1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = 41 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 42 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 43 } 44 } 45 46 static bool isAggregateTypeForABI(QualType T) { 47 return !CodeGenFunction::hasScalarEvaluationKind(T) || 48 T->isMemberFunctionPointerType(); 49 } 50 51 ABIArgInfo 52 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 53 llvm::Type *Padding) const { 54 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 55 ByRef, Realign, Padding); 56 } 57 58 ABIArgInfo 59 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 60 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 61 /*ByRef*/ false, Realign); 62 } 63 64 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 65 QualType Ty) const { 66 return Address::invalid(); 67 } 68 69 ABIInfo::~ABIInfo() {} 70 71 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 72 CGCXXABI &CXXABI) { 73 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 74 if (!RD) 75 return CGCXXABI::RAA_Default; 76 return CXXABI.getRecordArgABI(RD); 77 } 78 79 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 80 CGCXXABI &CXXABI) { 81 const RecordType *RT = T->getAs<RecordType>(); 82 if (!RT) 83 return CGCXXABI::RAA_Default; 84 return getRecordArgABI(RT, CXXABI); 85 } 86 87 /// Pass transparent unions as if they were the type of the first element. Sema 88 /// should ensure that all elements of the union have the same "machine type". 89 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 90 if (const RecordType *UT = Ty->getAsUnionType()) { 91 const RecordDecl *UD = UT->getDecl(); 92 if (UD->hasAttr<TransparentUnionAttr>()) { 93 assert(!UD->field_empty() && "sema created an empty transparent union"); 94 return UD->field_begin()->getType(); 95 } 96 } 97 return Ty; 98 } 99 100 CGCXXABI &ABIInfo::getCXXABI() const { 101 return CGT.getCXXABI(); 102 } 103 104 ASTContext &ABIInfo::getContext() const { 105 return CGT.getContext(); 106 } 107 108 llvm::LLVMContext &ABIInfo::getVMContext() const { 109 return CGT.getLLVMContext(); 110 } 111 112 const llvm::DataLayout &ABIInfo::getDataLayout() const { 113 return CGT.getDataLayout(); 114 } 115 116 const TargetInfo &ABIInfo::getTarget() const { 117 return CGT.getTarget(); 118 } 119 120 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 121 122 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 123 return false; 124 } 125 126 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 127 uint64_t Members) const { 128 return false; 129 } 130 131 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 132 return false; 133 } 134 135 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 136 raw_ostream &OS = llvm::errs(); 137 OS << "(ABIArgInfo Kind="; 138 switch (TheKind) { 139 case Direct: 140 OS << "Direct Type="; 141 if (llvm::Type *Ty = getCoerceToType()) 142 Ty->print(OS); 143 else 144 OS << "null"; 145 break; 146 case Extend: 147 OS << "Extend"; 148 break; 149 case Ignore: 150 OS << "Ignore"; 151 break; 152 case InAlloca: 153 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 154 break; 155 case Indirect: 156 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 157 << " ByVal=" << getIndirectByVal() 158 << " Realign=" << getIndirectRealign(); 159 break; 160 case Expand: 161 OS << "Expand"; 162 break; 163 } 164 OS << ")\n"; 165 } 166 167 // Dynamically round a pointer up to a multiple of the given alignment. 168 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 169 llvm::Value *Ptr, 170 CharUnits Align) { 171 llvm::Value *PtrAsInt = Ptr; 172 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 173 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 174 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 175 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 176 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 177 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 178 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 179 Ptr->getType(), 180 Ptr->getName() + ".aligned"); 181 return PtrAsInt; 182 } 183 184 /// Emit va_arg for a platform using the common void* representation, 185 /// where arguments are simply emitted in an array of slots on the stack. 186 /// 187 /// This version implements the core direct-value passing rules. 188 /// 189 /// \param SlotSize - The size and alignment of a stack slot. 190 /// Each argument will be allocated to a multiple of this number of 191 /// slots, and all the slots will be aligned to this value. 192 /// \param AllowHigherAlign - The slot alignment is not a cap; 193 /// an argument type with an alignment greater than the slot size 194 /// will be emitted on a higher-alignment address, potentially 195 /// leaving one or more empty slots behind as padding. If this 196 /// is false, the returned address might be less-aligned than 197 /// DirectAlign. 198 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 199 Address VAListAddr, 200 llvm::Type *DirectTy, 201 CharUnits DirectSize, 202 CharUnits DirectAlign, 203 CharUnits SlotSize, 204 bool AllowHigherAlign) { 205 // Cast the element type to i8* if necessary. Some platforms define 206 // va_list as a struct containing an i8* instead of just an i8*. 207 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 208 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 209 210 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 211 212 // If the CC aligns values higher than the slot size, do so if needed. 213 Address Addr = Address::invalid(); 214 if (AllowHigherAlign && DirectAlign > SlotSize) { 215 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 216 DirectAlign); 217 } else { 218 Addr = Address(Ptr, SlotSize); 219 } 220 221 // Advance the pointer past the argument, then store that back. 222 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 223 llvm::Value *NextPtr = 224 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 225 "argp.next"); 226 CGF.Builder.CreateStore(NextPtr, VAListAddr); 227 228 // If the argument is smaller than a slot, and this is a big-endian 229 // target, the argument will be right-adjusted in its slot. 230 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) { 231 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 232 } 233 234 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 235 return Addr; 236 } 237 238 /// Emit va_arg for a platform using the common void* representation, 239 /// where arguments are simply emitted in an array of slots on the stack. 240 /// 241 /// \param IsIndirect - Values of this type are passed indirectly. 242 /// \param ValueInfo - The size and alignment of this type, generally 243 /// computed with getContext().getTypeInfoInChars(ValueTy). 244 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 245 /// Each argument will be allocated to a multiple of this number of 246 /// slots, and all the slots will be aligned to this value. 247 /// \param AllowHigherAlign - The slot alignment is not a cap; 248 /// an argument type with an alignment greater than the slot size 249 /// will be emitted on a higher-alignment address, potentially 250 /// leaving one or more empty slots behind as padding. 251 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 252 QualType ValueTy, bool IsIndirect, 253 std::pair<CharUnits, CharUnits> ValueInfo, 254 CharUnits SlotSizeAndAlign, 255 bool AllowHigherAlign) { 256 // The size and alignment of the value that was passed directly. 257 CharUnits DirectSize, DirectAlign; 258 if (IsIndirect) { 259 DirectSize = CGF.getPointerSize(); 260 DirectAlign = CGF.getPointerAlign(); 261 } else { 262 DirectSize = ValueInfo.first; 263 DirectAlign = ValueInfo.second; 264 } 265 266 // Cast the address we've calculated to the right type. 267 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 268 if (IsIndirect) 269 DirectTy = DirectTy->getPointerTo(0); 270 271 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 272 DirectSize, DirectAlign, 273 SlotSizeAndAlign, 274 AllowHigherAlign); 275 276 if (IsIndirect) { 277 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 278 } 279 280 return Addr; 281 282 } 283 284 static Address emitMergePHI(CodeGenFunction &CGF, 285 Address Addr1, llvm::BasicBlock *Block1, 286 Address Addr2, llvm::BasicBlock *Block2, 287 const llvm::Twine &Name = "") { 288 assert(Addr1.getType() == Addr2.getType()); 289 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 290 PHI->addIncoming(Addr1.getPointer(), Block1); 291 PHI->addIncoming(Addr2.getPointer(), Block2); 292 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 293 return Address(PHI, Align); 294 } 295 296 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 297 298 // If someone can figure out a general rule for this, that would be great. 299 // It's probably just doomed to be platform-dependent, though. 300 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 301 // Verified for: 302 // x86-64 FreeBSD, Linux, Darwin 303 // x86-32 FreeBSD, Linux, Darwin 304 // PowerPC Linux, Darwin 305 // ARM Darwin (*not* EABI) 306 // AArch64 Linux 307 return 32; 308 } 309 310 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 311 const FunctionNoProtoType *fnType) const { 312 // The following conventions are known to require this to be false: 313 // x86_stdcall 314 // MIPS 315 // For everything else, we just prefer false unless we opt out. 316 return false; 317 } 318 319 void 320 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 321 llvm::SmallString<24> &Opt) const { 322 // This assumes the user is passing a library name like "rt" instead of a 323 // filename like "librt.a/so", and that they don't care whether it's static or 324 // dynamic. 325 Opt = "-l"; 326 Opt += Lib; 327 } 328 329 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 330 331 /// isEmptyField - Return true iff a the field is "empty", that is it 332 /// is an unnamed bit-field or an (array of) empty record(s). 333 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 334 bool AllowArrays) { 335 if (FD->isUnnamedBitfield()) 336 return true; 337 338 QualType FT = FD->getType(); 339 340 // Constant arrays of empty records count as empty, strip them off. 341 // Constant arrays of zero length always count as empty. 342 if (AllowArrays) 343 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 344 if (AT->getSize() == 0) 345 return true; 346 FT = AT->getElementType(); 347 } 348 349 const RecordType *RT = FT->getAs<RecordType>(); 350 if (!RT) 351 return false; 352 353 // C++ record fields are never empty, at least in the Itanium ABI. 354 // 355 // FIXME: We should use a predicate for whether this behavior is true in the 356 // current ABI. 357 if (isa<CXXRecordDecl>(RT->getDecl())) 358 return false; 359 360 return isEmptyRecord(Context, FT, AllowArrays); 361 } 362 363 /// isEmptyRecord - Return true iff a structure contains only empty 364 /// fields. Note that a structure with a flexible array member is not 365 /// considered empty. 366 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 367 const RecordType *RT = T->getAs<RecordType>(); 368 if (!RT) 369 return false; 370 const RecordDecl *RD = RT->getDecl(); 371 if (RD->hasFlexibleArrayMember()) 372 return false; 373 374 // If this is a C++ record, check the bases first. 375 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 376 for (const auto &I : CXXRD->bases()) 377 if (!isEmptyRecord(Context, I.getType(), true)) 378 return false; 379 380 for (const auto *I : RD->fields()) 381 if (!isEmptyField(Context, I, AllowArrays)) 382 return false; 383 return true; 384 } 385 386 /// isSingleElementStruct - Determine if a structure is a "single 387 /// element struct", i.e. it has exactly one non-empty field or 388 /// exactly one field which is itself a single element 389 /// struct. Structures with flexible array members are never 390 /// considered single element structs. 391 /// 392 /// \return The field declaration for the single non-empty field, if 393 /// it exists. 394 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 395 const RecordType *RT = T->getAs<RecordType>(); 396 if (!RT) 397 return nullptr; 398 399 const RecordDecl *RD = RT->getDecl(); 400 if (RD->hasFlexibleArrayMember()) 401 return nullptr; 402 403 const Type *Found = nullptr; 404 405 // If this is a C++ record, check the bases first. 406 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 407 for (const auto &I : CXXRD->bases()) { 408 // Ignore empty records. 