1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 // Helper for coercing an aggregate argument or return value into an integer 35 // array of the same size (including padding) and alignment. This alternate 36 // coercion happens only for the RenderScript ABI and can be removed after 37 // runtimes that rely on it are no longer supported. 38 // 39 // RenderScript assumes that the size of the argument / return value in the IR 40 // is the same as the size of the corresponding qualified type. This helper 41 // coerces the aggregate type into an array of the same size (including 42 // padding). This coercion is used in lieu of expansion of struct members or 43 // other canonical coercions that return a coerced-type of larger size. 44 // 45 // Ty - The argument / return value type 46 // Context - The associated ASTContext 47 // LLVMContext - The associated LLVMContext 48 static ABIArgInfo coerceToIntArray(QualType Ty, 49 ASTContext &Context, 50 llvm::LLVMContext &LLVMContext) { 51 // Alignment and Size are measured in bits. 52 const uint64_t Size = Context.getTypeSize(Ty); 53 const uint64_t Alignment = Context.getTypeAlign(Ty); 54 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 55 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 56 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 57 } 58 59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 60 llvm::Value *Array, 61 llvm::Value *Value, 62 unsigned FirstIndex, 63 unsigned LastIndex) { 64 // Alternatively, we could emit this as a loop in the source. 65 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 66 llvm::Value *Cell = 67 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 68 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 69 } 70 } 71 72 static bool isAggregateTypeForABI(QualType T) { 73 return !CodeGenFunction::hasScalarEvaluationKind(T) || 74 T->isMemberFunctionPointerType(); 75 } 76 77 ABIArgInfo 78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 79 llvm::Type *Padding) const { 80 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 81 ByRef, Realign, Padding); 82 } 83 84 ABIArgInfo 85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 86 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 87 /*ByRef*/ false, Realign); 88 } 89 90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 91 QualType Ty) const { 92 return Address::invalid(); 93 } 94 95 ABIInfo::~ABIInfo() {} 96 97 /// Does the given lowering require more than the given number of 98 /// registers when expanded? 99 /// 100 /// This is intended to be the basis of a reasonable basic implementation 101 /// of should{Pass,Return}IndirectlyForSwift. 102 /// 103 /// For most targets, a limit of four total registers is reasonable; this 104 /// limits the amount of code required in order to move around the value 105 /// in case it wasn't produced immediately prior to the call by the caller 106 /// (or wasn't produced in exactly the right registers) or isn't used 107 /// immediately within the callee. But some targets may need to further 108 /// limit the register count due to an inability to support that many 109 /// return registers. 110 static bool occupiesMoreThan(CodeGenTypes &cgt, 111 ArrayRef<llvm::Type*> scalarTypes, 112 unsigned maxAllRegisters) { 113 unsigned intCount = 0, fpCount = 0; 114 for (llvm::Type *type : scalarTypes) { 115 if (type->isPointerTy()) { 116 intCount++; 117 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 118 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 119 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 120 } else { 121 assert(type->isVectorTy() || type->isFloatingPointTy()); 122 fpCount++; 123 } 124 } 125 126 return (intCount + fpCount > maxAllRegisters); 127 } 128 129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 130 llvm::Type *eltTy, 131 unsigned numElts) const { 132 // The default implementation of this assumes that the target guarantees 133 // 128-bit SIMD support but nothing more. 134 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 135 } 136 137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 138 CGCXXABI &CXXABI) { 139 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 140 if (!RD) 141 return CGCXXABI::RAA_Default; 142 return CXXABI.getRecordArgABI(RD); 143 } 144 145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 146 CGCXXABI &CXXABI) { 147 const RecordType *RT = T->getAs<RecordType>(); 148 if (!RT) 149 return CGCXXABI::RAA_Default; 150 return getRecordArgABI(RT, CXXABI); 151 } 152 153 /// Pass transparent unions as if they were the type of the first element. Sema 154 /// should ensure that all elements of the union have the same "machine type". 155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 156 if (const RecordType *UT = Ty->getAsUnionType()) { 157 const RecordDecl *UD = UT->getDecl(); 158 if (UD->hasAttr<TransparentUnionAttr>()) { 159 assert(!UD->field_empty() && "sema created an empty transparent union"); 160 return UD->field_begin()->getType(); 161 } 162 } 163 return Ty; 164 } 165 166 CGCXXABI &ABIInfo::getCXXABI() const { 167 return CGT.getCXXABI(); 168 } 169 170 ASTContext &ABIInfo::getContext() const { 171 return CGT.getContext(); 172 } 173 174 llvm::LLVMContext &ABIInfo::getVMContext() const { 175 return CGT.getLLVMContext(); 176 } 177 178 const llvm::DataLayout &ABIInfo::getDataLayout() const { 179 return CGT.getDataLayout(); 180 } 181 182 const TargetInfo &ABIInfo::getTarget() const { 183 return CGT.getTarget(); 184 } 185 186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 187 188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 189 return false; 190 } 191 192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 193 uint64_t Members) const { 194 return false; 195 } 196 197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 198 return false; 199 } 200 201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 202 raw_ostream &OS = llvm::errs(); 203 OS << "(ABIArgInfo Kind="; 204 switch (TheKind) { 205 case Direct: 206 OS << "Direct Type="; 207 if (llvm::Type *Ty = getCoerceToType()) 208 Ty->print(OS); 209 else 210 OS << "null"; 211 break; 212 case Extend: 213 OS << "Extend"; 214 break; 215 case Ignore: 216 OS << "Ignore"; 217 break; 218 case InAlloca: 219 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 220 break; 221 case Indirect: 222 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 223 << " ByVal=" << getIndirectByVal() 224 << " Realign=" << getIndirectRealign(); 225 break; 226 case Expand: 227 OS << "Expand"; 228 break; 229 case CoerceAndExpand: 230 OS << "CoerceAndExpand Type="; 231 getCoerceAndExpandType()->print(OS); 232 break; 233 } 234 OS << ")\n"; 235 } 236 237 // Dynamically round a pointer up to a multiple of the given alignment. 238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 239 llvm::Value *Ptr, 240 CharUnits Align) { 241 llvm::Value *PtrAsInt = Ptr; 242 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 243 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 244 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 245 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 246 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 247 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 248 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 249 Ptr->getType(), 250 Ptr->getName() + ".aligned"); 251 return PtrAsInt; 252 } 253 254 /// Emit va_arg for a platform using the common void* representation, 255 /// where arguments are simply emitted in an array of slots on the stack. 256 /// 257 /// This version implements the core direct-value passing rules. 258 /// 259 /// \param SlotSize - The size and alignment of a stack slot. 260 /// Each argument will be allocated to a multiple of this number of 261 /// slots, and all the slots will be aligned to this value. 262 /// \param AllowHigherAlign - The slot alignment is not a cap; 263 /// an argument type with an alignment greater than the slot size 264 /// will be emitted on a higher-alignment address, potentially 265 /// leaving one or more empty slots behind as padding. If this 266 /// is false, the returned address might be less-aligned than 267 /// DirectAlign. 268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 269 Address VAListAddr, 270 llvm::Type *DirectTy, 271 CharUnits DirectSize, 272 CharUnits DirectAlign, 273 CharUnits SlotSize, 274 bool AllowHigherAlign) { 275 // Cast the element type to i8* if necessary. Some platforms define 276 // va_list as a struct containing an i8* instead of just an i8*. 277 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 278 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 279 280 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 281 282 // If the CC aligns values higher than the slot size, do so if needed. 283 Address Addr = Address::invalid(); 284 if (AllowHigherAlign && DirectAlign > SlotSize) { 285 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 286 DirectAlign); 287 } else { 288 Addr = Address(Ptr, SlotSize); 289 } 290 291 // Advance the pointer past the argument, then store that back. 292 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 293 llvm::Value *NextPtr = 294 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 295 "argp.next"); 296 CGF.Builder.CreateStore(NextPtr, VAListAddr); 297 298 // If the argument is smaller than a slot, and this is a big-endian 299 // target, the argument will be right-adjusted in its slot. 300 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 301 !DirectTy->isStructTy()) { 302 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 303 } 304 305 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 306 return Addr; 307 } 308 309 /// Emit va_arg for a platform using the common void* representation, 310 /// where arguments are simply emitted in an array of slots on the stack. 311 /// 312 /// \param IsIndirect - Values of this type are passed indirectly. 313 /// \param ValueInfo - The size and alignment of this type, generally 314 /// computed with getContext().getTypeInfoInChars(ValueTy). 315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 316 /// Each argument will be allocated to a multiple of this number of 317 /// slots, and all the slots will be aligned to this value. 318 /// \param AllowHigherAlign - The slot alignment is not a cap; 319 /// an argument type with an alignment greater than the slot size 320 /// will be emitted on a higher-alignment address, potentially 321 /// leaving one or more empty slots behind as padding. 322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 323 QualType ValueTy, bool IsIndirect, 324 std::pair<CharUnits, CharUnits> ValueInfo, 325 CharUnits SlotSizeAndAlign, 326 bool AllowHigherAlign) { 327 // The size and alignment of the value that was passed directly. 328 CharUnits DirectSize, DirectAlign; 329 if (IsIndirect) { 330 DirectSize = CGF.getPointerSize(); 331 DirectAlign = CGF.getPointerAlign(); 332 } else { 333 DirectSize = ValueInfo.first; 334 DirectAlign = ValueInfo.second; 335 } 336 337 // Cast the address we've calculated to the right type. 338 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 339 if (IsIndirect) 340 DirectTy = DirectTy->getPointerTo(0); 341 342 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 343 DirectSize, DirectAlign, 344 SlotSizeAndAlign, 345 AllowHigherAlign); 346 347 if (IsIndirect) { 348 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 349 } 350 351 return Addr; 352 353 } 354 355 static Address emitMergePHI(CodeGenFunction &CGF, 356 Address Addr1, llvm::BasicBlock *Block1, 357 Address Addr2, llvm::BasicBlock *Block2, 358 const llvm::Twine &Name = "") { 359 assert(Addr1.getType() == Addr2.getType()); 360 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 361 PHI->addIncoming(Addr1.getPointer(), Block1); 362 PHI->addIncoming(Addr2.getPointer(), Block2); 363 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 364 return Address(PHI, Align); 365 } 366 367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 368 369 // If someone can figure out a general rule for this, that would be great. 370 // It's probably just doomed to be platform-dependent, though. 371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 372 // Verified for: 373 // x86-64 FreeBSD, Linux, Darwin 374 // x86-32 FreeBSD, Linux, Darwin 375 // PowerPC Linux, Darwin 376 // ARM Darwin (*not* EABI) 377 // AArch64 Linux 378 return 32; 379 } 380 381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 382 const FunctionNoProtoType *fnType) const { 383 // The following conventions are known to require this to be false: 384 // x86_stdcall 385 // MIPS 386 // For everything else, we just prefer false unless we opt out. 387 return false; 388 } 389 390 void 391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 392 llvm::SmallString<24> &Opt) const { 393 // This assumes the user is passing a library name like "rt" instead of a 394 // filename like "librt.a/so", and that they don't care whether it's static or 395 // dynamic. 396 Opt = "-l"; 397 Opt += Lib; 398 } 399 400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 401 return llvm::CallingConv::C; 402 } 403 404 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 405 406 /// isEmptyField - Return true iff a the field is "empty", that is it 407 /// is an unnamed bit-field or an (array of) empty record(s). 408 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 409 bool AllowArrays) { 410 if (FD->isUnnamedBitfield()) 411 return true; 412 413 QualType FT = FD->getType(); 414 415 // Constant arrays of empty records count as empty, strip them off. 416 // Constant arrays of zero length always count as empty. 417 if (AllowArrays) 418 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 419 if (AT->getSize() == 0) 420 return true; 421 FT = AT->getElementType(); 422 } 423 424 const RecordType *RT = FT->getAs<RecordType>(); 425 if (!RT) 426 return false; 427 428 // C++ record fields are never empty, at least in the Itanium ABI. 429 // 430 // FIXME: We should use a predicate for whether this behavior is true in the 431 // current ABI. 432 if (isa<CXXRecordDecl>(RT->getDecl())) 433 return false; 434 435 return isEmptyRecord(Context, FT, AllowArrays); 436 } 437 438 /// isEmptyRecord - Return true iff a structure contains only empty 439 /// fields. Note that a structure with a flexible array member is not 440 /// considered empty. 441 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 442 const RecordType *RT = T->getAs<RecordType>(); 443 if (!RT) 444 return false; 445 const RecordDecl *RD = RT->getDecl(); 446 if (RD->hasFlexibleArrayMember()) 447 return false; 448 449 // If this is a C++ record, check the bases first. 450 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 451 for (const auto &I : CXXRD->bases()) 452 if (!isEmptyRecord(Context, I.getType(), true)) 453 return false; 454 455 for (const auto *I : RD->fields()) 456 if (!isEmptyField(Context, I, AllowArrays)) 457 return false; 458 return true; 459 } 460 461 /// isSingleElementStruct - Determine if a structure is a "single 462 /// element struct", i.e. it has exactly one non-empty field or 463 /// exactly one field which is itself a single element 464 /// struct. Structures with flexible array members are never 465 /// considered single element structs. 466 /// 467 /// \return The field declaration for the single non-empty field, if 468 /// it exists. 469 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 470 const RecordType *RT = T->getAs<RecordType>(); 471 if (!RT) 472 return nullptr; 473 474 const RecordDecl *RD = RT->getDecl(); 475 if (RD->hasFlexibleArrayMember()) 476 return nullptr; 477 478 const Type *Found = nullptr; 479 480 // If this is a C++ record, check the bases first. 481 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 482 for (const auto &I : CXXRD->bases()) { 483 // Ignore empty records. 484 if (isEmptyRecord(Context, I.getType(), true)) 485 continue; 486 487 // If we already found an element then this isn't a single-element struct. 488 if (Found) 489 return nullptr; 490 491 // If this is non-empty and not a single element struct, the composite 492 // cannot be a single element struct. 493 Found = isSingleElementStruct(I.getType(), Context); 494 if (!Found) 495 return nullptr; 496 } 497 } 498 499 // Check for single element. 500 for (const auto *FD : RD->fields()) { 501 QualType FT = FD->getType(); 502 503 // Ignore empty fields. 504 if (isEmptyField(Context, FD, true)) 505 continue; 506 507 // If we already found an element then this isn't a single-element 508 // struct. 509 if (Found) 510 return nullptr; 511 512 // Treat single element arrays as the element. 513 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 514 if (AT->getSize().getZExtValue() != 1) 515 break; 516 FT = AT->getElementType(); 517 } 518 519 if (!isAggregateTypeForABI(FT)) { 520 Found = FT.getTypePtr(); 521 } else { 522 Found = isSingleElementStruct(FT, Context); 523 if (!Found) 524 return nullptr; 525 } 526 } 527 528 // We don't consider a struct a single-element struct if it has 529 // padding beyond the element type. 530 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 531 return nullptr; 532 533 return Found; 534 } 535 536 namespace { 537 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 538 const ABIArgInfo &AI) { 539 // This default implementation defers to the llvm backend's va_arg 540 // instruction. It can handle only passing arguments directly 541 // (typically only handled in the backend for primitive types), or 542 // aggregates passed indirectly by pointer (NOTE: if the "byval" 543 // flag has ABI impact in the callee, this implementation cannot 544 // work.) 545 546 // Only a few cases are covered here at the moment -- those needed 547 // by the default abi. 548 llvm::Value *Val; 549 550 if (AI.isIndirect()) { 551 assert(!AI.getPaddingType() && 552 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 553 assert( 554 !AI.getIndirectRealign() && 555 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 556 557 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 558 CharUnits TyAlignForABI = TyInfo.second; 559 560 llvm::Type *BaseTy = 561 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 562 llvm::Value *Addr = 563 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 564 return Address(Addr, TyAlignForABI); 565 } else { 566 assert((AI.isDirect() || AI.isExtend()) && 567 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 568 569 assert(!AI.getInReg() && 570 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 571 assert(!AI.getPaddingType() && 572 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 573 assert(!AI.getDirectOffset() && 574 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 575 assert(!AI.getCoerceToType() && 576 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 577 578 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 579 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 580 CGF.Builder.CreateStore(Val, Temp); 581 return Temp; 582 } 583 } 584 585 /// DefaultABIInfo - The default implementation for ABI specific 586 /// details. This implementation provides information which results in 587 /// self-consistent and sensible LLVM IR generation, but does not 588 /// conform to any particular ABI. 589 class DefaultABIInfo : public ABIInfo { 590 public: 591 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 592 593 ABIArgInfo classifyReturnType(QualType RetTy) const; 594 ABIArgInfo classifyArgumentType(QualType RetTy) const; 595 596 void computeInfo(CGFunctionInfo &FI) const override { 597 if (!getCXXABI().classifyReturnType(FI)) 598 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 599 for (auto &I : FI.arguments()) 600 I.info = classifyArgumentType(I.type); 601 } 602 603 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 604 QualType Ty) const override { 605 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 606 } 607 }; 608 609 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 610 public: 611 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 612 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 613 }; 614 615 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 616 Ty = useFirstFieldIfTransparentUnion(Ty); 617 618 if (isAggregateTypeForABI(Ty)) { 619 // Records with non-trivial destructors/copy-constructors should not be 620 // passed by value. 621 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 622 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 623 624 return getNaturalAlignIndirect(Ty); 625 } 626 627 // Treat an enum type as its underlying type. 628 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 629 Ty = EnumTy->getDecl()->getIntegerType(); 630 631 return (Ty->isPromotableIntegerType() ? 632 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 633 } 634 635 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 636 if (RetTy->isVoidType()) 637 return ABIArgInfo::getIgnore(); 638 639 if (isAggregateTypeForABI(RetTy)) 640 return getNaturalAlignIndirect(RetTy); 641 642 // Treat an enum type as its underlying type. 643 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 644 RetTy = EnumTy->getDecl()->getIntegerType(); 645 646 return (RetTy->isPromotableIntegerType() ? 647 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 648 } 649 650 //===----------------------------------------------------------------------===// 651 // WebAssembly ABI Implementation 652 // 653 // This is a very simple ABI that relies a lot on DefaultABIInfo. 654 //===----------------------------------------------------------------------===// 655 656 class WebAssemblyABIInfo final : public DefaultABIInfo { 657 public: 658 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 659 : DefaultABIInfo(CGT) {} 660 661 private: 662 ABIArgInfo classifyReturnType(QualType RetTy) const; 663 ABIArgInfo classifyArgumentType(QualType Ty) const; 664 665 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 666 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 667 // overload them. 668 void computeInfo(CGFunctionInfo &FI) const override { 669 if (!getCXXABI().classifyReturnType(FI)) 670 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 671 for (auto &Arg : FI.arguments()) 672 Arg.info = classifyArgumentType(Arg.type); 673 } 674 675 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 676 QualType Ty) const override; 677 }; 678 679 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 680 public: 681 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 682 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 683 }; 684 685 /// \brief Classify argument of given type \p Ty. 686 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 687 Ty = useFirstFieldIfTransparentUnion(Ty); 688 689 if (isAggregateTypeForABI(Ty)) { 690 // Records with non-trivial destructors/copy-constructors should not be 691 // passed by value. 692 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 693 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 694 // Ignore empty structs/unions. 695 if (isEmptyRecord(getContext(), Ty, true)) 696 return ABIArgInfo::getIgnore(); 697 // Lower single-element structs to just pass a regular value. TODO: We 698 // could do reasonable-size multiple-element structs too, using getExpand(), 699 // though watch out for things like bitfields. 700 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 701 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 702 } 703 704 // Otherwise just do the default thing. 705 return DefaultABIInfo::classifyArgumentType(Ty); 706 } 707 708 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 709 if (isAggregateTypeForABI(RetTy)) { 710 // Records with non-trivial destructors/copy-constructors should not be 711 // returned by value. 712 if (!getRecordArgABI(RetTy, getCXXABI())) { 713 // Ignore empty structs/unions. 714 if (isEmptyRecord(getContext(), RetTy, true)) 715 return ABIArgInfo::getIgnore(); 716 // Lower single-element structs to just return a regular value. TODO: We 717 // could do reasonable-size multiple-element structs too, using 718 // ABIArgInfo::getDirect(). 719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 720 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 721 } 722 } 723 724 // Otherwise just do the default thing. 725 return DefaultABIInfo::classifyReturnType(RetTy); 726 } 727 728 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 729 QualType Ty) const { 730 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 731 getContext().getTypeInfoInChars(Ty), 732 CharUnits::fromQuantity(4), 733 /*AllowHigherAlign=*/ true); 734 } 735 736 //===----------------------------------------------------------------------===// 737 // le32/PNaCl bitcode ABI Implementation 738 // 739 // This is a simplified version of the x86_32 ABI. Arguments and return values 740 // are always passed on the stack. 741 //===----------------------------------------------------------------------===// 742 743 class PNaClABIInfo : public ABIInfo { 744 public: 745 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 746 747 ABIArgInfo classifyReturnType(QualType RetTy) const; 748 ABIArgInfo classifyArgumentType(QualType RetTy) const; 749 750 void computeInfo(CGFunctionInfo &FI) const override; 751 Address EmitVAArg(CodeGenFunction &CGF, 752 Address VAListAddr, QualType Ty) const override; 753 }; 754 755 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 756 public: 757 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 758 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 759 }; 760 761 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 762 if (!getCXXABI().classifyReturnType(FI)) 763 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 764 765 for (auto &I : FI.arguments()) 766 I.info = classifyArgumentType(I.type); 767 } 768 769 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 770 QualType Ty) const { 771 // The PNaCL ABI is a bit odd, in that varargs don't use normal 772 // function classification. Structs get passed directly for varargs 773 // functions, through a rewriting transform in 774 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 775 // this target to actually support a va_arg instructions with an 776 // aggregate type, unlike other targets. 777 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 778 } 779 780 /// \brief Classify argument of given type \p Ty. 781 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 782 if (isAggregateTypeForABI(Ty)) { 783 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 784 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 785 return getNaturalAlignIndirect(Ty); 786 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 787 // Treat an enum type as its underlying type. 788 Ty = EnumTy->getDecl()->getIntegerType(); 789 } else if (Ty->isFloatingType()) { 790 // Floating-point types don't go inreg. 791 return ABIArgInfo::getDirect(); 792 } 793 794 return (Ty->isPromotableIntegerType() ? 795 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 796 } 797 798 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 799 if (RetTy->isVoidType()) 800 return ABIArgInfo::getIgnore(); 801 802 // In the PNaCl ABI we always return records/structures on the stack. 803 if (isAggregateTypeForABI(RetTy)) 804 return getNaturalAlignIndirect(RetTy); 805 806 // Treat an enum type as its underlying type. 807 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 808 RetTy = EnumTy->getDecl()->getIntegerType(); 809 810 return (RetTy->isPromotableIntegerType() ? 811 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 812 } 813 814 /// IsX86_MMXType - Return true if this is an MMX type. 815 bool IsX86_MMXType(llvm::Type *IRType) { 816 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 817 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 818 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 819 IRType->getScalarSizeInBits() != 64; 820 } 821 822 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 823 StringRef Constraint, 824 llvm::Type* Ty) { 825 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 826 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 827 // Invalid MMX constraint 828 return nullptr; 829 } 830 831 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 832 } 833 834 // No operation needed 835 return Ty; 836 } 837 838 /// Returns true if this type can be passed in SSE registers with the 839 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 840 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 841 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 842 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 843 return true; 844 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 845 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 846 // registers specially. 847 unsigned VecSize = Context.getTypeSize(VT); 848 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 849 return true; 850 } 851 return false; 852 } 853 854 /// Returns true if this aggregate is small enough to be passed in SSE registers 855 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 856 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 857 return NumMembers <= 4; 858 } 859 860 //===----------------------------------------------------------------------===// 861 // X86-32 ABI Implementation 862 //===----------------------------------------------------------------------===// 863 864 /// \brief Similar to llvm::CCState, but for Clang. 865 struct CCState { 866 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 867 868 unsigned CC; 869 unsigned FreeRegs; 870 unsigned FreeSSERegs; 871 }; 872 873 /// X86_32ABIInfo - The X86-32 ABI information. 874 class X86_32ABIInfo : public SwiftABIInfo { 875 enum Class { 876 Integer, 877 Float 878 }; 879 880 static const unsigned MinABIStackAlignInBytes = 4; 881 882 bool IsDarwinVectorABI; 883 bool IsRetSmallStructInRegABI; 884 bool IsWin32StructABI; 885 bool IsSoftFloatABI; 886 bool IsMCUABI; 887 unsigned DefaultNumRegisterParameters; 888 889 static bool isRegisterSize(unsigned Size) { 890 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 891 } 892 893 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 894 // FIXME: Assumes vectorcall is in use. 895 return isX86VectorTypeForVectorCall(getContext(), Ty); 896 } 897 898 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 899 uint64_t NumMembers) const override { 900 // FIXME: Assumes vectorcall is in use. 901 return isX86VectorCallAggregateSmallEnough(NumMembers); 902 } 903 904 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 905 906 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 907 /// such that the argument will be passed in memory. 908 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 909 910 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 911 912 /// \brief Return the alignment to use for the given type on the stack. 913 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 914 915 Class classify(QualType Ty) const; 916 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 917 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 918 /// \brief Updates the number of available free registers, returns 919 /// true if any registers were allocated. 920 bool updateFreeRegs(QualType Ty, CCState &State) const; 921 922 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 923 bool &NeedsPadding) const; 924 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 925 926 bool canExpandIndirectArgument(QualType Ty) const; 927 928 /// \brief Rewrite the function info so that all memory arguments use 929 /// inalloca. 930 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 931 932 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 933 CharUnits &StackOffset, ABIArgInfo &Info, 934 QualType Type) const; 935 936 public: 937 938 void computeInfo(CGFunctionInfo &FI) const override; 939 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 940 QualType Ty) const override; 941 942 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 943 bool RetSmallStructInRegABI, bool Win32StructABI, 944 unsigned NumRegisterParameters, bool SoftFloatABI) 945 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 946 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 947 IsWin32StructABI(Win32StructABI), 948 IsSoftFloatABI(SoftFloatABI), 949 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 950 DefaultNumRegisterParameters(NumRegisterParameters) {} 951 952 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 953 ArrayRef<llvm::Type*> scalars, 954 bool asReturnValue) const override { 955 // LLVM's x86-32 lowering currently only assigns up to three 956 // integer registers and three fp registers. Oddly, it'll use up to 957 // four vector registers for vectors, but those can overlap with the 958 // scalar registers. 959 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 960 } 961 }; 962 963 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 964 public: 965 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 966 bool RetSmallStructInRegABI, bool Win32StructABI, 967 unsigned NumRegisterParameters, bool SoftFloatABI) 968 : TargetCodeGenInfo(new X86_32ABIInfo( 969 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 970 NumRegisterParameters, SoftFloatABI)) {} 971 972 static bool isStructReturnInRegABI( 973 const llvm::Triple &Triple, const CodeGenOptions &Opts); 974 975 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 976 CodeGen::CodeGenModule &CGM) const override; 977 978 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 979 // Darwin uses different dwarf register numbers for EH. 980 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 981 return 4; 982 } 983 984 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 985 llvm::Value *Address) const override; 986 987 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 988 StringRef Constraint, 989 llvm::Type* Ty) const override { 990 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 991 } 992 993 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 994 std::string &Constraints, 995 std::vector<llvm::Type *> &ResultRegTypes, 996 std::vector<llvm::Type *> &ResultTruncRegTypes, 997 std::vector<LValue> &ResultRegDests, 998 std::string &AsmString, 999 unsigned NumOutputs) const override; 1000 1001 llvm::Constant * 1002 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1003 unsigned Sig = (0xeb << 0) | // jmp rel8 1004 (0x06 << 8) | // .+0x08 1005 ('F' << 16) | 1006 ('T' << 24); 1007 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1008 } 1009 1010 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1011 return "movl\t%ebp, %ebp" 1012 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 1013 } 1014 }; 1015 1016 } 1017 1018 /// Rewrite input constraint references after adding some output constraints. 1019 /// In the case where there is one output and one input and we add one output, 1020 /// we need to replace all operand references greater than or equal to 1: 1021 /// mov $0, $1 1022 /// mov eax, $1 1023 /// The result will be: 1024 /// mov $0, $2 1025 /// mov eax, $2 1026 static void rewriteInputConstraintReferences(unsigned FirstIn, 1027 unsigned NumNewOuts, 1028 std::string &AsmString) { 1029 std::string Buf; 1030 llvm::raw_string_ostream OS(Buf); 1031 size_t Pos = 0; 1032 while (Pos < AsmString.size()) { 1033 size_t DollarStart = AsmString.find('$', Pos); 1034 if (DollarStart == std::string::npos) 1035 DollarStart = AsmString.size(); 1036 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1037 if (DollarEnd == std::string::npos) 1038 DollarEnd = AsmString.size(); 1039 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1040 Pos = DollarEnd; 1041 size_t NumDollars = DollarEnd - DollarStart; 1042 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1043 // We have an operand reference. 1044 size_t DigitStart = Pos; 1045 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1046 if (DigitEnd == std::string::npos) 1047 DigitEnd = AsmString.size(); 1048 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1049 unsigned OperandIndex; 1050 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1051 if (OperandIndex >= FirstIn) 1052 OperandIndex += NumNewOuts; 1053 OS << OperandIndex; 1054 } else { 1055 OS << OperandStr; 1056 } 1057 Pos = DigitEnd; 1058 } 1059 } 1060 AsmString = std::move(OS.str()); 1061 } 1062 1063 /// Add output constraints for EAX:EDX because they are return registers. 