1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 // Helper for coercing an aggregate argument or return value into an integer 35 // array of the same size (including padding) and alignment. This alternate 36 // coercion happens only for the RenderScript ABI and can be removed after 37 // runtimes that rely on it are no longer supported. 38 // 39 // RenderScript assumes that the size of the argument / return value in the IR 40 // is the same as the size of the corresponding qualified type. This helper 41 // coerces the aggregate type into an array of the same size (including 42 // padding). This coercion is used in lieu of expansion of struct members or 43 // other canonical coercions that return a coerced-type of larger size. 44 // 45 // Ty - The argument / return value type 46 // Context - The associated ASTContext 47 // LLVMContext - The associated LLVMContext 48 static ABIArgInfo coerceToIntArray(QualType Ty, 49 ASTContext &Context, 50 llvm::LLVMContext &LLVMContext) { 51 // Alignment and Size are measured in bits. 52 const uint64_t Size = Context.getTypeSize(Ty); 53 const uint64_t Alignment = Context.getTypeAlign(Ty); 54 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 55 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 56 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 57 } 58 59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 60 llvm::Value *Array, 61 llvm::Value *Value, 62 unsigned FirstIndex, 63 unsigned LastIndex) { 64 // Alternatively, we could emit this as a loop in the source. 65 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 66 llvm::Value *Cell = 67 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 68 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 69 } 70 } 71 72 static bool isAggregateTypeForABI(QualType T) { 73 return !CodeGenFunction::hasScalarEvaluationKind(T) || 74 T->isMemberFunctionPointerType(); 75 } 76 77 ABIArgInfo 78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 79 llvm::Type *Padding) const { 80 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 81 ByRef, Realign, Padding); 82 } 83 84 ABIArgInfo 85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 86 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 87 /*ByRef*/ false, Realign); 88 } 89 90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 91 QualType Ty) const { 92 return Address::invalid(); 93 } 94 95 ABIInfo::~ABIInfo() {} 96 97 /// Does the given lowering require more than the given number of 98 /// registers when expanded? 99 /// 100 /// This is intended to be the basis of a reasonable basic implementation 101 /// of should{Pass,Return}IndirectlyForSwift. 102 /// 103 /// For most targets, a limit of four total registers is reasonable; this 104 /// limits the amount of code required in order to move around the value 105 /// in case it wasn't produced immediately prior to the call by the caller 106 /// (or wasn't produced in exactly the right registers) or isn't used 107 /// immediately within the callee. But some targets may need to further 108 /// limit the register count due to an inability to support that many 109 /// return registers. 110 static bool occupiesMoreThan(CodeGenTypes &cgt, 111 ArrayRef<llvm::Type*> scalarTypes, 112 unsigned maxAllRegisters) { 113 unsigned intCount = 0, fpCount = 0; 114 for (llvm::Type *type : scalarTypes) { 115 if (type->isPointerTy()) { 116 intCount++; 117 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 118 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 119 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 120 } else { 121 assert(type->isVectorTy() || type->isFloatingPointTy()); 122 fpCount++; 123 } 124 } 125 126 return (intCount + fpCount > maxAllRegisters); 127 } 128 129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 130 llvm::Type *eltTy, 131 unsigned numElts) const { 132 // The default implementation of this assumes that the target guarantees 133 // 128-bit SIMD support but nothing more. 134 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 135 } 136 137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 138 CGCXXABI &CXXABI) { 139 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 140 if (!RD) 141 return CGCXXABI::RAA_Default; 142 return CXXABI.getRecordArgABI(RD); 143 } 144 145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 146 CGCXXABI &CXXABI) { 147 const RecordType *RT = T->getAs<RecordType>(); 148 if (!RT) 149 return CGCXXABI::RAA_Default; 150 return getRecordArgABI(RT, CXXABI); 151 } 152 153 /// Pass transparent unions as if they were the type of the first element. Sema 154 /// should ensure that all elements of the union have the same "machine type". 155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 156 if (const RecordType *UT = Ty->getAsUnionType()) { 157 const RecordDecl *UD = UT->getDecl(); 158 if (UD->hasAttr<TransparentUnionAttr>()) { 159 assert(!UD->field_empty() && "sema created an empty transparent union"); 160 return UD->field_begin()->getType(); 161 } 162 } 163 return Ty; 164 } 165 166 CGCXXABI &ABIInfo::getCXXABI() const { 167 return CGT.getCXXABI(); 168 } 169 170 ASTContext &ABIInfo::getContext() const { 171 return CGT.getContext(); 172 } 173 174 llvm::LLVMContext &ABIInfo::getVMContext() const { 175 return CGT.getLLVMContext(); 176 } 177 178 const llvm::DataLayout &ABIInfo::getDataLayout() const { 179 return CGT.getDataLayout(); 180 } 181 182 const TargetInfo &ABIInfo::getTarget() const { 183 return CGT.getTarget(); 184 } 185 186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 187 188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 189 return false; 190 } 191 192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 193 uint64_t Members) const { 194 return false; 195 } 196 197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 198 return false; 199 } 200 201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 202 raw_ostream &OS = llvm::errs(); 203 OS << "(ABIArgInfo Kind="; 204 switch (TheKind) { 205 case Direct: 206 OS << "Direct Type="; 207 if (llvm::Type *Ty = getCoerceToType()) 208 Ty->print(OS); 209 else 210 OS << "null"; 211 break; 212 case Extend: 213 OS << "Extend"; 214 break; 215 case Ignore: 216 OS << "Ignore"; 217 break; 218 case InAlloca: 219 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 220 break; 221 case Indirect: 222 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 223 << " ByVal=" << getIndirectByVal() 224 << " Realign=" << getIndirectRealign(); 225 break; 226 case Expand: 227 OS << "Expand"; 228 break; 229 case CoerceAndExpand: 230 OS << "CoerceAndExpand Type="; 231 getCoerceAndExpandType()->print(OS); 232 break; 233 } 234 OS << ")\n"; 235 } 236 237 // Dynamically round a pointer up to a multiple of the given alignment. 238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 239 llvm::Value *Ptr, 240 CharUnits Align) { 241 llvm::Value *PtrAsInt = Ptr; 242 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 243 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 244 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 245 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 246 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 247 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 248 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 249 Ptr->getType(), 250 Ptr->getName() + ".aligned"); 251 return PtrAsInt; 252 } 253 254 /// Emit va_arg for a platform using the common void* representation, 255 /// where arguments are simply emitted in an array of slots on the stack. 256 /// 257 /// This version implements the core direct-value passing rules. 258 /// 259 /// \param SlotSize - The size and alignment of a stack slot. 260 /// Each argument will be allocated to a multiple of this number of 261 /// slots, and all the slots will be aligned to this value. 262 /// \param AllowHigherAlign - The slot alignment is not a cap; 263 /// an argument type with an alignment greater than the slot size 264 /// will be emitted on a higher-alignment address, potentially 265 /// leaving one or more empty slots behind as padding. If this 266 /// is false, the returned address might be less-aligned than 267 /// DirectAlign. 268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 269 Address VAListAddr, 270 llvm::Type *DirectTy, 271 CharUnits DirectSize, 272 CharUnits DirectAlign, 273 CharUnits SlotSize, 274 bool AllowHigherAlign) { 275 // Cast the element type to i8* if necessary. Some platforms define 276 // va_list as a struct containing an i8* instead of just an i8*. 277 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 278 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 279 280 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 281 282 // If the CC aligns values higher than the slot size, do so if needed. 283 Address Addr = Address::invalid(); 284 if (AllowHigherAlign && DirectAlign > SlotSize) { 285 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 286 DirectAlign); 287 } else { 288 Addr = Address(Ptr, SlotSize); 289 } 290 291 // Advance the pointer past the argument, then store that back. 292 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 293 llvm::Value *NextPtr = 294 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 295 "argp.next"); 296 CGF.Builder.CreateStore(NextPtr, VAListAddr); 297 298 // If the argument is smaller than a slot, and this is a big-endian 299 // target, the argument will be right-adjusted in its slot. 300 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 301 !DirectTy->isStructTy()) { 302 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 303 } 304 305 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 306 return Addr; 307 } 308 309 /// Emit va_arg for a platform using the common void* representation, 310 /// where arguments are simply emitted in an array of slots on the stack. 311 /// 312 /// \param IsIndirect - Values of this type are passed indirectly. 313 /// \param ValueInfo - The size and alignment of this type, generally 314 /// computed with getContext().getTypeInfoInChars(ValueTy). 315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 316 /// Each argument will be allocated to a multiple of this number of 317 /// slots, and all the slots will be aligned to this value. 318 /// \param AllowHigherAlign - The slot alignment is not a cap; 319 /// an argument type with an alignment greater than the slot size 320 /// will be emitted on a higher-alignment address, potentially 321 /// leaving one or more empty slots behind as padding. 322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 323 QualType ValueTy, bool IsIndirect, 324 std::pair<CharUnits, CharUnits> ValueInfo, 325 CharUnits SlotSizeAndAlign, 326 bool AllowHigherAlign) { 327 // The size and alignment of the value that was passed directly. 328 CharUnits DirectSize, DirectAlign; 329 if (IsIndirect) { 330 DirectSize = CGF.getPointerSize(); 331 DirectAlign = CGF.getPointerAlign(); 332 } else { 333 DirectSize = ValueInfo.first; 334 DirectAlign = ValueInfo.second; 335 } 336 337 // Cast the address we've calculated to the right type. 338 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 339 if (IsIndirect) 340 DirectTy = DirectTy->getPointerTo(0); 341 342 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 343 DirectSize, DirectAlign, 344 SlotSizeAndAlign, 345 AllowHigherAlign); 346 347 if (IsIndirect) { 348 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 349 } 350 351 return Addr; 352 353 } 354 355 static Address emitMergePHI(CodeGenFunction &CGF, 356 Address Addr1, llvm::BasicBlock *Block1, 357 Address Addr2, llvm::BasicBlock *Block2, 358 const llvm::Twine &Name = "") { 359 assert(Addr1.getType() == Addr2.getType()); 360 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 361 PHI->addIncoming(Addr1.getPointer(), Block1); 362 PHI->addIncoming(Addr2.getPointer(), Block2); 363 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 364 return Address(PHI, Align); 365 } 366 367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 368 369 // If someone can figure out a general rule for this, that would be great. 370 // It's probably just doomed to be platform-dependent, though. 371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 372 // Verified for: 373 // x86-64 FreeBSD, Linux, Darwin 374 // x86-32 FreeBSD, Linux, Darwin 375 // PowerPC Linux, Darwin 376 // ARM Darwin (*not* EABI) 377 // AArch64 Linux 378 return 32; 379 } 380 381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 382 const FunctionNoProtoType *fnType) const { 383 // The following conventions are known to require this to be false: 384 // x86_stdcall 385 // MIPS 386 // For everything else, we just prefer false unless we opt out. 387 return false; 388 } 389 390 void 391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 392 llvm::SmallString<24> &Opt) const { 393 // This assumes the user is passing a library name like "rt" instead of a 394 // filename like "librt.a/so", and that they don't care whether it's static or 395 // dynamic. 396 Opt = "-l"; 397 Opt += Lib; 398 } 399 400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 401 return llvm::CallingConv::C; 402 } 403 404 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 405 llvm::PointerType *T, QualType QT) const { 406 return llvm::ConstantPointerNull::get(T); 407 } 408 409 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 410 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, QualType SrcTy, 411 QualType DestTy) const { 412 // Since target may map different address spaces in AST to the same address 413 // space, an address space conversion may end up as a bitcast. 414 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, 415 CGF.ConvertType(DestTy)); 416 } 417 418 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 419 420 /// isEmptyField - Return true iff a the field is "empty", that is it 421 /// is an unnamed bit-field or an (array of) empty record(s). 422 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 423 bool AllowArrays) { 424 if (FD->isUnnamedBitfield()) 425 return true; 426 427 QualType FT = FD->getType(); 428 429 // Constant arrays of empty records count as empty, strip them off. 430 // Constant arrays of zero length always count as empty. 431 if (AllowArrays) 432 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 433 if (AT->getSize() == 0) 434 return true; 435 FT = AT->getElementType(); 436 } 437 438 const RecordType *RT = FT->getAs<RecordType>(); 439 if (!RT) 440 return false; 441 442 // C++ record fields are never empty, at least in the Itanium ABI. 443 // 444 // FIXME: We should use a predicate for whether this behavior is true in the 445 // current ABI. 446 if (isa<CXXRecordDecl>(RT->getDecl())) 447 return false; 448 449 return isEmptyRecord(Context, FT, AllowArrays); 450 } 451 452 /// isEmptyRecord - Return true iff a structure contains only empty 453 /// fields. Note that a structure with a flexible array member is not 454 /// considered empty. 455 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 456 const RecordType *RT = T->getAs<RecordType>(); 457 if (!RT) 458 return false; 459 const RecordDecl *RD = RT->getDecl(); 460 if (RD->hasFlexibleArrayMember()) 461 return false; 462 463 // If this is a C++ record, check the bases first. 464 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 465 for (const auto &I : CXXRD->bases()) 466 if (!isEmptyRecord(Context, I.getType(), true)) 467 return false; 468 469 for (const auto *I : RD->fields()) 470 if (!isEmptyField(Context, I, AllowArrays)) 471 return false; 472 return true; 473 } 474 475 /// isSingleElementStruct - Determine if a structure is a "single 476 /// element struct", i.e. it has exactly one non-empty field or 477 /// exactly one field which is itself a single element 478 /// struct. Structures with flexible array members are never 479 /// considered single element structs. 480 /// 481 /// \return The field declaration for the single non-empty field, if 482 /// it exists. 483 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 484 const RecordType *RT = T->getAs<RecordType>(); 485 if (!RT) 486 return nullptr; 487 488 const RecordDecl *RD = RT->getDecl(); 489 if (RD->hasFlexibleArrayMember()) 490 return nullptr; 491 492 const Type *Found = nullptr; 493 494 // If this is a C++ record, check the bases first. 495 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 496 for (const auto &I : CXXRD->bases()) { 497 // Ignore empty records. 498 if (isEmptyRecord(Context, I.getType(), true)) 499 continue; 500 501 // If we already found an element then this isn't a single-element struct. 502 if (Found) 503 return nullptr; 504 505 // If this is non-empty and not a single element struct, the composite 506 // cannot be a single element struct. 507 Found = isSingleElementStruct(I.getType(), Context); 508 if (!Found) 509 return nullptr; 510 } 511 } 512 513 // Check for single element. 514 for (const auto *FD : RD->fields()) { 515 QualType FT = FD->getType(); 516 517 // Ignore empty fields. 518 if (isEmptyField(Context, FD, true)) 519 continue; 520 521 // If we already found an element then this isn't a single-element 522 // struct. 523 if (Found) 524 return nullptr; 525 526 // Treat single element arrays as the element. 527 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 528 if (AT->getSize().getZExtValue() != 1) 529 break; 530 FT = AT->getElementType(); 531 } 532 533 if (!isAggregateTypeForABI(FT)) { 534 Found = FT.getTypePtr(); 535 } else { 536 Found = isSingleElementStruct(FT, Context); 537 if (!Found) 538 return nullptr; 539 } 540 } 541 542 // We don't consider a struct a single-element struct if it has 543 // padding beyond the element type. 544 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 545 return nullptr; 546 547 return Found; 548 } 549 550 namespace { 551 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 552 const ABIArgInfo &AI) { 553 // This default implementation defers to the llvm backend's va_arg 554 // instruction. It can handle only passing arguments directly 555 // (typically only handled in the backend for primitive types), or 556 // aggregates passed indirectly by pointer (NOTE: if the "byval" 557 // flag has ABI impact in the callee, this implementation cannot 558 // work.) 559 560 // Only a few cases are covered here at the moment -- those needed 561 // by the default abi. 562 llvm::Value *Val; 563 564 if (AI.isIndirect()) { 565 assert(!AI.getPaddingType() && 566 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 567 assert( 568 !AI.getIndirectRealign() && 569 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 570 571 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 572 CharUnits TyAlignForABI = TyInfo.second; 573 574 llvm::Type *BaseTy = 575 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 576 llvm::Value *Addr = 577 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 578 return Address(Addr, TyAlignForABI); 579 } else { 580 assert((AI.isDirect() || AI.isExtend()) && 581 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 582 583 assert(!AI.getInReg() && 584 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 585 assert(!AI.getPaddingType() && 586 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 587 assert(!AI.getDirectOffset() && 588 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 589 assert(!AI.getCoerceToType() && 590 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 591 592 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 593 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 594 CGF.Builder.CreateStore(Val, Temp); 595 return Temp; 596 } 597 } 598 599 /// DefaultABIInfo - The default implementation for ABI specific 600 /// details. This implementation provides information which results in 601 /// self-consistent and sensible LLVM IR generation, but does not 602 /// conform to any particular ABI. 603 class DefaultABIInfo : public ABIInfo { 604 public: 605 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 606 607 ABIArgInfo classifyReturnType(QualType RetTy) const; 608 ABIArgInfo classifyArgumentType(QualType RetTy) const; 609 610 void computeInfo(CGFunctionInfo &FI) const override { 611 if (!getCXXABI().classifyReturnType(FI)) 612 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 613 for (auto &I : FI.arguments()) 614 I.info = classifyArgumentType(I.type); 615 } 616 617 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 618 QualType Ty) const override { 619 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 620 } 621 }; 622 623 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 624 public: 625 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 626 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 627 }; 628 629 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 630 Ty = useFirstFieldIfTransparentUnion(Ty); 631 632 if (isAggregateTypeForABI(Ty)) { 633 // Records with non-trivial destructors/copy-constructors should not be 634 // passed by value. 635 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 636 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 637 638 return getNaturalAlignIndirect(Ty); 639 } 640 641 // Treat an enum type as its underlying type. 642 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 643 Ty = EnumTy->getDecl()->getIntegerType(); 644 645 return (Ty->isPromotableIntegerType() ? 646 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 647 } 648 649 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 650 if (RetTy->isVoidType()) 651 return ABIArgInfo::getIgnore(); 652 653 if (isAggregateTypeForABI(RetTy)) 654 return getNaturalAlignIndirect(RetTy); 655 656 // Treat an enum type as its underlying type. 657 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 658 RetTy = EnumTy->getDecl()->getIntegerType(); 659 660 return (RetTy->isPromotableIntegerType() ? 661 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 662 } 663 664 //===----------------------------------------------------------------------===// 665 // WebAssembly ABI Implementation 666 // 667 // This is a very simple ABI that relies a lot on DefaultABIInfo. 668 //===----------------------------------------------------------------------===// 669 670 class WebAssemblyABIInfo final : public DefaultABIInfo { 671 public: 672 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 673 : DefaultABIInfo(CGT) {} 674 675 private: 676 ABIArgInfo classifyReturnType(QualType RetTy) const; 677 ABIArgInfo classifyArgumentType(QualType Ty) const; 678 679 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 680 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 681 // overload them. 682 void computeInfo(CGFunctionInfo &FI) const override { 683 if (!getCXXABI().classifyReturnType(FI)) 684 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 685 for (auto &Arg : FI.arguments()) 686 Arg.info = classifyArgumentType(Arg.type); 687 } 688 689 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 690 QualType Ty) const override; 691 }; 692 693 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 694 public: 695 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 696 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 697 }; 698 699 /// \brief Classify argument of given type \p Ty. 700 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 701 Ty = useFirstFieldIfTransparentUnion(Ty); 702 703 if (isAggregateTypeForABI(Ty)) { 704 // Records with non-trivial destructors/copy-constructors should not be 705 // passed by value. 706 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 707 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 708 // Ignore empty structs/unions. 709 if (isEmptyRecord(getContext(), Ty, true)) 710 return ABIArgInfo::getIgnore(); 711 // Lower single-element structs to just pass a regular value. TODO: We 712 // could do reasonable-size multiple-element structs too, using getExpand(), 713 // though watch out for things like bitfields. 714 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 715 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 716 } 717 718 // Otherwise just do the default thing. 719 return DefaultABIInfo::classifyArgumentType(Ty); 720 } 721 722 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 723 if (isAggregateTypeForABI(RetTy)) { 724 // Records with non-trivial destructors/copy-constructors should not be 725 // returned by value. 726 if (!getRecordArgABI(RetTy, getCXXABI())) { 727 // Ignore empty structs/unions. 728 if (isEmptyRecord(getContext(), RetTy, true)) 729 return ABIArgInfo::getIgnore(); 730 // Lower single-element structs to just return a regular value. TODO: We 731 // could do reasonable-size multiple-element structs too, using 732 // ABIArgInfo::getDirect(). 733 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 734 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 735 } 736 } 737 738 // Otherwise just do the default thing. 739 return DefaultABIInfo::classifyReturnType(RetTy); 740 } 741 742 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 743 QualType Ty) const { 744 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 745 getContext().getTypeInfoInChars(Ty), 746 CharUnits::fromQuantity(4), 747 /*AllowHigherAlign=*/ true); 748 } 749 750 //===----------------------------------------------------------------------===// 751 // le32/PNaCl bitcode ABI Implementation 752 // 753 // This is a simplified version of the x86_32 ABI. Arguments and return values 754 // are always passed on the stack. 755 //===----------------------------------------------------------------------===// 756 757 class PNaClABIInfo : public ABIInfo { 758 public: 759 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 760 761 ABIArgInfo classifyReturnType(QualType RetTy) const; 762 ABIArgInfo classifyArgumentType(QualType RetTy) const; 763 764 void computeInfo(CGFunctionInfo &FI) const override; 765 Address EmitVAArg(CodeGenFunction &CGF, 766 Address VAListAddr, QualType Ty) const override; 767 }; 768 769 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 770 public: 771 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 772 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 773 }; 774 775 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 776 if (!getCXXABI().classifyReturnType(FI)) 777 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 778 779 for (auto &I : FI.arguments()) 780 I.info = classifyArgumentType(I.type); 781 } 782 783 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 784 QualType Ty) const { 785 // The PNaCL ABI is a bit odd, in that varargs don't use normal 786 // function classification. Structs get passed directly for varargs 787 // functions, through a rewriting transform in 788 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 789 // this target to actually support a va_arg instructions with an 790 // aggregate type, unlike other targets. 791 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 792 } 793 794 /// \brief Classify argument of given type \p Ty. 795 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 796 if (isAggregateTypeForABI(Ty)) { 797 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 798 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 799 return getNaturalAlignIndirect(Ty); 800 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 801 // Treat an enum type as its underlying type. 802 Ty = EnumTy->getDecl()->getIntegerType(); 803 } else if (Ty->isFloatingType()) { 804 // Floating-point types don't go inreg. 805 return ABIArgInfo::getDirect(); 806 } 807 808 return (Ty->isPromotableIntegerType() ? 809 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 810 } 811 812 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 813 if (RetTy->isVoidType()) 814 return ABIArgInfo::getIgnore(); 815 816 // In the PNaCl ABI we always return records/structures on the stack. 817 if (isAggregateTypeForABI(RetTy)) 818 return getNaturalAlignIndirect(RetTy); 819 820 // Treat an enum type as its underlying type. 821 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 822 RetTy = EnumTy->getDecl()->getIntegerType(); 823 824 return (RetTy->isPromotableIntegerType() ? 825 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 826 } 827 828 /// IsX86_MMXType - Return true if this is an MMX type. 829 bool IsX86_MMXType(llvm::Type *IRType) { 830 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 831 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 832 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 833 IRType->getScalarSizeInBits() != 64; 834 } 835 836 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 837 StringRef Constraint, 838 llvm::Type* Ty) { 839 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 840 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 841 // Invalid MMX constraint 842 return nullptr; 843 } 844 845 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 846 } 847 848 // No operation needed 849 return Ty; 850 } 851 852 /// Returns true if this type can be passed in SSE registers with the 853 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 854 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 855 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 856 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 857 return true; 858 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 859 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 860 // registers specially. 861 unsigned VecSize = Context.getTypeSize(VT); 862 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 863 return true; 864 } 865 return false; 866 } 867 868 /// Returns true if this aggregate is small enough to be passed in SSE registers 869 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 870 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 871 return NumMembers <= 4; 872 } 873 874 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 875 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 876 auto AI = ABIArgInfo::getDirect(T); 877 AI.setInReg(true); 878 AI.setCanBeFlattened(false); 879 return AI; 880 } 881 882 //===----------------------------------------------------------------------===// 883 // X86-32 ABI Implementation 884 //===----------------------------------------------------------------------===// 885 886 /// \brief Similar to llvm::CCState, but for Clang. 887 struct CCState { 888 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 889 890 unsigned CC; 891 unsigned FreeRegs; 892 unsigned FreeSSERegs; 893 }; 894 895 enum { 896 // Vectorcall only allows the first 6 parameters to be passed in registers. 897 VectorcallMaxParamNumAsReg = 6 898 }; 899 900 /// X86_32ABIInfo - The X86-32 ABI information. 901 class X86_32ABIInfo : public SwiftABIInfo { 902 enum Class { 903 Integer, 904 Float 905 }; 906 907 static const unsigned MinABIStackAlignInBytes = 4; 908 909 bool IsDarwinVectorABI; 910 bool IsRetSmallStructInRegABI; 911 bool IsWin32StructABI; 912 bool IsSoftFloatABI; 913 bool IsMCUABI; 914 unsigned DefaultNumRegisterParameters; 915 916 static bool isRegisterSize(unsigned Size) { 917 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 918 } 919 920 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 921 // FIXME: Assumes vectorcall is in use. 922 return isX86VectorTypeForVectorCall(getContext(), Ty); 923 } 924 925 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 926 uint64_t NumMembers) const override { 927 // FIXME: Assumes vectorcall is in use. 928 return isX86VectorCallAggregateSmallEnough(NumMembers); 929 } 930 931 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 932 933 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 934 /// such that the argument will be passed in memory. 935 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 936 937 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 938 939 /// \brief Return the alignment to use for the given type on the stack. 940 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 941 942 Class classify(QualType Ty) const; 943 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 944 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 945 ABIArgInfo reclassifyHvaArgType(QualType RetTy, CCState &State, 946 const ABIArgInfo& current) const; 947 /// \brief Updates the number of available free registers, returns 948 /// true if any registers were allocated. 949 bool updateFreeRegs(QualType Ty, CCState &State) const; 950 951 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 952 bool &NeedsPadding) const; 953 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 954 955 bool canExpandIndirectArgument(QualType Ty) const; 956 957 /// \brief Rewrite the function info so that all memory arguments use 958 /// inalloca. 959 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 960 961 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 962 CharUnits &StackOffset, ABIArgInfo &Info, 963 QualType Type) const; 964 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 965 bool &UsedInAlloca) const; 966 967 public: 968 969 void computeInfo(CGFunctionInfo &FI) const override; 970 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 971 QualType Ty) const override; 972 973 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 974 bool RetSmallStructInRegABI, bool Win32StructABI, 975 unsigned NumRegisterParameters, bool SoftFloatABI) 976 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 977 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 978 IsWin32StructABI(Win32StructABI), 979 IsSoftFloatABI(SoftFloatABI), 980 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 981 DefaultNumRegisterParameters(NumRegisterParameters) {} 982 983 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 984 ArrayRef<llvm::Type*> scalars, 985 bool asReturnValue) const override { 986 // LLVM's x86-32 lowering currently only assigns up to three 987 // integer registers and three fp registers. Oddly, it'll use up to 988 // four vector registers for vectors, but those can overlap with the 989 // scalar registers. 990 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 991 } 992 993 bool isSwiftErrorInRegister() const override { 994 // x86-32 lowering does not support passing swifterror in a register. 995 return false; 996 } 997 }; 998 999 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1000 public: 1001 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1002 bool RetSmallStructInRegABI, bool Win32StructABI, 1003 unsigned NumRegisterParameters, bool SoftFloatABI) 1004 : TargetCodeGenInfo(new X86_32ABIInfo( 1005 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1006 NumRegisterParameters, SoftFloatABI)) {} 1007 1008 static bool isStructReturnInRegABI( 1009 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1010 1011 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1012 CodeGen::CodeGenModule &CGM) const override; 1013 1014 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1015 // Darwin uses different dwarf register numbers for EH. 1016 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1017 return 4; 1018 } 1019 1020 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1021 llvm::Value *Address) const override; 1022 1023 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1024 StringRef Constraint, 1025 llvm::Type* Ty) const override { 1026 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1027 } 1028 1029 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1030 std::string &Constraints, 1031 std::vector<llvm::Type *> &ResultRegTypes, 1032 std::vector<llvm::Type *> &ResultTruncRegTypes, 1033 std::vector<LValue> &ResultRegDests, 1034 std::string &AsmString, 1035 unsigned NumOutputs) const override; 1036 1037 llvm::Constant * 1038 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1039 unsigned Sig = (0xeb << 0) | // jmp rel8 1040 (0x06 << 8) | // .+0x08 1041 ('F' << 16) | 1042 ('T' << 24); 1043 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1044 } 1045 1046 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1047 return "movl\t%ebp, %ebp" 1048 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 1049 } 1050 }; 1051 1052 } 1053 1054 /// Rewrite input constraint references after adding some output constraints. 1055 /// In the case where there is one output and one input and we add one output, 1056 /// we need to replace all operand references greater than or equal to 1: 1057 /// mov $0, $1 1058 /// mov eax, $1 1059 /// The result will be: 1060 /// mov $0, $2 1061 /// mov eax, $2 1062 static void rewriteInputConstraintReferences(unsigned FirstIn, 1063 unsigned NumNewOuts, 1064 std::string &AsmString) { 1065 std::string Buf; 1066 llvm::raw_string_ostream OS(Buf); 1067 size_t Pos = 0; 1068 while (Pos < AsmString.size()) { 1069 size_t DollarStart = AsmString.find('$', Pos); 1070 if (DollarStart == std::string::npos) 1071 DollarStart = AsmString.size(); 1072 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1073 if (DollarEnd == std::string::npos) 1074 DollarEnd = AsmString.size(); 1075 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1076 Pos = DollarEnd; 1077 size_t NumDollars = DollarEnd - DollarStart; 1078 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1079 // We have an operand reference. 1080 size_t DigitStart = Pos; 1081 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1082 if (DigitEnd == std::string::npos) 1083 DigitEnd = AsmString.size(); 1084 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1085 unsigned OperandIndex; 1086 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1087 if (OperandIndex >= FirstIn) 1088 OperandIndex += NumNewOuts; 1089 OS << OperandIndex; 1090 } else { 1091 OS << OperandStr; 1092 } 1093 Pos = DigitEnd; 1094 } 1095 } 1096 AsmString = std::move(OS.str()); 1097 } 1098 1099 /// Add output constraints for EAX:EDX because they are return registers. 