409 if (isEmptyRecord(Context, I.getType(), true)) 410 continue; 411 412 // If we already found an element then this isn't a single-element struct. 413 if (Found) 414 return nullptr; 415 416 // If this is non-empty and not a single element struct, the composite 417 // cannot be a single element struct. 418 Found = isSingleElementStruct(I.getType(), Context); 419 if (!Found) 420 return nullptr; 421 } 422 } 423 424 // Check for single element. 425 for (const auto *FD : RD->fields()) { 426 QualType FT = FD->getType(); 427 428 // Ignore empty fields. 429 if (isEmptyField(Context, FD, true)) 430 continue; 431 432 // If we already found an element then this isn't a single-element 433 // struct. 434 if (Found) 435 return nullptr; 436 437 // Treat single element arrays as the element. 438 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 439 if (AT->getSize().getZExtValue() != 1) 440 break; 441 FT = AT->getElementType(); 442 } 443 444 if (!isAggregateTypeForABI(FT)) { 445 Found = FT.getTypePtr(); 446 } else { 447 Found = isSingleElementStruct(FT, Context); 448 if (!Found) 449 return nullptr; 450 } 451 } 452 453 // We don't consider a struct a single-element struct if it has 454 // padding beyond the element type. 455 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 456 return nullptr; 457 458 return Found; 459 } 460 461 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 462 // Treat complex types as the element type. 463 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 464 Ty = CTy->getElementType(); 465 466 // Check for a type which we know has a simple scalar argument-passing 467 // convention without any padding. (We're specifically looking for 32 468 // and 64-bit integer and integer-equivalents, float, and double.) 469 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 470 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 471 return false; 472 473 uint64_t Size = Context.getTypeSize(Ty); 474 return Size == 32 || Size == 64; 475 } 476 477 /// canExpandIndirectArgument - Test whether an argument type which is to be 478 /// passed indirectly (on the stack) would have the equivalent layout if it was 479 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 480 /// inhibiting optimizations. 481 /// 482 // FIXME: This predicate is missing many cases, currently it just follows 483 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 484 // should probably make this smarter, or better yet make the LLVM backend 485 // capable of handling it. 486 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 487 // We can only expand structure types. 488 const RecordType *RT = Ty->getAs<RecordType>(); 489 if (!RT) 490 return false; 491 492 // We can only expand (C) structures. 493 // 494 // FIXME: This needs to be generalized to handle classes as well. 495 const RecordDecl *RD = RT->getDecl(); 496 if (!RD->isStruct()) 497 return false; 498 499 // We try to expand CLike CXXRecordDecl. 500 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 501 if (!CXXRD->isCLike()) 502 return false; 503 } 504 505 uint64_t Size = 0; 506 507 for (const auto *FD : RD->fields()) { 508 if (!is32Or64BitBasicType(FD->getType(), Context)) 509 return false; 510 511 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 512 // how to expand them yet, and the predicate for telling if a bitfield still 513 // counts as "basic" is more complicated than what we were doing previously. 514 if (FD->isBitField()) 515 return false; 516 517 Size += Context.getTypeSize(FD->getType()); 518 } 519 520 // Make sure there are not any holes in the struct. 521 if (Size != Context.getTypeSize(Ty)) 522 return false; 523 524 return true; 525 } 526 527 namespace { 528 /// DefaultABIInfo - The default implementation for ABI specific 529 /// details. This implementation provides information which results in 530 /// self-consistent and sensible LLVM IR generation, but does not 531 /// conform to any particular ABI. 532 class DefaultABIInfo : public ABIInfo { 533 public: 534 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 535 536 ABIArgInfo classifyReturnType(QualType RetTy) const; 537 ABIArgInfo classifyArgumentType(QualType RetTy) const; 538 539 void computeInfo(CGFunctionInfo &FI) const override { 540 if (!getCXXABI().classifyReturnType(FI)) 541 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 542 for (auto &I : FI.arguments()) 543 I.info = classifyArgumentType(I.type); 544 } 545 546 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 547 QualType Ty) const override; 548 }; 549 550 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 551 public: 552 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 553 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 554 }; 555 556 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 557 QualType Ty) const { 558 return Address::invalid(); 559 } 560 561 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 562 Ty = useFirstFieldIfTransparentUnion(Ty); 563 564 if (isAggregateTypeForABI(Ty)) { 565 // Records with non-trivial destructors/copy-constructors should not be 566 // passed by value. 567 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 568 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 569 570 return getNaturalAlignIndirect(Ty); 571 } 572 573 // Treat an enum type as its underlying type. 574 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 575 Ty = EnumTy->getDecl()->getIntegerType(); 576 577 return (Ty->isPromotableIntegerType() ? 578 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 579 } 580 581 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 582 if (RetTy->isVoidType()) 583 return ABIArgInfo::getIgnore(); 584 585 if (isAggregateTypeForABI(RetTy)) 586 return getNaturalAlignIndirect(RetTy); 587 588 // Treat an enum type as its underlying type. 589 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 590 RetTy = EnumTy->getDecl()->getIntegerType(); 591 592 return (RetTy->isPromotableIntegerType() ? 593 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 594 } 595 596 //===----------------------------------------------------------------------===// 597 // WebAssembly ABI Implementation 598 // 599 // This is a very simple ABI that relies a lot on DefaultABIInfo. 600 //===----------------------------------------------------------------------===// 601 602 class WebAssemblyABIInfo final : public DefaultABIInfo { 603 public: 604 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 605 : DefaultABIInfo(CGT) {} 606 607 private: 608 ABIArgInfo classifyReturnType(QualType RetTy) const; 609 ABIArgInfo classifyArgumentType(QualType Ty) const; 610 611 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 612 // non-virtual, but computeInfo is virtual, so we overload that. 613 void computeInfo(CGFunctionInfo &FI) const override { 614 if (!getCXXABI().classifyReturnType(FI)) 615 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 616 for (auto &Arg : FI.arguments()) 617 Arg.info = classifyArgumentType(Arg.type); 618 } 619 620 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 621 QualType Ty) const override; 622 }; 623 624 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 625 public: 626 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 627 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 628 }; 629 630 /// \brief Classify argument of given type \p Ty. 631 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 632 Ty = useFirstFieldIfTransparentUnion(Ty); 633 634 if (isAggregateTypeForABI(Ty)) { 635 // Records with non-trivial destructors/copy-constructors should not be 636 // passed by value. 637 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 638 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 639 // Ignore empty structs/unions. 640 if (isEmptyRecord(getContext(), Ty, true)) 641 return ABIArgInfo::getIgnore(); 642 // Lower single-element structs to just pass a regular value. TODO: We 643 // could do reasonable-size multiple-element structs too, using getExpand(), 644 // though watch out for things like bitfields. 645 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 646 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 647 } 648 649 // Otherwise just do the default thing. 650 return DefaultABIInfo::classifyArgumentType(Ty); 651 } 652 653 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 654 if (isAggregateTypeForABI(RetTy)) { 655 // Records with non-trivial destructors/copy-constructors should not be 656 // returned by value. 657 if (!getRecordArgABI(RetTy, getCXXABI())) { 658 // Ignore empty structs/unions. 659 if (isEmptyRecord(getContext(), RetTy, true)) 660 return ABIArgInfo::getIgnore(); 661 // Lower single-element structs to just return a regular value. TODO: We 662 // could do reasonable-size multiple-element structs too, using 663 // ABIArgInfo::getDirect(). 664 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 665 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 666 } 667 } 668 669 // Otherwise just do the default thing. 670 return DefaultABIInfo::classifyReturnType(RetTy); 671 } 672 673 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 674 QualType Ty) const { 675 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 676 getContext().getTypeInfoInChars(Ty), 677 CharUnits::fromQuantity(4), 678 /*AllowHigherAlign=*/ true); 679 } 680 681 //===----------------------------------------------------------------------===// 682 // le32/PNaCl bitcode ABI Implementation 683 // 684 // This is a simplified version of the x86_32 ABI. Arguments and return values 685 // are always passed on the stack. 686 //===----------------------------------------------------------------------===// 687 688 class PNaClABIInfo : public ABIInfo { 689 public: 690 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 691 692 ABIArgInfo classifyReturnType(QualType RetTy) const; 693 ABIArgInfo classifyArgumentType(QualType RetTy) const; 694 695 void computeInfo(CGFunctionInfo &FI) const override; 696 Address EmitVAArg(CodeGenFunction &CGF, 697 Address VAListAddr, QualType Ty) const override; 698 }; 699 700 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 701 public: 702 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 703 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 704 }; 705 706 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 707 if (!getCXXABI().classifyReturnType(FI)) 708 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 709 710 for (auto &I : FI.arguments()) 711 I.info = classifyArgumentType(I.type); 712 } 713 714 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 715 QualType Ty) const { 716 return Address::invalid(); 717 } 718 719 /// \brief Classify argument of given type \p Ty. 720 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 721 if (isAggregateTypeForABI(Ty)) { 722 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 723 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 724 return getNaturalAlignIndirect(Ty); 725 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 726 // Treat an enum type as its underlying type. 727 Ty = EnumTy->getDecl()->getIntegerType(); 728 } else if (Ty->isFloatingType()) { 729 // Floating-point types don't go inreg. 730 return ABIArgInfo::getDirect(); 731 } 732 733 return (Ty->isPromotableIntegerType() ? 734 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 735 } 736 737 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 738 if (RetTy->isVoidType()) 739 return ABIArgInfo::getIgnore(); 740 741 // In the PNaCl ABI we always return records/structures on the stack. 742 if (isAggregateTypeForABI(RetTy)) 743 return getNaturalAlignIndirect(RetTy); 744 745 // Treat an enum type as its underlying type. 746 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 747 RetTy = EnumTy->getDecl()->getIntegerType(); 748 749 return (RetTy->isPromotableIntegerType() ? 750 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 751 } 752 753 /// IsX86_MMXType - Return true if this is an MMX type. 754 bool IsX86_MMXType(llvm::Type *IRType) { 755 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 756 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 757 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 758 IRType->getScalarSizeInBits() != 64; 759 } 760 761 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 762 StringRef Constraint, 763 llvm::Type* Ty) { 764 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 765 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 766 // Invalid MMX constraint 767 return nullptr; 768 } 769 770 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 771 } 772 773 // No operation needed 774 return Ty; 775 } 776 777 /// Returns true if this type can be passed in SSE registers with the 778 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 779 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 780 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 781 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 782 return true; 783 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 784 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 785 // registers specially. 