1064 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1065 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1066 std::vector<llvm::Type *> &ResultRegTypes, 1067 std::vector<llvm::Type *> &ResultTruncRegTypes, 1068 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1069 unsigned NumOutputs) const { 1070 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1071 1072 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1073 // larger. 1074 if (!Constraints.empty()) 1075 Constraints += ','; 1076 if (RetWidth <= 32) { 1077 Constraints += "={eax}"; 1078 ResultRegTypes.push_back(CGF.Int32Ty); 1079 } else { 1080 // Use the 'A' constraint for EAX:EDX. 1081 Constraints += "=A"; 1082 ResultRegTypes.push_back(CGF.Int64Ty); 1083 } 1084 1085 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1086 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1087 ResultTruncRegTypes.push_back(CoerceTy); 1088 1089 // Coerce the integer by bitcasting the return slot pointer. 1090 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1091 CoerceTy->getPointerTo())); 1092 ResultRegDests.push_back(ReturnSlot); 1093 1094 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1095 } 1096 1097 /// shouldReturnTypeInRegister - Determine if the given type should be 1098 /// returned in a register (for the Darwin and MCU ABI). 1099 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1100 ASTContext &Context) const { 1101 uint64_t Size = Context.getTypeSize(Ty); 1102 1103 // For i386, type must be register sized. 1104 // For the MCU ABI, it only needs to be <= 8-byte 1105 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1106 return false; 1107 1108 if (Ty->isVectorType()) { 1109 // 64- and 128- bit vectors inside structures are not returned in 1110 // registers. 1111 if (Size == 64 || Size == 128) 1112 return false; 1113 1114 return true; 1115 } 1116 1117 // If this is a builtin, pointer, enum, complex type, member pointer, or 1118 // member function pointer it is ok. 1119 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1120 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1121 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1122 return true; 1123 1124 // Arrays are treated like records. 1125 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1126 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1127 1128 // Otherwise, it must be a record type. 1129 const RecordType *RT = Ty->getAs<RecordType>(); 1130 if (!RT) return false; 1131 1132 // FIXME: Traverse bases here too. 1133 1134 // Structure types are passed in register if all fields would be 1135 // passed in a register. 1136 for (const auto *FD : RT->getDecl()->fields()) { 1137 // Empty fields are ignored. 1138 if (isEmptyField(Context, FD, true)) 1139 continue; 1140 1141 // Check fields recursively. 1142 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1143 return false; 1144 } 1145 return true; 1146 } 1147 1148 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1149 // Treat complex types as the element type. 1150 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1151 Ty = CTy->getElementType(); 1152 1153 // Check for a type which we know has a simple scalar argument-passing 1154 // convention without any padding. (We're specifically looking for 32 1155 // and 64-bit integer and integer-equivalents, float, and double.) 1156 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1157 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1158 return false; 1159 1160 uint64_t Size = Context.getTypeSize(Ty); 1161 return Size == 32 || Size == 64; 1162 } 1163 1164 /// Test whether an argument type which is to be passed indirectly (on the 1165 /// stack) would have the equivalent layout if it was expanded into separate 1166 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1167 /// optimizations. 1168 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1169 // We can only expand structure types. 1170 const RecordType *RT = Ty->getAs<RecordType>(); 1171 if (!RT) 1172 return false; 1173 const RecordDecl *RD = RT->getDecl(); 1174 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1175 if (!IsWin32StructABI ) { 1176 // On non-Windows, we have to conservatively match our old bitcode 1177 // prototypes in order to be ABI-compatible at the bitcode level. 1178 if (!CXXRD->isCLike()) 1179 return false; 1180 } else { 1181 // Don't do this for dynamic classes. 1182 if (CXXRD->isDynamicClass()) 1183 return false; 1184 // Don't do this if there are any non-empty bases. 1185 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 1186 if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true)) 1187 return false; 1188 } 1189 } 1190 } 1191 1192 uint64_t Size = 0; 1193 1194 for (const auto *FD : RD->fields()) { 1195 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1196 // argument is smaller than 32-bits, expanding the struct will create 1197 // alignment padding. 1198 if (!is32Or64BitBasicType(FD->getType(), getContext())) 1199 return false; 1200 1201 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1202 // how to expand them yet, and the predicate for telling if a bitfield still 1203 // counts as "basic" is more complicated than what we were doing previously. 1204 if (FD->isBitField()) 1205 return false; 1206 1207 Size += getContext().getTypeSize(FD->getType()); 1208 } 1209 1210 // We can do this if there was no alignment padding. 1211 return Size == getContext().getTypeSize(Ty); 1212 } 1213 1214 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1215 // If the return value is indirect, then the hidden argument is consuming one 1216 // integer register. 1217 if (State.FreeRegs) { 1218 --State.FreeRegs; 1219 if (!IsMCUABI) 1220 return getNaturalAlignIndirectInReg(RetTy); 1221 } 1222 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1223 } 1224 1225 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1226 CCState &State) const { 1227 if (RetTy->isVoidType()) 1228 return ABIArgInfo::getIgnore(); 1229 1230 const Type *Base = nullptr; 1231 uint64_t NumElts = 0; 1232 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1233 State.CC == llvm::CallingConv::X86_RegCall) && 1234 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1235 // The LLVM struct type for such an aggregate should lower properly. 1236 return ABIArgInfo::getDirect(); 1237 } 1238 1239 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1240 // On Darwin, some vectors are returned in registers. 1241 if (IsDarwinVectorABI) { 1242 uint64_t Size = getContext().getTypeSize(RetTy); 1243 1244 // 128-bit vectors are a special case; they are returned in 1245 // registers and we need to make sure to pick a type the LLVM 1246 // backend will like. 1247 if (Size == 128) 1248 return ABIArgInfo::getDirect(llvm::VectorType::get( 1249 llvm::Type::getInt64Ty(getVMContext()), 2)); 1250 1251 // Always return in register if it fits in a general purpose 1252 // register, or if it is 64 bits and has a single element. 1253 if ((Size == 8 || Size == 16 || Size == 32) || 1254 (Size == 64 && VT->getNumElements() == 1)) 1255 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1256 Size)); 1257 1258 return getIndirectReturnResult(RetTy, State); 1259 } 1260 1261 return ABIArgInfo::getDirect(); 1262 } 1263 1264 if (isAggregateTypeForABI(RetTy)) { 1265 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1266 // Structures with flexible arrays are always indirect. 1267 if (RT->getDecl()->hasFlexibleArrayMember()) 1268 return getIndirectReturnResult(RetTy, State); 1269 } 1270 1271 // If specified, structs and unions are always indirect. 1272 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1273 return getIndirectReturnResult(RetTy, State); 1274 1275 // Ignore empty structs/unions. 1276 if (isEmptyRecord(getContext(), RetTy, true)) 1277 return ABIArgInfo::getIgnore(); 1278 1279 // Small structures which are register sized are generally returned 1280 // in a register. 1281 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1282 uint64_t Size = getContext().getTypeSize(RetTy); 1283 1284 // As a special-case, if the struct is a "single-element" struct, and 1285 // the field is of type "float" or "double", return it in a 1286 // floating-point register. (MSVC does not apply this special case.) 1287 // We apply a similar transformation for pointer types to improve the 1288 // quality of the generated IR. 1289 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1290 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1291 || SeltTy->hasPointerRepresentation()) 1292 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1293 1294 // FIXME: We should be able to narrow this integer in cases with dead 1295 // padding. 1296 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1297 } 1298 1299 return getIndirectReturnResult(RetTy, State); 1300 } 1301 1302 // Treat an enum type as its underlying type. 1303 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1304 RetTy = EnumTy->getDecl()->getIntegerType(); 1305 1306 return (RetTy->isPromotableIntegerType() ? 1307 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1308 } 1309 1310 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1311 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1312 } 1313 1314 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1315 const RecordType *RT = Ty->getAs<RecordType>(); 1316 if (!RT) 1317 return 0; 1318 const RecordDecl *RD = RT->getDecl(); 1319 1320 // If this is a C++ record, check the bases first. 1321 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1322 for (const auto &I : CXXRD->bases()) 1323 if (!isRecordWithSSEVectorType(Context, I.getType())) 1324 return false; 1325 1326 for (const auto *i : RD->fields()) { 1327 QualType FT = i->getType(); 1328 1329 if (isSSEVectorType(Context, FT)) 1330 return true; 1331 1332 if (isRecordWithSSEVectorType(Context, FT)) 1333 return true; 1334 } 1335 1336 return false; 1337 } 1338 1339 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1340 unsigned Align) const { 1341 // Otherwise, if the alignment is less than or equal to the minimum ABI 1342 // alignment, just use the default; the backend will handle this. 1343 if (Align <= MinABIStackAlignInBytes) 1344 return 0; // Use default alignment. 1345 1346 // On non-Darwin, the stack type alignment is always 4. 1347 if (!IsDarwinVectorABI) { 1348 // Set explicit alignment, since we may need to realign the top. 1349 return MinABIStackAlignInBytes; 1350 } 1351 1352 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1353 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1354 isRecordWithSSEVectorType(getContext(), Ty))) 1355 return 16; 1356 1357 return MinABIStackAlignInBytes; 1358 } 1359 1360 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1361 CCState &State) const { 1362 if (!ByVal) { 1363 if (State.FreeRegs) { 1364 --State.FreeRegs; // Non-byval indirects just use one pointer. 1365 if (!IsMCUABI) 1366 return getNaturalAlignIndirectInReg(Ty); 1367 } 1368 return getNaturalAlignIndirect(Ty, false); 1369 } 1370 1371 // Compute the byval alignment. 1372 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1373 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1374 if (StackAlign == 0) 1375 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1376 1377 // If the stack alignment is less than the type alignment, realign the 1378 // argument. 1379 bool Realign = TypeAlign > StackAlign; 1380 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1381 /*ByVal=*/true, Realign); 1382 } 1383 1384 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1385 const Type *T = isSingleElementStruct(Ty, getContext()); 1386 if (!T) 1387 T = Ty.getTypePtr(); 1388 1389 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1390 BuiltinType::Kind K = BT->getKind(); 1391 if (K == BuiltinType::Float || K == BuiltinType::Double) 1392 return Float; 1393 } 1394 return Integer; 1395 } 1396 1397 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1398 if (!IsSoftFloatABI) { 1399 Class C = classify(Ty); 1400 if (C == Float) 1401 return false; 1402 } 1403 1404 unsigned Size = getContext().getTypeSize(Ty); 1405 unsigned SizeInRegs = (Size + 31) / 32; 1406 1407 if (SizeInRegs == 0) 1408 return false; 1409 1410 if (!IsMCUABI) { 1411 if (SizeInRegs > State.FreeRegs) { 1412 State.FreeRegs = 0; 1413 return false; 1414 } 1415 } else { 1416 // The MCU psABI allows passing parameters in-reg even if there are 1417 // earlier parameters that are passed on the stack. Also, 1418 // it does not allow passing >8-byte structs in-register, 1419 // even if there are 3 free registers available. 1420 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1421 return false; 1422 } 1423 1424 State.FreeRegs -= SizeInRegs; 1425 return true; 1426 } 1427 1428 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1429 bool &InReg, 1430 bool &NeedsPadding) const { 1431 // On Windows, aggregates other than HFAs are never passed in registers, and 1432 // they do not consume register slots. Homogenous floating-point aggregates 1433 // (HFAs) have already been dealt with at this point. 1434 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1435 return false; 1436 1437 NeedsPadding = false; 1438 InReg = !IsMCUABI; 1439 1440 if (!updateFreeRegs(Ty, State)) 1441 return false; 1442 1443 if (IsMCUABI) 1444 return true; 1445 1446 if (State.CC == llvm::CallingConv::X86_FastCall || 1447 State.CC == llvm::CallingConv::X86_VectorCall || 1448 State.CC == llvm::CallingConv::X86_RegCall) { 1449 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1450 NeedsPadding = true; 1451 1452 return false; 1453 } 1454 1455 return true; 1456 } 1457 1458 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1459 if (!updateFreeRegs(Ty, State)) 1460 return false; 1461 1462 if (IsMCUABI) 1463 return false; 1464 1465 if (State.CC == llvm::CallingConv::X86_FastCall || 1466 State.CC == llvm::CallingConv::X86_VectorCall || 1467 State.CC == llvm::CallingConv::X86_RegCall) { 1468 if (getContext().getTypeSize(Ty) > 32) 1469 return false; 1470 1471 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1472 Ty->isReferenceType()); 1473 } 1474 1475 return true; 1476 } 1477 1478 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1479 CCState &State) const { 1480 // FIXME: Set alignment on indirect arguments. 1481 1482 Ty = useFirstFieldIfTransparentUnion(Ty); 1483 1484 // Check with the C++ ABI first. 1485 const RecordType *RT = Ty->getAs<RecordType>(); 1486 if (RT) { 1487 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1488 if (RAA == CGCXXABI::RAA_Indirect) { 1489 return getIndirectResult(Ty, false, State); 1490 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1491 // The field index doesn't matter, we'll fix it up later. 1492 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1493 } 1494 } 1495 1496 // vectorcall adds the concept of a homogenous vector aggregate, similar 1497 // to other targets. 1498 const Type *Base = nullptr; 1499 uint64_t NumElts = 0; 1500 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1501 State.CC == llvm::CallingConv::X86_RegCall) && 1502 isHomogeneousAggregate(Ty, Base, NumElts)) { 1503 if (State.FreeSSERegs >= NumElts) { 1504 State.FreeSSERegs -= NumElts; 1505 if (Ty->isBuiltinType() || Ty->isVectorType()) 1506 return ABIArgInfo::getDirect(); 1507 return ABIArgInfo::getExpand(); 1508 } 1509 return getIndirectResult(Ty, /*ByVal=*/false, State); 1510 } 1511 1512 if (isAggregateTypeForABI(Ty)) { 1513 // Structures with flexible arrays are always indirect. 1514 // FIXME: This should not be byval! 1515 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1516 return getIndirectResult(Ty, true, State); 1517 1518 // Ignore empty structs/unions on non-Windows. 1519 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1520 return ABIArgInfo::getIgnore(); 1521 1522 llvm::LLVMContext &LLVMContext = getVMContext(); 1523 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1524 bool NeedsPadding = false; 1525 bool InReg; 1526 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1527 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1528 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1529 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1530 if (InReg) 1531 return ABIArgInfo::getDirectInReg(Result); 1532 else 1533 return ABIArgInfo::getDirect(Result); 1534 } 1535 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1536 1537 // Expand small (<= 128-bit) record types when we know that the stack layout 1538 // of those arguments will match the struct. This is important because the 1539 // LLVM backend isn't smart enough to remove byval, which inhibits many 1540 // optimizations. 1541 // Don't do this for the MCU if there are still free integer registers 1542 // (see X86_64 ABI for full explanation). 1543 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1544 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1545 return ABIArgInfo::getExpandWithPadding( 1546 State.CC == llvm::CallingConv::X86_FastCall || 1547 State.CC == llvm::CallingConv::X86_VectorCall || 1548 State.CC == llvm::CallingConv::X86_RegCall, 1549 PaddingType); 1550 1551 return getIndirectResult(Ty, true, State); 1552 } 1553 1554 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1555 // On Darwin, some vectors are passed in memory, we handle this by passing 1556 // it as an i8/i16/i32/i64. 1557 if (IsDarwinVectorABI) { 1558 uint64_t Size = getContext().getTypeSize(Ty); 1559 if ((Size == 8 || Size == 16 || Size == 32) || 1560 (Size == 64 && VT->getNumElements() == 1)) 1561 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1562 Size)); 1563 } 1564 1565 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1566 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1567 1568 return ABIArgInfo::getDirect(); 1569 } 1570 1571 1572 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1573 Ty = EnumTy->getDecl()->getIntegerType(); 1574 1575 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1576 1577 if (Ty->isPromotableIntegerType()) { 1578 if (InReg) 1579 return ABIArgInfo::getExtendInReg(); 1580 return ABIArgInfo::getExtend(); 1581 } 1582 1583 if (InReg) 1584 return ABIArgInfo::getDirectInReg(); 1585 return ABIArgInfo::getDirect(); 1586 } 1587 1588 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1589 CCState State(FI.getCallingConvention()); 1590 if (IsMCUABI) 1591 State.FreeRegs = 3; 1592 else if (State.CC == llvm::CallingConv::X86_FastCall) 1593 State.FreeRegs = 2; 1594 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1595 State.FreeRegs = 2; 1596 State.FreeSSERegs = 6; 1597 } else if (FI.getHasRegParm()) 1598 State.FreeRegs = FI.getRegParm(); 1599 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1600 State.FreeRegs = 5; 1601 State.FreeSSERegs = 8; 1602 } else 1603 State.FreeRegs = DefaultNumRegisterParameters; 1604 1605 if (!getCXXABI().classifyReturnType(FI)) { 1606 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1607 } else if (FI.getReturnInfo().isIndirect()) { 1608 // The C++ ABI is not aware of register usage, so we have to check if the 1609 // return value was sret and put it in a register ourselves if appropriate. 1610 if (State.FreeRegs) { 1611 --State.FreeRegs; // The sret parameter consumes a register. 1612 if (!IsMCUABI) 1613 FI.getReturnInfo().setInReg(true); 1614 } 1615 } 1616 1617 // The chain argument effectively gives us another free register. 1618 if (FI.isChainCall()) 1619 ++State.FreeRegs; 1620 1621 bool UsedInAlloca = false; 1622 for (auto &I : FI.arguments()) { 1623 I.info = classifyArgumentType(I.type, State); 1624 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1625 } 1626 1627 // If we needed to use inalloca for any argument, do a second pass and rewrite 1628 // all the memory arguments to use inalloca. 1629 if (UsedInAlloca) 1630 rewriteWithInAlloca(FI); 1631 } 1632 1633 void 1634 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1635 CharUnits &StackOffset, ABIArgInfo &Info, 1636 QualType Type) const { 1637 // Arguments are always 4-byte-aligned. 1638 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1639 1640 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1641 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1642 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1643 StackOffset += getContext().getTypeSizeInChars(Type); 1644 1645 // Insert padding bytes to respect alignment. 1646 CharUnits FieldEnd = StackOffset; 1647 StackOffset = FieldEnd.alignTo(FieldAlign); 1648 if (StackOffset != FieldEnd) { 1649 CharUnits NumBytes = StackOffset - FieldEnd; 1650 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1651 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1652 FrameFields.push_back(Ty); 1653 } 1654 } 1655 1656 static bool isArgInAlloca(const ABIArgInfo &Info) { 1657 // Leave ignored and inreg arguments alone. 1658 switch (Info.getKind()) { 1659 case ABIArgInfo::InAlloca: 1660 return true; 1661 case ABIArgInfo::Indirect: 1662 assert(Info.getIndirectByVal()); 1663 return true; 1664 case ABIArgInfo::Ignore: 1665 return false; 1666 case ABIArgInfo::Direct: 1667 case ABIArgInfo::Extend: 1668 if (Info.getInReg()) 1669 return false; 1670 return true; 1671 case ABIArgInfo::Expand: 1672 case ABIArgInfo::CoerceAndExpand: 1673 // These are aggregate types which are never passed in registers when 1674 // inalloca is involved. 1675 return true; 1676 } 1677 llvm_unreachable("invalid enum"); 1678 } 1679 1680 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1681 assert(IsWin32StructABI && "inalloca only supported on win32"); 1682 1683 // Build a packed struct type for all of the arguments in memory. 1684 SmallVector<llvm::Type *, 6> FrameFields; 1685 1686 // The stack alignment is always 4. 1687 CharUnits StackAlign = CharUnits::fromQuantity(4); 1688 1689 CharUnits StackOffset; 1690 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1691 1692 // Put 'this' into the struct before 'sret', if necessary. 1693 bool IsThisCall = 1694 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1695 ABIArgInfo &Ret = FI.getReturnInfo(); 1696 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1697 isArgInAlloca(I->info)) { 1698 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1699 ++I; 1700 } 1701 1702 // Put the sret parameter into the inalloca struct if it's in memory. 1703 if (Ret.isIndirect() && !Ret.getInReg()) { 1704 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1705 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1706 // On Windows, the hidden sret parameter is always returned in eax. 1707 Ret.setInAllocaSRet(IsWin32StructABI); 1708 } 1709 1710 // Skip the 'this' parameter in ecx. 1711 if (IsThisCall) 1712 ++I; 1713 1714 // Put arguments passed in memory into the struct. 1715 for (; I != E; ++I) { 1716 if (isArgInAlloca(I->info)) 1717 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1718 } 1719 1720 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1721 /*isPacked=*/true), 1722 StackAlign); 1723 } 1724 1725 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1726 Address VAListAddr, QualType Ty) const { 1727 1728 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1729 1730 // x86-32 changes the alignment of certain arguments on the stack. 1731 // 1732 // Just messing with TypeInfo like this works because we never pass 1733 // anything indirectly. 1734 TypeInfo.second = CharUnits::fromQuantity( 1735 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1736 1737 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1738 TypeInfo, CharUnits::fromQuantity(4), 1739 /*AllowHigherAlign*/ true); 1740 } 1741 1742 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1743 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1744 assert(Triple.getArch() == llvm::Triple::x86); 1745 1746 switch (Opts.getStructReturnConvention()) { 1747 case CodeGenOptions::SRCK_Default: 1748 break; 1749 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1750 return false; 1751 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1752 return true; 1753 } 1754 1755 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1756 return true; 1757 1758 switch (Triple.getOS()) { 1759 case llvm::Triple::DragonFly: 1760 case llvm::Triple::FreeBSD: 1761 case llvm::Triple::OpenBSD: 1762 case llvm::Triple::Bitrig: 1763 case llvm::Triple::Win32: 1764 return true; 1765 default: 1766 return false; 1767 } 1768 } 1769 1770 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1771 llvm::GlobalValue *GV, 1772 CodeGen::CodeGenModule &CGM) const { 1773 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1774 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1775 // Get the LLVM function. 1776 llvm::Function *Fn = cast<llvm::Function>(GV); 1777 1778 // Now add the 'alignstack' attribute with a value of 16. 1779 llvm::AttrBuilder B; 1780 B.addStackAlignmentAttr(16); 1781 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1782 llvm::AttributeSet::get(CGM.getLLVMContext(), 1783 llvm::AttributeSet::FunctionIndex, 1784 B)); 1785 } 1786 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1787 llvm::Function *Fn = cast<llvm::Function>(GV); 1788 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1789 } 1790 } 1791 } 1792 1793 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1794 CodeGen::CodeGenFunction &CGF, 1795 llvm::Value *Address) const { 1796 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1797 1798 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1799 1800 // 0-7 are the eight integer registers; the order is different 1801 // on Darwin (for EH), but the range is the same. 1802 // 8 is %eip. 1803 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1804 1805 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1806 // 12-16 are st(0..4). Not sure why we stop at 4. 1807 // These have size 16, which is sizeof(long double) on 1808 // platforms with 8-byte alignment for that type. 1809 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1810 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1811 1812 } else { 1813 // 9 is %eflags, which doesn't get a size on Darwin for some 1814 // reason. 1815 Builder.CreateAlignedStore( 1816 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1817 CharUnits::One()); 1818 1819 // 11-16 are st(0..5). Not sure why we stop at 5. 1820 // These have size 12, which is sizeof(long double) on 1821 // platforms with 4-byte alignment for that type. 1822 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1823 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1824 } 1825 1826 return false; 1827 } 1828 1829 //===----------------------------------------------------------------------===// 1830 // X86-64 ABI Implementation 1831 //===----------------------------------------------------------------------===// 1832 1833 1834 namespace { 1835 /// The AVX ABI level for X86 targets. 1836 enum class X86AVXABILevel { 1837 None, 1838 AVX, 1839 AVX512 1840 }; 1841 1842 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1843 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1844 switch (AVXLevel) { 1845 case X86AVXABILevel::AVX512: 1846 return 512; 1847 case X86AVXABILevel::AVX: 1848 return 256; 1849 case X86AVXABILevel::None: 1850 return 128; 1851 } 1852 llvm_unreachable("Unknown AVXLevel"); 1853 } 1854 1855 /// X86_64ABIInfo - The X86_64 ABI information. 1856 class X86_64ABIInfo : public SwiftABIInfo { 1857 enum Class { 1858 Integer = 0, 1859 SSE, 1860 SSEUp, 1861 X87, 1862 X87Up, 1863 ComplexX87, 1864 NoClass, 1865 Memory 1866 }; 1867 1868 /// merge - Implement the X86_64 ABI merging algorithm. 1869 /// 1870 /// Merge an accumulating classification \arg Accum with a field 1871 /// classification \arg Field. 1872 /// 1873 /// \param Accum - The accumulating classification. This should 1874 /// always be either NoClass or the result of a previous merge 1875 /// call. In addition, this should never be Memory (the caller 1876 /// should just return Memory for the aggregate). 1877 static Class merge(Class Accum, Class Field); 1878 1879 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1880 /// 1881 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1882 /// final MEMORY or SSE classes when necessary. 1883 /// 1884 /// \param AggregateSize - The size of the current aggregate in 1885 /// the classification process. 1886 /// 1887 /// \param Lo - The classification for the parts of the type 1888 /// residing in the low word of the containing object. 1889 /// 1890 /// \param Hi - The classification for the parts of the type 1891 /// residing in the higher words of the containing object. 1892 /// 1893 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1894 1895 /// classify - Determine the x86_64 register classes in which the 1896 /// given type T should be passed. 1897 /// 1898 /// \param Lo - The classification for the parts of the type 1899 /// residing in the low word of the containing object. 1900 /// 1901 /// \param Hi - The classification for the parts of the type 1902 /// residing in the high word of the containing object. 1903 /// 1904 /// \param OffsetBase - The bit offset of this type in the 1905 /// containing object. Some parameters are classified different 1906 /// depending on whether they straddle an eightbyte boundary. 1907 /// 1908 /// \param isNamedArg - Whether the argument in question is a "named" 1909 /// argument, as used in AMD64-ABI 3.5.7. 1910 /// 1911 /// If a word is unused its result will be NoClass; if a type should 1912 /// be passed in Memory then at least the classification of \arg Lo 1913 /// will be Memory. 1914 /// 1915 /// The \arg Lo class will be NoClass iff the argument is ignored. 1916 /// 1917 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1918 /// also be ComplexX87. 1919 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1920 bool isNamedArg) const; 1921 1922 llvm::Type *GetByteVectorType(QualType Ty) const; 1923 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1924 unsigned IROffset, QualType SourceTy, 1925 unsigned SourceOffset) const; 1926 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1927 unsigned IROffset, QualType SourceTy, 1928 unsigned SourceOffset) const; 1929 1930 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1931 /// such that the argument will be returned in memory. 1932 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1933 1934 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1935 /// such that the argument will be passed in memory. 1936 /// 1937 /// \param freeIntRegs - The number of free integer registers remaining 1938 /// available. 1939 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1940 1941 ABIArgInfo classifyReturnType(QualType RetTy) const; 1942 1943 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 1944 unsigned &neededInt, unsigned &neededSSE, 1945 bool isNamedArg) const; 1946 1947 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 1948 unsigned &NeededSSE) const; 1949 1950 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 1951 unsigned &NeededSSE) const; 1952 1953 bool IsIllegalVectorType(QualType Ty) const; 1954 1955 /// The 0.98 ABI revision clarified a lot of ambiguities, 1956 /// unfortunately in ways that were not always consistent with 1957 /// certain previous compilers. In particular, platforms which 1958 /// required strict binary compatibility with older versions of GCC 1959 /// may need to exempt themselves. 1960 bool honorsRevision0_98() const { 1961 return !getTarget().getTriple().isOSDarwin(); 1962 } 1963 1964 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 1965 // compilers require us to classify it as INTEGER. 1966 bool classifyIntegerMMXAsSSE() const { 1967 const llvm::Triple &Triple = getTarget().getTriple(); 1968 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 1969 return false; 1970 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 1971 return false; 1972 return true; 1973 } 1974 1975 X86AVXABILevel AVXLevel; 1976 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1977 // 64-bit hardware. 1978 bool Has64BitPointers; 1979 1980 public: 1981 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1982 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 1983 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1984 } 1985 1986 bool isPassedUsingAVXType(QualType type) const { 1987 unsigned neededInt, neededSSE; 1988 // The freeIntRegs argument doesn't matter here. 1989 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1990 /*isNamedArg*/true); 1991 if (info.isDirect()) { 1992 llvm::Type *ty = info.getCoerceToType(); 1993 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1994 return (vectorTy->getBitWidth() > 128); 1995 } 1996 return false; 1997 } 1998 1999 void computeInfo(CGFunctionInfo &FI) const override; 2000 2001 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2002 QualType Ty) const override; 2003 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2004 QualType Ty) const override; 2005 2006 bool has64BitPointers() const { 2007 return Has64BitPointers; 2008 } 2009 2010 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2011 ArrayRef<llvm::Type*> scalars, 2012 bool asReturnValue) const override { 2013 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2014 } 2015 }; 2016 2017 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2018 class WinX86_64ABIInfo : public SwiftABIInfo { 2019 public: 2020 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2021 : SwiftABIInfo(CGT), 2022 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2023 2024 void computeInfo(CGFunctionInfo &FI) const override; 2025 2026 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2027 QualType Ty) const override; 2028 2029 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2030 // FIXME: Assumes vectorcall is in use. 2031 return isX86VectorTypeForVectorCall(getContext(), Ty); 2032 } 2033 2034 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2035 uint64_t NumMembers) const override { 2036 // FIXME: Assumes vectorcall is in use. 2037 return isX86VectorCallAggregateSmallEnough(NumMembers); 2038 } 2039 2040 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2041 ArrayRef<llvm::Type *> scalars, 2042 bool asReturnValue) const override { 2043 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2044 } 2045 2046 private: 2047 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 2048 bool IsReturnType) const; 2049 2050 bool IsMingw64; 2051 }; 2052 2053 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2054 public: 2055 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2056 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2057 2058 const X86_64ABIInfo &getABIInfo() const { 2059 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2060 } 2061 2062 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2063 return 7; 2064 } 2065 2066 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2067 llvm::Value *Address) const override { 2068 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2069 2070 // 0-15 are the 16 integer registers. 2071 // 16 is %rip. 2072 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2073 return false; 2074 } 2075 2076 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2077 StringRef Constraint, 2078 llvm::Type* Ty) const override { 2079 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2080 } 2081 2082 bool isNoProtoCallVariadic(const CallArgList &args, 2083 const FunctionNoProtoType *fnType) const override { 2084 // The default CC on x86-64 sets %al to the number of SSA 2085 // registers used, and GCC sets this when calling an unprototyped 2086 // function, so we override the default behavior. However, don't do 2087 // that when AVX types are involved: the ABI explicitly states it is 2088 // undefined, and it doesn't work in practice because of how the ABI 2089 // defines varargs anyway. 2090 if (fnType->getCallConv() == CC_C) { 2091 bool HasAVXType = false; 2092 for (CallArgList::const_iterator 2093 it = args.begin(), ie = args.end(); it != ie; ++it) { 2094 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2095 HasAVXType = true; 2096 break; 2097 } 2098 } 2099 2100 if (!HasAVXType) 2101 return true; 2102 } 2103 2104 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2105 } 2106 2107 llvm::Constant * 2108 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2109 unsigned Sig; 2110 if (getABIInfo().has64BitPointers()) 2111 Sig = (0xeb << 0) | // jmp rel8 2112 (0x0a << 8) | // .+0x0c 2113 ('F' << 16) | 2114 ('T' << 24); 2115 else 2116 Sig = (0xeb << 0) | // jmp rel8 2117 (0x06 << 8) | // .