1100 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1101 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1102 std::vector<llvm::Type *> &ResultRegTypes, 1103 std::vector<llvm::Type *> &ResultTruncRegTypes, 1104 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1105 unsigned NumOutputs) const { 1106 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1107 1108 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1109 // larger. 1110 if (!Constraints.empty()) 1111 Constraints += ','; 1112 if (RetWidth <= 32) { 1113 Constraints += "={eax}"; 1114 ResultRegTypes.push_back(CGF.Int32Ty); 1115 } else { 1116 // Use the 'A' constraint for EAX:EDX. 1117 Constraints += "=A"; 1118 ResultRegTypes.push_back(CGF.Int64Ty); 1119 } 1120 1121 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1122 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1123 ResultTruncRegTypes.push_back(CoerceTy); 1124 1125 // Coerce the integer by bitcasting the return slot pointer. 1126 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1127 CoerceTy->getPointerTo())); 1128 ResultRegDests.push_back(ReturnSlot); 1129 1130 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1131 } 1132 1133 /// shouldReturnTypeInRegister - Determine if the given type should be 1134 /// returned in a register (for the Darwin and MCU ABI). 1135 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1136 ASTContext &Context) const { 1137 uint64_t Size = Context.getTypeSize(Ty); 1138 1139 // For i386, type must be register sized. 1140 // For the MCU ABI, it only needs to be <= 8-byte 1141 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1142 return false; 1143 1144 if (Ty->isVectorType()) { 1145 // 64- and 128- bit vectors inside structures are not returned in 1146 // registers. 1147 if (Size == 64 || Size == 128) 1148 return false; 1149 1150 return true; 1151 } 1152 1153 // If this is a builtin, pointer, enum, complex type, member pointer, or 1154 // member function pointer it is ok. 1155 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1156 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1157 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1158 return true; 1159 1160 // Arrays are treated like records. 1161 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1162 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1163 1164 // Otherwise, it must be a record type. 1165 const RecordType *RT = Ty->getAs<RecordType>(); 1166 if (!RT) return false; 1167 1168 // FIXME: Traverse bases here too. 1169 1170 // Structure types are passed in register if all fields would be 1171 // passed in a register. 1172 for (const auto *FD : RT->getDecl()->fields()) { 1173 // Empty fields are ignored. 1174 if (isEmptyField(Context, FD, true)) 1175 continue; 1176 1177 // Check fields recursively. 1178 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1179 return false; 1180 } 1181 return true; 1182 } 1183 1184 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1185 // Treat complex types as the element type. 1186 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1187 Ty = CTy->getElementType(); 1188 1189 // Check for a type which we know has a simple scalar argument-passing 1190 // convention without any padding. (We're specifically looking for 32 1191 // and 64-bit integer and integer-equivalents, float, and double.) 1192 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1193 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1194 return false; 1195 1196 uint64_t Size = Context.getTypeSize(Ty); 1197 return Size == 32 || Size == 64; 1198 } 1199 1200 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1201 uint64_t &Size) { 1202 for (const auto *FD : RD->fields()) { 1203 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1204 // argument is smaller than 32-bits, expanding the struct will create 1205 // alignment padding. 1206 if (!is32Or64BitBasicType(FD->getType(), Context)) 1207 return false; 1208 1209 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1210 // how to expand them yet, and the predicate for telling if a bitfield still 1211 // counts as "basic" is more complicated than what we were doing previously. 1212 if (FD->isBitField()) 1213 return false; 1214 1215 Size += Context.getTypeSize(FD->getType()); 1216 } 1217 return true; 1218 } 1219 1220 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1221 uint64_t &Size) { 1222 // Don't do this if there are any non-empty bases. 1223 for (const CXXBaseSpecifier &Base : RD->bases()) { 1224 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1225 Size)) 1226 return false; 1227 } 1228 if (!addFieldSizes(Context, RD, Size)) 1229 return false; 1230 return true; 1231 } 1232 1233 /// Test whether an argument type which is to be passed indirectly (on the 1234 /// stack) would have the equivalent layout if it was expanded into separate 1235 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1236 /// optimizations. 1237 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1238 // We can only expand structure types. 1239 const RecordType *RT = Ty->getAs<RecordType>(); 1240 if (!RT) 1241 return false; 1242 const RecordDecl *RD = RT->getDecl(); 1243 uint64_t Size = 0; 1244 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1245 if (!IsWin32StructABI) { 1246 // On non-Windows, we have to conservatively match our old bitcode 1247 // prototypes in order to be ABI-compatible at the bitcode level. 1248 if (!CXXRD->isCLike()) 1249 return false; 1250 } else { 1251 // Don't do this for dynamic classes. 1252 if (CXXRD->isDynamicClass()) 1253 return false; 1254 } 1255 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1256 return false; 1257 } else { 1258 if (!addFieldSizes(getContext(), RD, Size)) 1259 return false; 1260 } 1261 1262 // We can do this if there was no alignment padding. 1263 return Size == getContext().getTypeSize(Ty); 1264 } 1265 1266 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1267 // If the return value is indirect, then the hidden argument is consuming one 1268 // integer register. 1269 if (State.FreeRegs) { 1270 --State.FreeRegs; 1271 if (!IsMCUABI) 1272 return getNaturalAlignIndirectInReg(RetTy); 1273 } 1274 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1275 } 1276 1277 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1278 CCState &State) const { 1279 if (RetTy->isVoidType()) 1280 return ABIArgInfo::getIgnore(); 1281 1282 const Type *Base = nullptr; 1283 uint64_t NumElts = 0; 1284 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1285 State.CC == llvm::CallingConv::X86_RegCall) && 1286 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1287 // The LLVM struct type for such an aggregate should lower properly. 1288 return ABIArgInfo::getDirect(); 1289 } 1290 1291 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1292 // On Darwin, some vectors are returned in registers. 1293 if (IsDarwinVectorABI) { 1294 uint64_t Size = getContext().getTypeSize(RetTy); 1295 1296 // 128-bit vectors are a special case; they are returned in 1297 // registers and we need to make sure to pick a type the LLVM 1298 // backend will like. 1299 if (Size == 128) 1300 return ABIArgInfo::getDirect(llvm::VectorType::get( 1301 llvm::Type::getInt64Ty(getVMContext()), 2)); 1302 1303 // Always return in register if it fits in a general purpose 1304 // register, or if it is 64 bits and has a single element. 1305 if ((Size == 8 || Size == 16 || Size == 32) || 1306 (Size == 64 && VT->getNumElements() == 1)) 1307 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1308 Size)); 1309 1310 return getIndirectReturnResult(RetTy, State); 1311 } 1312 1313 return ABIArgInfo::getDirect(); 1314 } 1315 1316 if (isAggregateTypeForABI(RetTy)) { 1317 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1318 // Structures with flexible arrays are always indirect. 1319 if (RT->getDecl()->hasFlexibleArrayMember()) 1320 return getIndirectReturnResult(RetTy, State); 1321 } 1322 1323 // If specified, structs and unions are always indirect. 1324 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1325 return getIndirectReturnResult(RetTy, State); 1326 1327 // Ignore empty structs/unions. 1328 if (isEmptyRecord(getContext(), RetTy, true)) 1329 return ABIArgInfo::getIgnore(); 1330 1331 // Small structures which are register sized are generally returned 1332 // in a register. 1333 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1334 uint64_t Size = getContext().getTypeSize(RetTy); 1335 1336 // As a special-case, if the struct is a "single-element" struct, and 1337 // the field is of type "float" or "double", return it in a 1338 // floating-point register. (MSVC does not apply this special case.) 1339 // We apply a similar transformation for pointer types to improve the 1340 // quality of the generated IR. 1341 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1342 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1343 || SeltTy->hasPointerRepresentation()) 1344 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1345 1346 // FIXME: We should be able to narrow this integer in cases with dead 1347 // padding. 1348 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1349 } 1350 1351 return getIndirectReturnResult(RetTy, State); 1352 } 1353 1354 // Treat an enum type as its underlying type. 1355 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1356 RetTy = EnumTy->getDecl()->getIntegerType(); 1357 1358 return (RetTy->isPromotableIntegerType() ? 1359 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1360 } 1361 1362 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1363 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1364 } 1365 1366 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1367 const RecordType *RT = Ty->getAs<RecordType>(); 1368 if (!RT) 1369 return 0; 1370 const RecordDecl *RD = RT->getDecl(); 1371 1372 // If this is a C++ record, check the bases first. 1373 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1374 for (const auto &I : CXXRD->bases()) 1375 if (!isRecordWithSSEVectorType(Context, I.getType())) 1376 return false; 1377 1378 for (const auto *i : RD->fields()) { 1379 QualType FT = i->getType(); 1380 1381 if (isSSEVectorType(Context, FT)) 1382 return true; 1383 1384 if (isRecordWithSSEVectorType(Context, FT)) 1385 return true; 1386 } 1387 1388 return false; 1389 } 1390 1391 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1392 unsigned Align) const { 1393 // Otherwise, if the alignment is less than or equal to the minimum ABI 1394 // alignment, just use the default; the backend will handle this. 1395 if (Align <= MinABIStackAlignInBytes) 1396 return 0; // Use default alignment. 1397 1398 // On non-Darwin, the stack type alignment is always 4. 1399 if (!IsDarwinVectorABI) { 1400 // Set explicit alignment, since we may need to realign the top. 1401 return MinABIStackAlignInBytes; 1402 } 1403 1404 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1405 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1406 isRecordWithSSEVectorType(getContext(), Ty))) 1407 return 16; 1408 1409 return MinABIStackAlignInBytes; 1410 } 1411 1412 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1413 CCState &State) const { 1414 if (!ByVal) { 1415 if (State.FreeRegs) { 1416 --State.FreeRegs; // Non-byval indirects just use one pointer. 1417 if (!IsMCUABI) 1418 return getNaturalAlignIndirectInReg(Ty); 1419 } 1420 return getNaturalAlignIndirect(Ty, false); 1421 } 1422 1423 // Compute the byval alignment. 1424 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1425 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1426 if (StackAlign == 0) 1427 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1428 1429 // If the stack alignment is less than the type alignment, realign the 1430 // argument. 1431 bool Realign = TypeAlign > StackAlign; 1432 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1433 /*ByVal=*/true, Realign); 1434 } 1435 1436 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1437 const Type *T = isSingleElementStruct(Ty, getContext()); 1438 if (!T) 1439 T = Ty.getTypePtr(); 1440 1441 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1442 BuiltinType::Kind K = BT->getKind(); 1443 if (K == BuiltinType::Float || K == BuiltinType::Double) 1444 return Float; 1445 } 1446 return Integer; 1447 } 1448 1449 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1450 if (!IsSoftFloatABI) { 1451 Class C = classify(Ty); 1452 if (C == Float) 1453 return false; 1454 } 1455 1456 unsigned Size = getContext().getTypeSize(Ty); 1457 unsigned SizeInRegs = (Size + 31) / 32; 1458 1459 if (SizeInRegs == 0) 1460 return false; 1461 1462 if (!IsMCUABI) { 1463 if (SizeInRegs > State.FreeRegs) { 1464 State.FreeRegs = 0; 1465 return false; 1466 } 1467 } else { 1468 // The MCU psABI allows passing parameters in-reg even if there are 1469 // earlier parameters that are passed on the stack. Also, 1470 // it does not allow passing >8-byte structs in-register, 1471 // even if there are 3 free registers available. 1472 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1473 return false; 1474 } 1475 1476 State.FreeRegs -= SizeInRegs; 1477 return true; 1478 } 1479 1480 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1481 bool &InReg, 1482 bool &NeedsPadding) const { 1483 // On Windows, aggregates other than HFAs are never passed in registers, and 1484 // they do not consume register slots. Homogenous floating-point aggregates 1485 // (HFAs) have already been dealt with at this point. 1486 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1487 return false; 1488 1489 NeedsPadding = false; 1490 InReg = !IsMCUABI; 1491 1492 if (!updateFreeRegs(Ty, State)) 1493 return false; 1494 1495 if (IsMCUABI) 1496 return true; 1497 1498 if (State.CC == llvm::CallingConv::X86_FastCall || 1499 State.CC == llvm::CallingConv::X86_VectorCall || 1500 State.CC == llvm::CallingConv::X86_RegCall) { 1501 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1502 NeedsPadding = true; 1503 1504 return false; 1505 } 1506 1507 return true; 1508 } 1509 1510 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1511 if (!updateFreeRegs(Ty, State)) 1512 return false; 1513 1514 if (IsMCUABI) 1515 return false; 1516 1517 if (State.CC == llvm::CallingConv::X86_FastCall || 1518 State.CC == llvm::CallingConv::X86_VectorCall || 1519 State.CC == llvm::CallingConv::X86_RegCall) { 1520 if (getContext().getTypeSize(Ty) > 32) 1521 return false; 1522 1523 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1524 Ty->isReferenceType()); 1525 } 1526 1527 return true; 1528 } 1529 1530 ABIArgInfo 1531 X86_32ABIInfo::reclassifyHvaArgType(QualType Ty, CCState &State, 1532 const ABIArgInfo ¤t) const { 1533 // Assumes vectorCall calling convention. 1534 const Type *Base = nullptr; 1535 uint64_t NumElts = 0; 1536 1537 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 1538 isHomogeneousAggregate(Ty, Base, NumElts)) { 1539 if (State.FreeSSERegs >= NumElts) { 1540 // HVA types get passed directly in registers if there is room. 1541 State.FreeSSERegs -= NumElts; 1542 return getDirectX86Hva(); 1543 } 1544 // If there's no room, the HVA gets passed as normal indirect 1545 // structure. 1546 return getIndirectResult(Ty, /*ByVal=*/false, State); 1547 } 1548 return current; 1549 } 1550 1551 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1552 CCState &State) const { 1553 // FIXME: Set alignment on indirect arguments. 1554 1555 Ty = useFirstFieldIfTransparentUnion(Ty); 1556 1557 // Check with the C++ ABI first. 1558 const RecordType *RT = Ty->getAs<RecordType>(); 1559 if (RT) { 1560 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1561 if (RAA == CGCXXABI::RAA_Indirect) { 1562 return getIndirectResult(Ty, false, State); 1563 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1564 // The field index doesn't matter, we'll fix it up later. 1565 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1566 } 1567 } 1568 1569 // vectorcall adds the concept of a homogenous vector aggregate, similar 1570 // to other targets, regcall uses some of the HVA rules. 1571 const Type *Base = nullptr; 1572 uint64_t NumElts = 0; 1573 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1574 State.CC == llvm::CallingConv::X86_RegCall) && 1575 isHomogeneousAggregate(Ty, Base, NumElts)) { 1576 1577 if (State.CC == llvm::CallingConv::X86_RegCall) { 1578 if (State.FreeSSERegs >= NumElts) { 1579 State.FreeSSERegs -= NumElts; 1580 if (Ty->isBuiltinType() || Ty->isVectorType()) 1581 return ABIArgInfo::getDirect(); 1582 return ABIArgInfo::getExpand(); 1583 1584 } 1585 return getIndirectResult(Ty, /*ByVal=*/false, State); 1586 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1587 if (State.FreeSSERegs >= NumElts && (Ty->isBuiltinType() || Ty->isVectorType())) { 1588 // Actual floating-point types get registers first time through if 1589 // there is registers available 1590 State.FreeSSERegs -= NumElts; 1591 return ABIArgInfo::getDirect(); 1592 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 1593 // HVA Types only get registers after everything else has been 1594 // set, so it gets set as indirect for now. 1595 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty)); 1596 } 1597 } 1598 } 1599 1600 if (isAggregateTypeForABI(Ty)) { 1601 // Structures with flexible arrays are always indirect. 1602 // FIXME: This should not be byval! 1603 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1604 return getIndirectResult(Ty, true, State); 1605 1606 // Ignore empty structs/unions on non-Windows. 1607 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1608 return ABIArgInfo::getIgnore(); 1609 1610 llvm::LLVMContext &LLVMContext = getVMContext(); 1611 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1612 bool NeedsPadding = false; 1613 bool InReg; 1614 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1615 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1616 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1617 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1618 if (InReg) 1619 return ABIArgInfo::getDirectInReg(Result); 1620 else 1621 return ABIArgInfo::getDirect(Result); 1622 } 1623 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1624 1625 // Expand small (<= 128-bit) record types when we know that the stack layout 1626 // of those arguments will match the struct. This is important because the 1627 // LLVM backend isn't smart enough to remove byval, which inhibits many 1628 // optimizations. 1629 // Don't do this for the MCU if there are still free integer registers 1630 // (see X86_64 ABI for full explanation). 1631 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1632 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1633 return ABIArgInfo::getExpandWithPadding( 1634 State.CC == llvm::CallingConv::X86_FastCall || 1635 State.CC == llvm::CallingConv::X86_VectorCall || 1636 State.CC == llvm::CallingConv::X86_RegCall, 1637 PaddingType); 1638 1639 return getIndirectResult(Ty, true, State); 1640 } 1641 1642 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1643 // On Darwin, some vectors are passed in memory, we handle this by passing 1644 // it as an i8/i16/i32/i64. 1645 if (IsDarwinVectorABI) { 1646 uint64_t Size = getContext().getTypeSize(Ty); 1647 if ((Size == 8 || Size == 16 || Size == 32) || 1648 (Size == 64 && VT->getNumElements() == 1)) 1649 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1650 Size)); 1651 } 1652 1653 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1654 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1655 1656 return ABIArgInfo::getDirect(); 1657 } 1658 1659 1660 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1661 Ty = EnumTy->getDecl()->getIntegerType(); 1662 1663 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1664 1665 if (Ty->isPromotableIntegerType()) { 1666 if (InReg) 1667 return ABIArgInfo::getExtendInReg(); 1668 return ABIArgInfo::getExtend(); 1669 } 1670 1671 if (InReg) 1672 return ABIArgInfo::getDirectInReg(); 1673 return ABIArgInfo::getDirect(); 1674 } 1675 1676 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1677 bool &UsedInAlloca) const { 1678 // Vectorcall only allows the first 6 parameters to be passed in registers, 1679 // and homogeneous vector aggregates are only put into registers as a second 1680 // priority. 1681 unsigned Count = 0; 1682 CCState ZeroState = State; 1683 ZeroState.FreeRegs = ZeroState.FreeSSERegs = 0; 1684 // HVAs must be done as a second priority for registers, so the deferred 1685 // items are dealt with by going through the pattern a second time. 1686 for (auto &I : FI.arguments()) { 1687 if (Count < VectorcallMaxParamNumAsReg) 1688 I.info = classifyArgumentType(I.type, State); 1689 else 1690 // Parameters after the 6th cannot be passed in registers, 1691 // so pretend there are no registers left for them. 1692 I.info = classifyArgumentType(I.type, ZeroState); 1693 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1694 ++Count; 1695 } 1696 Count = 0; 1697 // Go through the arguments a second time to get HVAs registers if there 1698 // are still some available. 1699 for (auto &I : FI.arguments()) { 1700 if (Count < VectorcallMaxParamNumAsReg) 1701 I.info = reclassifyHvaArgType(I.type, State, I.info); 1702 ++Count; 1703 } 1704 } 1705 1706 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1707 CCState State(FI.getCallingConvention()); 1708 if (IsMCUABI) 1709 State.FreeRegs = 3; 1710 else if (State.CC == llvm::CallingConv::X86_FastCall) 1711 State.FreeRegs = 2; 1712 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1713 State.FreeRegs = 2; 1714 State.FreeSSERegs = 6; 1715 } else if (FI.getHasRegParm()) 1716 State.FreeRegs = FI.getRegParm(); 1717 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1718 State.FreeRegs = 5; 1719 State.FreeSSERegs = 8; 1720 } else 1721 State.FreeRegs = DefaultNumRegisterParameters; 1722 1723 if (!getCXXABI().classifyReturnType(FI)) { 1724 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1725 } else if (FI.getReturnInfo().isIndirect()) { 1726 // The C++ ABI is not aware of register usage, so we have to check if the 1727 // return value was sret and put it in a register ourselves if appropriate. 1728 if (State.FreeRegs) { 1729 --State.FreeRegs; // The sret parameter consumes a register. 1730 if (!IsMCUABI) 1731 FI.getReturnInfo().setInReg(true); 1732 } 1733 } 1734 1735 // The chain argument effectively gives us another free register. 1736 if (FI.isChainCall()) 1737 ++State.FreeRegs; 1738 1739 bool UsedInAlloca = false; 1740 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1741 computeVectorCallArgs(FI, State, UsedInAlloca); 1742 } else { 1743 // If not vectorcall, revert to normal behavior. 1744 for (auto &I : FI.arguments()) { 1745 I.info = classifyArgumentType(I.type, State); 1746 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1747 } 1748 } 1749 1750 // If we needed to use inalloca for any argument, do a second pass and rewrite 1751 // all the memory arguments to use inalloca. 1752 if (UsedInAlloca) 1753 rewriteWithInAlloca(FI); 1754 } 1755 1756 void 1757 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1758 CharUnits &StackOffset, ABIArgInfo &Info, 1759 QualType Type) const { 1760 // Arguments are always 4-byte-aligned. 1761 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1762 1763 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1764 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1765 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1766 StackOffset += getContext().getTypeSizeInChars(Type); 1767 1768 // Insert padding bytes to respect alignment. 1769 CharUnits FieldEnd = StackOffset; 1770 StackOffset = FieldEnd.alignTo(FieldAlign); 1771 if (StackOffset != FieldEnd) { 1772 CharUnits NumBytes = StackOffset - FieldEnd; 1773 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1774 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1775 FrameFields.push_back(Ty); 1776 } 1777 } 1778 1779 static bool isArgInAlloca(const ABIArgInfo &Info) { 1780 // Leave ignored and inreg arguments alone. 1781 switch (Info.getKind()) { 1782 case ABIArgInfo::InAlloca: 1783 return true; 1784 case ABIArgInfo::Indirect: 1785 assert(Info.getIndirectByVal()); 1786 return true; 1787 case ABIArgInfo::Ignore: 1788 return false; 1789 case ABIArgInfo::Direct: 1790 case ABIArgInfo::Extend: 1791 if (Info.getInReg()) 1792 return false; 1793 return true; 1794 case ABIArgInfo::Expand: 1795 case ABIArgInfo::CoerceAndExpand: 1796 // These are aggregate types which are never passed in registers when 1797 // inalloca is involved. 1798 return true; 1799 } 1800 llvm_unreachable("invalid enum"); 1801 } 1802 1803 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1804 assert(IsWin32StructABI && "inalloca only supported on win32"); 1805 1806 // Build a packed struct type for all of the arguments in memory. 1807 SmallVector<llvm::Type *, 6> FrameFields; 1808 1809 // The stack alignment is always 4. 1810 CharUnits StackAlign = CharUnits::fromQuantity(4); 1811 1812 CharUnits StackOffset; 1813 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1814 1815 // Put 'this' into the struct before 'sret', if necessary. 1816 bool IsThisCall = 1817 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1818 ABIArgInfo &Ret = FI.getReturnInfo(); 1819 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1820 isArgInAlloca(I->info)) { 1821 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1822 ++I; 1823 } 1824 1825 // Put the sret parameter into the inalloca struct if it's in memory. 1826 if (Ret.isIndirect() && !Ret.getInReg()) { 1827 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1828 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1829 // On Windows, the hidden sret parameter is always returned in eax. 1830 Ret.setInAllocaSRet(IsWin32StructABI); 1831 } 1832 1833 // Skip the 'this' parameter in ecx. 1834 if (IsThisCall) 1835 ++I; 1836 1837 // Put arguments passed in memory into the struct. 1838 for (; I != E; ++I) { 1839 if (isArgInAlloca(I->info)) 1840 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1841 } 1842 1843 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1844 /*isPacked=*/true), 1845 StackAlign); 1846 } 1847 1848 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1849 Address VAListAddr, QualType Ty) const { 1850 1851 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1852 1853 // x86-32 changes the alignment of certain arguments on the stack. 1854 // 1855 // Just messing with TypeInfo like this works because we never pass 1856 // anything indirectly. 1857 TypeInfo.second = CharUnits::fromQuantity( 1858 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1859 1860 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1861 TypeInfo, CharUnits::fromQuantity(4), 1862 /*AllowHigherAlign*/ true); 1863 } 1864 1865 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1866 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1867 assert(Triple.getArch() == llvm::Triple::x86); 1868 1869 switch (Opts.getStructReturnConvention()) { 1870 case CodeGenOptions::SRCK_Default: 1871 break; 1872 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1873 return false; 1874 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1875 return true; 1876 } 1877 1878 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1879 return true; 1880 1881 switch (Triple.getOS()) { 1882 case llvm::Triple::DragonFly: 1883 case llvm::Triple::FreeBSD: 1884 case llvm::Triple::OpenBSD: 1885 case llvm::Triple::Bitrig: 1886 case llvm::Triple::Win32: 1887 return true; 1888 default: 1889 return false; 1890 } 1891 } 1892 1893 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1894 llvm::GlobalValue *GV, 1895 CodeGen::CodeGenModule &CGM) const { 1896 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1897 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1898 // Get the LLVM function. 1899 llvm::Function *Fn = cast<llvm::Function>(GV); 1900 1901 // Now add the 'alignstack' attribute with a value of 16. 1902 llvm::AttrBuilder B; 1903 B.addStackAlignmentAttr(16); 1904 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 1905 } 1906 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1907 llvm::Function *Fn = cast<llvm::Function>(GV); 1908 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1909 } 1910 } 1911 } 1912 1913 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1914 CodeGen::CodeGenFunction &CGF, 1915 llvm::Value *Address) const { 1916 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1917 1918 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1919 1920 // 0-7 are the eight integer registers; the order is different 1921 // on Darwin (for EH), but the range is the same. 1922 // 8 is %eip. 1923 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1924 1925 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1926 // 12-16 are st(0..4). Not sure why we stop at 4. 1927 // These have size 16, which is sizeof(long double) on 1928 // platforms with 8-byte alignment for that type. 1929 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1930 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1931 1932 } else { 1933 // 9 is %eflags, which doesn't get a size on Darwin for some 1934 // reason. 1935 Builder.CreateAlignedStore( 1936 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1937 CharUnits::One()); 1938 1939 // 11-16 are st(0..5). Not sure why we stop at 5. 1940 // These have size 12, which is sizeof(long double) on 1941 // platforms with 4-byte alignment for that type. 1942 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1943 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1944 } 1945 1946 return false; 1947 } 1948 1949 //===----------------------------------------------------------------------===// 1950 // X86-64 ABI Implementation 1951 //===----------------------------------------------------------------------===// 1952 1953 1954 namespace { 1955 /// The AVX ABI level for X86 targets. 1956 enum class X86AVXABILevel { 1957 None, 1958 AVX, 1959 AVX512 1960 }; 1961 1962 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1963 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1964 switch (AVXLevel) { 1965 case X86AVXABILevel::AVX512: 1966 return 512; 1967 case X86AVXABILevel::AVX: 1968 return 256; 1969 case X86AVXABILevel::None: 1970 return 128; 1971 } 1972 llvm_unreachable("Unknown AVXLevel"); 1973 } 1974 1975 /// X86_64ABIInfo - The X86_64 ABI information. 1976 class X86_64ABIInfo : public SwiftABIInfo { 1977 enum Class { 1978 Integer = 0, 1979 SSE, 1980 SSEUp, 1981 X87, 1982 X87Up, 1983 ComplexX87, 1984 NoClass, 1985 Memory 1986 }; 1987 1988 /// merge - Implement the X86_64 ABI merging algorithm. 1989 /// 1990 /// Merge an accumulating classification \arg Accum with a field 1991 /// classification \arg Field. 1992 /// 1993 /// \param Accum - The accumulating classification. This should 1994 /// always be either NoClass or the result of a previous merge 1995 /// call. In addition, this should never be Memory (the caller 1996 /// should just return Memory for the aggregate). 1997 static Class merge(Class Accum, Class Field); 1998 1999 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2000 /// 2001 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2002 /// final MEMORY or SSE classes when necessary. 2003 /// 2004 /// \param AggregateSize - The size of the current aggregate in 2005 /// the classification process. 2006 /// 2007 /// \param Lo - The classification for the parts of the type 2008 /// residing in the low word of the containing object. 2009 /// 2010 /// \param Hi - The classification for the parts of the type 2011 /// residing in the higher words of the containing object. 2012 /// 2013 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2014 2015 /// classify - Determine the x86_64 register classes in which the 2016 /// given type T should be passed. 2017 /// 2018 /// \param Lo - The classification for the parts of the type 2019 /// residing in the low word of the containing object. 2020 /// 2021 /// \param Hi - The classification for the parts of the type 2022 /// residing in the high word of the containing object. 2023 /// 2024 /// \param OffsetBase - The bit offset of this type in the 2025 /// containing object. Some parameters are classified different 2026 /// depending on whether they straddle an eightbyte boundary. 2027 /// 2028 /// \param isNamedArg - Whether the argument in question is a "named" 2029 /// argument, as used in AMD64-ABI 3.5.7. 2030 /// 2031 /// If a word is unused its result will be NoClass; if a type should 2032 /// be passed in Memory then at least the classification of \arg Lo 2033 /// will be Memory. 2034 /// 2035 /// The \arg Lo class will be NoClass iff the argument is ignored. 2036 /// 2037 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2038 /// also be ComplexX87. 2039 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2040 bool isNamedArg) const; 2041 2042 llvm::Type *GetByteVectorType(QualType Ty) const; 2043 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2044 unsigned IROffset, QualType SourceTy, 2045 unsigned SourceOffset) const; 2046 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2047 unsigned IROffset, QualType SourceTy, 2048 unsigned SourceOffset) const; 2049 2050 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2051 /// such that the argument will be returned in memory. 2052 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2053 2054 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2055 /// such that the argument will be passed in memory. 2056 /// 2057 /// \param freeIntRegs - The number of free integer registers remaining 2058 /// available. 2059 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2060 2061 ABIArgInfo classifyReturnType(QualType RetTy) const; 2062 2063 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2064 unsigned &neededInt, unsigned &neededSSE, 2065 bool isNamedArg) const; 2066 2067 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2068 unsigned &NeededSSE) const; 2069 2070 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2071 unsigned &NeededSSE) const; 2072 2073 bool IsIllegalVectorType(QualType Ty) const; 2074 2075 /// The 0.98 ABI revision clarified a lot of ambiguities, 2076 /// unfortunately in ways that were not always consistent with 2077 /// certain previous compilers. In particular, platforms which 2078 /// required strict binary compatibility with older versions of GCC 2079 /// may need to exempt themselves. 2080 bool honorsRevision0_98() const { 2081 return !getTarget().getTriple().isOSDarwin(); 2082 } 2083 2084 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 2085 // compilers require us to classify it as INTEGER. 2086 bool classifyIntegerMMXAsSSE() const { 2087 const llvm::Triple &Triple = getTarget().getTriple(); 2088 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2089 return false; 2090 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2091 return false; 2092 return true; 2093 } 2094 2095 X86AVXABILevel AVXLevel; 2096 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2097 // 64-bit hardware. 2098 bool Has64BitPointers; 2099 2100 public: 2101 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2102 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2103 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2104 } 2105 2106 bool isPassedUsingAVXType(QualType type) const { 2107 unsigned neededInt, neededSSE; 2108 // The freeIntRegs argument doesn't matter here. 2109 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2110 /*isNamedArg*/true); 2111 if (info.isDirect()) { 2112 llvm::Type *ty = info.getCoerceToType(); 2113 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2114 return (vectorTy->getBitWidth() > 128); 2115 } 2116 return false; 2117 } 2118 2119 void computeInfo(CGFunctionInfo &FI) const override; 2120 2121 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2122 QualType Ty) const override; 2123 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2124 QualType Ty) const override; 2125 2126 bool has64BitPointers() const { 2127 return Has64BitPointers; 2128 } 2129 2130 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2131 ArrayRef<llvm::Type*> scalars, 2132 bool asReturnValue) const override { 2133 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2134 } 2135 bool isSwiftErrorInRegister() const override { 2136 return true; 2137 } 2138 }; 2139 2140 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2141 class WinX86_64ABIInfo : public SwiftABIInfo { 2142 public: 2143 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2144 : SwiftABIInfo(CGT), 2145 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2146 2147 void computeInfo(CGFunctionInfo &FI) const override; 2148 2149 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2150 QualType Ty) const override; 2151 2152 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2153 // FIXME: Assumes vectorcall is in use. 2154 return isX86VectorTypeForVectorCall(getContext(), Ty); 2155 } 2156 2157 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2158 uint64_t NumMembers) const override { 2159 // FIXME: Assumes vectorcall is in use. 2160 return isX86VectorCallAggregateSmallEnough(NumMembers); 2161 } 2162 2163 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2164 ArrayRef<llvm::Type *> scalars, 2165 bool asReturnValue) const override { 2166 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2167 } 2168 2169 bool isSwiftErrorInRegister() const override { 2170 return true; 2171 } 2172 2173 private: 2174 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2175 bool IsVectorCall, bool IsRegCall) const; 2176 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2177 const ABIArgInfo ¤t) const; 2178 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2179 bool IsVectorCall, bool IsRegCall) const; 2180 2181 bool IsMingw64; 2182 }; 2183 2184 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2185 public: 2186 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2187 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2188 2189 const X86_64ABIInfo &getABIInfo() const { 2190 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2191 } 2192 2193 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2194 return 7; 2195 } 2196 2197 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2198 llvm::Value *Address) const override { 2199 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2200 2201 // 0-15 are the 16 integer registers. 