786 unsigned VecSize = Context.getTypeSize(VT); 787 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 788 return true; 789 } 790 return false; 791 } 792 793 /// Returns true if this aggregate is small enough to be passed in SSE registers 794 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 795 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 796 return NumMembers <= 4; 797 } 798 799 //===----------------------------------------------------------------------===// 800 // X86-32 ABI Implementation 801 //===----------------------------------------------------------------------===// 802 803 /// \brief Similar to llvm::CCState, but for Clang. 804 struct CCState { 805 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 806 807 unsigned CC; 808 unsigned FreeRegs; 809 unsigned FreeSSERegs; 810 }; 811 812 /// X86_32ABIInfo - The X86-32 ABI information. 813 class X86_32ABIInfo : public ABIInfo { 814 enum Class { 815 Integer, 816 Float 817 }; 818 819 static const unsigned MinABIStackAlignInBytes = 4; 820 821 bool IsDarwinVectorABI; 822 bool IsRetSmallStructInRegABI; 823 bool IsWin32StructABI; 824 bool IsSoftFloatABI; 825 bool IsMCUABI; 826 unsigned DefaultNumRegisterParameters; 827 828 static bool isRegisterSize(unsigned Size) { 829 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 830 } 831 832 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 833 // FIXME: Assumes vectorcall is in use. 834 return isX86VectorTypeForVectorCall(getContext(), Ty); 835 } 836 837 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 838 uint64_t NumMembers) const override { 839 // FIXME: Assumes vectorcall is in use. 840 return isX86VectorCallAggregateSmallEnough(NumMembers); 841 } 842 843 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 844 845 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 846 /// such that the argument will be passed in memory. 847 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 848 849 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 850 851 /// \brief Return the alignment to use for the given type on the stack. 852 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 853 854 Class classify(QualType Ty) const; 855 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 856 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 857 /// \brief Updates the number of available free registers, returns 858 /// true if any registers were allocated. 859 bool updateFreeRegs(QualType Ty, CCState &State) const; 860 861 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 862 bool &NeedsPadding) const; 863 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 864 865 /// \brief Rewrite the function info so that all memory arguments use 866 /// inalloca. 867 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 868 869 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 870 CharUnits &StackOffset, ABIArgInfo &Info, 871 QualType Type) const; 872 873 public: 874 875 void computeInfo(CGFunctionInfo &FI) const override; 876 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 877 QualType Ty) const override; 878 879 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 880 bool RetSmallStructInRegABI, bool Win32StructABI, 881 unsigned NumRegisterParameters, bool SoftFloatABI) 882 : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 883 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 884 IsWin32StructABI(Win32StructABI), 885 IsSoftFloatABI(SoftFloatABI), 886 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 887 DefaultNumRegisterParameters(NumRegisterParameters) {} 888 }; 889 890 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 891 public: 892 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 893 bool RetSmallStructInRegABI, bool Win32StructABI, 894 unsigned NumRegisterParameters, bool SoftFloatABI) 895 : TargetCodeGenInfo(new X86_32ABIInfo( 896 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 897 NumRegisterParameters, SoftFloatABI)) {} 898 899 static bool isStructReturnInRegABI( 900 const llvm::Triple &Triple, const CodeGenOptions &Opts); 901 902 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 903 CodeGen::CodeGenModule &CGM) const override; 904 905 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 906 // Darwin uses different dwarf register numbers for EH. 907 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 908 return 4; 909 } 910 911 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 912 llvm::Value *Address) const override; 913 914 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 915 StringRef Constraint, 916 llvm::Type* Ty) const override { 917 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 918 } 919 920 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 921 std::string &Constraints, 922 std::vector<llvm::Type *> &ResultRegTypes, 923 std::vector<llvm::Type *> &ResultTruncRegTypes, 924 std::vector<LValue> &ResultRegDests, 925 std::string &AsmString, 926 unsigned NumOutputs) const override; 927 928 llvm::Constant * 929 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 930 unsigned Sig = (0xeb << 0) | // jmp rel8 931 (0x06 << 8) | // .+0x08 932 ('F' << 16) | 933 ('T' << 24); 934 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 935 } 936 937 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 938 return "movl\t%ebp, %ebp" 939 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 940 } 941 }; 942 943 } 944 945 /// Rewrite input constraint references after adding some output constraints. 946 /// In the case where there is one output and one input and we add one output, 947 /// we need to replace all operand references greater than or equal to 1: 948 /// mov $0, $1 949 /// mov eax, $1 950 /// The result will be: 951 /// mov $0, $2 952 /// mov eax, $2 953 static void rewriteInputConstraintReferences(unsigned FirstIn, 954 unsigned NumNewOuts, 955 std::string &AsmString) { 956 std::string Buf; 957 llvm::raw_string_ostream OS(Buf); 958 size_t Pos = 0; 959 while (Pos < AsmString.size()) { 960 size_t DollarStart = AsmString.find('$', Pos); 961 if (DollarStart == std::string::npos) 962 DollarStart = AsmString.size(); 963 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 964 if (DollarEnd == std::string::npos) 965 DollarEnd = AsmString.size(); 966 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 967 Pos = DollarEnd; 968 size_t NumDollars = DollarEnd - DollarStart; 969 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 970 // We have an operand reference. 971 size_t DigitStart = Pos; 972 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 973 if (DigitEnd == std::string::npos) 974 DigitEnd = AsmString.size(); 975 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 976 unsigned OperandIndex; 977 if (!OperandStr.getAsInteger(10, OperandIndex)) { 978 if (OperandIndex >= FirstIn) 979 OperandIndex += NumNewOuts; 980 OS << OperandIndex; 981 } else { 982 OS << OperandStr; 983 } 984 Pos = DigitEnd; 985 } 986 } 987 AsmString = std::move(OS.str()); 988 } 989 990 /// Add output constraints for EAX:EDX because they are return registers. 991 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 992 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 993 std::vector<llvm::Type *> &ResultRegTypes, 994 std::vector<llvm::Type *> &ResultTruncRegTypes, 995 std::vector<LValue> &ResultRegDests, std::string &AsmString, 996 unsigned NumOutputs) const { 997 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 998 999 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1000 // larger. 1001 if (!Constraints.empty()) 1002 Constraints += ','; 1003 if (RetWidth <= 32) { 1004 Constraints += "={eax}"; 1005 ResultRegTypes.push_back(CGF.Int32Ty); 1006 } else { 1007 // Use the 'A' constraint for EAX:EDX. 1008 Constraints += "=A"; 1009 ResultRegTypes.push_back(CGF.Int64Ty); 1010 } 1011 1012 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1013 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1014 ResultTruncRegTypes.push_back(CoerceTy); 1015 1016 // Coerce the integer by bitcasting the return slot pointer. 1017 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1018 CoerceTy->getPointerTo())); 1019 ResultRegDests.push_back(ReturnSlot); 1020 1021 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1022 } 1023 1024 /// shouldReturnTypeInRegister - Determine if the given type should be 1025 /// returned in a register (for the Darwin and MCU ABI). 1026 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1027 ASTContext &Context) const { 1028 uint64_t Size = Context.getTypeSize(Ty); 1029 1030 // For i386, type must be register sized. 1031 // For the MCU ABI, it only needs to be <= 8-byte 1032 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1033 return false; 1034 1035 if (Ty->isVectorType()) { 1036 // 64- and 128- bit vectors inside structures are not returned in 1037 // registers. 1038 if (Size == 64 || Size == 128) 1039 return false; 1040 1041 return true; 1042 } 1043 1044 // If this is a builtin, pointer, enum, complex type, member pointer, or 1045 // member function pointer it is ok. 1046 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1047 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1048 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1049 return true; 1050 1051 // Arrays are treated like records. 1052 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1053 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1054 1055 // Otherwise, it must be a record type. 1056 const RecordType *RT = Ty->getAs<RecordType>(); 1057 if (!RT) return false; 1058 1059 // FIXME: Traverse bases here too. 1060 1061 // Structure types are passed in register if all fields would be 1062 // passed in a register. 1063 for (const auto *FD : RT->getDecl()->fields()) { 1064 // Empty fields are ignored. 1065 if (isEmptyField(Context, FD, true)) 1066 continue; 1067 1068 // Check fields recursively. 1069 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1070 return false; 1071 } 1072 return true; 1073 } 1074 1075 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1076 // If the return value is indirect, then the hidden argument is consuming one 1077 // integer register. 1078 if (State.FreeRegs) { 1079 --State.FreeRegs; 1080 if (!IsMCUABI) 1081 return getNaturalAlignIndirectInReg(RetTy); 1082 } 1083 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1084 } 1085 1086 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1087 CCState &State) const { 1088 if (RetTy->isVoidType()) 1089 return ABIArgInfo::getIgnore(); 1090 1091 const Type *Base = nullptr; 1092 uint64_t NumElts = 0; 1093 if (State.CC == llvm::CallingConv::X86_VectorCall && 1094 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1095 // The LLVM struct type for such an aggregate should lower properly. 1096 return ABIArgInfo::getDirect(); 1097 } 1098 1099 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1100 // On Darwin, some vectors are returned in registers. 1101 if (IsDarwinVectorABI) { 1102 uint64_t Size = getContext().getTypeSize(RetTy); 1103 1104 // 128-bit vectors are a special case; they are returned in 1105 // registers and we need to make sure to pick a type the LLVM 1106 // backend will like. 1107 if (Size == 128) 1108 return ABIArgInfo::getDirect(llvm::VectorType::get( 1109 llvm::Type::getInt64Ty(getVMContext()), 2)); 1110 1111 // Always return in register if it fits in a general purpose 1112 // register, or if it is 64 bits and has a single element. 1113 if ((Size == 8 || Size == 16 || Size == 32) || 1114 (Size == 64 && VT->getNumElements() == 1)) 1115 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1116 Size)); 1117 1118 return getIndirectReturnResult(RetTy, State); 1119 } 1120 1121 return ABIArgInfo::getDirect(); 1122 } 1123 1124 if (isAggregateTypeForABI(RetTy)) { 1125 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1126 // Structures with flexible arrays are always indirect. 