are returned as array types.
4720     const Type *Base = nullptr;
4721     uint64_t Members = 0;
4722     if (Kind == ELFv2 &&
4723         isHomogeneousAggregate(RetTy, Base, Members)) {
4724       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4725       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4726       return ABIArgInfo::getDirect(CoerceTy);
4727     }
4728 
4729     // ELFv2 small aggregates are returned in up to two registers.
4730     uint64_t Bits = getContext().getTypeSize(RetTy);
4731     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4732       if (Bits == 0)
4733         return ABIArgInfo::getIgnore();
4734 
4735       llvm::Type *CoerceTy;
4736       if (Bits > GPRBits) {
4737         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4738         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4739       } else
4740         CoerceTy =
4741             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4742       return ABIArgInfo::getDirect(CoerceTy);
4743     }
4744 
4745     // All other aggregates are returned indirectly.
4746     return getNaturalAlignIndirect(RetTy);
4747   }
4748 
4749   return (isPromotableTypeForABI(RetTy) ?
4750           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4751 }
4752 
4753 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4754 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4755                                       QualType Ty) const {
4756   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4757   TypeInfo.second = getParamTypeAlignment(Ty);
4758 
4759   CharUnits SlotSize = CharUnits::fromQuantity(8);
4760 
4761   // If we have a complex type and the base type is smaller than 8 bytes,
4762   // the ABI calls for the real and imaginary parts to be right-adjusted
4763   // in separate doublewords.  However, Clang expects us to produce a
4764   // pointer to a structure with the two parts packed tightly.  So generate
4765   // loads of the real and imaginary parts relative to the va_list pointer,
4766   // and store them to a temporary structure.
4767   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4768     CharUnits EltSize = TypeInfo.first / 2;
4769     if (EltSize < SlotSize) {
4770       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4771                                             SlotSize * 2, SlotSize,
4772                                             SlotSize, /*AllowHigher*/ true);
4773 
4774       Address RealAddr = Addr;
4775       Address ImagAddr = RealAddr;
4776       if (CGF.CGM.getDataLayout().isBigEndian()) {
4777         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4778                                                           SlotSize - EltSize);
4779         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4780                                                       2 * SlotSize - EltSize);
4781       } else {
4782         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4783       }
4784 
4785       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4786       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4787       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4788       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4789       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4790 
4791       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4792       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4793                              /*init*/ true);
4794       return Temp;
4795     }
4796   }
4797 
4798   // Otherwise, just use the general rule.
4799   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4800                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4801 }
4802 
4803 static bool
4804 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4805                               llvm::Value *Address) {
4806   // This is calculated from the LLVM and GCC tables and verified
4807   // against gcc output.  AFAIK all ABIs use the same encoding.
4808 
4809   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4810 
4811   llvm::IntegerType *i8 = CGF.Int8Ty;
4812   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4813   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4814   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4815 
4816   // 0-31: r0-31, the 8-byte general-purpose registers
4817   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4818 
4819   // 32-63: fp0-31, the 8-byte floating-point registers
4820   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4821 
4822   // 64-67 are various 8-byte special-purpose registers:
4823   // 64: mq
4824   // 65: lr
4825   // 66: ctr
4826   // 67: ap
4827   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4828 
4829   // 68-76 are various 4-byte special-purpose registers:
4830   // 68-75 cr0-7
4831   // 76: xer
4832   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4833 
4834   // 77-108: v0-31, the 16-byte vector registers
4835   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4836 
4837   // 109: vrsave
4838   // 110: vscr
4839   // 111: spe_acc
4840   // 112: spefscr
4841   // 113: sfp
4842   // 114: tfhar
4843   // 115: tfiar
4844   // 116: texasr
4845   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4846 
4847   return false;
4848 }
4849 
4850 bool
4851 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4852   CodeGen::CodeGenFunction &CGF,
4853   llvm::Value *Address) const {
4854 
4855   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4856 }
4857 
4858 bool
4859 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4860                                                 llvm::Value *Address) const {
4861 
4862   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4863 }
4864 
4865 //===----------------------------------------------------------------------===//
4866 // AArch64 ABI Implementation
4867 //===----------------------------------------------------------------------===//
4868 
4869 namespace {
4870 
4871 class AArch64ABIInfo : public SwiftABIInfo {
4872 public:
4873   enum ABIKind {
4874     AAPCS = 0,
4875     DarwinPCS,
4876     Win64
4877   };
4878 
4879 private:
4880   ABIKind Kind;
4881 
4882 public:
4883   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4884     : SwiftABIInfo(CGT), Kind(Kind) {}
4885 
4886 private:
4887   ABIKind getABIKind() const { return Kind; }
4888   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4889 
4890   ABIArgInfo classifyReturnType(QualType RetTy) const;
4891   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4892   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4893   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4894                                          uint64_t Members) const override;
4895 
4896   bool isIllegalVectorType(QualType Ty) const;
4897 
4898   void computeInfo(CGFunctionInfo &FI) const override {
4899     if (!getCXXABI().classifyReturnType(FI))
4900       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4901 
4902     for (auto &it : FI.arguments())
4903       it.info = classifyArgumentType(it.type);
4904   }
4905 
4906   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4907                           CodeGenFunction &CGF) const;
4908 
4909   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4910                          CodeGenFunction &CGF) const;
4911 
4912   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4913                     QualType Ty) const override {
4914     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4915                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4916                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4917   }
4918 
4919   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4920                       QualType Ty) const override;
4921 
4922   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4923                                     bool asReturnValue) const override {
4924     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4925   }
4926   bool isSwiftErrorInRegister() const override {
4927     return true;
4928   }
4929 
4930   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4931                                  unsigned elts) const override;
4932 };
4933 
4934 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4935 public:
4936   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4937       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4938 
4939   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4940     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
4941   }
4942 
4943   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4944     return 31;
4945   }
4946 
4947   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4948 };
4949 
4950 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
4951 public:
4952   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
4953       : AArch64TargetCodeGenInfo(CGT, K) {}
4954 
4955   void getDependentLibraryOption(llvm::StringRef Lib,
4956                                  llvm::SmallString<24> &Opt) const override {
4957     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
4958   }
4959 
4960   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
4961                                llvm::SmallString<32> &Opt) const override {
4962     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
4963   }
4964 };
4965 }
4966 
4967 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4968   Ty = useFirstFieldIfTransparentUnion(Ty);
4969 
4970   // Handle illegal vector types here.
4971   if (isIllegalVectorType(Ty)) {
4972     uint64_t Size = getContext().getTypeSize(Ty);
4973     // Android promotes <2 x i8> to i16, not i32
4974     if (isAndroid() && (Size <= 16)) {
4975       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4976       return ABIArgInfo::getDirect(ResType);
4977     }
4978     if (Size <= 32) {
4979       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4980       return ABIArgInfo::getDirect(ResType);
4981     }
4982     if (Size == 64) {
4983       llvm::Type *ResType =
4984           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4985       return ABIArgInfo::getDirect(ResType);
4986     }
4987     if (Size == 128) {
4988       llvm::Type *ResType =
4989           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4990       return ABIArgInfo::getDirect(ResType);
4991     }
4992     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4993   }
4994 
4995   if (!isAggregateTypeForABI(Ty)) {
4996     // Treat an enum type as its underlying type.
4997     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4998       Ty = EnumTy->getDecl()->getIntegerType();
4999 
5000     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5001                 ? ABIArgInfo::getExtend()
5002                 : ABIArgInfo::getDirect());
5003   }
5004 
5005   // Structures with either a non-trivial destructor or a non-trivial
5006   // copy constructor are always indirect.
5007   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5008     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5009                                      CGCXXABI::RAA_DirectInMemory);
5010   }
5011 
5012   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5013   // elsewhere for GNU compatibility.
5014   uint64_t Size = getContext().getTypeSize(Ty);
5015   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5016   if (IsEmpty || Size == 0) {
5017     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5018       return ABIArgInfo::getIgnore();
5019 
5020     // GNU C mode. The only argument that gets ignored is an empty one with size
5021     // 0.
5022     if (IsEmpty && Size == 0)
5023       return ABIArgInfo::getIgnore();
5024     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5025   }
5026 
5027   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5028   const Type *Base = nullptr;
5029   uint64_t Members = 0;
5030   if (isHomogeneousAggregate(Ty, Base, Members)) {
5031     return ABIArgInfo::getDirect(
5032         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5033   }
5034 
5035   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5036   if (Size <= 128) {
5037     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5038     // same size and alignment.
5039     if (getTarget().isRenderScriptTarget()) {
5040       return coerceToIntArray(Ty, getContext(), getVMContext());
5041     }
5042     unsigned Alignment = getContext().getTypeAlign(Ty);
5043     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5044 
5045     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5046     // For aggregates with 16-byte alignment, we use i128.
5047     if (Alignment < 128 && Size == 128) {
5048       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5049       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5050     }
5051     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5052   }
5053 
5054   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5055 }
5056 
5057 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5058   if (RetTy->isVoidType())
5059     return ABIArgInfo::getIgnore();
5060 
5061   // Large vector types should be returned via memory.
5062   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5063     return getNaturalAlignIndirect(RetTy);
5064 
5065   if (!isAggregateTypeForABI(RetTy)) {
5066     // Treat an enum type as its underlying type.
5067     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5068       RetTy = EnumTy->getDecl()->getIntegerType();
5069 
5070     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5071                 ? ABIArgInfo::getExtend()
5072                 : ABIArgInfo::getDirect());
5073   }
5074 
5075   uint64_t Size = getContext().getTypeSize(RetTy);
5076   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5077     return ABIArgInfo::getIgnore();
5078 
5079   const Type *Base = nullptr;
5080   uint64_t Members = 0;
5081   if (isHomogeneousAggregate(RetTy, Base, Members))
5082     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5083     return ABIArgInfo::getDirect();
5084 
5085   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5086   if (Size <= 128) {
5087     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5088     // same size and alignment.
5089     if (getTarget().isRenderScriptTarget()) {
5090       return coerceToIntArray(RetTy, getContext(), getVMContext());
5091     }
5092     unsigned Alignment = getContext().getTypeAlign(RetTy);
5093     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5094 
5095     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5096     // For aggregates with 16-byte alignment, we use i128.
5097     if (Alignment < 128 && Size == 128) {
5098       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5099       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5100     }
5101     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5102   }
5103 
5104   return getNaturalAlignIndirect(RetTy);
5105 }
5106 
5107 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5108 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5109   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5110     // Check whether VT is legal.
5111     unsigned NumElements = VT->getNumElements();
5112     uint64_t Size = getContext().getTypeSize(VT);
5113     // NumElements should be power of 2.
5114     if (!llvm::isPowerOf2_32(NumElements))
5115       return true;
5116     return Size != 64 && (Size != 128 || NumElements == 1);
5117   }
5118   return false;
5119 }
5120 
5121 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5122                                                llvm::Type *eltTy,
5123                                                unsigned elts) const {
5124   if (!llvm::isPowerOf2_32(elts))
5125     return false;
5126   if (totalSize.getQuantity() != 8 &&
5127       (totalSize.getQuantity() != 16 || elts == 1))
5128     return false;
5129   return true;
5130 }
5131 
5132 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5133   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5134   // point type or a short-vector type. This is the same as the 32-bit ABI,
5135   // but with the difference that any floating-point type is allowed,
5136   // including __fp16.
5137   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5138     if (BT->isFloatingPoint())
5139       return true;
5140   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5141     unsigned VecSize = getContext().getTypeSize(VT);
5142     if (VecSize == 64 || VecSize == 128)
5143       return true;
5144   }
5145   return false;
5146 }
5147 
5148 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5149                                                        uint64_t Members) const {
5150   return Members <= 4;
5151 }
5152 
5153 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5154                                             QualType Ty,
5155                                             CodeGenFunction &CGF) const {
5156   ABIArgInfo AI = classifyArgumentType(Ty);
5157   bool IsIndirect = AI.isIndirect();
5158 
5159   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5160   if (IsIndirect)
5161     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5162   else if (AI.getCoerceToType())
5163     BaseTy = AI.getCoerceToType();
5164 
5165   unsigned NumRegs = 1;
5166   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5167     BaseTy = ArrTy->getElementType();
5168     NumRegs = ArrTy->getNumElements();
5169   }
5170   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5171 
5172   // The AArch64 va_list type and handling is specified in the Procedure Call
5173   // Standard, section B.4:
5174   //
5175   // struct {
5176   //   void *__stack;
5177   //   void *__gr_top;
5178   //   void *__vr_top;
5179   //   int __gr_offs;
5180   //   int __vr_offs;
5181   // };
5182 
5183   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5184   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5185   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5186   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5187 
5188   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5189   CharUnits TyAlign = TyInfo.second;
5190 
5191   Address reg_offs_p = Address::invalid();
5192   llvm::Value *reg_offs = nullptr;
5193   int reg_top_index;
5194   CharUnits reg_top_offset;
5195   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5196   if (!IsFPR) {
5197     // 3 is the field number of __gr_offs
5198     reg_offs_p =
5199         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5200                                     "gr_offs_p");
5201     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5202     reg_top_index = 1; // field number for __gr_top
5203     reg_top_offset = CharUnits::fromQuantity(8);
5204     RegSize = llvm::alignTo(RegSize, 8);
5205   } else {
5206     // 4 is the field number of __vr_offs.
5207     reg_offs_p =
5208         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5209                                     "vr_offs_p");
5210     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5211     reg_top_index = 2; // field number for __vr_top
5212     reg_top_offset = CharUnits::fromQuantity(16);
5213     RegSize = 16 * NumRegs;
5214   }
5215 
5216   //=======================================
5217   // Find out where argument was passed
5218   //=======================================
5219 
5220   // If reg_offs >= 0 we're already using the stack for this type of
5221   // argument. We don't want to keep updating reg_offs (in case it overflows,
5222   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5223   // whatever they get).
5224   llvm::Value *UsingStack = nullptr;
5225   UsingStack = CGF.Builder.CreateICmpSGE(
5226       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5227 
5228   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5229 
5230   // Otherwise, at least some kind of argument could go in these registers, the
5231   // question is whether this particular type is too big.
5232   CGF.EmitBlock(MaybeRegBlock);
5233 
5234   // Integer arguments may need to correct register alignment (for example a
5235   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5236   // align __gr_offs to calculate the potential address.
5237   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5238     int Align = TyAlign.getQuantity();
5239 
5240     reg_offs = CGF.Builder.CreateAdd(
5241         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5242         "align_regoffs");
5243     reg_offs = CGF.Builder.CreateAnd(
5244         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5245         "aligned_regoffs");
5246   }
5247 
5248   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5249   // The fact that this is done unconditionally reflects the fact that
5250   // allocating an argument to the stack also uses up all the remaining
5251   // registers of the appropriate kind.
5252   llvm::Value *NewOffset = nullptr;
5253   NewOffset = CGF.Builder.CreateAdd(
5254       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5255   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5256 
5257   // Now we're in a position to decide whether this argument really was in
5258   // registers or not.
5259   llvm::Value *InRegs = nullptr;
5260   InRegs = CGF.Builder.CreateICmpSLE(
5261       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5262 
5263   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5264 
5265   //=======================================
5266   // Argument was in registers
5267   //=======================================
5268 
5269   // Now we emit the code for if the argument was originally passed in
5270   // registers. First start the appropriate block:
5271   CGF.EmitBlock(InRegBlock);
5272 
5273   llvm::Value *reg_top = nullptr;
5274   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5275                                                   reg_top_offset, "reg_top_p");
5276   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5277   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5278                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5279   Address RegAddr = Address::invalid();
5280   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5281 
5282   if (IsIndirect) {
5283     // If it's been passed indirectly (actually a struct), whatever we find from
5284     // stored registers or on the stack will actually be a struct **.
5285     MemTy = llvm::PointerType::getUnqual(MemTy);
5286   }
5287 
5288   const Type *Base = nullptr;
5289   uint64_t NumMembers = 0;
5290   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5291   if (IsHFA && NumMembers > 1) {
5292     // Homogeneous aggregates passed in registers will have their elements split
5293     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5294     // qN+1, ...). We reload and store into a temporary local variable
5295     // contiguously.