2202 // 16 is %rip. 2203 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2204 return false; 2205 } 2206 2207 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2208 StringRef Constraint, 2209 llvm::Type* Ty) const override { 2210 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2211 } 2212 2213 bool isNoProtoCallVariadic(const CallArgList &args, 2214 const FunctionNoProtoType *fnType) const override { 2215 // The default CC on x86-64 sets %al to the number of SSA 2216 // registers used, and GCC sets this when calling an unprototyped 2217 // function, so we override the default behavior. However, don't do 2218 // that when AVX types are involved: the ABI explicitly states it is 2219 // undefined, and it doesn't work in practice because of how the ABI 2220 // defines varargs anyway. 2221 if (fnType->getCallConv() == CC_C) { 2222 bool HasAVXType = false; 2223 for (CallArgList::const_iterator 2224 it = args.begin(), ie = args.end(); it != ie; ++it) { 2225 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2226 HasAVXType = true; 2227 break; 2228 } 2229 } 2230 2231 if (!HasAVXType) 2232 return true; 2233 } 2234 2235 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2236 } 2237 2238 llvm::Constant * 2239 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2240 unsigned Sig; 2241 if (getABIInfo().has64BitPointers()) 2242 Sig = (0xeb << 0) | // jmp rel8 2243 (0x0a << 8) | // .+0x0c 2244 ('F' << 16) | 2245 ('T' << 24); 2246 else 2247 Sig = (0xeb << 0) | // jmp rel8 2248 (0x06 << 8) | // .+0x08 2249 ('F' << 16) | 2250 ('T' << 24); 2251 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2252 } 2253 2254 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2255 CodeGen::CodeGenModule &CGM) const override { 2256 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2257 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2258 llvm::Function *Fn = cast<llvm::Function>(GV); 2259 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2260 } 2261 } 2262 } 2263 }; 2264 2265 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2266 public: 2267 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2268 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2269 2270 void getDependentLibraryOption(llvm::StringRef Lib, 2271 llvm::SmallString<24> &Opt) const override { 2272 Opt = "\01"; 2273 // If the argument contains a space, enclose it in quotes. 2274 if (Lib.find(" ") != StringRef::npos) 2275 Opt += "\"" + Lib.str() + "\""; 2276 else 2277 Opt += Lib; 2278 } 2279 }; 2280 2281 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2282 // If the argument does not end in .lib, automatically add the suffix. 2283 // If the argument contains a space, enclose it in quotes. 2284 // This matches the behavior of MSVC. 2285 bool Quote = (Lib.find(" ") != StringRef::npos); 2286 std::string ArgStr = Quote ? "\"" : ""; 2287 ArgStr += Lib; 2288 if (!Lib.endswith_lower(".lib")) 2289 ArgStr += ".lib"; 2290 ArgStr += Quote ? "\"" : ""; 2291 return ArgStr; 2292 } 2293 2294 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2295 public: 2296 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2297 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2298 unsigned NumRegisterParameters) 2299 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2300 Win32StructABI, NumRegisterParameters, false) {} 2301 2302 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2303 CodeGen::CodeGenModule &CGM) const override; 2304 2305 void getDependentLibraryOption(llvm::StringRef Lib, 2306 llvm::SmallString<24> &Opt) const override { 2307 Opt = "/DEFAULTLIB:"; 2308 Opt += qualifyWindowsLibrary(Lib); 2309 } 2310 2311 void getDetectMismatchOption(llvm::StringRef Name, 2312 llvm::StringRef Value, 2313 llvm::SmallString<32> &Opt) const override { 2314 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2315 } 2316 }; 2317 2318 static void addStackProbeSizeTargetAttribute(const Decl *D, 2319 llvm::GlobalValue *GV, 2320 CodeGen::CodeGenModule &CGM) { 2321 if (D && isa<FunctionDecl>(D)) { 2322 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2323 llvm::Function *Fn = cast<llvm::Function>(GV); 2324 2325 Fn->addFnAttr("stack-probe-size", 2326 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2327 } 2328 } 2329 } 2330 2331 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2332 llvm::GlobalValue *GV, 2333 CodeGen::CodeGenModule &CGM) const { 2334 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2335 2336 addStackProbeSizeTargetAttribute(D, GV, CGM); 2337 } 2338 2339 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2340 public: 2341 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2342 X86AVXABILevel AVXLevel) 2343 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2344 2345 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2346 CodeGen::CodeGenModule &CGM) const override; 2347 2348 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2349 return 7; 2350 } 2351 2352 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2353 llvm::Value *Address) const override { 2354 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2355 2356 // 0-15 are the 16 integer registers. 2357 // 16 is %rip. 2358 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2359 return false; 2360 } 2361 2362 void getDependentLibraryOption(llvm::StringRef Lib, 2363 llvm::SmallString<24> &Opt) const override { 2364 Opt = "/DEFAULTLIB:"; 2365 Opt += qualifyWindowsLibrary(Lib); 2366 } 2367 2368 void getDetectMismatchOption(llvm::StringRef Name, 2369 llvm::StringRef Value, 2370 llvm::SmallString<32> &Opt) const override { 2371 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2372 } 2373 }; 2374 2375 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2376 llvm::GlobalValue *GV, 2377 CodeGen::CodeGenModule &CGM) const { 2378 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2379 2380 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2381 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2382 llvm::Function *Fn = cast<llvm::Function>(GV); 2383 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2384 } 2385 } 2386 2387 addStackProbeSizeTargetAttribute(D, GV, CGM); 2388 } 2389 } 2390 2391 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2392 Class &Hi) const { 2393 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2394 // 2395 // (a) If one of the classes is Memory, the whole argument is passed in 2396 // memory. 2397 // 2398 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2399 // memory. 2400 // 2401 // (c) If the size of the aggregate exceeds two eightbytes and the first 2402 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2403 // argument is passed in memory. NOTE: This is necessary to keep the 2404 // ABI working for processors that don't support the __m256 type. 2405 // 2406 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2407 // 2408 // Some of these are enforced by the merging logic. Others can arise 2409 // only with unions; for example: 2410 // union { _Complex double; unsigned; } 2411 // 2412 // Note that clauses (b) and (c) were added in 0.98. 2413 // 2414 if (Hi == Memory) 2415 Lo = Memory; 2416 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2417 Lo = Memory; 2418 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2419 Lo = Memory; 2420 if (Hi == SSEUp && Lo != SSE) 2421 Hi = SSE; 2422 } 2423 2424 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2425 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2426 // classified recursively so that always two fields are 2427 // considered. The resulting class is calculated according to 2428 // the classes of the fields in the eightbyte: 2429 // 2430 // (a) If both classes are equal, this is the resulting class. 2431 // 2432 // (b) If one of the classes is NO_CLASS, the resulting class is 2433 // the other class. 2434 // 2435 // (c) If one of the classes is MEMORY, the result is the MEMORY 2436 // class. 2437 // 2438 // (d) If one of the classes is INTEGER, the result is the 2439 // INTEGER. 2440 // 2441 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2442 // MEMORY is used as class. 2443 // 2444 // (f) Otherwise class SSE is used. 2445 2446 // Accum should never be memory (we should have returned) or 2447 // ComplexX87 (because this cannot be passed in a structure). 2448 assert((Accum != Memory && Accum != ComplexX87) && 2449 "Invalid accumulated classification during merge."); 2450 if (Accum == Field || Field == NoClass) 2451 return Accum; 2452 if (Field == Memory) 2453 return Memory; 2454 if (Accum == NoClass) 2455 return Field; 2456 if (Accum == Integer || Field == Integer) 2457 return Integer; 2458 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2459 Accum == X87 || Accum == X87Up) 2460 return Memory; 2461 return SSE; 2462 } 2463 2464 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2465 Class &Lo, Class &Hi, bool isNamedArg) const { 2466 // FIXME: This code can be simplified by introducing a simple value class for 2467 // Class pairs with appropriate constructor methods for the various 2468 // situations. 2469 2470 // FIXME: Some of the split computations are wrong; unaligned vectors 2471 // shouldn't be passed in registers for example, so there is no chance they 2472 // can straddle an eightbyte. Verify & simplify. 2473 2474 Lo = Hi = NoClass; 2475 2476 Class &Current = OffsetBase < 64 ? Lo : Hi; 2477 Current = Memory; 2478 2479 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2480 BuiltinType::Kind k = BT->getKind(); 2481 2482 if (k == BuiltinType::Void) { 2483 Current = NoClass; 2484 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2485 Lo = Integer; 2486 Hi = Integer; 2487 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2488 Current = Integer; 2489 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2490 Current = SSE; 2491 } else if (k == BuiltinType::LongDouble) { 2492 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2493 if (LDF == &llvm::APFloat::IEEEquad()) { 2494 Lo = SSE; 2495 Hi = SSEUp; 2496 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2497 Lo = X87; 2498 Hi = X87Up; 2499 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2500 Current = SSE; 2501 } else 2502 llvm_unreachable("unexpected long double representation!"); 2503 } 2504 // FIXME: _Decimal32 and _Decimal64 are SSE. 2505 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2506 return; 2507 } 2508 2509 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2510 // Classify the underlying integer type. 2511 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2512 return; 2513 } 2514 2515 if (Ty->hasPointerRepresentation()) { 2516 Current = Integer; 2517 return; 2518 } 2519 2520 if (Ty->isMemberPointerType()) { 2521 if (Ty->isMemberFunctionPointerType()) { 2522 if (Has64BitPointers) { 2523 // If Has64BitPointers, this is an {i64, i64}, so classify both 2524 // Lo and Hi now. 2525 Lo = Hi = Integer; 2526 } else { 2527 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2528 // straddles an eightbyte boundary, Hi should be classified as well. 2529 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2530 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2531 if (EB_FuncPtr != EB_ThisAdj) { 2532 Lo = Hi = Integer; 2533 } else { 2534 Current = Integer; 2535 } 2536 } 2537 } else { 2538 Current = Integer; 2539 } 2540 return; 2541 } 2542 2543 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2544 uint64_t Size = getContext().getTypeSize(VT); 2545 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2546 // gcc passes the following as integer: 2547 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2548 // 2 bytes - <2 x char>, <1 x short> 2549 // 1 byte - <1 x char> 2550 Current = Integer; 2551 2552 // If this type crosses an eightbyte boundary, it should be 2553 // split. 2554 uint64_t EB_Lo = (OffsetBase) / 64; 2555 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2556 if (EB_Lo != EB_Hi) 2557 Hi = Lo; 2558 } else if (Size == 64) { 2559 QualType ElementType = VT->getElementType(); 2560 2561 // gcc passes <1 x double> in memory. :( 2562 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2563 return; 2564 2565 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2566 // pass them as integer. For platforms where clang is the de facto 2567 // platform compiler, we must continue to use integer. 2568 if (!classifyIntegerMMXAsSSE() && 2569 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2570 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2571 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2572 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2573 Current = Integer; 2574 else 2575 Current = SSE; 2576 2577 // If this type crosses an eightbyte boundary, it should be 2578 // split. 2579 if (OffsetBase && OffsetBase != 64) 2580 Hi = Lo; 2581 } else if (Size == 128 || 2582 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2583 // Arguments of 256-bits are split into four eightbyte chunks. The 2584 // least significant one belongs to class SSE and all the others to class 2585 // SSEUP. The original Lo and Hi design considers that types can't be 2586 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2587 // This design isn't correct for 256-bits, but since there're no cases 2588 // where the upper parts would need to be inspected, avoid adding 2589 // complexity and just consider Hi to match the 64-256 part. 2590 // 2591 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2592 // registers if they are "named", i.e. not part of the "..." of a 2593 // variadic function. 2594 // 2595 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2596 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2597 Lo = SSE; 2598 Hi = SSEUp; 2599 } 2600 return; 2601 } 2602 2603 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2604 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2605 2606 uint64_t Size = getContext().getTypeSize(Ty); 2607 if (ET->isIntegralOrEnumerationType()) { 2608 if (Size <= 64) 2609 Current = Integer; 2610 else if (Size <= 128) 2611 Lo = Hi = Integer; 2612 } else if (ET == getContext().FloatTy) { 2613 Current = SSE; 2614 } else if (ET == getContext().DoubleTy) { 2615 Lo = Hi = SSE; 2616 } else if (ET == getContext().LongDoubleTy) { 2617 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2618 if (LDF == &llvm::APFloat::IEEEquad()) 2619 Current = Memory; 2620 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2621 Current = ComplexX87; 2622 else if (LDF == &llvm::APFloat::IEEEdouble()) 2623 Lo = Hi = SSE; 2624 else 2625 llvm_unreachable("unexpected long double representation!"); 2626 } 2627 2628 // If this complex type crosses an eightbyte boundary then it 2629 // should be split. 2630 uint64_t EB_Real = (OffsetBase) / 64; 2631 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2632 if (Hi == NoClass && EB_Real != EB_Imag) 2633 Hi = Lo; 2634 2635 return; 2636 } 2637 2638 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2639 // Arrays are treated like structures. 2640 2641 uint64_t Size = getContext().getTypeSize(Ty); 2642 2643 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2644 // than eight eightbytes, ..., it has class MEMORY. 2645 if (Size > 512) 2646 return; 2647 2648 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2649 // fields, it has class MEMORY. 2650 // 2651 // Only need to check alignment of array base. 2652 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2653 return; 2654 2655 // Otherwise implement simplified merge. We could be smarter about 2656 // this, but it isn't worth it and would be harder to verify. 2657 Current = NoClass; 2658 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2659 uint64_t ArraySize = AT->getSize().getZExtValue(); 2660 2661 // The only case a 256-bit wide vector could be used is when the array 2662 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2663 // to work for sizes wider than 128, early check and fallback to memory. 2664 // 2665 if (Size > 128 && 2666 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2667 return; 2668 2669 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2670 Class FieldLo, FieldHi; 2671 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2672 Lo = merge(Lo, FieldLo); 2673 Hi = merge(Hi, FieldHi); 2674 if (Lo == Memory || Hi == Memory) 2675 break; 2676 } 2677 2678 postMerge(Size, Lo, Hi); 2679 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2680 return; 2681 } 2682 2683 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2684 uint64_t Size = getContext().getTypeSize(Ty); 2685 2686 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2687 // than eight eightbytes, ..., it has class MEMORY. 2688 if (Size > 512) 2689 return; 2690 2691 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2692 // copy constructor or a non-trivial destructor, it is passed by invisible 2693 // reference. 2694 if (getRecordArgABI(RT, getCXXABI())) 2695 return; 2696 2697 const RecordDecl *RD = RT->getDecl(); 2698 2699 // Assume variable sized types are passed in memory. 2700 if (RD->hasFlexibleArrayMember()) 2701 return; 2702 2703 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2704 2705 // Reset Lo class, this will be recomputed. 2706 Current = NoClass; 2707 2708 // If this is a C++ record, classify the bases first. 2709 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2710 for (const auto &I : CXXRD->bases()) { 2711 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2712 "Unexpected base class!"); 2713 const CXXRecordDecl *Base = 2714 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2715 2716 // Classify this field. 2717 // 2718 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2719 // single eightbyte, each is classified separately. Each eightbyte gets 2720 // initialized to class NO_CLASS. 2721 Class FieldLo, FieldHi; 2722 uint64_t Offset = 2723 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2724 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2725 Lo = merge(Lo, FieldLo); 2726 Hi = merge(Hi, FieldHi); 2727 if (Lo == Memory || Hi == Memory) { 2728 postMerge(Size, Lo, Hi); 2729 return; 2730 } 2731 } 2732 } 2733 2734 // Classify the fields one at a time, merging the results. 2735 unsigned idx = 0; 2736 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2737 i != e; ++i, ++idx) { 2738 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2739 bool BitField = i->isBitField(); 2740 2741 // Ignore padding bit-fields. 2742 if (BitField && i->isUnnamedBitfield()) 2743 continue; 2744 2745 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2746 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2747 // 2748 // The only case a 256-bit wide vector could be used is when the struct 2749 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2750 // to work for sizes wider than 128, early check and fallback to memory. 2751 // 2752 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2753 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2754 Lo = Memory; 2755 postMerge(Size, Lo, Hi); 2756 return; 2757 } 2758 // Note, skip this test for bit-fields, see below. 2759 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2760 Lo = Memory; 2761 postMerge(Size, Lo, Hi); 2762 return; 2763 } 2764 2765 // Classify this field. 2766 // 2767 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2768 // exceeds a single eightbyte, each is classified 2769 // separately. Each eightbyte gets initialized to class 2770 // NO_CLASS. 2771 Class FieldLo, FieldHi; 2772 2773 // Bit-fields require special handling, they do not force the 2774 // structure to be passed in memory even if unaligned, and 2775 // therefore they can straddle an eightbyte. 2776 if (BitField) { 2777 assert(!i->isUnnamedBitfield()); 2778 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2779 uint64_t Size = i->getBitWidthValue(getContext()); 2780 2781 uint64_t EB_Lo = Offset / 64; 2782 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2783 2784 if (EB_Lo) { 2785 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2786 FieldLo = NoClass; 2787 FieldHi = Integer; 2788 } else { 2789 FieldLo = Integer; 2790 FieldHi = EB_Hi ? Integer : NoClass; 2791 } 2792 } else 2793 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2794 Lo = merge(Lo, FieldLo); 2795 Hi = merge(Hi, FieldHi); 2796 if (Lo == Memory || Hi == Memory) 2797 break; 2798 } 2799 2800 postMerge(Size, Lo, Hi); 2801 } 2802 } 2803 2804 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2805 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2806 // place naturally. 2807 if (!isAggregateTypeForABI(Ty)) { 2808 // Treat an enum type as its underlying type. 2809 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2810 Ty = EnumTy->getDecl()->getIntegerType(); 2811 2812 return (Ty->isPromotableIntegerType() ? 2813 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2814 } 2815 2816 return getNaturalAlignIndirect(Ty); 2817 } 2818 2819 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2820 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2821 uint64_t Size = getContext().getTypeSize(VecTy); 2822 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2823 if (Size <= 64 || Size > LargestVector) 2824 return true; 2825 } 2826 2827 return false; 2828 } 2829 2830 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2831 unsigned freeIntRegs) const { 2832 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2833 // place naturally. 2834 // 2835 // This assumption is optimistic, as there could be free registers available 2836 // when we need to pass this argument in memory, and LLVM could try to pass 2837 // the argument in the free register. This does not seem to happen currently, 2838 // but this code would be much safer if we could mark the argument with 2839 // 'onstack'. See PR12193. 2840 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2841 // Treat an enum type as its underlying type. 2842 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2843 Ty = EnumTy->getDecl()->getIntegerType(); 2844 2845 return (Ty->isPromotableIntegerType() ? 2846 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2847 } 2848 2849 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2850 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2851 2852 // Compute the byval alignment. We specify the alignment of the byval in all 2853 // cases so that the mid-level optimizer knows the alignment of the byval. 2854 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2855 2856 // Attempt to avoid passing indirect results using byval when possible. This 2857 // is important for good codegen. 2858 // 2859 // We do this by coercing the value into a scalar type which the backend can 2860 // handle naturally (i.e., without using byval). 2861 // 2862 // For simplicity, we currently only do this when we have exhausted all of the 2863 // free integer registers. Doing this when there are free integer registers 2864 // would require more care, as we would have to ensure that the coerced value 2865 // did not claim the unused register. That would require either reording the 2866 // arguments to the function (so that any subsequent inreg values came first), 2867 // or only doing this optimization when there were no following arguments that 2868 // might be inreg. 2869 // 2870 // We currently expect it to be rare (particularly in well written code) for 2871 // arguments to be passed on the stack when there are still free integer 2872 // registers available (this would typically imply large structs being passed 2873 // by value), so this seems like a fair tradeoff for now. 2874 // 2875 // We can revisit this if the backend grows support for 'onstack' parameter 2876 // attributes. See PR12193. 2877 if (freeIntRegs == 0) { 2878 uint64_t Size = getContext().getTypeSize(Ty); 2879 2880 // If this type fits in an eightbyte, coerce it into the matching integral 2881 // type, which will end up on the stack (with alignment 8). 2882 if (Align == 8 && Size <= 64) 2883 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2884 Size)); 2885 } 2886 2887 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2888 } 2889 2890 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2891 /// register. Pick an LLVM IR type that will be passed as a vector register. 2892 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2893 // Wrapper structs/arrays that only contain vectors are passed just like 2894 // vectors; strip them off if present. 2895 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2896 Ty = QualType(InnerTy, 0); 2897 2898 llvm::Type *IRType = CGT.ConvertType(Ty); 2899 if (isa<llvm::VectorType>(IRType) || 2900 IRType->getTypeID() == llvm::Type::FP128TyID) 2901 return IRType; 2902 2903 // We couldn't find the preferred IR vector type for 'Ty'. 2904 uint64_t Size = getContext().getTypeSize(Ty); 2905 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2906 2907 // Return a LLVM IR vector type based on the size of 'Ty'. 2908 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2909 Size / 64); 2910 } 2911 2912 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2913 /// is known to either be off the end of the specified type or being in 2914 /// alignment padding. The user type specified is known to be at most 128 bits 2915 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2916 /// classification that put one of the two halves in the INTEGER class. 2917 /// 2918 /// It is conservatively correct to return false. 2919 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2920 unsigned EndBit, ASTContext &Context) { 2921 // If the bytes being queried are off the end of the type, there is no user 2922 // data hiding here. This handles analysis of builtins, vectors and other 2923 // types that don't contain interesting padding. 2924 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2925 if (TySize <= StartBit) 2926 return true; 2927 2928 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2929 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2930 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2931 2932 // Check each element to see if the element overlaps with the queried range. 2933 for (unsigned i = 0; i != NumElts; ++i) { 2934 // If the element is after the span we care about, then we're done.. 2935 unsigned EltOffset = i*EltSize; 2936 if (EltOffset >= EndBit) break; 2937 2938 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2939 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2940 EndBit-EltOffset, Context)) 2941 return false; 2942 } 2943 // If it overlaps no elements, then it is safe to process as padding. 2944 return true; 2945 } 2946 2947 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2948 const RecordDecl *RD = RT->getDecl(); 2949 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2950 2951 // If this is a C++ record, check the bases first. 2952 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2953 for (const auto &I : CXXRD->bases()) { 2954 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2955 "Unexpected base class!"); 2956 const CXXRecordDecl *Base = 2957 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2958 2959 // If the base is after the span we care about, ignore it. 2960 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2961 if (BaseOffset >= EndBit) continue; 2962 2963 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2964 if (!BitsContainNoUserData(I.getType(), BaseStart, 2965 EndBit-BaseOffset, Context)) 2966 return false; 2967 } 2968 } 2969 2970 // Verify that no field has data that overlaps the region of interest. Yes 2971 // this could be sped up a lot by being smarter about queried fields, 2972 // however we're only looking at structs up to 16 bytes, so we don't care 2973 // much. 2974 unsigned idx = 0; 2975 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2976 i != e; ++i, ++idx) { 2977 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2978 2979 // If we found a field after the region we care about, then we're done. 2980 if (FieldOffset >= EndBit) break; 2981 2982 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2983 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2984 Context)) 2985 return false; 2986 } 2987 2988 // If nothing in this record overlapped the area of interest, then we're 2989 // clean. 2990 return true; 2991 } 2992 2993 return false; 2994 } 2995 2996 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2997 /// float member at the specified offset. For example, {int,{float}} has a 2998 /// float at offset 4. It is conservatively correct for this routine to return 2999 /// false. 3000 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3001 const llvm::DataLayout &TD) { 3002 // Base case if we find a float. 3003 if (IROffset == 0 && IRType->isFloatTy()) 3004 return true; 3005 3006 // If this is a struct, recurse into the field at the specified offset. 3007 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3008 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3009 unsigned Elt = SL->getElementContainingOffset(IROffset); 3010 IROffset -= SL->getElementOffset(Elt); 3011 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3012 } 3013 3014 // If this is an array, recurse into the field at the specified offset. 3015 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3016 llvm::Type *EltTy = ATy->getElementType(); 3017 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3018 IROffset -= IROffset/EltSize*EltSize; 3019 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3020 } 3021 3022 return false; 3023 } 3024 3025 3026 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3027 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3028 llvm::Type *X86_64ABIInfo:: 3029 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3030 QualType SourceTy, unsigned SourceOffset) const { 3031 // The only three choices we have are either double, <2 x float>, or float. We 3032 // pass as float if the last 4 bytes is just padding. This happens for 3033 // structs that contain 3 floats. 3034 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3035 SourceOffset*8+64, getContext())) 3036 return llvm::Type::getFloatTy(getVMContext()); 3037 3038 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3039 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3040 // case. 3041 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3042 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3043 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3044 3045 return llvm::Type::getDoubleTy(getVMContext()); 3046 } 3047 3048 3049 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3050 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3051 /// about the high or low part of an up-to-16-byte struct. This routine picks 3052 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3053 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3054 /// etc). 3055 /// 3056 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3057 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3058 /// the 8-byte value references. PrefType may be null. 3059 /// 3060 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3061 /// an offset into this that we're processing (which is always either 0 or 8). 3062 /// 3063 llvm::Type *X86_64ABIInfo:: 3064 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3065 QualType SourceTy, unsigned SourceOffset) const { 3066 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3067 // returning an 8-byte unit starting with it. See if we can safely use it. 3068 if (IROffset == 0) { 3069 // Pointers and int64's always fill the 8-byte unit. 3070 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3071 IRType->isIntegerTy(64)) 3072 return IRType; 3073 3074 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3075 // goodness in the source type is just tail padding. This is allowed to 3076 // kick in for struct {double,int} on the int, but not on 3077 // struct{double,int,int} because we wouldn't return the second int. We 3078 // have to do this analysis on the source type because we can't depend on 3079 // unions being lowered a specific way etc. 3080 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3081 IRType->isIntegerTy(32) || 3082 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3083 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3084 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3085 3086 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3087 SourceOffset*8+64, getContext())) 3088 return IRType; 3089 } 3090 } 3091 3092 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3093 // If this is a struct, recurse into the field at the specified offset. 3094 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3095 if (IROffset < SL->getSizeInBytes()) { 3096 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3097 IROffset -= SL->getElementOffset(FieldIdx); 3098 3099 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3100 SourceTy, SourceOffset); 3101 } 3102 } 3103 3104 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3105 llvm::Type *EltTy = ATy->getElementType(); 3106 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3107 unsigned EltOffset = IROffset/EltSize*EltSize; 3108 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3109 SourceOffset); 3110 } 3111 3112 // Okay, we don't have any better idea of what to pass, so we pass this in an 3113 // integer register that isn't too big to fit the rest of the struct. 3114 unsigned TySizeInBytes = 3115 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3116 3117 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3118 3119 // It is always safe to classify this as an integer type up to i64 that 3120 // isn't larger than the structure. 3121 return llvm::IntegerType::get(getVMContext(), 3122 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3123 } 3124 3125 3126 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3127 /// be used as elements of a two register pair to pass or return, return a 3128 /// first class aggregate to represent them. For example, if the low part of 3129 /// a by-value argument should be passed as i32* and the high part as float, 3130 /// return {i32*, float}. 3131 static llvm::Type * 3132 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3133 const llvm::DataLayout &TD) { 3134 // In order to correctly satisfy the ABI, we need to the high part to start 3135 // at offset 8. If the high and low parts we inferred are both 4-byte types 3136 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3137 // the second element at offset 8. Check for this: 3138 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3139 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3140 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3141 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3142 3143 // To handle this, we have to increase the size of the low part so that the 3144 // second element will start at an 8 byte offset. We can't increase the size 3145 // of the second element because it might make us access off the end of the 3146 // struct. 3147 if (HiStart != 8) { 3148 // There are usually two sorts of types the ABI generation code can produce 3149 // for the low part of a pair that aren't 8 bytes in size: float or 3150 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3151 // NaCl). 3152 // Promote these to a larger type. 3153 if (Lo->isFloatTy()) 3154 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3155 else { 3156 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3157 && "Invalid/unknown lo type"); 3158 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3159 } 3160 } 3161 3162 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 3163 3164 3165 // Verify that the second element is at an 8-byte offset. 3166 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3167 "Invalid x86-64 argument pair!"); 3168 return Result; 3169 } 3170 3171 ABIArgInfo X86_64ABIInfo:: 3172 classifyReturnType(QualType RetTy) const { 3173 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3174 // classification algorithm. 3175 X86_64ABIInfo::Class Lo, Hi; 3176 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3177 3178 // Check some invariants. 3179 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3180 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3181 3182 llvm::Type *ResType = nullptr; 3183 switch (Lo) { 3184 case NoClass: 3185 if (Hi == NoClass) 3186 return ABIArgInfo::getIgnore(); 3187 // If the low part is just padding, it takes no register, leave ResType 3188 // null. 3189 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3190 "Unknown missing lo part"); 3191 break; 3192 3193 case SSEUp: 3194 case X87Up: 3195 llvm_unreachable("Invalid classification for lo word."); 3196 3197 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3198 // hidden argument. 3199 case Memory: 3200 return getIndirectReturnResult(RetTy); 3201 3202 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3203 // available register of the sequence %rax, %rdx is used. 3204 case Integer: 3205 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3206 3207 // If we have a sign or zero extended integer, make sure to return Extend 3208 // so that the parameter gets the right LLVM IR attributes. 