1127 if (RT->getDecl()->hasFlexibleArrayMember()) 1128 return getIndirectReturnResult(RetTy, State); 1129 } 1130 1131 // If specified, structs and unions are always indirect. 1132 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1133 return getIndirectReturnResult(RetTy, State); 1134 1135 // Ignore empty structs/unions. 1136 if (isEmptyRecord(getContext(), RetTy, true)) 1137 return ABIArgInfo::getIgnore(); 1138 1139 // Small structures which are register sized are generally returned 1140 // in a register. 1141 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1142 uint64_t Size = getContext().getTypeSize(RetTy); 1143 1144 // As a special-case, if the struct is a "single-element" struct, and 1145 // the field is of type "float" or "double", return it in a 1146 // floating-point register. (MSVC does not apply this special case.) 1147 // We apply a similar transformation for pointer types to improve the 1148 // quality of the generated IR. 1149 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1150 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1151 || SeltTy->hasPointerRepresentation()) 1152 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1153 1154 // FIXME: We should be able to narrow this integer in cases with dead 1155 // padding. 1156 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1157 } 1158 1159 return getIndirectReturnResult(RetTy, State); 1160 } 1161 1162 // Treat an enum type as its underlying type. 1163 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1164 RetTy = EnumTy->getDecl()->getIntegerType(); 1165 1166 return (RetTy->isPromotableIntegerType() ? 1167 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1168 } 1169 1170 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1171 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1172 } 1173 1174 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1175 const RecordType *RT = Ty->getAs<RecordType>(); 1176 if (!RT) 1177 return 0; 1178 const RecordDecl *RD = RT->getDecl(); 1179 1180 // If this is a C++ record, check the bases first. 1181 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1182 for (const auto &I : CXXRD->bases()) 1183 if (!isRecordWithSSEVectorType(Context, I.getType())) 1184 return false; 1185 1186 for (const auto *i : RD->fields()) { 1187 QualType FT = i->getType(); 1188 1189 if (isSSEVectorType(Context, FT)) 1190 return true; 1191 1192 if (isRecordWithSSEVectorType(Context, FT)) 1193 return true; 1194 } 1195 1196 return false; 1197 } 1198 1199 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1200 unsigned Align) const { 1201 // Otherwise, if the alignment is less than or equal to the minimum ABI 1202 // alignment, just use the default; the backend will handle this. 1203 if (Align <= MinABIStackAlignInBytes) 1204 return 0; // Use default alignment. 1205 1206 // On non-Darwin, the stack type alignment is always 4. 1207 if (!IsDarwinVectorABI) { 1208 // Set explicit alignment, since we may need to realign the top. 1209 return MinABIStackAlignInBytes; 1210 } 1211 1212 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1213 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1214 isRecordWithSSEVectorType(getContext(), Ty))) 1215 return 16; 1216 1217 return MinABIStackAlignInBytes; 1218 } 1219 1220 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1221 CCState &State) const { 1222 if (!ByVal) { 1223 if (State.FreeRegs) { 1224 --State.FreeRegs; // Non-byval indirects just use one pointer. 1225 if (!IsMCUABI) 1226 return getNaturalAlignIndirectInReg(Ty); 1227 } 1228 return getNaturalAlignIndirect(Ty, false); 1229 } 1230 1231 // Compute the byval alignment. 1232 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1233 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1234 if (StackAlign == 0) 1235 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1236 1237 // If the stack alignment is less than the type alignment, realign the 1238 // argument. 1239 bool Realign = TypeAlign > StackAlign; 1240 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1241 /*ByVal=*/true, Realign); 1242 } 1243 1244 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1245 const Type *T = isSingleElementStruct(Ty, getContext()); 1246 if (!T) 1247 T = Ty.getTypePtr(); 1248 1249 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1250 BuiltinType::Kind K = BT->getKind(); 1251 if (K == BuiltinType::Float || K == BuiltinType::Double) 1252 return Float; 1253 } 1254 return Integer; 1255 } 1256 1257 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1258 if (!IsSoftFloatABI) { 1259 Class C = classify(Ty); 1260 if (C == Float) 1261 return false; 1262 } 1263 1264 unsigned Size = getContext().getTypeSize(Ty); 1265 unsigned SizeInRegs = (Size + 31) / 32; 1266 1267 if (SizeInRegs == 0) 1268 return false; 1269 1270 if (!IsMCUABI) { 1271 if (SizeInRegs > State.FreeRegs) { 1272 State.FreeRegs = 0; 1273 return false; 1274 } 1275 } else { 1276 // The MCU psABI allows passing parameters in-reg even if there are 1277 // earlier parameters that are passed on the stack. Also, 1278 // it does not allow passing >8-byte structs in-register, 1279 // even if there are 3 free registers available. 1280 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1281 return false; 1282 } 1283 1284 State.FreeRegs -= SizeInRegs; 1285 return true; 1286 } 1287 1288 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1289 bool &InReg, 1290 bool &NeedsPadding) const { 1291 NeedsPadding = false; 1292 InReg = !IsMCUABI; 1293 1294 if (!updateFreeRegs(Ty, State)) 1295 return false; 1296 1297 if (IsMCUABI) 1298 return true; 1299 1300 if (State.CC == llvm::CallingConv::X86_FastCall || 1301 State.CC == llvm::CallingConv::X86_VectorCall) { 1302 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1303 NeedsPadding = true; 1304 1305 return false; 1306 } 1307 1308 return true; 1309 } 1310 1311 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1312 if (!updateFreeRegs(Ty, State)) 1313 return false; 1314 1315 if (IsMCUABI) 1316 return false; 1317 1318 if (State.CC == llvm::CallingConv::X86_FastCall || 1319 State.CC == llvm::CallingConv::X86_VectorCall) { 1320 if (getContext().getTypeSize(Ty) > 32) 1321 return false; 1322 1323 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1324 Ty->isReferenceType()); 1325 } 1326 1327 return true; 1328 } 1329 1330 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1331 CCState &State) const { 1332 // FIXME: Set alignment on indirect arguments. 1333 1334 Ty = useFirstFieldIfTransparentUnion(Ty); 1335 1336 // Check with the C++ ABI first. 1337 const RecordType *RT = Ty->getAs<RecordType>(); 1338 if (RT) { 1339 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1340 if (RAA == CGCXXABI::RAA_Indirect) { 1341 return getIndirectResult(Ty, false, State); 1342 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1343 // The field index doesn't matter, we'll fix it up later. 1344 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1345 } 1346 } 1347 1348 // vectorcall adds the concept of a homogenous vector aggregate, similar 1349 // to other targets. 1350 const Type *Base = nullptr; 1351 uint64_t NumElts = 0; 1352 if (State.CC == llvm::CallingConv::X86_VectorCall && 1353 isHomogeneousAggregate(Ty, Base, NumElts)) { 1354 if (State.FreeSSERegs >= NumElts) { 1355 State.FreeSSERegs -= NumElts; 1356 if (Ty->isBuiltinType() || Ty->isVectorType()) 1357 return ABIArgInfo::getDirect(); 1358 return ABIArgInfo::getExpand(); 1359 } 1360 return getIndirectResult(Ty, /*ByVal=*/false, State); 1361 } 1362 1363 if (isAggregateTypeForABI(Ty)) { 1364 if (RT) { 1365 // Structs are always byval on win32, regardless of what they contain. 1366 if (IsWin32StructABI) 1367 return getIndirectResult(Ty, true, State); 1368 1369 // Structures with flexible arrays are always indirect. 1370 if (RT->getDecl()->hasFlexibleArrayMember()) 1371 return getIndirectResult(Ty, true, State); 1372 } 1373 1374 // Ignore empty structs/unions. 1375 if (isEmptyRecord(getContext(), Ty, true)) 1376 return ABIArgInfo::getIgnore(); 1377 1378 llvm::LLVMContext &LLVMContext = getVMContext(); 1379 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1380 bool NeedsPadding, InReg; 1381 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1382 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1383 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1384 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1385 if (InReg) 1386 return ABIArgInfo::getDirectInReg(Result); 1387 else 1388 return ABIArgInfo::getDirect(Result); 1389 } 1390 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1391 1392 // Expand small (<= 128-bit) record types when we know that the stack layout 1393 // of those arguments will match the struct. This is important because the 1394 // LLVM backend isn't smart enough to remove byval, which inhibits many 1395 // optimizations. 1396 // Don't do this for the MCU if there are still free integer registers 1397 // (see X86_64 ABI for full explanation). 1398 if (getContext().getTypeSize(Ty) <= 4*32 && 1399 canExpandIndirectArgument(Ty, getContext()) && 1400 (!IsMCUABI || State.FreeRegs == 0)) 1401 return ABIArgInfo::getExpandWithPadding( 1402 State.CC == llvm::CallingConv::X86_FastCall || 1403 State.CC == llvm::CallingConv::X86_VectorCall, 1404 PaddingType); 1405 1406 return getIndirectResult(Ty, true, State); 1407 } 1408 1409 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1410 // On Darwin, some vectors are passed in memory, we handle this by passing 1411 // it as an i8/i16/i32/i64. 1412 if (IsDarwinVectorABI) { 1413 uint64_t Size = getContext().getTypeSize(Ty); 1414 if ((Size == 8 || Size == 16 || Size == 32) || 1415 (Size == 64 && VT->getNumElements() == 1)) 1416 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1417 Size)); 1418 } 1419 1420 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1421 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1422 1423 return ABIArgInfo::getDirect(); 1424 } 1425 1426 1427 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1428 Ty = EnumTy->getDecl()->getIntegerType(); 1429 1430 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1431 1432 if (Ty->isPromotableIntegerType()) { 1433 if (InReg) 1434 return ABIArgInfo::getExtendInReg(); 1435 return ABIArgInfo::getExtend(); 1436 } 1437 1438 if (InReg) 1439 return ABIArgInfo::getDirectInReg(); 1440 return ABIArgInfo::getDirect(); 1441 } 1442 1443 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1444 CCState State(FI.getCallingConvention()); 1445 if (IsMCUABI) 1446 State.FreeRegs = 3; 1447 else if (State.CC == llvm::CallingConv::X86_FastCall) 1448 State.FreeRegs = 2; 1449 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1450 State.FreeRegs = 2; 1451 State.FreeSSERegs = 6; 1452 } else if (FI.getHasRegParm()) 1453 State.FreeRegs = FI.getRegParm(); 1454 else 1455 State.FreeRegs = DefaultNumRegisterParameters; 1456 1457 if (!getCXXABI().classifyReturnType(FI)) { 1458 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1459 } else if (FI.getReturnInfo().isIndirect()) { 1460 // The C++ ABI is not aware of register usage, so we have to check if the 1461 // return value was sret and put it in a register ourselves if appropriate. 1462 if (State.FreeRegs) { 1463 --State.FreeRegs; // The sret parameter consumes a register. 1464 if (!IsMCUABI) 1465 FI.getReturnInfo().setInReg(true); 1466 } 1467 } 1468 1469 // The chain argument effectively gives us another free register. 1470 if (FI.isChainCall()) 1471 ++State.FreeRegs; 1472 1473 bool UsedInAlloca = false; 1474 for (auto &I : FI.arguments()) { 1475 I.info = classifyArgumentType(I.type, State); 1476 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1477 } 1478 1479 // If we needed to use inalloca for any argument, do a second pass and rewrite 1480 // all the memory arguments to use inalloca. 1481 if (UsedInAlloca) 1482 rewriteWithInAlloca(FI); 1483 } 1484 1485 void 1486 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1487 CharUnits &StackOffset, ABIArgInfo &Info, 1488 QualType Type) const { 1489 // Arguments are always 4-byte-aligned. 1490 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1491 1492 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1493 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1494 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1495 StackOffset += getContext().getTypeSizeInChars(Type); 1496 1497 // Insert padding bytes to respect alignment. 