5296     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5297     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5298     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5299     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5300     Address Tmp = CGF.CreateTempAlloca(HFATy,
5301                                        std::max(TyAlign, BaseTyInfo.second));
5302 
5303     // On big-endian platforms, the value will be right-aligned in its slot.
5304     int Offset = 0;
5305     if (CGF.CGM.getDataLayout().isBigEndian() &&
5306         BaseTyInfo.first.getQuantity() < 16)
5307       Offset = 16 - BaseTyInfo.first.getQuantity();
5308 
5309     for (unsigned i = 0; i < NumMembers; ++i) {
5310       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5311       Address LoadAddr =
5312         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5313       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5314 
5315       Address StoreAddr =
5316         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5317 
5318       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5319       CGF.Builder.CreateStore(Elem, StoreAddr);
5320     }
5321 
5322     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5323   } else {
5324     // Otherwise the object is contiguous in memory.
5325 
5326     // It might be right-aligned in its slot.
5327     CharUnits SlotSize = BaseAddr.getAlignment();
5328     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5329         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5330         TyInfo.first < SlotSize) {
5331       CharUnits Offset = SlotSize - TyInfo.first;
5332       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5333     }
5334 
5335     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5336   }
5337 
5338   CGF.EmitBranch(ContBlock);
5339 
5340   //=======================================
5341   // Argument was on the stack
5342   //=======================================
5343   CGF.EmitBlock(OnStackBlock);
5344 
5345   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5346                                                 CharUnits::Zero(), "stack_p");
5347   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5348 
5349   // Again, stack arguments may need realignment. In this case both integer and
5350   // floating-point ones might be affected.
5351   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5352     int Align = TyAlign.getQuantity();
5353 
5354     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5355 
5356     OnStackPtr = CGF.Builder.CreateAdd(
5357         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5358         "align_stack");
5359     OnStackPtr = CGF.Builder.CreateAnd(
5360         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5361         "align_stack");
5362 
5363     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5364   }
5365   Address OnStackAddr(OnStackPtr,
5366                       std::max(CharUnits::fromQuantity(8), TyAlign));
5367 
5368   // All stack slots are multiples of 8 bytes.
5369   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5370   CharUnits StackSize;
5371   if (IsIndirect)
5372     StackSize = StackSlotSize;
5373   else
5374     StackSize = TyInfo.first.alignTo(StackSlotSize);
5375 
5376   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5377   llvm::Value *NewStack =
5378       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5379 
5380   // Write the new value of __stack for the next call to va_arg
5381   CGF.Builder.CreateStore(NewStack, stack_p);
5382 
5383   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5384       TyInfo.first < StackSlotSize) {
5385     CharUnits Offset = StackSlotSize - TyInfo.first;
5386     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5387   }
5388 
5389   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5390 
5391   CGF.EmitBranch(ContBlock);
5392 
5393   //=======================================
5394   // Tidy up
5395   //=======================================
5396   CGF.EmitBlock(ContBlock);
5397 
5398   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5399                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5400 
5401   if (IsIndirect)
5402     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5403                    TyInfo.second);
5404 
5405   return ResAddr;
5406 }
5407 
5408 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5409                                         CodeGenFunction &CGF) const {
5410   // The backend's lowering doesn't support va_arg for aggregates or
5411   // illegal vector types.  Lower VAArg here for these cases and use
5412   // the LLVM va_arg instruction for everything else.
5413   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5414     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5415 
5416   CharUnits SlotSize = CharUnits::fromQuantity(8);
5417 
5418   // Empty records are ignored for parameter passing purposes.
5419   if (isEmptyRecord(getContext(), Ty, true)) {
5420     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5421     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5422     return Addr;
5423   }
5424 
5425   // The size of the actual thing passed, which might end up just
5426   // being a pointer for indirect types.
5427   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5428 
5429   // Arguments bigger than 16 bytes which aren't homogeneous
5430   // aggregates should be passed indirectly.
5431   bool IsIndirect = false;
5432   if (TyInfo.first.getQuantity() > 16) {
5433     const Type *Base = nullptr;
5434     uint64_t Members = 0;
5435     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5436   }
5437 
5438   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5439                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5440 }
5441 
5442 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5443                                     QualType Ty) const {
5444   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5445                           CGF.getContext().getTypeInfoInChars(Ty),
5446                           CharUnits::fromQuantity(8),
5447                           /*allowHigherAlign*/ false);
5448 }
5449 
5450 //===----------------------------------------------------------------------===//
5451 // ARM ABI Implementation
5452 //===----------------------------------------------------------------------===//
5453 
5454 namespace {
5455 
5456 class ARMABIInfo : public SwiftABIInfo {
5457 public:
5458   enum ABIKind {
5459     APCS = 0,
5460     AAPCS = 1,
5461     AAPCS_VFP = 2,
5462     AAPCS16_VFP = 3,
5463   };
5464 
5465 private:
5466   ABIKind Kind;
5467 
5468 public:
5469   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5470       : SwiftABIInfo(CGT), Kind(_Kind) {
5471     setCCs();
5472   }
5473 
5474   bool isEABI() const {
5475     switch (getTarget().getTriple().getEnvironment()) {
5476     case llvm::Triple::Android:
5477     case llvm::Triple::EABI:
5478     case llvm::Triple::EABIHF:
5479     case llvm::Triple::GNUEABI:
5480     case llvm::Triple::GNUEABIHF:
5481     case llvm::Triple::MuslEABI:
5482     case llvm::Triple::MuslEABIHF:
5483       return true;
5484     default:
5485       return false;
5486     }
5487   }
5488 
5489   bool isEABIHF() const {
5490     switch (getTarget().getTriple().getEnvironment()) {
5491     case llvm::Triple::EABIHF:
5492     case llvm::Triple::GNUEABIHF:
5493     case llvm::Triple::MuslEABIHF:
5494       return true;
5495     default:
5496       return false;
5497     }
5498   }
5499 
5500   ABIKind getABIKind() const { return Kind; }
5501 
5502 private:
5503   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5504   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5505   bool isIllegalVectorType(QualType Ty) const;
5506 
5507   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5508   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5509                                          uint64_t Members) const override;
5510 
5511   void computeInfo(CGFunctionInfo &FI) const override;
5512 
5513   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5514                     QualType Ty) const override;
5515 
5516   llvm::CallingConv::ID getLLVMDefaultCC() const;
5517   llvm::CallingConv::ID getABIDefaultCC() const;
5518   void setCCs();
5519 
5520   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5521                                     bool asReturnValue) const override {
5522     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5523   }
5524   bool isSwiftErrorInRegister() const override {
5525     return true;
5526   }
5527   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5528                                  unsigned elts) const override;
5529 };
5530 
5531 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5532 public:
5533   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5534     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5535 
5536   const ARMABIInfo &getABIInfo() const {
5537     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5538   }
5539 
5540   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5541     return 13;
5542   }
5543 
5544   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5545     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5546   }
5547 
5548   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5549                                llvm::Value *Address) const override {
5550     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5551 
5552     // 0-15 are the 16 integer registers.
5553     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5554     return false;
5555   }
5556 
5557   unsigned getSizeOfUnwindException() const override {
5558     if (getABIInfo().isEABI()) return 88;
5559     return TargetCodeGenInfo::getSizeOfUnwindException();
5560   }
5561 
5562   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5563                            CodeGen::CodeGenModule &CGM,
5564                            ForDefinition_t IsForDefinition) const override {
5565     if (!IsForDefinition)
5566       return;
5567     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5568     if (!FD)
5569       return;
5570 
5571     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5572     if (!Attr)
5573       return;
5574 
5575     const char *Kind;
5576     switch (Attr->getInterrupt()) {
5577     case ARMInterruptAttr::Generic: Kind = ""; break;
5578     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5579     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5580     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5581     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5582     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5583     }
5584 
5585     llvm::Function *Fn = cast<llvm::Function>(GV);
5586 
5587     Fn->addFnAttr("interrupt", Kind);
5588 
5589     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5590     if (ABI == ARMABIInfo::APCS)
5591       return;
5592 
5593     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5594     // however this is not necessarily true on taking any interrupt. Instruct
5595     // the backend to perform a realignment as part of the function prologue.
5596     llvm::AttrBuilder B;
5597     B.addStackAlignmentAttr(8);
5598     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5599   }
5600 };
5601 
5602 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5603 public:
5604   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5605       : ARMTargetCodeGenInfo(CGT, K) {}
5606 
5607   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5608                            CodeGen::CodeGenModule &CGM,
5609                            ForDefinition_t IsForDefinition) const override;
5610 
5611   void getDependentLibraryOption(llvm::StringRef Lib,
5612                                  llvm::SmallString<24> &Opt) const override {
5613     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5614   }
5615 
5616   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5617                                llvm::SmallString<32> &Opt) const override {
5618     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5619   }
5620 };
5621 
5622 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5623     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
5624     ForDefinition_t IsForDefinition) const {
5625   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
5626   if (!IsForDefinition)
5627     return;
5628   addStackProbeSizeTargetAttribute(D, GV, CGM);
5629 }
5630 }
5631 
5632 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5633   if (!getCXXABI().classifyReturnType(FI))
5634     FI.getReturnInfo() =
5635         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5636 
5637   for (auto &I : FI.arguments())
5638     I.info = classifyArgumentType(I.type, FI.isVariadic());
5639 
5640   // Always honor user-specified calling convention.
5641   if (FI.getCallingConvention() != llvm::CallingConv::C)
5642     return;
5643 
5644   llvm::CallingConv::ID cc = getRuntimeCC();
5645   if (cc != llvm::CallingConv::C)
5646     FI.setEffectiveCallingConvention(cc);
5647 }
5648 
5649 /// Return the default calling convention that LLVM will use.
5650 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5651   // The default calling convention that LLVM will infer.
5652   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5653     return llvm::CallingConv::ARM_AAPCS_VFP;
5654   else if (isEABI())
5655     return llvm::CallingConv::ARM_AAPCS;
5656   else
5657     return llvm::CallingConv::ARM_APCS;
5658 }
5659 
5660 /// Return the calling convention that our ABI would like us to use
5661 /// as the C calling convention.
5662 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5663   switch (getABIKind()) {
5664   case APCS: return llvm::CallingConv::ARM_APCS;
5665   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5666   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5667   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5668   }
5669   llvm_unreachable("bad ABI kind");
5670 }
5671 
5672 void ARMABIInfo::setCCs() {
5673   assert(getRuntimeCC() == llvm::CallingConv::C);
5674 
5675   // Don't muddy up the IR with a ton of explicit annotations if
5676   // they'd just match what LLVM will infer from the triple.
5677   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5678   if (abiCC != getLLVMDefaultCC())
5679     RuntimeCC = abiCC;
5680 
5681   // AAPCS apparently requires runtime support functions to be soft-float, but
5682   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5683   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5684 
5685   // The Run-time ABI for the ARM Architecture section 4.1.2 requires
5686   // AEABI-complying FP helper functions to use the base AAPCS.
5687   // These AEABI functions are expanded in the ARM llvm backend, all the builtin
5688   // support functions emitted by clang such as the _Complex helpers follow the
5689   // abiCC.
5690   if (abiCC != getLLVMDefaultCC())
5691       BuiltinCC = abiCC;
5692 }
5693 
5694 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5695                                             bool isVariadic) const {
5696   // 6.1.2.1 The following argument types are VFP CPRCs:
5697   //   A single-precision floating-point type (including promoted
5698   //   half-precision types); A double-precision floating-point type;
5699   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5700   //   with a Base Type of a single- or double-precision floating-point type,
5701   //   64-bit containerized vectors or 128-bit containerized vectors with one
5702   //   to four Elements.
5703   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5704 
5705   Ty = useFirstFieldIfTransparentUnion(Ty);
5706 
5707   // Handle illegal vector types here.
5708   if (isIllegalVectorType(Ty)) {
5709     uint64_t Size = getContext().getTypeSize(Ty);
5710     if (Size <= 32) {
5711       llvm::Type *ResType =
5712           llvm::Type::getInt32Ty(getVMContext());
5713       return ABIArgInfo::getDirect(ResType);
5714     }
5715     if (Size == 64) {
5716       llvm::Type *ResType = llvm::VectorType::get(
5717           llvm::Type::getInt32Ty(getVMContext()), 2);
5718       return ABIArgInfo::getDirect(ResType);
5719     }
5720     if (Size == 128) {
5721       llvm::Type *ResType = llvm::VectorType::get(
5722           llvm::Type::getInt32Ty(getVMContext()), 4);
5723       return ABIArgInfo::getDirect(ResType);
5724     }
5725     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5726   }
5727 
5728   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5729   // unspecified. This is not done for OpenCL as it handles the half type
5730   // natively, and does not need to interwork with AAPCS code.
5731   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5732     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5733       llvm::Type::getFloatTy(getVMContext()) :
5734       llvm::Type::getInt32Ty(getVMContext());
5735     return ABIArgInfo::getDirect(ResType);
5736   }
5737 
5738   if (!isAggregateTypeForABI(Ty)) {
5739     // Treat an enum type as its underlying type.
5740     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5741       Ty = EnumTy->getDecl()->getIntegerType();
5742     }
5743 
5744     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5745                                           : ABIArgInfo::getDirect());
5746   }
5747 
5748   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5749     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5750   }
5751 
5752   // Ignore empty records.
5753   if (isEmptyRecord(getContext(), Ty, true))
5754     return ABIArgInfo::getIgnore();
5755 
5756   if (IsEffectivelyAAPCS_VFP) {
5757     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5758     // into VFP registers.
5759     const Type *Base = nullptr;
5760     uint64_t Members = 0;
5761     if (isHomogeneousAggregate(Ty, Base, Members)) {
5762       assert(Base && "Base class should be set for homogeneous aggregate");
5763       // Base can be a floating-point or a vector.
5764       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5765     }
5766   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5767     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5768     // this convention even for a variadic function: the backend will use GPRs
5769     // if needed.
5770     const Type *Base = nullptr;
5771     uint64_t Members = 0;
5772     if (isHomogeneousAggregate(Ty, Base, Members)) {
5773       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5774       llvm::Type *Ty =
5775         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5776       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5777     }
5778   }
5779 
5780   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5781       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5782     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5783     // bigger than 128-bits, they get placed in space allocated by the caller,
5784     // and a pointer is passed.
5785     return ABIArgInfo::getIndirect(
5786         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5787   }
5788 
5789   // Support byval for ARM.
5790   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5791   // most 8-byte. We realign the indirect argument if type alignment is bigger
5792   // than ABI alignment.
5793   uint64_t ABIAlign = 4;
5794   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5795   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5796        getABIKind() == ARMABIInfo::AAPCS)
5797     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5798 
5799   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5800     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5801     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5802                                    /*ByVal=*/true,
5803                                    /*Realign=*/TyAlign > ABIAlign);
5804   }
5805 
5806   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5807   // same size and alignment.
5808   if (getTarget().isRenderScriptTarget()) {
5809     return coerceToIntArray(Ty, getContext(), getVMContext());
5810   }
5811 
5812   // Otherwise, pass by coercing to a structure of the appropriate size.
5813   llvm::Type* ElemTy;
5814   unsigned SizeRegs;
5815   // FIXME: Try to match the types of the arguments more accurately where
5816   // we can.
5817   if (getContext().getTypeAlign(Ty) <= 32) {
5818     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5819     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5820   } else {
5821     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5822     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5823   }
5824 
5825   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5826 }
5827 
5828 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5829                               llvm::LLVMContext &VMContext) {
5830   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5831   // is called integer-like if its size is less than or equal to one word, and
5832   // the offset of each of its addressable sub-fields is zero.
5833 
5834   uint64_t Size = Context.getTypeSize(Ty);
5835 
5836   // Check that the type fits in a word.