3209 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3210 // Treat an enum type as its underlying type. 3211 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3212 RetTy = EnumTy->getDecl()->getIntegerType(); 3213 3214 if (RetTy->isIntegralOrEnumerationType() && 3215 RetTy->isPromotableIntegerType()) 3216 return ABIArgInfo::getExtend(); 3217 } 3218 break; 3219 3220 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3221 // available SSE register of the sequence %xmm0, %xmm1 is used. 3222 case SSE: 3223 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3224 break; 3225 3226 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3227 // returned on the X87 stack in %st0 as 80-bit x87 number. 3228 case X87: 3229 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3230 break; 3231 3232 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3233 // part of the value is returned in %st0 and the imaginary part in 3234 // %st1. 3235 case ComplexX87: 3236 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3237 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3238 llvm::Type::getX86_FP80Ty(getVMContext()), 3239 nullptr); 3240 break; 3241 } 3242 3243 llvm::Type *HighPart = nullptr; 3244 switch (Hi) { 3245 // Memory was handled previously and X87 should 3246 // never occur as a hi class. 3247 case Memory: 3248 case X87: 3249 llvm_unreachable("Invalid classification for hi word."); 3250 3251 case ComplexX87: // Previously handled. 3252 case NoClass: 3253 break; 3254 3255 case Integer: 3256 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3257 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3258 return ABIArgInfo::getDirect(HighPart, 8); 3259 break; 3260 case SSE: 3261 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3262 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3263 return ABIArgInfo::getDirect(HighPart, 8); 3264 break; 3265 3266 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3267 // is passed in the next available eightbyte chunk if the last used 3268 // vector register. 3269 // 3270 // SSEUP should always be preceded by SSE, just widen. 3271 case SSEUp: 3272 assert(Lo == SSE && "Unexpected SSEUp classification."); 3273 ResType = GetByteVectorType(RetTy); 3274 break; 3275 3276 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3277 // returned together with the previous X87 value in %st0. 3278 case X87Up: 3279 // If X87Up is preceded by X87, we don't need to do 3280 // anything. However, in some cases with unions it may not be 3281 // preceded by X87. In such situations we follow gcc and pass the 3282 // extra bits in an SSE reg. 3283 if (Lo != X87) { 3284 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3285 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3286 return ABIArgInfo::getDirect(HighPart, 8); 3287 } 3288 break; 3289 } 3290 3291 // If a high part was specified, merge it together with the low part. It is 3292 // known to pass in the high eightbyte of the result. We do this by forming a 3293 // first class struct aggregate with the high and low part: {low, high} 3294 if (HighPart) 3295 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3296 3297 return ABIArgInfo::getDirect(ResType); 3298 } 3299 3300 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3301 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3302 bool isNamedArg) 3303 const 3304 { 3305 Ty = useFirstFieldIfTransparentUnion(Ty); 3306 3307 X86_64ABIInfo::Class Lo, Hi; 3308 classify(Ty, 0, Lo, Hi, isNamedArg); 3309 3310 // Check some invariants. 3311 // FIXME: Enforce these by construction. 3312 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3313 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3314 3315 neededInt = 0; 3316 neededSSE = 0; 3317 llvm::Type *ResType = nullptr; 3318 switch (Lo) { 3319 case NoClass: 3320 if (Hi == NoClass) 3321 return ABIArgInfo::getIgnore(); 3322 // If the low part is just padding, it takes no register, leave ResType 3323 // null. 3324 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3325 "Unknown missing lo part"); 3326 break; 3327 3328 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3329 // on the stack. 3330 case Memory: 3331 3332 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3333 // COMPLEX_X87, it is passed in memory. 3334 case X87: 3335 case ComplexX87: 3336 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3337 ++neededInt; 3338 return getIndirectResult(Ty, freeIntRegs); 3339 3340 case SSEUp: 3341 case X87Up: 3342 llvm_unreachable("Invalid classification for lo word."); 3343 3344 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3345 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3346 // and %r9 is used. 3347 case Integer: 3348 ++neededInt; 3349 3350 // Pick an 8-byte type based on the preferred type. 3351 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3352 3353 // If we have a sign or zero extended integer, make sure to return Extend 3354 // so that the parameter gets the right LLVM IR attributes. 3355 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3356 // Treat an enum type as its underlying type. 3357 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3358 Ty = EnumTy->getDecl()->getIntegerType(); 3359 3360 if (Ty->isIntegralOrEnumerationType() && 3361 Ty->isPromotableIntegerType()) 3362 return ABIArgInfo::getExtend(); 3363 } 3364 3365 break; 3366 3367 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3368 // available SSE register is used, the registers are taken in the 3369 // order from %xmm0 to %xmm7. 3370 case SSE: { 3371 llvm::Type *IRType = CGT.ConvertType(Ty); 3372 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3373 ++neededSSE; 3374 break; 3375 } 3376 } 3377 3378 llvm::Type *HighPart = nullptr; 3379 switch (Hi) { 3380 // Memory was handled previously, ComplexX87 and X87 should 3381 // never occur as hi classes, and X87Up must be preceded by X87, 3382 // which is passed in memory. 3383 case Memory: 3384 case X87: 3385 case ComplexX87: 3386 llvm_unreachable("Invalid classification for hi word."); 3387 3388 case NoClass: break; 3389 3390 case Integer: 3391 ++neededInt; 3392 // Pick an 8-byte type based on the preferred type. 3393 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3394 3395 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3396 return ABIArgInfo::getDirect(HighPart, 8); 3397 break; 3398 3399 // X87Up generally doesn't occur here (long double is passed in 3400 // memory), except in situations involving unions. 3401 case X87Up: 3402 case SSE: 3403 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3404 3405 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3406 return ABIArgInfo::getDirect(HighPart, 8); 3407 3408 ++neededSSE; 3409 break; 3410 3411 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3412 // eightbyte is passed in the upper half of the last used SSE 3413 // register. This only happens when 128-bit vectors are passed. 3414 case SSEUp: 3415 assert(Lo == SSE && "Unexpected SSEUp classification"); 3416 ResType = GetByteVectorType(Ty); 3417 break; 3418 } 3419 3420 // If a high part was specified, merge it together with the low part. It is 3421 // known to pass in the high eightbyte of the result. We do this by forming a 3422 // first class struct aggregate with the high and low part: {low, high} 3423 if (HighPart) 3424 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3425 3426 return ABIArgInfo::getDirect(ResType); 3427 } 3428 3429 ABIArgInfo 3430 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3431 unsigned &NeededSSE) const { 3432 auto RT = Ty->getAs<RecordType>(); 3433 assert(RT && "classifyRegCallStructType only valid with struct types"); 3434 3435 if (RT->getDecl()->hasFlexibleArrayMember()) 3436 return getIndirectReturnResult(Ty); 3437 3438 // Sum up bases 3439 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3440 if (CXXRD->isDynamicClass()) { 3441 NeededInt = NeededSSE = 0; 3442 return getIndirectReturnResult(Ty); 3443 } 3444 3445 for (const auto &I : CXXRD->bases()) 3446 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3447 .isIndirect()) { 3448 NeededInt = NeededSSE = 0; 3449 return getIndirectReturnResult(Ty); 3450 } 3451 } 3452 3453 // Sum up members 3454 for (const auto *FD : RT->getDecl()->fields()) { 3455 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3456 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3457 .isIndirect()) { 3458 NeededInt = NeededSSE = 0; 3459 return getIndirectReturnResult(Ty); 3460 } 3461 } else { 3462 unsigned LocalNeededInt, LocalNeededSSE; 3463 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3464 LocalNeededSSE, true) 3465 .isIndirect()) { 3466 NeededInt = NeededSSE = 0; 3467 return getIndirectReturnResult(Ty); 3468 } 3469 NeededInt += LocalNeededInt; 3470 NeededSSE += LocalNeededSSE; 3471 } 3472 } 3473 3474 return ABIArgInfo::getDirect(); 3475 } 3476 3477 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3478 unsigned &NeededInt, 3479 unsigned &NeededSSE) const { 3480 3481 NeededInt = 0; 3482 NeededSSE = 0; 3483 3484 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3485 } 3486 3487 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3488 3489 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3490 3491 // Keep track of the number of assigned registers. 3492 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3493 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3494 unsigned NeededInt, NeededSSE; 3495 3496 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3497 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3498 FI.getReturnInfo() = 3499 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3500 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3501 FreeIntRegs -= NeededInt; 3502 FreeSSERegs -= NeededSSE; 3503 } else { 3504 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3505 } 3506 } else if (!getCXXABI().classifyReturnType(FI)) 3507 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3508 3509 // If the return value is indirect, then the hidden argument is consuming one 3510 // integer register. 3511 if (FI.getReturnInfo().isIndirect()) 3512 --FreeIntRegs; 3513 3514 // The chain argument effectively gives us another free register. 3515 if (FI.isChainCall()) 3516 ++FreeIntRegs; 3517 3518 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3519 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3520 // get assigned (in left-to-right order) for passing as follows... 3521 unsigned ArgNo = 0; 3522 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3523 it != ie; ++it, ++ArgNo) { 3524 bool IsNamedArg = ArgNo < NumRequiredArgs; 3525 3526 if (IsRegCall && it->type->isStructureOrClassType()) 3527 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3528 else 3529 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3530 NeededSSE, IsNamedArg); 3531 3532 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3533 // eightbyte of an argument, the whole argument is passed on the 3534 // stack. If registers have already been assigned for some 3535 // eightbytes of such an argument, the assignments get reverted. 3536 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3537 FreeIntRegs -= NeededInt; 3538 FreeSSERegs -= NeededSSE; 3539 } else { 3540 it->info = getIndirectResult(it->type, FreeIntRegs); 3541 } 3542 } 3543 } 3544 3545 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3546 Address VAListAddr, QualType Ty) { 3547 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3548 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3549 llvm::Value *overflow_arg_area = 3550 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3551 3552 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3553 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3554 // It isn't stated explicitly in the standard, but in practice we use 3555 // alignment greater than 16 where necessary. 3556 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3557 if (Align > CharUnits::fromQuantity(8)) { 3558 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3559 Align); 3560 } 3561 3562 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3563 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3564 llvm::Value *Res = 3565 CGF.Builder.CreateBitCast(overflow_arg_area, 3566 llvm::PointerType::getUnqual(LTy)); 3567 3568 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3569 // l->overflow_arg_area + sizeof(type). 3570 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3571 // an 8 byte boundary. 3572 3573 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3574 llvm::Value *Offset = 3575 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3576 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3577 "overflow_arg_area.next"); 3578 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3579 3580 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3581 return Address(Res, Align); 3582 } 3583 3584 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3585 QualType Ty) const { 3586 // Assume that va_list type is correct; should be pointer to LLVM type: 3587 // struct { 3588 // i32 gp_offset; 3589 // i32 fp_offset; 3590 // i8* overflow_arg_area; 3591 // i8* reg_save_area; 3592 // }; 3593 unsigned neededInt, neededSSE; 3594 3595 Ty = getContext().getCanonicalType(Ty); 3596 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3597 /*isNamedArg*/false); 3598 3599 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3600 // in the registers. If not go to step 7. 3601 if (!neededInt && !neededSSE) 3602 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3603 3604 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3605 // general purpose registers needed to pass type and num_fp to hold 3606 // the number of floating point registers needed. 3607 3608 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3609 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3610 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3611 // 3612 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3613 // register save space). 3614 3615 llvm::Value *InRegs = nullptr; 3616 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3617 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3618 if (neededInt) { 3619 gp_offset_p = 3620 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3621 "gp_offset_p"); 3622 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3623 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3624 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3625 } 3626 3627 if (neededSSE) { 3628 fp_offset_p = 3629 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3630 "fp_offset_p"); 3631 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3632 llvm::Value *FitsInFP = 3633 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3634 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3635 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3636 } 3637 3638 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3639 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3640 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3641 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3642 3643 // Emit code to load the value if it was passed in registers. 3644 3645 CGF.EmitBlock(InRegBlock); 3646 3647 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3648 // an offset of l->gp_offset and/or l->fp_offset. This may require 3649 // copying to a temporary location in case the parameter is passed 3650 // in different register classes or requires an alignment greater 3651 // than 8 for general purpose registers and 16 for XMM registers. 3652 // 3653 // FIXME: This really results in shameful code when we end up needing to 3654 // collect arguments from different places; often what should result in a 3655 // simple assembling of a structure from scattered addresses has many more 3656 // loads than necessary. Can we clean this up? 3657 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3658 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3659 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3660 "reg_save_area"); 3661 3662 Address RegAddr = Address::invalid(); 3663 if (neededInt && neededSSE) { 3664 // FIXME: Cleanup. 3665 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3666 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3667 Address Tmp = CGF.CreateMemTemp(Ty); 3668 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3669 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3670 llvm::Type *TyLo = ST->getElementType(0); 3671 llvm::Type *TyHi = ST->getElementType(1); 3672 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3673 "Unexpected ABI info for mixed regs"); 3674 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3675 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3676 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3677 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3678 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3679 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3680 3681 // Copy the first element. 3682 // FIXME: Our choice of alignment here and below is probably pessimistic. 3683 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3684 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3685 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3686 CGF.Builder.CreateStore(V, 3687 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3688 3689 // Copy the second element. 3690 V = CGF.Builder.CreateAlignedLoad( 3691 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3692 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3693 CharUnits Offset = CharUnits::fromQuantity( 3694 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3695 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3696 3697 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3698 } else if (neededInt) { 3699 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3700 CharUnits::fromQuantity(8)); 3701 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3702 3703 // Copy to a temporary if necessary to ensure the appropriate alignment. 3704 std::pair<CharUnits, CharUnits> SizeAlign = 3705 getContext().getTypeInfoInChars(Ty); 3706 uint64_t TySize = SizeAlign.first.getQuantity(); 3707 CharUnits TyAlign = SizeAlign.second; 3708 3709 // Copy into a temporary if the type is more aligned than the 3710 // register save area. 3711 if (TyAlign.getQuantity() > 8) { 3712 Address Tmp = CGF.CreateMemTemp(Ty); 3713 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3714 RegAddr = Tmp; 3715 } 3716 3717 } else if (neededSSE == 1) { 3718 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3719 CharUnits::fromQuantity(16)); 3720 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3721 } else { 3722 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3723 // SSE registers are spaced 16 bytes apart in the register save 3724 // area, we need to collect the two eightbytes together. 3725 // The ABI isn't explicit about this, but it seems reasonable 3726 // to assume that the slots are 16-byte aligned, since the stack is 3727 // naturally 16-byte aligned and the prologue is expected to store 3728 // all the SSE registers to the RSA. 3729 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3730 CharUnits::fromQuantity(16)); 3731 Address RegAddrHi = 3732 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3733 CharUnits::fromQuantity(16)); 3734 llvm::Type *DoubleTy = CGF.DoubleTy; 3735 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3736 llvm::Value *V; 3737 Address Tmp = CGF.CreateMemTemp(Ty); 3738 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3739 V = CGF.Builder.CreateLoad( 3740 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3741 CGF.Builder.CreateStore(V, 3742 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3743 V = CGF.Builder.CreateLoad( 3744 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3745 CGF.Builder.CreateStore(V, 3746 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3747 3748 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3749 } 3750 3751 // AMD64-ABI 3.5.7p5: Step 5. Set: 3752 // l->gp_offset = l->gp_offset + num_gp * 8 3753 // l->fp_offset = l->fp_offset + num_fp * 16. 3754 if (neededInt) { 3755 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3756 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3757 gp_offset_p); 3758 } 3759 if (neededSSE) { 3760 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3761 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3762 fp_offset_p); 3763 } 3764 CGF.EmitBranch(ContBlock); 3765 3766 // Emit code to load the value if it was passed in memory. 3767 3768 CGF.EmitBlock(InMemBlock); 3769 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3770 3771 // Return the appropriate result. 3772 3773 CGF.EmitBlock(ContBlock); 3774 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3775 "vaarg.addr"); 3776 return ResAddr; 3777 } 3778 3779 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3780 QualType Ty) const { 3781 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3782 CGF.getContext().getTypeInfoInChars(Ty), 3783 CharUnits::fromQuantity(8), 3784 /*allowHigherAlign*/ false); 3785 } 3786 3787 ABIArgInfo 3788 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3789 const ABIArgInfo ¤t) const { 3790 // Assumes vectorCall calling convention. 3791 const Type *Base = nullptr; 3792 uint64_t NumElts = 0; 3793 3794 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3795 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3796 FreeSSERegs -= NumElts; 3797 return getDirectX86Hva(); 3798 } 3799 return current; 3800 } 3801 3802 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3803 bool IsReturnType, bool IsVectorCall, 3804 bool IsRegCall) const { 3805 3806 if (Ty->isVoidType()) 3807 return ABIArgInfo::getIgnore(); 3808 3809 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3810 Ty = EnumTy->getDecl()->getIntegerType(); 3811 3812 TypeInfo Info = getContext().getTypeInfo(Ty); 3813 uint64_t Width = Info.Width; 3814 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3815 3816 const RecordType *RT = Ty->getAs<RecordType>(); 3817 if (RT) { 3818 if (!IsReturnType) { 3819 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3820 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3821 } 3822 3823 if (RT->getDecl()->hasFlexibleArrayMember()) 3824 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3825 3826 } 3827 3828 const Type *Base = nullptr; 3829 uint64_t NumElts = 0; 3830 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3831 // other targets. 3832 if ((IsVectorCall || IsRegCall) && 3833 isHomogeneousAggregate(Ty, Base, NumElts)) { 3834 if (IsRegCall) { 3835 if (FreeSSERegs >= NumElts) { 3836 FreeSSERegs -= NumElts; 3837 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3838 return ABIArgInfo::getDirect(); 3839 return ABIArgInfo::getExpand(); 3840 } 3841 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3842 } else if (IsVectorCall) { 3843 if (FreeSSERegs >= NumElts && 3844 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3845 FreeSSERegs -= NumElts; 3846 return ABIArgInfo::getDirect(); 3847 } else if (IsReturnType) { 3848 return ABIArgInfo::getExpand(); 3849 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3850 // HVAs are delayed and reclassified in the 2nd step. 3851 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3852 } 3853 } 3854 } 3855 3856 if (Ty->isMemberPointerType()) { 3857 // If the member pointer is represented by an LLVM int or ptr, pass it 3858 // directly. 3859 llvm::Type *LLTy = CGT.ConvertType(Ty); 3860 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3861 return ABIArgInfo::getDirect(); 3862 } 3863 3864 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3865 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3866 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3867 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3868 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3869 3870 // Otherwise, coerce it to a small integer. 3871 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3872 } 3873 3874 // Bool type is always extended to the ABI, other builtin types are not 3875 // extended. 3876 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3877 if (BT && BT->getKind() == BuiltinType::Bool) 3878 return ABIArgInfo::getExtend(); 3879 3880 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3881 // passes them indirectly through memory. 3882 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3883 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3884 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3885 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3886 } 3887 3888 return ABIArgInfo::getDirect(); 3889 } 3890 3891 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3892 unsigned FreeSSERegs, 3893 bool IsVectorCall, 3894 bool IsRegCall) const { 3895 unsigned Count = 0; 3896 for (auto &I : FI.arguments()) { 3897 if (Count < VectorcallMaxParamNumAsReg) 3898 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3899 else { 3900 // Since these cannot be passed in registers, pretend no registers 3901 // are left. 3902 unsigned ZeroSSERegsAvail = 0; 3903 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3904 IsVectorCall, IsRegCall); 3905 } 3906 ++Count; 3907 } 3908 3909 Count = 0; 3910 for (auto &I : FI.arguments()) { 3911 if (Count < VectorcallMaxParamNumAsReg) 3912 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3913 ++Count; 3914 } 3915 } 3916 3917 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3918 bool IsVectorCall = 3919 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3920 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3921 3922 unsigned FreeSSERegs = 0; 3923 if (IsVectorCall) { 3924 // We can use up to 4 SSE return registers with vectorcall. 3925 FreeSSERegs = 4; 3926 } else if (IsRegCall) { 3927 // RegCall gives us 16 SSE registers. 3928 FreeSSERegs = 16; 3929 } 3930 3931 if (!getCXXABI().classifyReturnType(FI)) 3932 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3933 IsVectorCall, IsRegCall); 3934 3935 if (IsVectorCall) { 3936 // We can use up to 6 SSE register parameters with vectorcall. 3937 FreeSSERegs = 6; 3938 } else if (IsRegCall) { 3939 // RegCall gives us 16 SSE registers, we can reuse the return registers. 3940 FreeSSERegs = 16; 3941 } 3942 3943 if (IsVectorCall) { 3944 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 3945 } else { 3946 for (auto &I : FI.arguments()) 3947 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3948 } 3949 3950 } 3951 3952 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3953 QualType Ty) const { 3954 3955 bool IsIndirect = false; 3956 3957 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3958 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3959 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 3960 uint64_t Width = getContext().getTypeSize(Ty); 3961 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3962 } 3963 3964 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3965 CGF.getContext().getTypeInfoInChars(Ty), 3966 CharUnits::fromQuantity(8), 3967 /*allowHigherAlign*/ false); 3968 } 3969 3970 // PowerPC-32 3971 namespace { 3972 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3973 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3974 bool IsSoftFloatABI; 3975 public: 3976 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3977 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3978 3979 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3980 QualType Ty) const override; 3981 }; 3982 3983 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3984 public: 3985 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3986 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3987 3988 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3989 // This is recovered from gcc output. 3990 return 1; // r1 is the dedicated stack pointer 3991 } 3992 3993 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3994 llvm::Value *Address) const override; 3995 }; 3996 3997 } 3998 3999 // TODO: this implementation is now likely redundant with 4000 // DefaultABIInfo::EmitVAArg. 4001 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4002 QualType Ty) const { 4003 const unsigned OverflowLimit = 8; 4004 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4005 // TODO: Implement this. For now ignore. 4006 (void)CTy; 4007 return Address::invalid(); // FIXME? 4008 } 4009 4010 // struct __va_list_tag { 4011 // unsigned char gpr; 4012 // unsigned char fpr; 4013 // unsigned short reserved; 4014 // void *overflow_arg_area; 4015 // void *reg_save_area; 4016 // }; 4017 4018 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4019 bool isInt = 4020 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4021 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4022 4023 // All aggregates are passed indirectly? That doesn't seem consistent 4024 // with the argument-lowering code. 4025 bool isIndirect = Ty->isAggregateType(); 4026 4027 CGBuilderTy &Builder = CGF.Builder; 4028 4029 // The calling convention either uses 1-2 GPRs or 1 FPR. 4030 Address NumRegsAddr = Address::invalid(); 4031 if (isInt || IsSoftFloatABI) { 4032 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4033 } else { 4034 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4035 } 4036 4037 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4038 4039 // "Align" the register count when TY is i64. 4040 if (isI64 || (isF64 && IsSoftFloatABI)) { 4041 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4042 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4043 } 4044 4045 llvm::Value *CC = 4046 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4047 4048 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4049 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4050 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4051 4052 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4053 4054 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4055 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4056 4057 // Case 1: consume registers. 4058 Address RegAddr = Address::invalid(); 4059 { 4060 CGF.EmitBlock(UsingRegs); 4061 4062 Address RegSaveAreaPtr = 4063 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4064 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4065 CharUnits::fromQuantity(8)); 4066 assert(RegAddr.getElementType() == CGF.Int8Ty); 4067 4068 // Floating-point registers start after the general-purpose registers. 4069 if (!(isInt || IsSoftFloatABI)) { 4070 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4071 CharUnits::fromQuantity(32)); 4072 } 4073 4074 // Get the address of the saved value by scaling the number of 4075 // registers we've used by the number of 4076 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4077 llvm::Value *RegOffset = 4078 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4079 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4080 RegAddr.getPointer(), RegOffset), 4081 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4082 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4083 4084 // Increase the used-register count. 4085 NumRegs = 4086 Builder.CreateAdd(NumRegs, 4087 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4088 Builder.CreateStore(NumRegs, NumRegsAddr); 4089 4090 CGF.EmitBranch(Cont); 4091 } 4092 4093 // Case 2: consume space in the overflow area. 4094 Address MemAddr = Address::invalid(); 4095 { 4096 CGF.EmitBlock(UsingOverflow); 4097 4098 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4099 4100 // Everything in the overflow area is rounded up to a size of at least 4. 4101 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4102 4103 CharUnits Size; 4104 if (!isIndirect) { 4105 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4106 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4107 } else { 4108 Size = CGF.getPointerSize(); 4109 } 4110 4111 Address OverflowAreaAddr = 4112 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4113 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4114 OverflowAreaAlign); 4115 // Round up address of argument to alignment 4116 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4117 if (Align > OverflowAreaAlign) { 4118 llvm::Value *Ptr = OverflowArea.getPointer(); 4119 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4120 Align); 4121 } 4122 4123 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4124 4125 // Increase the overflow area. 4126 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4127 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4128 CGF.EmitBranch(Cont); 4129 } 4130 4131 CGF.EmitBlock(Cont); 4132 4133 // Merge the cases with a phi. 4134 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4135 "vaarg.addr"); 4136 4137 // Load the pointer if the argument was passed indirectly. 4138 if (isIndirect) { 4139 Result = Address(Builder.CreateLoad(Result, "aggr"), 4140 getContext().getTypeAlignInChars(Ty)); 4141 } 4142 4143 return Result; 4144 } 4145 4146 bool 4147 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4148 llvm::Value *Address) const { 4149 // This is calculated from the LLVM and GCC tables and verified 4150 // against gcc output. AFAIK all ABIs use the same encoding. 4151 4152 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4153 4154 llvm::IntegerType *i8 = CGF.Int8Ty; 4155 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4156 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4157 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4158 4159 // 0-31: r0-31, the 4-byte general-purpose registers 4160 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4161 4162 // 32-63: fp0-31, the 8-byte floating-point registers 4163 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4164 4165 // 64-76 are various 4-byte special-purpose registers: 4166 // 64: mq 4167 // 65: lr 4168 // 66: ctr 4169 // 67: ap 4170 // 68-75 cr0-7 4171 // 76: xer 4172 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4173 4174 // 77-108: v0-31, the 16-byte vector registers 4175 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4176 4177 // 109: vrsave 4178 // 110: vscr 4179 // 111: spe_acc 4180 // 112: spefscr 4181 // 113: sfp 4182 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4183 4184 return false; 4185 } 4186 4187 // PowerPC-64 4188 4189 namespace { 4190 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4191 class PPC64_SVR4_ABIInfo : public ABIInfo { 4192 public: 4193 enum ABIKind { 4194 ELFv1 = 0, 4195 ELFv2 4196 }; 4197 4198 private: 4199 static const unsigned GPRBits = 64; 4200 ABIKind Kind; 4201 bool HasQPX; 4202 bool IsSoftFloatABI; 4203 4204 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4205 // will be passed in a QPX register. 4206 bool IsQPXVectorTy(const Type *Ty) const { 4207 if (!HasQPX) 4208 return false; 4209 4210 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4211 unsigned NumElements = VT->getNumElements(); 4212 if (NumElements == 1) 4213 return false; 4214 4215 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4216 if (getContext().getTypeSize(Ty) <= 256) 4217 return true; 4218 } else if (VT->getElementType()-> 4219 isSpecificBuiltinType(BuiltinType::Float)) { 4220 if (getContext().getTypeSize(Ty) <= 128) 4221 return true; 4222 } 4223 } 4224 4225 return false; 4226 } 4227 4228 bool IsQPXVectorTy(QualType Ty) const { 4229 return IsQPXVectorTy(Ty.getTypePtr()); 4230 } 4231 4232 public: 4233 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4234 bool SoftFloatABI) 4235 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4236 IsSoftFloatABI(SoftFloatABI) {} 4237 4238 bool isPromotableTypeForABI(QualType Ty) const; 4239 CharUnits getParamTypeAlignment(QualType Ty) const; 4240 4241 ABIArgInfo classifyReturnType(QualType RetTy) const; 4242 ABIArgInfo classifyArgumentType(QualType Ty) const; 4243 4244 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4245 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4246 uint64_t Members) const override; 4247 4248 // TODO: We can add more logic to computeInfo to improve performance. 4249 // Example: For aggregate arguments that fit in a register, we could 4250 // use getDirectInReg (as is done below for structs containing a single 4251 // floating-point value) to avoid pushing them to memory on function 4252 // entry. This would require changing the logic in PPCISelLowering 4253 // when lowering the parameters in the caller and args in the callee. 4254 void computeInfo(CGFunctionInfo &FI) const override { 4255 if (!getCXXABI().classifyReturnType(FI)) 4256 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4257 for (auto &I : FI.arguments()) { 4258 // We rely on the default argument classification for the most part. 4259 // One exception: An aggregate containing a single floating-point 4260 // or vector item must be passed in a register if one is available. 4261 const Type *T = isSingleElementStruct(I.type, getContext()); 4262 if (T) { 4263 const BuiltinType *BT = T->getAs<BuiltinType>(); 4264 if (IsQPXVectorTy(T) || 4265 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4266 (BT && BT->isFloatingPoint())) { 4267 QualType QT(T, 0); 4268 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4269 continue; 4270 } 4271 } 4272 I.info = classifyArgumentType(I.type); 4273 } 4274 } 4275 4276 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4277 QualType Ty) const override; 4278 }; 4279 4280 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4281 4282 public: 4283 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4284 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4285 bool SoftFloatABI) 4286 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4287 SoftFloatABI)) {} 4288 4289 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4290 // This is recovered from gcc output. 