1498 CharUnits FieldEnd = StackOffset; 1499 StackOffset = FieldEnd.alignTo(FieldAlign); 1500 if (StackOffset != FieldEnd) { 1501 CharUnits NumBytes = StackOffset - FieldEnd; 1502 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1503 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1504 FrameFields.push_back(Ty); 1505 } 1506 } 1507 1508 static bool isArgInAlloca(const ABIArgInfo &Info) { 1509 // Leave ignored and inreg arguments alone. 1510 switch (Info.getKind()) { 1511 case ABIArgInfo::InAlloca: 1512 return true; 1513 case ABIArgInfo::Indirect: 1514 assert(Info.getIndirectByVal()); 1515 return true; 1516 case ABIArgInfo::Ignore: 1517 return false; 1518 case ABIArgInfo::Direct: 1519 case ABIArgInfo::Extend: 1520 case ABIArgInfo::Expand: 1521 if (Info.getInReg()) 1522 return false; 1523 return true; 1524 } 1525 llvm_unreachable("invalid enum"); 1526 } 1527 1528 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1529 assert(IsWin32StructABI && "inalloca only supported on win32"); 1530 1531 // Build a packed struct type for all of the arguments in memory. 1532 SmallVector<llvm::Type *, 6> FrameFields; 1533 1534 // The stack alignment is always 4. 1535 CharUnits StackAlign = CharUnits::fromQuantity(4); 1536 1537 CharUnits StackOffset; 1538 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1539 1540 // Put 'this' into the struct before 'sret', if necessary. 1541 bool IsThisCall = 1542 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1543 ABIArgInfo &Ret = FI.getReturnInfo(); 1544 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1545 isArgInAlloca(I->info)) { 1546 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1547 ++I; 1548 } 1549 1550 // Put the sret parameter into the inalloca struct if it's in memory. 1551 if (Ret.isIndirect() && !Ret.getInReg()) { 1552 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1553 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1554 // On Windows, the hidden sret parameter is always returned in eax. 1555 Ret.setInAllocaSRet(IsWin32StructABI); 1556 } 1557 1558 // Skip the 'this' parameter in ecx. 1559 if (IsThisCall) 1560 ++I; 1561 1562 // Put arguments passed in memory into the struct. 1563 for (; I != E; ++I) { 1564 if (isArgInAlloca(I->info)) 1565 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1566 } 1567 1568 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1569 /*isPacked=*/true), 1570 StackAlign); 1571 } 1572 1573 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1574 Address VAListAddr, QualType Ty) const { 1575 1576 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1577 1578 // x86-32 changes the alignment of certain arguments on the stack. 1579 // 1580 // Just messing with TypeInfo like this works because we never pass 1581 // anything indirectly. 1582 TypeInfo.second = CharUnits::fromQuantity( 1583 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1584 1585 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1586 TypeInfo, CharUnits::fromQuantity(4), 1587 /*AllowHigherAlign*/ true); 1588 } 1589 1590 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1591 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1592 assert(Triple.getArch() == llvm::Triple::x86); 1593 1594 switch (Opts.getStructReturnConvention()) { 1595 case CodeGenOptions::SRCK_Default: 1596 break; 1597 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1598 return false; 1599 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1600 return true; 1601 } 1602 1603 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1604 return true; 1605 1606 switch (Triple.getOS()) { 1607 case llvm::Triple::DragonFly: 1608 case llvm::Triple::FreeBSD: 1609 case llvm::Triple::OpenBSD: 1610 case llvm::Triple::Bitrig: 1611 case llvm::Triple::Win32: 1612 return true; 1613 default: 1614 return false; 1615 } 1616 } 1617 1618 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1619 llvm::GlobalValue *GV, 1620 CodeGen::CodeGenModule &CGM) const { 1621 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1622 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1623 // Get the LLVM function. 1624 llvm::Function *Fn = cast<llvm::Function>(GV); 1625 1626 // Now add the 'alignstack' attribute with a value of 16. 1627 llvm::AttrBuilder B; 1628 B.addStackAlignmentAttr(16); 1629 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1630 llvm::AttributeSet::get(CGM.getLLVMContext(), 1631 llvm::AttributeSet::FunctionIndex, 1632 B)); 1633 } 1634 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1635 llvm::Function *Fn = cast<llvm::Function>(GV); 1636 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1637 } 1638 } 1639 } 1640 1641 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1642 CodeGen::CodeGenFunction &CGF, 1643 llvm::Value *Address) const { 1644 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1645 1646 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1647 1648 // 0-7 are the eight integer registers; the order is different 1649 // on Darwin (for EH), but the range is the same. 1650 // 8 is %eip. 1651 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1652 1653 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1654 // 12-16 are st(0..4). Not sure why we stop at 4. 1655 // These have size 16, which is sizeof(long double) on 1656 // platforms with 8-byte alignment for that type. 1657 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1658 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1659 1660 } else { 1661 // 9 is %eflags, which doesn't get a size on Darwin for some 1662 // reason. 1663 Builder.CreateAlignedStore( 1664 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1665 CharUnits::One()); 1666 1667 // 11-16 are st(0..5). Not sure why we stop at 5. 1668 // These have size 12, which is sizeof(long double) on 1669 // platforms with 4-byte alignment for that type. 1670 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1671 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1672 } 1673 1674 return false; 1675 } 1676 1677 //===----------------------------------------------------------------------===// 1678 // X86-64 ABI Implementation 1679 //===----------------------------------------------------------------------===// 1680 1681 1682 namespace { 1683 /// The AVX ABI level for X86 targets. 1684 enum class X86AVXABILevel { 1685 None, 1686 AVX, 1687 AVX512 1688 }; 1689 1690 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1691 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1692 switch (AVXLevel) { 1693 case X86AVXABILevel::AVX512: 1694 return 512; 1695 case X86AVXABILevel::AVX: 1696 return 256; 1697 case X86AVXABILevel::None: 1698 return 128; 1699 } 1700 llvm_unreachable("Unknown AVXLevel"); 1701 } 1702 1703 /// X86_64ABIInfo - The X86_64 ABI information. 1704 class X86_64ABIInfo : public ABIInfo { 1705 enum Class { 1706 Integer = 0, 1707 SSE, 1708 SSEUp, 1709 X87, 1710 X87Up, 1711 ComplexX87, 1712 NoClass, 1713 Memory 1714 }; 1715 1716 /// merge - Implement the X86_64 ABI merging algorithm. 1717 /// 1718 /// Merge an accumulating classification \arg Accum with a field 1719 /// classification \arg Field. 1720 /// 1721 /// \param Accum - The accumulating classification. This should 1722 /// always be either NoClass or the result of a previous merge 1723 /// call. In addition, this should never be Memory (the caller 1724 /// should just return Memory for the aggregate). 1725 static Class merge(Class Accum, Class Field); 1726 1727 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1728 /// 1729 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1730 /// final MEMORY or SSE classes when necessary. 1731 /// 1732 /// \param AggregateSize - The size of the current aggregate in 1733 /// the classification process. 1734 /// 1735 /// \param Lo - The classification for the parts of the type 1736 /// residing in the low word of the containing object. 1737 /// 1738 /// \param Hi - The classification for the parts of the type 1739 /// residing in the higher words of the containing object. 1740 /// 1741 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1742 1743 /// classify - Determine the x86_64 register classes in which the 1744 /// given type T should be passed. 1745 /// 1746 /// \param Lo - The classification for the parts of the type 1747 /// residing in the low word of the containing object. 1748 /// 1749 /// \param Hi - The classification for the parts of the type 1750 /// residing in the high word of the containing object. 1751 /// 1752 /// \param OffsetBase - The bit offset of this type in the 1753 /// containing object. Some parameters are classified different 1754 /// depending on whether they straddle an eightbyte boundary. 1755 /// 1756 /// \param isNamedArg - Whether the argument in question is a "named" 1757 /// argument, as used in AMD64-ABI 3.5.7. 1758 /// 1759 /// If a word is unused its result will be NoClass; if a type should 1760 /// be passed in Memory then at least the classification of \arg Lo 1761 /// will be Memory. 1762 /// 1763 /// The \arg Lo class will be NoClass iff the argument is ignored. 1764 /// 1765 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1766 /// also be ComplexX87. 1767 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1768 bool isNamedArg) const; 1769 1770 llvm::Type *GetByteVectorType(QualType Ty) const; 1771 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1772 unsigned IROffset, QualType SourceTy, 1773 unsigned SourceOffset) const; 1774 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1775 unsigned IROffset, QualType SourceTy, 1776 unsigned SourceOffset) const; 1777 1778 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1779 /// such that the argument will be returned in memory. 1780 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1781 1782 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1783 /// such that the argument will be passed in memory. 1784 /// 1785 /// \param freeIntRegs - The number of free integer registers remaining 1786 /// available. 1787 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1788 1789 ABIArgInfo classifyReturnType(QualType RetTy) const; 1790 1791 ABIArgInfo classifyArgumentType(QualType Ty, 1792 unsigned freeIntRegs, 1793 unsigned &neededInt, 1794 unsigned &neededSSE, 1795 bool isNamedArg) const; 1796 1797 bool IsIllegalVectorType(QualType Ty) const; 1798 1799 /// The 0.98 ABI revision clarified a lot of ambiguities, 1800 /// unfortunately in ways that were not always consistent with 1801 /// certain previous compilers. In particular, platforms which 1802 /// required strict binary compatibility with older versions of GCC 1803 /// may need to exempt themselves. 1804 bool honorsRevision0_98() const { 1805 return !getTarget().getTriple().isOSDarwin(); 1806 } 1807 1808 X86AVXABILevel AVXLevel; 1809 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1810 // 64-bit hardware. 1811 bool Has64BitPointers; 1812 1813 public: 1814 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1815 ABIInfo(CGT), AVXLevel(AVXLevel), 1816 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1817 } 1818 1819 bool isPassedUsingAVXType(QualType type) const { 1820 unsigned neededInt, neededSSE; 1821 // The freeIntRegs argument doesn't matter here. 1822 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1823 /*isNamedArg*/true); 1824 if (info.isDirect()) { 1825 llvm::Type *ty = info.getCoerceToType(); 1826 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1827 return (vectorTy->getBitWidth() > 128); 1828 } 1829 return false; 1830 } 1831 1832 void computeInfo(CGFunctionInfo &FI) const override; 1833 1834 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1835 QualType Ty) const override; 1836 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 1837 QualType Ty) const override; 1838 1839 bool has64BitPointers() const { 1840 return Has64BitPointers; 1841 } 1842 }; 1843 1844 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1845 class WinX86_64ABIInfo : public ABIInfo { 1846 public: 1847 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 1848 : ABIInfo(CGT), 1849 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 1850 1851 void computeInfo(CGFunctionInfo &FI) const override; 1852 1853 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1854 QualType Ty) const override; 1855 1856 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1857 // FIXME: Assumes vectorcall is in use. 1858 return isX86VectorTypeForVectorCall(getContext(), Ty); 1859 } 1860 1861 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1862 uint64_t NumMembers) const override { 1863 // FIXME: Assumes vectorcall is in use. 1864 return isX86VectorCallAggregateSmallEnough(NumMembers); 1865 } 1866 1867 private: 1868 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1869 bool IsReturnType) const; 1870 1871 bool IsMingw64; 1872 }; 1873 1874 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1875 public: 1876 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1877 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 1878 1879 const X86_64ABIInfo &getABIInfo() const { 1880 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1881 } 1882 1883 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1884 return 7; 1885 } 1886 1887 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1888 llvm::Value *Address) const override { 1889 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1890 1891 // 0-15 are the 16 integer registers. 