5837   if (Size > 32)
5838     return false;
5839 
5840   // FIXME: Handle vector types!
5841   if (Ty->isVectorType())
5842     return false;
5843 
5844   // Float types are never treated as "integer like".
5845   if (Ty->isRealFloatingType())
5846     return false;
5847 
5848   // If this is a builtin or pointer type then it is ok.
5849   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5850     return true;
5851 
5852   // Small complex integer types are "integer like".
5853   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5854     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5855 
5856   // Single element and zero sized arrays should be allowed, by the definition
5857   // above, but they are not.
5858 
5859   // Otherwise, it must be a record type.
5860   const RecordType *RT = Ty->getAs<RecordType>();
5861   if (!RT) return false;
5862 
5863   // Ignore records with flexible arrays.
5864   const RecordDecl *RD = RT->getDecl();
5865   if (RD->hasFlexibleArrayMember())
5866     return false;
5867 
5868   // Check that all sub-fields are at offset 0, and are themselves "integer
5869   // like".
5870   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5871 
5872   bool HadField = false;
5873   unsigned idx = 0;
5874   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5875        i != e; ++i, ++idx) {
5876     const FieldDecl *FD = *i;
5877 
5878     // Bit-fields are not addressable, we only need to verify they are "integer
5879     // like". We still have to disallow a subsequent non-bitfield, for example:
5880     //   struct { int : 0; int x }
5881     // is non-integer like according to gcc.
5882     if (FD->isBitField()) {
5883       if (!RD->isUnion())
5884         HadField = true;
5885 
5886       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5887         return false;
5888 
5889       continue;
5890     }
5891 
5892     // Check if this field is at offset 0.
5893     if (Layout.getFieldOffset(idx) != 0)
5894       return false;
5895 
5896     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5897       return false;
5898 
5899     // Only allow at most one field in a structure. This doesn't match the
5900     // wording above, but follows gcc in situations with a field following an
5901     // empty structure.
5902     if (!RD->isUnion()) {
5903       if (HadField)
5904         return false;
5905 
5906       HadField = true;
5907     }
5908   }
5909 
5910   return true;
5911 }
5912 
5913 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5914                                           bool isVariadic) const {
5915   bool IsEffectivelyAAPCS_VFP =
5916       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5917 
5918   if (RetTy->isVoidType())
5919     return ABIArgInfo::getIgnore();
5920 
5921   // Large vector types should be returned via memory.
5922   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5923     return getNaturalAlignIndirect(RetTy);
5924   }
5925 
5926   // __fp16 gets returned as if it were an int or float, but with the top 16
5927   // bits unspecified. This is not done for OpenCL as it handles the half type
5928   // natively, and does not need to interwork with AAPCS code.
5929   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5930     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5931       llvm::Type::getFloatTy(getVMContext()) :
5932       llvm::Type::getInt32Ty(getVMContext());
5933     return ABIArgInfo::getDirect(ResType);
5934   }
5935 
5936   if (!isAggregateTypeForABI(RetTy)) {
5937     // Treat an enum type as its underlying type.
5938     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5939       RetTy = EnumTy->getDecl()->getIntegerType();
5940 
5941     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5942                                             : ABIArgInfo::getDirect();
5943   }
5944 
5945   // Are we following APCS?
5946   if (getABIKind() == APCS) {
5947     if (isEmptyRecord(getContext(), RetTy, false))
5948       return ABIArgInfo::getIgnore();
5949 
5950     // Complex types are all returned as packed integers.
5951     //
5952     // FIXME: Consider using 2 x vector types if the back end handles them
5953     // correctly.
5954     if (RetTy->isAnyComplexType())
5955       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5956           getVMContext(), getContext().getTypeSize(RetTy)));
5957 
5958     // Integer like structures are returned in r0.
5959     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5960       // Return in the smallest viable integer type.
5961       uint64_t Size = getContext().getTypeSize(RetTy);
5962       if (Size <= 8)
5963         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5964       if (Size <= 16)
5965         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5966       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5967     }
5968 
5969     // Otherwise return in memory.
5970     return getNaturalAlignIndirect(RetTy);
5971   }
5972 
5973   // Otherwise this is an AAPCS variant.
5974 
5975   if (isEmptyRecord(getContext(), RetTy, true))
5976     return ABIArgInfo::getIgnore();
5977 
5978   // Check for homogeneous aggregates with AAPCS-VFP.
5979   if (IsEffectivelyAAPCS_VFP) {
5980     const Type *Base = nullptr;
5981     uint64_t Members = 0;
5982     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5983       assert(Base && "Base class should be set for homogeneous aggregate");
5984       // Homogeneous Aggregates are returned directly.
5985       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5986     }
5987   }
5988 
5989   // Aggregates <= 4 bytes are returned in r0; other aggregates
5990   // are returned indirectly.
5991   uint64_t Size = getContext().getTypeSize(RetTy);
5992   if (Size <= 32) {
5993     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5994     // same size and alignment.
5995     if (getTarget().isRenderScriptTarget()) {
5996       return coerceToIntArray(RetTy, getContext(), getVMContext());
5997     }
5998     if (getDataLayout().isBigEndian())
5999       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6000       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6001 
6002     // Return in the smallest viable integer type.
6003     if (Size <= 8)
6004       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6005     if (Size <= 16)
6006       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6007     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6008   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6009     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6010     llvm::Type *CoerceTy =
6011         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6012     return ABIArgInfo::getDirect(CoerceTy);
6013   }
6014 
6015   return getNaturalAlignIndirect(RetTy);
6016 }
6017 
6018 /// isIllegalVector - check whether Ty is an illegal vector type.
6019 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6020   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6021     if (isAndroid()) {
6022       // Android shipped using Clang 3.1, which supported a slightly different
6023       // vector ABI. The primary differences were that 3-element vector types
6024       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6025       // accepts that legacy behavior for Android only.
6026       // Check whether VT is legal.
6027       unsigned NumElements = VT->getNumElements();
6028       // NumElements should be power of 2 or equal to 3.
6029       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6030         return true;
6031     } else {
6032       // Check whether VT is legal.
6033       unsigned NumElements = VT->getNumElements();
6034       uint64_t Size = getContext().getTypeSize(VT);
6035       // NumElements should be power of 2.
6036       if (!llvm::isPowerOf2_32(NumElements))
6037         return true;
6038       // Size should be greater than 32 bits.
6039       return Size <= 32;
6040     }
6041   }
6042   return false;
6043 }
6044 
6045 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6046                                            llvm::Type *eltTy,
6047                                            unsigned numElts) const {
6048   if (!llvm::isPowerOf2_32(numElts))
6049     return false;
6050   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6051   if (size > 64)
6052     return false;
6053   if (vectorSize.getQuantity() != 8 &&
6054       (vectorSize.getQuantity() != 16 || numElts == 1))
6055     return false;
6056   return true;
6057 }
6058 
6059 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6060   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6061   // double, or 64-bit or 128-bit vectors.
6062   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6063     if (BT->getKind() == BuiltinType::Float ||
6064         BT->getKind() == BuiltinType::Double ||
6065         BT->getKind() == BuiltinType::LongDouble)
6066       return true;
6067   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6068     unsigned VecSize = getContext().getTypeSize(VT);
6069     if (VecSize == 64 || VecSize == 128)
6070       return true;
6071   }
6072   return false;
6073 }
6074 
6075 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6076                                                    uint64_t Members) const {
6077   return Members <= 4;
6078 }
6079 
6080 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6081                               QualType Ty) const {
6082   CharUnits SlotSize = CharUnits::fromQuantity(4);
6083 
6084   // Empty records are ignored for parameter passing purposes.
6085   if (isEmptyRecord(getContext(), Ty, true)) {
6086     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6087     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6088     return Addr;
6089   }
6090 
6091   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6092   CharUnits TyAlignForABI = TyInfo.second;
6093 
6094   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6095   bool IsIndirect = false;
6096   const Type *Base = nullptr;
6097   uint64_t Members = 0;
6098   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6099     IsIndirect = true;
6100 
6101   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6102   // allocated by the caller.
6103   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6104              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6105              !isHomogeneousAggregate(Ty, Base, Members)) {
6106     IsIndirect = true;
6107 
6108   // Otherwise, bound the type's ABI alignment.
6109   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6110   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6111   // Our callers should be prepared to handle an under-aligned address.
6112   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6113              getABIKind() == ARMABIInfo::AAPCS) {
6114     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6115     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6116   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6117     // ARMv7k allows type alignment up to 16 bytes.
6118     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6119     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6120   } else {
6121     TyAlignForABI = CharUnits::fromQuantity(4);
6122   }
6123   TyInfo.second = TyAlignForABI;
6124 
6125   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6126                           SlotSize, /*AllowHigherAlign*/ true);
6127 }
6128 
6129 //===----------------------------------------------------------------------===//
6130 // NVPTX ABI Implementation
6131 //===----------------------------------------------------------------------===//
6132 
6133 namespace {
6134 
6135 class NVPTXABIInfo : public ABIInfo {
6136 public:
6137   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6138 
6139   ABIArgInfo classifyReturnType(QualType RetTy) const;
6140   ABIArgInfo classifyArgumentType(QualType Ty) const;
6141 
6142   void computeInfo(CGFunctionInfo &FI) const override;
6143   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6144                     QualType Ty) const override;
6145 };
6146 
6147 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6148 public:
6149   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6150     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6151 
6152   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6153                            CodeGen::CodeGenModule &M,
6154                            ForDefinition_t IsForDefinition) const override;
6155 
6156 private:
6157   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6158   // resulting MDNode to the nvvm.annotations MDNode.
6159   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6160 };
6161 
6162 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6163   if (RetTy->isVoidType())
6164     return ABIArgInfo::getIgnore();
6165 
6166   // note: this is different from default ABI
6167   if (!RetTy->isScalarType())
6168     return ABIArgInfo::getDirect();
6169 
6170   // Treat an enum type as its underlying type.
6171   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6172     RetTy = EnumTy->getDecl()->getIntegerType();
6173 
6174   return (RetTy->isPromotableIntegerType() ?
6175           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6176 }
6177 
6178 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6179   // Treat an enum type as its underlying type.
6180   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6181     Ty = EnumTy->getDecl()->getIntegerType();
6182 
6183   // Return aggregates type as indirect by value
6184   if (isAggregateTypeForABI(Ty))
6185     return getNaturalAlignIndirect(Ty, /* byval */ true);
6186 
6187   return (Ty->isPromotableIntegerType() ?
6188           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6189 }
6190 
6191 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6192   if (!getCXXABI().classifyReturnType(FI))
6193     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6194   for (auto &I : FI.arguments())
6195     I.info = classifyArgumentType(I.type);
6196 
6197   // Always honor user-specified calling convention.
6198   if (FI.getCallingConvention() != llvm::CallingConv::C)
6199     return;
6200 
6201   FI.setEffectiveCallingConvention(getRuntimeCC());
6202 }
6203 
6204 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6205                                 QualType Ty) const {
6206   llvm_unreachable("NVPTX does not support varargs");
6207 }
6208 
6209 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6210     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
6211     ForDefinition_t IsForDefinition) const {
6212   if (!IsForDefinition)
6213     return;
6214   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6215   if (!FD) return;
6216 
6217   llvm::Function *F = cast<llvm::Function>(GV);
6218 
6219   // Perform special handling in OpenCL mode
6220   if (M.getLangOpts().OpenCL) {
6221     // Use OpenCL function attributes to check for kernel functions
6222     // By default, all functions are device functions
6223     if (FD->hasAttr<OpenCLKernelAttr>()) {
6224       // OpenCL __kernel functions get kernel metadata
6225       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6226       addNVVMMetadata(F, "kernel", 1);
6227       // And kernel functions are not subject to inlining
6228       F->addFnAttr(llvm::Attribute::NoInline);
6229     }
6230   }
6231 
6232   // Perform special handling in CUDA mode.
6233   if (M.getLangOpts().CUDA) {
6234     // CUDA __global__ functions get a kernel metadata entry.  Since
6235     // __global__ functions cannot be called from the device, we do not
6236     // need to set the noinline attribute.
6237     if (FD->hasAttr<CUDAGlobalAttr>()) {
6238       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6239       addNVVMMetadata(F, "kernel", 1);
6240     }
6241     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6242       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6243       llvm::APSInt MaxThreads(32);
6244       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6245       if (MaxThreads > 0)
6246         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6247 
6248       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6249       // not specified in __launch_bounds__ or if the user specified a 0 value,
6250       // we don't have to add a PTX directive.
6251       if (Attr->getMinBlocks()) {
6252         llvm::APSInt MinBlocks(32);
6253         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6254         if (MinBlocks > 0)
6255           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6256           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6257       }
6258     }
6259   }
6260 }
6261 
6262 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6263                                              int Operand) {
6264   llvm::Module *M = F->getParent();
6265   llvm::LLVMContext &Ctx = M->getContext();
6266 
6267   // Get "nvvm.annotations" metadata node
6268   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6269 
6270   llvm::Metadata *MDVals[] = {
6271       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6272       llvm::ConstantAsMetadata::get(
6273           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6274   // Append metadata to nvvm.annotations
6275   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6276 }
6277 }
6278 
6279 //===----------------------------------------------------------------------===//
6280 // SystemZ ABI Implementation
6281 //===----------------------------------------------------------------------===//
6282 
6283 namespace {
6284 
6285 class SystemZABIInfo : public SwiftABIInfo {
6286   bool HasVector;
6287 
6288 public:
6289   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6290     : SwiftABIInfo(CGT), HasVector(HV) {}
6291 
6292   bool isPromotableIntegerType(QualType Ty) const;
6293   bool isCompoundType(QualType Ty) const;
6294   bool isVectorArgumentType(QualType Ty) const;
6295   bool isFPArgumentType(QualType Ty) const;
6296   QualType GetSingleElementType(QualType Ty) const;
6297 
6298   ABIArgInfo classifyReturnType(QualType RetTy) const;
6299   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6300 
6301   void computeInfo(CGFunctionInfo &FI) const override {
6302     if (!getCXXABI().classifyReturnType(FI))
6303       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6304     for (auto &I : FI.arguments())
6305       I.info = classifyArgumentType(I.type);
6306   }
6307 
6308   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6309                     QualType Ty) const override;
6310 
6311   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6312                                     bool asReturnValue) const override {
6313     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6314   }
6315   bool isSwiftErrorInRegister() const override {
6316     return false;
6317   }
6318 };
6319 
6320 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6321 public:
6322   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6323     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6324 };
6325 
6326 }
6327 
6328 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6329   // Treat an enum type as its underlying type.
6330   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6331     Ty = EnumTy->getDecl()->getIntegerType();
6332 
6333   // Promotable integer types are required to be promoted by the ABI.
6334   if (Ty->isPromotableIntegerType())
6335     return true;
6336 
6337   // 32-bit values must also be promoted.
6338   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6339     switch (BT->getKind()) {
6340     case BuiltinType::Int:
6341     case BuiltinType::UInt:
6342       return true;
6343     default:
6344       return false;
6345     }
6346   return false;
6347 }
6348 
6349 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6350   return (Ty->isAnyComplexType() ||
6351           Ty->isVectorType() ||
6352           isAggregateTypeForABI(Ty));
6353 }
6354 
6355 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6356   return (HasVector &&
6357           Ty->isVectorType() &&
6358           getContext().getTypeSize(Ty) <= 128);
6359 }
6360 
6361 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6362   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6363     switch (BT->getKind()) {
6364     case BuiltinType::Float:
6365     case BuiltinType::Double:
6366       return true;
6367     default:
6368       return false;
6369     }
6370 
6371   return false;
6372 }
6373 
6374 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6375   if (const RecordType *RT = Ty->getAsStructureType()) {
6376     const RecordDecl *RD = RT->getDecl();
6377     QualType Found;
6378 
6379     // If this is a C++ record, check the bases first.
6380     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6381       for (const auto &I : CXXRD->bases()) {
6382         QualType Base = I.getType();
6383 
6384         // Empty bases don't affect things either way.