4291 return 1; // r1 is the dedicated stack pointer 4292 } 4293 4294 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4295 llvm::Value *Address) const override; 4296 }; 4297 4298 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4299 public: 4300 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4301 4302 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4303 // This is recovered from gcc output. 4304 return 1; // r1 is the dedicated stack pointer 4305 } 4306 4307 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4308 llvm::Value *Address) const override; 4309 }; 4310 4311 } 4312 4313 // Return true if the ABI requires Ty to be passed sign- or zero- 4314 // extended to 64 bits. 4315 bool 4316 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4317 // Treat an enum type as its underlying type. 4318 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4319 Ty = EnumTy->getDecl()->getIntegerType(); 4320 4321 // Promotable integer types are required to be promoted by the ABI. 4322 if (Ty->isPromotableIntegerType()) 4323 return true; 4324 4325 // In addition to the usual promotable integer types, we also need to 4326 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4327 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4328 switch (BT->getKind()) { 4329 case BuiltinType::Int: 4330 case BuiltinType::UInt: 4331 return true; 4332 default: 4333 break; 4334 } 4335 4336 return false; 4337 } 4338 4339 /// isAlignedParamType - Determine whether a type requires 16-byte or 4340 /// higher alignment in the parameter area. Always returns at least 8. 4341 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4342 // Complex types are passed just like their elements. 4343 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4344 Ty = CTy->getElementType(); 4345 4346 // Only vector types of size 16 bytes need alignment (larger types are 4347 // passed via reference, smaller types are not aligned). 4348 if (IsQPXVectorTy(Ty)) { 4349 if (getContext().getTypeSize(Ty) > 128) 4350 return CharUnits::fromQuantity(32); 4351 4352 return CharUnits::fromQuantity(16); 4353 } else if (Ty->isVectorType()) { 4354 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4355 } 4356 4357 // For single-element float/vector structs, we consider the whole type 4358 // to have the same alignment requirements as its single element. 4359 const Type *AlignAsType = nullptr; 4360 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4361 if (EltType) { 4362 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4363 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4364 getContext().getTypeSize(EltType) == 128) || 4365 (BT && BT->isFloatingPoint())) 4366 AlignAsType = EltType; 4367 } 4368 4369 // Likewise for ELFv2 homogeneous aggregates. 4370 const Type *Base = nullptr; 4371 uint64_t Members = 0; 4372 if (!AlignAsType && Kind == ELFv2 && 4373 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4374 AlignAsType = Base; 4375 4376 // With special case aggregates, only vector base types need alignment. 4377 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4378 if (getContext().getTypeSize(AlignAsType) > 128) 4379 return CharUnits::fromQuantity(32); 4380 4381 return CharUnits::fromQuantity(16); 4382 } else if (AlignAsType) { 4383 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4384 } 4385 4386 // Otherwise, we only need alignment for any aggregate type that 4387 // has an alignment requirement of >= 16 bytes. 4388 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4389 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4390 return CharUnits::fromQuantity(32); 4391 return CharUnits::fromQuantity(16); 4392 } 4393 4394 return CharUnits::fromQuantity(8); 4395 } 4396 4397 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4398 /// aggregate. Base is set to the base element type, and Members is set 4399 /// to the number of base elements. 4400 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4401 uint64_t &Members) const { 4402 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4403 uint64_t NElements = AT->getSize().getZExtValue(); 4404 if (NElements == 0) 4405 return false; 4406 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4407 return false; 4408 Members *= NElements; 4409 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4410 const RecordDecl *RD = RT->getDecl(); 4411 if (RD->hasFlexibleArrayMember()) 4412 return false; 4413 4414 Members = 0; 4415 4416 // If this is a C++ record, check the bases first. 4417 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4418 for (const auto &I : CXXRD->bases()) { 4419 // Ignore empty records. 4420 if (isEmptyRecord(getContext(), I.getType(), true)) 4421 continue; 4422 4423 uint64_t FldMembers; 4424 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4425 return false; 4426 4427 Members += FldMembers; 4428 } 4429 } 4430 4431 for (const auto *FD : RD->fields()) { 4432 // Ignore (non-zero arrays of) empty records. 4433 QualType FT = FD->getType(); 4434 while (const ConstantArrayType *AT = 4435 getContext().getAsConstantArrayType(FT)) { 4436 if (AT->getSize().getZExtValue() == 0) 4437 return false; 4438 FT = AT->getElementType(); 4439 } 4440 if (isEmptyRecord(getContext(), FT, true)) 4441 continue; 4442 4443 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4444 if (getContext().getLangOpts().CPlusPlus && 4445 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4446 continue; 4447 4448 uint64_t FldMembers; 4449 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4450 return false; 4451 4452 Members = (RD->isUnion() ? 4453 std::max(Members, FldMembers) : Members + FldMembers); 4454 } 4455 4456 if (!Base) 4457 return false; 4458 4459 // Ensure there is no padding. 4460 if (getContext().getTypeSize(Base) * Members != 4461 getContext().getTypeSize(Ty)) 4462 return false; 4463 } else { 4464 Members = 1; 4465 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4466 Members = 2; 4467 Ty = CT->getElementType(); 4468 } 4469 4470 // Most ABIs only support float, double, and some vector type widths. 4471 if (!isHomogeneousAggregateBaseType(Ty)) 4472 return false; 4473 4474 // The base type must be the same for all members. Types that 4475 // agree in both total size and mode (float vs. vector) are 4476 // treated as being equivalent here. 4477 const Type *TyPtr = Ty.getTypePtr(); 4478 if (!Base) { 4479 Base = TyPtr; 4480 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4481 // so make sure to widen it explicitly. 4482 if (const VectorType *VT = Base->getAs<VectorType>()) { 4483 QualType EltTy = VT->getElementType(); 4484 unsigned NumElements = 4485 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4486 Base = getContext() 4487 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4488 .getTypePtr(); 4489 } 4490 } 4491 4492 if (Base->isVectorType() != TyPtr->isVectorType() || 4493 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4494 return false; 4495 } 4496 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4497 } 4498 4499 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4500 // Homogeneous aggregates for ELFv2 must have base types of float, 4501 // double, long double, or 128-bit vectors. 4502 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4503 if (BT->getKind() == BuiltinType::Float || 4504 BT->getKind() == BuiltinType::Double || 4505 BT->getKind() == BuiltinType::LongDouble) { 4506 if (IsSoftFloatABI) 4507 return false; 4508 return true; 4509 } 4510 } 4511 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4512 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4513 return true; 4514 } 4515 return false; 4516 } 4517 4518 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4519 const Type *Base, uint64_t Members) const { 4520 // Vector types require one register, floating point types require one 4521 // or two registers depending on their size. 4522 uint32_t NumRegs = 4523 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4524 4525 // Homogeneous Aggregates may occupy at most 8 registers. 4526 return Members * NumRegs <= 8; 4527 } 4528 4529 ABIArgInfo 4530 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4531 Ty = useFirstFieldIfTransparentUnion(Ty); 4532 4533 if (Ty->isAnyComplexType()) 4534 return ABIArgInfo::getDirect(); 4535 4536 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4537 // or via reference (larger than 16 bytes). 4538 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4539 uint64_t Size = getContext().getTypeSize(Ty); 4540 if (Size > 128) 4541 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4542 else if (Size < 128) { 4543 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4544 return ABIArgInfo::getDirect(CoerceTy); 4545 } 4546 } 4547 4548 if (isAggregateTypeForABI(Ty)) { 4549 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4550 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4551 4552 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4553 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4554 4555 // ELFv2 homogeneous aggregates are passed as array types. 4556 const Type *Base = nullptr; 4557 uint64_t Members = 0; 4558 if (Kind == ELFv2 && 4559 isHomogeneousAggregate(Ty, Base, Members)) { 4560 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4561 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4562 return ABIArgInfo::getDirect(CoerceTy); 4563 } 4564 4565 // If an aggregate may end up fully in registers, we do not 4566 // use the ByVal method, but pass the aggregate as array. 4567 // This is usually beneficial since we avoid forcing the 4568 // back-end to store the argument to memory. 4569 uint64_t Bits = getContext().getTypeSize(Ty); 4570 if (Bits > 0 && Bits <= 8 * GPRBits) { 4571 llvm::Type *CoerceTy; 4572 4573 // Types up to 8 bytes are passed as integer type (which will be 4574 // properly aligned in the argument save area doubleword). 4575 if (Bits <= GPRBits) 4576 CoerceTy = 4577 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4578 // Larger types are passed as arrays, with the base type selected 4579 // according to the required alignment in the save area. 4580 else { 4581 uint64_t RegBits = ABIAlign * 8; 4582 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4583 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4584 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4585 } 4586 4587 return ABIArgInfo::getDirect(CoerceTy); 4588 } 4589 4590 // All other aggregates are passed ByVal. 4591 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4592 /*ByVal=*/true, 4593 /*Realign=*/TyAlign > ABIAlign); 4594 } 4595 4596 return (isPromotableTypeForABI(Ty) ? 4597 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4598 } 4599 4600 ABIArgInfo 4601 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4602 if (RetTy->isVoidType()) 4603 return ABIArgInfo::getIgnore(); 4604 4605 if (RetTy->isAnyComplexType()) 4606 return ABIArgInfo::getDirect(); 4607 4608 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4609 // or via reference (larger than 16 bytes). 4610 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4611 uint64_t Size = getContext().getTypeSize(RetTy); 4612 if (Size > 128) 4613 return getNaturalAlignIndirect(RetTy); 4614 else if (Size < 128) { 4615 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4616 return ABIArgInfo::getDirect(CoerceTy); 4617 } 4618 } 4619 4620 if (isAggregateTypeForABI(RetTy)) { 4621 // ELFv2 homogeneous aggregates are returned as array types. 4622 const Type *Base = nullptr; 4623 uint64_t Members = 0; 4624 if (Kind == ELFv2 && 4625 isHomogeneousAggregate(RetTy, Base, Members)) { 4626 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4627 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4628 return ABIArgInfo::getDirect(CoerceTy); 4629 } 4630 4631 // ELFv2 small aggregates are returned in up to two registers. 4632 uint64_t Bits = getContext().getTypeSize(RetTy); 4633 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4634 if (Bits == 0) 4635 return ABIArgInfo::getIgnore(); 4636 4637 llvm::Type *CoerceTy; 4638 if (Bits > GPRBits) { 4639 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4640 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4641 } else 4642 CoerceTy = 4643 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4644 return ABIArgInfo::getDirect(CoerceTy); 4645 } 4646 4647 // All other aggregates are returned indirectly. 4648 return getNaturalAlignIndirect(RetTy); 4649 } 4650 4651 return (isPromotableTypeForABI(RetTy) ? 4652 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4653 } 4654 4655 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4656 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4657 QualType Ty) const { 4658 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4659 TypeInfo.second = getParamTypeAlignment(Ty); 4660 4661 CharUnits SlotSize = CharUnits::fromQuantity(8); 4662 4663 // If we have a complex type and the base type is smaller than 8 bytes, 4664 // the ABI calls for the real and imaginary parts to be right-adjusted 4665 // in separate doublewords. However, Clang expects us to produce a 4666 // pointer to a structure with the two parts packed tightly. So generate 4667 // loads of the real and imaginary parts relative to the va_list pointer, 4668 // and store them to a temporary structure. 4669 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4670 CharUnits EltSize = TypeInfo.first / 2; 4671 if (EltSize < SlotSize) { 4672 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4673 SlotSize * 2, SlotSize, 4674 SlotSize, /*AllowHigher*/ true); 4675 4676 Address RealAddr = Addr; 4677 Address ImagAddr = RealAddr; 4678 if (CGF.CGM.getDataLayout().isBigEndian()) { 4679 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4680 SlotSize - EltSize); 4681 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4682 2 * SlotSize - EltSize); 4683 } else { 4684 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4685 } 4686 4687 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4688 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4689 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4690 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4691 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4692 4693 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4694 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4695 /*init*/ true); 4696 return Temp; 4697 } 4698 } 4699 4700 // Otherwise, just use the general rule. 4701 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4702 TypeInfo, SlotSize, /*AllowHigher*/ true); 4703 } 4704 4705 static bool 4706 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4707 llvm::Value *Address) { 4708 // This is calculated from the LLVM and GCC tables and verified 4709 // against gcc output. AFAIK all ABIs use the same encoding. 4710 4711 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4712 4713 llvm::IntegerType *i8 = CGF.Int8Ty; 4714 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4715 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4716 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4717 4718 // 0-31: r0-31, the 8-byte general-purpose registers 4719 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4720 4721 // 32-63: fp0-31, the 8-byte floating-point registers 4722 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4723 4724 // 64-67 are various 8-byte special-purpose registers: 4725 // 64: mq 4726 // 65: lr 4727 // 66: ctr 4728 // 67: ap 4729 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4730 4731 // 68-76 are various 4-byte special-purpose registers: 4732 // 68-75 cr0-7 4733 // 76: xer 4734 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4735 4736 // 77-108: v0-31, the 16-byte vector registers 4737 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4738 4739 // 109: vrsave 4740 // 110: vscr 4741 // 111: spe_acc 4742 // 112: spefscr 4743 // 113: sfp 4744 // 114: tfhar 4745 // 115: tfiar 4746 // 116: texasr 4747 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4748 4749 return false; 4750 } 4751 4752 bool 4753 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4754 CodeGen::CodeGenFunction &CGF, 4755 llvm::Value *Address) const { 4756 4757 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4758 } 4759 4760 bool 4761 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4762 llvm::Value *Address) const { 4763 4764 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4765 } 4766 4767 //===----------------------------------------------------------------------===// 4768 // AArch64 ABI Implementation 4769 //===----------------------------------------------------------------------===// 4770 4771 namespace { 4772 4773 class AArch64ABIInfo : public SwiftABIInfo { 4774 public: 4775 enum ABIKind { 4776 AAPCS = 0, 4777 DarwinPCS 4778 }; 4779 4780 private: 4781 ABIKind Kind; 4782 4783 public: 4784 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4785 : SwiftABIInfo(CGT), Kind(Kind) {} 4786 4787 private: 4788 ABIKind getABIKind() const { return Kind; } 4789 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4790 4791 ABIArgInfo classifyReturnType(QualType RetTy) const; 4792 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4793 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4794 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4795 uint64_t Members) const override; 4796 4797 bool isIllegalVectorType(QualType Ty) const; 4798 4799 void computeInfo(CGFunctionInfo &FI) const override { 4800 if (!getCXXABI().classifyReturnType(FI)) 4801 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4802 4803 for (auto &it : FI.arguments()) 4804 it.info = classifyArgumentType(it.type); 4805 } 4806 4807 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4808 CodeGenFunction &CGF) const; 4809 4810 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4811 CodeGenFunction &CGF) const; 4812 4813 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4814 QualType Ty) const override { 4815 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4816 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4817 } 4818 4819 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4820 ArrayRef<llvm::Type*> scalars, 4821 bool asReturnValue) const override { 4822 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4823 } 4824 bool isSwiftErrorInRegister() const override { 4825 return true; 4826 } 4827 }; 4828 4829 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4830 public: 4831 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4832 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4833 4834 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4835 return "mov\tfp, fp\t\t# marker for objc_retainAutoreleaseReturnValue"; 4836 } 4837 4838 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4839 return 31; 4840 } 4841 4842 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4843 }; 4844 } 4845 4846 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4847 Ty = useFirstFieldIfTransparentUnion(Ty); 4848 4849 // Handle illegal vector types here. 4850 if (isIllegalVectorType(Ty)) { 4851 uint64_t Size = getContext().getTypeSize(Ty); 4852 // Android promotes <2 x i8> to i16, not i32 4853 if (isAndroid() && (Size <= 16)) { 4854 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4855 return ABIArgInfo::getDirect(ResType); 4856 } 4857 if (Size <= 32) { 4858 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4859 return ABIArgInfo::getDirect(ResType); 4860 } 4861 if (Size == 64) { 4862 llvm::Type *ResType = 4863 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4864 return ABIArgInfo::getDirect(ResType); 4865 } 4866 if (Size == 128) { 4867 llvm::Type *ResType = 4868 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4869 return ABIArgInfo::getDirect(ResType); 4870 } 4871 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4872 } 4873 4874 if (!isAggregateTypeForABI(Ty)) { 4875 // Treat an enum type as its underlying type. 4876 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4877 Ty = EnumTy->getDecl()->getIntegerType(); 4878 4879 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4880 ? ABIArgInfo::getExtend() 4881 : ABIArgInfo::getDirect()); 4882 } 4883 4884 // Structures with either a non-trivial destructor or a non-trivial 4885 // copy constructor are always indirect. 4886 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4887 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4888 CGCXXABI::RAA_DirectInMemory); 4889 } 4890 4891 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4892 // elsewhere for GNU compatibility. 4893 uint64_t Size = getContext().getTypeSize(Ty); 4894 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 4895 if (IsEmpty || Size == 0) { 4896 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4897 return ABIArgInfo::getIgnore(); 4898 4899 // GNU C mode. The only argument that gets ignored is an empty one with size 4900 // 0. 4901 if (IsEmpty && Size == 0) 4902 return ABIArgInfo::getIgnore(); 4903 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4904 } 4905 4906 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4907 const Type *Base = nullptr; 4908 uint64_t Members = 0; 4909 if (isHomogeneousAggregate(Ty, Base, Members)) { 4910 return ABIArgInfo::getDirect( 4911 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4912 } 4913 4914 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4915 if (Size <= 128) { 4916 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4917 // same size and alignment. 4918 if (getTarget().isRenderScriptTarget()) { 4919 return coerceToIntArray(Ty, getContext(), getVMContext()); 4920 } 4921 unsigned Alignment = getContext().getTypeAlign(Ty); 4922 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 4923 4924 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4925 // For aggregates with 16-byte alignment, we use i128. 4926 if (Alignment < 128 && Size == 128) { 4927 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4928 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4929 } 4930 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4931 } 4932 4933 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4934 } 4935 4936 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4937 if (RetTy->isVoidType()) 4938 return ABIArgInfo::getIgnore(); 4939 4940 // Large vector types should be returned via memory. 4941 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4942 return getNaturalAlignIndirect(RetTy); 4943 4944 if (!isAggregateTypeForABI(RetTy)) { 4945 // Treat an enum type as its underlying type. 4946 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4947 RetTy = EnumTy->getDecl()->getIntegerType(); 4948 4949 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4950 ? ABIArgInfo::getExtend() 4951 : ABIArgInfo::getDirect()); 4952 } 4953 4954 uint64_t Size = getContext().getTypeSize(RetTy); 4955 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 4956 return ABIArgInfo::getIgnore(); 4957 4958 const Type *Base = nullptr; 4959 uint64_t Members = 0; 4960 if (isHomogeneousAggregate(RetTy, Base, Members)) 4961 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4962 return ABIArgInfo::getDirect(); 4963 4964 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4965 if (Size <= 128) { 4966 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4967 // same size and alignment. 4968 if (getTarget().isRenderScriptTarget()) { 4969 return coerceToIntArray(RetTy, getContext(), getVMContext()); 4970 } 4971 unsigned Alignment = getContext().getTypeAlign(RetTy); 4972 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 4973 4974 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4975 // For aggregates with 16-byte alignment, we use i128. 4976 if (Alignment < 128 && Size == 128) { 4977 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4978 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4979 } 4980 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4981 } 4982 4983 return getNaturalAlignIndirect(RetTy); 4984 } 4985 4986 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4987 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4988 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4989 // Check whether VT is legal. 4990 unsigned NumElements = VT->getNumElements(); 4991 uint64_t Size = getContext().getTypeSize(VT); 4992 // NumElements should be power of 2. 4993 if (!llvm::isPowerOf2_32(NumElements)) 4994 return true; 4995 return Size != 64 && (Size != 128 || NumElements == 1); 4996 } 4997 return false; 4998 } 4999 5000 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5001 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5002 // point type or a short-vector type. This is the same as the 32-bit ABI, 5003 // but with the difference that any floating-point type is allowed, 5004 // including __fp16. 5005 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5006 if (BT->isFloatingPoint()) 5007 return true; 5008 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5009 unsigned VecSize = getContext().getTypeSize(VT); 5010 if (VecSize == 64 || VecSize == 128) 5011 return true; 5012 } 5013 return false; 5014 } 5015 5016 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5017 uint64_t Members) const { 5018 return Members <= 4; 5019 } 5020 5021 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5022 QualType Ty, 5023 CodeGenFunction &CGF) const { 5024 ABIArgInfo AI = classifyArgumentType(Ty); 5025 bool IsIndirect = AI.isIndirect(); 5026 5027 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5028 if (IsIndirect) 5029 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5030 else if (AI.getCoerceToType()) 5031 BaseTy = AI.getCoerceToType(); 5032 5033 unsigned NumRegs = 1; 5034 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5035 BaseTy = ArrTy->getElementType(); 5036 NumRegs = ArrTy->getNumElements(); 5037 } 5038 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5039 5040 // The AArch64 va_list type and handling is specified in the Procedure Call 5041 // Standard, section B.4: 5042 // 5043 // struct { 5044 // void *__stack; 5045 // void *__gr_top; 5046 // void *__vr_top; 5047 // int __gr_offs; 5048 // int __vr_offs; 5049 // }; 5050 5051 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5052 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5053 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5054 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5055 5056 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5057 CharUnits TyAlign = TyInfo.second; 5058 5059 Address reg_offs_p = Address::invalid(); 5060 llvm::Value *reg_offs = nullptr; 5061 int reg_top_index; 5062 CharUnits reg_top_offset; 5063 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5064 if (!IsFPR) { 5065 // 3 is the field number of __gr_offs 5066 reg_offs_p = 5067 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5068 "gr_offs_p"); 5069 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5070 reg_top_index = 1; // field number for __gr_top 5071 reg_top_offset = CharUnits::fromQuantity(8); 5072 RegSize = llvm::alignTo(RegSize, 8); 5073 } else { 5074 // 4 is the field number of __vr_offs. 5075 reg_offs_p = 5076 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5077 "vr_offs_p"); 5078 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5079 reg_top_index = 2; // field number for __vr_top 5080 reg_top_offset = CharUnits::fromQuantity(16); 5081 RegSize = 16 * NumRegs; 5082 } 5083 5084 //======================================= 5085 // Find out where argument was passed 5086 //======================================= 5087 5088 // If reg_offs >= 0 we're already using the stack for this type of 5089 // argument. We don't want to keep updating reg_offs (in case it overflows, 5090 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5091 // whatever they get). 5092 llvm::Value *UsingStack = nullptr; 5093 UsingStack = CGF.Builder.CreateICmpSGE( 5094 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5095 5096 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5097 5098 // Otherwise, at least some kind of argument could go in these registers, the 5099 // question is whether this particular type is too big. 5100 CGF.EmitBlock(MaybeRegBlock); 5101 5102 // Integer arguments may need to correct register alignment (for example a 5103 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5104 // align __gr_offs to calculate the potential address. 5105 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5106 int Align = TyAlign.getQuantity(); 5107 5108 reg_offs = CGF.Builder.CreateAdd( 5109 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5110 "align_regoffs"); 5111 reg_offs = CGF.Builder.CreateAnd( 5112 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5113 "aligned_regoffs"); 5114 } 5115 5116 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5117 // The fact that this is done unconditionally reflects the fact that 5118 // allocating an argument to the stack also uses up all the remaining 5119 // registers of the appropriate kind. 5120 llvm::Value *NewOffset = nullptr; 5121 NewOffset = CGF.Builder.CreateAdd( 5122 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5123 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5124 5125 // Now we're in a position to decide whether this argument really was in 5126 // registers or not. 5127 llvm::Value *InRegs = nullptr; 5128 InRegs = CGF.Builder.CreateICmpSLE( 5129 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5130 5131 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5132 5133 //======================================= 5134 // Argument was in registers 5135 //======================================= 5136 5137 // Now we emit the code for if the argument was originally passed in 5138 // registers. First start the appropriate block: 5139 CGF.EmitBlock(InRegBlock); 5140 5141 llvm::Value *reg_top = nullptr; 5142 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5143 reg_top_offset, "reg_top_p"); 5144 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5145 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5146 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5147 Address RegAddr = Address::invalid(); 5148 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5149 5150 if (IsIndirect) { 5151 // If it's been passed indirectly (actually a struct), whatever we find from 5152 // stored registers or on the stack will actually be a struct **. 5153 MemTy = llvm::PointerType::getUnqual(MemTy); 5154 } 5155 5156 const Type *Base = nullptr; 5157 uint64_t NumMembers = 0; 5158 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5159 if (IsHFA && NumMembers > 1) { 5160 // Homogeneous aggregates passed in registers will have their elements split 5161 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5162 // qN+1, ...). We reload and store into a temporary local variable 5163 // contiguously. 5164 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5165 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5166 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5167 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5168 Address Tmp = CGF.CreateTempAlloca(HFATy, 5169 std::max(TyAlign, BaseTyInfo.second)); 5170 5171 // On big-endian platforms, the value will be right-aligned in its slot. 5172 int Offset = 0; 5173 if (CGF.CGM.getDataLayout().isBigEndian() && 5174 BaseTyInfo.first.getQuantity() < 16) 5175 Offset = 16 - BaseTyInfo.first.getQuantity(); 5176 5177 for (unsigned i = 0; i < NumMembers; ++i) { 5178 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5179 Address LoadAddr = 5180 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5181 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5182 5183 Address StoreAddr = 5184 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5185 5186 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5187 CGF.Builder.CreateStore(Elem, StoreAddr); 5188 } 5189 5190 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5191 } else { 5192 // Otherwise the object is contiguous in memory. 5193 5194 // It might be right-aligned in its slot. 5195 CharUnits SlotSize = BaseAddr.getAlignment(); 5196 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5197 (IsHFA || !isAggregateTypeForABI(Ty)) && 5198 TyInfo.first < SlotSize) { 5199 CharUnits Offset = SlotSize - TyInfo.first; 5200 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5201 } 5202 5203 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5204 } 5205 5206 CGF.EmitBranch(ContBlock); 5207 5208 //======================================= 5209 // Argument was on the stack 5210 //======================================= 5211 CGF.EmitBlock(OnStackBlock); 5212 5213 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5214 CharUnits::Zero(), "stack_p"); 5215 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5216 5217 // Again, stack arguments may need realignment. In this case both integer and 5218 // floating-point ones might be affected. 5219 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5220 int Align = TyAlign.getQuantity(); 5221 5222 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5223 5224 OnStackPtr = CGF.Builder.CreateAdd( 5225 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5226 "align_stack"); 5227 OnStackPtr = CGF.Builder.CreateAnd( 5228 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5229 "align_stack"); 5230 5231 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5232 } 5233 Address OnStackAddr(OnStackPtr, 5234 std::max(CharUnits::fromQuantity(8), TyAlign)); 5235 5236 // All stack slots are multiples of 8 bytes. 5237 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5238 CharUnits StackSize; 5239 if (IsIndirect) 5240 StackSize = StackSlotSize; 5241 else 5242 StackSize = TyInfo.first.alignTo(StackSlotSize); 5243 5244 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5245 llvm::Value *NewStack = 5246 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5247 5248 // Write the new value of __stack for the next call to va_arg 5249 CGF.Builder.CreateStore(NewStack, stack_p); 5250 5251 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5252 TyInfo.first < StackSlotSize) { 5253 CharUnits Offset = StackSlotSize - TyInfo.first; 5254 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5255 } 5256 5257 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5258 5259 CGF.EmitBranch(ContBlock); 5260 5261 //======================================= 5262 // Tidy up 5263 //======================================= 5264 CGF.EmitBlock(ContBlock); 5265 5266 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5267 OnStackAddr, OnStackBlock, "vaargs.addr"); 5268 5269 if (IsIndirect) 5270 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5271 TyInfo.second); 5272 5273 return ResAddr; 5274 } 5275 5276 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5277 CodeGenFunction &CGF) const { 5278 // The backend's lowering doesn't support va_arg for aggregates or 5279 // illegal vector types. Lower VAArg here for these cases and use 5280 // the LLVM va_arg instruction for everything else. 5281 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5282 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5283 5284 CharUnits SlotSize = CharUnits::fromQuantity(8); 5285 5286 // Empty records are ignored for parameter passing purposes. 5287 if (isEmptyRecord(getContext(), Ty, true)) { 5288 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5289 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5290 return Addr; 5291 } 5292 5293 // The size of the actual thing passed, which might end up just 5294 // being a pointer for indirect types. 5295 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5296 5297 // Arguments bigger than 16 bytes which aren't homogeneous 5298 // aggregates should be passed indirectly. 5299 bool IsIndirect = false; 5300 if (TyInfo.first.getQuantity() > 16) { 5301 const Type *Base = nullptr; 5302 uint64_t Members = 0; 5303 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5304 } 5305 5306 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5307 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5308 } 5309 5310 //===----------------------------------------------------------------------===// 5311 // ARM ABI Implementation 5312 //===----------------------------------------------------------------------===// 5313 5314 namespace { 5315 5316 class ARMABIInfo : public SwiftABIInfo { 5317 public: 5318 enum ABIKind { 5319 APCS = 0, 5320 AAPCS = 1, 5321 AAPCS_VFP = 2, 5322 AAPCS16_VFP = 3, 5323 }; 5324 5325 private: 5326 ABIKind Kind; 5327 5328 public: 5329 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5330 : SwiftABIInfo(CGT), Kind(_Kind) { 5331 setCCs(); 5332 } 5333 5334 bool isEABI() const { 5335 switch (getTarget().getTriple().getEnvironment()) { 5336 case llvm::Triple::Android: 5337 case llvm::Triple::EABI: 5338 case llvm::Triple::EABIHF: 5339 case llvm::Triple::GNUEABI: 5340 case llvm::Triple::GNUEABIHF: 5341 case llvm::Triple::MuslEABI: 5342 case llvm::Triple::MuslEABIHF: 5343 return true; 5344 default: 5345 return false; 5346 } 5347 } 5348 5349 bool isEABIHF() const { 5350 switch (getTarget().getTriple().getEnvironment()) { 5351 case llvm::Triple::EABIHF: 5352 case llvm::Triple::GNUEABIHF: 5353 case llvm::Triple::MuslEABIHF: 5354 return true; 5355 default: 5356 return false; 5357 } 5358 } 5359 5360 ABIKind getABIKind() const { return Kind; } 5361 5362 private: 5363 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5364 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5365 bool isIllegalVectorType(QualType Ty) const; 5366 5367 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5368 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5369 uint64_t Members) const override; 5370 5371 void computeInfo(CGFunctionInfo &FI) const override; 5372 5373 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5374 QualType Ty) const override; 5375 5376 llvm::CallingConv::ID getLLVMDefaultCC() const; 5377 llvm::CallingConv::ID getABIDefaultCC() const; 5378 void setCCs(); 5379 5380 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5381 ArrayRef<llvm::Type*> scalars, 5382 bool asReturnValue) const override { 5383 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5384 } 5385 bool isSwiftErrorInRegister() const override { 5386 return true; 5387 } 5388 }; 5389 5390 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5391 public: 5392 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5393 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5394 5395 const ARMABIInfo &getABIInfo() const { 5396 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5397 } 5398 5399 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5400 return 13; 5401 } 5402 5403 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5404 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5405 } 5406 5407 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5408 llvm::Value *Address) const override { 5409 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5410 5411 // 0-15 are the 16 integer registers. 