+0x08 2118 ('F' << 16) | 2119 ('T' << 24); 2120 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2121 } 2122 2123 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2124 CodeGen::CodeGenModule &CGM) const override { 2125 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2126 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2127 llvm::Function *Fn = cast<llvm::Function>(GV); 2128 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2129 } 2130 } 2131 } 2132 }; 2133 2134 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2135 public: 2136 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2137 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2138 2139 void getDependentLibraryOption(llvm::StringRef Lib, 2140 llvm::SmallString<24> &Opt) const override { 2141 Opt = "\01"; 2142 // If the argument contains a space, enclose it in quotes. 2143 if (Lib.find(" ") != StringRef::npos) 2144 Opt += "\"" + Lib.str() + "\""; 2145 else 2146 Opt += Lib; 2147 } 2148 }; 2149 2150 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2151 // If the argument does not end in .lib, automatically add the suffix. 2152 // If the argument contains a space, enclose it in quotes. 2153 // This matches the behavior of MSVC. 2154 bool Quote = (Lib.find(" ") != StringRef::npos); 2155 std::string ArgStr = Quote ? "\"" : ""; 2156 ArgStr += Lib; 2157 if (!Lib.endswith_lower(".lib")) 2158 ArgStr += ".lib"; 2159 ArgStr += Quote ? "\"" : ""; 2160 return ArgStr; 2161 } 2162 2163 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2164 public: 2165 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2166 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2167 unsigned NumRegisterParameters) 2168 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2169 Win32StructABI, NumRegisterParameters, false) {} 2170 2171 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2172 CodeGen::CodeGenModule &CGM) const override; 2173 2174 void getDependentLibraryOption(llvm::StringRef Lib, 2175 llvm::SmallString<24> &Opt) const override { 2176 Opt = "/DEFAULTLIB:"; 2177 Opt += qualifyWindowsLibrary(Lib); 2178 } 2179 2180 void getDetectMismatchOption(llvm::StringRef Name, 2181 llvm::StringRef Value, 2182 llvm::SmallString<32> &Opt) const override { 2183 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2184 } 2185 }; 2186 2187 static void addStackProbeSizeTargetAttribute(const Decl *D, 2188 llvm::GlobalValue *GV, 2189 CodeGen::CodeGenModule &CGM) { 2190 if (D && isa<FunctionDecl>(D)) { 2191 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2192 llvm::Function *Fn = cast<llvm::Function>(GV); 2193 2194 Fn->addFnAttr("stack-probe-size", 2195 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2196 } 2197 } 2198 } 2199 2200 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2201 llvm::GlobalValue *GV, 2202 CodeGen::CodeGenModule &CGM) const { 2203 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2204 2205 addStackProbeSizeTargetAttribute(D, GV, CGM); 2206 } 2207 2208 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2209 public: 2210 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2211 X86AVXABILevel AVXLevel) 2212 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2213 2214 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2215 CodeGen::CodeGenModule &CGM) const override; 2216 2217 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2218 return 7; 2219 } 2220 2221 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2222 llvm::Value *Address) const override { 2223 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2224 2225 // 0-15 are the 16 integer registers. 2226 // 16 is %rip. 2227 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2228 return false; 2229 } 2230 2231 void getDependentLibraryOption(llvm::StringRef Lib, 2232 llvm::SmallString<24> &Opt) const override { 2233 Opt = "/DEFAULTLIB:"; 2234 Opt += qualifyWindowsLibrary(Lib); 2235 } 2236 2237 void getDetectMismatchOption(llvm::StringRef Name, 2238 llvm::StringRef Value, 2239 llvm::SmallString<32> &Opt) const override { 2240 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2241 } 2242 }; 2243 2244 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2245 llvm::GlobalValue *GV, 2246 CodeGen::CodeGenModule &CGM) const { 2247 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2248 2249 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2250 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2251 llvm::Function *Fn = cast<llvm::Function>(GV); 2252 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2253 } 2254 } 2255 2256 addStackProbeSizeTargetAttribute(D, GV, CGM); 2257 } 2258 } 2259 2260 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2261 Class &Hi) const { 2262 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2263 // 2264 // (a) If one of the classes is Memory, the whole argument is passed in 2265 // memory. 2266 // 2267 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2268 // memory. 2269 // 2270 // (c) If the size of the aggregate exceeds two eightbytes and the first 2271 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2272 // argument is passed in memory. NOTE: This is necessary to keep the 2273 // ABI working for processors that don't support the __m256 type. 2274 // 2275 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2276 // 2277 // Some of these are enforced by the merging logic. Others can arise 2278 // only with unions; for example: 2279 // union { _Complex double; unsigned; } 2280 // 2281 // Note that clauses (b) and (c) were added in 0.98. 2282 // 2283 if (Hi == Memory) 2284 Lo = Memory; 2285 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2286 Lo = Memory; 2287 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2288 Lo = Memory; 2289 if (Hi == SSEUp && Lo != SSE) 2290 Hi = SSE; 2291 } 2292 2293 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2294 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2295 // classified recursively so that always two fields are 2296 // considered. The resulting class is calculated according to 2297 // the classes of the fields in the eightbyte: 2298 // 2299 // (a) If both classes are equal, this is the resulting class. 2300 // 2301 // (b) If one of the classes is NO_CLASS, the resulting class is 2302 // the other class. 2303 // 2304 // (c) If one of the classes is MEMORY, the result is the MEMORY 2305 // class. 2306 // 2307 // (d) If one of the classes is INTEGER, the result is the 2308 // INTEGER. 2309 // 2310 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2311 // MEMORY is used as class. 2312 // 2313 // (f) Otherwise class SSE is used. 2314 2315 // Accum should never be memory (we should have returned) or 2316 // ComplexX87 (because this cannot be passed in a structure). 2317 assert((Accum != Memory && Accum != ComplexX87) && 2318 "Invalid accumulated classification during merge."); 2319 if (Accum == Field || Field == NoClass) 2320 return Accum; 2321 if (Field == Memory) 2322 return Memory; 2323 if (Accum == NoClass) 2324 return Field; 2325 if (Accum == Integer || Field == Integer) 2326 return Integer; 2327 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2328 Accum == X87 || Accum == X87Up) 2329 return Memory; 2330 return SSE; 2331 } 2332 2333 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2334 Class &Lo, Class &Hi, bool isNamedArg) const { 2335 // FIXME: This code can be simplified by introducing a simple value class for 2336 // Class pairs with appropriate constructor methods for the various 2337 // situations. 2338 2339 // FIXME: Some of the split computations are wrong; unaligned vectors 2340 // shouldn't be passed in registers for example, so there is no chance they 2341 // can straddle an eightbyte. Verify & simplify. 2342 2343 Lo = Hi = NoClass; 2344 2345 Class &Current = OffsetBase < 64 ? Lo : Hi; 2346 Current = Memory; 2347 2348 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2349 BuiltinType::Kind k = BT->getKind(); 2350 2351 if (k == BuiltinType::Void) { 2352 Current = NoClass; 2353 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2354 Lo = Integer; 2355 Hi = Integer; 2356 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2357 Current = Integer; 2358 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2359 Current = SSE; 2360 } else if (k == BuiltinType::LongDouble) { 2361 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2362 if (LDF == &llvm::APFloat::IEEEquad) { 2363 Lo = SSE; 2364 Hi = SSEUp; 2365 } else if (LDF == &llvm::APFloat::x87DoubleExtended) { 2366 Lo = X87; 2367 Hi = X87Up; 2368 } else if (LDF == &llvm::APFloat::IEEEdouble) { 2369 Current = SSE; 2370 } else 2371 llvm_unreachable("unexpected long double representation!"); 2372 } 2373 // FIXME: _Decimal32 and _Decimal64 are SSE. 2374 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2375 return; 2376 } 2377 2378 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2379 // Classify the underlying integer type. 2380 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2381 return; 2382 } 2383 2384 if (Ty->hasPointerRepresentation()) { 2385 Current = Integer; 2386 return; 2387 } 2388 2389 if (Ty->isMemberPointerType()) { 2390 if (Ty->isMemberFunctionPointerType()) { 2391 if (Has64BitPointers) { 2392 // If Has64BitPointers, this is an {i64, i64}, so classify both 2393 // Lo and Hi now. 2394 Lo = Hi = Integer; 2395 } else { 2396 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2397 // straddles an eightbyte boundary, Hi should be classified as well. 2398 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2399 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2400 if (EB_FuncPtr != EB_ThisAdj) { 2401 Lo = Hi = Integer; 2402 } else { 2403 Current = Integer; 2404 } 2405 } 2406 } else { 2407 Current = Integer; 2408 } 2409 return; 2410 } 2411 2412 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2413 uint64_t Size = getContext().getTypeSize(VT); 2414 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2415 // gcc passes the following as integer: 2416 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2417 // 2 bytes - <2 x char>, <1 x short> 2418 // 1 byte - <1 x char> 2419 Current = Integer; 2420 2421 // If this type crosses an eightbyte boundary, it should be 2422 // split. 2423 uint64_t EB_Lo = (OffsetBase) / 64; 2424 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2425 if (EB_Lo != EB_Hi) 2426 Hi = Lo; 2427 } else if (Size == 64) { 2428 QualType ElementType = VT->getElementType(); 2429 2430 // gcc passes <1 x double> in memory. :( 2431 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2432 return; 2433 2434 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2435 // pass them as integer. For platforms where clang is the de facto 2436 // platform compiler, we must continue to use integer. 2437 if (!classifyIntegerMMXAsSSE() && 2438 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2439 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2440 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2441 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2442 Current = Integer; 2443 else 2444 Current = SSE; 2445 2446 // If this type crosses an eightbyte boundary, it should be 2447 // split. 2448 if (OffsetBase && OffsetBase != 64) 2449 Hi = Lo; 2450 } else if (Size == 128 || 2451 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2452 // Arguments of 256-bits are split into four eightbyte chunks. The 2453 // least significant one belongs to class SSE and all the others to class 2454 // SSEUP. The original Lo and Hi design considers that types can't be 2455 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2456 // This design isn't correct for 256-bits, but since there're no cases 2457 // where the upper parts would need to be inspected, avoid adding 2458 // complexity and just consider Hi to match the 64-256 part. 2459 // 2460 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2461 // registers if they are "named", i.e. not part of the "..." of a 2462 // variadic function. 2463 // 2464 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2465 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2466 Lo = SSE; 2467 Hi = SSEUp; 2468 } 2469 return; 2470 } 2471 2472 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2473 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2474 2475 uint64_t Size = getContext().getTypeSize(Ty); 2476 if (ET->isIntegralOrEnumerationType()) { 2477 if (Size <= 64) 2478 Current = Integer; 2479 else if (Size <= 128) 2480 Lo = Hi = Integer; 2481 } else if (ET == getContext().FloatTy) { 2482 Current = SSE; 2483 } else if (ET == getContext().DoubleTy) { 2484 Lo = Hi = SSE; 2485 } else if (ET == getContext().LongDoubleTy) { 2486 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2487 if (LDF == &llvm::APFloat::IEEEquad) 2488 Current = Memory; 2489 else if (LDF == &llvm::APFloat::x87DoubleExtended) 2490 Current = ComplexX87; 2491 else if (LDF == &llvm::APFloat::IEEEdouble) 2492 Lo = Hi = SSE; 2493 else 2494 llvm_unreachable("unexpected long double representation!"); 2495 } 2496 2497 // If this complex type crosses an eightbyte boundary then it 2498 // should be split. 2499 uint64_t EB_Real = (OffsetBase) / 64; 2500 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2501 if (Hi == NoClass && EB_Real != EB_Imag) 2502 Hi = Lo; 2503 2504 return; 2505 } 2506 2507 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2508 // Arrays are treated like structures. 2509 2510 uint64_t Size = getContext().getTypeSize(Ty); 2511 2512 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2513 // than eight eightbytes, ..., it has class MEMORY. 2514 if (Size > 512) 2515 return; 2516 2517 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2518 // fields, it has class MEMORY. 2519 // 2520 // Only need to check alignment of array base. 2521 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2522 return; 2523 2524 // Otherwise implement simplified merge. We could be smarter about 2525 // this, but it isn't worth it and would be harder to verify. 2526 Current = NoClass; 2527 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2528 uint64_t ArraySize = AT->getSize().getZExtValue(); 2529 2530 // The only case a 256-bit wide vector could be used is when the array 2531 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2532 // to work for sizes wider than 128, early check and fallback to memory. 2533 // 2534 if (Size > 128 && 2535 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2536 return; 2537 2538 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2539 Class FieldLo, FieldHi; 2540 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2541 Lo = merge(Lo, FieldLo); 2542 Hi = merge(Hi, FieldHi); 2543 if (Lo == Memory || Hi == Memory) 2544 break; 2545 } 2546 2547 postMerge(Size, Lo, Hi); 2548 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2549 return; 2550 } 2551 2552 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2553 uint64_t Size = getContext().getTypeSize(Ty); 2554 2555 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2556 // than eight eightbytes, ..., it has class MEMORY. 2557 if (Size > 512) 2558 return; 2559 2560 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2561 // copy constructor or a non-trivial destructor, it is passed by invisible 2562 // reference. 2563 if (getRecordArgABI(RT, getCXXABI())) 2564 return; 2565 2566 const RecordDecl *RD = RT->getDecl(); 2567 2568 // Assume variable sized types are passed in memory. 2569 if (RD->hasFlexibleArrayMember()) 2570 return; 2571 2572 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2573 2574 // Reset Lo class, this will be recomputed. 2575 Current = NoClass; 2576 2577 // If this is a C++ record, classify the bases first. 2578 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2579 for (const auto &I : CXXRD->bases()) { 2580 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2581 "Unexpected base class!"); 2582 const CXXRecordDecl *Base = 2583 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2584 2585 // Classify this field. 2586 // 2587 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2588 // single eightbyte, each is classified separately. Each eightbyte gets 2589 // initialized to class NO_CLASS. 2590 Class FieldLo, FieldHi; 2591 uint64_t Offset = 2592 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2593 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2594 Lo = merge(Lo, FieldLo); 2595 Hi = merge(Hi, FieldHi); 2596 if (Lo == Memory || Hi == Memory) { 2597 postMerge(Size, Lo, Hi); 2598 return; 2599 } 2600 } 2601 } 2602 2603 // Classify the fields one at a time, merging the results. 2604 unsigned idx = 0; 2605 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2606 i != e; ++i, ++idx) { 2607 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2608 bool BitField = i->isBitField(); 2609 2610 // Ignore padding bit-fields. 2611 if (BitField && i->isUnnamedBitfield()) 2612 continue; 2613 2614 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2615 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2616 // 2617 // The only case a 256-bit wide vector could be used is when the struct 2618 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2619 // to work for sizes wider than 128, early check and fallback to memory. 2620 // 2621 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2622 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2623 Lo = Memory; 2624 postMerge(Size, Lo, Hi); 2625 return; 2626 } 2627 // Note, skip this test for bit-fields, see below. 2628 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2629 Lo = Memory; 2630 postMerge(Size, Lo, Hi); 2631 return; 2632 } 2633 2634 // Classify this field. 2635 // 2636 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2637 // exceeds a single eightbyte, each is classified 2638 // separately. Each eightbyte gets initialized to class 2639 // NO_CLASS. 2640 Class FieldLo, FieldHi; 2641 2642 // Bit-fields require special handling, they do not force the 2643 // structure to be passed in memory even if unaligned, and 2644 // therefore they can straddle an eightbyte. 2645 if (BitField) { 2646 assert(!i->isUnnamedBitfield()); 2647 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2648 uint64_t Size = i->getBitWidthValue(getContext()); 2649 2650 uint64_t EB_Lo = Offset / 64; 2651 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2652 2653 if (EB_Lo) { 2654 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2655 FieldLo = NoClass; 2656 FieldHi = Integer; 2657 } else { 2658 FieldLo = Integer; 2659 FieldHi = EB_Hi ? Integer : NoClass; 2660 } 2661 } else 2662 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2663 Lo = merge(Lo, FieldLo); 2664 Hi = merge(Hi, FieldHi); 2665 if (Lo == Memory || Hi == Memory) 2666 break; 2667 } 2668 2669 postMerge(Size, Lo, Hi); 2670 } 2671 } 2672 2673 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2674 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2675 // place naturally. 2676 if (!isAggregateTypeForABI(Ty)) { 2677 // Treat an enum type as its underlying type. 2678 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2679 Ty = EnumTy->getDecl()->getIntegerType(); 2680 2681 return (Ty->isPromotableIntegerType() ? 2682 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2683 } 2684 2685 return getNaturalAlignIndirect(Ty); 2686 } 2687 2688 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2689 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2690 uint64_t Size = getContext().getTypeSize(VecTy); 2691 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2692 if (Size <= 64 || Size > LargestVector) 2693 return true; 2694 } 2695 2696 return false; 2697 } 2698 2699 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2700 unsigned freeIntRegs) const { 2701 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2702 // place naturally. 2703 // 2704 // This assumption is optimistic, as there could be free registers available 2705 // when we need to pass this argument in memory, and LLVM could try to pass 2706 // the argument in the free register. This does not seem to happen currently, 2707 // but this code would be much safer if we could mark the argument with 2708 // 'onstack'. See PR12193. 2709 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2710 // Treat an enum type as its underlying type. 2711 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2712 Ty = EnumTy->getDecl()->getIntegerType(); 2713 2714 return (Ty->isPromotableIntegerType() ? 2715 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2716 } 2717 2718 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2719 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2720 2721 // Compute the byval alignment. We specify the alignment of the byval in all 2722 // cases so that the mid-level optimizer knows the alignment of the byval. 2723 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2724 2725 // Attempt to avoid passing indirect results using byval when possible. This 2726 // is important for good codegen. 2727 // 2728 // We do this by coercing the value into a scalar type which the backend can 2729 // handle naturally (i.e., without using byval). 2730 // 2731 // For simplicity, we currently only do this when we have exhausted all of the 2732 // free integer registers. Doing this when there are free integer registers 2733 // would require more care, as we would have to ensure that the coerced value 2734 // did not claim the unused register. That would require either reording the 2735 // arguments to the function (so that any subsequent inreg values came first), 2736 // or only doing this optimization when there were no following arguments that 2737 // might be inreg. 2738 // 2739 // We currently expect it to be rare (particularly in well written code) for 2740 // arguments to be passed on the stack when there are still free integer 2741 // registers available (this would typically imply large structs being passed 2742 // by value), so this seems like a fair tradeoff for now. 2743 // 2744 // We can revisit this if the backend grows support for 'onstack' parameter 2745 // attributes. See PR12193. 2746 if (freeIntRegs == 0) { 2747 uint64_t Size = getContext().getTypeSize(Ty); 2748 2749 // If this type fits in an eightbyte, coerce it into the matching integral 2750 // type, which will end up on the stack (with alignment 8). 2751 if (Align == 8 && Size <= 64) 2752 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2753 Size)); 2754 } 2755 2756 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2757 } 2758 2759 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2760 /// register. Pick an LLVM IR type that will be passed as a vector register. 2761 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2762 // Wrapper structs/arrays that only contain vectors are passed just like 2763 // vectors; strip them off if present. 2764 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2765 Ty = QualType(InnerTy, 0); 2766 2767 llvm::Type *IRType = CGT.ConvertType(Ty); 2768 if (isa<llvm::VectorType>(IRType) || 2769 IRType->getTypeID() == llvm::Type::FP128TyID) 2770 return IRType; 2771 2772 // We couldn't find the preferred IR vector type for 'Ty'. 2773 uint64_t Size = getContext().getTypeSize(Ty); 2774 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2775 2776 // Return a LLVM IR vector type based on the size of 'Ty'. 2777 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2778 Size / 64); 2779 } 2780 2781 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2782 /// is known to either be off the end of the specified type or being in 2783 /// alignment padding. The user type specified is known to be at most 128 bits 2784 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2785 /// classification that put one of the two halves in the INTEGER class. 2786 /// 2787 /// It is conservatively correct to return false. 2788 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2789 unsigned EndBit, ASTContext &Context) { 2790 // If the bytes being queried are off the end of the type, there is no user 2791 // data hiding here. This handles analysis of builtins, vectors and other 2792 // types that don't contain interesting padding. 2793 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2794 if (TySize <= StartBit) 2795 return true; 2796 2797 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2798 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2799 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2800 2801 // Check each element to see if the element overlaps with the queried range. 2802 for (unsigned i = 0; i != NumElts; ++i) { 2803 // If the element is after the span we care about, then we're done.. 2804 unsigned EltOffset = i*EltSize; 2805 if (EltOffset >= EndBit) break; 2806 2807 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2808 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2809 EndBit-EltOffset, Context)) 2810 return false; 2811 } 2812 // If it overlaps no elements, then it is safe to process as padding. 2813 return true; 2814 } 2815 2816 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2817 const RecordDecl *RD = RT->getDecl(); 2818 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2819 2820 // If this is a C++ record, check the bases first. 2821 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2822 for (const auto &I : CXXRD->bases()) { 2823 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2824 "Unexpected base class!"); 2825 const CXXRecordDecl *Base = 2826 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2827 2828 // If the base is after the span we care about, ignore it. 2829 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2830 if (BaseOffset >= EndBit) continue; 2831 2832 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2833 if (!BitsContainNoUserData(I.getType(), BaseStart, 2834 EndBit-BaseOffset, Context)) 2835 return false; 2836 } 2837 } 2838 2839 // Verify that no field has data that overlaps the region of interest. Yes 2840 // this could be sped up a lot by being smarter about queried fields, 2841 // however we're only looking at structs up to 16 bytes, so we don't care 2842 // much. 2843 unsigned idx = 0; 2844 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2845 i != e; ++i, ++idx) { 2846 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2847 2848 // If we found a field after the region we care about, then we're done. 2849 if (FieldOffset >= EndBit) break; 2850 2851 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2852 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2853 Context)) 2854 return false; 2855 } 2856 2857 // If nothing in this record overlapped the area of interest, then we're 2858 // clean. 2859 return true; 2860 } 2861 2862 return false; 2863 } 2864 2865 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2866 /// float member at the specified offset. For example, {int,{float}} has a 2867 /// float at offset 4. It is conservatively correct for this routine to return 2868 /// false. 2869 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2870 const llvm::DataLayout &TD) { 2871 // Base case if we find a float. 2872 if (IROffset == 0 && IRType->isFloatTy()) 2873 return true; 2874 2875 // If this is a struct, recurse into the field at the specified offset. 2876 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2877 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2878 unsigned Elt = SL->getElementContainingOffset(IROffset); 2879 IROffset -= SL->getElementOffset(Elt); 2880 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2881 } 2882 2883 // If this is an array, recurse into the field at the specified offset. 2884 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2885 llvm::Type *EltTy = ATy->getElementType(); 2886 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2887 IROffset -= IROffset/EltSize*EltSize; 2888 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2889 } 2890 2891 return false; 2892 } 2893 2894 2895 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2896 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2897 llvm::Type *X86_64ABIInfo:: 2898 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2899 QualType SourceTy, unsigned SourceOffset) const { 2900 // The only three choices we have are either double, <2 x float>, or float. We 2901 // pass as float if the last 4 bytes is just padding. This happens for 2902 // structs that contain 3 floats. 2903 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2904 SourceOffset*8+64, getContext())) 2905 return llvm::Type::getFloatTy(getVMContext()); 2906 2907 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2908 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2909 // case. 2910 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2911 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2912 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2913 2914 return llvm::Type::getDoubleTy(getVMContext()); 2915 } 2916 2917 2918 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2919 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2920 /// about the high or low part of an up-to-16-byte struct. This routine picks 2921 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2922 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2923 /// etc). 2924 /// 2925 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2926 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2927 /// the 8-byte value references. PrefType may be null. 2928 /// 2929 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2930 /// an offset into this that we're processing (which is always either 0 or 8). 2931 /// 2932 llvm::Type *X86_64ABIInfo:: 2933 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2934 QualType SourceTy, unsigned SourceOffset) const { 2935 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2936 // returning an 8-byte unit starting with it. See if we can safely use it. 2937 if (IROffset == 0) { 2938 // Pointers and int64's always fill the 8-byte unit. 2939 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2940 IRType->isIntegerTy(64)) 2941 return IRType; 2942 2943 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2944 // goodness in the source type is just tail padding. This is allowed to 2945 // kick in for struct {double,int} on the int, but not on 2946 // struct{double,int,int} because we wouldn't return the second int. We 2947 // have to do this analysis on the source type because we can't depend on 2948 // unions being lowered a specific way etc. 2949 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2950 IRType->isIntegerTy(32) || 2951 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2952 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2953 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2954 2955 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2956 SourceOffset*8+64, getContext())) 2957 return IRType; 2958 } 2959 } 2960 2961 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2962 // If this is a struct, recurse into the field at the specified offset. 2963 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2964 if (IROffset < SL->getSizeInBytes()) { 2965 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2966 IROffset -= SL->getElementOffset(FieldIdx); 2967 2968 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2969 SourceTy, SourceOffset); 2970 } 2971 } 2972 2973 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2974 llvm::Type *EltTy = ATy->getElementType(); 2975 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2976 unsigned EltOffset = IROffset/EltSize*EltSize; 2977 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2978 SourceOffset); 2979 } 2980 2981 // Okay, we don't have any better idea of what to pass, so we pass this in an 2982 // integer register that isn't too big to fit the rest of the struct. 2983 unsigned TySizeInBytes = 2984 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2985 2986 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2987 2988 // It is always safe to classify this as an integer type up to i64 that 2989 // isn't larger than the structure. 2990 return llvm::IntegerType::get(getVMContext(), 2991 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2992 } 2993 2994 2995 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2996 /// be used as elements of a two register pair to pass or return, return a 2997 /// first class aggregate to represent them. For example, if the low part of 2998 /// a by-value argument should be passed as i32* and the high part as float, 2999 /// return {i32*, float}. 3000 static llvm::Type * 3001 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3002 const llvm::DataLayout &TD) { 3003 // In order to correctly satisfy the ABI, we need to the high part to start 3004 // at offset 8. If the high and low parts we inferred are both 4-byte types 3005 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3006 // the second element at offset 8. Check for this: 3007 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3008 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3009 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3010 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3011 3012 // To handle this, we have to increase the size of the low part so that the 3013 // second element will start at an 8 byte offset. We can't increase the size 3014 // of the second element because it might make us access off the end of the 3015 // struct. 3016 if (HiStart != 8) { 3017 // There are usually two sorts of types the ABI generation code can produce 3018 // for the low part of a pair that aren't 8 bytes in size: float or 3019 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3020 // NaCl). 3021 // Promote these to a larger type. 3022 if (Lo->isFloatTy()) 3023 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3024 else { 3025 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3026 && "Invalid/unknown lo type"); 3027 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3028 } 3029 } 3030 3031 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 3032 3033 3034 // Verify that the second element is at an 8-byte offset. 3035 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3036 "Invalid x86-64 argument pair!"); 3037 return Result; 3038 } 3039 3040 ABIArgInfo X86_64ABIInfo:: 3041 classifyReturnType(QualType RetTy) const { 3042 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3043 // classification algorithm. 3044 X86_64ABIInfo::Class Lo, Hi; 3045 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3046 3047 // Check some invariants. 3048 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3049 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3050 3051 llvm::Type *ResType = nullptr; 3052 switch (Lo) { 3053 case NoClass: 3054 if (Hi == NoClass) 3055 return ABIArgInfo::getIgnore(); 3056 // If the low part is just padding, it takes no register, leave ResType 3057 // null. 3058 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3059 "Unknown missing lo part"); 3060 break; 3061 3062 case SSEUp: 3063 case X87Up: 3064 llvm_unreachable("Invalid classification for lo word."); 3065 3066 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3067 // hidden argument. 3068 case Memory: 3069 return getIndirectReturnResult(RetTy); 3070 3071 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3072 // available register of the sequence %rax, %rdx is used. 3073 case Integer: 3074 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3075 3076 // If we have a sign or zero extended integer, make sure to return Extend 3077 // so that the parameter gets the right LLVM IR attributes. 3078 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3079 // Treat an enum type as its underlying type. 3080 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3081 RetTy = EnumTy->getDecl()->getIntegerType(); 3082 3083 if (RetTy->isIntegralOrEnumerationType() && 3084 RetTy->isPromotableIntegerType()) 3085 return ABIArgInfo::getExtend(); 3086 } 3087 break; 3088 3089 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3090 // available SSE register of the sequence %xmm0, %xmm1 is used. 3091 case SSE: 3092 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3093 break; 3094 3095 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3096 // returned on the X87 stack in %st0 as 80-bit x87 number. 3097 case X87: 3098 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3099 break; 3100 3101 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3102 // part of the value is returned in %st0 and the imaginary part in 3103 // %st1. 