6385         if (isEmptyRecord(getContext(), Base, true))
6386           continue;
6387 
6388         if (!Found.isNull())
6389           return Ty;
6390         Found = GetSingleElementType(Base);
6391       }
6392 
6393     // Check the fields.
6394     for (const auto *FD : RD->fields()) {
6395       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6396       // Unlike isSingleElementStruct(), empty structure and array fields
6397       // do count.  So do anonymous bitfields that aren't zero-sized.
6398       if (getContext().getLangOpts().CPlusPlus &&
6399           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
6400         continue;
6401 
6402       // Unlike isSingleElementStruct(), arrays do not count.
6403       // Nested structures still do though.
6404       if (!Found.isNull())
6405         return Ty;
6406       Found = GetSingleElementType(FD->getType());
6407     }
6408 
6409     // Unlike isSingleElementStruct(), trailing padding is allowed.
6410     // An 8-byte aligned struct s { float f; } is passed as a double.
6411     if (!Found.isNull())
6412       return Found;
6413   }
6414 
6415   return Ty;
6416 }
6417 
6418 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6419                                   QualType Ty) const {
6420   // Assume that va_list type is correct; should be pointer to LLVM type:
6421   // struct {
6422   //   i64 __gpr;
6423   //   i64 __fpr;
6424   //   i8 *__overflow_arg_area;
6425   //   i8 *__reg_save_area;
6426   // };
6427 
6428   // Every non-vector argument occupies 8 bytes and is passed by preference
6429   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6430   // always passed on the stack.
6431   Ty = getContext().getCanonicalType(Ty);
6432   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6433   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6434   llvm::Type *DirectTy = ArgTy;
6435   ABIArgInfo AI = classifyArgumentType(Ty);
6436   bool IsIndirect = AI.isIndirect();
6437   bool InFPRs = false;
6438   bool IsVector = false;
6439   CharUnits UnpaddedSize;
6440   CharUnits DirectAlign;
6441   if (IsIndirect) {
6442     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6443     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6444   } else {
6445     if (AI.getCoerceToType())
6446       ArgTy = AI.getCoerceToType();
6447     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6448     IsVector = ArgTy->isVectorTy();
6449     UnpaddedSize = TyInfo.first;
6450     DirectAlign = TyInfo.second;
6451   }
6452   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6453   if (IsVector && UnpaddedSize > PaddedSize)
6454     PaddedSize = CharUnits::fromQuantity(16);
6455   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6456 
6457   CharUnits Padding = (PaddedSize - UnpaddedSize);
6458 
6459   llvm::Type *IndexTy = CGF.Int64Ty;
6460   llvm::Value *PaddedSizeV =
6461     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6462 
6463   if (IsVector) {
6464     // Work out the address of a vector argument on the stack.
6465     // Vector arguments are always passed in the high bits of a
6466     // single (8 byte) or double (16 byte) stack slot.
6467     Address OverflowArgAreaPtr =
6468       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6469                                   "overflow_arg_area_ptr");
6470     Address OverflowArgArea =
6471       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6472               TyInfo.second);
6473     Address MemAddr =
6474       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6475 
6476     // Update overflow_arg_area_ptr pointer
6477     llvm::Value *NewOverflowArgArea =
6478       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6479                             "overflow_arg_area");
6480     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6481 
6482     return MemAddr;
6483   }
6484 
6485   assert(PaddedSize.getQuantity() == 8);
6486 
6487   unsigned MaxRegs, RegCountField, RegSaveIndex;
6488   CharUnits RegPadding;
6489   if (InFPRs) {
6490     MaxRegs = 4; // Maximum of 4 FPR arguments
6491     RegCountField = 1; // __fpr
6492     RegSaveIndex = 16; // save offset for f0
6493     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6494   } else {
6495     MaxRegs = 5; // Maximum of 5 GPR arguments
6496     RegCountField = 0; // __gpr
6497     RegSaveIndex = 2; // save offset for r2
6498     RegPadding = Padding; // values are passed in the low bits of a GPR
6499   }
6500 
6501   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6502       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6503       "reg_count_ptr");
6504   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6505   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6506   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6507                                                  "fits_in_regs");
6508 
6509   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6510   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6511   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6512   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6513 
6514   // Emit code to load the value if it was passed in registers.
6515   CGF.EmitBlock(InRegBlock);
6516 
6517   // Work out the address of an argument register.
6518   llvm::Value *ScaledRegCount =
6519     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6520   llvm::Value *RegBase =
6521     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6522                                       + RegPadding.getQuantity());
6523   llvm::Value *RegOffset =
6524     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6525   Address RegSaveAreaPtr =
6526       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6527                                   "reg_save_area_ptr");
6528   llvm::Value *RegSaveArea =
6529     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6530   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6531                                            "raw_reg_addr"),
6532                      PaddedSize);
6533   Address RegAddr =
6534     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6535 
6536   // Update the register count
6537   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6538   llvm::Value *NewRegCount =
6539     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6540   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6541   CGF.EmitBranch(ContBlock);
6542 
6543   // Emit code to load the value if it was passed in memory.
6544   CGF.EmitBlock(InMemBlock);
6545 
6546   // Work out the address of a stack argument.
6547   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6548       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6549   Address OverflowArgArea =
6550     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6551             PaddedSize);
6552   Address RawMemAddr =
6553     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6554   Address MemAddr =
6555     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6556 
6557   // Update overflow_arg_area_ptr pointer
6558   llvm::Value *NewOverflowArgArea =
6559     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6560                           "overflow_arg_area");
6561   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6562   CGF.EmitBranch(ContBlock);
6563 
6564   // Return the appropriate result.
6565   CGF.EmitBlock(ContBlock);
6566   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6567                                  MemAddr, InMemBlock, "va_arg.addr");
6568 
6569   if (IsIndirect)
6570     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6571                       TyInfo.second);
6572 
6573   return ResAddr;
6574 }
6575 
6576 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6577   if (RetTy->isVoidType())
6578     return ABIArgInfo::getIgnore();
6579   if (isVectorArgumentType(RetTy))
6580     return ABIArgInfo::getDirect();
6581   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6582     return getNaturalAlignIndirect(RetTy);
6583   return (isPromotableIntegerType(RetTy) ?
6584           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6585 }
6586 
6587 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6588   // Handle the generic C++ ABI.
6589   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6590     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6591 
6592   // Integers and enums are extended to full register width.
6593   if (isPromotableIntegerType(Ty))
6594     return ABIArgInfo::getExtend();
6595 
6596   // Handle vector types and vector-like structure types.  Note that
6597   // as opposed to float-like structure types, we do not allow any
6598   // padding for vector-like structures, so verify the sizes match.
6599   uint64_t Size = getContext().getTypeSize(Ty);
6600   QualType SingleElementTy = GetSingleElementType(Ty);
6601   if (isVectorArgumentType(SingleElementTy) &&
6602       getContext().getTypeSize(SingleElementTy) == Size)
6603     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6604 
6605   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6606   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6607     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6608 
6609   // Handle small structures.
6610   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6611     // Structures with flexible arrays have variable length, so really
6612     // fail the size test above.
6613     const RecordDecl *RD = RT->getDecl();
6614     if (RD->hasFlexibleArrayMember())
6615       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6616 
6617     // The structure is passed as an unextended integer, a float, or a double.
6618     llvm::Type *PassTy;
6619     if (isFPArgumentType(SingleElementTy)) {
6620       assert(Size == 32 || Size == 64);
6621       if (Size == 32)
6622         PassTy = llvm::Type::getFloatTy(getVMContext());
6623       else
6624         PassTy = llvm::Type::getDoubleTy(getVMContext());
6625     } else
6626       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6627     return ABIArgInfo::getDirect(PassTy);
6628   }
6629 
6630   // Non-structure compounds are passed indirectly.
6631   if (isCompoundType(Ty))
6632     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6633 
6634   return ABIArgInfo::getDirect(nullptr);
6635 }
6636 
6637 //===----------------------------------------------------------------------===//
6638 // MSP430 ABI Implementation
6639 //===----------------------------------------------------------------------===//
6640 
6641 namespace {
6642 
6643 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6644 public:
6645   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6646     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6647   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6648                            CodeGen::CodeGenModule &M,
6649                            ForDefinition_t IsForDefinition) const override;
6650 };
6651 
6652 }
6653 
6654 void MSP430TargetCodeGenInfo::setTargetAttributes(
6655     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
6656     ForDefinition_t IsForDefinition) const {
6657   if (!IsForDefinition)
6658     return;
6659   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6660     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6661       // Handle 'interrupt' attribute:
6662       llvm::Function *F = cast<llvm::Function>(GV);
6663 
6664       // Step 1: Set ISR calling convention.
6665       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6666 
6667       // Step 2: Add attributes goodness.
6668       F->addFnAttr(llvm::Attribute::NoInline);
6669 
6670       // Step 3: Emit ISR vector alias.
6671       unsigned Num = attr->getNumber() / 2;
6672       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6673                                 "__isr_" + Twine(Num), F);
6674     }
6675   }
6676 }
6677 
6678 //===----------------------------------------------------------------------===//
6679 // MIPS ABI Implementation.  This works for both little-endian and
6680 // big-endian variants.
6681 //===----------------------------------------------------------------------===//
6682 
6683 namespace {
6684 class MipsABIInfo : public ABIInfo {
6685   bool IsO32;
6686   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6687   void CoerceToIntArgs(uint64_t TySize,
6688                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6689   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6690   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6691   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6692 public:
6693   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6694     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6695     StackAlignInBytes(IsO32 ? 8 : 16) {}
6696 
6697   ABIArgInfo classifyReturnType(QualType RetTy) const;
6698   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6699   void computeInfo(CGFunctionInfo &FI) const override;
6700   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6701                     QualType Ty) const override;
6702   bool shouldSignExtUnsignedType(QualType Ty) const override;
6703 };
6704 
6705 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6706   unsigned SizeOfUnwindException;
6707 public:
6708   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6709     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6710       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6711 
6712   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6713     return 29;
6714   }
6715 
6716   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6717                            CodeGen::CodeGenModule &CGM,
6718                            ForDefinition_t IsForDefinition) const override {
6719     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6720     if (!FD) return;
6721     llvm::Function *Fn = cast<llvm::Function>(GV);
6722 
6723     if (FD->hasAttr<MipsLongCallAttr>())
6724       Fn->addFnAttr("long-call");
6725     else if (FD->hasAttr<MipsShortCallAttr>())
6726       Fn->addFnAttr("short-call");
6727 
6728     // Other attributes do not have a meaning for declarations.
6729     if (!IsForDefinition)
6730       return;
6731 
6732     if (FD->hasAttr<Mips16Attr>()) {
6733       Fn->addFnAttr("mips16");
6734     }
6735     else if (FD->hasAttr<NoMips16Attr>()) {
6736       Fn->addFnAttr("nomips16");
6737     }
6738 
6739     if (FD->hasAttr<MicroMipsAttr>())
6740       Fn->addFnAttr("micromips");
6741     else if (FD->hasAttr<NoMicroMipsAttr>())
6742       Fn->addFnAttr("nomicromips");
6743 
6744     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6745     if (!Attr)
6746       return;
6747 
6748     const char *Kind;
6749     switch (Attr->getInterrupt()) {
6750     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6751     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6752     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6753     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6754     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6755     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6756     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6757     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6758     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6759     }
6760 
6761     Fn->addFnAttr("interrupt", Kind);
6762 
6763   }
6764 
6765   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6766                                llvm::Value *Address) const override;
6767 
6768   unsigned getSizeOfUnwindException() const override {
6769     return SizeOfUnwindException;
6770   }
6771 };
6772 }
6773 
6774 void MipsABIInfo::CoerceToIntArgs(
6775     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6776   llvm::IntegerType *IntTy =
6777     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6778 
6779   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6780   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6781     ArgList.push_back(IntTy);
6782 
6783   // If necessary, add one more integer type to ArgList.
6784   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6785 
6786   if (R)
6787     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6788 }
6789 
6790 // In N32/64, an aligned double precision floating point field is passed in
6791 // a register.
6792 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6793   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6794 
6795   if (IsO32) {
6796     CoerceToIntArgs(TySize, ArgList);
6797     return llvm::StructType::get(getVMContext(), ArgList);
6798   }
6799 
6800   if (Ty->isComplexType())
6801     return CGT.ConvertType(Ty);
6802 
6803   const RecordType *RT = Ty->getAs<RecordType>();
6804 
6805   // Unions/vectors are passed in integer registers.
6806   if (!RT || !RT->isStructureOrClassType()) {
6807     CoerceToIntArgs(TySize, ArgList);
6808     return llvm::StructType::get(getVMContext(), ArgList);
6809   }
6810 
6811   const RecordDecl *RD = RT->getDecl();
6812   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6813   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6814 
6815   uint64_t LastOffset = 0;
6816   unsigned idx = 0;
6817   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6818 
6819   // Iterate over fields in the struct/class and check if there are any aligned
6820   // double fields.
6821   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6822        i != e; ++i, ++idx) {
6823     const QualType Ty = i->getType();
6824     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6825 
6826     if (!BT || BT->getKind() != BuiltinType::Double)
6827       continue;
6828 
6829     uint64_t Offset = Layout.getFieldOffset(idx);
6830     if (Offset % 64) // Ignore doubles that are not aligned.
6831       continue;
6832 
6833     // Add ((Offset - LastOffset) / 64) args of type i64.
6834     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6835       ArgList.push_back(I64);
6836 
6837     // Add double type.
6838     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6839     LastOffset = Offset + 64;
6840   }
6841 
6842   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6843   ArgList.append(IntArgList.begin(), IntArgList.end());
6844 
6845   return llvm::StructType::get(getVMContext(), ArgList);
6846 }
6847 
6848 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6849                                         uint64_t Offset) const {
6850   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6851     return nullptr;
6852 
6853   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6854 }
6855 
6856 ABIArgInfo
6857 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6858   Ty = useFirstFieldIfTransparentUnion(Ty);
6859 
6860   uint64_t OrigOffset = Offset;
6861   uint64_t TySize = getContext().getTypeSize(Ty);
6862   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6863 
6864   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6865                    (uint64_t)StackAlignInBytes);
6866   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6867   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6868 
6869   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6870     // Ignore empty aggregates.
6871     if (TySize == 0)
6872       return ABIArgInfo::getIgnore();
6873 
6874     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6875       Offset = OrigOffset + MinABIStackAlignInBytes;
6876       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6877     }
6878 
6879     // If we have reached here, aggregates are passed directly by coercing to
6880     // another structure type. Padding is inserted if the offset of the
6881     // aggregate is unaligned.
6882     ABIArgInfo ArgInfo =
6883         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6884                               getPaddingType(OrigOffset, CurrOffset));
6885     ArgInfo.setInReg(true);
6886     return ArgInfo;
6887   }
6888 
6889   // Treat an enum type as its underlying type.
6890   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6891     Ty = EnumTy->getDecl()->getIntegerType();
6892 
6893   // All integral types are promoted to the GPR width.
6894   if (Ty->isIntegralOrEnumerationType())
6895     return ABIArgInfo::getExtend();
6896 
6897   return ABIArgInfo::getDirect(
6898       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6899 }
6900 
6901 llvm::Type*
6902 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6903   const RecordType *RT = RetTy->getAs<RecordType>();
6904   SmallVector<llvm::Type*, 8> RTList;
6905 
6906   if (RT && RT->isStructureOrClassType()) {
6907     const RecordDecl *RD = RT->getDecl();
6908     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6909     unsigned FieldCnt = Layout.getFieldCount();
6910 
6911     // N32/64 returns struct/classes in floating point registers if the
6912     // following conditions are met:
6913     // 1. The size of the struct/class is no larger than 128-bit.
6914     // 2. The struct/class has one or two fields all of which are floating
6915     //    point types.
6916     // 3. The offset of the first field is zero (this follows what gcc does).
6917     //
6918     // Any other composite results are returned in integer registers.