5412 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5413 return false; 5414 } 5415 5416 unsigned getSizeOfUnwindException() const override { 5417 if (getABIInfo().isEABI()) return 88; 5418 return TargetCodeGenInfo::getSizeOfUnwindException(); 5419 } 5420 5421 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5422 CodeGen::CodeGenModule &CGM) const override { 5423 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5424 if (!FD) 5425 return; 5426 5427 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5428 if (!Attr) 5429 return; 5430 5431 const char *Kind; 5432 switch (Attr->getInterrupt()) { 5433 case ARMInterruptAttr::Generic: Kind = ""; break; 5434 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5435 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5436 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5437 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5438 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5439 } 5440 5441 llvm::Function *Fn = cast<llvm::Function>(GV); 5442 5443 Fn->addFnAttr("interrupt", Kind); 5444 5445 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5446 if (ABI == ARMABIInfo::APCS) 5447 return; 5448 5449 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5450 // however this is not necessarily true on taking any interrupt. Instruct 5451 // the backend to perform a realignment as part of the function prologue. 5452 llvm::AttrBuilder B; 5453 B.addStackAlignmentAttr(8); 5454 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5455 } 5456 }; 5457 5458 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5459 public: 5460 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5461 : ARMTargetCodeGenInfo(CGT, K) {} 5462 5463 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5464 CodeGen::CodeGenModule &CGM) const override; 5465 5466 void getDependentLibraryOption(llvm::StringRef Lib, 5467 llvm::SmallString<24> &Opt) const override { 5468 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5469 } 5470 5471 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5472 llvm::SmallString<32> &Opt) const override { 5473 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5474 } 5475 }; 5476 5477 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5478 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5479 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5480 addStackProbeSizeTargetAttribute(D, GV, CGM); 5481 } 5482 } 5483 5484 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5485 if (!getCXXABI().classifyReturnType(FI)) 5486 FI.getReturnInfo() = 5487 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5488 5489 for (auto &I : FI.arguments()) 5490 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5491 5492 // Always honor user-specified calling convention. 5493 if (FI.getCallingConvention() != llvm::CallingConv::C) 5494 return; 5495 5496 llvm::CallingConv::ID cc = getRuntimeCC(); 5497 if (cc != llvm::CallingConv::C) 5498 FI.setEffectiveCallingConvention(cc); 5499 } 5500 5501 /// Return the default calling convention that LLVM will use. 5502 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5503 // The default calling convention that LLVM will infer. 5504 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5505 return llvm::CallingConv::ARM_AAPCS_VFP; 5506 else if (isEABI()) 5507 return llvm::CallingConv::ARM_AAPCS; 5508 else 5509 return llvm::CallingConv::ARM_APCS; 5510 } 5511 5512 /// Return the calling convention that our ABI would like us to use 5513 /// as the C calling convention. 5514 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5515 switch (getABIKind()) { 5516 case APCS: return llvm::CallingConv::ARM_APCS; 5517 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5518 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5519 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5520 } 5521 llvm_unreachable("bad ABI kind"); 5522 } 5523 5524 void ARMABIInfo::setCCs() { 5525 assert(getRuntimeCC() == llvm::CallingConv::C); 5526 5527 // Don't muddy up the IR with a ton of explicit annotations if 5528 // they'd just match what LLVM will infer from the triple. 5529 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5530 if (abiCC != getLLVMDefaultCC()) 5531 RuntimeCC = abiCC; 5532 5533 // AAPCS apparently requires runtime support functions to be soft-float, but 5534 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5535 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5536 switch (getABIKind()) { 5537 case APCS: 5538 case AAPCS16_VFP: 5539 if (abiCC != getLLVMDefaultCC()) 5540 BuiltinCC = abiCC; 5541 break; 5542 case AAPCS: 5543 case AAPCS_VFP: 5544 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5545 break; 5546 } 5547 } 5548 5549 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5550 bool isVariadic) const { 5551 // 6.1.2.1 The following argument types are VFP CPRCs: 5552 // A single-precision floating-point type (including promoted 5553 // half-precision types); A double-precision floating-point type; 5554 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5555 // with a Base Type of a single- or double-precision floating-point type, 5556 // 64-bit containerized vectors or 128-bit containerized vectors with one 5557 // to four Elements. 5558 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5559 5560 Ty = useFirstFieldIfTransparentUnion(Ty); 5561 5562 // Handle illegal vector types here. 5563 if (isIllegalVectorType(Ty)) { 5564 uint64_t Size = getContext().getTypeSize(Ty); 5565 if (Size <= 32) { 5566 llvm::Type *ResType = 5567 llvm::Type::getInt32Ty(getVMContext()); 5568 return ABIArgInfo::getDirect(ResType); 5569 } 5570 if (Size == 64) { 5571 llvm::Type *ResType = llvm::VectorType::get( 5572 llvm::Type::getInt32Ty(getVMContext()), 2); 5573 return ABIArgInfo::getDirect(ResType); 5574 } 5575 if (Size == 128) { 5576 llvm::Type *ResType = llvm::VectorType::get( 5577 llvm::Type::getInt32Ty(getVMContext()), 4); 5578 return ABIArgInfo::getDirect(ResType); 5579 } 5580 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5581 } 5582 5583 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5584 // unspecified. This is not done for OpenCL as it handles the half type 5585 // natively, and does not need to interwork with AAPCS code. 5586 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5587 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5588 llvm::Type::getFloatTy(getVMContext()) : 5589 llvm::Type::getInt32Ty(getVMContext()); 5590 return ABIArgInfo::getDirect(ResType); 5591 } 5592 5593 if (!isAggregateTypeForABI(Ty)) { 5594 // Treat an enum type as its underlying type. 5595 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5596 Ty = EnumTy->getDecl()->getIntegerType(); 5597 } 5598 5599 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5600 : ABIArgInfo::getDirect()); 5601 } 5602 5603 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5604 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5605 } 5606 5607 // Ignore empty records. 5608 if (isEmptyRecord(getContext(), Ty, true)) 5609 return ABIArgInfo::getIgnore(); 5610 5611 if (IsEffectivelyAAPCS_VFP) { 5612 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5613 // into VFP registers. 5614 const Type *Base = nullptr; 5615 uint64_t Members = 0; 5616 if (isHomogeneousAggregate(Ty, Base, Members)) { 5617 assert(Base && "Base class should be set for homogeneous aggregate"); 5618 // Base can be a floating-point or a vector. 5619 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5620 } 5621 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5622 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5623 // this convention even for a variadic function: the backend will use GPRs 5624 // if needed. 5625 const Type *Base = nullptr; 5626 uint64_t Members = 0; 5627 if (isHomogeneousAggregate(Ty, Base, Members)) { 5628 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5629 llvm::Type *Ty = 5630 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5631 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5632 } 5633 } 5634 5635 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5636 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5637 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5638 // bigger than 128-bits, they get placed in space allocated by the caller, 5639 // and a pointer is passed. 5640 return ABIArgInfo::getIndirect( 5641 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5642 } 5643 5644 // Support byval for ARM. 5645 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5646 // most 8-byte. We realign the indirect argument if type alignment is bigger 5647 // than ABI alignment. 5648 uint64_t ABIAlign = 4; 5649 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5650 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5651 getABIKind() == ARMABIInfo::AAPCS) 5652 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5653 5654 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5655 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5656 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5657 /*ByVal=*/true, 5658 /*Realign=*/TyAlign > ABIAlign); 5659 } 5660 5661 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5662 // same size and alignment. 5663 if (getTarget().isRenderScriptTarget()) { 5664 return coerceToIntArray(Ty, getContext(), getVMContext()); 5665 } 5666 5667 // Otherwise, pass by coercing to a structure of the appropriate size. 5668 llvm::Type* ElemTy; 5669 unsigned SizeRegs; 5670 // FIXME: Try to match the types of the arguments more accurately where 5671 // we can. 5672 if (getContext().getTypeAlign(Ty) <= 32) { 5673 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5674 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5675 } else { 5676 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5677 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5678 } 5679 5680 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5681 } 5682 5683 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5684 llvm::LLVMContext &VMContext) { 5685 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5686 // is called integer-like if its size is less than or equal to one word, and 5687 // the offset of each of its addressable sub-fields is zero. 5688 5689 uint64_t Size = Context.getTypeSize(Ty); 5690 5691 // Check that the type fits in a word. 5692 if (Size > 32) 5693 return false; 5694 5695 // FIXME: Handle vector types! 5696 if (Ty->isVectorType()) 5697 return false; 5698 5699 // Float types are never treated as "integer like". 5700 if (Ty->isRealFloatingType()) 5701 return false; 5702 5703 // If this is a builtin or pointer type then it is ok. 5704 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5705 return true; 5706 5707 // Small complex integer types are "integer like". 5708 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5709 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5710 5711 // Single element and zero sized arrays should be allowed, by the definition 5712 // above, but they are not. 5713 5714 // Otherwise, it must be a record type. 5715 const RecordType *RT = Ty->getAs<RecordType>(); 5716 if (!RT) return false; 5717 5718 // Ignore records with flexible arrays. 5719 const RecordDecl *RD = RT->getDecl(); 5720 if (RD->hasFlexibleArrayMember()) 5721 return false; 5722 5723 // Check that all sub-fields are at offset 0, and are themselves "integer 5724 // like". 5725 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5726 5727 bool HadField = false; 5728 unsigned idx = 0; 5729 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5730 i != e; ++i, ++idx) { 5731 const FieldDecl *FD = *i; 5732 5733 // Bit-fields are not addressable, we only need to verify they are "integer 5734 // like". We still have to disallow a subsequent non-bitfield, for example: 5735 // struct { int : 0; int x } 5736 // is non-integer like according to gcc. 5737 if (FD->isBitField()) { 5738 if (!RD->isUnion()) 5739 HadField = true; 5740 5741 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5742 return false; 5743 5744 continue; 5745 } 5746 5747 // Check if this field is at offset 0. 5748 if (Layout.getFieldOffset(idx) != 0) 5749 return false; 5750 5751 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5752 return false; 5753 5754 // Only allow at most one field in a structure. This doesn't match the 5755 // wording above, but follows gcc in situations with a field following an 5756 // empty structure. 5757 if (!RD->isUnion()) { 5758 if (HadField) 5759 return false; 5760 5761 HadField = true; 5762 } 5763 } 5764 5765 return true; 5766 } 5767 5768 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5769 bool isVariadic) const { 5770 bool IsEffectivelyAAPCS_VFP = 5771 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5772 5773 if (RetTy->isVoidType()) 5774 return ABIArgInfo::getIgnore(); 5775 5776 // Large vector types should be returned via memory. 5777 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5778 return getNaturalAlignIndirect(RetTy); 5779 } 5780 5781 // __fp16 gets returned as if it were an int or float, but with the top 16 5782 // bits unspecified. This is not done for OpenCL as it handles the half type 5783 // natively, and does not need to interwork with AAPCS code. 5784 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5785 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5786 llvm::Type::getFloatTy(getVMContext()) : 5787 llvm::Type::getInt32Ty(getVMContext()); 5788 return ABIArgInfo::getDirect(ResType); 5789 } 5790 5791 if (!isAggregateTypeForABI(RetTy)) { 5792 // Treat an enum type as its underlying type. 5793 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5794 RetTy = EnumTy->getDecl()->getIntegerType(); 5795 5796 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5797 : ABIArgInfo::getDirect(); 5798 } 5799 5800 // Are we following APCS? 5801 if (getABIKind() == APCS) { 5802 if (isEmptyRecord(getContext(), RetTy, false)) 5803 return ABIArgInfo::getIgnore(); 5804 5805 // Complex types are all returned as packed integers. 5806 // 5807 // FIXME: Consider using 2 x vector types if the back end handles them 5808 // correctly. 5809 if (RetTy->isAnyComplexType()) 5810 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5811 getVMContext(), getContext().getTypeSize(RetTy))); 5812 5813 // Integer like structures are returned in r0. 5814 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5815 // Return in the smallest viable integer type. 5816 uint64_t Size = getContext().getTypeSize(RetTy); 5817 if (Size <= 8) 5818 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5819 if (Size <= 16) 5820 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5821 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5822 } 5823 5824 // Otherwise return in memory. 5825 return getNaturalAlignIndirect(RetTy); 5826 } 5827 5828 // Otherwise this is an AAPCS variant. 5829 5830 if (isEmptyRecord(getContext(), RetTy, true)) 5831 return ABIArgInfo::getIgnore(); 5832 5833 // Check for homogeneous aggregates with AAPCS-VFP. 5834 if (IsEffectivelyAAPCS_VFP) { 5835 const Type *Base = nullptr; 5836 uint64_t Members = 0; 5837 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5838 assert(Base && "Base class should be set for homogeneous aggregate"); 5839 // Homogeneous Aggregates are returned directly. 5840 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5841 } 5842 } 5843 5844 // Aggregates <= 4 bytes are returned in r0; other aggregates 5845 // are returned indirectly. 5846 uint64_t Size = getContext().getTypeSize(RetTy); 5847 if (Size <= 32) { 5848 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5849 // same size and alignment. 5850 if (getTarget().isRenderScriptTarget()) { 5851 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5852 } 5853 if (getDataLayout().isBigEndian()) 5854 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5855 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5856 5857 // Return in the smallest viable integer type. 5858 if (Size <= 8) 5859 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5860 if (Size <= 16) 5861 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5862 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5863 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5864 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5865 llvm::Type *CoerceTy = 5866 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5867 return ABIArgInfo::getDirect(CoerceTy); 5868 } 5869 5870 return getNaturalAlignIndirect(RetTy); 5871 } 5872 5873 /// isIllegalVector - check whether Ty is an illegal vector type. 5874 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5875 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5876 if (isAndroid()) { 5877 // Android shipped using Clang 3.1, which supported a slightly different 5878 // vector ABI. The primary differences were that 3-element vector types 5879 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5880 // accepts that legacy behavior for Android only. 5881 // Check whether VT is legal. 5882 unsigned NumElements = VT->getNumElements(); 5883 // NumElements should be power of 2 or equal to 3. 5884 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5885 return true; 5886 } else { 5887 // Check whether VT is legal. 5888 unsigned NumElements = VT->getNumElements(); 5889 uint64_t Size = getContext().getTypeSize(VT); 5890 // NumElements should be power of 2. 5891 if (!llvm::isPowerOf2_32(NumElements)) 5892 return true; 5893 // Size should be greater than 32 bits. 5894 return Size <= 32; 5895 } 5896 } 5897 return false; 5898 } 5899 5900 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5901 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5902 // double, or 64-bit or 128-bit vectors. 5903 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5904 if (BT->getKind() == BuiltinType::Float || 5905 BT->getKind() == BuiltinType::Double || 5906 BT->getKind() == BuiltinType::LongDouble) 5907 return true; 5908 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5909 unsigned VecSize = getContext().getTypeSize(VT); 5910 if (VecSize == 64 || VecSize == 128) 5911 return true; 5912 } 5913 return false; 5914 } 5915 5916 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5917 uint64_t Members) const { 5918 return Members <= 4; 5919 } 5920 5921 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5922 QualType Ty) const { 5923 CharUnits SlotSize = CharUnits::fromQuantity(4); 5924 5925 // Empty records are ignored for parameter passing purposes. 5926 if (isEmptyRecord(getContext(), Ty, true)) { 5927 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5928 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5929 return Addr; 5930 } 5931 5932 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5933 CharUnits TyAlignForABI = TyInfo.second; 5934 5935 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5936 bool IsIndirect = false; 5937 const Type *Base = nullptr; 5938 uint64_t Members = 0; 5939 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5940 IsIndirect = true; 5941 5942 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5943 // allocated by the caller. 5944 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5945 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5946 !isHomogeneousAggregate(Ty, Base, Members)) { 5947 IsIndirect = true; 5948 5949 // Otherwise, bound the type's ABI alignment. 5950 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5951 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5952 // Our callers should be prepared to handle an under-aligned address. 5953 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5954 getABIKind() == ARMABIInfo::AAPCS) { 5955 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5956 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5957 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5958 // ARMv7k allows type alignment up to 16 bytes. 5959 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5960 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5961 } else { 5962 TyAlignForABI = CharUnits::fromQuantity(4); 5963 } 5964 TyInfo.second = TyAlignForABI; 5965 5966 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5967 SlotSize, /*AllowHigherAlign*/ true); 5968 } 5969 5970 //===----------------------------------------------------------------------===// 5971 // NVPTX ABI Implementation 5972 //===----------------------------------------------------------------------===// 5973 5974 namespace { 5975 5976 class NVPTXABIInfo : public ABIInfo { 5977 public: 5978 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5979 5980 ABIArgInfo classifyReturnType(QualType RetTy) const; 5981 ABIArgInfo classifyArgumentType(QualType Ty) const; 5982 5983 void computeInfo(CGFunctionInfo &FI) const override; 5984 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5985 QualType Ty) const override; 5986 }; 5987 5988 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5989 public: 5990 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5991 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5992 5993 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5994 CodeGen::CodeGenModule &M) const override; 5995 private: 5996 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5997 // resulting MDNode to the nvvm.annotations MDNode. 5998 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5999 }; 6000 6001 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6002 if (RetTy->isVoidType()) 6003 return ABIArgInfo::getIgnore(); 6004 6005 // note: this is different from default ABI 6006 if (!RetTy->isScalarType()) 6007 return ABIArgInfo::getDirect(); 6008 6009 // Treat an enum type as its underlying type. 6010 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6011 RetTy = EnumTy->getDecl()->getIntegerType(); 6012 6013 return (RetTy->isPromotableIntegerType() ? 6014 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6015 } 6016 6017 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6018 // Treat an enum type as its underlying type. 6019 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6020 Ty = EnumTy->getDecl()->getIntegerType(); 6021 6022 // Return aggregates type as indirect by value 6023 if (isAggregateTypeForABI(Ty)) 6024 return getNaturalAlignIndirect(Ty, /* byval */ true); 6025 6026 return (Ty->isPromotableIntegerType() ? 6027 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6028 } 6029 6030 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6031 if (!getCXXABI().classifyReturnType(FI)) 6032 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6033 for (auto &I : FI.arguments()) 6034 I.info = classifyArgumentType(I.type); 6035 6036 // Always honor user-specified calling convention. 6037 if (FI.getCallingConvention() != llvm::CallingConv::C) 6038 return; 6039 6040 FI.setEffectiveCallingConvention(getRuntimeCC()); 6041 } 6042 6043 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6044 QualType Ty) const { 6045 llvm_unreachable("NVPTX does not support varargs"); 6046 } 6047 6048 void NVPTXTargetCodeGenInfo:: 6049 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6050 CodeGen::CodeGenModule &M) const{ 6051 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6052 if (!FD) return; 6053 6054 llvm::Function *F = cast<llvm::Function>(GV); 6055 6056 // Perform special handling in OpenCL mode 6057 if (M.getLangOpts().OpenCL) { 6058 // Use OpenCL function attributes to check for kernel functions 6059 // By default, all functions are device functions 6060 if (FD->hasAttr<OpenCLKernelAttr>()) { 6061 // OpenCL __kernel functions get kernel metadata 6062 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6063 addNVVMMetadata(F, "kernel", 1); 6064 // And kernel functions are not subject to inlining 6065 F->addFnAttr(llvm::Attribute::NoInline); 6066 } 6067 } 6068 6069 // Perform special handling in CUDA mode. 6070 if (M.getLangOpts().CUDA) { 6071 // CUDA __global__ functions get a kernel metadata entry. Since 6072 // __global__ functions cannot be called from the device, we do not 6073 // need to set the noinline attribute. 6074 if (FD->hasAttr<CUDAGlobalAttr>()) { 6075 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6076 addNVVMMetadata(F, "kernel", 1); 6077 } 6078 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6079 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6080 llvm::APSInt MaxThreads(32); 6081 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6082 if (MaxThreads > 0) 6083 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6084 6085 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6086 // not specified in __launch_bounds__ or if the user specified a 0 value, 6087 // we don't have to add a PTX directive. 6088 if (Attr->getMinBlocks()) { 6089 llvm::APSInt MinBlocks(32); 6090 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6091 if (MinBlocks > 0) 6092 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6093 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6094 } 6095 } 6096 } 6097 } 6098 6099 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6100 int Operand) { 6101 llvm::Module *M = F->getParent(); 6102 llvm::LLVMContext &Ctx = M->getContext(); 6103 6104 // Get "nvvm.annotations" metadata node 6105 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6106 6107 llvm::Metadata *MDVals[] = { 6108 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6109 llvm::ConstantAsMetadata::get( 6110 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6111 // Append metadata to nvvm.annotations 6112 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6113 } 6114 } 6115 6116 //===----------------------------------------------------------------------===// 6117 // SystemZ ABI Implementation 6118 //===----------------------------------------------------------------------===// 6119 6120 namespace { 6121 6122 class SystemZABIInfo : public SwiftABIInfo { 6123 bool HasVector; 6124 6125 public: 6126 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6127 : SwiftABIInfo(CGT), HasVector(HV) {} 6128 6129 bool isPromotableIntegerType(QualType Ty) const; 6130 bool isCompoundType(QualType Ty) const; 6131 bool isVectorArgumentType(QualType Ty) const; 6132 bool isFPArgumentType(QualType Ty) const; 6133 QualType GetSingleElementType(QualType Ty) const; 6134 6135 ABIArgInfo classifyReturnType(QualType RetTy) const; 6136 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6137 6138 void computeInfo(CGFunctionInfo &FI) const override { 6139 if (!getCXXABI().classifyReturnType(FI)) 6140 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6141 for (auto &I : FI.arguments()) 6142 I.info = classifyArgumentType(I.type); 6143 } 6144 6145 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6146 QualType Ty) const override; 6147 6148 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 6149 ArrayRef<llvm::Type*> scalars, 6150 bool asReturnValue) const override { 6151 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6152 } 6153 bool isSwiftErrorInRegister() const override { 6154 return true; 6155 } 6156 }; 6157 6158 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6159 public: 6160 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6161 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6162 }; 6163 6164 } 6165 6166 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6167 // Treat an enum type as its underlying type. 6168 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6169 Ty = EnumTy->getDecl()->getIntegerType(); 6170 6171 // Promotable integer types are required to be promoted by the ABI. 6172 if (Ty->isPromotableIntegerType()) 6173 return true; 6174 6175 // 32-bit values must also be promoted. 6176 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6177 switch (BT->getKind()) { 6178 case BuiltinType::Int: 6179 case BuiltinType::UInt: 6180 return true; 6181 default: 6182 return false; 6183 } 6184 return false; 6185 } 6186 6187 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6188 return (Ty->isAnyComplexType() || 6189 Ty->isVectorType() || 6190 isAggregateTypeForABI(Ty)); 6191 } 6192 6193 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6194 return (HasVector && 6195 Ty->isVectorType() && 6196 getContext().getTypeSize(Ty) <= 128); 6197 } 6198 6199 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6200 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6201 switch (BT->getKind()) { 6202 case BuiltinType::Float: 6203 case BuiltinType::Double: 6204 return true; 6205 default: 6206 return false; 6207 } 6208 6209 return false; 6210 } 6211 6212 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6213 if (const RecordType *RT = Ty->getAsStructureType()) { 6214 const RecordDecl *RD = RT->getDecl(); 6215 QualType Found; 6216 6217 // If this is a C++ record, check the bases first. 6218 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6219 for (const auto &I : CXXRD->bases()) { 6220 QualType Base = I.getType(); 6221 6222 // Empty bases don't affect things either way. 6223 if (isEmptyRecord(getContext(), Base, true)) 6224 continue; 6225 6226 if (!Found.isNull()) 6227 return Ty; 6228 Found = GetSingleElementType(Base); 6229 } 6230 6231 // Check the fields. 6232 for (const auto *FD : RD->fields()) { 6233 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6234 // Unlike isSingleElementStruct(), empty structure and array fields 6235 // do count. So do anonymous bitfields that aren't zero-sized. 6236 if (getContext().getLangOpts().CPlusPlus && 6237 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6238 continue; 6239 6240 // Unlike isSingleElementStruct(), arrays do not count. 6241 // Nested structures still do though. 6242 if (!Found.isNull()) 6243 return Ty; 6244 Found = GetSingleElementType(FD->getType()); 6245 } 6246 6247 // Unlike isSingleElementStruct(), trailing padding is allowed. 6248 // An 8-byte aligned struct s { float f; } is passed as a double. 6249 if (!Found.isNull()) 6250 return Found; 6251 } 6252 6253 return Ty; 6254 } 6255 6256 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6257 QualType Ty) const { 6258 // Assume that va_list type is correct; should be pointer to LLVM type: 6259 // struct { 6260 // i64 __gpr; 6261 // i64 __fpr; 6262 // i8 *__overflow_arg_area; 6263 // i8 *__reg_save_area; 6264 // }; 6265 6266 // Every non-vector argument occupies 8 bytes and is passed by preference 6267 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6268 // always passed on the stack. 6269 Ty = getContext().getCanonicalType(Ty); 6270 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6271 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6272 llvm::Type *DirectTy = ArgTy; 6273 ABIArgInfo AI = classifyArgumentType(Ty); 6274 bool IsIndirect = AI.isIndirect(); 6275 bool InFPRs = false; 6276 bool IsVector = false; 6277 CharUnits UnpaddedSize; 6278 CharUnits DirectAlign; 6279 if (IsIndirect) { 6280 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6281 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6282 } else { 6283 if (AI.getCoerceToType()) 6284 ArgTy = AI.getCoerceToType(); 6285 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6286 IsVector = ArgTy->isVectorTy(); 6287 UnpaddedSize = TyInfo.first; 6288 DirectAlign = TyInfo.second; 6289 } 6290 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6291 if (IsVector && UnpaddedSize > PaddedSize) 6292 PaddedSize = CharUnits::fromQuantity(16); 6293 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6294 6295 CharUnits Padding = (PaddedSize - UnpaddedSize); 6296 6297 llvm::Type *IndexTy = CGF.Int64Ty; 6298 llvm::Value *PaddedSizeV = 6299 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6300 6301 if (IsVector) { 6302 // Work out the address of a vector argument on the stack. 6303 // Vector arguments are always passed in the high bits of a 6304 // single (8 byte) or double (16 byte) stack slot. 6305 Address OverflowArgAreaPtr = 6306 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6307 "overflow_arg_area_ptr"); 6308 Address OverflowArgArea = 6309 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6310 TyInfo.second); 6311 Address MemAddr = 6312 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6313 6314 // Update overflow_arg_area_ptr pointer 6315 llvm::Value *NewOverflowArgArea = 6316 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6317 "overflow_arg_area"); 6318 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6319 6320 return MemAddr; 6321 } 6322 6323 assert(PaddedSize.getQuantity() == 8); 6324 6325 unsigned MaxRegs, RegCountField, RegSaveIndex; 6326 CharUnits RegPadding; 6327 if (InFPRs) { 6328 MaxRegs = 4; // Maximum of 4 FPR arguments 6329 RegCountField = 1; // __fpr 6330 RegSaveIndex = 16; // save offset for f0 6331 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6332 } else { 6333 MaxRegs = 5; // Maximum of 5 GPR arguments 6334 RegCountField = 0; // __gpr 6335 RegSaveIndex = 2; // save offset for r2 6336 RegPadding = Padding; // values are passed in the low bits of a GPR 6337 } 6338 6339 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6340 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6341 "reg_count_ptr"); 6342 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6343 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6344 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6345 "fits_in_regs"); 6346 6347 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6348 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6349 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6350 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6351 6352 // Emit code to load the value if it was passed in registers. 6353 CGF.EmitBlock(InRegBlock); 6354 6355 // Work out the address of an argument register. 6356 llvm::Value *ScaledRegCount = 6357 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6358 llvm::Value *RegBase = 6359 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6360 + RegPadding.getQuantity()); 6361 llvm::Value *RegOffset = 6362 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6363 Address RegSaveAreaPtr = 6364 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6365 "reg_save_area_ptr"); 6366 llvm::Value *RegSaveArea = 6367 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6368 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6369 "raw_reg_addr"), 6370 PaddedSize); 6371 Address RegAddr = 6372 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6373 6374 // Update the register count 6375 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6376 llvm::Value *NewRegCount = 6377 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6378 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6379 CGF.EmitBranch(ContBlock); 6380 6381 // Emit code to load the value if it was passed in memory. 6382 CGF.EmitBlock(InMemBlock); 6383 6384 // Work out the address of a stack argument. 6385 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6386 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6387 Address OverflowArgArea = 6388 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6389 PaddedSize); 6390 Address RawMemAddr = 6391 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6392 Address MemAddr = 6393 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6394 6395 // Update overflow_arg_area_ptr pointer 6396 llvm::Value *NewOverflowArgArea = 6397 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6398 "overflow_arg_area"); 6399 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6400 CGF.EmitBranch(ContBlock); 6401 6402 // Return the appropriate result. 6403 CGF.EmitBlock(ContBlock); 6404 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6405 MemAddr, InMemBlock, "va_arg.addr"); 6406 6407 if (IsIndirect) 6408 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6409 TyInfo.second); 6410 6411 return ResAddr; 6412 } 6413 6414 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6415 if (RetTy->isVoidType()) 6416 return ABIArgInfo::getIgnore(); 6417 if (isVectorArgumentType(RetTy)) 6418 return ABIArgInfo::getDirect(); 6419 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6420 return getNaturalAlignIndirect(RetTy); 6421 return (isPromotableIntegerType(RetTy) ? 