3104 case ComplexX87: 3105 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3106 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3107 llvm::Type::getX86_FP80Ty(getVMContext()), 3108 nullptr); 3109 break; 3110 } 3111 3112 llvm::Type *HighPart = nullptr; 3113 switch (Hi) { 3114 // Memory was handled previously and X87 should 3115 // never occur as a hi class. 3116 case Memory: 3117 case X87: 3118 llvm_unreachable("Invalid classification for hi word."); 3119 3120 case ComplexX87: // Previously handled. 3121 case NoClass: 3122 break; 3123 3124 case Integer: 3125 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3126 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3127 return ABIArgInfo::getDirect(HighPart, 8); 3128 break; 3129 case SSE: 3130 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3131 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3132 return ABIArgInfo::getDirect(HighPart, 8); 3133 break; 3134 3135 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3136 // is passed in the next available eightbyte chunk if the last used 3137 // vector register. 3138 // 3139 // SSEUP should always be preceded by SSE, just widen. 3140 case SSEUp: 3141 assert(Lo == SSE && "Unexpected SSEUp classification."); 3142 ResType = GetByteVectorType(RetTy); 3143 break; 3144 3145 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3146 // returned together with the previous X87 value in %st0. 3147 case X87Up: 3148 // If X87Up is preceded by X87, we don't need to do 3149 // anything. However, in some cases with unions it may not be 3150 // preceded by X87. In such situations we follow gcc and pass the 3151 // extra bits in an SSE reg. 3152 if (Lo != X87) { 3153 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3154 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3155 return ABIArgInfo::getDirect(HighPart, 8); 3156 } 3157 break; 3158 } 3159 3160 // If a high part was specified, merge it together with the low part. It is 3161 // known to pass in the high eightbyte of the result. We do this by forming a 3162 // first class struct aggregate with the high and low part: {low, high} 3163 if (HighPart) 3164 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3165 3166 return ABIArgInfo::getDirect(ResType); 3167 } 3168 3169 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3170 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3171 bool isNamedArg) 3172 const 3173 { 3174 Ty = useFirstFieldIfTransparentUnion(Ty); 3175 3176 X86_64ABIInfo::Class Lo, Hi; 3177 classify(Ty, 0, Lo, Hi, isNamedArg); 3178 3179 // Check some invariants. 3180 // FIXME: Enforce these by construction. 3181 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3182 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3183 3184 neededInt = 0; 3185 neededSSE = 0; 3186 llvm::Type *ResType = nullptr; 3187 switch (Lo) { 3188 case NoClass: 3189 if (Hi == NoClass) 3190 return ABIArgInfo::getIgnore(); 3191 // If the low part is just padding, it takes no register, leave ResType 3192 // null. 3193 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3194 "Unknown missing lo part"); 3195 break; 3196 3197 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3198 // on the stack. 3199 case Memory: 3200 3201 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3202 // COMPLEX_X87, it is passed in memory. 3203 case X87: 3204 case ComplexX87: 3205 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3206 ++neededInt; 3207 return getIndirectResult(Ty, freeIntRegs); 3208 3209 case SSEUp: 3210 case X87Up: 3211 llvm_unreachable("Invalid classification for lo word."); 3212 3213 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3214 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3215 // and %r9 is used. 3216 case Integer: 3217 ++neededInt; 3218 3219 // Pick an 8-byte type based on the preferred type. 3220 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3221 3222 // If we have a sign or zero extended integer, make sure to return Extend 3223 // so that the parameter gets the right LLVM IR attributes. 3224 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3225 // Treat an enum type as its underlying type. 3226 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3227 Ty = EnumTy->getDecl()->getIntegerType(); 3228 3229 if (Ty->isIntegralOrEnumerationType() && 3230 Ty->isPromotableIntegerType()) 3231 return ABIArgInfo::getExtend(); 3232 } 3233 3234 break; 3235 3236 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3237 // available SSE register is used, the registers are taken in the 3238 // order from %xmm0 to %xmm7. 3239 case SSE: { 3240 llvm::Type *IRType = CGT.ConvertType(Ty); 3241 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3242 ++neededSSE; 3243 break; 3244 } 3245 } 3246 3247 llvm::Type *HighPart = nullptr; 3248 switch (Hi) { 3249 // Memory was handled previously, ComplexX87 and X87 should 3250 // never occur as hi classes, and X87Up must be preceded by X87, 3251 // which is passed in memory. 3252 case Memory: 3253 case X87: 3254 case ComplexX87: 3255 llvm_unreachable("Invalid classification for hi word."); 3256 3257 case NoClass: break; 3258 3259 case Integer: 3260 ++neededInt; 3261 // Pick an 8-byte type based on the preferred type. 3262 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3263 3264 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3265 return ABIArgInfo::getDirect(HighPart, 8); 3266 break; 3267 3268 // X87Up generally doesn't occur here (long double is passed in 3269 // memory), except in situations involving unions. 3270 case X87Up: 3271 case SSE: 3272 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3273 3274 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3275 return ABIArgInfo::getDirect(HighPart, 8); 3276 3277 ++neededSSE; 3278 break; 3279 3280 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3281 // eightbyte is passed in the upper half of the last used SSE 3282 // register. This only happens when 128-bit vectors are passed. 3283 case SSEUp: 3284 assert(Lo == SSE && "Unexpected SSEUp classification"); 3285 ResType = GetByteVectorType(Ty); 3286 break; 3287 } 3288 3289 // If a high part was specified, merge it together with the low part. It is 3290 // known to pass in the high eightbyte of the result. We do this by forming a 3291 // first class struct aggregate with the high and low part: {low, high} 3292 if (HighPart) 3293 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3294 3295 return ABIArgInfo::getDirect(ResType); 3296 } 3297 3298 ABIArgInfo 3299 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3300 unsigned &NeededSSE) const { 3301 auto RT = Ty->getAs<RecordType>(); 3302 assert(RT && "classifyRegCallStructType only valid with struct types"); 3303 3304 if (RT->getDecl()->hasFlexibleArrayMember()) 3305 return getIndirectReturnResult(Ty); 3306 3307 // Sum up bases 3308 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3309 if (CXXRD->isDynamicClass()) { 3310 NeededInt = NeededSSE = 0; 3311 return getIndirectReturnResult(Ty); 3312 } 3313 3314 for (const auto &I : CXXRD->bases()) 3315 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3316 .isIndirect()) { 3317 NeededInt = NeededSSE = 0; 3318 return getIndirectReturnResult(Ty); 3319 } 3320 } 3321 3322 // Sum up members 3323 for (const auto *FD : RT->getDecl()->fields()) { 3324 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3325 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3326 .isIndirect()) { 3327 NeededInt = NeededSSE = 0; 3328 return getIndirectReturnResult(Ty); 3329 } 3330 } else { 3331 unsigned LocalNeededInt, LocalNeededSSE; 3332 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3333 LocalNeededSSE, true) 3334 .isIndirect()) { 3335 NeededInt = NeededSSE = 0; 3336 return getIndirectReturnResult(Ty); 3337 } 3338 NeededInt += LocalNeededInt; 3339 NeededSSE += LocalNeededSSE; 3340 } 3341 } 3342 3343 return ABIArgInfo::getDirect(); 3344 } 3345 3346 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3347 unsigned &NeededInt, 3348 unsigned &NeededSSE) const { 3349 3350 NeededInt = 0; 3351 NeededSSE = 0; 3352 3353 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3354 } 3355 3356 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3357 3358 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3359 3360 // Keep track of the number of assigned registers. 3361 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3362 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3363 unsigned NeededInt, NeededSSE; 3364 3365 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3366 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3367 FI.getReturnInfo() = 3368 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3369 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3370 FreeIntRegs -= NeededInt; 3371 FreeSSERegs -= NeededSSE; 3372 } else { 3373 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3374 } 3375 } else if (!getCXXABI().classifyReturnType(FI)) 3376 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3377 3378 // If the return value is indirect, then the hidden argument is consuming one 3379 // integer register. 3380 if (FI.getReturnInfo().isIndirect()) 3381 --FreeIntRegs; 3382 3383 // The chain argument effectively gives us another free register. 3384 if (FI.isChainCall()) 3385 ++FreeIntRegs; 3386 3387 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3388 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3389 // get assigned (in left-to-right order) for passing as follows... 3390 unsigned ArgNo = 0; 3391 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3392 it != ie; ++it, ++ArgNo) { 3393 bool IsNamedArg = ArgNo < NumRequiredArgs; 3394 3395 if (IsRegCall && it->type->isStructureOrClassType()) 3396 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3397 else 3398 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3399 NeededSSE, IsNamedArg); 3400 3401 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3402 // eightbyte of an argument, the whole argument is passed on the 3403 // stack. If registers have already been assigned for some 3404 // eightbytes of such an argument, the assignments get reverted. 3405 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3406 FreeIntRegs -= NeededInt; 3407 FreeSSERegs -= NeededSSE; 3408 } else { 3409 it->info = getIndirectResult(it->type, FreeIntRegs); 3410 } 3411 } 3412 } 3413 3414 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3415 Address VAListAddr, QualType Ty) { 3416 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3417 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3418 llvm::Value *overflow_arg_area = 3419 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3420 3421 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3422 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3423 // It isn't stated explicitly in the standard, but in practice we use 3424 // alignment greater than 16 where necessary. 3425 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3426 if (Align > CharUnits::fromQuantity(8)) { 3427 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3428 Align); 3429 } 3430 3431 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3432 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3433 llvm::Value *Res = 3434 CGF.Builder.CreateBitCast(overflow_arg_area, 3435 llvm::PointerType::getUnqual(LTy)); 3436 3437 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3438 // l->overflow_arg_area + sizeof(type). 3439 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3440 // an 8 byte boundary. 3441 3442 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3443 llvm::Value *Offset = 3444 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3445 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3446 "overflow_arg_area.next"); 3447 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3448 3449 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3450 return Address(Res, Align); 3451 } 3452 3453 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3454 QualType Ty) const { 3455 // Assume that va_list type is correct; should be pointer to LLVM type: 3456 // struct { 3457 // i32 gp_offset; 3458 // i32 fp_offset; 3459 // i8* overflow_arg_area; 3460 // i8* reg_save_area; 3461 // }; 3462 unsigned neededInt, neededSSE; 3463 3464 Ty = getContext().getCanonicalType(Ty); 3465 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3466 /*isNamedArg*/false); 3467 3468 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3469 // in the registers. If not go to step 7. 3470 if (!neededInt && !neededSSE) 3471 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3472 3473 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3474 // general purpose registers needed to pass type and num_fp to hold 3475 // the number of floating point registers needed. 3476 3477 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3478 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3479 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3480 // 3481 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3482 // register save space). 3483 3484 llvm::Value *InRegs = nullptr; 3485 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3486 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3487 if (neededInt) { 3488 gp_offset_p = 3489 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3490 "gp_offset_p"); 3491 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3492 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3493 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3494 } 3495 3496 if (neededSSE) { 3497 fp_offset_p = 3498 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3499 "fp_offset_p"); 3500 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3501 llvm::Value *FitsInFP = 3502 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3503 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3504 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3505 } 3506 3507 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3508 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3509 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3510 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3511 3512 // Emit code to load the value if it was passed in registers. 3513 3514 CGF.EmitBlock(InRegBlock); 3515 3516 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3517 // an offset of l->gp_offset and/or l->fp_offset. This may require 3518 // copying to a temporary location in case the parameter is passed 3519 // in different register classes or requires an alignment greater 3520 // than 8 for general purpose registers and 16 for XMM registers. 3521 // 3522 // FIXME: This really results in shameful code when we end up needing to 3523 // collect arguments from different places; often what should result in a 3524 // simple assembling of a structure from scattered addresses has many more 3525 // loads than necessary. Can we clean this up? 3526 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3527 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3528 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3529 "reg_save_area"); 3530 3531 Address RegAddr = Address::invalid(); 3532 if (neededInt && neededSSE) { 3533 // FIXME: Cleanup. 3534 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3535 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3536 Address Tmp = CGF.CreateMemTemp(Ty); 3537 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3538 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3539 llvm::Type *TyLo = ST->getElementType(0); 3540 llvm::Type *TyHi = ST->getElementType(1); 3541 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3542 "Unexpected ABI info for mixed regs"); 3543 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3544 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3545 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3546 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3547 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3548 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3549 3550 // Copy the first element. 3551 llvm::Value *V = 3552 CGF.Builder.CreateDefaultAlignedLoad( 3553 CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 3554 CGF.Builder.CreateStore(V, 3555 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3556 3557 // Copy the second element. 3558 V = CGF.Builder.CreateDefaultAlignedLoad( 3559 CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 3560 CharUnits Offset = CharUnits::fromQuantity( 3561 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3562 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3563 3564 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3565 } else if (neededInt) { 3566 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3567 CharUnits::fromQuantity(8)); 3568 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3569 3570 // Copy to a temporary if necessary to ensure the appropriate alignment. 3571 std::pair<CharUnits, CharUnits> SizeAlign = 3572 getContext().getTypeInfoInChars(Ty); 3573 uint64_t TySize = SizeAlign.first.getQuantity(); 3574 CharUnits TyAlign = SizeAlign.second; 3575 3576 // Copy into a temporary if the type is more aligned than the 3577 // register save area. 3578 if (TyAlign.getQuantity() > 8) { 3579 Address Tmp = CGF.CreateMemTemp(Ty); 3580 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3581 RegAddr = Tmp; 3582 } 3583 3584 } else if (neededSSE == 1) { 3585 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3586 CharUnits::fromQuantity(16)); 3587 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3588 } else { 3589 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3590 // SSE registers are spaced 16 bytes apart in the register save 3591 // area, we need to collect the two eightbytes together. 3592 // The ABI isn't explicit about this, but it seems reasonable 3593 // to assume that the slots are 16-byte aligned, since the stack is 3594 // naturally 16-byte aligned and the prologue is expected to store 3595 // all the SSE registers to the RSA. 3596 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3597 CharUnits::fromQuantity(16)); 3598 Address RegAddrHi = 3599 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3600 CharUnits::fromQuantity(16)); 3601 llvm::Type *DoubleTy = CGF.DoubleTy; 3602 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3603 llvm::Value *V; 3604 Address Tmp = CGF.CreateMemTemp(Ty); 3605 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3606 V = CGF.Builder.CreateLoad( 3607 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3608 CGF.Builder.CreateStore(V, 3609 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3610 V = CGF.Builder.CreateLoad( 3611 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3612 CGF.Builder.CreateStore(V, 3613 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3614 3615 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3616 } 3617 3618 // AMD64-ABI 3.5.7p5: Step 5. Set: 3619 // l->gp_offset = l->gp_offset + num_gp * 8 3620 // l->fp_offset = l->fp_offset + num_fp * 16. 3621 if (neededInt) { 3622 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3623 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3624 gp_offset_p); 3625 } 3626 if (neededSSE) { 3627 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3628 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3629 fp_offset_p); 3630 } 3631 CGF.EmitBranch(ContBlock); 3632 3633 // Emit code to load the value if it was passed in memory. 3634 3635 CGF.EmitBlock(InMemBlock); 3636 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3637 3638 // Return the appropriate result. 3639 3640 CGF.EmitBlock(ContBlock); 3641 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3642 "vaarg.addr"); 3643 return ResAddr; 3644 } 3645 3646 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3647 QualType Ty) const { 3648 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3649 CGF.getContext().getTypeInfoInChars(Ty), 3650 CharUnits::fromQuantity(8), 3651 /*allowHigherAlign*/ false); 3652 } 3653 3654 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3655 bool IsReturnType) const { 3656 3657 if (Ty->isVoidType()) 3658 return ABIArgInfo::getIgnore(); 3659 3660 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3661 Ty = EnumTy->getDecl()->getIntegerType(); 3662 3663 TypeInfo Info = getContext().getTypeInfo(Ty); 3664 uint64_t Width = Info.Width; 3665 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3666 3667 const RecordType *RT = Ty->getAs<RecordType>(); 3668 if (RT) { 3669 if (!IsReturnType) { 3670 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3671 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3672 } 3673 3674 if (RT->getDecl()->hasFlexibleArrayMember()) 3675 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3676 3677 } 3678 3679 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3680 // other targets. 3681 const Type *Base = nullptr; 3682 uint64_t NumElts = 0; 3683 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3684 if (FreeSSERegs >= NumElts) { 3685 FreeSSERegs -= NumElts; 3686 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3687 return ABIArgInfo::getDirect(); 3688 return ABIArgInfo::getExpand(); 3689 } 3690 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3691 } 3692 3693 3694 if (Ty->isMemberPointerType()) { 3695 // If the member pointer is represented by an LLVM int or ptr, pass it 3696 // directly. 3697 llvm::Type *LLTy = CGT.ConvertType(Ty); 3698 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3699 return ABIArgInfo::getDirect(); 3700 } 3701 3702 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3703 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3704 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3705 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3706 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3707 3708 // Otherwise, coerce it to a small integer. 3709 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3710 } 3711 3712 // Bool type is always extended to the ABI, other builtin types are not 3713 // extended. 3714 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3715 if (BT && BT->getKind() == BuiltinType::Bool) 3716 return ABIArgInfo::getExtend(); 3717 3718 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3719 // passes them indirectly through memory. 3720 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3721 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3722 if (LDF == &llvm::APFloat::x87DoubleExtended) 3723 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3724 } 3725 3726 return ABIArgInfo::getDirect(); 3727 } 3728 3729 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3730 bool IsVectorCall = 3731 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3732 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3733 3734 unsigned FreeSSERegs = 0; 3735 if (IsVectorCall) { 3736 // We can use up to 4 SSE return registers with vectorcall. 3737 FreeSSERegs = 4; 3738 } else if (IsRegCall) { 3739 // RegCall gives us 16 SSE registers. 3740 FreeSSERegs = 16; 3741 } 3742 3743 if (!getCXXABI().classifyReturnType(FI)) 3744 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3745 3746 if (IsVectorCall) { 3747 // We can use up to 6 SSE register parameters with vectorcall. 3748 FreeSSERegs = 6; 3749 } else if (IsRegCall) { 3750 FreeSSERegs = 16; 3751 } 3752 3753 for (auto &I : FI.arguments()) 3754 I.info = classify(I.type, FreeSSERegs, false); 3755 } 3756 3757 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3758 QualType Ty) const { 3759 3760 bool IsIndirect = false; 3761 3762 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3763 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3764 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 3765 uint64_t Width = getContext().getTypeSize(Ty); 3766 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3767 } 3768 3769 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3770 CGF.getContext().getTypeInfoInChars(Ty), 3771 CharUnits::fromQuantity(8), 3772 /*allowHigherAlign*/ false); 3773 } 3774 3775 // PowerPC-32 3776 namespace { 3777 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3778 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3779 bool IsSoftFloatABI; 3780 public: 3781 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3782 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3783 3784 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3785 QualType Ty) const override; 3786 }; 3787 3788 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3789 public: 3790 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3791 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3792 3793 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3794 // This is recovered from gcc output. 3795 return 1; // r1 is the dedicated stack pointer 3796 } 3797 3798 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3799 llvm::Value *Address) const override; 3800 }; 3801 3802 } 3803 3804 // TODO: this implementation is now likely redundant with 3805 // DefaultABIInfo::EmitVAArg. 3806 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3807 QualType Ty) const { 3808 const unsigned OverflowLimit = 8; 3809 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3810 // TODO: Implement this. For now ignore. 3811 (void)CTy; 3812 return Address::invalid(); // FIXME? 3813 } 3814 3815 // struct __va_list_tag { 3816 // unsigned char gpr; 3817 // unsigned char fpr; 3818 // unsigned short reserved; 3819 // void *overflow_arg_area; 3820 // void *reg_save_area; 3821 // }; 3822 3823 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3824 bool isInt = 3825 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3826 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 3827 3828 // All aggregates are passed indirectly? That doesn't seem consistent 3829 // with the argument-lowering code. 3830 bool isIndirect = Ty->isAggregateType(); 3831 3832 CGBuilderTy &Builder = CGF.Builder; 3833 3834 // The calling convention either uses 1-2 GPRs or 1 FPR. 3835 Address NumRegsAddr = Address::invalid(); 3836 if (isInt || IsSoftFloatABI) { 3837 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 3838 } else { 3839 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 3840 } 3841 3842 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 3843 3844 // "Align" the register count when TY is i64. 3845 if (isI64 || (isF64 && IsSoftFloatABI)) { 3846 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 3847 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 3848 } 3849 3850 llvm::Value *CC = 3851 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 3852 3853 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3854 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3855 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3856 3857 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3858 3859 llvm::Type *DirectTy = CGF.ConvertType(Ty); 3860 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 3861 3862 // Case 1: consume registers. 3863 Address RegAddr = Address::invalid(); 3864 { 3865 CGF.EmitBlock(UsingRegs); 3866 3867 Address RegSaveAreaPtr = 3868 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 3869 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 3870 CharUnits::fromQuantity(8)); 3871 assert(RegAddr.getElementType() == CGF.Int8Ty); 3872 3873 // Floating-point registers start after the general-purpose registers. 3874 if (!(isInt || IsSoftFloatABI)) { 3875 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 3876 CharUnits::fromQuantity(32)); 3877 } 3878 3879 // Get the address of the saved value by scaling the number of 3880 // registers we've used by the number of 3881 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 3882 llvm::Value *RegOffset = 3883 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 3884 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 3885 RegAddr.getPointer(), RegOffset), 3886 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 3887 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 3888 3889 // Increase the used-register count. 3890 NumRegs = 3891 Builder.CreateAdd(NumRegs, 3892 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 3893 Builder.CreateStore(NumRegs, NumRegsAddr); 3894 3895 CGF.EmitBranch(Cont); 3896 } 3897 3898 // Case 2: consume space in the overflow area. 3899 Address MemAddr = Address::invalid(); 3900 { 3901 CGF.EmitBlock(UsingOverflow); 3902 3903 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 3904 3905 // Everything in the overflow area is rounded up to a size of at least 4. 3906 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 3907 3908 CharUnits Size; 3909 if (!isIndirect) { 3910 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 3911 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 3912 } else { 3913 Size = CGF.getPointerSize(); 3914 } 3915 3916 Address OverflowAreaAddr = 3917 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 3918 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 3919 OverflowAreaAlign); 3920 // Round up address of argument to alignment 3921 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3922 if (Align > OverflowAreaAlign) { 3923 llvm::Value *Ptr = OverflowArea.getPointer(); 3924 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 3925 Align); 3926 } 3927 3928 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 3929 3930 // Increase the overflow area. 3931 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 3932 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 3933 CGF.EmitBranch(Cont); 3934 } 3935 3936 CGF.EmitBlock(Cont); 3937 3938 // Merge the cases with a phi. 3939 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 3940 "vaarg.addr"); 3941 3942 // Load the pointer if the argument was passed indirectly. 3943 if (isIndirect) { 3944 Result = Address(Builder.CreateLoad(Result, "aggr"), 3945 getContext().getTypeAlignInChars(Ty)); 3946 } 3947 3948 return Result; 3949 } 3950 3951 bool 3952 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3953 llvm::Value *Address) const { 3954 // This is calculated from the LLVM and GCC tables and verified 3955 // against gcc output. AFAIK all ABIs use the same encoding. 3956 3957 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3958 3959 llvm::IntegerType *i8 = CGF.Int8Ty; 3960 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3961 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3962 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3963 3964 // 0-31: r0-31, the 4-byte general-purpose registers 3965 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3966 3967 // 32-63: fp0-31, the 8-byte floating-point registers 3968 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3969 3970 // 64-76 are various 4-byte special-purpose registers: 3971 // 64: mq 3972 // 65: lr 3973 // 66: ctr 3974 // 67: ap 3975 // 68-75 cr0-7 3976 // 76: xer 3977 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3978 3979 // 77-108: v0-31, the 16-byte vector registers 3980 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3981 3982 // 109: vrsave 3983 // 110: vscr 3984 // 111: spe_acc 3985 // 112: spefscr 3986 // 113: sfp 3987 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3988 3989 return false; 3990 } 3991 3992 // PowerPC-64 3993 3994 namespace { 3995 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3996 class PPC64_SVR4_ABIInfo : public ABIInfo { 3997 public: 3998 enum ABIKind { 3999 ELFv1 = 0, 4000 ELFv2 4001 }; 4002 4003 private: 4004 static const unsigned GPRBits = 64; 4005 ABIKind Kind; 4006 bool HasQPX; 4007 bool IsSoftFloatABI; 4008 4009 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4010 // will be passed in a QPX register. 4011 bool IsQPXVectorTy(const Type *Ty) const { 4012 if (!HasQPX) 4013 return false; 4014 4015 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4016 unsigned NumElements = VT->getNumElements(); 4017 if (NumElements == 1) 4018 return false; 4019 4020 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4021 if (getContext().getTypeSize(Ty) <= 256) 4022 return true; 4023 } else if (VT->getElementType()-> 4024 isSpecificBuiltinType(BuiltinType::Float)) { 4025 if (getContext().getTypeSize(Ty) <= 128) 4026 return true; 4027 } 4028 } 4029 4030 return false; 4031 } 4032 4033 bool IsQPXVectorTy(QualType Ty) const { 4034 return IsQPXVectorTy(Ty.getTypePtr()); 4035 } 4036 4037 public: 4038 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4039 bool SoftFloatABI) 4040 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4041 IsSoftFloatABI(SoftFloatABI) {} 4042 4043 bool isPromotableTypeForABI(QualType Ty) const; 4044 CharUnits getParamTypeAlignment(QualType Ty) const; 4045 4046 ABIArgInfo classifyReturnType(QualType RetTy) const; 4047 ABIArgInfo classifyArgumentType(QualType Ty) const; 4048 4049 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4050 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4051 uint64_t Members) const override; 4052 4053 // TODO: We can add more logic to computeInfo to improve performance. 4054 // Example: For aggregate arguments that fit in a register, we could 4055 // use getDirectInReg (as is done below for structs containing a single 4056 // floating-point value) to avoid pushing them to memory on function 4057 // entry. This would require changing the logic in PPCISelLowering 4058 // when lowering the parameters in the caller and args in the callee. 4059 void computeInfo(CGFunctionInfo &FI) const override { 4060 if (!getCXXABI().classifyReturnType(FI)) 4061 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4062 for (auto &I : FI.arguments()) { 4063 // We rely on the default argument classification for the most part. 4064 // One exception: An aggregate containing a single floating-point 4065 // or vector item must be passed in a register if one is available. 4066 const Type *T = isSingleElementStruct(I.type, getContext()); 4067 if (T) { 4068 const BuiltinType *BT = T->getAs<BuiltinType>(); 4069 if (IsQPXVectorTy(T) || 4070 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4071 (BT && BT->isFloatingPoint())) { 4072 QualType QT(T, 0); 4073 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4074 continue; 4075 } 4076 } 4077 I.info = classifyArgumentType(I.type); 4078 } 4079 } 4080 4081 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4082 QualType Ty) const override; 4083 }; 4084 4085 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4086 4087 public: 4088 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4089 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4090 bool SoftFloatABI) 4091 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4092 SoftFloatABI)) {} 4093 4094 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4095 // This is recovered from gcc output. 4096 return 1; // r1 is the dedicated stack pointer 4097 } 4098 4099 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4100 llvm::Value *Address) const override; 4101 }; 4102 4103 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4104 public: 4105 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4106 4107 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4108 // This is recovered from gcc output. 4109 return 1; // r1 is the dedicated stack pointer 4110 } 4111 4112 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4113 llvm::Value *Address) const override; 4114 }; 4115 4116 } 4117 4118 // Return true if the ABI requires Ty to be passed sign- or zero- 4119 // extended to 64 bits. 4120 bool 4121 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4122 // Treat an enum type as its underlying type. 4123 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4124 Ty = EnumTy->getDecl()->getIntegerType(); 4125 4126 // Promotable integer types are required to be promoted by the ABI. 4127 if (Ty->isPromotableIntegerType()) 4128 return true; 4129 4130 // In addition to the usual promotable integer types, we also need to 4131 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4132 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4133 switch (BT->getKind()) { 4134 case BuiltinType::Int: 4135 case BuiltinType::UInt: 4136 return true; 4137 default: 4138 break; 4139 } 4140 4141 return false; 4142 } 4143 4144 /// isAlignedParamType - Determine whether a type requires 16-byte or 4145 /// higher alignment in the parameter area. Always returns at least 8. 4146 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4147 // Complex types are passed just like their elements. 4148 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4149 Ty = CTy->getElementType(); 4150 4151 // Only vector types of size 16 bytes need alignment (larger types are 4152 // passed via reference, smaller types are not aligned). 