6919     //
6920     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6921       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6922       for (; b != e; ++b) {
6923         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6924 
6925         if (!BT || !BT->isFloatingPoint())
6926           break;
6927 
6928         RTList.push_back(CGT.ConvertType(b->getType()));
6929       }
6930 
6931       if (b == e)
6932         return llvm::StructType::get(getVMContext(), RTList,
6933                                      RD->hasAttr<PackedAttr>());
6934 
6935       RTList.clear();
6936     }
6937   }
6938 
6939   CoerceToIntArgs(Size, RTList);
6940   return llvm::StructType::get(getVMContext(), RTList);
6941 }
6942 
6943 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6944   uint64_t Size = getContext().getTypeSize(RetTy);
6945 
6946   if (RetTy->isVoidType())
6947     return ABIArgInfo::getIgnore();
6948 
6949   // O32 doesn't treat zero-sized structs differently from other structs.
6950   // However, N32/N64 ignores zero sized return values.
6951   if (!IsO32 && Size == 0)
6952     return ABIArgInfo::getIgnore();
6953 
6954   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6955     if (Size <= 128) {
6956       if (RetTy->isAnyComplexType())
6957         return ABIArgInfo::getDirect();
6958 
6959       // O32 returns integer vectors in registers and N32/N64 returns all small
6960       // aggregates in registers.
6961       if (!IsO32 ||
6962           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6963         ABIArgInfo ArgInfo =
6964             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6965         ArgInfo.setInReg(true);
6966         return ArgInfo;
6967       }
6968     }
6969 
6970     return getNaturalAlignIndirect(RetTy);
6971   }
6972 
6973   // Treat an enum type as its underlying type.
6974   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6975     RetTy = EnumTy->getDecl()->getIntegerType();
6976 
6977   return (RetTy->isPromotableIntegerType() ?
6978           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6979 }
6980 
6981 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6982   ABIArgInfo &RetInfo = FI.getReturnInfo();
6983   if (!getCXXABI().classifyReturnType(FI))
6984     RetInfo = classifyReturnType(FI.getReturnType());
6985 
6986   // Check if a pointer to an aggregate is passed as a hidden argument.
6987   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6988 
6989   for (auto &I : FI.arguments())
6990     I.info = classifyArgumentType(I.type, Offset);
6991 }
6992 
6993 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6994                                QualType OrigTy) const {
6995   QualType Ty = OrigTy;
6996 
6997   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6998   // Pointers are also promoted in the same way but this only matters for N32.
6999   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7000   unsigned PtrWidth = getTarget().getPointerWidth(0);
7001   bool DidPromote = false;
7002   if ((Ty->isIntegerType() &&
7003           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7004       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7005     DidPromote = true;
7006     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7007                                             Ty->isSignedIntegerType());
7008   }
7009 
7010   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7011 
7012   // The alignment of things in the argument area is never larger than
7013   // StackAlignInBytes.
7014   TyInfo.second =
7015     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7016 
7017   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7018   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7019 
7020   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7021                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7022 
7023 
7024   // If there was a promotion, "unpromote" into a temporary.
7025   // TODO: can we just use a pointer into a subset of the original slot?
7026   if (DidPromote) {
7027     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7028     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7029 
7030     // Truncate down to the right width.
7031     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7032                                                  : CGF.IntPtrTy);
7033     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7034     if (OrigTy->isPointerType())
7035       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7036 
7037     CGF.Builder.CreateStore(V, Temp);
7038     Addr = Temp;
7039   }
7040 
7041   return Addr;
7042 }
7043 
7044 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
7045   int TySize = getContext().getTypeSize(Ty);
7046 
7047   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7048   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7049     return true;
7050 
7051   return false;
7052 }
7053 
7054 bool
7055 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7056                                                llvm::Value *Address) const {
7057   // This information comes from gcc's implementation, which seems to
7058   // as canonical as it gets.
7059 
7060   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7061   // are aliased to pairs of single-precision FP registers.
7062   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7063 
7064   // 0-31 are the general purpose registers, $0 - $31.
7065   // 32-63 are the floating-point registers, $f0 - $f31.
7066   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7067   // 66 is the (notional, I think) register for signal-handler return.
7068   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7069 
7070   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7071   // They are one bit wide and ignored here.
7072 
7073   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7074   // (coprocessor 1 is the FP unit)
7075   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7076   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7077   // 176-181 are the DSP accumulator registers.
7078   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7079   return false;
7080 }
7081 
7082 //===----------------------------------------------------------------------===//
7083 // AVR ABI Implementation.
7084 //===----------------------------------------------------------------------===//
7085 
7086 namespace {
7087 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7088 public:
7089   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7090     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7091 
7092   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7093                            CodeGen::CodeGenModule &CGM,
7094                            ForDefinition_t IsForDefinition) const override {
7095     if (!IsForDefinition)
7096       return;
7097     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7098     if (!FD) return;
7099     auto *Fn = cast<llvm::Function>(GV);
7100 
7101     if (FD->getAttr<AVRInterruptAttr>())
7102       Fn->addFnAttr("interrupt");
7103 
7104     if (FD->getAttr<AVRSignalAttr>())
7105       Fn->addFnAttr("signal");
7106   }
7107 };
7108 }
7109 
7110 //===----------------------------------------------------------------------===//
7111 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7112 // Currently subclassed only to implement custom OpenCL C function attribute
7113 // handling.
7114 //===----------------------------------------------------------------------===//
7115 
7116 namespace {
7117 
7118 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7119 public:
7120   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7121     : DefaultTargetCodeGenInfo(CGT) {}
7122 
7123   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7124                            CodeGen::CodeGenModule &M,
7125                            ForDefinition_t IsForDefinition) const override;
7126 };
7127 
7128 void TCETargetCodeGenInfo::setTargetAttributes(
7129     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
7130     ForDefinition_t IsForDefinition) const {
7131   if (!IsForDefinition)
7132     return;
7133   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7134   if (!FD) return;
7135 
7136   llvm::Function *F = cast<llvm::Function>(GV);
7137 
7138   if (M.getLangOpts().OpenCL) {
7139     if (FD->hasAttr<OpenCLKernelAttr>()) {
7140       // OpenCL C Kernel functions are not subject to inlining
7141       F->addFnAttr(llvm::Attribute::NoInline);
7142       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7143       if (Attr) {
7144         // Convert the reqd_work_group_size() attributes to metadata.
7145         llvm::LLVMContext &Context = F->getContext();
7146         llvm::NamedMDNode *OpenCLMetadata =
7147             M.getModule().getOrInsertNamedMetadata(
7148                 "opencl.kernel_wg_size_info");
7149 
7150         SmallVector<llvm::Metadata *, 5> Operands;
7151         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7152 
7153         Operands.push_back(
7154             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7155                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7156         Operands.push_back(
7157             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7158                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7159         Operands.push_back(
7160             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7161                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7162 
7163         // Add a boolean constant operand for "required" (true) or "hint"
7164         // (false) for implementing the work_group_size_hint attr later.
7165         // Currently always true as the hint is not yet implemented.
7166         Operands.push_back(
7167             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7168         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7169       }
7170     }
7171   }
7172 }
7173 
7174 }
7175 
7176 //===----------------------------------------------------------------------===//
7177 // Hexagon ABI Implementation
7178 //===----------------------------------------------------------------------===//
7179 
7180 namespace {
7181 
7182 class HexagonABIInfo : public ABIInfo {
7183 
7184 
7185 public:
7186   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7187 
7188 private:
7189 
7190   ABIArgInfo classifyReturnType(QualType RetTy) const;
7191   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7192 
7193   void computeInfo(CGFunctionInfo &FI) const override;
7194 
7195   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7196                     QualType Ty) const override;
7197 };
7198 
7199 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7200 public:
7201   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7202     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7203 
7204   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7205     return 29;
7206   }
7207 };
7208 
7209 }
7210 
7211 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7212   if (!getCXXABI().classifyReturnType(FI))
7213     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7214   for (auto &I : FI.arguments())
7215     I.info = classifyArgumentType(I.type);
7216 }
7217 
7218 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7219   if (!isAggregateTypeForABI(Ty)) {
7220     // Treat an enum type as its underlying type.
7221     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7222       Ty = EnumTy->getDecl()->getIntegerType();
7223 
7224     return (Ty->isPromotableIntegerType() ?
7225             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
7226   }
7227 
7228   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7229     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7230 
7231   // Ignore empty records.
7232   if (isEmptyRecord(getContext(), Ty, true))
7233     return ABIArgInfo::getIgnore();
7234 
7235   uint64_t Size = getContext().getTypeSize(Ty);
7236   if (Size > 64)
7237     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7238     // Pass in the smallest viable integer type.
7239   else if (Size > 32)
7240       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7241   else if (Size > 16)
7242       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7243   else if (Size > 8)
7244       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7245   else
7246       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7247 }
7248 
7249 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7250   if (RetTy->isVoidType())
7251     return ABIArgInfo::getIgnore();
7252 
7253   // Large vector types should be returned via memory.
7254   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7255     return getNaturalAlignIndirect(RetTy);
7256 
7257   if (!isAggregateTypeForABI(RetTy)) {
7258     // Treat an enum type as its underlying type.
7259     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7260       RetTy = EnumTy->getDecl()->getIntegerType();
7261 
7262     return (RetTy->isPromotableIntegerType() ?
7263             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
7264   }
7265 
7266   if (isEmptyRecord(getContext(), RetTy, true))
7267     return ABIArgInfo::getIgnore();
7268 
7269   // Aggregates <= 8 bytes are returned in r0; other aggregates
7270   // are returned indirectly.
7271   uint64_t Size = getContext().getTypeSize(RetTy);
7272   if (Size <= 64) {
7273     // Return in the smallest viable integer type.
7274     if (Size <= 8)
7275       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7276     if (Size <= 16)
7277       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7278     if (Size <= 32)
7279       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7280     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7281   }
7282 
7283   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7284 }
7285 
7286 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7287                                   QualType Ty) const {
7288   // FIXME: Someone needs to audit that this handle alignment correctly.
7289   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7290                           getContext().getTypeInfoInChars(Ty),
7291                           CharUnits::fromQuantity(4),
7292                           /*AllowHigherAlign*/ true);
7293 }
7294 
7295 //===----------------------------------------------------------------------===//
7296 // Lanai ABI Implementation
7297 //===----------------------------------------------------------------------===//
7298 
7299 namespace {
7300 class LanaiABIInfo : public DefaultABIInfo {
7301 public:
7302   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7303 
7304   bool shouldUseInReg(QualType Ty, CCState &State) const;
7305 
7306   void computeInfo(CGFunctionInfo &FI) const override {
7307     CCState State(FI.getCallingConvention());
7308     // Lanai uses 4 registers to pass arguments unless the function has the
7309     // regparm attribute set.
7310     if (FI.getHasRegParm()) {
7311       State.FreeRegs = FI.getRegParm();
7312     } else {
7313       State.FreeRegs = 4;
7314     }
7315 
7316     if (!getCXXABI().classifyReturnType(FI))
7317       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7318     for (auto &I : FI.arguments())
7319       I.info = classifyArgumentType(I.type, State);
7320   }
7321 
7322   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7323   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7324 };
7325 } // end anonymous namespace
7326 
7327 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7328   unsigned Size = getContext().getTypeSize(Ty);
7329   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7330 
7331   if (SizeInRegs == 0)
7332     return false;
7333 
7334   if (SizeInRegs > State.FreeRegs) {
7335     State.FreeRegs = 0;
7336     return false;
7337   }
7338 
7339   State.FreeRegs -= SizeInRegs;
7340 
7341   return true;
7342 }
7343 
7344 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7345                                            CCState &State) const {
7346   if (!ByVal) {
7347     if (State.FreeRegs) {
7348       --State.FreeRegs; // Non-byval indirects just use one pointer.
7349       return getNaturalAlignIndirectInReg(Ty);
7350     }
7351     return getNaturalAlignIndirect(Ty, false);
7352   }
7353 
7354   // Compute the byval alignment.
7355   const unsigned MinABIStackAlignInBytes = 4;
7356   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7357   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7358                                  /*Realign=*/TypeAlign >
7359                                      MinABIStackAlignInBytes);
7360 }
7361 
7362 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7363                                               CCState &State) const {
7364   // Check with the C++ ABI first.
7365   const RecordType *RT = Ty->getAs<RecordType>();
7366   if (RT) {
7367     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7368     if (RAA == CGCXXABI::RAA_Indirect) {
7369       return getIndirectResult(Ty, /*ByVal=*/false, State);
7370     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7371       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7372     }
7373   }
7374 
7375   if (isAggregateTypeForABI(Ty)) {
7376     // Structures with flexible arrays are always indirect.
7377     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7378       return getIndirectResult(Ty, /*ByVal=*/true, State);
7379 
7380     // Ignore empty structs/unions.
7381     if (isEmptyRecord(getContext(), Ty, true))
7382       return ABIArgInfo::getIgnore();
7383 
7384     llvm::LLVMContext &LLVMContext = getVMContext();
7385     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7386     if (SizeInRegs <= State.FreeRegs) {
7387       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7388       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7389       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7390       State.FreeRegs -= SizeInRegs;
7391       return ABIArgInfo::getDirectInReg(Result);
7392     } else {
7393       State.FreeRegs = 0;
7394     }
7395     return getIndirectResult(Ty, true, State);
7396   }
7397 
7398   // Treat an enum type as its underlying type.
7399   if (const auto *EnumTy = Ty->getAs<EnumType>())
7400     Ty = EnumTy->getDecl()->getIntegerType();
7401 
7402   bool InReg = shouldUseInReg(Ty, State);
7403   if (Ty->isPromotableIntegerType()) {
7404     if (InReg)
7405       return ABIArgInfo::getDirectInReg();
7406     return ABIArgInfo::getExtend();
7407   }
7408   if (InReg)
7409     return ABIArgInfo::getDirectInReg();
7410   return ABIArgInfo::getDirect();
7411 }
7412 
7413 namespace {
7414 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7415 public:
7416   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7417       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7418 };
7419 }
7420 
7421 //===----------------------------------------------------------------------===//
7422 // AMDGPU ABI Implementation
7423 //===----------------------------------------------------------------------===//
7424 
7425 namespace {
7426 
7427 class AMDGPUABIInfo final : public DefaultABIInfo {
7428 private:
7429   static const unsigned MaxNumRegsForArgsRet = 16;
7430 
7431   unsigned numRegsForType(QualType Ty) const;
7432 
7433   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7434   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7435                                          uint64_t Members) const override;
7436 
7437 public:
7438   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7439     DefaultABIInfo(CGT) {}
7440 
7441   ABIArgInfo classifyReturnType(QualType RetTy) const;
7442   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7443   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7444 
7445   void computeInfo(CGFunctionInfo &FI) const override;
7446 };
7447 
7448 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7449   return true;
7450 }
7451 
7452 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7453   const Type *Base, uint64_t Members) const {
7454   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7455 
7456   // Homogeneous Aggregates may occupy at most 16 registers.
7457   return Members * NumRegs <= MaxNumRegsForArgsRet;
7458 }
7459 
7460 /// Estimate number of registers the type will use when passed in registers.
7461 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7462   unsigned NumRegs = 0;
7463 
7464   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7465     // Compute from the number of elements. The reported size is based on the
7466     // in-memory size, which includes the padding 4th element for 3-vectors.
7467     QualType EltTy = VT->getElementType();
7468     unsigned EltSize = getContext().getTypeSize(EltTy);
7469 
7470     // 16-bit element vectors should be passed as packed.