6422 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6423 } 6424 6425 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6426 // Handle the generic C++ ABI. 6427 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6428 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6429 6430 // Integers and enums are extended to full register width. 6431 if (isPromotableIntegerType(Ty)) 6432 return ABIArgInfo::getExtend(); 6433 6434 // Handle vector types and vector-like structure types. Note that 6435 // as opposed to float-like structure types, we do not allow any 6436 // padding for vector-like structures, so verify the sizes match. 6437 uint64_t Size = getContext().getTypeSize(Ty); 6438 QualType SingleElementTy = GetSingleElementType(Ty); 6439 if (isVectorArgumentType(SingleElementTy) && 6440 getContext().getTypeSize(SingleElementTy) == Size) 6441 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6442 6443 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6444 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6445 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6446 6447 // Handle small structures. 6448 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6449 // Structures with flexible arrays have variable length, so really 6450 // fail the size test above. 6451 const RecordDecl *RD = RT->getDecl(); 6452 if (RD->hasFlexibleArrayMember()) 6453 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6454 6455 // The structure is passed as an unextended integer, a float, or a double. 6456 llvm::Type *PassTy; 6457 if (isFPArgumentType(SingleElementTy)) { 6458 assert(Size == 32 || Size == 64); 6459 if (Size == 32) 6460 PassTy = llvm::Type::getFloatTy(getVMContext()); 6461 else 6462 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6463 } else 6464 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6465 return ABIArgInfo::getDirect(PassTy); 6466 } 6467 6468 // Non-structure compounds are passed indirectly. 6469 if (isCompoundType(Ty)) 6470 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6471 6472 return ABIArgInfo::getDirect(nullptr); 6473 } 6474 6475 //===----------------------------------------------------------------------===// 6476 // MSP430 ABI Implementation 6477 //===----------------------------------------------------------------------===// 6478 6479 namespace { 6480 6481 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6482 public: 6483 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6484 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6485 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6486 CodeGen::CodeGenModule &M) const override; 6487 }; 6488 6489 } 6490 6491 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6492 llvm::GlobalValue *GV, 6493 CodeGen::CodeGenModule &M) const { 6494 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6495 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6496 // Handle 'interrupt' attribute: 6497 llvm::Function *F = cast<llvm::Function>(GV); 6498 6499 // Step 1: Set ISR calling convention. 6500 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6501 6502 // Step 2: Add attributes goodness. 6503 F->addFnAttr(llvm::Attribute::NoInline); 6504 6505 // Step 3: Emit ISR vector alias. 6506 unsigned Num = attr->getNumber() / 2; 6507 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6508 "__isr_" + Twine(Num), F); 6509 } 6510 } 6511 } 6512 6513 //===----------------------------------------------------------------------===// 6514 // MIPS ABI Implementation. This works for both little-endian and 6515 // big-endian variants. 6516 //===----------------------------------------------------------------------===// 6517 6518 namespace { 6519 class MipsABIInfo : public ABIInfo { 6520 bool IsO32; 6521 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6522 void CoerceToIntArgs(uint64_t TySize, 6523 SmallVectorImpl<llvm::Type *> &ArgList) const; 6524 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6525 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6526 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6527 public: 6528 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6529 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6530 StackAlignInBytes(IsO32 ? 8 : 16) {} 6531 6532 ABIArgInfo classifyReturnType(QualType RetTy) const; 6533 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6534 void computeInfo(CGFunctionInfo &FI) const override; 6535 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6536 QualType Ty) const override; 6537 bool shouldSignExtUnsignedType(QualType Ty) const override; 6538 }; 6539 6540 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6541 unsigned SizeOfUnwindException; 6542 public: 6543 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6544 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6545 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6546 6547 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6548 return 29; 6549 } 6550 6551 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6552 CodeGen::CodeGenModule &CGM) const override { 6553 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6554 if (!FD) return; 6555 llvm::Function *Fn = cast<llvm::Function>(GV); 6556 if (FD->hasAttr<Mips16Attr>()) { 6557 Fn->addFnAttr("mips16"); 6558 } 6559 else if (FD->hasAttr<NoMips16Attr>()) { 6560 Fn->addFnAttr("nomips16"); 6561 } 6562 6563 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6564 if (!Attr) 6565 return; 6566 6567 const char *Kind; 6568 switch (Attr->getInterrupt()) { 6569 case MipsInterruptAttr::eic: Kind = "eic"; break; 6570 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6571 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6572 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6573 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6574 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6575 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6576 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6577 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6578 } 6579 6580 Fn->addFnAttr("interrupt", Kind); 6581 6582 } 6583 6584 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6585 llvm::Value *Address) const override; 6586 6587 unsigned getSizeOfUnwindException() const override { 6588 return SizeOfUnwindException; 6589 } 6590 }; 6591 } 6592 6593 void MipsABIInfo::CoerceToIntArgs( 6594 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6595 llvm::IntegerType *IntTy = 6596 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6597 6598 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6599 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6600 ArgList.push_back(IntTy); 6601 6602 // If necessary, add one more integer type to ArgList. 6603 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6604 6605 if (R) 6606 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6607 } 6608 6609 // In N32/64, an aligned double precision floating point field is passed in 6610 // a register. 6611 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6612 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6613 6614 if (IsO32) { 6615 CoerceToIntArgs(TySize, ArgList); 6616 return llvm::StructType::get(getVMContext(), ArgList); 6617 } 6618 6619 if (Ty->isComplexType()) 6620 return CGT.ConvertType(Ty); 6621 6622 const RecordType *RT = Ty->getAs<RecordType>(); 6623 6624 // Unions/vectors are passed in integer registers. 6625 if (!RT || !RT->isStructureOrClassType()) { 6626 CoerceToIntArgs(TySize, ArgList); 6627 return llvm::StructType::get(getVMContext(), ArgList); 6628 } 6629 6630 const RecordDecl *RD = RT->getDecl(); 6631 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6632 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6633 6634 uint64_t LastOffset = 0; 6635 unsigned idx = 0; 6636 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6637 6638 // Iterate over fields in the struct/class and check if there are any aligned 6639 // double fields. 6640 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6641 i != e; ++i, ++idx) { 6642 const QualType Ty = i->getType(); 6643 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6644 6645 if (!BT || BT->getKind() != BuiltinType::Double) 6646 continue; 6647 6648 uint64_t Offset = Layout.getFieldOffset(idx); 6649 if (Offset % 64) // Ignore doubles that are not aligned. 6650 continue; 6651 6652 // Add ((Offset - LastOffset) / 64) args of type i64. 6653 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6654 ArgList.push_back(I64); 6655 6656 // Add double type. 6657 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6658 LastOffset = Offset + 64; 6659 } 6660 6661 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6662 ArgList.append(IntArgList.begin(), IntArgList.end()); 6663 6664 return llvm::StructType::get(getVMContext(), ArgList); 6665 } 6666 6667 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6668 uint64_t Offset) const { 6669 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6670 return nullptr; 6671 6672 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6673 } 6674 6675 ABIArgInfo 6676 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6677 Ty = useFirstFieldIfTransparentUnion(Ty); 6678 6679 uint64_t OrigOffset = Offset; 6680 uint64_t TySize = getContext().getTypeSize(Ty); 6681 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6682 6683 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6684 (uint64_t)StackAlignInBytes); 6685 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6686 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6687 6688 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6689 // Ignore empty aggregates. 6690 if (TySize == 0) 6691 return ABIArgInfo::getIgnore(); 6692 6693 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6694 Offset = OrigOffset + MinABIStackAlignInBytes; 6695 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6696 } 6697 6698 // If we have reached here, aggregates are passed directly by coercing to 6699 // another structure type. Padding is inserted if the offset of the 6700 // aggregate is unaligned. 6701 ABIArgInfo ArgInfo = 6702 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6703 getPaddingType(OrigOffset, CurrOffset)); 6704 ArgInfo.setInReg(true); 6705 return ArgInfo; 6706 } 6707 6708 // Treat an enum type as its underlying type. 6709 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6710 Ty = EnumTy->getDecl()->getIntegerType(); 6711 6712 // All integral types are promoted to the GPR width. 6713 if (Ty->isIntegralOrEnumerationType()) 6714 return ABIArgInfo::getExtend(); 6715 6716 return ABIArgInfo::getDirect( 6717 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6718 } 6719 6720 llvm::Type* 6721 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6722 const RecordType *RT = RetTy->getAs<RecordType>(); 6723 SmallVector<llvm::Type*, 8> RTList; 6724 6725 if (RT && RT->isStructureOrClassType()) { 6726 const RecordDecl *RD = RT->getDecl(); 6727 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6728 unsigned FieldCnt = Layout.getFieldCount(); 6729 6730 // N32/64 returns struct/classes in floating point registers if the 6731 // following conditions are met: 6732 // 1. The size of the struct/class is no larger than 128-bit. 6733 // 2. The struct/class has one or two fields all of which are floating 6734 // point types. 6735 // 3. The offset of the first field is zero (this follows what gcc does). 6736 // 6737 // Any other composite results are returned in integer registers. 6738 // 6739 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6740 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6741 for (; b != e; ++b) { 6742 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6743 6744 if (!BT || !BT->isFloatingPoint()) 6745 break; 6746 6747 RTList.push_back(CGT.ConvertType(b->getType())); 6748 } 6749 6750 if (b == e) 6751 return llvm::StructType::get(getVMContext(), RTList, 6752 RD->hasAttr<PackedAttr>()); 6753 6754 RTList.clear(); 6755 } 6756 } 6757 6758 CoerceToIntArgs(Size, RTList); 6759 return llvm::StructType::get(getVMContext(), RTList); 6760 } 6761 6762 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6763 uint64_t Size = getContext().getTypeSize(RetTy); 6764 6765 if (RetTy->isVoidType()) 6766 return ABIArgInfo::getIgnore(); 6767 6768 // O32 doesn't treat zero-sized structs differently from other structs. 6769 // However, N32/N64 ignores zero sized return values. 6770 if (!IsO32 && Size == 0) 6771 return ABIArgInfo::getIgnore(); 6772 6773 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6774 if (Size <= 128) { 6775 if (RetTy->isAnyComplexType()) 6776 return ABIArgInfo::getDirect(); 6777 6778 // O32 returns integer vectors in registers and N32/N64 returns all small 6779 // aggregates in registers. 6780 if (!IsO32 || 6781 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6782 ABIArgInfo ArgInfo = 6783 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6784 ArgInfo.setInReg(true); 6785 return ArgInfo; 6786 } 6787 } 6788 6789 return getNaturalAlignIndirect(RetTy); 6790 } 6791 6792 // Treat an enum type as its underlying type. 6793 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6794 RetTy = EnumTy->getDecl()->getIntegerType(); 6795 6796 return (RetTy->isPromotableIntegerType() ? 6797 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6798 } 6799 6800 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6801 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6802 if (!getCXXABI().classifyReturnType(FI)) 6803 RetInfo = classifyReturnType(FI.getReturnType()); 6804 6805 // Check if a pointer to an aggregate is passed as a hidden argument. 6806 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6807 6808 for (auto &I : FI.arguments()) 6809 I.info = classifyArgumentType(I.type, Offset); 6810 } 6811 6812 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6813 QualType OrigTy) const { 6814 QualType Ty = OrigTy; 6815 6816 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6817 // Pointers are also promoted in the same way but this only matters for N32. 6818 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6819 unsigned PtrWidth = getTarget().getPointerWidth(0); 6820 bool DidPromote = false; 6821 if ((Ty->isIntegerType() && 6822 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6823 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6824 DidPromote = true; 6825 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6826 Ty->isSignedIntegerType()); 6827 } 6828 6829 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6830 6831 // The alignment of things in the argument area is never larger than 6832 // StackAlignInBytes. 6833 TyInfo.second = 6834 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6835 6836 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6837 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6838 6839 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6840 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6841 6842 6843 // If there was a promotion, "unpromote" into a temporary. 6844 // TODO: can we just use a pointer into a subset of the original slot? 6845 if (DidPromote) { 6846 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6847 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6848 6849 // Truncate down to the right width. 6850 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6851 : CGF.IntPtrTy); 6852 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6853 if (OrigTy->isPointerType()) 6854 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6855 6856 CGF.Builder.CreateStore(V, Temp); 6857 Addr = Temp; 6858 } 6859 6860 return Addr; 6861 } 6862 6863 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6864 int TySize = getContext().getTypeSize(Ty); 6865 6866 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6867 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6868 return true; 6869 6870 return false; 6871 } 6872 6873 bool 6874 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6875 llvm::Value *Address) const { 6876 // This information comes from gcc's implementation, which seems to 6877 // as canonical as it gets. 6878 6879 // Everything on MIPS is 4 bytes. Double-precision FP registers 6880 // are aliased to pairs of single-precision FP registers. 6881 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6882 6883 // 0-31 are the general purpose registers, $0 - $31. 6884 // 32-63 are the floating-point registers, $f0 - $f31. 6885 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6886 // 66 is the (notional, I think) register for signal-handler return. 6887 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6888 6889 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6890 // They are one bit wide and ignored here. 6891 6892 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6893 // (coprocessor 1 is the FP unit) 6894 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6895 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6896 // 176-181 are the DSP accumulator registers. 6897 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6898 return false; 6899 } 6900 6901 //===----------------------------------------------------------------------===// 6902 // AVR ABI Implementation. 6903 //===----------------------------------------------------------------------===// 6904 6905 namespace { 6906 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 6907 public: 6908 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 6909 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 6910 6911 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6912 CodeGen::CodeGenModule &CGM) const override { 6913 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 6914 if (!FD) return; 6915 auto *Fn = cast<llvm::Function>(GV); 6916 6917 if (FD->getAttr<AVRInterruptAttr>()) 6918 Fn->addFnAttr("interrupt"); 6919 6920 if (FD->getAttr<AVRSignalAttr>()) 6921 Fn->addFnAttr("signal"); 6922 } 6923 }; 6924 } 6925 6926 //===----------------------------------------------------------------------===// 6927 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6928 // Currently subclassed only to implement custom OpenCL C function attribute 6929 // handling. 6930 //===----------------------------------------------------------------------===// 6931 6932 namespace { 6933 6934 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6935 public: 6936 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6937 : DefaultTargetCodeGenInfo(CGT) {} 6938 6939 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6940 CodeGen::CodeGenModule &M) const override; 6941 }; 6942 6943 void TCETargetCodeGenInfo::setTargetAttributes( 6944 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6945 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6946 if (!FD) return; 6947 6948 llvm::Function *F = cast<llvm::Function>(GV); 6949 6950 if (M.getLangOpts().OpenCL) { 6951 if (FD->hasAttr<OpenCLKernelAttr>()) { 6952 // OpenCL C Kernel functions are not subject to inlining 6953 F->addFnAttr(llvm::Attribute::NoInline); 6954 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6955 if (Attr) { 6956 // Convert the reqd_work_group_size() attributes to metadata. 6957 llvm::LLVMContext &Context = F->getContext(); 6958 llvm::NamedMDNode *OpenCLMetadata = 6959 M.getModule().getOrInsertNamedMetadata( 6960 "opencl.kernel_wg_size_info"); 6961 6962 SmallVector<llvm::Metadata *, 5> Operands; 6963 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6964 6965 Operands.push_back( 6966 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6967 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6968 Operands.push_back( 6969 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6970 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6971 Operands.push_back( 6972 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6973 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6974 6975 // Add a boolean constant operand for "required" (true) or "hint" 6976 // (false) for implementing the work_group_size_hint attr later. 6977 // Currently always true as the hint is not yet implemented. 6978 Operands.push_back( 6979 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6980 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6981 } 6982 } 6983 } 6984 } 6985 6986 } 6987 6988 //===----------------------------------------------------------------------===// 6989 // Hexagon ABI Implementation 6990 //===----------------------------------------------------------------------===// 6991 6992 namespace { 6993 6994 class HexagonABIInfo : public ABIInfo { 6995 6996 6997 public: 6998 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6999 7000 private: 7001 7002 ABIArgInfo classifyReturnType(QualType RetTy) const; 7003 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7004 7005 void computeInfo(CGFunctionInfo &FI) const override; 7006 7007 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7008 QualType Ty) const override; 7009 }; 7010 7011 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7012 public: 7013 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7014 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7015 7016 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7017 return 29; 7018 } 7019 }; 7020 7021 } 7022 7023 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7024 if (!getCXXABI().classifyReturnType(FI)) 7025 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7026 for (auto &I : FI.arguments()) 7027 I.info = classifyArgumentType(I.type); 7028 } 7029 7030 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7031 if (!isAggregateTypeForABI(Ty)) { 7032 // Treat an enum type as its underlying type. 7033 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7034 Ty = EnumTy->getDecl()->getIntegerType(); 7035 7036 return (Ty->isPromotableIntegerType() ? 7037 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 7038 } 7039 7040 // Ignore empty records. 7041 if (isEmptyRecord(getContext(), Ty, true)) 7042 return ABIArgInfo::getIgnore(); 7043 7044 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7045 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7046 7047 uint64_t Size = getContext().getTypeSize(Ty); 7048 if (Size > 64) 7049 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7050 // Pass in the smallest viable integer type. 7051 else if (Size > 32) 7052 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7053 else if (Size > 16) 7054 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7055 else if (Size > 8) 7056 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7057 else 7058 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7059 } 7060 7061 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7062 if (RetTy->isVoidType()) 7063 return ABIArgInfo::getIgnore(); 7064 7065 // Large vector types should be returned via memory. 7066 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7067 return getNaturalAlignIndirect(RetTy); 7068 7069 if (!isAggregateTypeForABI(RetTy)) { 7070 // Treat an enum type as its underlying type. 7071 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7072 RetTy = EnumTy->getDecl()->getIntegerType(); 7073 7074 return (RetTy->isPromotableIntegerType() ? 7075 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 7076 } 7077 7078 if (isEmptyRecord(getContext(), RetTy, true)) 7079 return ABIArgInfo::getIgnore(); 7080 7081 // Aggregates <= 8 bytes are returned in r0; other aggregates 7082 // are returned indirectly. 7083 uint64_t Size = getContext().getTypeSize(RetTy); 7084 if (Size <= 64) { 7085 // Return in the smallest viable integer type. 7086 if (Size <= 8) 7087 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7088 if (Size <= 16) 7089 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7090 if (Size <= 32) 7091 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7092 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7093 } 7094 7095 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7096 } 7097 7098 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7099 QualType Ty) const { 7100 // FIXME: Someone needs to audit that this handle alignment correctly. 7101 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7102 getContext().getTypeInfoInChars(Ty), 7103 CharUnits::fromQuantity(4), 7104 /*AllowHigherAlign*/ true); 7105 } 7106 7107 //===----------------------------------------------------------------------===// 7108 // Lanai ABI Implementation 7109 //===----------------------------------------------------------------------===// 7110 7111 namespace { 7112 class LanaiABIInfo : public DefaultABIInfo { 7113 public: 7114 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7115 7116 bool shouldUseInReg(QualType Ty, CCState &State) const; 7117 7118 void computeInfo(CGFunctionInfo &FI) const override { 7119 CCState State(FI.getCallingConvention()); 7120 // Lanai uses 4 registers to pass arguments unless the function has the 7121 // regparm attribute set. 7122 if (FI.getHasRegParm()) { 7123 State.FreeRegs = FI.getRegParm(); 7124 } else { 7125 State.FreeRegs = 4; 7126 } 7127 7128 if (!getCXXABI().classifyReturnType(FI)) 7129 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7130 for (auto &I : FI.arguments()) 7131 I.info = classifyArgumentType(I.type, State); 7132 } 7133 7134 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7135 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7136 }; 7137 } // end anonymous namespace 7138 7139 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7140 unsigned Size = getContext().getTypeSize(Ty); 7141 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7142 7143 if (SizeInRegs == 0) 7144 return false; 7145 7146 if (SizeInRegs > State.FreeRegs) { 7147 State.FreeRegs = 0; 7148 return false; 7149 } 7150 7151 State.FreeRegs -= SizeInRegs; 7152 7153 return true; 7154 } 7155 7156 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7157 CCState &State) const { 7158 if (!ByVal) { 7159 if (State.FreeRegs) { 7160 --State.FreeRegs; // Non-byval indirects just use one pointer. 7161 return getNaturalAlignIndirectInReg(Ty); 7162 } 7163 return getNaturalAlignIndirect(Ty, false); 7164 } 7165 7166 // Compute the byval alignment. 7167 const unsigned MinABIStackAlignInBytes = 4; 7168 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7169 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7170 /*Realign=*/TypeAlign > 7171 MinABIStackAlignInBytes); 7172 } 7173 7174 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7175 CCState &State) const { 7176 // Check with the C++ ABI first. 7177 const RecordType *RT = Ty->getAs<RecordType>(); 7178 if (RT) { 7179 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7180 if (RAA == CGCXXABI::RAA_Indirect) { 7181 return getIndirectResult(Ty, /*ByVal=*/false, State); 7182 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7183 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7184 } 7185 } 7186 7187 if (isAggregateTypeForABI(Ty)) { 7188 // Structures with flexible arrays are always indirect. 7189 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7190 return getIndirectResult(Ty, /*ByVal=*/true, State); 7191 7192 // Ignore empty structs/unions. 7193 if (isEmptyRecord(getContext(), Ty, true)) 7194 return ABIArgInfo::getIgnore(); 7195 7196 llvm::LLVMContext &LLVMContext = getVMContext(); 7197 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7198 if (SizeInRegs <= State.FreeRegs) { 7199 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7200 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7201 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7202 State.FreeRegs -= SizeInRegs; 7203 return ABIArgInfo::getDirectInReg(Result); 7204 } else { 7205 State.FreeRegs = 0; 7206 } 7207 return getIndirectResult(Ty, true, State); 7208 } 7209 7210 // Treat an enum type as its underlying type. 7211 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7212 Ty = EnumTy->getDecl()->getIntegerType(); 7213 7214 bool InReg = shouldUseInReg(Ty, State); 7215 if (Ty->isPromotableIntegerType()) { 7216 if (InReg) 7217 return ABIArgInfo::getDirectInReg(); 7218 return ABIArgInfo::getExtend(); 7219 } 7220 if (InReg) 7221 return ABIArgInfo::getDirectInReg(); 7222 return ABIArgInfo::getDirect(); 7223 } 7224 7225 namespace { 7226 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7227 public: 7228 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7229 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7230 }; 7231 } 7232 7233 //===----------------------------------------------------------------------===// 7234 // AMDGPU ABI Implementation 7235 //===----------------------------------------------------------------------===// 7236 7237 namespace { 7238 7239 class AMDGPUABIInfo final : public DefaultABIInfo { 7240 public: 7241 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7242 7243 private: 7244 ABIArgInfo classifyArgumentType(QualType Ty) const; 7245 7246 void computeInfo(CGFunctionInfo &FI) const override; 7247 }; 7248 7249 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7250 if (!getCXXABI().classifyReturnType(FI)) 7251 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7252 7253 unsigned CC = FI.getCallingConvention(); 7254 for (auto &Arg : FI.arguments()) 7255 if (CC == llvm::CallingConv::AMDGPU_KERNEL) 7256 Arg.info = classifyArgumentType(Arg.type); 7257 else 7258 Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type); 7259 } 7260 7261 /// \brief Classify argument of given type \p Ty. 7262 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const { 7263 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7264 if (!StrTy) { 7265 return DefaultABIInfo::classifyArgumentType(Ty); 7266 } 7267 7268 // Coerce single element structs to its element. 7269 if (StrTy->getNumElements() == 1) { 7270 return ABIArgInfo::getDirect(); 7271 } 7272 7273 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7274 // individual elements, which confuses the Clover OpenCL backend; therefore we 7275 // have to set it to false here. Other args of getDirect() are just defaults. 7276 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7277 } 7278 7279 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7280 public: 7281 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7282 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7283 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7284 CodeGen::CodeGenModule &M) const override; 7285 unsigned getOpenCLKernelCallingConv() const override; 7286 7287 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7288 llvm::PointerType *T, QualType QT) const override; 7289 }; 7290 } 7291 7292 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM); 7293 7294 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7295 const Decl *D, 7296 llvm::GlobalValue *GV, 7297 CodeGen::CodeGenModule &M) const { 7298 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7299 if (!FD) 7300 return; 7301 7302 llvm::Function *F = cast<llvm::Function>(GV); 7303 7304 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7305 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7306 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7307 if (ReqdWGS || FlatWGS) { 7308 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7309 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7310 if (ReqdWGS && Min == 0 && Max == 0) 7311 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7312 7313 if (Min != 0) { 7314 assert(Min <= Max && "Min must be less than or equal Max"); 7315 7316 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7317 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7318 } else 7319 assert(Max == 0 && "Max must be zero"); 7320 } 7321 7322 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7323 unsigned Min = Attr->getMin(); 7324 unsigned Max = Attr->getMax(); 7325 7326 if (Min != 0) { 7327 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7328 7329 std::string AttrVal = llvm::utostr(Min); 7330 if (Max != 0) 7331 AttrVal = AttrVal + "," + llvm::utostr(Max); 7332 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7333 } else 7334 assert(Max == 0 && "Max must be zero"); 7335 } 7336 7337 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7338 unsigned NumSGPR = Attr->getNumSGPR(); 7339 7340 if (NumSGPR != 0) 7341 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7342 } 7343 7344 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7345 uint32_t NumVGPR = Attr->getNumVGPR(); 7346 7347 if (NumVGPR != 0) 7348 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7349 } 7350 7351 appendOpenCLVersionMD(M); 7352 } 7353 7354 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7355 return llvm::CallingConv::AMDGPU_KERNEL; 7356 } 7357 7358 // Currently LLVM assumes null pointers always have value 0, 7359 // which results in incorrectly transformed IR. Therefore, instead of 7360 // emitting null pointers in private and local address spaces, a null 7361 // pointer in generic address space is emitted which is casted to a 7362 // pointer in local or private address space. 7363 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7364 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7365 QualType QT) const { 7366 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7367 return llvm::ConstantPointerNull::get(PT); 7368 7369 auto &Ctx = CGM.getContext(); 7370 auto NPT = llvm::PointerType::get(PT->getElementType(), 7371 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7372 return llvm::ConstantExpr::getAddrSpaceCast( 7373 llvm::ConstantPointerNull::get(NPT), PT); 7374 } 7375 7376 //===----------------------------------------------------------------------===// 7377 // SPARC v8 ABI Implementation. 7378 // Based on the SPARC Compliance Definition version 2.4.1. 7379 // 7380 // Ensures that complex values are passed in registers. 7381 // 7382 namespace { 7383 class SparcV8ABIInfo : public DefaultABIInfo { 7384 public: 7385 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7386 7387 private: 7388 ABIArgInfo classifyReturnType(QualType RetTy) const; 7389 void computeInfo(CGFunctionInfo &FI) const override; 7390 }; 7391 } // end anonymous namespace 7392 7393 7394 ABIArgInfo 7395 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7396 if (Ty->isAnyComplexType()) { 7397 return ABIArgInfo::getDirect(); 7398 } 7399 else { 7400 return DefaultABIInfo::classifyReturnType(Ty); 7401 } 7402 } 7403 7404 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7405 7406 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7407 for (auto &Arg : FI.arguments()) 7408 Arg.info = classifyArgumentType(Arg.type); 7409 } 7410 7411 namespace { 7412 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7413 public: 7414 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7415 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7416 }; 7417 } // end anonymous namespace 7418 7419 //===----------------------------------------------------------------------===// 7420 // SPARC v9 ABI Implementation. 7421 // Based on the SPARC Compliance Definition version 2.4.1. 7422 // 7423 // Function arguments a mapped to a nominal "parameter array" and promoted to 7424 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7425 // the array, structs larger than 16 bytes are passed indirectly. 7426 // 7427 // One case requires special care: 7428 // 7429 // struct mixed { 7430 // int i; 7431 // float f; 7432 // }; 7433 // 7434 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7435 // parameter array, but the int is passed in an integer register, and the float 7436 // is passed in a floating point register. This is represented as two arguments 7437 // with the LLVM IR inreg attribute: 7438 // 7439 // declare void f(i32 inreg %i, float inreg %f) 7440 // 7441 // The code generator will only allocate 4 bytes from the parameter array for 7442 // the inreg arguments. All other arguments are allocated a multiple of 8 7443 // bytes. 7444 // 7445 namespace { 7446 class SparcV9ABIInfo : public ABIInfo { 7447 public: 7448 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7449 7450 private: 7451 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7452 void computeInfo(CGFunctionInfo &FI) const override; 7453 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7454 QualType Ty) const override; 7455 7456 // Coercion type builder for structs passed in registers. The coercion type 7457 // serves two purposes: 7458 // 7459 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7460 // in registers. 7461 // 2. Expose aligned floating point elements as first-level elements, so the 7462 // code generator knows to pass them in floating point registers. 7463 // 7464 // We also compute the InReg flag which indicates that the struct contains 7465 // aligned 32-bit floats. 7466 // 7467 struct CoerceBuilder { 7468 llvm::LLVMContext &Context; 7469 const llvm::DataLayout &DL; 7470 SmallVector<llvm::Type*, 8> Elems; 7471 uint64_t Size; 7472 bool InReg; 7473 7474 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7475 : Context(c), DL(dl), Size(0), InReg(false) {} 7476 7477 // Pad Elems with integers until Size is ToSize. 7478 void pad(uint64_t ToSize) { 7479 assert(ToSize >= Size && "Cannot remove elements"); 7480 if (ToSize == Size) 7481 return; 7482 7483 // Finish the current 64-bit word. 7484 uint64_t Aligned = llvm::alignTo(Size, 64); 7485 if (Aligned > Size && Aligned <= ToSize) { 7486 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7487 Size = Aligned; 7488 } 7489 7490 // Add whole 64-bit words. 7491 while (Size + 64 <= ToSize) { 7492 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7493 Size += 64; 7494 } 7495 7496 // Final in-word padding. 