4153 if (IsQPXVectorTy(Ty)) { 4154 if (getContext().getTypeSize(Ty) > 128) 4155 return CharUnits::fromQuantity(32); 4156 4157 return CharUnits::fromQuantity(16); 4158 } else if (Ty->isVectorType()) { 4159 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4160 } 4161 4162 // For single-element float/vector structs, we consider the whole type 4163 // to have the same alignment requirements as its single element. 4164 const Type *AlignAsType = nullptr; 4165 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4166 if (EltType) { 4167 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4168 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4169 getContext().getTypeSize(EltType) == 128) || 4170 (BT && BT->isFloatingPoint())) 4171 AlignAsType = EltType; 4172 } 4173 4174 // Likewise for ELFv2 homogeneous aggregates. 4175 const Type *Base = nullptr; 4176 uint64_t Members = 0; 4177 if (!AlignAsType && Kind == ELFv2 && 4178 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4179 AlignAsType = Base; 4180 4181 // With special case aggregates, only vector base types need alignment. 4182 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4183 if (getContext().getTypeSize(AlignAsType) > 128) 4184 return CharUnits::fromQuantity(32); 4185 4186 return CharUnits::fromQuantity(16); 4187 } else if (AlignAsType) { 4188 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4189 } 4190 4191 // Otherwise, we only need alignment for any aggregate type that 4192 // has an alignment requirement of >= 16 bytes. 4193 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4194 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4195 return CharUnits::fromQuantity(32); 4196 return CharUnits::fromQuantity(16); 4197 } 4198 4199 return CharUnits::fromQuantity(8); 4200 } 4201 4202 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4203 /// aggregate. Base is set to the base element type, and Members is set 4204 /// to the number of base elements. 4205 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4206 uint64_t &Members) const { 4207 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4208 uint64_t NElements = AT->getSize().getZExtValue(); 4209 if (NElements == 0) 4210 return false; 4211 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4212 return false; 4213 Members *= NElements; 4214 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4215 const RecordDecl *RD = RT->getDecl(); 4216 if (RD->hasFlexibleArrayMember()) 4217 return false; 4218 4219 Members = 0; 4220 4221 // If this is a C++ record, check the bases first. 4222 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4223 for (const auto &I : CXXRD->bases()) { 4224 // Ignore empty records. 4225 if (isEmptyRecord(getContext(), I.getType(), true)) 4226 continue; 4227 4228 uint64_t FldMembers; 4229 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4230 return false; 4231 4232 Members += FldMembers; 4233 } 4234 } 4235 4236 for (const auto *FD : RD->fields()) { 4237 // Ignore (non-zero arrays of) empty records. 4238 QualType FT = FD->getType(); 4239 while (const ConstantArrayType *AT = 4240 getContext().getAsConstantArrayType(FT)) { 4241 if (AT->getSize().getZExtValue() == 0) 4242 return false; 4243 FT = AT->getElementType(); 4244 } 4245 if (isEmptyRecord(getContext(), FT, true)) 4246 continue; 4247 4248 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4249 if (getContext().getLangOpts().CPlusPlus && 4250 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4251 continue; 4252 4253 uint64_t FldMembers; 4254 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4255 return false; 4256 4257 Members = (RD->isUnion() ? 4258 std::max(Members, FldMembers) : Members + FldMembers); 4259 } 4260 4261 if (!Base) 4262 return false; 4263 4264 // Ensure there is no padding. 4265 if (getContext().getTypeSize(Base) * Members != 4266 getContext().getTypeSize(Ty)) 4267 return false; 4268 } else { 4269 Members = 1; 4270 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4271 Members = 2; 4272 Ty = CT->getElementType(); 4273 } 4274 4275 // Most ABIs only support float, double, and some vector type widths. 4276 if (!isHomogeneousAggregateBaseType(Ty)) 4277 return false; 4278 4279 // The base type must be the same for all members. Types that 4280 // agree in both total size and mode (float vs. vector) are 4281 // treated as being equivalent here. 4282 const Type *TyPtr = Ty.getTypePtr(); 4283 if (!Base) { 4284 Base = TyPtr; 4285 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4286 // so make sure to widen it explicitly. 4287 if (const VectorType *VT = Base->getAs<VectorType>()) { 4288 QualType EltTy = VT->getElementType(); 4289 unsigned NumElements = 4290 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4291 Base = getContext() 4292 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4293 .getTypePtr(); 4294 } 4295 } 4296 4297 if (Base->isVectorType() != TyPtr->isVectorType() || 4298 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4299 return false; 4300 } 4301 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4302 } 4303 4304 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4305 // Homogeneous aggregates for ELFv2 must have base types of float, 4306 // double, long double, or 128-bit vectors. 4307 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4308 if (BT->getKind() == BuiltinType::Float || 4309 BT->getKind() == BuiltinType::Double || 4310 BT->getKind() == BuiltinType::LongDouble) { 4311 if (IsSoftFloatABI) 4312 return false; 4313 return true; 4314 } 4315 } 4316 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4317 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4318 return true; 4319 } 4320 return false; 4321 } 4322 4323 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4324 const Type *Base, uint64_t Members) const { 4325 // Vector types require one register, floating point types require one 4326 // or two registers depending on their size. 4327 uint32_t NumRegs = 4328 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4329 4330 // Homogeneous Aggregates may occupy at most 8 registers. 4331 return Members * NumRegs <= 8; 4332 } 4333 4334 ABIArgInfo 4335 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4336 Ty = useFirstFieldIfTransparentUnion(Ty); 4337 4338 if (Ty->isAnyComplexType()) 4339 return ABIArgInfo::getDirect(); 4340 4341 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4342 // or via reference (larger than 16 bytes). 4343 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4344 uint64_t Size = getContext().getTypeSize(Ty); 4345 if (Size > 128) 4346 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4347 else if (Size < 128) { 4348 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4349 return ABIArgInfo::getDirect(CoerceTy); 4350 } 4351 } 4352 4353 if (isAggregateTypeForABI(Ty)) { 4354 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4355 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4356 4357 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4358 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4359 4360 // ELFv2 homogeneous aggregates are passed as array types. 4361 const Type *Base = nullptr; 4362 uint64_t Members = 0; 4363 if (Kind == ELFv2 && 4364 isHomogeneousAggregate(Ty, Base, Members)) { 4365 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4366 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4367 return ABIArgInfo::getDirect(CoerceTy); 4368 } 4369 4370 // If an aggregate may end up fully in registers, we do not 4371 // use the ByVal method, but pass the aggregate as array. 4372 // This is usually beneficial since we avoid forcing the 4373 // back-end to store the argument to memory. 4374 uint64_t Bits = getContext().getTypeSize(Ty); 4375 if (Bits > 0 && Bits <= 8 * GPRBits) { 4376 llvm::Type *CoerceTy; 4377 4378 // Types up to 8 bytes are passed as integer type (which will be 4379 // properly aligned in the argument save area doubleword). 4380 if (Bits <= GPRBits) 4381 CoerceTy = 4382 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4383 // Larger types are passed as arrays, with the base type selected 4384 // according to the required alignment in the save area. 4385 else { 4386 uint64_t RegBits = ABIAlign * 8; 4387 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4388 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4389 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4390 } 4391 4392 return ABIArgInfo::getDirect(CoerceTy); 4393 } 4394 4395 // All other aggregates are passed ByVal. 4396 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4397 /*ByVal=*/true, 4398 /*Realign=*/TyAlign > ABIAlign); 4399 } 4400 4401 return (isPromotableTypeForABI(Ty) ? 4402 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4403 } 4404 4405 ABIArgInfo 4406 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4407 if (RetTy->isVoidType()) 4408 return ABIArgInfo::getIgnore(); 4409 4410 if (RetTy->isAnyComplexType()) 4411 return ABIArgInfo::getDirect(); 4412 4413 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4414 // or via reference (larger than 16 bytes). 4415 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4416 uint64_t Size = getContext().getTypeSize(RetTy); 4417 if (Size > 128) 4418 return getNaturalAlignIndirect(RetTy); 4419 else if (Size < 128) { 4420 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4421 return ABIArgInfo::getDirect(CoerceTy); 4422 } 4423 } 4424 4425 if (isAggregateTypeForABI(RetTy)) { 4426 // ELFv2 homogeneous aggregates are returned as array types. 4427 const Type *Base = nullptr; 4428 uint64_t Members = 0; 4429 if (Kind == ELFv2 && 4430 isHomogeneousAggregate(RetTy, Base, Members)) { 4431 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4432 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4433 return ABIArgInfo::getDirect(CoerceTy); 4434 } 4435 4436 // ELFv2 small aggregates are returned in up to two registers. 4437 uint64_t Bits = getContext().getTypeSize(RetTy); 4438 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4439 if (Bits == 0) 4440 return ABIArgInfo::getIgnore(); 4441 4442 llvm::Type *CoerceTy; 4443 if (Bits > GPRBits) { 4444 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4445 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4446 } else 4447 CoerceTy = 4448 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4449 return ABIArgInfo::getDirect(CoerceTy); 4450 } 4451 4452 // All other aggregates are returned indirectly. 4453 return getNaturalAlignIndirect(RetTy); 4454 } 4455 4456 return (isPromotableTypeForABI(RetTy) ? 4457 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4458 } 4459 4460 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4461 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4462 QualType Ty) const { 4463 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4464 TypeInfo.second = getParamTypeAlignment(Ty); 4465 4466 CharUnits SlotSize = CharUnits::fromQuantity(8); 4467 4468 // If we have a complex type and the base type is smaller than 8 bytes, 4469 // the ABI calls for the real and imaginary parts to be right-adjusted 4470 // in separate doublewords. However, Clang expects us to produce a 4471 // pointer to a structure with the two parts packed tightly. So generate 4472 // loads of the real and imaginary parts relative to the va_list pointer, 4473 // and store them to a temporary structure. 4474 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4475 CharUnits EltSize = TypeInfo.first / 2; 4476 if (EltSize < SlotSize) { 4477 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4478 SlotSize * 2, SlotSize, 4479 SlotSize, /*AllowHigher*/ true); 4480 4481 Address RealAddr = Addr; 4482 Address ImagAddr = RealAddr; 4483 if (CGF.CGM.getDataLayout().isBigEndian()) { 4484 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4485 SlotSize - EltSize); 4486 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4487 2 * SlotSize - EltSize); 4488 } else { 4489 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4490 } 4491 4492 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4493 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4494 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4495 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4496 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4497 4498 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4499 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4500 /*init*/ true); 4501 return Temp; 4502 } 4503 } 4504 4505 // Otherwise, just use the general rule. 4506 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4507 TypeInfo, SlotSize, /*AllowHigher*/ true); 4508 } 4509 4510 static bool 4511 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4512 llvm::Value *Address) { 4513 // This is calculated from the LLVM and GCC tables and verified 4514 // against gcc output. AFAIK all ABIs use the same encoding. 4515 4516 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4517 4518 llvm::IntegerType *i8 = CGF.Int8Ty; 4519 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4520 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4521 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4522 4523 // 0-31: r0-31, the 8-byte general-purpose registers 4524 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4525 4526 // 32-63: fp0-31, the 8-byte floating-point registers 4527 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4528 4529 // 64-67 are various 8-byte special-purpose registers: 4530 // 64: mq 4531 // 65: lr 4532 // 66: ctr 4533 // 67: ap 4534 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4535 4536 // 68-76 are various 4-byte special-purpose registers: 4537 // 68-75 cr0-7 4538 // 76: xer 4539 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4540 4541 // 77-108: v0-31, the 16-byte vector registers 4542 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4543 4544 // 109: vrsave 4545 // 110: vscr 4546 // 111: spe_acc 4547 // 112: spefscr 4548 // 113: sfp 4549 // 114: tfhar 4550 // 115: tfiar 4551 // 116: texasr 4552 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4553 4554 return false; 4555 } 4556 4557 bool 4558 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4559 CodeGen::CodeGenFunction &CGF, 4560 llvm::Value *Address) const { 4561 4562 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4563 } 4564 4565 bool 4566 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4567 llvm::Value *Address) const { 4568 4569 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4570 } 4571 4572 //===----------------------------------------------------------------------===// 4573 // AArch64 ABI Implementation 4574 //===----------------------------------------------------------------------===// 4575 4576 namespace { 4577 4578 class AArch64ABIInfo : public SwiftABIInfo { 4579 public: 4580 enum ABIKind { 4581 AAPCS = 0, 4582 DarwinPCS 4583 }; 4584 4585 private: 4586 ABIKind Kind; 4587 4588 public: 4589 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4590 : SwiftABIInfo(CGT), Kind(Kind) {} 4591 4592 private: 4593 ABIKind getABIKind() const { return Kind; } 4594 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4595 4596 ABIArgInfo classifyReturnType(QualType RetTy) const; 4597 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4598 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4599 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4600 uint64_t Members) const override; 4601 4602 bool isIllegalVectorType(QualType Ty) const; 4603 4604 void computeInfo(CGFunctionInfo &FI) const override { 4605 if (!getCXXABI().classifyReturnType(FI)) 4606 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4607 4608 for (auto &it : FI.arguments()) 4609 it.info = classifyArgumentType(it.type); 4610 } 4611 4612 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4613 CodeGenFunction &CGF) const; 4614 4615 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4616 CodeGenFunction &CGF) const; 4617 4618 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4619 QualType Ty) const override { 4620 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4621 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4622 } 4623 4624 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4625 ArrayRef<llvm::Type*> scalars, 4626 bool asReturnValue) const override { 4627 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4628 } 4629 }; 4630 4631 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4632 public: 4633 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4634 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4635 4636 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4637 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4638 } 4639 4640 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4641 return 31; 4642 } 4643 4644 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4645 }; 4646 } 4647 4648 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4649 Ty = useFirstFieldIfTransparentUnion(Ty); 4650 4651 // Handle illegal vector types here. 4652 if (isIllegalVectorType(Ty)) { 4653 uint64_t Size = getContext().getTypeSize(Ty); 4654 // Android promotes <2 x i8> to i16, not i32 4655 if (isAndroid() && (Size <= 16)) { 4656 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4657 return ABIArgInfo::getDirect(ResType); 4658 } 4659 if (Size <= 32) { 4660 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4661 return ABIArgInfo::getDirect(ResType); 4662 } 4663 if (Size == 64) { 4664 llvm::Type *ResType = 4665 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4666 return ABIArgInfo::getDirect(ResType); 4667 } 4668 if (Size == 128) { 4669 llvm::Type *ResType = 4670 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4671 return ABIArgInfo::getDirect(ResType); 4672 } 4673 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4674 } 4675 4676 if (!isAggregateTypeForABI(Ty)) { 4677 // Treat an enum type as its underlying type. 4678 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4679 Ty = EnumTy->getDecl()->getIntegerType(); 4680 4681 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4682 ? ABIArgInfo::getExtend() 4683 : ABIArgInfo::getDirect()); 4684 } 4685 4686 // Structures with either a non-trivial destructor or a non-trivial 4687 // copy constructor are always indirect. 4688 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4689 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4690 CGCXXABI::RAA_DirectInMemory); 4691 } 4692 4693 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4694 // elsewhere for GNU compatibility. 4695 if (isEmptyRecord(getContext(), Ty, true)) { 4696 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4697 return ABIArgInfo::getIgnore(); 4698 4699 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4700 } 4701 4702 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4703 const Type *Base = nullptr; 4704 uint64_t Members = 0; 4705 if (isHomogeneousAggregate(Ty, Base, Members)) { 4706 return ABIArgInfo::getDirect( 4707 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4708 } 4709 4710 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4711 uint64_t Size = getContext().getTypeSize(Ty); 4712 if (Size <= 128) { 4713 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4714 // same size and alignment. 4715 if (getTarget().isRenderScriptTarget()) { 4716 return coerceToIntArray(Ty, getContext(), getVMContext()); 4717 } 4718 unsigned Alignment = getContext().getTypeAlign(Ty); 4719 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4720 4721 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4722 // For aggregates with 16-byte alignment, we use i128. 4723 if (Alignment < 128 && Size == 128) { 4724 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4725 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4726 } 4727 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4728 } 4729 4730 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4731 } 4732 4733 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4734 if (RetTy->isVoidType()) 4735 return ABIArgInfo::getIgnore(); 4736 4737 // Large vector types should be returned via memory. 4738 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4739 return getNaturalAlignIndirect(RetTy); 4740 4741 if (!isAggregateTypeForABI(RetTy)) { 4742 // Treat an enum type as its underlying type. 4743 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4744 RetTy = EnumTy->getDecl()->getIntegerType(); 4745 4746 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4747 ? ABIArgInfo::getExtend() 4748 : ABIArgInfo::getDirect()); 4749 } 4750 4751 if (isEmptyRecord(getContext(), RetTy, true)) 4752 return ABIArgInfo::getIgnore(); 4753 4754 const Type *Base = nullptr; 4755 uint64_t Members = 0; 4756 if (isHomogeneousAggregate(RetTy, Base, Members)) 4757 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4758 return ABIArgInfo::getDirect(); 4759 4760 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4761 uint64_t Size = getContext().getTypeSize(RetTy); 4762 if (Size <= 128) { 4763 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4764 // same size and alignment. 4765 if (getTarget().isRenderScriptTarget()) { 4766 return coerceToIntArray(RetTy, getContext(), getVMContext()); 4767 } 4768 unsigned Alignment = getContext().getTypeAlign(RetTy); 4769 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4770 4771 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4772 // For aggregates with 16-byte alignment, we use i128. 4773 if (Alignment < 128 && Size == 128) { 4774 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4775 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4776 } 4777 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4778 } 4779 4780 return getNaturalAlignIndirect(RetTy); 4781 } 4782 4783 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4784 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4785 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4786 // Check whether VT is legal. 4787 unsigned NumElements = VT->getNumElements(); 4788 uint64_t Size = getContext().getTypeSize(VT); 4789 // NumElements should be power of 2. 4790 if (!llvm::isPowerOf2_32(NumElements)) 4791 return true; 4792 return Size != 64 && (Size != 128 || NumElements == 1); 4793 } 4794 return false; 4795 } 4796 4797 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4798 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4799 // point type or a short-vector type. This is the same as the 32-bit ABI, 4800 // but with the difference that any floating-point type is allowed, 4801 // including __fp16. 4802 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4803 if (BT->isFloatingPoint()) 4804 return true; 4805 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4806 unsigned VecSize = getContext().getTypeSize(VT); 4807 if (VecSize == 64 || VecSize == 128) 4808 return true; 4809 } 4810 return false; 4811 } 4812 4813 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4814 uint64_t Members) const { 4815 return Members <= 4; 4816 } 4817 4818 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 4819 QualType Ty, 4820 CodeGenFunction &CGF) const { 4821 ABIArgInfo AI = classifyArgumentType(Ty); 4822 bool IsIndirect = AI.isIndirect(); 4823 4824 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4825 if (IsIndirect) 4826 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4827 else if (AI.getCoerceToType()) 4828 BaseTy = AI.getCoerceToType(); 4829 4830 unsigned NumRegs = 1; 4831 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4832 BaseTy = ArrTy->getElementType(); 4833 NumRegs = ArrTy->getNumElements(); 4834 } 4835 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4836 4837 // The AArch64 va_list type and handling is specified in the Procedure Call 4838 // Standard, section B.4: 4839 // 4840 // struct { 4841 // void *__stack; 4842 // void *__gr_top; 4843 // void *__vr_top; 4844 // int __gr_offs; 4845 // int __vr_offs; 4846 // }; 4847 4848 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4849 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4850 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4851 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4852 4853 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4854 CharUnits TyAlign = TyInfo.second; 4855 4856 Address reg_offs_p = Address::invalid(); 4857 llvm::Value *reg_offs = nullptr; 4858 int reg_top_index; 4859 CharUnits reg_top_offset; 4860 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 4861 if (!IsFPR) { 4862 // 3 is the field number of __gr_offs 4863 reg_offs_p = 4864 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 4865 "gr_offs_p"); 4866 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4867 reg_top_index = 1; // field number for __gr_top 4868 reg_top_offset = CharUnits::fromQuantity(8); 4869 RegSize = llvm::alignTo(RegSize, 8); 4870 } else { 4871 // 4 is the field number of __vr_offs. 4872 reg_offs_p = 4873 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 4874 "vr_offs_p"); 4875 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4876 reg_top_index = 2; // field number for __vr_top 4877 reg_top_offset = CharUnits::fromQuantity(16); 4878 RegSize = 16 * NumRegs; 4879 } 4880 4881 //======================================= 4882 // Find out where argument was passed 4883 //======================================= 4884 4885 // If reg_offs >= 0 we're already using the stack for this type of 4886 // argument. We don't want to keep updating reg_offs (in case it overflows, 4887 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4888 // whatever they get). 4889 llvm::Value *UsingStack = nullptr; 4890 UsingStack = CGF.Builder.CreateICmpSGE( 4891 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4892 4893 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4894 4895 // Otherwise, at least some kind of argument could go in these registers, the 4896 // question is whether this particular type is too big. 4897 CGF.EmitBlock(MaybeRegBlock); 4898 4899 // Integer arguments may need to correct register alignment (for example a 4900 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4901 // align __gr_offs to calculate the potential address. 4902 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 4903 int Align = TyAlign.getQuantity(); 4904 4905 reg_offs = CGF.Builder.CreateAdd( 4906 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4907 "align_regoffs"); 4908 reg_offs = CGF.Builder.CreateAnd( 4909 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4910 "aligned_regoffs"); 4911 } 4912 4913 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4914 // The fact that this is done unconditionally reflects the fact that 4915 // allocating an argument to the stack also uses up all the remaining 4916 // registers of the appropriate kind. 4917 llvm::Value *NewOffset = nullptr; 4918 NewOffset = CGF.Builder.CreateAdd( 4919 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4920 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4921 4922 // Now we're in a position to decide whether this argument really was in 4923 // registers or not. 4924 llvm::Value *InRegs = nullptr; 4925 InRegs = CGF.Builder.CreateICmpSLE( 4926 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4927 4928 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4929 4930 //======================================= 4931 // Argument was in registers 4932 //======================================= 4933 4934 // Now we emit the code for if the argument was originally passed in 4935 // registers. First start the appropriate block: 4936 CGF.EmitBlock(InRegBlock); 4937 4938 llvm::Value *reg_top = nullptr; 4939 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 4940 reg_top_offset, "reg_top_p"); 4941 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4942 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 4943 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 4944 Address RegAddr = Address::invalid(); 4945 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 4946 4947 if (IsIndirect) { 4948 // If it's been passed indirectly (actually a struct), whatever we find from 4949 // stored registers or on the stack will actually be a struct **. 4950 MemTy = llvm::PointerType::getUnqual(MemTy); 4951 } 4952 4953 const Type *Base = nullptr; 4954 uint64_t NumMembers = 0; 4955 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4956 if (IsHFA && NumMembers > 1) { 4957 // Homogeneous aggregates passed in registers will have their elements split 4958 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4959 // qN+1, ...). We reload and store into a temporary local variable 4960 // contiguously. 4961 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4962 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 4963 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4964 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4965 Address Tmp = CGF.CreateTempAlloca(HFATy, 4966 std::max(TyAlign, BaseTyInfo.second)); 4967 4968 // On big-endian platforms, the value will be right-aligned in its slot. 4969 int Offset = 0; 4970 if (CGF.CGM.getDataLayout().isBigEndian() && 4971 BaseTyInfo.first.getQuantity() < 16) 4972 Offset = 16 - BaseTyInfo.first.getQuantity(); 4973 4974 for (unsigned i = 0; i < NumMembers; ++i) { 4975 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 4976 Address LoadAddr = 4977 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 4978 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 4979 4980 Address StoreAddr = 4981 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 4982 4983 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4984 CGF.Builder.CreateStore(Elem, StoreAddr); 4985 } 4986 4987 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 4988 } else { 4989 // Otherwise the object is contiguous in memory. 4990 4991 // It might be right-aligned in its slot. 4992 CharUnits SlotSize = BaseAddr.getAlignment(); 4993 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 4994 (IsHFA || !isAggregateTypeForABI(Ty)) && 4995 TyInfo.first < SlotSize) { 4996 CharUnits Offset = SlotSize - TyInfo.first; 4997 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 4998 } 4999 5000 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5001 } 5002 5003 CGF.EmitBranch(ContBlock); 5004 5005 //======================================= 5006 // Argument was on the stack 5007 //======================================= 5008 CGF.EmitBlock(OnStackBlock); 5009 5010 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5011 CharUnits::Zero(), "stack_p"); 5012 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5013 5014 // Again, stack arguments may need realignment. In this case both integer and 5015 // floating-point ones might be affected. 5016 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5017 int Align = TyAlign.getQuantity(); 5018 5019 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5020 5021 OnStackPtr = CGF.Builder.CreateAdd( 5022 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5023 "align_stack"); 5024 OnStackPtr = CGF.Builder.CreateAnd( 5025 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5026 "align_stack"); 5027 5028 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5029 } 5030 Address OnStackAddr(OnStackPtr, 5031 std::max(CharUnits::fromQuantity(8), TyAlign)); 5032 5033 // All stack slots are multiples of 8 bytes. 5034 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5035 CharUnits StackSize; 5036 if (IsIndirect) 5037 StackSize = StackSlotSize; 5038 else 5039 StackSize = TyInfo.first.alignTo(StackSlotSize); 5040 5041 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5042 llvm::Value *NewStack = 5043 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5044 5045 // Write the new value of __stack for the next call to va_arg 5046 CGF.Builder.CreateStore(NewStack, stack_p); 5047 5048 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5049 TyInfo.first < StackSlotSize) { 5050 CharUnits Offset = StackSlotSize - TyInfo.first; 5051 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5052 } 5053 5054 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5055 5056 CGF.EmitBranch(ContBlock); 5057 5058 //======================================= 5059 // Tidy up 5060 //======================================= 5061 CGF.EmitBlock(ContBlock); 5062 5063 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5064 OnStackAddr, OnStackBlock, "vaargs.addr"); 5065 5066 if (IsIndirect) 5067 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5068 TyInfo.second); 5069 5070 return ResAddr; 5071 } 5072 5073 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5074 CodeGenFunction &CGF) const { 5075 // The backend's lowering doesn't support va_arg for aggregates or 5076 // illegal vector types. Lower VAArg here for these cases and use 5077 // the LLVM va_arg instruction for everything else. 5078 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5079 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5080 5081 CharUnits SlotSize = CharUnits::fromQuantity(8); 5082 5083 // Empty records are ignored for parameter passing purposes. 5084 if (isEmptyRecord(getContext(), Ty, true)) { 5085 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5086 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5087 return Addr; 5088 } 5089 5090 // The size of the actual thing passed, which might end up just 5091 // being a pointer for indirect types. 5092 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5093 5094 // Arguments bigger than 16 bytes which aren't homogeneous 5095 // aggregates should be passed indirectly. 5096 bool IsIndirect = false; 5097 if (TyInfo.first.getQuantity() > 16) { 5098 const Type *Base = nullptr; 5099 uint64_t Members = 0; 5100 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5101 } 5102 5103 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5104 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5105 } 5106 5107 //===----------------------------------------------------------------------===// 5108 // ARM ABI Implementation 5109 //===----------------------------------------------------------------------===// 5110 5111 namespace { 5112 5113 class ARMABIInfo : public SwiftABIInfo { 5114 public: 5115 enum ABIKind { 5116 APCS = 0, 5117 AAPCS = 1, 5118 AAPCS_VFP = 2, 5119 AAPCS16_VFP = 3, 5120 }; 5121 5122 private: 5123 ABIKind Kind; 5124 5125 public: 5126 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5127 : SwiftABIInfo(CGT), Kind(_Kind) { 5128 setCCs(); 5129 } 5130 5131 bool isEABI() const { 5132 switch (getTarget().getTriple().getEnvironment()) { 5133 case llvm::Triple::Android: 5134 case llvm::Triple::EABI: 5135 case llvm::Triple::EABIHF: 5136 case llvm::Triple::GNUEABI: 5137 case llvm::Triple::GNUEABIHF: 5138 case llvm::Triple::MuslEABI: 5139 case llvm::Triple::MuslEABIHF: 5140 return true; 5141 default: 5142 return false; 5143 } 5144 } 5145 5146 bool isEABIHF() const { 5147 switch (getTarget().getTriple().getEnvironment()) { 5148 case llvm::Triple::EABIHF: 5149 case llvm::Triple::GNUEABIHF: 5150 case llvm::Triple::MuslEABIHF: 5151 return true; 5152 default: 5153 return false; 5154 } 5155 } 5156 5157 ABIKind getABIKind() const { return Kind; } 5158 5159 private: 5160 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5161 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5162 bool isIllegalVectorType(QualType Ty) const; 5163 5164 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5165 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5166 uint64_t Members) const override; 5167 5168 void computeInfo(CGFunctionInfo &FI) const override; 5169 5170 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5171 QualType Ty) const override; 5172 5173 llvm::CallingConv::ID getLLVMDefaultCC() const; 5174 llvm::CallingConv::ID getABIDefaultCC() const; 5175 void setCCs(); 5176 5177 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5178 ArrayRef<llvm::Type*> scalars, 5179 bool asReturnValue) const override { 5180 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5181 } 5182 }; 5183 5184 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5185 public: 5186 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5187 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5188 5189 const ARMABIInfo &getABIInfo() const { 5190 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5191 } 5192 5193 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5194 return 13; 5195 } 5196 5197 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5198 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5199 } 5200 5201 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5202 llvm::Value *Address) const override { 5203 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5204 5205 // 0-15 are the 16 integer registers. 