1892 // 16 is %rip. 1893 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1894 return false; 1895 } 1896 1897 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1898 StringRef Constraint, 1899 llvm::Type* Ty) const override { 1900 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1901 } 1902 1903 bool isNoProtoCallVariadic(const CallArgList &args, 1904 const FunctionNoProtoType *fnType) const override { 1905 // The default CC on x86-64 sets %al to the number of SSA 1906 // registers used, and GCC sets this when calling an unprototyped 1907 // function, so we override the default behavior. However, don't do 1908 // that when AVX types are involved: the ABI explicitly states it is 1909 // undefined, and it doesn't work in practice because of how the ABI 1910 // defines varargs anyway. 1911 if (fnType->getCallConv() == CC_C) { 1912 bool HasAVXType = false; 1913 for (CallArgList::const_iterator 1914 it = args.begin(), ie = args.end(); it != ie; ++it) { 1915 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1916 HasAVXType = true; 1917 break; 1918 } 1919 } 1920 1921 if (!HasAVXType) 1922 return true; 1923 } 1924 1925 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1926 } 1927 1928 llvm::Constant * 1929 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1930 unsigned Sig; 1931 if (getABIInfo().has64BitPointers()) 1932 Sig = (0xeb << 0) | // jmp rel8 1933 (0x0a << 8) | // .+0x0c 1934 ('F' << 16) | 1935 ('T' << 24); 1936 else 1937 Sig = (0xeb << 0) | // jmp rel8 1938 (0x06 << 8) | // .+0x08 1939 ('F' << 16) | 1940 ('T' << 24); 1941 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1942 } 1943 1944 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1945 CodeGen::CodeGenModule &CGM) const override { 1946 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1947 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1948 llvm::Function *Fn = cast<llvm::Function>(GV); 1949 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1950 } 1951 } 1952 } 1953 }; 1954 1955 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 1956 public: 1957 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1958 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 1959 1960 void getDependentLibraryOption(llvm::StringRef Lib, 1961 llvm::SmallString<24> &Opt) const override { 1962 Opt = "\01"; 1963 // If the argument contains a space, enclose it in quotes. 1964 if (Lib.find(" ") != StringRef::npos) 1965 Opt += "\"" + Lib.str() + "\""; 1966 else 1967 Opt += Lib; 1968 } 1969 }; 1970 1971 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1972 // If the argument does not end in .lib, automatically add the suffix. 1973 // If the argument contains a space, enclose it in quotes. 1974 // This matches the behavior of MSVC. 1975 bool Quote = (Lib.find(" ") != StringRef::npos); 1976 std::string ArgStr = Quote ? "\"" : ""; 1977 ArgStr += Lib; 1978 if (!Lib.endswith_lower(".lib")) 1979 ArgStr += ".lib"; 1980 ArgStr += Quote ? "\"" : ""; 1981 return ArgStr; 1982 } 1983 1984 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1985 public: 1986 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1987 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 1988 unsigned NumRegisterParameters) 1989 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 1990 Win32StructABI, NumRegisterParameters, false) {} 1991 1992 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1993 CodeGen::CodeGenModule &CGM) const override; 1994 1995 void getDependentLibraryOption(llvm::StringRef Lib, 1996 llvm::SmallString<24> &Opt) const override { 1997 Opt = "/DEFAULTLIB:"; 1998 Opt += qualifyWindowsLibrary(Lib); 1999 } 2000 2001 void getDetectMismatchOption(llvm::StringRef Name, 2002 llvm::StringRef Value, 2003 llvm::SmallString<32> &Opt) const override { 2004 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2005 } 2006 }; 2007 2008 static void addStackProbeSizeTargetAttribute(const Decl *D, 2009 llvm::GlobalValue *GV, 2010 CodeGen::CodeGenModule &CGM) { 2011 if (D && isa<FunctionDecl>(D)) { 2012 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2013 llvm::Function *Fn = cast<llvm::Function>(GV); 2014 2015 Fn->addFnAttr("stack-probe-size", 2016 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2017 } 2018 } 2019 } 2020 2021 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2022 llvm::GlobalValue *GV, 2023 CodeGen::CodeGenModule &CGM) const { 2024 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2025 2026 addStackProbeSizeTargetAttribute(D, GV, CGM); 2027 } 2028 2029 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2030 public: 2031 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2032 X86AVXABILevel AVXLevel) 2033 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2034 2035 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2036 CodeGen::CodeGenModule &CGM) const override; 2037 2038 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2039 return 7; 2040 } 2041 2042 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2043 llvm::Value *Address) const override { 2044 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2045 2046 // 0-15 are the 16 integer registers. 2047 // 16 is %rip. 2048 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2049 return false; 2050 } 2051 2052 void getDependentLibraryOption(llvm::StringRef Lib, 2053 llvm::SmallString<24> &Opt) const override { 2054 Opt = "/DEFAULTLIB:"; 2055 Opt += qualifyWindowsLibrary(Lib); 2056 } 2057 2058 void getDetectMismatchOption(llvm::StringRef Name, 2059 llvm::StringRef Value, 2060 llvm::SmallString<32> &Opt) const override { 2061 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2062 } 2063 }; 2064 2065 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2066 llvm::GlobalValue *GV, 2067 CodeGen::CodeGenModule &CGM) const { 2068 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2069 2070 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2071 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2072 llvm::Function *Fn = cast<llvm::Function>(GV); 2073 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2074 } 2075 } 2076 2077 addStackProbeSizeTargetAttribute(D, GV, CGM); 2078 } 2079 } 2080 2081 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2082 Class &Hi) const { 2083 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2084 // 2085 // (a) If one of the classes is Memory, the whole argument is passed in 2086 // memory. 2087 // 2088 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2089 // memory. 2090 // 2091 // (c) If the size of the aggregate exceeds two eightbytes and the first 2092 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2093 // argument is passed in memory. NOTE: This is necessary to keep the 2094 // ABI working for processors that don't support the __m256 type. 2095 // 2096 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2097 // 2098 // Some of these are enforced by the merging logic. Others can arise 2099 // only with unions; for example: 2100 // union { _Complex double; unsigned; } 2101 // 2102 // Note that clauses (b) and (c) were added in 0.98. 2103 // 2104 if (Hi == Memory) 2105 Lo = Memory; 2106 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2107 Lo = Memory; 2108 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2109 Lo = Memory; 2110 if (Hi == SSEUp && Lo != SSE) 2111 Hi = SSE; 2112 } 2113 2114 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2115 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2116 // classified recursively so that always two fields are 2117 // considered. The resulting class is calculated according to 2118 // the classes of the fields in the eightbyte: 2119 // 2120 // (a) If both classes are equal, this is the resulting class. 2121 // 2122 // (b) If one of the classes is NO_CLASS, the resulting class is 2123 // the other class. 2124 // 2125 // (c) If one of the classes is MEMORY, the result is the MEMORY 2126 // class. 2127 // 2128 // (d) If one of the classes is INTEGER, the result is the 2129 // INTEGER. 2130 // 2131 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2132 // MEMORY is used as class. 2133 // 2134 // (f) Otherwise class SSE is used. 2135 2136 // Accum should never be memory (we should have returned) or 2137 // ComplexX87 (because this cannot be passed in a structure). 2138 assert((Accum != Memory && Accum != ComplexX87) && 2139 "Invalid accumulated classification during merge."); 2140 if (Accum == Field || Field == NoClass) 2141 return Accum; 2142 if (Field == Memory) 2143 return Memory; 2144 if (Accum == NoClass) 2145 return Field; 2146 if (Accum == Integer || Field == Integer) 2147 return Integer; 2148 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2149 Accum == X87 || Accum == X87Up) 2150 return Memory; 2151 return SSE; 2152 } 2153 2154 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2155 Class &Lo, Class &Hi, bool isNamedArg) const { 2156 // FIXME: This code can be simplified by introducing a simple value class for 2157 // Class pairs with appropriate constructor methods for the various 2158 // situations. 2159 2160 // FIXME: Some of the split computations are wrong; unaligned vectors 2161 // shouldn't be passed in registers for example, so there is no chance they 2162 // can straddle an eightbyte. Verify & simplify. 2163 2164 Lo = Hi = NoClass; 2165 2166 Class &Current = OffsetBase < 64 ? Lo : Hi; 2167 Current = Memory; 2168 2169 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2170 BuiltinType::Kind k = BT->getKind(); 2171 2172 if (k == BuiltinType::Void) { 2173 Current = NoClass; 2174 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2175 Lo = Integer; 2176 Hi = Integer; 2177 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2178 Current = Integer; 2179 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2180 Current = SSE; 2181 } else if (k == BuiltinType::LongDouble) { 2182 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2183 if (LDF == &llvm::APFloat::IEEEquad) { 2184 Lo = SSE; 2185 Hi = SSEUp; 2186 } else if (LDF == &llvm::APFloat::x87DoubleExtended) { 2187 Lo = X87; 2188 Hi = X87Up; 2189 } else if (LDF == &llvm::APFloat::IEEEdouble) { 2190 Current = SSE; 2191 } else 2192 llvm_unreachable("unexpected long double representation!"); 2193 } 2194 // FIXME: _Decimal32 and _Decimal64 are SSE. 2195 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2196 return; 2197 } 2198 2199 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2200 // Classify the underlying integer type. 2201 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2202 return; 2203 } 2204 2205 if (Ty->hasPointerRepresentation()) { 2206 Current = Integer; 2207 return; 2208 } 2209 2210 if (Ty->isMemberPointerType()) { 2211 if (Ty->isMemberFunctionPointerType()) { 2212 if (Has64BitPointers) { 2213 // If Has64BitPointers, this is an {i64, i64}, so classify both 2214 // Lo and Hi now. 2215 Lo = Hi = Integer; 2216 } else { 2217 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2218 // straddles an eightbyte boundary, Hi should be classified as well. 2219 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2220 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2221 if (EB_FuncPtr != EB_ThisAdj) { 2222 Lo = Hi = Integer; 2223 } else { 2224 Current = Integer; 2225 } 2226 } 2227 } else { 2228 Current = Integer; 2229 } 2230 return; 2231 } 2232 2233 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2234 uint64_t Size = getContext().getTypeSize(VT); 2235 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2236 // gcc passes the following as integer: 2237 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2238 // 2 bytes - <2 x char>, <1 x short> 2239 // 1 byte - <1 x char> 2240 Current = Integer; 2241 2242 // If this type crosses an eightbyte boundary, it should be 2243 // split. 