7471     if (EltSize == 16)
7472       return (VT->getNumElements() + 1) / 2;
7473 
7474     unsigned EltNumRegs = (EltSize + 31) / 32;
7475     return EltNumRegs * VT->getNumElements();
7476   }
7477 
7478   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7479     const RecordDecl *RD = RT->getDecl();
7480     assert(!RD->hasFlexibleArrayMember());
7481 
7482     for (const FieldDecl *Field : RD->fields()) {
7483       QualType FieldTy = Field->getType();
7484       NumRegs += numRegsForType(FieldTy);
7485     }
7486 
7487     return NumRegs;
7488   }
7489 
7490   return (getContext().getTypeSize(Ty) + 31) / 32;
7491 }
7492 
7493 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7494   llvm::CallingConv::ID CC = FI.getCallingConvention();
7495 
7496   if (!getCXXABI().classifyReturnType(FI))
7497     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7498 
7499   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7500   for (auto &Arg : FI.arguments()) {
7501     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7502       Arg.info = classifyKernelArgumentType(Arg.type);
7503     } else {
7504       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7505     }
7506   }
7507 }
7508 
7509 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7510   if (isAggregateTypeForABI(RetTy)) {
7511     // Records with non-trivial destructors/copy-constructors should not be
7512     // returned by value.
7513     if (!getRecordArgABI(RetTy, getCXXABI())) {
7514       // Ignore empty structs/unions.
7515       if (isEmptyRecord(getContext(), RetTy, true))
7516         return ABIArgInfo::getIgnore();
7517 
7518       // Lower single-element structs to just return a regular value.
7519       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7520         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7521 
7522       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7523         const RecordDecl *RD = RT->getDecl();
7524         if (RD->hasFlexibleArrayMember())
7525           return DefaultABIInfo::classifyReturnType(RetTy);
7526       }
7527 
7528       // Pack aggregates <= 4 bytes into single VGPR or pair.
7529       uint64_t Size = getContext().getTypeSize(RetTy);
7530       if (Size <= 16)
7531         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7532 
7533       if (Size <= 32)
7534         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7535 
7536       if (Size <= 64) {
7537         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7538         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7539       }
7540 
7541       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7542         return ABIArgInfo::getDirect();
7543     }
7544   }
7545 
7546   // Otherwise just do the default thing.
7547   return DefaultABIInfo::classifyReturnType(RetTy);
7548 }
7549 
7550 /// For kernels all parameters are really passed in a special buffer. It doesn't
7551 /// make sense to pass anything byval, so everything must be direct.
7552 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7553   Ty = useFirstFieldIfTransparentUnion(Ty);
7554 
7555   // TODO: Can we omit empty structs?
7556 
7557   // Coerce single element structs to its element.
7558   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7559     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7560 
7561   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7562   // individual elements, which confuses the Clover OpenCL backend; therefore we
7563   // have to set it to false here. Other args of getDirect() are just defaults.
7564   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7565 }
7566 
7567 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7568                                                unsigned &NumRegsLeft) const {
7569   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7570 
7571   Ty = useFirstFieldIfTransparentUnion(Ty);
7572 
7573   if (isAggregateTypeForABI(Ty)) {
7574     // Records with non-trivial destructors/copy-constructors should not be
7575     // passed by value.
7576     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7577       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7578 
7579     // Ignore empty structs/unions.
7580     if (isEmptyRecord(getContext(), Ty, true))
7581       return ABIArgInfo::getIgnore();
7582 
7583     // Lower single-element structs to just pass a regular value. TODO: We
7584     // could do reasonable-size multiple-element structs too, using getExpand(),
7585     // though watch out for things like bitfields.
7586     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7587       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7588 
7589     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7590       const RecordDecl *RD = RT->getDecl();
7591       if (RD->hasFlexibleArrayMember())
7592         return DefaultABIInfo::classifyArgumentType(Ty);
7593     }
7594 
7595     // Pack aggregates <= 8 bytes into single VGPR or pair.
7596     uint64_t Size = getContext().getTypeSize(Ty);
7597     if (Size <= 64) {
7598       unsigned NumRegs = (Size + 31) / 32;
7599       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7600 
7601       if (Size <= 16)
7602         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7603 
7604       if (Size <= 32)
7605         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7606 
7607       // XXX: Should this be i64 instead, and should the limit increase?
7608       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7609       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7610     }
7611 
7612     if (NumRegsLeft > 0) {
7613       unsigned NumRegs = numRegsForType(Ty);
7614       if (NumRegsLeft >= NumRegs) {
7615         NumRegsLeft -= NumRegs;
7616         return ABIArgInfo::getDirect();
7617       }
7618     }
7619   }
7620 
7621   // Otherwise just do the default thing.
7622   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7623   if (!ArgInfo.isIndirect()) {
7624     unsigned NumRegs = numRegsForType(Ty);
7625     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7626   }
7627 
7628   return ArgInfo;
7629 }
7630 
7631 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7632 public:
7633   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7634     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7635   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7636                            CodeGen::CodeGenModule &M,
7637                            ForDefinition_t IsForDefinition) const override;
7638   unsigned getOpenCLKernelCallingConv() const override;
7639 
7640   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7641       llvm::PointerType *T, QualType QT) const override;
7642 
7643   LangAS getASTAllocaAddressSpace() const override {
7644     return getLangASFromTargetAS(
7645         getABIInfo().getDataLayout().getAllocaAddrSpace());
7646   }
7647   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7648                                   const VarDecl *D) const override;
7649   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7650                                          llvm::LLVMContext &C) const override;
7651   llvm::Function *
7652   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7653                             llvm::Function *BlockInvokeFunc,
7654                             llvm::Value *BlockLiteral) const override;
7655 };
7656 }
7657 
7658 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7659     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
7660     ForDefinition_t IsForDefinition) const {
7661   if (!IsForDefinition)
7662     return;
7663   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7664   if (!FD)
7665     return;
7666 
7667   llvm::Function *F = cast<llvm::Function>(GV);
7668 
7669   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7670     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7671   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7672   if (ReqdWGS || FlatWGS) {
7673     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7674     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7675     if (ReqdWGS && Min == 0 && Max == 0)
7676       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7677 
7678     if (Min != 0) {
7679       assert(Min <= Max && "Min must be less than or equal Max");
7680 
7681       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7682       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7683     } else
7684       assert(Max == 0 && "Max must be zero");
7685   }
7686 
7687   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7688     unsigned Min = Attr->getMin();
7689     unsigned Max = Attr->getMax();
7690 
7691     if (Min != 0) {
7692       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7693 
7694       std::string AttrVal = llvm::utostr(Min);
7695       if (Max != 0)
7696         AttrVal = AttrVal + "," + llvm::utostr(Max);
7697       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7698     } else
7699       assert(Max == 0 && "Max must be zero");
7700   }
7701 
7702   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7703     unsigned NumSGPR = Attr->getNumSGPR();
7704 
7705     if (NumSGPR != 0)
7706       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7707   }
7708 
7709   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7710     uint32_t NumVGPR = Attr->getNumVGPR();
7711 
7712     if (NumVGPR != 0)
7713       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7714   }
7715 }
7716 
7717 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7718   return llvm::CallingConv::AMDGPU_KERNEL;
7719 }
7720 
7721 // Currently LLVM assumes null pointers always have value 0,
7722 // which results in incorrectly transformed IR. Therefore, instead of
7723 // emitting null pointers in private and local address spaces, a null
7724 // pointer in generic address space is emitted which is casted to a
7725 // pointer in local or private address space.
7726 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7727     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7728     QualType QT) const {
7729   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7730     return llvm::ConstantPointerNull::get(PT);
7731 
7732   auto &Ctx = CGM.getContext();
7733   auto NPT = llvm::PointerType::get(PT->getElementType(),
7734       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7735   return llvm::ConstantExpr::getAddrSpaceCast(
7736       llvm::ConstantPointerNull::get(NPT), PT);
7737 }
7738 
7739 LangAS
7740 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7741                                                   const VarDecl *D) const {
7742   assert(!CGM.getLangOpts().OpenCL &&
7743          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7744          "Address space agnostic languages only");
7745   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7746       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7747   if (!D)
7748     return DefaultGlobalAS;
7749 
7750   LangAS AddrSpace = D->getType().getAddressSpace();
7751   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7752   if (AddrSpace != LangAS::Default)
7753     return AddrSpace;
7754 
7755   if (CGM.isTypeConstant(D->getType(), false)) {
7756     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7757       return ConstAS.getValue();
7758   }
7759   return DefaultGlobalAS;
7760 }
7761 
7762 llvm::SyncScope::ID
7763 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7764                                             llvm::LLVMContext &C) const {
7765   StringRef Name;
7766   switch (S) {
7767   case SyncScope::OpenCLWorkGroup:
7768     Name = "workgroup";
7769     break;
7770   case SyncScope::OpenCLDevice:
7771     Name = "agent";
7772     break;
7773   case SyncScope::OpenCLAllSVMDevices:
7774     Name = "";
7775     break;
7776   case SyncScope::OpenCLSubGroup:
7777     Name = "subgroup";
7778   }
7779   return C.getOrInsertSyncScopeID(Name);
7780 }
7781 
7782 //===----------------------------------------------------------------------===//
7783 // SPARC v8 ABI Implementation.
7784 // Based on the SPARC Compliance Definition version 2.4.1.
7785 //
7786 // Ensures that complex values are passed in registers.
7787 //
7788 namespace {
7789 class SparcV8ABIInfo : public DefaultABIInfo {
7790 public:
7791   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7792 
7793 private:
7794   ABIArgInfo classifyReturnType(QualType RetTy) const;
7795   void computeInfo(CGFunctionInfo &FI) const override;
7796 };
7797 } // end anonymous namespace
7798 
7799 
7800 ABIArgInfo
7801 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7802   if (Ty->isAnyComplexType()) {
7803     return ABIArgInfo::getDirect();
7804   }
7805   else {
7806     return DefaultABIInfo::classifyReturnType(Ty);
7807   }
7808 }
7809 
7810 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7811 
7812   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7813   for (auto &Arg : FI.arguments())
7814     Arg.info = classifyArgumentType(Arg.type);
7815 }
7816 
7817 namespace {
7818 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7819 public:
7820   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7821     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7822 };
7823 } // end anonymous namespace
7824 
7825 //===----------------------------------------------------------------------===//
7826 // SPARC v9 ABI Implementation.
7827 // Based on the SPARC Compliance Definition version 2.4.1.
7828 //
7829 // Function arguments a mapped to a nominal "parameter array" and promoted to
7830 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7831 // the array, structs larger than 16 bytes are passed indirectly.
7832 //
7833 // One case requires special care:
7834 //
7835 //   struct mixed {
7836 //     int i;
7837 //     float f;
7838 //   };
7839 //
7840 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7841 // parameter array, but the int is passed in an integer register, and the float
7842 // is passed in a floating point register. This is represented as two arguments
7843 // with the LLVM IR inreg attribute:
7844 //
7845 //   declare void f(i32 inreg %i, float inreg %f)
7846 //
7847 // The code generator will only allocate 4 bytes from the parameter array for
7848 // the inreg arguments. All other arguments are allocated a multiple of 8
7849 // bytes.
7850 //
7851 namespace {
7852 class SparcV9ABIInfo : public ABIInfo {
7853 public:
7854   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7855 
7856 private:
7857   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7858   void computeInfo(CGFunctionInfo &FI) const override;
7859   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7860                     QualType Ty) const override;
7861 
7862   // Coercion type builder for structs passed in registers. The coercion type
7863   // serves two purposes:
7864   //
7865   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7866   //    in registers.
7867   // 2. Expose aligned floating point elements as first-level elements, so the
7868   //    code generator knows to pass them in floating point registers.
7869   //
7870   // We also compute the InReg flag which indicates that the struct contains
7871   // aligned 32-bit floats.
7872   //
7873   struct CoerceBuilder {
7874     llvm::LLVMContext &Context;
7875     const llvm::DataLayout &DL;
7876     SmallVector<llvm::Type*, 8> Elems;
7877     uint64_t Size;
7878     bool InReg;
7879 
7880     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7881       : Context(c), DL(dl), Size(0), InReg(false) {}
7882 
7883     // Pad Elems with integers until Size is ToSize.
7884     void pad(uint64_t ToSize) {
7885       assert(ToSize >= Size && "Cannot remove elements");
7886       if (ToSize == Size)
7887         return;
7888 
7889       // Finish the current 64-bit word.
7890       uint64_t Aligned = llvm::alignTo(Size, 64);
7891       if (Aligned > Size && Aligned <= ToSize) {
7892         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7893         Size = Aligned;
7894       }
7895 
7896       // Add whole 64-bit words.
7897       while (Size + 64 <= ToSize) {
7898         Elems.push_back(llvm::Type::getInt64Ty(Context));
7899         Size += 64;
7900       }
7901 
7902       // Final in-word padding.
7903       if (Size < ToSize) {
7904         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7905         Size = ToSize;
7906       }
7907     }
7908 
7909     // Add a floating point element at Offset.
7910     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7911       // Unaligned floats are treated as integers.
7912       if (Offset % Bits)
7913         return;
7914       // The InReg flag is only required if there are any floats < 64 bits.
7915       if (Bits < 64)
7916         InReg = true;
7917       pad(Offset);
7918       Elems.push_back(Ty);
7919       Size = Offset + Bits;
7920     }
7921 
7922     // Add a struct type to the coercion type, starting at Offset (in bits).
7923     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7924       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7925       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7926         llvm::Type *ElemTy = StrTy->getElementType(i);
7927         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7928         switch (ElemTy->getTypeID()) {
7929         case llvm::Type::StructTyID:
7930           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7931           break;
7932         case llvm::Type::FloatTyID:
7933           addFloat(ElemOffset, ElemTy, 32);
7934           break;
7935         case llvm::Type::DoubleTyID:
7936           addFloat(ElemOffset, ElemTy, 64);
7937           break;
7938         case llvm::Type::FP128TyID:
7939           addFloat(ElemOffset, ElemTy, 128);
7940           break;
7941         case llvm::Type::PointerTyID:
7942           if (ElemOffset % 64 == 0) {
7943             pad(ElemOffset);
7944             Elems.push_back(ElemTy);
7945             Size += 64;
7946           }
7947           break;
7948         default:
7949           break;
7950         }
7951       }
7952     }
7953 
7954     // Check if Ty is a usable substitute for the coercion type.
7955     bool isUsableType(llvm::StructType *Ty) const {
7956       return llvm::makeArrayRef(Elems) == Ty->elements();
7957     }
7958 
7959     // Get the coercion type as a literal struct type.
7960     llvm::Type *getType() const {
7961       if (Elems.size() == 1)
7962         return Elems.front();
7963       else
7964         return llvm::StructType::get(Context, Elems);
7965     }
7966   };
7967 };
7968 } // end anonymous namespace
7969 
7970 ABIArgInfo
7971 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7972   if (Ty->isVoidType())
7973     return ABIArgInfo::getIgnore();
7974 
7975   uint64_t Size = getContext().getTypeSize(Ty);
7976 
7977   // Anything too big to fit in registers is passed with an explicit indirect
7978   // pointer / sret pointer.
7979   if (Size > SizeLimit)
7980     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7981 
7982   // Treat an enum type as its underlying type.
7983   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7984     Ty = EnumTy->getDecl()->getIntegerType();
7985 
7986   // Integer types smaller than a register are extended.
7987   if (Size < 64 && Ty->isIntegerType())
7988     return ABIArgInfo::getExtend();
7989 
7990   // Other non-aggregates go in registers.
7991   if (!isAggregateTypeForABI(Ty))
7992     return ABIArgInfo::getDirect();
7993 
7994   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7995   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7996   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7997     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7998 
7999   // This is a small aggregate type that should be passed in registers.
8000   // Build a coercion type from the LLVM struct type.
8001   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8002   if (!StrTy)
8003     return ABIArgInfo::getDirect();
8004 
8005   CoerceBuilder CB(getVMContext(), getDataLayout());
8006   CB.addStruct(0, StrTy);
8007   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8008 
8009   // Try to use the original type for coercion.