5206 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5207 return false; 5208 } 5209 5210 unsigned getSizeOfUnwindException() const override { 5211 if (getABIInfo().isEABI()) return 88; 5212 return TargetCodeGenInfo::getSizeOfUnwindException(); 5213 } 5214 5215 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5216 CodeGen::CodeGenModule &CGM) const override { 5217 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5218 if (!FD) 5219 return; 5220 5221 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5222 if (!Attr) 5223 return; 5224 5225 const char *Kind; 5226 switch (Attr->getInterrupt()) { 5227 case ARMInterruptAttr::Generic: Kind = ""; break; 5228 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5229 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5230 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5231 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5232 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5233 } 5234 5235 llvm::Function *Fn = cast<llvm::Function>(GV); 5236 5237 Fn->addFnAttr("interrupt", Kind); 5238 5239 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5240 if (ABI == ARMABIInfo::APCS) 5241 return; 5242 5243 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5244 // however this is not necessarily true on taking any interrupt. Instruct 5245 // the backend to perform a realignment as part of the function prologue. 5246 llvm::AttrBuilder B; 5247 B.addStackAlignmentAttr(8); 5248 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 5249 llvm::AttributeSet::get(CGM.getLLVMContext(), 5250 llvm::AttributeSet::FunctionIndex, 5251 B)); 5252 } 5253 }; 5254 5255 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5256 public: 5257 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5258 : ARMTargetCodeGenInfo(CGT, K) {} 5259 5260 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5261 CodeGen::CodeGenModule &CGM) const override; 5262 5263 void getDependentLibraryOption(llvm::StringRef Lib, 5264 llvm::SmallString<24> &Opt) const override { 5265 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5266 } 5267 5268 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5269 llvm::SmallString<32> &Opt) const override { 5270 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5271 } 5272 }; 5273 5274 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5275 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5276 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5277 addStackProbeSizeTargetAttribute(D, GV, CGM); 5278 } 5279 } 5280 5281 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5282 if (!getCXXABI().classifyReturnType(FI)) 5283 FI.getReturnInfo() = 5284 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5285 5286 for (auto &I : FI.arguments()) 5287 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5288 5289 // Always honor user-specified calling convention. 5290 if (FI.getCallingConvention() != llvm::CallingConv::C) 5291 return; 5292 5293 llvm::CallingConv::ID cc = getRuntimeCC(); 5294 if (cc != llvm::CallingConv::C) 5295 FI.setEffectiveCallingConvention(cc); 5296 } 5297 5298 /// Return the default calling convention that LLVM will use. 5299 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5300 // The default calling convention that LLVM will infer. 5301 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5302 return llvm::CallingConv::ARM_AAPCS_VFP; 5303 else if (isEABI()) 5304 return llvm::CallingConv::ARM_AAPCS; 5305 else 5306 return llvm::CallingConv::ARM_APCS; 5307 } 5308 5309 /// Return the calling convention that our ABI would like us to use 5310 /// as the C calling convention. 5311 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5312 switch (getABIKind()) { 5313 case APCS: return llvm::CallingConv::ARM_APCS; 5314 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5315 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5316 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5317 } 5318 llvm_unreachable("bad ABI kind"); 5319 } 5320 5321 void ARMABIInfo::setCCs() { 5322 assert(getRuntimeCC() == llvm::CallingConv::C); 5323 5324 // Don't muddy up the IR with a ton of explicit annotations if 5325 // they'd just match what LLVM will infer from the triple. 5326 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5327 if (abiCC != getLLVMDefaultCC()) 5328 RuntimeCC = abiCC; 5329 5330 // AAPCS apparently requires runtime support functions to be soft-float, but 5331 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5332 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5333 switch (getABIKind()) { 5334 case APCS: 5335 case AAPCS16_VFP: 5336 if (abiCC != getLLVMDefaultCC()) 5337 BuiltinCC = abiCC; 5338 break; 5339 case AAPCS: 5340 case AAPCS_VFP: 5341 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5342 break; 5343 } 5344 } 5345 5346 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5347 bool isVariadic) const { 5348 // 6.1.2.1 The following argument types are VFP CPRCs: 5349 // A single-precision floating-point type (including promoted 5350 // half-precision types); A double-precision floating-point type; 5351 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5352 // with a Base Type of a single- or double-precision floating-point type, 5353 // 64-bit containerized vectors or 128-bit containerized vectors with one 5354 // to four Elements. 5355 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5356 5357 Ty = useFirstFieldIfTransparentUnion(Ty); 5358 5359 // Handle illegal vector types here. 5360 if (isIllegalVectorType(Ty)) { 5361 uint64_t Size = getContext().getTypeSize(Ty); 5362 if (Size <= 32) { 5363 llvm::Type *ResType = 5364 llvm::Type::getInt32Ty(getVMContext()); 5365 return ABIArgInfo::getDirect(ResType); 5366 } 5367 if (Size == 64) { 5368 llvm::Type *ResType = llvm::VectorType::get( 5369 llvm::Type::getInt32Ty(getVMContext()), 2); 5370 return ABIArgInfo::getDirect(ResType); 5371 } 5372 if (Size == 128) { 5373 llvm::Type *ResType = llvm::VectorType::get( 5374 llvm::Type::getInt32Ty(getVMContext()), 4); 5375 return ABIArgInfo::getDirect(ResType); 5376 } 5377 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5378 } 5379 5380 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5381 // unspecified. This is not done for OpenCL as it handles the half type 5382 // natively, and does not need to interwork with AAPCS code. 5383 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5384 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5385 llvm::Type::getFloatTy(getVMContext()) : 5386 llvm::Type::getInt32Ty(getVMContext()); 5387 return ABIArgInfo::getDirect(ResType); 5388 } 5389 5390 if (!isAggregateTypeForABI(Ty)) { 5391 // Treat an enum type as its underlying type. 5392 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5393 Ty = EnumTy->getDecl()->getIntegerType(); 5394 } 5395 5396 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5397 : ABIArgInfo::getDirect()); 5398 } 5399 5400 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5401 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5402 } 5403 5404 // Ignore empty records. 5405 if (isEmptyRecord(getContext(), Ty, true)) 5406 return ABIArgInfo::getIgnore(); 5407 5408 if (IsEffectivelyAAPCS_VFP) { 5409 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5410 // into VFP registers. 5411 const Type *Base = nullptr; 5412 uint64_t Members = 0; 5413 if (isHomogeneousAggregate(Ty, Base, Members)) { 5414 assert(Base && "Base class should be set for homogeneous aggregate"); 5415 // Base can be a floating-point or a vector. 5416 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5417 } 5418 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5419 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5420 // this convention even for a variadic function: the backend will use GPRs 5421 // if needed. 5422 const Type *Base = nullptr; 5423 uint64_t Members = 0; 5424 if (isHomogeneousAggregate(Ty, Base, Members)) { 5425 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5426 llvm::Type *Ty = 5427 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5428 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5429 } 5430 } 5431 5432 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5433 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5434 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5435 // bigger than 128-bits, they get placed in space allocated by the caller, 5436 // and a pointer is passed. 5437 return ABIArgInfo::getIndirect( 5438 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5439 } 5440 5441 // Support byval for ARM. 5442 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5443 // most 8-byte. We realign the indirect argument if type alignment is bigger 5444 // than ABI alignment. 5445 uint64_t ABIAlign = 4; 5446 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5447 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5448 getABIKind() == ARMABIInfo::AAPCS) 5449 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5450 5451 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5452 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5453 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5454 /*ByVal=*/true, 5455 /*Realign=*/TyAlign > ABIAlign); 5456 } 5457 5458 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5459 // same size and alignment. 5460 if (getTarget().isRenderScriptTarget()) { 5461 return coerceToIntArray(Ty, getContext(), getVMContext()); 5462 } 5463 5464 // Otherwise, pass by coercing to a structure of the appropriate size. 5465 llvm::Type* ElemTy; 5466 unsigned SizeRegs; 5467 // FIXME: Try to match the types of the arguments more accurately where 5468 // we can. 5469 if (getContext().getTypeAlign(Ty) <= 32) { 5470 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5471 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5472 } else { 5473 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5474 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5475 } 5476 5477 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5478 } 5479 5480 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5481 llvm::LLVMContext &VMContext) { 5482 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5483 // is called integer-like if its size is less than or equal to one word, and 5484 // the offset of each of its addressable sub-fields is zero. 5485 5486 uint64_t Size = Context.getTypeSize(Ty); 5487 5488 // Check that the type fits in a word. 5489 if (Size > 32) 5490 return false; 5491 5492 // FIXME: Handle vector types! 5493 if (Ty->isVectorType()) 5494 return false; 5495 5496 // Float types are never treated as "integer like". 5497 if (Ty->isRealFloatingType()) 5498 return false; 5499 5500 // If this is a builtin or pointer type then it is ok. 5501 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5502 return true; 5503 5504 // Small complex integer types are "integer like". 5505 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5506 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5507 5508 // Single element and zero sized arrays should be allowed, by the definition 5509 // above, but they are not. 5510 5511 // Otherwise, it must be a record type. 5512 const RecordType *RT = Ty->getAs<RecordType>(); 5513 if (!RT) return false; 5514 5515 // Ignore records with flexible arrays. 5516 const RecordDecl *RD = RT->getDecl(); 5517 if (RD->hasFlexibleArrayMember()) 5518 return false; 5519 5520 // Check that all sub-fields are at offset 0, and are themselves "integer 5521 // like". 5522 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5523 5524 bool HadField = false; 5525 unsigned idx = 0; 5526 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5527 i != e; ++i, ++idx) { 5528 const FieldDecl *FD = *i; 5529 5530 // Bit-fields are not addressable, we only need to verify they are "integer 5531 // like". We still have to disallow a subsequent non-bitfield, for example: 5532 // struct { int : 0; int x } 5533 // is non-integer like according to gcc. 5534 if (FD->isBitField()) { 5535 if (!RD->isUnion()) 5536 HadField = true; 5537 5538 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5539 return false; 5540 5541 continue; 5542 } 5543 5544 // Check if this field is at offset 0. 5545 if (Layout.getFieldOffset(idx) != 0) 5546 return false; 5547 5548 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5549 return false; 5550 5551 // Only allow at most one field in a structure. This doesn't match the 5552 // wording above, but follows gcc in situations with a field following an 5553 // empty structure. 5554 if (!RD->isUnion()) { 5555 if (HadField) 5556 return false; 5557 5558 HadField = true; 5559 } 5560 } 5561 5562 return true; 5563 } 5564 5565 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5566 bool isVariadic) const { 5567 bool IsEffectivelyAAPCS_VFP = 5568 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5569 5570 if (RetTy->isVoidType()) 5571 return ABIArgInfo::getIgnore(); 5572 5573 // Large vector types should be returned via memory. 5574 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5575 return getNaturalAlignIndirect(RetTy); 5576 } 5577 5578 // __fp16 gets returned as if it were an int or float, but with the top 16 5579 // bits unspecified. This is not done for OpenCL as it handles the half type 5580 // natively, and does not need to interwork with AAPCS code. 5581 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5582 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5583 llvm::Type::getFloatTy(getVMContext()) : 5584 llvm::Type::getInt32Ty(getVMContext()); 5585 return ABIArgInfo::getDirect(ResType); 5586 } 5587 5588 if (!isAggregateTypeForABI(RetTy)) { 5589 // Treat an enum type as its underlying type. 5590 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5591 RetTy = EnumTy->getDecl()->getIntegerType(); 5592 5593 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5594 : ABIArgInfo::getDirect(); 5595 } 5596 5597 // Are we following APCS? 5598 if (getABIKind() == APCS) { 5599 if (isEmptyRecord(getContext(), RetTy, false)) 5600 return ABIArgInfo::getIgnore(); 5601 5602 // Complex types are all returned as packed integers. 5603 // 5604 // FIXME: Consider using 2 x vector types if the back end handles them 5605 // correctly. 5606 if (RetTy->isAnyComplexType()) 5607 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5608 getVMContext(), getContext().getTypeSize(RetTy))); 5609 5610 // Integer like structures are returned in r0. 5611 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5612 // Return in the smallest viable integer type. 5613 uint64_t Size = getContext().getTypeSize(RetTy); 5614 if (Size <= 8) 5615 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5616 if (Size <= 16) 5617 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5618 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5619 } 5620 5621 // Otherwise return in memory. 5622 return getNaturalAlignIndirect(RetTy); 5623 } 5624 5625 // Otherwise this is an AAPCS variant. 5626 5627 if (isEmptyRecord(getContext(), RetTy, true)) 5628 return ABIArgInfo::getIgnore(); 5629 5630 // Check for homogeneous aggregates with AAPCS-VFP. 5631 if (IsEffectivelyAAPCS_VFP) { 5632 const Type *Base = nullptr; 5633 uint64_t Members = 0; 5634 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5635 assert(Base && "Base class should be set for homogeneous aggregate"); 5636 // Homogeneous Aggregates are returned directly. 5637 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5638 } 5639 } 5640 5641 // Aggregates <= 4 bytes are returned in r0; other aggregates 5642 // are returned indirectly. 5643 uint64_t Size = getContext().getTypeSize(RetTy); 5644 if (Size <= 32) { 5645 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5646 // same size and alignment. 5647 if (getTarget().isRenderScriptTarget()) { 5648 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5649 } 5650 if (getDataLayout().isBigEndian()) 5651 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5652 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5653 5654 // Return in the smallest viable integer type. 5655 if (Size <= 8) 5656 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5657 if (Size <= 16) 5658 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5659 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5660 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5661 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5662 llvm::Type *CoerceTy = 5663 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5664 return ABIArgInfo::getDirect(CoerceTy); 5665 } 5666 5667 return getNaturalAlignIndirect(RetTy); 5668 } 5669 5670 /// isIllegalVector - check whether Ty is an illegal vector type. 5671 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5672 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5673 if (isAndroid()) { 5674 // Android shipped using Clang 3.1, which supported a slightly different 5675 // vector ABI. The primary differences were that 3-element vector types 5676 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5677 // accepts that legacy behavior for Android only. 5678 // Check whether VT is legal. 5679 unsigned NumElements = VT->getNumElements(); 5680 // NumElements should be power of 2 or equal to 3. 5681 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5682 return true; 5683 } else { 5684 // Check whether VT is legal. 5685 unsigned NumElements = VT->getNumElements(); 5686 uint64_t Size = getContext().getTypeSize(VT); 5687 // NumElements should be power of 2. 5688 if (!llvm::isPowerOf2_32(NumElements)) 5689 return true; 5690 // Size should be greater than 32 bits. 5691 return Size <= 32; 5692 } 5693 } 5694 return false; 5695 } 5696 5697 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5698 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5699 // double, or 64-bit or 128-bit vectors. 5700 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5701 if (BT->getKind() == BuiltinType::Float || 5702 BT->getKind() == BuiltinType::Double || 5703 BT->getKind() == BuiltinType::LongDouble) 5704 return true; 5705 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5706 unsigned VecSize = getContext().getTypeSize(VT); 5707 if (VecSize == 64 || VecSize == 128) 5708 return true; 5709 } 5710 return false; 5711 } 5712 5713 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5714 uint64_t Members) const { 5715 return Members <= 4; 5716 } 5717 5718 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5719 QualType Ty) const { 5720 CharUnits SlotSize = CharUnits::fromQuantity(4); 5721 5722 // Empty records are ignored for parameter passing purposes. 5723 if (isEmptyRecord(getContext(), Ty, true)) { 5724 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5725 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5726 return Addr; 5727 } 5728 5729 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5730 CharUnits TyAlignForABI = TyInfo.second; 5731 5732 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5733 bool IsIndirect = false; 5734 const Type *Base = nullptr; 5735 uint64_t Members = 0; 5736 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5737 IsIndirect = true; 5738 5739 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5740 // allocated by the caller. 5741 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5742 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5743 !isHomogeneousAggregate(Ty, Base, Members)) { 5744 IsIndirect = true; 5745 5746 // Otherwise, bound the type's ABI alignment. 5747 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5748 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5749 // Our callers should be prepared to handle an under-aligned address. 5750 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5751 getABIKind() == ARMABIInfo::AAPCS) { 5752 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5753 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5754 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5755 // ARMv7k allows type alignment up to 16 bytes. 5756 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5757 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5758 } else { 5759 TyAlignForABI = CharUnits::fromQuantity(4); 5760 } 5761 TyInfo.second = TyAlignForABI; 5762 5763 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5764 SlotSize, /*AllowHigherAlign*/ true); 5765 } 5766 5767 //===----------------------------------------------------------------------===// 5768 // NVPTX ABI Implementation 5769 //===----------------------------------------------------------------------===// 5770 5771 namespace { 5772 5773 class NVPTXABIInfo : public ABIInfo { 5774 public: 5775 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5776 5777 ABIArgInfo classifyReturnType(QualType RetTy) const; 5778 ABIArgInfo classifyArgumentType(QualType Ty) const; 5779 5780 void computeInfo(CGFunctionInfo &FI) const override; 5781 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5782 QualType Ty) const override; 5783 }; 5784 5785 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5786 public: 5787 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5788 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5789 5790 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5791 CodeGen::CodeGenModule &M) const override; 5792 private: 5793 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5794 // resulting MDNode to the nvvm.annotations MDNode. 5795 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5796 }; 5797 5798 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5799 if (RetTy->isVoidType()) 5800 return ABIArgInfo::getIgnore(); 5801 5802 // note: this is different from default ABI 5803 if (!RetTy->isScalarType()) 5804 return ABIArgInfo::getDirect(); 5805 5806 // Treat an enum type as its underlying type. 5807 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5808 RetTy = EnumTy->getDecl()->getIntegerType(); 5809 5810 return (RetTy->isPromotableIntegerType() ? 5811 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5812 } 5813 5814 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5815 // Treat an enum type as its underlying type. 5816 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5817 Ty = EnumTy->getDecl()->getIntegerType(); 5818 5819 // Return aggregates type as indirect by value 5820 if (isAggregateTypeForABI(Ty)) 5821 return getNaturalAlignIndirect(Ty, /* byval */ true); 5822 5823 return (Ty->isPromotableIntegerType() ? 5824 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5825 } 5826 5827 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5828 if (!getCXXABI().classifyReturnType(FI)) 5829 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5830 for (auto &I : FI.arguments()) 5831 I.info = classifyArgumentType(I.type); 5832 5833 // Always honor user-specified calling convention. 5834 if (FI.getCallingConvention() != llvm::CallingConv::C) 5835 return; 5836 5837 FI.setEffectiveCallingConvention(getRuntimeCC()); 5838 } 5839 5840 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5841 QualType Ty) const { 5842 llvm_unreachable("NVPTX does not support varargs"); 5843 } 5844 5845 void NVPTXTargetCodeGenInfo:: 5846 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5847 CodeGen::CodeGenModule &M) const{ 5848 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5849 if (!FD) return; 5850 5851 llvm::Function *F = cast<llvm::Function>(GV); 5852 5853 // Perform special handling in OpenCL mode 5854 if (M.getLangOpts().OpenCL) { 5855 // Use OpenCL function attributes to check for kernel functions 5856 // By default, all functions are device functions 5857 if (FD->hasAttr<OpenCLKernelAttr>()) { 5858 // OpenCL __kernel functions get kernel metadata 5859 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5860 addNVVMMetadata(F, "kernel", 1); 5861 // And kernel functions are not subject to inlining 5862 F->addFnAttr(llvm::Attribute::NoInline); 5863 } 5864 } 5865 5866 // Perform special handling in CUDA mode. 5867 if (M.getLangOpts().CUDA) { 5868 // CUDA __global__ functions get a kernel metadata entry. Since 5869 // __global__ functions cannot be called from the device, we do not 5870 // need to set the noinline attribute. 5871 if (FD->hasAttr<CUDAGlobalAttr>()) { 5872 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5873 addNVVMMetadata(F, "kernel", 1); 5874 } 5875 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5876 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5877 llvm::APSInt MaxThreads(32); 5878 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5879 if (MaxThreads > 0) 5880 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5881 5882 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5883 // not specified in __launch_bounds__ or if the user specified a 0 value, 5884 // we don't have to add a PTX directive. 5885 if (Attr->getMinBlocks()) { 5886 llvm::APSInt MinBlocks(32); 5887 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5888 if (MinBlocks > 0) 5889 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5890 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5891 } 5892 } 5893 } 5894 } 5895 5896 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5897 int Operand) { 5898 llvm::Module *M = F->getParent(); 5899 llvm::LLVMContext &Ctx = M->getContext(); 5900 5901 // Get "nvvm.annotations" metadata node 5902 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5903 5904 llvm::Metadata *MDVals[] = { 5905 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5906 llvm::ConstantAsMetadata::get( 5907 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5908 // Append metadata to nvvm.annotations 5909 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5910 } 5911 } 5912 5913 //===----------------------------------------------------------------------===// 5914 // SystemZ ABI Implementation 5915 //===----------------------------------------------------------------------===// 5916 5917 namespace { 5918 5919 class SystemZABIInfo : public SwiftABIInfo { 5920 bool HasVector; 5921 5922 public: 5923 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5924 : SwiftABIInfo(CGT), HasVector(HV) {} 5925 5926 bool isPromotableIntegerType(QualType Ty) const; 5927 bool isCompoundType(QualType Ty) const; 5928 bool isVectorArgumentType(QualType Ty) const; 5929 bool isFPArgumentType(QualType Ty) const; 5930 QualType GetSingleElementType(QualType Ty) const; 5931 5932 ABIArgInfo classifyReturnType(QualType RetTy) const; 5933 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5934 5935 void computeInfo(CGFunctionInfo &FI) const override { 5936 if (!getCXXABI().classifyReturnType(FI)) 5937 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5938 for (auto &I : FI.arguments()) 5939 I.info = classifyArgumentType(I.type); 5940 } 5941 5942 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5943 QualType Ty) const override; 5944 5945 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5946 ArrayRef<llvm::Type*> scalars, 5947 bool asReturnValue) const override { 5948 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5949 } 5950 }; 5951 5952 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5953 public: 5954 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5955 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5956 }; 5957 5958 } 5959 5960 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5961 // Treat an enum type as its underlying type. 5962 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5963 Ty = EnumTy->getDecl()->getIntegerType(); 5964 5965 // Promotable integer types are required to be promoted by the ABI. 5966 if (Ty->isPromotableIntegerType()) 5967 return true; 5968 5969 // 32-bit values must also be promoted. 5970 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5971 switch (BT->getKind()) { 5972 case BuiltinType::Int: 5973 case BuiltinType::UInt: 5974 return true; 5975 default: 5976 return false; 5977 } 5978 return false; 5979 } 5980 5981 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5982 return (Ty->isAnyComplexType() || 5983 Ty->isVectorType() || 5984 isAggregateTypeForABI(Ty)); 5985 } 5986 5987 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5988 return (HasVector && 5989 Ty->isVectorType() && 5990 getContext().getTypeSize(Ty) <= 128); 5991 } 5992 5993 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5994 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5995 switch (BT->getKind()) { 5996 case BuiltinType::Float: 5997 case BuiltinType::Double: 5998 return true; 5999 default: 6000 return false; 6001 } 6002 6003 return false; 6004 } 6005 6006 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6007 if (const RecordType *RT = Ty->getAsStructureType()) { 6008 const RecordDecl *RD = RT->getDecl(); 6009 QualType Found; 6010 6011 // If this is a C++ record, check the bases first. 6012 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6013 for (const auto &I : CXXRD->bases()) { 6014 QualType Base = I.getType(); 6015 6016 // Empty bases don't affect things either way. 6017 if (isEmptyRecord(getContext(), Base, true)) 6018 continue; 6019 6020 if (!Found.isNull()) 6021 return Ty; 6022 Found = GetSingleElementType(Base); 6023 } 6024 6025 // Check the fields. 6026 for (const auto *FD : RD->fields()) { 6027 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6028 // Unlike isSingleElementStruct(), empty structure and array fields 6029 // do count. So do anonymous bitfields that aren't zero-sized. 6030 if (getContext().getLangOpts().CPlusPlus && 6031 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6032 continue; 6033 6034 // Unlike isSingleElementStruct(), arrays do not count. 6035 // Nested structures still do though. 6036 if (!Found.isNull()) 6037 return Ty; 6038 Found = GetSingleElementType(FD->getType()); 6039 } 6040 6041 // Unlike isSingleElementStruct(), trailing padding is allowed. 6042 // An 8-byte aligned struct s { float f; } is passed as a double. 6043 if (!Found.isNull()) 6044 return Found; 6045 } 6046 6047 return Ty; 6048 } 6049 6050 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6051 QualType Ty) const { 6052 // Assume that va_list type is correct; should be pointer to LLVM type: 6053 // struct { 6054 // i64 __gpr; 6055 // i64 __fpr; 6056 // i8 *__overflow_arg_area; 6057 // i8 *__reg_save_area; 6058 // }; 6059 6060 // Every non-vector argument occupies 8 bytes and is passed by preference 6061 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6062 // always passed on the stack. 6063 Ty = getContext().getCanonicalType(Ty); 6064 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6065 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6066 llvm::Type *DirectTy = ArgTy; 6067 ABIArgInfo AI = classifyArgumentType(Ty); 6068 bool IsIndirect = AI.isIndirect(); 6069 bool InFPRs = false; 6070 bool IsVector = false; 6071 CharUnits UnpaddedSize; 6072 CharUnits DirectAlign; 6073 if (IsIndirect) { 6074 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6075 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6076 } else { 6077 if (AI.getCoerceToType()) 6078 ArgTy = AI.getCoerceToType(); 6079 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6080 IsVector = ArgTy->isVectorTy(); 6081 UnpaddedSize = TyInfo.first; 6082 DirectAlign = TyInfo.second; 6083 } 6084 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6085 if (IsVector && UnpaddedSize > PaddedSize) 6086 PaddedSize = CharUnits::fromQuantity(16); 6087 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6088 6089 CharUnits Padding = (PaddedSize - UnpaddedSize); 6090 6091 llvm::Type *IndexTy = CGF.Int64Ty; 6092 llvm::Value *PaddedSizeV = 6093 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6094 6095 if (IsVector) { 6096 // Work out the address of a vector argument on the stack. 6097 // Vector arguments are always passed in the high bits of a 6098 // single (8 byte) or double (16 byte) stack slot. 6099 Address OverflowArgAreaPtr = 6100 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6101 "overflow_arg_area_ptr"); 6102 Address OverflowArgArea = 6103 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6104 TyInfo.second); 6105 Address MemAddr = 6106 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6107 6108 // Update overflow_arg_area_ptr pointer 6109 llvm::Value *NewOverflowArgArea = 6110 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6111 "overflow_arg_area"); 6112 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6113 6114 return MemAddr; 6115 } 6116 6117 assert(PaddedSize.getQuantity() == 8); 6118 6119 unsigned MaxRegs, RegCountField, RegSaveIndex; 6120 CharUnits RegPadding; 6121 if (InFPRs) { 6122 MaxRegs = 4; // Maximum of 4 FPR arguments 6123 RegCountField = 1; // __fpr 6124 RegSaveIndex = 16; // save offset for f0 6125 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6126 } else { 6127 MaxRegs = 5; // Maximum of 5 GPR arguments 6128 RegCountField = 0; // __gpr 6129 RegSaveIndex = 2; // save offset for r2 6130 RegPadding = Padding; // values are passed in the low bits of a GPR 6131 } 6132 6133 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6134 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6135 "reg_count_ptr"); 6136 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6137 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6138 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6139 "fits_in_regs"); 6140 6141 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6142 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6143 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6144 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6145 6146 // Emit code to load the value if it was passed in registers. 6147 CGF.EmitBlock(InRegBlock); 6148 6149 // Work out the address of an argument register. 6150 llvm::Value *ScaledRegCount = 6151 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6152 llvm::Value *RegBase = 6153 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6154 + RegPadding.getQuantity()); 6155 llvm::Value *RegOffset = 6156 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6157 Address RegSaveAreaPtr = 6158 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6159 "reg_save_area_ptr"); 6160 llvm::Value *RegSaveArea = 6161 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6162 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6163 "raw_reg_addr"), 6164 PaddedSize); 6165 Address RegAddr = 6166 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6167 6168 // Update the register count 6169 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6170 llvm::Value *NewRegCount = 6171 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6172 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6173 CGF.EmitBranch(ContBlock); 6174 6175 // Emit code to load the value if it was passed in memory. 6176 CGF.EmitBlock(InMemBlock); 6177 6178 // Work out the address of a stack argument. 6179 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6180 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6181 Address OverflowArgArea = 6182 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6183 PaddedSize); 6184 Address RawMemAddr = 6185 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6186 Address MemAddr = 6187 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6188 6189 // Update overflow_arg_area_ptr pointer 6190 llvm::Value *NewOverflowArgArea = 6191 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6192 "overflow_arg_area"); 6193 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6194 CGF.EmitBranch(ContBlock); 6195 6196 // Return the appropriate result. 6197 CGF.EmitBlock(ContBlock); 6198 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6199 MemAddr, InMemBlock, "va_arg.addr"); 6200 6201 if (IsIndirect) 6202 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6203 TyInfo.second); 6204 6205 return ResAddr; 6206 } 6207 6208 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6209 if (RetTy->isVoidType()) 6210 return ABIArgInfo::getIgnore(); 6211 if (isVectorArgumentType(RetTy)) 6212 return ABIArgInfo::getDirect(); 6213 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6214 return getNaturalAlignIndirect(RetTy); 6215 return (isPromotableIntegerType(RetTy) ? 