7497 if (Size < ToSize) { 7498 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7499 Size = ToSize; 7500 } 7501 } 7502 7503 // Add a floating point element at Offset. 7504 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7505 // Unaligned floats are treated as integers. 7506 if (Offset % Bits) 7507 return; 7508 // The InReg flag is only required if there are any floats < 64 bits. 7509 if (Bits < 64) 7510 InReg = true; 7511 pad(Offset); 7512 Elems.push_back(Ty); 7513 Size = Offset + Bits; 7514 } 7515 7516 // Add a struct type to the coercion type, starting at Offset (in bits). 7517 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7518 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7519 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7520 llvm::Type *ElemTy = StrTy->getElementType(i); 7521 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7522 switch (ElemTy->getTypeID()) { 7523 case llvm::Type::StructTyID: 7524 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7525 break; 7526 case llvm::Type::FloatTyID: 7527 addFloat(ElemOffset, ElemTy, 32); 7528 break; 7529 case llvm::Type::DoubleTyID: 7530 addFloat(ElemOffset, ElemTy, 64); 7531 break; 7532 case llvm::Type::FP128TyID: 7533 addFloat(ElemOffset, ElemTy, 128); 7534 break; 7535 case llvm::Type::PointerTyID: 7536 if (ElemOffset % 64 == 0) { 7537 pad(ElemOffset); 7538 Elems.push_back(ElemTy); 7539 Size += 64; 7540 } 7541 break; 7542 default: 7543 break; 7544 } 7545 } 7546 } 7547 7548 // Check if Ty is a usable substitute for the coercion type. 7549 bool isUsableType(llvm::StructType *Ty) const { 7550 return llvm::makeArrayRef(Elems) == Ty->elements(); 7551 } 7552 7553 // Get the coercion type as a literal struct type. 7554 llvm::Type *getType() const { 7555 if (Elems.size() == 1) 7556 return Elems.front(); 7557 else 7558 return llvm::StructType::get(Context, Elems); 7559 } 7560 }; 7561 }; 7562 } // end anonymous namespace 7563 7564 ABIArgInfo 7565 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7566 if (Ty->isVoidType()) 7567 return ABIArgInfo::getIgnore(); 7568 7569 uint64_t Size = getContext().getTypeSize(Ty); 7570 7571 // Anything too big to fit in registers is passed with an explicit indirect 7572 // pointer / sret pointer. 7573 if (Size > SizeLimit) 7574 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7575 7576 // Treat an enum type as its underlying type. 7577 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7578 Ty = EnumTy->getDecl()->getIntegerType(); 7579 7580 // Integer types smaller than a register are extended. 7581 if (Size < 64 && Ty->isIntegerType()) 7582 return ABIArgInfo::getExtend(); 7583 7584 // Other non-aggregates go in registers. 7585 if (!isAggregateTypeForABI(Ty)) 7586 return ABIArgInfo::getDirect(); 7587 7588 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7589 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7590 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7591 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7592 7593 // This is a small aggregate type that should be passed in registers. 7594 // Build a coercion type from the LLVM struct type. 7595 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7596 if (!StrTy) 7597 return ABIArgInfo::getDirect(); 7598 7599 CoerceBuilder CB(getVMContext(), getDataLayout()); 7600 CB.addStruct(0, StrTy); 7601 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7602 7603 // Try to use the original type for coercion. 7604 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7605 7606 if (CB.InReg) 7607 return ABIArgInfo::getDirectInReg(CoerceTy); 7608 else 7609 return ABIArgInfo::getDirect(CoerceTy); 7610 } 7611 7612 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7613 QualType Ty) const { 7614 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7615 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7616 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7617 AI.setCoerceToType(ArgTy); 7618 7619 CharUnits SlotSize = CharUnits::fromQuantity(8); 7620 7621 CGBuilderTy &Builder = CGF.Builder; 7622 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7623 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7624 7625 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7626 7627 Address ArgAddr = Address::invalid(); 7628 CharUnits Stride; 7629 switch (AI.getKind()) { 7630 case ABIArgInfo::Expand: 7631 case ABIArgInfo::CoerceAndExpand: 7632 case ABIArgInfo::InAlloca: 7633 llvm_unreachable("Unsupported ABI kind for va_arg"); 7634 7635 case ABIArgInfo::Extend: { 7636 Stride = SlotSize; 7637 CharUnits Offset = SlotSize - TypeInfo.first; 7638 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 7639 break; 7640 } 7641 7642 case ABIArgInfo::Direct: { 7643 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 7644 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 7645 ArgAddr = Addr; 7646 break; 7647 } 7648 7649 case ABIArgInfo::Indirect: 7650 Stride = SlotSize; 7651 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7652 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7653 TypeInfo.second); 7654 break; 7655 7656 case ABIArgInfo::Ignore: 7657 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7658 } 7659 7660 // Update VAList. 7661 llvm::Value *NextPtr = 7662 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7663 Builder.CreateStore(NextPtr, VAListAddr); 7664 7665 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7666 } 7667 7668 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7669 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7670 for (auto &I : FI.arguments()) 7671 I.info = classifyType(I.type, 16 * 8); 7672 } 7673 7674 namespace { 7675 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7676 public: 7677 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7678 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7679 7680 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7681 return 14; 7682 } 7683 7684 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7685 llvm::Value *Address) const override; 7686 }; 7687 } // end anonymous namespace 7688 7689 bool 7690 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7691 llvm::Value *Address) const { 7692 // This is calculated from the LLVM and GCC tables and verified 7693 // against gcc output. AFAIK all ABIs use the same encoding. 7694 7695 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7696 7697 llvm::IntegerType *i8 = CGF.Int8Ty; 7698 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7699 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7700 7701 // 0-31: the 8-byte general-purpose registers 7702 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7703 7704 // 32-63: f0-31, the 4-byte floating-point registers 7705 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7706 7707 // Y = 64 7708 // PSR = 65 7709 // WIM = 66 7710 // TBR = 67 7711 // PC = 68 7712 // NPC = 69 7713 // FSR = 70 7714 // CSR = 71 7715 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7716 7717 // 72-87: d0-15, the 8-byte floating-point registers 7718 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7719 7720 return false; 7721 } 7722 7723 7724 //===----------------------------------------------------------------------===// 7725 // XCore ABI Implementation 7726 //===----------------------------------------------------------------------===// 7727 7728 namespace { 7729 7730 /// A SmallStringEnc instance is used to build up the TypeString by passing 7731 /// it by reference between functions that append to it. 7732 typedef llvm::SmallString<128> SmallStringEnc; 7733 7734 /// TypeStringCache caches the meta encodings of Types. 7735 /// 7736 /// The reason for caching TypeStrings is two fold: 7737 /// 1. To cache a type's encoding for later uses; 7738 /// 2. As a means to break recursive member type inclusion. 7739 /// 7740 /// A cache Entry can have a Status of: 7741 /// NonRecursive: The type encoding is not recursive; 7742 /// Recursive: The type encoding is recursive; 7743 /// Incomplete: An incomplete TypeString; 7744 /// IncompleteUsed: An incomplete TypeString that has been used in a 7745 /// Recursive type encoding. 7746 /// 7747 /// A NonRecursive entry will have all of its sub-members expanded as fully 7748 /// as possible. Whilst it may contain types which are recursive, the type 7749 /// itself is not recursive and thus its encoding may be safely used whenever 7750 /// the type is encountered. 7751 /// 7752 /// A Recursive entry will have all of its sub-members expanded as fully as 7753 /// possible. The type itself is recursive and it may contain other types which 7754 /// are recursive. The Recursive encoding must not be used during the expansion 7755 /// of a recursive type's recursive branch. For simplicity the code uses 7756 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7757 /// 7758 /// An Incomplete entry is always a RecordType and only encodes its 7759 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7760 /// are placed into the cache during type expansion as a means to identify and 7761 /// handle recursive inclusion of types as sub-members. If there is recursion 7762 /// the entry becomes IncompleteUsed. 7763 /// 7764 /// During the expansion of a RecordType's members: 7765 /// 7766 /// If the cache contains a NonRecursive encoding for the member type, the 7767 /// cached encoding is used; 7768 /// 7769 /// If the cache contains a Recursive encoding for the member type, the 7770 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7771 /// 7772 /// If the member is a RecordType, an Incomplete encoding is placed into the 7773 /// cache to break potential recursive inclusion of itself as a sub-member; 7774 /// 7775 /// Once a member RecordType has been expanded, its temporary incomplete 7776 /// entry is removed from the cache. If a Recursive encoding was swapped out 7777 /// it is swapped back in; 7778 /// 7779 /// If an incomplete entry is used to expand a sub-member, the incomplete 7780 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7781 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7782 /// 7783 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7784 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7785 /// Else the member is part of a recursive type and thus the recursion has 7786 /// been exited too soon for the encoding to be correct for the member. 7787 /// 7788 class TypeStringCache { 7789 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7790 struct Entry { 7791 std::string Str; // The encoded TypeString for the type. 7792 enum Status State; // Information about the encoding in 'Str'. 7793 std::string Swapped; // A temporary place holder for a Recursive encoding 7794 // during the expansion of RecordType's members. 7795 }; 7796 std::map<const IdentifierInfo *, struct Entry> Map; 7797 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7798 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7799 public: 7800 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7801 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7802 bool removeIncomplete(const IdentifierInfo *ID); 7803 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7804 bool IsRecursive); 7805 StringRef lookupStr(const IdentifierInfo *ID); 7806 }; 7807 7808 /// TypeString encodings for enum & union fields must be order. 7809 /// FieldEncoding is a helper for this ordering process. 7810 class FieldEncoding { 7811 bool HasName; 7812 std::string Enc; 7813 public: 7814 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7815 StringRef str() { return Enc; } 7816 bool operator<(const FieldEncoding &rhs) const { 7817 if (HasName != rhs.HasName) return HasName; 7818 return Enc < rhs.Enc; 7819 } 7820 }; 7821 7822 class XCoreABIInfo : public DefaultABIInfo { 7823 public: 7824 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7825 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7826 QualType Ty) const override; 7827 }; 7828 7829 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7830 mutable TypeStringCache TSC; 7831 public: 7832 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7833 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7834 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7835 CodeGen::CodeGenModule &M) const override; 7836 }; 7837 7838 } // End anonymous namespace. 7839 7840 // TODO: this implementation is likely now redundant with the default 7841 // EmitVAArg. 7842 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7843 QualType Ty) const { 7844 CGBuilderTy &Builder = CGF.Builder; 7845 7846 // Get the VAList. 7847 CharUnits SlotSize = CharUnits::fromQuantity(4); 7848 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7849 7850 // Handle the argument. 7851 ABIArgInfo AI = classifyArgumentType(Ty); 7852 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7853 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7854 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7855 AI.setCoerceToType(ArgTy); 7856 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7857 7858 Address Val = Address::invalid(); 7859 CharUnits ArgSize = CharUnits::Zero(); 7860 switch (AI.getKind()) { 7861 case ABIArgInfo::Expand: 7862 case ABIArgInfo::CoerceAndExpand: 7863 case ABIArgInfo::InAlloca: 7864 llvm_unreachable("Unsupported ABI kind for va_arg"); 7865 case ABIArgInfo::Ignore: 7866 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7867 ArgSize = CharUnits::Zero(); 7868 break; 7869 case ABIArgInfo::Extend: 7870 case ABIArgInfo::Direct: 7871 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7872 ArgSize = CharUnits::fromQuantity( 7873 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7874 ArgSize = ArgSize.alignTo(SlotSize); 7875 break; 7876 case ABIArgInfo::Indirect: 7877 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7878 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7879 ArgSize = SlotSize; 7880 break; 7881 } 7882 7883 // Increment the VAList. 7884 if (!ArgSize.isZero()) { 7885 llvm::Value *APN = 7886 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7887 Builder.CreateStore(APN, VAListAddr); 7888 } 7889 7890 return Val; 7891 } 7892 7893 /// During the expansion of a RecordType, an incomplete TypeString is placed 7894 /// into the cache as a means to identify and break recursion. 7895 /// If there is a Recursive encoding in the cache, it is swapped out and will 7896 /// be reinserted by removeIncomplete(). 7897 /// All other types of encoding should have been used rather than arriving here. 7898 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7899 std::string StubEnc) { 7900 if (!ID) 7901 return; 7902 Entry &E = Map[ID]; 7903 assert( (E.Str.empty() || E.State == Recursive) && 7904 "Incorrectly use of addIncomplete"); 7905 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7906 E.Swapped.swap(E.Str); // swap out the Recursive 7907 E.Str.swap(StubEnc); 7908 E.State = Incomplete; 7909 ++IncompleteCount; 7910 } 7911 7912 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7913 /// must be removed from the cache. 7914 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7915 /// Returns true if the RecordType was defined recursively. 7916 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7917 if (!ID) 7918 return false; 7919 auto I = Map.find(ID); 7920 assert(I != Map.end() && "Entry not present"); 7921 Entry &E = I->second; 7922 assert( (E.State == Incomplete || 7923 E.State == IncompleteUsed) && 7924 "Entry must be an incomplete type"); 7925 bool IsRecursive = false; 7926 if (E.State == IncompleteUsed) { 7927 // We made use of our Incomplete encoding, thus we are recursive. 7928 IsRecursive = true; 7929 --IncompleteUsedCount; 7930 } 7931 if (E.Swapped.empty()) 7932 Map.erase(I); 7933 else { 7934 // Swap the Recursive back. 7935 E.Swapped.swap(E.Str); 7936 E.Swapped.clear(); 7937 E.State = Recursive; 7938 } 7939 --IncompleteCount; 7940 return IsRecursive; 7941 } 7942 7943 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7944 /// Recursive (viz: all sub-members were expanded as fully as possible). 7945 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7946 bool IsRecursive) { 7947 if (!ID || IncompleteUsedCount) 7948 return; // No key or it is is an incomplete sub-type so don't add. 7949 Entry &E = Map[ID]; 7950 if (IsRecursive && !E.Str.empty()) { 7951 assert(E.State==Recursive && E.Str.size() == Str.size() && 7952 "This is not the same Recursive entry"); 7953 // The parent container was not recursive after all, so we could have used 7954 // this Recursive sub-member entry after all, but we assumed the worse when 7955 // we started viz: IncompleteCount!=0. 7956 return; 7957 } 7958 assert(E.Str.empty() && "Entry already present"); 7959 E.Str = Str.str(); 7960 E.State = IsRecursive? Recursive : NonRecursive; 7961 } 7962 7963 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7964 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7965 /// encoding is Recursive, return an empty StringRef. 7966 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7967 if (!ID) 7968 return StringRef(); // We have no key. 7969 auto I = Map.find(ID); 7970 if (I == Map.end()) 7971 return StringRef(); // We have no encoding. 7972 Entry &E = I->second; 7973 if (E.State == Recursive && IncompleteCount) 7974 return StringRef(); // We don't use Recursive encodings for member types. 7975 7976 if (E.State == Incomplete) { 7977 // The incomplete type is being used to break out of recursion. 7978 E.State = IncompleteUsed; 7979 ++IncompleteUsedCount; 7980 } 7981 return E.Str; 7982 } 7983 7984 /// The XCore ABI includes a type information section that communicates symbol 7985 /// type information to the linker. The linker uses this information to verify 7986 /// safety/correctness of things such as array bound and pointers et al. 7987 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7988 /// This type information (TypeString) is emitted into meta data for all global 7989 /// symbols: definitions, declarations, functions & variables. 7990 /// 7991 /// The TypeString carries type, qualifier, name, size & value details. 7992 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7993 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7994 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7995 /// 7996 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7997 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7998 7999 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8000 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8001 CodeGen::CodeGenModule &CGM) const { 8002 SmallStringEnc Enc; 8003 if (getTypeString(Enc, D, CGM, TSC)) { 8004 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8005 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8006 llvm::MDString::get(Ctx, Enc.str())}; 8007 llvm::NamedMDNode *MD = 8008 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8009 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8010 } 8011 } 8012 8013 //===----------------------------------------------------------------------===// 8014 // SPIR ABI Implementation 8015 //===----------------------------------------------------------------------===// 8016 8017 namespace { 8018 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8019 public: 8020 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8021 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8022 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8023 CodeGen::CodeGenModule &M) const override; 8024 unsigned getOpenCLKernelCallingConv() const override; 8025 }; 8026 } // End anonymous namespace. 8027 8028 /// Emit SPIR specific metadata: OpenCL and SPIR version. 8029 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8030 CodeGen::CodeGenModule &CGM) const { 8031 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8032 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 8033 llvm::Module &M = CGM.getModule(); 8034 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 8035 // opencl.spir.version named metadata. 8036 llvm::Metadata *SPIRVerElts[] = { 8037 llvm::ConstantAsMetadata::get( 8038 llvm::ConstantInt::get(Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 8039 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 8040 Int32Ty, (CGM.getLangOpts().OpenCLVersion / 100 > 1) ? 0 : 2))}; 8041 llvm::NamedMDNode *SPIRVerMD = 8042 M.getOrInsertNamedMetadata("opencl.spir.version"); 8043 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 8044 appendOpenCLVersionMD(CGM); 8045 } 8046 8047 static void appendOpenCLVersionMD(CodeGen::CodeGenModule &CGM) { 8048 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8049 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 8050 llvm::Module &M = CGM.getModule(); 8051 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 8052 // opencl.ocl.version named metadata node. 8053 llvm::Metadata *OCLVerElts[] = { 8054 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 8055 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 8056 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 8057 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 8058 llvm::NamedMDNode *OCLVerMD = 8059 M.getOrInsertNamedMetadata("opencl.ocl.version"); 8060 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 8061 } 8062 8063 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8064 return llvm::CallingConv::SPIR_KERNEL; 8065 } 8066 8067 static bool appendType(SmallStringEnc &Enc, QualType QType, 8068 const CodeGen::CodeGenModule &CGM, 8069 TypeStringCache &TSC); 8070 8071 /// Helper function for appendRecordType(). 8072 /// Builds a SmallVector containing the encoded field types in declaration 8073 /// order. 8074 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8075 const RecordDecl *RD, 8076 const CodeGen::CodeGenModule &CGM, 8077 TypeStringCache &TSC) { 8078 for (const auto *Field : RD->fields()) { 8079 SmallStringEnc Enc; 8080 Enc += "m("; 8081 Enc += Field->getName(); 8082 Enc += "){"; 8083 if (Field->isBitField()) { 8084 Enc += "b("; 8085 llvm::raw_svector_ostream OS(Enc); 8086 OS << Field->getBitWidthValue(CGM.getContext()); 8087 Enc += ':'; 8088 } 8089 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8090 return false; 8091 if (Field->isBitField()) 8092 Enc += ')'; 8093 Enc += '}'; 8094 FE.emplace_back(!Field->getName().empty(), Enc); 8095 } 8096 return true; 8097 } 8098 8099 /// Appends structure and union types to Enc and adds encoding to cache. 8100 /// Recursively calls appendType (via extractFieldType) for each field. 8101 /// Union types have their fields ordered according to the ABI. 8102 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8103 const CodeGen::CodeGenModule &CGM, 8104 TypeStringCache &TSC, const IdentifierInfo *ID) { 8105 // Append the cached TypeString if we have one. 8106 StringRef TypeString = TSC.lookupStr(ID); 8107 if (!TypeString.empty()) { 8108 Enc += TypeString; 8109 return true; 8110 } 8111 8112 // Start to emit an incomplete TypeString. 8113 size_t Start = Enc.size(); 8114 Enc += (RT->isUnionType()? 'u' : 's'); 8115 Enc += '('; 8116 if (ID) 8117 Enc += ID->getName(); 8118 Enc += "){"; 8119 8120 // We collect all encoded fields and order as necessary. 8121 bool IsRecursive = false; 8122 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8123 if (RD && !RD->field_empty()) { 8124 // An incomplete TypeString stub is placed in the cache for this RecordType 8125 // so that recursive calls to this RecordType will use it whilst building a 8126 // complete TypeString for this RecordType. 8127 SmallVector<FieldEncoding, 16> FE; 8128 std::string StubEnc(Enc.substr(Start).str()); 8129 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8130 TSC.addIncomplete(ID, std::move(StubEnc)); 8131 if (!extractFieldType(FE, RD, CGM, TSC)) { 8132 (void) TSC.removeIncomplete(ID); 8133 return false; 8134 } 8135 IsRecursive = TSC.removeIncomplete(ID); 8136 // The ABI requires unions to be sorted but not structures. 8137 // See FieldEncoding::operator< for sort algorithm. 8138 if (RT->isUnionType()) 8139 std::sort(FE.begin(), FE.end()); 8140 // We can now complete the TypeString. 8141 unsigned E = FE.size(); 8142 for (unsigned I = 0; I != E; ++I) { 8143 if (I) 8144 Enc += ','; 8145 Enc += FE[I].str(); 8146 } 8147 } 8148 Enc += '}'; 8149 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8150 return true; 8151 } 8152 8153 /// Appends enum types to Enc and adds the encoding to the cache. 8154 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8155 TypeStringCache &TSC, 8156 const IdentifierInfo *ID) { 8157 // Append the cached TypeString if we have one. 8158 StringRef TypeString = TSC.lookupStr(ID); 8159 if (!TypeString.empty()) { 8160 Enc += TypeString; 8161 return true; 8162 } 8163 8164 size_t Start = Enc.size(); 8165 Enc += "e("; 8166 if (ID) 8167 Enc += ID->getName(); 8168 Enc += "){"; 8169 8170 // We collect all encoded enumerations and order them alphanumerically. 8171 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8172 SmallVector<FieldEncoding, 16> FE; 8173 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8174 ++I) { 8175 SmallStringEnc EnumEnc; 8176 EnumEnc += "m("; 8177 EnumEnc += I->getName(); 8178 EnumEnc += "){"; 8179 I->getInitVal().toString(EnumEnc); 8180 EnumEnc += '}'; 8181 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8182 } 8183 std::sort(FE.begin(), FE.end()); 8184 unsigned E = FE.size(); 8185 for (unsigned I = 0; I != E; ++I) { 8186 if (I) 8187 Enc += ','; 8188 Enc += FE[I].str(); 8189 } 8190 } 8191 Enc += '}'; 8192 TSC.addIfComplete(ID, Enc.substr(Start), false); 8193 return true; 8194 } 8195 8196 /// Appends type's qualifier to Enc. 8197 /// This is done prior to appending the type's encoding. 8198 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8199 // Qualifiers are emitted in alphabetical order. 8200 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8201 int Lookup = 0; 8202 if (QT.isConstQualified()) 8203 Lookup += 1<<0; 8204 if (QT.isRestrictQualified()) 8205 Lookup += 1<<1; 8206 if (QT.isVolatileQualified()) 8207 Lookup += 1<<2; 8208 Enc += Table[Lookup]; 8209 } 8210 8211 /// Appends built-in types to Enc. 8212 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8213 const char *EncType; 8214 switch (BT->getKind()) { 8215 case BuiltinType::Void: 8216 EncType = "0"; 8217 break; 8218 case BuiltinType::Bool: 8219 EncType = "b"; 8220 break; 8221 case BuiltinType::Char_U: 8222 EncType = "uc"; 8223 break; 8224 case BuiltinType::UChar: 8225 EncType = "uc"; 8226 break; 8227 case BuiltinType::SChar: 8228 EncType = "sc"; 8229 break; 8230 case BuiltinType::UShort: 8231 EncType = "us"; 8232 break; 8233 case BuiltinType::Short: 8234 EncType = "ss"; 8235 break; 8236 case BuiltinType::UInt: 8237 EncType = "ui"; 8238 break; 8239 case BuiltinType::Int: 8240 EncType = "si"; 8241 break; 8242 case BuiltinType::ULong: 8243 EncType = "ul"; 8244 break; 8245 case BuiltinType::Long: 8246 EncType = "sl"; 8247 break; 8248 case BuiltinType::ULongLong: 8249 EncType = "ull"; 8250 break; 8251 case BuiltinType::LongLong: 8252 EncType = "sll"; 8253 break; 8254 case BuiltinType::Float: 8255 EncType = "ft"; 8256 break; 8257 case BuiltinType::Double: 8258 EncType = "d"; 8259 break; 8260 case BuiltinType::LongDouble: 8261 EncType = "ld"; 8262 break; 8263 default: 8264 return false; 8265 } 8266 Enc += EncType; 8267 return true; 8268 } 8269 8270 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8271 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8272 const CodeGen::CodeGenModule &CGM, 8273 TypeStringCache &TSC) { 8274 Enc += "p("; 8275 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8276 return false; 8277 Enc += ')'; 8278 return true; 8279 } 8280 8281 /// Appends array encoding to Enc before calling appendType for the element. 8282 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8283 const ArrayType *AT, 8284 const CodeGen::CodeGenModule &CGM, 8285 TypeStringCache &TSC, StringRef NoSizeEnc) { 8286 if (AT->getSizeModifier() != ArrayType::Normal) 8287 return false; 8288 Enc += "a("; 8289 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8290 CAT->getSize().toStringUnsigned(Enc); 8291 else 8292 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8293 Enc += ':'; 8294 // The Qualifiers should be attached to the type rather than the array. 8295 appendQualifier(Enc, QT); 8296 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8297 return false; 8298 Enc += ')'; 8299 return true; 8300 } 8301 8302 /// Appends a function encoding to Enc, calling appendType for the return type 8303 /// and the arguments. 8304 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8305 const CodeGen::CodeGenModule &CGM, 8306 TypeStringCache &TSC) { 8307 Enc += "f{"; 8308 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8309 return false; 8310 Enc += "}("; 8311 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8312 // N.B. we are only interested in the adjusted param types. 8313 auto I = FPT->param_type_begin(); 8314 auto E = FPT->param_type_end(); 8315 if (I != E) { 8316 do { 8317 if (!appendType(Enc, *I, CGM, TSC)) 8318 return false; 8319 ++I; 8320 if (I != E) 8321 Enc += ','; 8322 } while (I != E); 8323 if (FPT->isVariadic()) 8324 Enc += ",va"; 8325 } else { 8326 if (FPT->isVariadic()) 8327 Enc += "va"; 8328 else 8329 Enc += '0'; 8330 } 8331 } 8332 Enc += ')'; 8333 return true; 8334 } 8335 8336 /// Handles the type's qualifier before dispatching a call to handle specific 8337 /// type encodings. 8338 static bool appendType(SmallStringEnc &Enc, QualType QType, 8339 const CodeGen::CodeGenModule &CGM, 8340 TypeStringCache &TSC) { 8341 8342 QualType QT = QType.getCanonicalType(); 8343 8344 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8345 // The Qualifiers should be attached to the type rather than the array. 8346 // Thus we don't call appendQualifier() here. 8347 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8348 8349 appendQualifier(Enc, QT); 8350 8351 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8352 return appendBuiltinType(Enc, BT); 8353 8354 if (const PointerType *PT = QT->getAs<PointerType>()) 8355 return appendPointerType(Enc, PT, CGM, TSC); 8356 8357 if (const EnumType *ET = QT->getAs<EnumType>()) 8358 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8359 8360 if (const RecordType *RT = QT->getAsStructureType()) 8361 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8362 8363 if (const RecordType *RT = QT->getAsUnionType()) 8364 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8365 8366 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8367 return appendFunctionType(Enc, FT, CGM, TSC); 8368 8369 return false; 8370 } 8371 8372 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8373 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8374 if (!D) 8375 return false; 8376 8377 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8378 if (FD->getLanguageLinkage() != CLanguageLinkage) 8379 return false; 8380 return appendType(Enc, FD->getType(), CGM, TSC); 8381 } 8382 8383 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8384 if (VD->getLanguageLinkage() != CLanguageLinkage) 8385 return false; 8386 QualType QT = VD->getType().getCanonicalType(); 8387 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8388 // Global ArrayTypes are given a size of '*' if the size is unknown. 8389 // The Qualifiers should be attached to the type rather than the array. 8390 // Thus we don't call appendQualifier() here. 8391 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8392 } 8393 return appendType(Enc, QT, CGM, TSC); 8394 } 8395 return false; 8396 } 8397 8398 8399 //===----------------------------------------------------------------------===// 8400 // Driver code 8401 //===----------------------------------------------------------------------===// 8402 8403 bool CodeGenModule::supportsCOMDAT() const { 8404 return getTriple().supportsCOMDAT(); 8405 } 8406 8407 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8408 if (TheTargetCodeGenInfo) 8409 return *TheTargetCodeGenInfo; 8410 8411 // Helper to set the unique_ptr while still keeping the return value. 8412 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8413 this->TheTargetCodeGenInfo.reset(P); 8414 return *P; 8415 }; 8416 8417 const llvm::Triple &Triple = getTarget().getTriple(); 8418 switch (Triple.getArch()) { 8419 default: 8420 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8421 8422 case llvm::Triple::le32: 8423 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8424 case llvm::Triple::mips: 8425 case llvm::Triple::mipsel: 8426 if (Triple.getOS() == llvm::Triple::NaCl) 8427 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8428 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8429 8430 case llvm::Triple::mips64: 8431 case llvm::Triple::mips64el: 8432 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8433 8434 case llvm::Triple::avr: 8435 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 8436 8437 case llvm::Triple::aarch64: 8438 case llvm::Triple::aarch64_be: { 8439 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8440 if (getTarget().getABI() == "darwinpcs") 8441 Kind = AArch64ABIInfo::DarwinPCS; 8442 8443 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8444 } 8445 8446 case llvm::Triple::wasm32: 8447 case llvm::Triple::wasm64: 8448 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8449 8450 case llvm::Triple::arm: 8451 case llvm::Triple::armeb: 8452 case llvm::Triple::thumb: 8453 case llvm::Triple::thumbeb: { 8454 if (Triple.getOS() == llvm::Triple::Win32) { 8455 return SetCGInfo( 8456 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 8457 } 8458 8459 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 8460 StringRef ABIStr = getTarget().getABI(); 8461 if (ABIStr == "apcs-gnu") 8462 Kind = ARMABIInfo::APCS; 8463 else if (ABIStr == "aapcs16") 8464 Kind = ARMABIInfo::AAPCS16_VFP; 8465 else if (CodeGenOpts.FloatABI == "hard" || 8466 (CodeGenOpts.FloatABI != "soft" && 8467 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8468 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8469 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8470 Kind = ARMABIInfo::AAPCS_VFP; 8471 8472 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8473 } 8474 8475 case llvm::Triple::ppc: 8476 return SetCGInfo( 8477 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8478 case llvm::Triple::ppc64: 8479 if (Triple.isOSBinFormatELF()) { 8480 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8481 if (getTarget().getABI() == "elfv2") 8482 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8483 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8484 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8485 8486 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8487 IsSoftFloat)); 8488 } else 8489 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8490 case llvm::Triple::ppc64le: { 8491 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8492 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8493 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8494 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8495 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8496 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8497 8498 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8499 IsSoftFloat)); 8500 } 8501 8502 case llvm::Triple::nvptx: 8503 case llvm::Triple::nvptx64: 8504 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8505 8506 case llvm::Triple::msp430: 8507 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8508 8509 case llvm::Triple::systemz: { 8510 bool HasVector = getTarget().getABI() == "vector"; 8511 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8512 } 8513 8514 case llvm::Triple::tce: 8515 case llvm::Triple::tcele: 8516 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8517 8518 case llvm::Triple::x86: { 8519 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8520 bool RetSmallStructInRegABI = 8521 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8522 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8523 8524 if (Triple.getOS() == llvm::Triple::Win32) { 8525 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8526 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8527 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8528 } else { 8529 return SetCGInfo(new X86_32TargetCodeGenInfo( 8530 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8531 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8532 CodeGenOpts.FloatABI == "soft")); 8533 } 8534 } 8535 8536 case llvm::Triple::x86_64: { 8537 StringRef ABI = getTarget().getABI(); 8538 X86AVXABILevel AVXLevel = 8539 (ABI == "avx512" 8540 ? X86AVXABILevel::AVX512 8541 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8542 8543 switch (Triple.getOS()) { 8544 case llvm::Triple::Win32: 8545 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8546 case llvm::Triple::PS4: 8547 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8548 default: 8549 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8550 } 8551 } 8552 case llvm::Triple::hexagon: 8553 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8554 case llvm::Triple::lanai: 8555 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8556 case llvm::Triple::r600: 8557 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8558 case llvm::Triple::amdgcn: 8559 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8560 case llvm::Triple::sparc: 8561 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8562 case llvm::Triple::sparcv9: 8563 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8564 case llvm::Triple::xcore: 8565 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8566 case llvm::Triple::spir: 8567 case llvm::Triple::spir64: 8568 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8569 } 8570 } 8571