8010   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8011 
8012   if (CB.InReg)
8013     return ABIArgInfo::getDirectInReg(CoerceTy);
8014   else
8015     return ABIArgInfo::getDirect(CoerceTy);
8016 }
8017 
8018 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8019                                   QualType Ty) const {
8020   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8021   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8022   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8023     AI.setCoerceToType(ArgTy);
8024 
8025   CharUnits SlotSize = CharUnits::fromQuantity(8);
8026 
8027   CGBuilderTy &Builder = CGF.Builder;
8028   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8029   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8030 
8031   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8032 
8033   Address ArgAddr = Address::invalid();
8034   CharUnits Stride;
8035   switch (AI.getKind()) {
8036   case ABIArgInfo::Expand:
8037   case ABIArgInfo::CoerceAndExpand:
8038   case ABIArgInfo::InAlloca:
8039     llvm_unreachable("Unsupported ABI kind for va_arg");
8040 
8041   case ABIArgInfo::Extend: {
8042     Stride = SlotSize;
8043     CharUnits Offset = SlotSize - TypeInfo.first;
8044     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8045     break;
8046   }
8047 
8048   case ABIArgInfo::Direct: {
8049     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8050     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8051     ArgAddr = Addr;
8052     break;
8053   }
8054 
8055   case ABIArgInfo::Indirect:
8056     Stride = SlotSize;
8057     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8058     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8059                       TypeInfo.second);
8060     break;
8061 
8062   case ABIArgInfo::Ignore:
8063     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8064   }
8065 
8066   // Update VAList.
8067   llvm::Value *NextPtr =
8068     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8069   Builder.CreateStore(NextPtr, VAListAddr);
8070 
8071   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8072 }
8073 
8074 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8075   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8076   for (auto &I : FI.arguments())
8077     I.info = classifyType(I.type, 16 * 8);
8078 }
8079 
8080 namespace {
8081 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8082 public:
8083   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8084     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8085 
8086   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8087     return 14;
8088   }
8089 
8090   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8091                                llvm::Value *Address) const override;
8092 };
8093 } // end anonymous namespace
8094 
8095 bool
8096 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8097                                                 llvm::Value *Address) const {
8098   // This is calculated from the LLVM and GCC tables and verified
8099   // against gcc output.  AFAIK all ABIs use the same encoding.
8100 
8101   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8102 
8103   llvm::IntegerType *i8 = CGF.Int8Ty;
8104   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8105   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8106 
8107   // 0-31: the 8-byte general-purpose registers
8108   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8109 
8110   // 32-63: f0-31, the 4-byte floating-point registers
8111   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8112 
8113   //   Y   = 64
8114   //   PSR = 65
8115   //   WIM = 66
8116   //   TBR = 67
8117   //   PC  = 68
8118   //   NPC = 69
8119   //   FSR = 70
8120   //   CSR = 71
8121   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8122 
8123   // 72-87: d0-15, the 8-byte floating-point registers
8124   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8125 
8126   return false;
8127 }
8128 
8129 
8130 //===----------------------------------------------------------------------===//
8131 // XCore ABI Implementation
8132 //===----------------------------------------------------------------------===//
8133 
8134 namespace {
8135 
8136 /// A SmallStringEnc instance is used to build up the TypeString by passing
8137 /// it by reference between functions that append to it.
8138 typedef llvm::SmallString<128> SmallStringEnc;
8139 
8140 /// TypeStringCache caches the meta encodings of Types.
8141 ///
8142 /// The reason for caching TypeStrings is two fold:
8143 ///   1. To cache a type's encoding for later uses;
8144 ///   2. As a means to break recursive member type inclusion.
8145 ///
8146 /// A cache Entry can have a Status of:
8147 ///   NonRecursive:   The type encoding is not recursive;
8148 ///   Recursive:      The type encoding is recursive;
8149 ///   Incomplete:     An incomplete TypeString;
8150 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8151 ///                   Recursive type encoding.
8152 ///
8153 /// A NonRecursive entry will have all of its sub-members expanded as fully
8154 /// as possible. Whilst it may contain types which are recursive, the type
8155 /// itself is not recursive and thus its encoding may be safely used whenever
8156 /// the type is encountered.
8157 ///
8158 /// A Recursive entry will have all of its sub-members expanded as fully as
8159 /// possible. The type itself is recursive and it may contain other types which
8160 /// are recursive. The Recursive encoding must not be used during the expansion
8161 /// of a recursive type's recursive branch. For simplicity the code uses
8162 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8163 ///
8164 /// An Incomplete entry is always a RecordType and only encodes its
8165 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8166 /// are placed into the cache during type expansion as a means to identify and
8167 /// handle recursive inclusion of types as sub-members. If there is recursion
8168 /// the entry becomes IncompleteUsed.
8169 ///
8170 /// During the expansion of a RecordType's members:
8171 ///
8172 ///   If the cache contains a NonRecursive encoding for the member type, the
8173 ///   cached encoding is used;
8174 ///
8175 ///   If the cache contains a Recursive encoding for the member type, the
8176 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8177 ///
8178 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8179 ///   cache to break potential recursive inclusion of itself as a sub-member;
8180 ///
8181 ///   Once a member RecordType has been expanded, its temporary incomplete
8182 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8183 ///   it is swapped back in;
8184 ///
8185 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8186 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8187 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8188 ///
8189 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8190 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8191 ///   Else the member is part of a recursive type and thus the recursion has
8192 ///   been exited too soon for the encoding to be correct for the member.
8193 ///
8194 class TypeStringCache {
8195   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8196   struct Entry {
8197     std::string Str;     // The encoded TypeString for the type.
8198     enum Status State;   // Information about the encoding in 'Str'.
8199     std::string Swapped; // A temporary place holder for a Recursive encoding
8200                          // during the expansion of RecordType's members.
8201   };
8202   std::map<const IdentifierInfo *, struct Entry> Map;
8203   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8204   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8205 public:
8206   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8207   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8208   bool removeIncomplete(const IdentifierInfo *ID);
8209   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8210                      bool IsRecursive);
8211   StringRef lookupStr(const IdentifierInfo *ID);
8212 };
8213 
8214 /// TypeString encodings for enum & union fields must be order.
8215 /// FieldEncoding is a helper for this ordering process.
8216 class FieldEncoding {
8217   bool HasName;
8218   std::string Enc;
8219 public:
8220   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8221   StringRef str() { return Enc; }
8222   bool operator<(const FieldEncoding &rhs) const {
8223     if (HasName != rhs.HasName) return HasName;
8224     return Enc < rhs.Enc;
8225   }
8226 };
8227 
8228 class XCoreABIInfo : public DefaultABIInfo {
8229 public:
8230   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8231   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8232                     QualType Ty) const override;
8233 };
8234 
8235 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8236   mutable TypeStringCache TSC;
8237 public:
8238   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8239     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8240   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8241                     CodeGen::CodeGenModule &M) const override;
8242 };
8243 
8244 } // End anonymous namespace.
8245 
8246 // TODO: this implementation is likely now redundant with the default
8247 // EmitVAArg.
8248 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8249                                 QualType Ty) const {
8250   CGBuilderTy &Builder = CGF.Builder;
8251 
8252   // Get the VAList.
8253   CharUnits SlotSize = CharUnits::fromQuantity(4);
8254   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8255 
8256   // Handle the argument.
8257   ABIArgInfo AI = classifyArgumentType(Ty);
8258   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8259   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8260   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8261     AI.setCoerceToType(ArgTy);
8262   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8263 
8264   Address Val = Address::invalid();
8265   CharUnits ArgSize = CharUnits::Zero();
8266   switch (AI.getKind()) {
8267   case ABIArgInfo::Expand:
8268   case ABIArgInfo::CoerceAndExpand:
8269   case ABIArgInfo::InAlloca:
8270     llvm_unreachable("Unsupported ABI kind for va_arg");
8271   case ABIArgInfo::Ignore:
8272     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8273     ArgSize = CharUnits::Zero();
8274     break;
8275   case ABIArgInfo::Extend:
8276   case ABIArgInfo::Direct:
8277     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8278     ArgSize = CharUnits::fromQuantity(
8279                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8280     ArgSize = ArgSize.alignTo(SlotSize);
8281     break;
8282   case ABIArgInfo::Indirect:
8283     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8284     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8285     ArgSize = SlotSize;
8286     break;
8287   }
8288 
8289   // Increment the VAList.
8290   if (!ArgSize.isZero()) {
8291     llvm::Value *APN =
8292       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8293     Builder.CreateStore(APN, VAListAddr);
8294   }
8295 
8296   return Val;
8297 }
8298 
8299 /// During the expansion of a RecordType, an incomplete TypeString is placed
8300 /// into the cache as a means to identify and break recursion.
8301 /// If there is a Recursive encoding in the cache, it is swapped out and will
8302 /// be reinserted by removeIncomplete().
8303 /// All other types of encoding should have been used rather than arriving here.
8304 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8305                                     std::string StubEnc) {
8306   if (!ID)
8307     return;
8308   Entry &E = Map[ID];
8309   assert( (E.Str.empty() || E.State == Recursive) &&
8310          "Incorrectly use of addIncomplete");
8311   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8312   E.Swapped.swap(E.Str); // swap out the Recursive
8313   E.Str.swap(StubEnc);
8314   E.State = Incomplete;
8315   ++IncompleteCount;
8316 }
8317 
8318 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8319 /// must be removed from the cache.
8320 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8321 /// Returns true if the RecordType was defined recursively.
8322 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8323   if (!ID)
8324     return false;
8325   auto I = Map.find(ID);
8326   assert(I != Map.end() && "Entry not present");
8327   Entry &E = I->second;
8328   assert( (E.State == Incomplete ||
8329            E.State == IncompleteUsed) &&
8330          "Entry must be an incomplete type");
8331   bool IsRecursive = false;
8332   if (E.State == IncompleteUsed) {
8333     // We made use of our Incomplete encoding, thus we are recursive.
8334     IsRecursive = true;
8335     --IncompleteUsedCount;
8336   }
8337   if (E.Swapped.empty())
8338     Map.erase(I);
8339   else {
8340     // Swap the Recursive back.
8341     E.Swapped.swap(E.Str);
8342     E.Swapped.clear();
8343     E.State = Recursive;
8344   }
8345   --IncompleteCount;
8346   return IsRecursive;
8347 }
8348 
8349 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8350 /// Recursive (viz: all sub-members were expanded as fully as possible).
8351 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8352                                     bool IsRecursive) {
8353   if (!ID || IncompleteUsedCount)
8354     return; // No key or it is is an incomplete sub-type so don't add.
8355   Entry &E = Map[ID];
8356   if (IsRecursive && !E.Str.empty()) {
8357     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8358            "This is not the same Recursive entry");
8359     // The parent container was not recursive after all, so we could have used
8360     // this Recursive sub-member entry after all, but we assumed the worse when
8361     // we started viz: IncompleteCount!=0.
8362     return;
8363   }
8364   assert(E.Str.empty() && "Entry already present");
8365   E.Str = Str.str();
8366   E.State = IsRecursive? Recursive : NonRecursive;
8367 }
8368 
8369 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8370 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8371 /// encoding is Recursive, return an empty StringRef.
8372 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8373   if (!ID)
8374     return StringRef();   // We have no key.
8375   auto I = Map.find(ID);
8376   if (I == Map.end())
8377     return StringRef();   // We have no encoding.
8378   Entry &E = I->second;
8379   if (E.State == Recursive && IncompleteCount)
8380     return StringRef();   // We don't use Recursive encodings for member types.
8381 
8382   if (E.State == Incomplete) {
8383     // The incomplete type is being used to break out of recursion.
8384     E.State = IncompleteUsed;
8385     ++IncompleteUsedCount;
8386   }
8387   return E.Str;
8388 }
8389 
8390 /// The XCore ABI includes a type information section that communicates symbol
8391 /// type information to the linker. The linker uses this information to verify
8392 /// safety/correctness of things such as array bound and pointers et al.
8393 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8394 /// This type information (TypeString) is emitted into meta data for all global
8395 /// symbols: definitions, declarations, functions & variables.
8396 ///
8397 /// The TypeString carries type, qualifier, name, size & value details.
8398 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8399 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8400 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8401 ///
8402 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8403                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8404 
8405 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8406 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8407                                           CodeGen::CodeGenModule &CGM) const {
8408   SmallStringEnc Enc;
8409   if (getTypeString(Enc, D, CGM, TSC)) {
8410     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8411     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8412                                 llvm::MDString::get(Ctx, Enc.str())};
8413     llvm::NamedMDNode *MD =
8414       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8415     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8416   }
8417 }
8418 
8419 //===----------------------------------------------------------------------===//
8420 // SPIR ABI Implementation
8421 //===----------------------------------------------------------------------===//
8422 
8423 namespace {
8424 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8425 public:
8426   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8427     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8428   unsigned getOpenCLKernelCallingConv() const override;
8429 };
8430 
8431 } // End anonymous namespace.
8432 
8433 namespace clang {
8434 namespace CodeGen {
8435 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8436   DefaultABIInfo SPIRABI(CGM.getTypes());
8437   SPIRABI.computeInfo(FI);
8438 }
8439 }
8440 }
8441 
8442 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8443   return llvm::CallingConv::SPIR_KERNEL;
8444 }
8445 
8446 static bool appendType(SmallStringEnc &Enc, QualType QType,
8447                        const CodeGen::CodeGenModule &CGM,
8448                        TypeStringCache &TSC);
8449 
8450 /// Helper function for appendRecordType().
8451 /// Builds a SmallVector containing the encoded field types in declaration
8452 /// order.
8453 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8454                              const RecordDecl *RD,
8455                              const CodeGen::CodeGenModule &CGM,
8456                              TypeStringCache &TSC) {
8457   for (const auto *Field : RD->fields()) {
8458     SmallStringEnc Enc;
8459     Enc += "m(";
8460     Enc += Field->getName();
8461     Enc += "){";
8462     if (Field->isBitField()) {
8463       Enc += "b(";
8464       llvm::raw_svector_ostream OS(Enc);
8465       OS << Field->getBitWidthValue(CGM.getContext());
8466       Enc += ':';
8467     }
8468     if (!appendType(Enc, Field->getType(), CGM, TSC))
8469       return false;
8470     if (Field->isBitField())
8471       Enc += ')';
8472     Enc += '}';
8473     FE.emplace_back(!Field->getName().empty(), Enc);
8474   }
8475   return true;
8476 }
8477 
8478 /// Appends structure and union types to Enc and adds encoding to cache.
8479 /// Recursively calls appendType (via extractFieldType) for each field.
8480 /// Union types have their fields ordered according to the ABI.
8481 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8482                              const CodeGen::CodeGenModule &CGM,
8483                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8484   // Append the cached TypeString if we have one.
8485   StringRef TypeString = TSC.lookupStr(ID);
8486   if (!TypeString.empty()) {
8487     Enc += TypeString;
8488     return true;
8489   }
8490 
8491   // Start to emit an incomplete TypeString.
8492   size_t Start = Enc.size();
8493   Enc += (RT->isUnionType()? 'u' : 's');
8494   Enc += '(';
8495   if (ID)
8496     Enc += ID->getName();
8497   Enc += "){";
8498 
8499   // We collect all encoded fields and order as necessary.
8500   bool IsRecursive = false;
8501   const RecordDecl *RD = RT->getDecl()->getDefinition();
8502   if (RD && !RD->field_empty()) {
8503     // An incomplete TypeString stub is placed in the cache for this RecordType
8504     // so that recursive calls to this RecordType will use it whilst building a
8505     // complete TypeString for this RecordType.
8506     SmallVector<FieldEncoding, 16> FE;
8507     std::string StubEnc(Enc.substr(Start).str());
8508     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8509     TSC.addIncomplete(ID, std::move(StubEnc));
8510     if (!extractFieldType(FE, RD, CGM, TSC)) {
8511       (void) TSC.removeIncomplete(ID);
8512       return false;
8513     }
8514     IsRecursive = TSC.removeIncomplete(ID);
8515     // The ABI requires unions to be sorted but not structures.
8516     // See FieldEncoding::operator< for sort algorithm.
8517     if (RT->isUnionType())
8518       std::sort(FE.begin(), FE.end());
8519     // We can now complete the TypeString.