6216 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6217 } 6218 6219 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6220 // Handle the generic C++ ABI. 6221 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6222 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6223 6224 // Integers and enums are extended to full register width. 6225 if (isPromotableIntegerType(Ty)) 6226 return ABIArgInfo::getExtend(); 6227 6228 // Handle vector types and vector-like structure types. Note that 6229 // as opposed to float-like structure types, we do not allow any 6230 // padding for vector-like structures, so verify the sizes match. 6231 uint64_t Size = getContext().getTypeSize(Ty); 6232 QualType SingleElementTy = GetSingleElementType(Ty); 6233 if (isVectorArgumentType(SingleElementTy) && 6234 getContext().getTypeSize(SingleElementTy) == Size) 6235 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6236 6237 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6238 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6239 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6240 6241 // Handle small structures. 6242 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6243 // Structures with flexible arrays have variable length, so really 6244 // fail the size test above. 6245 const RecordDecl *RD = RT->getDecl(); 6246 if (RD->hasFlexibleArrayMember()) 6247 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6248 6249 // The structure is passed as an unextended integer, a float, or a double. 6250 llvm::Type *PassTy; 6251 if (isFPArgumentType(SingleElementTy)) { 6252 assert(Size == 32 || Size == 64); 6253 if (Size == 32) 6254 PassTy = llvm::Type::getFloatTy(getVMContext()); 6255 else 6256 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6257 } else 6258 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6259 return ABIArgInfo::getDirect(PassTy); 6260 } 6261 6262 // Non-structure compounds are passed indirectly. 6263 if (isCompoundType(Ty)) 6264 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6265 6266 return ABIArgInfo::getDirect(nullptr); 6267 } 6268 6269 //===----------------------------------------------------------------------===// 6270 // MSP430 ABI Implementation 6271 //===----------------------------------------------------------------------===// 6272 6273 namespace { 6274 6275 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6276 public: 6277 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6278 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6279 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6280 CodeGen::CodeGenModule &M) const override; 6281 }; 6282 6283 } 6284 6285 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6286 llvm::GlobalValue *GV, 6287 CodeGen::CodeGenModule &M) const { 6288 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6289 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6290 // Handle 'interrupt' attribute: 6291 llvm::Function *F = cast<llvm::Function>(GV); 6292 6293 // Step 1: Set ISR calling convention. 6294 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6295 6296 // Step 2: Add attributes goodness. 6297 F->addFnAttr(llvm::Attribute::NoInline); 6298 6299 // Step 3: Emit ISR vector alias. 6300 unsigned Num = attr->getNumber() / 2; 6301 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6302 "__isr_" + Twine(Num), F); 6303 } 6304 } 6305 } 6306 6307 //===----------------------------------------------------------------------===// 6308 // MIPS ABI Implementation. This works for both little-endian and 6309 // big-endian variants. 6310 //===----------------------------------------------------------------------===// 6311 6312 namespace { 6313 class MipsABIInfo : public ABIInfo { 6314 bool IsO32; 6315 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6316 void CoerceToIntArgs(uint64_t TySize, 6317 SmallVectorImpl<llvm::Type *> &ArgList) const; 6318 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6319 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6320 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6321 public: 6322 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6323 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6324 StackAlignInBytes(IsO32 ? 8 : 16) {} 6325 6326 ABIArgInfo classifyReturnType(QualType RetTy) const; 6327 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6328 void computeInfo(CGFunctionInfo &FI) const override; 6329 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6330 QualType Ty) const override; 6331 bool shouldSignExtUnsignedType(QualType Ty) const override; 6332 }; 6333 6334 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6335 unsigned SizeOfUnwindException; 6336 public: 6337 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6338 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6339 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6340 6341 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6342 return 29; 6343 } 6344 6345 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6346 CodeGen::CodeGenModule &CGM) const override { 6347 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6348 if (!FD) return; 6349 llvm::Function *Fn = cast<llvm::Function>(GV); 6350 if (FD->hasAttr<Mips16Attr>()) { 6351 Fn->addFnAttr("mips16"); 6352 } 6353 else if (FD->hasAttr<NoMips16Attr>()) { 6354 Fn->addFnAttr("nomips16"); 6355 } 6356 6357 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6358 if (!Attr) 6359 return; 6360 6361 const char *Kind; 6362 switch (Attr->getInterrupt()) { 6363 case MipsInterruptAttr::eic: Kind = "eic"; break; 6364 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6365 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6366 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6367 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6368 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6369 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6370 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6371 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6372 } 6373 6374 Fn->addFnAttr("interrupt", Kind); 6375 6376 } 6377 6378 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6379 llvm::Value *Address) const override; 6380 6381 unsigned getSizeOfUnwindException() const override { 6382 return SizeOfUnwindException; 6383 } 6384 }; 6385 } 6386 6387 void MipsABIInfo::CoerceToIntArgs( 6388 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6389 llvm::IntegerType *IntTy = 6390 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6391 6392 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6393 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6394 ArgList.push_back(IntTy); 6395 6396 // If necessary, add one more integer type to ArgList. 6397 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6398 6399 if (R) 6400 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6401 } 6402 6403 // In N32/64, an aligned double precision floating point field is passed in 6404 // a register. 6405 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6406 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6407 6408 if (IsO32) { 6409 CoerceToIntArgs(TySize, ArgList); 6410 return llvm::StructType::get(getVMContext(), ArgList); 6411 } 6412 6413 if (Ty->isComplexType()) 6414 return CGT.ConvertType(Ty); 6415 6416 const RecordType *RT = Ty->getAs<RecordType>(); 6417 6418 // Unions/vectors are passed in integer registers. 6419 if (!RT || !RT->isStructureOrClassType()) { 6420 CoerceToIntArgs(TySize, ArgList); 6421 return llvm::StructType::get(getVMContext(), ArgList); 6422 } 6423 6424 const RecordDecl *RD = RT->getDecl(); 6425 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6426 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6427 6428 uint64_t LastOffset = 0; 6429 unsigned idx = 0; 6430 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6431 6432 // Iterate over fields in the struct/class and check if there are any aligned 6433 // double fields. 6434 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6435 i != e; ++i, ++idx) { 6436 const QualType Ty = i->getType(); 6437 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6438 6439 if (!BT || BT->getKind() != BuiltinType::Double) 6440 continue; 6441 6442 uint64_t Offset = Layout.getFieldOffset(idx); 6443 if (Offset % 64) // Ignore doubles that are not aligned. 6444 continue; 6445 6446 // Add ((Offset - LastOffset) / 64) args of type i64. 6447 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6448 ArgList.push_back(I64); 6449 6450 // Add double type. 6451 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6452 LastOffset = Offset + 64; 6453 } 6454 6455 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6456 ArgList.append(IntArgList.begin(), IntArgList.end()); 6457 6458 return llvm::StructType::get(getVMContext(), ArgList); 6459 } 6460 6461 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6462 uint64_t Offset) const { 6463 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6464 return nullptr; 6465 6466 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6467 } 6468 6469 ABIArgInfo 6470 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6471 Ty = useFirstFieldIfTransparentUnion(Ty); 6472 6473 uint64_t OrigOffset = Offset; 6474 uint64_t TySize = getContext().getTypeSize(Ty); 6475 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6476 6477 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6478 (uint64_t)StackAlignInBytes); 6479 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6480 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6481 6482 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6483 // Ignore empty aggregates. 6484 if (TySize == 0) 6485 return ABIArgInfo::getIgnore(); 6486 6487 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6488 Offset = OrigOffset + MinABIStackAlignInBytes; 6489 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6490 } 6491 6492 // If we have reached here, aggregates are passed directly by coercing to 6493 // another structure type. Padding is inserted if the offset of the 6494 // aggregate is unaligned. 6495 ABIArgInfo ArgInfo = 6496 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6497 getPaddingType(OrigOffset, CurrOffset)); 6498 ArgInfo.setInReg(true); 6499 return ArgInfo; 6500 } 6501 6502 // Treat an enum type as its underlying type. 6503 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6504 Ty = EnumTy->getDecl()->getIntegerType(); 6505 6506 // All integral types are promoted to the GPR width. 6507 if (Ty->isIntegralOrEnumerationType()) 6508 return ABIArgInfo::getExtend(); 6509 6510 return ABIArgInfo::getDirect( 6511 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6512 } 6513 6514 llvm::Type* 6515 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6516 const RecordType *RT = RetTy->getAs<RecordType>(); 6517 SmallVector<llvm::Type*, 8> RTList; 6518 6519 if (RT && RT->isStructureOrClassType()) { 6520 const RecordDecl *RD = RT->getDecl(); 6521 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6522 unsigned FieldCnt = Layout.getFieldCount(); 6523 6524 // N32/64 returns struct/classes in floating point registers if the 6525 // following conditions are met: 6526 // 1. The size of the struct/class is no larger than 128-bit. 6527 // 2. The struct/class has one or two fields all of which are floating 6528 // point types. 6529 // 3. The offset of the first field is zero (this follows what gcc does). 6530 // 6531 // Any other composite results are returned in integer registers. 6532 // 6533 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6534 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6535 for (; b != e; ++b) { 6536 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6537 6538 if (!BT || !BT->isFloatingPoint()) 6539 break; 6540 6541 RTList.push_back(CGT.ConvertType(b->getType())); 6542 } 6543 6544 if (b == e) 6545 return llvm::StructType::get(getVMContext(), RTList, 6546 RD->hasAttr<PackedAttr>()); 6547 6548 RTList.clear(); 6549 } 6550 } 6551 6552 CoerceToIntArgs(Size, RTList); 6553 return llvm::StructType::get(getVMContext(), RTList); 6554 } 6555 6556 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6557 uint64_t Size = getContext().getTypeSize(RetTy); 6558 6559 if (RetTy->isVoidType()) 6560 return ABIArgInfo::getIgnore(); 6561 6562 // O32 doesn't treat zero-sized structs differently from other structs. 6563 // However, N32/N64 ignores zero sized return values. 6564 if (!IsO32 && Size == 0) 6565 return ABIArgInfo::getIgnore(); 6566 6567 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6568 if (Size <= 128) { 6569 if (RetTy->isAnyComplexType()) 6570 return ABIArgInfo::getDirect(); 6571 6572 // O32 returns integer vectors in registers and N32/N64 returns all small 6573 // aggregates in registers. 6574 if (!IsO32 || 6575 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6576 ABIArgInfo ArgInfo = 6577 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6578 ArgInfo.setInReg(true); 6579 return ArgInfo; 6580 } 6581 } 6582 6583 return getNaturalAlignIndirect(RetTy); 6584 } 6585 6586 // Treat an enum type as its underlying type. 6587 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6588 RetTy = EnumTy->getDecl()->getIntegerType(); 6589 6590 return (RetTy->isPromotableIntegerType() ? 6591 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6592 } 6593 6594 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6595 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6596 if (!getCXXABI().classifyReturnType(FI)) 6597 RetInfo = classifyReturnType(FI.getReturnType()); 6598 6599 // Check if a pointer to an aggregate is passed as a hidden argument. 6600 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6601 6602 for (auto &I : FI.arguments()) 6603 I.info = classifyArgumentType(I.type, Offset); 6604 } 6605 6606 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6607 QualType OrigTy) const { 6608 QualType Ty = OrigTy; 6609 6610 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6611 // Pointers are also promoted in the same way but this only matters for N32. 6612 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6613 unsigned PtrWidth = getTarget().getPointerWidth(0); 6614 bool DidPromote = false; 6615 if ((Ty->isIntegerType() && 6616 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6617 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6618 DidPromote = true; 6619 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6620 Ty->isSignedIntegerType()); 6621 } 6622 6623 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6624 6625 // The alignment of things in the argument area is never larger than 6626 // StackAlignInBytes. 6627 TyInfo.second = 6628 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6629 6630 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6631 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6632 6633 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6634 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6635 6636 6637 // If there was a promotion, "unpromote" into a temporary. 6638 // TODO: can we just use a pointer into a subset of the original slot? 6639 if (DidPromote) { 6640 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6641 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6642 6643 // Truncate down to the right width. 6644 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6645 : CGF.IntPtrTy); 6646 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6647 if (OrigTy->isPointerType()) 6648 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6649 6650 CGF.Builder.CreateStore(V, Temp); 6651 Addr = Temp; 6652 } 6653 6654 return Addr; 6655 } 6656 6657 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6658 int TySize = getContext().getTypeSize(Ty); 6659 6660 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6661 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6662 return true; 6663 6664 return false; 6665 } 6666 6667 bool 6668 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6669 llvm::Value *Address) const { 6670 // This information comes from gcc's implementation, which seems to 6671 // as canonical as it gets. 6672 6673 // Everything on MIPS is 4 bytes. Double-precision FP registers 6674 // are aliased to pairs of single-precision FP registers. 6675 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6676 6677 // 0-31 are the general purpose registers, $0 - $31. 6678 // 32-63 are the floating-point registers, $f0 - $f31. 6679 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6680 // 66 is the (notional, I think) register for signal-handler return. 6681 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6682 6683 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6684 // They are one bit wide and ignored here. 6685 6686 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6687 // (coprocessor 1 is the FP unit) 6688 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6689 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6690 // 176-181 are the DSP accumulator registers. 6691 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6692 return false; 6693 } 6694 6695 //===----------------------------------------------------------------------===// 6696 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6697 // Currently subclassed only to implement custom OpenCL C function attribute 6698 // handling. 6699 //===----------------------------------------------------------------------===// 6700 6701 namespace { 6702 6703 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6704 public: 6705 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6706 : DefaultTargetCodeGenInfo(CGT) {} 6707 6708 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6709 CodeGen::CodeGenModule &M) const override; 6710 }; 6711 6712 void TCETargetCodeGenInfo::setTargetAttributes( 6713 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6714 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6715 if (!FD) return; 6716 6717 llvm::Function *F = cast<llvm::Function>(GV); 6718 6719 if (M.getLangOpts().OpenCL) { 6720 if (FD->hasAttr<OpenCLKernelAttr>()) { 6721 // OpenCL C Kernel functions are not subject to inlining 6722 F->addFnAttr(llvm::Attribute::NoInline); 6723 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6724 if (Attr) { 6725 // Convert the reqd_work_group_size() attributes to metadata. 6726 llvm::LLVMContext &Context = F->getContext(); 6727 llvm::NamedMDNode *OpenCLMetadata = 6728 M.getModule().getOrInsertNamedMetadata( 6729 "opencl.kernel_wg_size_info"); 6730 6731 SmallVector<llvm::Metadata *, 5> Operands; 6732 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6733 6734 Operands.push_back( 6735 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6736 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6737 Operands.push_back( 6738 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6739 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6740 Operands.push_back( 6741 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6742 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6743 6744 // Add a boolean constant operand for "required" (true) or "hint" 6745 // (false) for implementing the work_group_size_hint attr later. 6746 // Currently always true as the hint is not yet implemented. 6747 Operands.push_back( 6748 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6749 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6750 } 6751 } 6752 } 6753 } 6754 6755 } 6756 6757 //===----------------------------------------------------------------------===// 6758 // Hexagon ABI Implementation 6759 //===----------------------------------------------------------------------===// 6760 6761 namespace { 6762 6763 class HexagonABIInfo : public ABIInfo { 6764 6765 6766 public: 6767 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6768 6769 private: 6770 6771 ABIArgInfo classifyReturnType(QualType RetTy) const; 6772 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6773 6774 void computeInfo(CGFunctionInfo &FI) const override; 6775 6776 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6777 QualType Ty) const override; 6778 }; 6779 6780 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6781 public: 6782 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6783 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6784 6785 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6786 return 29; 6787 } 6788 }; 6789 6790 } 6791 6792 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6793 if (!getCXXABI().classifyReturnType(FI)) 6794 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6795 for (auto &I : FI.arguments()) 6796 I.info = classifyArgumentType(I.type); 6797 } 6798 6799 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6800 if (!isAggregateTypeForABI(Ty)) { 6801 // Treat an enum type as its underlying type. 6802 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6803 Ty = EnumTy->getDecl()->getIntegerType(); 6804 6805 return (Ty->isPromotableIntegerType() ? 6806 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6807 } 6808 6809 // Ignore empty records. 6810 if (isEmptyRecord(getContext(), Ty, true)) 6811 return ABIArgInfo::getIgnore(); 6812 6813 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6814 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6815 6816 uint64_t Size = getContext().getTypeSize(Ty); 6817 if (Size > 64) 6818 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6819 // Pass in the smallest viable integer type. 6820 else if (Size > 32) 6821 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6822 else if (Size > 16) 6823 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6824 else if (Size > 8) 6825 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6826 else 6827 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6828 } 6829 6830 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6831 if (RetTy->isVoidType()) 6832 return ABIArgInfo::getIgnore(); 6833 6834 // Large vector types should be returned via memory. 6835 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6836 return getNaturalAlignIndirect(RetTy); 6837 6838 if (!isAggregateTypeForABI(RetTy)) { 6839 // Treat an enum type as its underlying type. 6840 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6841 RetTy = EnumTy->getDecl()->getIntegerType(); 6842 6843 return (RetTy->isPromotableIntegerType() ? 6844 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6845 } 6846 6847 if (isEmptyRecord(getContext(), RetTy, true)) 6848 return ABIArgInfo::getIgnore(); 6849 6850 // Aggregates <= 8 bytes are returned in r0; other aggregates 6851 // are returned indirectly. 6852 uint64_t Size = getContext().getTypeSize(RetTy); 6853 if (Size <= 64) { 6854 // Return in the smallest viable integer type. 6855 if (Size <= 8) 6856 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6857 if (Size <= 16) 6858 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6859 if (Size <= 32) 6860 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6861 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6862 } 6863 6864 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 6865 } 6866 6867 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6868 QualType Ty) const { 6869 // FIXME: Someone needs to audit that this handle alignment correctly. 6870 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6871 getContext().getTypeInfoInChars(Ty), 6872 CharUnits::fromQuantity(4), 6873 /*AllowHigherAlign*/ true); 6874 } 6875 6876 //===----------------------------------------------------------------------===// 6877 // Lanai ABI Implementation 6878 //===----------------------------------------------------------------------===// 6879 6880 namespace { 6881 class LanaiABIInfo : public DefaultABIInfo { 6882 public: 6883 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6884 6885 bool shouldUseInReg(QualType Ty, CCState &State) const; 6886 6887 void computeInfo(CGFunctionInfo &FI) const override { 6888 CCState State(FI.getCallingConvention()); 6889 // Lanai uses 4 registers to pass arguments unless the function has the 6890 // regparm attribute set. 6891 if (FI.getHasRegParm()) { 6892 State.FreeRegs = FI.getRegParm(); 6893 } else { 6894 State.FreeRegs = 4; 6895 } 6896 6897 if (!getCXXABI().classifyReturnType(FI)) 6898 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6899 for (auto &I : FI.arguments()) 6900 I.info = classifyArgumentType(I.type, State); 6901 } 6902 6903 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 6904 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 6905 }; 6906 } // end anonymous namespace 6907 6908 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 6909 unsigned Size = getContext().getTypeSize(Ty); 6910 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 6911 6912 if (SizeInRegs == 0) 6913 return false; 6914 6915 if (SizeInRegs > State.FreeRegs) { 6916 State.FreeRegs = 0; 6917 return false; 6918 } 6919 6920 State.FreeRegs -= SizeInRegs; 6921 6922 return true; 6923 } 6924 6925 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 6926 CCState &State) const { 6927 if (!ByVal) { 6928 if (State.FreeRegs) { 6929 --State.FreeRegs; // Non-byval indirects just use one pointer. 6930 return getNaturalAlignIndirectInReg(Ty); 6931 } 6932 return getNaturalAlignIndirect(Ty, false); 6933 } 6934 6935 // Compute the byval alignment. 6936 const unsigned MinABIStackAlignInBytes = 4; 6937 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 6938 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 6939 /*Realign=*/TypeAlign > 6940 MinABIStackAlignInBytes); 6941 } 6942 6943 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 6944 CCState &State) const { 6945 // Check with the C++ ABI first. 6946 const RecordType *RT = Ty->getAs<RecordType>(); 6947 if (RT) { 6948 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 6949 if (RAA == CGCXXABI::RAA_Indirect) { 6950 return getIndirectResult(Ty, /*ByVal=*/false, State); 6951 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 6952 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 6953 } 6954 } 6955 6956 if (isAggregateTypeForABI(Ty)) { 6957 // Structures with flexible arrays are always indirect. 6958 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 6959 return getIndirectResult(Ty, /*ByVal=*/true, State); 6960 6961 // Ignore empty structs/unions. 6962 if (isEmptyRecord(getContext(), Ty, true)) 6963 return ABIArgInfo::getIgnore(); 6964 6965 llvm::LLVMContext &LLVMContext = getVMContext(); 6966 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6967 if (SizeInRegs <= State.FreeRegs) { 6968 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 6969 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 6970 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 6971 State.FreeRegs -= SizeInRegs; 6972 return ABIArgInfo::getDirectInReg(Result); 6973 } else { 6974 State.FreeRegs = 0; 6975 } 6976 return getIndirectResult(Ty, true, State); 6977 } 6978 6979 // Treat an enum type as its underlying type. 6980 if (const auto *EnumTy = Ty->getAs<EnumType>()) 6981 Ty = EnumTy->getDecl()->getIntegerType(); 6982 6983 bool InReg = shouldUseInReg(Ty, State); 6984 if (Ty->isPromotableIntegerType()) { 6985 if (InReg) 6986 return ABIArgInfo::getDirectInReg(); 6987 return ABIArgInfo::getExtend(); 6988 } 6989 if (InReg) 6990 return ABIArgInfo::getDirectInReg(); 6991 return ABIArgInfo::getDirect(); 6992 } 6993 6994 namespace { 6995 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 6996 public: 6997 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 6998 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 6999 }; 7000 } 7001 7002 //===----------------------------------------------------------------------===// 7003 // AMDGPU ABI Implementation 7004 //===----------------------------------------------------------------------===// 7005 7006 namespace { 7007 7008 class AMDGPUABIInfo final : public DefaultABIInfo { 7009 public: 7010 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7011 7012 private: 7013 ABIArgInfo classifyArgumentType(QualType Ty) const; 7014 7015 void computeInfo(CGFunctionInfo &FI) const override; 7016 }; 7017 7018 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7019 if (!getCXXABI().classifyReturnType(FI)) 7020 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7021 7022 unsigned CC = FI.getCallingConvention(); 7023 for (auto &Arg : FI.arguments()) 7024 if (CC == llvm::CallingConv::AMDGPU_KERNEL) 7025 Arg.info = classifyArgumentType(Arg.type); 7026 else 7027 Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type); 7028 } 7029 7030 /// \brief Classify argument of given type \p Ty. 7031 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const { 7032 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7033 if (!StrTy) { 7034 return DefaultABIInfo::classifyArgumentType(Ty); 7035 } 7036 7037 // Coerce single element structs to its element. 7038 if (StrTy->getNumElements() == 1) { 7039 return ABIArgInfo::getDirect(); 7040 } 7041 7042 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7043 // individual elements, which confuses the Clover OpenCL backend; therefore we 7044 // have to set it to false here. Other args of getDirect() are just defaults. 7045 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7046 } 7047 7048 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7049 public: 7050 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7051 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7052 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7053 CodeGen::CodeGenModule &M) const override; 7054 unsigned getOpenCLKernelCallingConv() const override; 7055 }; 7056 7057 } 7058 7059 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM); 7060 7061 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7062 const Decl *D, 7063 llvm::GlobalValue *GV, 7064 CodeGen::CodeGenModule &M) const { 7065 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7066 if (!FD) 7067 return; 7068 7069 llvm::Function *F = cast<llvm::Function>(GV); 7070 7071 if (const auto *Attr = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { 7072 unsigned Min = Attr->getMin(); 7073 unsigned Max = Attr->getMax(); 7074 7075 if (Min != 0) { 7076 assert(Min <= Max && "Min must be less than or equal Max"); 7077 7078 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7079 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7080 } else 7081 assert(Max == 0 && "Max must be zero"); 7082 } 7083 7084 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7085 unsigned Min = Attr->getMin(); 7086 unsigned Max = Attr->getMax(); 7087 7088 if (Min != 0) { 7089 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7090 7091 std::string AttrVal = llvm::utostr(Min); 7092 if (Max != 0) 7093 AttrVal = AttrVal + "," + llvm::utostr(Max); 7094 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7095 } else 7096 assert(Max == 0 && "Max must be zero"); 7097 } 7098 7099 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7100 unsigned NumSGPR = Attr->getNumSGPR(); 7101 7102 if (NumSGPR != 0) 7103 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7104 } 7105 7106 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7107 uint32_t NumVGPR = Attr->getNumVGPR(); 7108 7109 if (NumVGPR != 0) 7110 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7111 } 7112 7113 appendOpenCLVersionMD(M); 7114 } 7115 7116 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7117 return llvm::CallingConv::AMDGPU_KERNEL; 7118 } 7119 7120 //===----------------------------------------------------------------------===// 7121 // SPARC v8 ABI Implementation. 7122 // Based on the SPARC Compliance Definition version 2.4.1. 7123 // 7124 // Ensures that complex values are passed in registers. 7125 // 7126 namespace { 7127 class SparcV8ABIInfo : public DefaultABIInfo { 7128 public: 7129 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7130 7131 private: 7132 ABIArgInfo classifyReturnType(QualType RetTy) const; 7133 void computeInfo(CGFunctionInfo &FI) const override; 7134 }; 7135 } // end anonymous namespace 7136 7137 7138 ABIArgInfo 7139 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7140 if (Ty->isAnyComplexType()) { 7141 return ABIArgInfo::getDirect(); 7142 } 7143 else { 7144 return DefaultABIInfo::classifyReturnType(Ty); 7145 } 7146 } 7147 7148 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7149 7150 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7151 for (auto &Arg : FI.arguments()) 7152 Arg.info = classifyArgumentType(Arg.type); 7153 } 7154 7155 namespace { 7156 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7157 public: 7158 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7159 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7160 }; 7161 } // end anonymous namespace 7162 7163 //===----------------------------------------------------------------------===// 7164 // SPARC v9 ABI Implementation. 7165 // Based on the SPARC Compliance Definition version 2.4.1. 7166 // 7167 // Function arguments a mapped to a nominal "parameter array" and promoted to 7168 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7169 // the array, structs larger than 16 bytes are passed indirectly. 7170 // 7171 // One case requires special care: 7172 // 7173 // struct mixed { 7174 // int i; 7175 // float f; 7176 // }; 7177 // 7178 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7179 // parameter array, but the int is passed in an integer register, and the float 7180 // is passed in a floating point register. This is represented as two arguments 7181 // with the LLVM IR inreg attribute: 7182 // 7183 // declare void f(i32 inreg %i, float inreg %f) 7184 // 7185 // The code generator will only allocate 4 bytes from the parameter array for 7186 // the inreg arguments. All other arguments are allocated a multiple of 8 7187 // bytes. 7188 // 7189 namespace { 7190 class SparcV9ABIInfo : public ABIInfo { 7191 public: 7192 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7193 7194 private: 7195 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7196 void computeInfo(CGFunctionInfo &FI) const override; 7197 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7198 QualType Ty) const override; 7199 7200 // Coercion type builder for structs passed in registers. The coercion type 7201 // serves two purposes: 7202 // 7203 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7204 // in registers. 7205 // 2. Expose aligned floating point elements as first-level elements, so the 7206 // code generator knows to pass them in floating point registers. 7207 // 7208 // We also compute the InReg flag which indicates that the struct contains 7209 // aligned 32-bit floats. 7210 // 7211 struct CoerceBuilder { 7212 llvm::LLVMContext &Context; 7213 const llvm::DataLayout &DL; 7214 SmallVector<llvm::Type*, 8> Elems; 7215 uint64_t Size; 7216 bool InReg; 7217 7218 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7219 : Context(c), DL(dl), Size(0), InReg(false) {} 7220 7221 // Pad Elems with integers until Size is ToSize. 7222 void pad(uint64_t ToSize) { 7223 assert(ToSize >= Size && "Cannot remove elements"); 7224 if (ToSize == Size) 7225 return; 7226 7227 // Finish the current 64-bit word. 7228 uint64_t Aligned = llvm::alignTo(Size, 64); 7229 if (Aligned > Size && Aligned <= ToSize) { 7230 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7231 Size = Aligned; 7232 } 7233 7234 // Add whole 64-bit words. 7235 while (Size + 64 <= ToSize) { 7236 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7237 Size += 64; 7238 } 7239 7240 // Final in-word padding. 7241 if (Size < ToSize) { 7242 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7243 Size = ToSize; 7244 } 7245 } 7246 7247 // Add a floating point element at Offset. 7248 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7249 // Unaligned floats are treated as integers. 7250 if (Offset % Bits) 7251 return; 7252 // The InReg flag is only required if there are any floats < 64 bits. 7253 if (Bits < 64) 7254 InReg = true; 7255 pad(Offset); 7256 Elems.push_back(Ty); 7257 Size = Offset + Bits; 7258 } 7259 7260 // Add a struct type to the coercion type, starting at Offset (in bits). 