2244 uint64_t EB_Lo = (OffsetBase) / 64; 2245 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2246 if (EB_Lo != EB_Hi) 2247 Hi = Lo; 2248 } else if (Size == 64) { 2249 // gcc passes <1 x double> in memory. :( 2250 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 2251 return; 2252 2253 // gcc passes <1 x long long> as INTEGER. 2254 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 2255 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 2256 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 2257 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 2258 Current = Integer; 2259 else 2260 Current = SSE; 2261 2262 // If this type crosses an eightbyte boundary, it should be 2263 // split. 2264 if (OffsetBase && OffsetBase != 64) 2265 Hi = Lo; 2266 } else if (Size == 128 || 2267 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2268 // Arguments of 256-bits are split into four eightbyte chunks. The 2269 // least significant one belongs to class SSE and all the others to class 2270 // SSEUP. The original Lo and Hi design considers that types can't be 2271 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2272 // This design isn't correct for 256-bits, but since there're no cases 2273 // where the upper parts would need to be inspected, avoid adding 2274 // complexity and just consider Hi to match the 64-256 part. 2275 // 2276 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2277 // registers if they are "named", i.e. not part of the "..." of a 2278 // variadic function. 2279 // 2280 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2281 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2282 Lo = SSE; 2283 Hi = SSEUp; 2284 } 2285 return; 2286 } 2287 2288 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2289 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2290 2291 uint64_t Size = getContext().getTypeSize(Ty); 2292 if (ET->isIntegralOrEnumerationType()) { 2293 if (Size <= 64) 2294 Current = Integer; 2295 else if (Size <= 128) 2296 Lo = Hi = Integer; 2297 } else if (ET == getContext().FloatTy) { 2298 Current = SSE; 2299 } else if (ET == getContext().DoubleTy) { 2300 Lo = Hi = SSE; 2301 } else if (ET == getContext().LongDoubleTy) { 2302 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2303 if (LDF == &llvm::APFloat::IEEEquad) 2304 Current = Memory; 2305 else if (LDF == &llvm::APFloat::x87DoubleExtended) 2306 Current = ComplexX87; 2307 else if (LDF == &llvm::APFloat::IEEEdouble) 2308 Lo = Hi = SSE; 2309 else 2310 llvm_unreachable("unexpected long double representation!"); 2311 } 2312 2313 // If this complex type crosses an eightbyte boundary then it 2314 // should be split. 2315 uint64_t EB_Real = (OffsetBase) / 64; 2316 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2317 if (Hi == NoClass && EB_Real != EB_Imag) 2318 Hi = Lo; 2319 2320 return; 2321 } 2322 2323 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2324 // Arrays are treated like structures. 2325 2326 uint64_t Size = getContext().getTypeSize(Ty); 2327 2328 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2329 // than four eightbytes, ..., it has class MEMORY. 2330 if (Size > 256) 2331 return; 2332 2333 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2334 // fields, it has class MEMORY. 2335 // 2336 // Only need to check alignment of array base. 2337 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2338 return; 2339 2340 // Otherwise implement simplified merge. We could be smarter about 2341 // this, but it isn't worth it and would be harder to verify. 2342 Current = NoClass; 2343 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2344 uint64_t ArraySize = AT->getSize().getZExtValue(); 2345 2346 // The only case a 256-bit wide vector could be used is when the array 2347 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2348 // to work for sizes wider than 128, early check and fallback to memory. 2349 if (Size > 128 && EltSize != 256) 2350 return; 2351 2352 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2353 Class FieldLo, FieldHi; 2354 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2355 Lo = merge(Lo, FieldLo); 2356 Hi = merge(Hi, FieldHi); 2357 if (Lo == Memory || Hi == Memory) 2358 break; 2359 } 2360 2361 postMerge(Size, Lo, Hi); 2362 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2363 return; 2364 } 2365 2366 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2367 uint64_t Size = getContext().getTypeSize(Ty); 2368 2369 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2370 // than four eightbytes, ..., it has class MEMORY. 2371 if (Size > 256) 2372 return; 2373 2374 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2375 // copy constructor or a non-trivial destructor, it is passed by invisible 2376 // reference. 2377 if (getRecordArgABI(RT, getCXXABI())) 2378 return; 2379 2380 const RecordDecl *RD = RT->getDecl(); 2381 2382 // Assume variable sized types are passed in memory. 2383 if (RD->hasFlexibleArrayMember()) 2384 return; 2385 2386 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2387 2388 // Reset Lo class, this will be recomputed. 2389 Current = NoClass; 2390 2391 // If this is a C++ record, classify the bases first. 2392 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2393 for (const auto &I : CXXRD->bases()) { 2394 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2395 "Unexpected base class!"); 2396 const CXXRecordDecl *Base = 2397 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2398 2399 // Classify this field. 2400 // 2401 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2402 // single eightbyte, each is classified separately. Each eightbyte gets 2403 // initialized to class NO_CLASS. 2404 Class FieldLo, FieldHi; 2405 uint64_t Offset = 2406 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2407 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2408 Lo = merge(Lo, FieldLo); 2409 Hi = merge(Hi, FieldHi); 2410 if (Lo == Memory || Hi == Memory) { 2411 postMerge(Size, Lo, Hi); 2412 return; 2413 } 2414 } 2415 } 2416 2417 // Classify the fields one at a time, merging the results. 2418 unsigned idx = 0; 2419 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2420 i != e; ++i, ++idx) { 2421 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2422 bool BitField = i->isBitField(); 2423 2424 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2425 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2426 // 2427 // The only case a 256-bit wide vector could be used is when the struct 2428 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2429 // to work for sizes wider than 128, early check and fallback to memory. 2430 // 2431 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2432 Lo = Memory; 2433 postMerge(Size, Lo, Hi); 2434 return; 2435 } 2436 // Note, skip this test for bit-fields, see below. 2437 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2438 Lo = Memory; 2439 postMerge(Size, Lo, Hi); 2440 return; 2441 } 2442 2443 // Classify this field. 2444 // 2445 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2446 // exceeds a single eightbyte, each is classified 2447 // separately. Each eightbyte gets initialized to class 2448 // NO_CLASS. 2449 Class FieldLo, FieldHi; 2450 2451 // Bit-fields require special handling, they do not force the 2452 // structure to be passed in memory even if unaligned, and 2453 // therefore they can straddle an eightbyte. 2454 if (BitField) { 2455 // Ignore padding bit-fields. 2456 if (i->isUnnamedBitfield()) 2457 continue; 2458 2459 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2460 uint64_t Size = i->getBitWidthValue(getContext()); 2461 2462 uint64_t EB_Lo = Offset / 64; 2463 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2464 2465 if (EB_Lo) { 2466 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2467 FieldLo = NoClass; 2468 FieldHi = Integer; 2469 } else { 2470 FieldLo = Integer; 2471 FieldHi = EB_Hi ? Integer : NoClass; 2472 } 2473 } else 2474 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2475 Lo = merge(Lo, FieldLo); 2476 Hi = merge(Hi, FieldHi); 2477 if (Lo == Memory || Hi == Memory) 2478 break; 2479 } 2480 2481 postMerge(Size, Lo, Hi); 2482 } 2483 } 2484 2485 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2486 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2487 // place naturally. 2488 if (!isAggregateTypeForABI(Ty)) { 2489 // Treat an enum type as its underlying type. 2490 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2491 Ty = EnumTy->getDecl()->getIntegerType(); 2492 2493 return (Ty->isPromotableIntegerType() ? 2494 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2495 } 2496 2497 return getNaturalAlignIndirect(Ty); 2498 } 2499 2500 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2501 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2502 uint64_t Size = getContext().getTypeSize(VecTy); 2503 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2504 if (Size <= 64 || Size > LargestVector) 2505 return true; 2506 } 2507 2508 return false; 2509 } 2510 2511 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2512 unsigned freeIntRegs) const { 2513 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2514 // place naturally. 2515 // 2516 // This assumption is optimistic, as there could be free registers available 2517 // when we need to pass this argument in memory, and LLVM could try to pass 2518 // the argument in the free register. This does not seem to happen currently, 2519 // but this code would be much safer if we could mark the argument with 2520 // 'onstack'. See PR12193. 2521 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2522 // Treat an enum type as its underlying type. 2523 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2524 Ty = EnumTy->getDecl()->getIntegerType(); 2525 2526 return (Ty->isPromotableIntegerType() ? 2527 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2528 } 2529 2530 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2531 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2532 2533 // Compute the byval alignment. We specify the alignment of the byval in all 2534 // cases so that the mid-level optimizer knows the alignment of the byval. 2535 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2536 2537 // Attempt to avoid passing indirect results using byval when possible. This 2538 // is important for good codegen. 2539 // 2540 // We do this by coercing the value into a scalar type which the backend can 2541 // handle naturally (i.e., without using byval). 2542 // 2543 // For simplicity, we currently only do this when we have exhausted all of the 2544 // free integer registers. Doing this when there are free integer registers 2545 // would require more care, as we would have to ensure that the coerced value 2546 // did not claim the unused register. That would require either reording the 2547 // arguments to the function (so that any subsequent inreg values came first), 2548 // or only doing this optimization when there were no following arguments that 2549 // might be inreg. 2550 // 2551 // We currently expect it to be rare (particularly in well written code) for 2552 // arguments to be passed on the stack when there are still free integer 2553 // registers available (this would typically imply large structs being passed 2554 // by value), so this seems like a fair tradeoff for now. 2555 // 2556 // We can revisit this if the backend grows support for 'onstack' parameter 2557 // attributes. See PR12193. 2558 if (freeIntRegs == 0) { 2559 uint64_t Size = getContext().getTypeSize(Ty); 2560 2561 // If this type fits in an eightbyte, coerce it into the matching integral 2562 // type, which will end up on the stack (with alignment 8). 2563 if (Align == 8 && Size <= 64) 2564 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2565 Size)); 2566 } 2567 2568 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2569 } 2570 2571 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2572 /// register. Pick an LLVM IR type that will be passed as a vector register. 2573 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2574 // Wrapper structs/arrays that only contain vectors are passed just like 2575 // vectors; strip them off if present. 