8520     unsigned E = FE.size();
8521     for (unsigned I = 0; I != E; ++I) {
8522       if (I)
8523         Enc += ',';
8524       Enc += FE[I].str();
8525     }
8526   }
8527   Enc += '}';
8528   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8529   return true;
8530 }
8531 
8532 /// Appends enum types to Enc and adds the encoding to the cache.
8533 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8534                            TypeStringCache &TSC,
8535                            const IdentifierInfo *ID) {
8536   // Append the cached TypeString if we have one.
8537   StringRef TypeString = TSC.lookupStr(ID);
8538   if (!TypeString.empty()) {
8539     Enc += TypeString;
8540     return true;
8541   }
8542 
8543   size_t Start = Enc.size();
8544   Enc += "e(";
8545   if (ID)
8546     Enc += ID->getName();
8547   Enc += "){";
8548 
8549   // We collect all encoded enumerations and order them alphanumerically.
8550   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8551     SmallVector<FieldEncoding, 16> FE;
8552     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8553          ++I) {
8554       SmallStringEnc EnumEnc;
8555       EnumEnc += "m(";
8556       EnumEnc += I->getName();
8557       EnumEnc += "){";
8558       I->getInitVal().toString(EnumEnc);
8559       EnumEnc += '}';
8560       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8561     }
8562     std::sort(FE.begin(), FE.end());
8563     unsigned E = FE.size();
8564     for (unsigned I = 0; I != E; ++I) {
8565       if (I)
8566         Enc += ',';
8567       Enc += FE[I].str();
8568     }
8569   }
8570   Enc += '}';
8571   TSC.addIfComplete(ID, Enc.substr(Start), false);
8572   return true;
8573 }
8574 
8575 /// Appends type's qualifier to Enc.
8576 /// This is done prior to appending the type's encoding.
8577 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8578   // Qualifiers are emitted in alphabetical order.
8579   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8580   int Lookup = 0;
8581   if (QT.isConstQualified())
8582     Lookup += 1<<0;
8583   if (QT.isRestrictQualified())
8584     Lookup += 1<<1;
8585   if (QT.isVolatileQualified())
8586     Lookup += 1<<2;
8587   Enc += Table[Lookup];
8588 }
8589 
8590 /// Appends built-in types to Enc.
8591 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8592   const char *EncType;
8593   switch (BT->getKind()) {
8594     case BuiltinType::Void:
8595       EncType = "0";
8596       break;
8597     case BuiltinType::Bool:
8598       EncType = "b";
8599       break;
8600     case BuiltinType::Char_U:
8601       EncType = "uc";
8602       break;
8603     case BuiltinType::UChar:
8604       EncType = "uc";
8605       break;
8606     case BuiltinType::SChar:
8607       EncType = "sc";
8608       break;
8609     case BuiltinType::UShort:
8610       EncType = "us";
8611       break;
8612     case BuiltinType::Short:
8613       EncType = "ss";
8614       break;
8615     case BuiltinType::UInt:
8616       EncType = "ui";
8617       break;
8618     case BuiltinType::Int:
8619       EncType = "si";
8620       break;
8621     case BuiltinType::ULong:
8622       EncType = "ul";
8623       break;
8624     case BuiltinType::Long:
8625       EncType = "sl";
8626       break;
8627     case BuiltinType::ULongLong:
8628       EncType = "ull";
8629       break;
8630     case BuiltinType::LongLong:
8631       EncType = "sll";
8632       break;
8633     case BuiltinType::Float:
8634       EncType = "ft";
8635       break;
8636     case BuiltinType::Double:
8637       EncType = "d";
8638       break;
8639     case BuiltinType::LongDouble:
8640       EncType = "ld";
8641       break;
8642     default:
8643       return false;
8644   }
8645   Enc += EncType;
8646   return true;
8647 }
8648 
8649 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8650 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8651                               const CodeGen::CodeGenModule &CGM,
8652                               TypeStringCache &TSC) {
8653   Enc += "p(";
8654   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8655     return false;
8656   Enc += ')';
8657   return true;
8658 }
8659 
8660 /// Appends array encoding to Enc before calling appendType for the element.
8661 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8662                             const ArrayType *AT,
8663                             const CodeGen::CodeGenModule &CGM,
8664                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8665   if (AT->getSizeModifier() != ArrayType::Normal)
8666     return false;
8667   Enc += "a(";
8668   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8669     CAT->getSize().toStringUnsigned(Enc);
8670   else
8671     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8672   Enc += ':';
8673   // The Qualifiers should be attached to the type rather than the array.
8674   appendQualifier(Enc, QT);
8675   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8676     return false;
8677   Enc += ')';
8678   return true;
8679 }
8680 
8681 /// Appends a function encoding to Enc, calling appendType for the return type
8682 /// and the arguments.
8683 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8684                              const CodeGen::CodeGenModule &CGM,
8685                              TypeStringCache &TSC) {
8686   Enc += "f{";
8687   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8688     return false;
8689   Enc += "}(";
8690   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8691     // N.B. we are only interested in the adjusted param types.
8692     auto I = FPT->param_type_begin();
8693     auto E = FPT->param_type_end();
8694     if (I != E) {
8695       do {
8696         if (!appendType(Enc, *I, CGM, TSC))
8697           return false;
8698         ++I;
8699         if (I != E)
8700           Enc += ',';
8701       } while (I != E);
8702       if (FPT->isVariadic())
8703         Enc += ",va";
8704     } else {
8705       if (FPT->isVariadic())
8706         Enc += "va";
8707       else
8708         Enc += '0';
8709     }
8710   }
8711   Enc += ')';
8712   return true;
8713 }
8714 
8715 /// Handles the type's qualifier before dispatching a call to handle specific
8716 /// type encodings.
8717 static bool appendType(SmallStringEnc &Enc, QualType QType,
8718                        const CodeGen::CodeGenModule &CGM,
8719                        TypeStringCache &TSC) {
8720 
8721   QualType QT = QType.getCanonicalType();
8722 
8723   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8724     // The Qualifiers should be attached to the type rather than the array.
8725     // Thus we don't call appendQualifier() here.
8726     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8727 
8728   appendQualifier(Enc, QT);
8729 
8730   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8731     return appendBuiltinType(Enc, BT);
8732 
8733   if (const PointerType *PT = QT->getAs<PointerType>())
8734     return appendPointerType(Enc, PT, CGM, TSC);
8735 
8736   if (const EnumType *ET = QT->getAs<EnumType>())
8737     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
8738 
8739   if (const RecordType *RT = QT->getAsStructureType())
8740     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8741 
8742   if (const RecordType *RT = QT->getAsUnionType())
8743     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8744 
8745   if (const FunctionType *FT = QT->getAs<FunctionType>())
8746     return appendFunctionType(Enc, FT, CGM, TSC);
8747 
8748   return false;
8749 }
8750 
8751 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8752                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
8753   if (!D)
8754     return false;
8755 
8756   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8757     if (FD->getLanguageLinkage() != CLanguageLinkage)
8758       return false;
8759     return appendType(Enc, FD->getType(), CGM, TSC);
8760   }
8761 
8762   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8763     if (VD->getLanguageLinkage() != CLanguageLinkage)
8764       return false;
8765     QualType QT = VD->getType().getCanonicalType();
8766     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
8767       // Global ArrayTypes are given a size of '*' if the size is unknown.
8768       // The Qualifiers should be attached to the type rather than the array.
8769       // Thus we don't call appendQualifier() here.
8770       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
8771     }
8772     return appendType(Enc, QT, CGM, TSC);
8773   }
8774   return false;
8775 }
8776 
8777 
8778 //===----------------------------------------------------------------------===//
8779 // Driver code
8780 //===----------------------------------------------------------------------===//
8781 
8782 bool CodeGenModule::supportsCOMDAT() const {
8783   return getTriple().supportsCOMDAT();
8784 }
8785 
8786 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
8787   if (TheTargetCodeGenInfo)
8788     return *TheTargetCodeGenInfo;
8789 
8790   // Helper to set the unique_ptr while still keeping the return value.
8791   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8792     this->TheTargetCodeGenInfo.reset(P);
8793     return *P;
8794   };
8795 
8796   const llvm::Triple &Triple = getTarget().getTriple();
8797   switch (Triple.getArch()) {
8798   default:
8799     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8800 
8801   case llvm::Triple::le32:
8802     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8803   case llvm::Triple::mips:
8804   case llvm::Triple::mipsel:
8805     if (Triple.getOS() == llvm::Triple::NaCl)
8806       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8807     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
8808 
8809   case llvm::Triple::mips64:
8810   case llvm::Triple::mips64el:
8811     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
8812 
8813   case llvm::Triple::avr:
8814     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
8815 
8816   case llvm::Triple::aarch64:
8817   case llvm::Triple::aarch64_be: {
8818     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
8819     if (getTarget().getABI() == "darwinpcs")
8820       Kind = AArch64ABIInfo::DarwinPCS;
8821     else if (Triple.isOSWindows())
8822       return SetCGInfo(
8823           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
8824 
8825     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
8826   }
8827 
8828   case llvm::Triple::wasm32:
8829   case llvm::Triple::wasm64:
8830     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
8831 
8832   case llvm::Triple::arm:
8833   case llvm::Triple::armeb:
8834   case llvm::Triple::thumb:
8835   case llvm::Triple::thumbeb: {
8836     if (Triple.getOS() == llvm::Triple::Win32) {
8837       return SetCGInfo(
8838           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
8839     }
8840 
8841     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
8842     StringRef ABIStr = getTarget().getABI();
8843     if (ABIStr == "apcs-gnu")
8844       Kind = ARMABIInfo::APCS;
8845     else if (ABIStr == "aapcs16")
8846       Kind = ARMABIInfo::AAPCS16_VFP;
8847     else if (CodeGenOpts.FloatABI == "hard" ||
8848              (CodeGenOpts.FloatABI != "soft" &&
8849               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
8850                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
8851                Triple.getEnvironment() == llvm::Triple::EABIHF)))
8852       Kind = ARMABIInfo::AAPCS_VFP;
8853 
8854     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
8855   }
8856 
8857   case llvm::Triple::ppc:
8858     return SetCGInfo(
8859         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
8860   case llvm::Triple::ppc64:
8861     if (Triple.isOSBinFormatELF()) {
8862       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
8863       if (getTarget().getABI() == "elfv2")
8864         Kind = PPC64_SVR4_ABIInfo::ELFv2;
8865       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8866       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8867 
8868       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8869                                                         IsSoftFloat));
8870     } else
8871       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
8872   case llvm::Triple::ppc64le: {
8873     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
8874     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
8875     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
8876       Kind = PPC64_SVR4_ABIInfo::ELFv1;
8877     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8878     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8879 
8880     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8881                                                       IsSoftFloat));
8882   }
8883 
8884   case llvm::Triple::nvptx:
8885   case llvm::Triple::nvptx64:
8886     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
8887 
8888   case llvm::Triple::msp430:
8889     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
8890 
8891   case llvm::Triple::systemz: {
8892     bool HasVector = getTarget().getABI() == "vector";
8893     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
8894   }
8895 
8896   case llvm::Triple::tce:
8897   case llvm::Triple::tcele:
8898     return SetCGInfo(new TCETargetCodeGenInfo(Types));
8899 
8900   case llvm::Triple::x86: {
8901     bool IsDarwinVectorABI = Triple.isOSDarwin();
8902     bool RetSmallStructInRegABI =
8903         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
8904     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
8905 
8906     if (Triple.getOS() == llvm::Triple::Win32) {
8907       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
8908           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8909           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
8910     } else {
8911       return SetCGInfo(new X86_32TargetCodeGenInfo(
8912           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8913           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
8914           CodeGenOpts.FloatABI == "soft"));
8915     }
8916   }
8917 
8918   case llvm::Triple::x86_64: {
8919     StringRef ABI = getTarget().getABI();
8920     X86AVXABILevel AVXLevel =
8921         (ABI == "avx512"
8922              ? X86AVXABILevel::AVX512
8923              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
8924 
8925     switch (Triple.getOS()) {
8926     case llvm::Triple::Win32:
8927       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
8928     case llvm::Triple::PS4:
8929       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
8930     default:
8931       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
8932     }
8933   }
8934   case llvm::Triple::hexagon:
8935     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
8936   case llvm::Triple::lanai:
8937     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
8938   case llvm::Triple::r600:
8939     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8940   case llvm::Triple::amdgcn:
8941     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8942   case llvm::Triple::sparc:
8943     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
8944   case llvm::Triple::sparcv9:
8945     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
8946   case llvm::Triple::xcore:
8947     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
8948   case llvm::Triple::spir:
8949   case llvm::Triple::spir64:
8950     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
8951   }
8952 }
8953 
8954 /// Create an OpenCL kernel for an enqueued block.
8955 ///
8956 /// The kernel has the same function type as the block invoke function. Its
8957 /// name is the name of the block invoke function postfixed with "_kernel".
8958 /// It simply calls the block invoke function then returns.
8959 llvm::Function *
8960 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
8961                                              llvm::Function *Invoke,
8962                                              llvm::Value *BlockLiteral) const {
8963   auto *InvokeFT = Invoke->getFunctionType();
8964   llvm::SmallVector<llvm::Type *, 2> ArgTys;
8965   for (auto &P : InvokeFT->params())
8966     ArgTys.push_back(P);
8967   auto &C = CGF.getLLVMContext();
8968   std::string Name = Invoke->getName().str() + "_kernel";
8969   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
8970   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
8971                                    &CGF.CGM.getModule());
8972   auto IP = CGF.Builder.saveIP();
8973   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
8974   auto &Builder = CGF.Builder;
8975   Builder.SetInsertPoint(BB);
8976   llvm::SmallVector<llvm::Value *, 2> Args;
8977   for (auto &A : F->args())
8978     Args.push_back(&A);
8979   Builder.CreateCall(Invoke, Args);
8980   Builder.CreateRetVoid();
8981   Builder.restoreIP(IP);
8982   return F;
8983 }
8984 
8985 /// Create an OpenCL kernel for an enqueued block.
8986 ///
8987 /// The type of the first argument (the block literal) is the struct type
8988 /// of the block literal instead of a pointer type. The first argument
8989 /// (block literal) is passed directly by value to the kernel. The kernel
8990 /// allocates the same type of struct on stack and stores the block literal
8991 /// to it and passes its pointer to the block invoke function. The kernel
8992 /// has "enqueued-block" function attribute and kernel argument metadata.
8993 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
8994     CodeGenFunction &CGF, llvm::Function *Invoke,
8995     llvm::Value *BlockLiteral) const {
8996   auto &Builder = CGF.Builder;
8997   auto &C = CGF.getLLVMContext();
8998 
8999   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9000   auto *InvokeFT = Invoke->getFunctionType();
9001   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9002   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9003   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9004   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9005   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9006   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9007   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9008 
9009   ArgTys.push_back(BlockTy);
9010   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9011   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9012   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9013   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9014   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9015   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9016   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9017     ArgTys.push_back(InvokeFT->getParamType(I));
9018     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9019     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9020     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9021     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9022     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9023     ArgNames.push_back(
9024         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9025   }
9026   std::string Name = Invoke->getName().str() + "_kernel";
9027   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9028   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9029                                    &CGF.CGM.getModule());
9030   F->addFnAttr("enqueued-block");
9031   auto IP = CGF.Builder.saveIP();
9032   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9033   Builder.SetInsertPoint(BB);
9034   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9035   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9036   BlockPtr->setAlignment(BlockAlign);
9037   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9038   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9039   llvm::SmallVector<llvm::Value *, 2> Args;
9040   Args.push_back(Cast);
9041   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9042     Args.push_back(I);
9043   Builder.CreateCall(Invoke, Args);
9044   Builder.CreateRetVoid();
9045   Builder.restoreIP(IP);
9046 
9047   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9048   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9049   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9050   F->setMetadata("kernel_arg_base_type",
9051                  llvm::MDNode::get(C, ArgBaseTypeNames));
9052   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9053   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9054     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9055 
9056   return F;
9057 }
9058