7261 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7262 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7263 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7264 llvm::Type *ElemTy = StrTy->getElementType(i); 7265 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7266 switch (ElemTy->getTypeID()) { 7267 case llvm::Type::StructTyID: 7268 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7269 break; 7270 case llvm::Type::FloatTyID: 7271 addFloat(ElemOffset, ElemTy, 32); 7272 break; 7273 case llvm::Type::DoubleTyID: 7274 addFloat(ElemOffset, ElemTy, 64); 7275 break; 7276 case llvm::Type::FP128TyID: 7277 addFloat(ElemOffset, ElemTy, 128); 7278 break; 7279 case llvm::Type::PointerTyID: 7280 if (ElemOffset % 64 == 0) { 7281 pad(ElemOffset); 7282 Elems.push_back(ElemTy); 7283 Size += 64; 7284 } 7285 break; 7286 default: 7287 break; 7288 } 7289 } 7290 } 7291 7292 // Check if Ty is a usable substitute for the coercion type. 7293 bool isUsableType(llvm::StructType *Ty) const { 7294 return llvm::makeArrayRef(Elems) == Ty->elements(); 7295 } 7296 7297 // Get the coercion type as a literal struct type. 7298 llvm::Type *getType() const { 7299 if (Elems.size() == 1) 7300 return Elems.front(); 7301 else 7302 return llvm::StructType::get(Context, Elems); 7303 } 7304 }; 7305 }; 7306 } // end anonymous namespace 7307 7308 ABIArgInfo 7309 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7310 if (Ty->isVoidType()) 7311 return ABIArgInfo::getIgnore(); 7312 7313 uint64_t Size = getContext().getTypeSize(Ty); 7314 7315 // Anything too big to fit in registers is passed with an explicit indirect 7316 // pointer / sret pointer. 7317 if (Size > SizeLimit) 7318 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7319 7320 // Treat an enum type as its underlying type. 7321 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7322 Ty = EnumTy->getDecl()->getIntegerType(); 7323 7324 // Integer types smaller than a register are extended. 7325 if (Size < 64 && Ty->isIntegerType()) 7326 return ABIArgInfo::getExtend(); 7327 7328 // Other non-aggregates go in registers. 7329 if (!isAggregateTypeForABI(Ty)) 7330 return ABIArgInfo::getDirect(); 7331 7332 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7333 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7334 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7335 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7336 7337 // This is a small aggregate type that should be passed in registers. 7338 // Build a coercion type from the LLVM struct type. 7339 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7340 if (!StrTy) 7341 return ABIArgInfo::getDirect(); 7342 7343 CoerceBuilder CB(getVMContext(), getDataLayout()); 7344 CB.addStruct(0, StrTy); 7345 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7346 7347 // Try to use the original type for coercion. 7348 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7349 7350 if (CB.InReg) 7351 return ABIArgInfo::getDirectInReg(CoerceTy); 7352 else 7353 return ABIArgInfo::getDirect(CoerceTy); 7354 } 7355 7356 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7357 QualType Ty) const { 7358 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7359 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7360 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7361 AI.setCoerceToType(ArgTy); 7362 7363 CharUnits SlotSize = CharUnits::fromQuantity(8); 7364 7365 CGBuilderTy &Builder = CGF.Builder; 7366 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7367 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7368 7369 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7370 7371 Address ArgAddr = Address::invalid(); 7372 CharUnits Stride; 7373 switch (AI.getKind()) { 7374 case ABIArgInfo::Expand: 7375 case ABIArgInfo::CoerceAndExpand: 7376 case ABIArgInfo::InAlloca: 7377 llvm_unreachable("Unsupported ABI kind for va_arg"); 7378 7379 case ABIArgInfo::Extend: { 7380 Stride = SlotSize; 7381 CharUnits Offset = SlotSize - TypeInfo.first; 7382 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 7383 break; 7384 } 7385 7386 case ABIArgInfo::Direct: { 7387 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 7388 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 7389 ArgAddr = Addr; 7390 break; 7391 } 7392 7393 case ABIArgInfo::Indirect: 7394 Stride = SlotSize; 7395 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7396 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7397 TypeInfo.second); 7398 break; 7399 7400 case ABIArgInfo::Ignore: 7401 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7402 } 7403 7404 // Update VAList. 7405 llvm::Value *NextPtr = 7406 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7407 Builder.CreateStore(NextPtr, VAListAddr); 7408 7409 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7410 } 7411 7412 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7413 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7414 for (auto &I : FI.arguments()) 7415 I.info = classifyType(I.type, 16 * 8); 7416 } 7417 7418 namespace { 7419 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7420 public: 7421 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7422 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7423 7424 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7425 return 14; 7426 } 7427 7428 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7429 llvm::Value *Address) const override; 7430 }; 7431 } // end anonymous namespace 7432 7433 bool 7434 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7435 llvm::Value *Address) const { 7436 // This is calculated from the LLVM and GCC tables and verified 7437 // against gcc output. AFAIK all ABIs use the same encoding. 7438 7439 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7440 7441 llvm::IntegerType *i8 = CGF.Int8Ty; 7442 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7443 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7444 7445 // 0-31: the 8-byte general-purpose registers 7446 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7447 7448 // 32-63: f0-31, the 4-byte floating-point registers 7449 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7450 7451 // Y = 64 7452 // PSR = 65 7453 // WIM = 66 7454 // TBR = 67 7455 // PC = 68 7456 // NPC = 69 7457 // FSR = 70 7458 // CSR = 71 7459 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7460 7461 // 72-87: d0-15, the 8-byte floating-point registers 7462 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7463 7464 return false; 7465 } 7466 7467 7468 //===----------------------------------------------------------------------===// 7469 // XCore ABI Implementation 7470 //===----------------------------------------------------------------------===// 7471 7472 namespace { 7473 7474 /// A SmallStringEnc instance is used to build up the TypeString by passing 7475 /// it by reference between functions that append to it. 7476 typedef llvm::SmallString<128> SmallStringEnc; 7477 7478 /// TypeStringCache caches the meta encodings of Types. 7479 /// 7480 /// The reason for caching TypeStrings is two fold: 7481 /// 1. To cache a type's encoding for later uses; 7482 /// 2. As a means to break recursive member type inclusion. 7483 /// 7484 /// A cache Entry can have a Status of: 7485 /// NonRecursive: The type encoding is not recursive; 7486 /// Recursive: The type encoding is recursive; 7487 /// Incomplete: An incomplete TypeString; 7488 /// IncompleteUsed: An incomplete TypeString that has been used in a 7489 /// Recursive type encoding. 7490 /// 7491 /// A NonRecursive entry will have all of its sub-members expanded as fully 7492 /// as possible. Whilst it may contain types which are recursive, the type 7493 /// itself is not recursive and thus its encoding may be safely used whenever 7494 /// the type is encountered. 7495 /// 7496 /// A Recursive entry will have all of its sub-members expanded as fully as 7497 /// possible. The type itself is recursive and it may contain other types which 7498 /// are recursive. The Recursive encoding must not be used during the expansion 7499 /// of a recursive type's recursive branch. For simplicity the code uses 7500 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7501 /// 7502 /// An Incomplete entry is always a RecordType and only encodes its 7503 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7504 /// are placed into the cache during type expansion as a means to identify and 7505 /// handle recursive inclusion of types as sub-members. If there is recursion 7506 /// the entry becomes IncompleteUsed. 7507 /// 7508 /// During the expansion of a RecordType's members: 7509 /// 7510 /// If the cache contains a NonRecursive encoding for the member type, the 7511 /// cached encoding is used; 7512 /// 7513 /// If the cache contains a Recursive encoding for the member type, the 7514 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7515 /// 7516 /// If the member is a RecordType, an Incomplete encoding is placed into the 7517 /// cache to break potential recursive inclusion of itself as a sub-member; 7518 /// 7519 /// Once a member RecordType has been expanded, its temporary incomplete 7520 /// entry is removed from the cache. If a Recursive encoding was swapped out 7521 /// it is swapped back in; 7522 /// 7523 /// If an incomplete entry is used to expand a sub-member, the incomplete 7524 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7525 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7526 /// 7527 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7528 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7529 /// Else the member is part of a recursive type and thus the recursion has 7530 /// been exited too soon for the encoding to be correct for the member. 7531 /// 7532 class TypeStringCache { 7533 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7534 struct Entry { 7535 std::string Str; // The encoded TypeString for the type. 7536 enum Status State; // Information about the encoding in 'Str'. 7537 std::string Swapped; // A temporary place holder for a Recursive encoding 7538 // during the expansion of RecordType's members. 7539 }; 7540 std::map<const IdentifierInfo *, struct Entry> Map; 7541 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7542 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7543 public: 7544 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7545 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7546 bool removeIncomplete(const IdentifierInfo *ID); 7547 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7548 bool IsRecursive); 7549 StringRef lookupStr(const IdentifierInfo *ID); 7550 }; 7551 7552 /// TypeString encodings for enum & union fields must be order. 7553 /// FieldEncoding is a helper for this ordering process. 7554 class FieldEncoding { 7555 bool HasName; 7556 std::string Enc; 7557 public: 7558 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7559 StringRef str() { return Enc; } 7560 bool operator<(const FieldEncoding &rhs) const { 7561 if (HasName != rhs.HasName) return HasName; 7562 return Enc < rhs.Enc; 7563 } 7564 }; 7565 7566 class XCoreABIInfo : public DefaultABIInfo { 7567 public: 7568 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7569 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7570 QualType Ty) const override; 7571 }; 7572 7573 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7574 mutable TypeStringCache TSC; 7575 public: 7576 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7577 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7578 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7579 CodeGen::CodeGenModule &M) const override; 7580 }; 7581 7582 } // End anonymous namespace. 7583 7584 // TODO: this implementation is likely now redundant with the default 7585 // EmitVAArg. 7586 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7587 QualType Ty) const { 7588 CGBuilderTy &Builder = CGF.Builder; 7589 7590 // Get the VAList. 7591 CharUnits SlotSize = CharUnits::fromQuantity(4); 7592 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7593 7594 // Handle the argument. 7595 ABIArgInfo AI = classifyArgumentType(Ty); 7596 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7597 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7598 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7599 AI.setCoerceToType(ArgTy); 7600 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7601 7602 Address Val = Address::invalid(); 7603 CharUnits ArgSize = CharUnits::Zero(); 7604 switch (AI.getKind()) { 7605 case ABIArgInfo::Expand: 7606 case ABIArgInfo::CoerceAndExpand: 7607 case ABIArgInfo::InAlloca: 7608 llvm_unreachable("Unsupported ABI kind for va_arg"); 7609 case ABIArgInfo::Ignore: 7610 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7611 ArgSize = CharUnits::Zero(); 7612 break; 7613 case ABIArgInfo::Extend: 7614 case ABIArgInfo::Direct: 7615 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7616 ArgSize = CharUnits::fromQuantity( 7617 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7618 ArgSize = ArgSize.alignTo(SlotSize); 7619 break; 7620 case ABIArgInfo::Indirect: 7621 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7622 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7623 ArgSize = SlotSize; 7624 break; 7625 } 7626 7627 // Increment the VAList. 7628 if (!ArgSize.isZero()) { 7629 llvm::Value *APN = 7630 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7631 Builder.CreateStore(APN, VAListAddr); 7632 } 7633 7634 return Val; 7635 } 7636 7637 /// During the expansion of a RecordType, an incomplete TypeString is placed 7638 /// into the cache as a means to identify and break recursion. 7639 /// If there is a Recursive encoding in the cache, it is swapped out and will 7640 /// be reinserted by removeIncomplete(). 7641 /// All other types of encoding should have been used rather than arriving here. 7642 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7643 std::string StubEnc) { 7644 if (!ID) 7645 return; 7646 Entry &E = Map[ID]; 7647 assert( (E.Str.empty() || E.State == Recursive) && 7648 "Incorrectly use of addIncomplete"); 7649 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7650 E.Swapped.swap(E.Str); // swap out the Recursive 7651 E.Str.swap(StubEnc); 7652 E.State = Incomplete; 7653 ++IncompleteCount; 7654 } 7655 7656 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7657 /// must be removed from the cache. 7658 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7659 /// Returns true if the RecordType was defined recursively. 7660 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7661 if (!ID) 7662 return false; 7663 auto I = Map.find(ID); 7664 assert(I != Map.end() && "Entry not present"); 7665 Entry &E = I->second; 7666 assert( (E.State == Incomplete || 7667 E.State == IncompleteUsed) && 7668 "Entry must be an incomplete type"); 7669 bool IsRecursive = false; 7670 if (E.State == IncompleteUsed) { 7671 // We made use of our Incomplete encoding, thus we are recursive. 7672 IsRecursive = true; 7673 --IncompleteUsedCount; 7674 } 7675 if (E.Swapped.empty()) 7676 Map.erase(I); 7677 else { 7678 // Swap the Recursive back. 7679 E.Swapped.swap(E.Str); 7680 E.Swapped.clear(); 7681 E.State = Recursive; 7682 } 7683 --IncompleteCount; 7684 return IsRecursive; 7685 } 7686 7687 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7688 /// Recursive (viz: all sub-members were expanded as fully as possible). 7689 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7690 bool IsRecursive) { 7691 if (!ID || IncompleteUsedCount) 7692 return; // No key or it is is an incomplete sub-type so don't add. 7693 Entry &E = Map[ID]; 7694 if (IsRecursive && !E.Str.empty()) { 7695 assert(E.State==Recursive && E.Str.size() == Str.size() && 7696 "This is not the same Recursive entry"); 7697 // The parent container was not recursive after all, so we could have used 7698 // this Recursive sub-member entry after all, but we assumed the worse when 7699 // we started viz: IncompleteCount!=0. 7700 return; 7701 } 7702 assert(E.Str.empty() && "Entry already present"); 7703 E.Str = Str.str(); 7704 E.State = IsRecursive? Recursive : NonRecursive; 7705 } 7706 7707 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7708 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7709 /// encoding is Recursive, return an empty StringRef. 7710 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7711 if (!ID) 7712 return StringRef(); // We have no key. 7713 auto I = Map.find(ID); 7714 if (I == Map.end()) 7715 return StringRef(); // We have no encoding. 7716 Entry &E = I->second; 7717 if (E.State == Recursive && IncompleteCount) 7718 return StringRef(); // We don't use Recursive encodings for member types. 7719 7720 if (E.State == Incomplete) { 7721 // The incomplete type is being used to break out of recursion. 7722 E.State = IncompleteUsed; 7723 ++IncompleteUsedCount; 7724 } 7725 return E.Str; 7726 } 7727 7728 /// The XCore ABI includes a type information section that communicates symbol 7729 /// type information to the linker. The linker uses this information to verify 7730 /// safety/correctness of things such as array bound and pointers et al. 7731 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7732 /// This type information (TypeString) is emitted into meta data for all global 7733 /// symbols: definitions, declarations, functions & variables. 7734 /// 7735 /// The TypeString carries type, qualifier, name, size & value details. 7736 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7737 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7738 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7739 /// 7740 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7741 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7742 7743 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7744 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7745 CodeGen::CodeGenModule &CGM) const { 7746 SmallStringEnc Enc; 7747 if (getTypeString(Enc, D, CGM, TSC)) { 7748 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7749 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 7750 llvm::MDString::get(Ctx, Enc.str())}; 7751 llvm::NamedMDNode *MD = 7752 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7753 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7754 } 7755 } 7756 7757 //===----------------------------------------------------------------------===// 7758 // SPIR ABI Implementation 7759 //===----------------------------------------------------------------------===// 7760 7761 namespace { 7762 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 7763 public: 7764 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7765 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 7766 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7767 CodeGen::CodeGenModule &M) const override; 7768 unsigned getOpenCLKernelCallingConv() const override; 7769 }; 7770 } // End anonymous namespace. 7771 7772 /// Emit SPIR specific metadata: OpenCL and SPIR version. 7773 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7774 CodeGen::CodeGenModule &CGM) const { 7775 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7776 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7777 llvm::Module &M = CGM.getModule(); 7778 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 7779 // opencl.spir.version named metadata. 7780 llvm::Metadata *SPIRVerElts[] = { 7781 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)), 7782 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))}; 7783 llvm::NamedMDNode *SPIRVerMD = 7784 M.getOrInsertNamedMetadata("opencl.spir.version"); 7785 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 7786 appendOpenCLVersionMD(CGM); 7787 } 7788 7789 static void appendOpenCLVersionMD(CodeGen::CodeGenModule &CGM) { 7790 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7791 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7792 llvm::Module &M = CGM.getModule(); 7793 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 7794 // opencl.ocl.version named metadata node. 7795 llvm::Metadata *OCLVerElts[] = { 7796 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7797 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7798 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7799 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 7800 llvm::NamedMDNode *OCLVerMD = 7801 M.getOrInsertNamedMetadata("opencl.ocl.version"); 7802 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 7803 } 7804 7805 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7806 return llvm::CallingConv::SPIR_KERNEL; 7807 } 7808 7809 static bool appendType(SmallStringEnc &Enc, QualType QType, 7810 const CodeGen::CodeGenModule &CGM, 7811 TypeStringCache &TSC); 7812 7813 /// Helper function for appendRecordType(). 7814 /// Builds a SmallVector containing the encoded field types in declaration 7815 /// order. 7816 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 7817 const RecordDecl *RD, 7818 const CodeGen::CodeGenModule &CGM, 7819 TypeStringCache &TSC) { 7820 for (const auto *Field : RD->fields()) { 7821 SmallStringEnc Enc; 7822 Enc += "m("; 7823 Enc += Field->getName(); 7824 Enc += "){"; 7825 if (Field->isBitField()) { 7826 Enc += "b("; 7827 llvm::raw_svector_ostream OS(Enc); 7828 OS << Field->getBitWidthValue(CGM.getContext()); 7829 Enc += ':'; 7830 } 7831 if (!appendType(Enc, Field->getType(), CGM, TSC)) 7832 return false; 7833 if (Field->isBitField()) 7834 Enc += ')'; 7835 Enc += '}'; 7836 FE.emplace_back(!Field->getName().empty(), Enc); 7837 } 7838 return true; 7839 } 7840 7841 /// Appends structure and union types to Enc and adds encoding to cache. 7842 /// Recursively calls appendType (via extractFieldType) for each field. 7843 /// Union types have their fields ordered according to the ABI. 7844 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 7845 const CodeGen::CodeGenModule &CGM, 7846 TypeStringCache &TSC, const IdentifierInfo *ID) { 7847 // Append the cached TypeString if we have one. 7848 StringRef TypeString = TSC.lookupStr(ID); 7849 if (!TypeString.empty()) { 7850 Enc += TypeString; 7851 return true; 7852 } 7853 7854 // Start to emit an incomplete TypeString. 7855 size_t Start = Enc.size(); 7856 Enc += (RT->isUnionType()? 'u' : 's'); 7857 Enc += '('; 7858 if (ID) 7859 Enc += ID->getName(); 7860 Enc += "){"; 7861 7862 // We collect all encoded fields and order as necessary. 7863 bool IsRecursive = false; 7864 const RecordDecl *RD = RT->getDecl()->getDefinition(); 7865 if (RD && !RD->field_empty()) { 7866 // An incomplete TypeString stub is placed in the cache for this RecordType 7867 // so that recursive calls to this RecordType will use it whilst building a 7868 // complete TypeString for this RecordType. 7869 SmallVector<FieldEncoding, 16> FE; 7870 std::string StubEnc(Enc.substr(Start).str()); 7871 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 7872 TSC.addIncomplete(ID, std::move(StubEnc)); 7873 if (!extractFieldType(FE, RD, CGM, TSC)) { 7874 (void) TSC.removeIncomplete(ID); 7875 return false; 7876 } 7877 IsRecursive = TSC.removeIncomplete(ID); 7878 // The ABI requires unions to be sorted but not structures. 7879 // See FieldEncoding::operator< for sort algorithm. 7880 if (RT->isUnionType()) 7881 std::sort(FE.begin(), FE.end()); 7882 // We can now complete the TypeString. 7883 unsigned E = FE.size(); 7884 for (unsigned I = 0; I != E; ++I) { 7885 if (I) 7886 Enc += ','; 7887 Enc += FE[I].str(); 7888 } 7889 } 7890 Enc += '}'; 7891 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 7892 return true; 7893 } 7894 7895 /// Appends enum types to Enc and adds the encoding to the cache. 7896 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 7897 TypeStringCache &TSC, 7898 const IdentifierInfo *ID) { 7899 // Append the cached TypeString if we have one. 7900 StringRef TypeString = TSC.lookupStr(ID); 7901 if (!TypeString.empty()) { 7902 Enc += TypeString; 7903 return true; 7904 } 7905 7906 size_t Start = Enc.size(); 7907 Enc += "e("; 7908 if (ID) 7909 Enc += ID->getName(); 7910 Enc += "){"; 7911 7912 // We collect all encoded enumerations and order them alphanumerically. 7913 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 7914 SmallVector<FieldEncoding, 16> FE; 7915 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 7916 ++I) { 7917 SmallStringEnc EnumEnc; 7918 EnumEnc += "m("; 7919 EnumEnc += I->getName(); 7920 EnumEnc += "){"; 7921 I->getInitVal().toString(EnumEnc); 7922 EnumEnc += '}'; 7923 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 7924 } 7925 std::sort(FE.begin(), FE.end()); 7926 unsigned E = FE.size(); 7927 for (unsigned I = 0; I != E; ++I) { 7928 if (I) 7929 Enc += ','; 7930 Enc += FE[I].str(); 7931 } 7932 } 7933 Enc += '}'; 7934 TSC.addIfComplete(ID, Enc.substr(Start), false); 7935 return true; 7936 } 7937 7938 /// Appends type's qualifier to Enc. 7939 /// This is done prior to appending the type's encoding. 7940 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 7941 // Qualifiers are emitted in alphabetical order. 7942 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 7943 int Lookup = 0; 7944 if (QT.isConstQualified()) 7945 Lookup += 1<<0; 7946 if (QT.isRestrictQualified()) 7947 Lookup += 1<<1; 7948 if (QT.isVolatileQualified()) 7949 Lookup += 1<<2; 7950 Enc += Table[Lookup]; 7951 } 7952 7953 /// Appends built-in types to Enc. 7954 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 7955 const char *EncType; 7956 switch (BT->getKind()) { 7957 case BuiltinType::Void: 7958 EncType = "0"; 7959 break; 7960 case BuiltinType::Bool: 7961 EncType = "b"; 7962 break; 7963 case BuiltinType::Char_U: 7964 EncType = "uc"; 7965 break; 7966 case BuiltinType::UChar: 7967 EncType = "uc"; 7968 break; 7969 case BuiltinType::SChar: 7970 EncType = "sc"; 7971 break; 7972 case BuiltinType::UShort: 7973 EncType = "us"; 7974 break; 7975 case BuiltinType::Short: 7976 EncType = "ss"; 7977 break; 7978 case BuiltinType::UInt: 7979 EncType = "ui"; 7980 break; 7981 case BuiltinType::Int: 7982 EncType = "si"; 7983 break; 7984 case BuiltinType::ULong: 7985 EncType = "ul"; 7986 break; 7987 case BuiltinType::Long: 7988 EncType = "sl"; 7989 break; 7990 case BuiltinType::ULongLong: 7991 EncType = "ull"; 7992 break; 7993 case BuiltinType::LongLong: 7994 EncType = "sll"; 7995 break; 7996 case BuiltinType::Float: 7997 EncType = "ft"; 7998 break; 7999 case BuiltinType::Double: 8000 EncType = "d"; 8001 break; 8002 case BuiltinType::LongDouble: 8003 EncType = "ld"; 8004 break; 8005 default: 8006 return false; 8007 } 8008 Enc += EncType; 8009 return true; 8010 } 8011 8012 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8013 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8014 const CodeGen::CodeGenModule &CGM, 8015 TypeStringCache &TSC) { 8016 Enc += "p("; 8017 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8018 return false; 8019 Enc += ')'; 8020 return true; 8021 } 8022 8023 /// Appends array encoding to Enc before calling appendType for the element. 8024 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8025 const ArrayType *AT, 8026 const CodeGen::CodeGenModule &CGM, 8027 TypeStringCache &TSC, StringRef NoSizeEnc) { 8028 if (AT->getSizeModifier() != ArrayType::Normal) 8029 return false; 8030 Enc += "a("; 8031 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8032 CAT->getSize().toStringUnsigned(Enc); 8033 else 8034 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8035 Enc += ':'; 8036 // The Qualifiers should be attached to the type rather than the array. 8037 appendQualifier(Enc, QT); 8038 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8039 return false; 8040 Enc += ')'; 8041 return true; 8042 } 8043 8044 /// Appends a function encoding to Enc, calling appendType for the return type 8045 /// and the arguments. 8046 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8047 const CodeGen::CodeGenModule &CGM, 8048 TypeStringCache &TSC) { 8049 Enc += "f{"; 8050 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8051 return false; 8052 Enc += "}("; 8053 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8054 // N.B. we are only interested in the adjusted param types. 8055 auto I = FPT->param_type_begin(); 8056 auto E = FPT->param_type_end(); 8057 if (I != E) { 8058 do { 8059 if (!appendType(Enc, *I, CGM, TSC)) 8060 return false; 8061 ++I; 8062 if (I != E) 8063 Enc += ','; 8064 } while (I != E); 8065 if (FPT->isVariadic()) 8066 Enc += ",va"; 8067 } else { 8068 if (FPT->isVariadic()) 8069 Enc += "va"; 8070 else 8071 Enc += '0'; 8072 } 8073 } 8074 Enc += ')'; 8075 return true; 8076 } 8077 8078 /// Handles the type's qualifier before dispatching a call to handle specific 8079 /// type encodings. 8080 static bool appendType(SmallStringEnc &Enc, QualType QType, 8081 const CodeGen::CodeGenModule &CGM, 8082 TypeStringCache &TSC) { 8083 8084 QualType QT = QType.getCanonicalType(); 8085 8086 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8087 // The Qualifiers should be attached to the type rather than the array. 8088 // Thus we don't call appendQualifier() here. 8089 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8090 8091 appendQualifier(Enc, QT); 8092 8093 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8094 return appendBuiltinType(Enc, BT); 8095 8096 if (const PointerType *PT = QT->getAs<PointerType>()) 8097 return appendPointerType(Enc, PT, CGM, TSC); 8098 8099 if (const EnumType *ET = QT->getAs<EnumType>()) 8100 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8101 8102 if (const RecordType *RT = QT->getAsStructureType()) 8103 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8104 8105 if (const RecordType *RT = QT->getAsUnionType()) 8106 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8107 8108 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8109 return appendFunctionType(Enc, FT, CGM, TSC); 8110 8111 return false; 8112 } 8113 8114 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8115 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8116 if (!D) 8117 return false; 8118 8119 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8120 if (FD->getLanguageLinkage() != CLanguageLinkage) 8121 return false; 8122 return appendType(Enc, FD->getType(), CGM, TSC); 8123 } 8124 8125 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8126 if (VD->getLanguageLinkage() != CLanguageLinkage) 8127 return false; 8128 QualType QT = VD->getType().getCanonicalType(); 8129 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8130 // Global ArrayTypes are given a size of '*' if the size is unknown. 8131 // The Qualifiers should be attached to the type rather than the array. 8132 // Thus we don't call appendQualifier() here. 8133 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8134 } 8135 return appendType(Enc, QT, CGM, TSC); 8136 } 8137 return false; 8138 } 8139 8140 8141 //===----------------------------------------------------------------------===// 8142 // Driver code 8143 //===----------------------------------------------------------------------===// 8144 8145 bool CodeGenModule::supportsCOMDAT() const { 8146 return getTriple().supportsCOMDAT(); 8147 } 8148 8149 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8150 if (TheTargetCodeGenInfo) 8151 return *TheTargetCodeGenInfo; 8152 8153 // Helper to set the unique_ptr while still keeping the return value. 8154 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8155 this->TheTargetCodeGenInfo.reset(P); 8156 return *P; 8157 }; 8158 8159 const llvm::Triple &Triple = getTarget().getTriple(); 8160 switch (Triple.getArch()) { 8161 default: 8162 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8163 8164 case llvm::Triple::le32: 8165 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8166 case llvm::Triple::mips: 8167 case llvm::Triple::mipsel: 8168 if (Triple.getOS() == llvm::Triple::NaCl) 8169 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8170 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8171 8172 case llvm::Triple::mips64: 8173 case llvm::Triple::mips64el: 8174 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8175 8176 case llvm::Triple::aarch64: 8177 case llvm::Triple::aarch64_be: { 8178 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8179 if (getTarget().getABI() == "darwinpcs") 8180 Kind = AArch64ABIInfo::DarwinPCS; 8181 8182 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8183 } 8184 8185 case llvm::Triple::wasm32: 8186 case llvm::Triple::wasm64: 8187 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8188 8189 case llvm::Triple::arm: 8190 case llvm::Triple::armeb: 8191 case llvm::Triple::thumb: 8192 case llvm::Triple::thumbeb: { 8193 if (Triple.getOS() == llvm::Triple::Win32) { 8194 return SetCGInfo( 8195 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 8196 } 8197 8198 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 8199 StringRef ABIStr = getTarget().getABI(); 8200 if (ABIStr == "apcs-gnu") 8201 Kind = ARMABIInfo::APCS; 8202 else if (ABIStr == "aapcs16") 8203 Kind = ARMABIInfo::AAPCS16_VFP; 8204 else if (CodeGenOpts.FloatABI == "hard" || 8205 (CodeGenOpts.FloatABI != "soft" && 8206 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8207 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8208 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8209 Kind = ARMABIInfo::AAPCS_VFP; 8210 8211 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8212 } 8213 8214 case llvm::Triple::ppc: 8215 return SetCGInfo( 8216 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8217 case llvm::Triple::ppc64: 8218 if (Triple.isOSBinFormatELF()) { 8219 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8220 if (getTarget().getABI() == "elfv2") 8221 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8222 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8223 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8224 8225 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8226 IsSoftFloat)); 8227 } else 8228 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8229 case llvm::Triple::ppc64le: { 8230 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8231 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8232 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8233 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8234 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8235 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8236 8237 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8238 IsSoftFloat)); 8239 } 8240 8241 case llvm::Triple::nvptx: 8242 case llvm::Triple::nvptx64: 8243 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8244 8245 case llvm::Triple::msp430: 8246 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8247 8248 case llvm::Triple::systemz: { 8249 bool HasVector = getTarget().getABI() == "vector"; 8250 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8251 } 8252 8253 case llvm::Triple::tce: 8254 case llvm::Triple::tcele: 8255 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8256 8257 case llvm::Triple::x86: { 8258 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8259 bool RetSmallStructInRegABI = 8260 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8261 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8262 8263 if (Triple.getOS() == llvm::Triple::Win32) { 8264 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8265 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8266 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8267 } else { 8268 return SetCGInfo(new X86_32TargetCodeGenInfo( 8269 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8270 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8271 CodeGenOpts.FloatABI == "soft")); 8272 } 8273 } 8274 8275 case llvm::Triple::x86_64: { 8276 StringRef ABI = getTarget().getABI(); 8277 X86AVXABILevel AVXLevel = 8278 (ABI == "avx512" 8279 ? X86AVXABILevel::AVX512 8280 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8281 8282 switch (Triple.getOS()) { 8283 case llvm::Triple::Win32: 8284 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8285 case llvm::Triple::PS4: 8286 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8287 default: 8288 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8289 } 8290 } 8291 case llvm::Triple::hexagon: 8292 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8293 case llvm::Triple::lanai: 8294 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8295 case llvm::Triple::r600: 8296 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8297 case llvm::Triple::amdgcn: 8298 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8299 case llvm::Triple::sparc: 8300 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8301 case llvm::Triple::sparcv9: 8302 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8303 case llvm::Triple::xcore: 8304 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8305 case llvm::Triple::spir: 8306 case llvm::Triple::spir64: 8307 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8308 } 8309 } 8310