2576 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2577 Ty = QualType(InnerTy, 0); 2578 2579 llvm::Type *IRType = CGT.ConvertType(Ty); 2580 if (isa<llvm::VectorType>(IRType) || 2581 IRType->getTypeID() == llvm::Type::FP128TyID) 2582 return IRType; 2583 2584 // We couldn't find the preferred IR vector type for 'Ty'. 2585 uint64_t Size = getContext().getTypeSize(Ty); 2586 assert((Size == 128 || Size == 256) && "Invalid type found!"); 2587 2588 // Return a LLVM IR vector type based on the size of 'Ty'. 2589 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2590 Size / 64); 2591 } 2592 2593 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2594 /// is known to either be off the end of the specified type or being in 2595 /// alignment padding. The user type specified is known to be at most 128 bits 2596 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2597 /// classification that put one of the two halves in the INTEGER class. 2598 /// 2599 /// It is conservatively correct to return false. 2600 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2601 unsigned EndBit, ASTContext &Context) { 2602 // If the bytes being queried are off the end of the type, there is no user 2603 // data hiding here. This handles analysis of builtins, vectors and other 2604 // types that don't contain interesting padding. 2605 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2606 if (TySize <= StartBit) 2607 return true; 2608 2609 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2610 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2611 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2612 2613 // Check each element to see if the element overlaps with the queried range. 2614 for (unsigned i = 0; i != NumElts; ++i) { 2615 // If the element is after the span we care about, then we're done.. 2616 unsigned EltOffset = i*EltSize; 2617 if (EltOffset >= EndBit) break; 2618 2619 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2620 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2621 EndBit-EltOffset, Context)) 2622 return false; 2623 } 2624 // If it overlaps no elements, then it is safe to process as padding. 2625 return true; 2626 } 2627 2628 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2629 const RecordDecl *RD = RT->getDecl(); 2630 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2631 2632 // If this is a C++ record, check the bases first. 2633 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2634 for (const auto &I : CXXRD->bases()) { 2635 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2636 "Unexpected base class!"); 2637 const CXXRecordDecl *Base = 2638 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2639 2640 // If the base is after the span we care about, ignore it. 2641 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2642 if (BaseOffset >= EndBit) continue; 2643 2644 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2645 if (!BitsContainNoUserData(I.getType(), BaseStart, 2646 EndBit-BaseOffset, Context)) 2647 return false; 2648 } 2649 } 2650 2651 // Verify that no field has data that overlaps the region of interest. Yes 2652 // this could be sped up a lot by being smarter about queried fields, 2653 // however we're only looking at structs up to 16 bytes, so we don't care 2654 // much. 2655 unsigned idx = 0; 2656 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2657 i != e; ++i, ++idx) { 2658 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2659 2660 // If we found a field after the region we care about, then we're done. 2661 if (FieldOffset >= EndBit) break; 2662 2663 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2664 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2665 Context)) 2666 return false; 2667 } 2668 2669 // If nothing in this record overlapped the area of interest, then we're 2670 // clean. 2671 return true; 2672 } 2673 2674 return false; 2675 } 2676 2677 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2678 /// float member at the specified offset. For example, {int,{float}} has a 2679 /// float at offset 4. It is conservatively correct for this routine to return 2680 /// false. 2681 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2682 const llvm::DataLayout &TD) { 2683 // Base case if we find a float. 2684 if (IROffset == 0 && IRType->isFloatTy()) 2685 return true; 2686 2687 // If this is a struct, recurse into the field at the specified offset. 2688 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2689 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2690 unsigned Elt = SL->getElementContainingOffset(IROffset); 2691 IROffset -= SL->getElementOffset(Elt); 2692 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2693 } 2694 2695 // If this is an array, recurse into the field at the specified offset. 2696 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2697 llvm::Type *EltTy = ATy->getElementType(); 2698 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2699 IROffset -= IROffset/EltSize*EltSize; 2700 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2701 } 2702 2703 return false; 2704 } 2705 2706 2707 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2708 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2709 llvm::Type *X86_64ABIInfo:: 2710 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2711 QualType SourceTy, unsigned SourceOffset) const { 2712 // The only three choices we have are either double, <2 x float>, or float. We 2713 // pass as float if the last 4 bytes is just padding. This happens for 2714 // structs that contain 3 floats. 2715 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2716 SourceOffset*8+64, getContext())) 2717 return llvm::Type::getFloatTy(getVMContext()); 2718 2719 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2720 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2721 // case. 2722 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2723 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2724 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2725 2726 return llvm::Type::getDoubleTy(getVMContext()); 2727 } 2728 2729 2730 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2731 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2732 /// about the high or low part of an up-to-16-byte struct. This routine picks 2733 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2734 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2735 /// etc). 2736 /// 2737 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2738 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2739 /// the 8-byte value references. PrefType may be null. 2740 /// 2741 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2742 /// an offset into this that we're processing (which is always either 0 or 8). 2743 /// 2744 llvm::Type *X86_64ABIInfo:: 2745 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2746 QualType SourceTy, unsigned SourceOffset) const { 2747 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2748 // returning an 8-byte unit starting with it. See if we can safely use it. 2749 if (IROffset == 0) { 2750 // Pointers and int64's always fill the 8-byte unit. 2751 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2752 IRType->isIntegerTy(64)) 2753 return IRType; 2754 2755 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2756 // goodness in the source type is just tail padding. This is allowed to 2757 // kick in for struct {double,int} on the int, but not on 2758 // struct{double,int,int} because we wouldn't return the second int. We 2759 // have to do this analysis on the source type because we can't depend on 2760 // unions being lowered a specific way etc. 2761 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2762 IRType->isIntegerTy(32) || 2763 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2764 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2765 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2766 2767 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2768 SourceOffset*8+64, getContext())) 2769 return IRType; 2770 } 2771 } 2772 2773 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2774 // If this is a struct, recurse into the field at the specified offset. 2775 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2776 if (IROffset < SL->getSizeInBytes()) { 2777 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2778 IROffset -= SL->getElementOffset(FieldIdx); 2779 2780 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2781 SourceTy, SourceOffset); 2782 } 2783 } 2784 2785 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2786 llvm::Type *EltTy = ATy->getElementType(); 2787 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2788 unsigned EltOffset = IROffset/EltSize*EltSize; 2789 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2790 SourceOffset); 2791 } 2792 2793 // Okay, we don't have any better idea of what to pass, so we pass this in an 2794 // integer register that isn't too big to fit the rest of the struct. 2795 unsigned TySizeInBytes = 2796 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2797 2798 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2799 2800 // It is always safe to classify this as an integer type up to i64 that 2801 // isn't larger than the structure. 2802 return llvm::IntegerType::get(getVMContext(), 2803 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2804 } 2805 2806 2807 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2808 /// be used as elements of a two register pair to pass or return, return a 2809 /// first class aggregate to represent them. For example, if the low part of 2810 /// a by-value argument should be passed as i32* and the high part as float, 2811 /// return {i32*, float}. 2812 static llvm::Type * 2813 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2814 const llvm::DataLayout &TD) { 2815 // In order to correctly satisfy the ABI, we need to the high part to start 2816 // at offset 8. If the high and low parts we inferred are both 4-byte types 2817 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2818 // the second element at offset 8. Check for this: 2819 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2820 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2821 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 2822 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2823 2824 // To handle this, we have to increase the size of the low part so that the 2825 // second element will start at an 8 byte offset. We can't increase the size 2826 // of the second element because it might make us access off the end of the 2827 // struct. 2828 if (HiStart != 8) { 2829 // There are usually two sorts of types the ABI generation code can produce 2830 // for the low part of a pair that aren't 8 bytes in size: float or 2831 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2832 // NaCl). 2833 // Promote these to a larger type. 2834 if (Lo->isFloatTy()) 2835 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2836 else { 2837 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2838 && "Invalid/unknown lo type"); 2839 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2840 } 2841 } 2842 2843 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2844 2845 2846 // Verify that the second element is at an 8-byte offset. 2847 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2848 "Invalid x86-64 argument pair!"); 2849 return Result; 2850 } 2851 2852 ABIArgInfo X86_64ABIInfo:: 2853 classifyReturnType(QualType RetTy) const { 2854 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2855 // classification algorithm. 2856 X86_64ABIInfo::Class Lo, Hi; 2857 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2858 2859 // Check some invariants. 2860 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2861 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2862 2863 llvm::Type *ResType = nullptr; 2864 switch (Lo) { 2865 case NoClass: 2866 if (Hi == NoClass) 2867 return ABIArgInfo::getIgnore(); 2868 // If the low part is just padding, it takes no register, leave ResType 2869 // null. 2870 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2871 "Unknown missing lo part"); 2872 break; 2873 2874 case SSEUp: 2875 case X87Up: 2876 llvm_unreachable("Invalid classification for lo word."); 2877 2878 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2879 // hidden argument. 2880 case Memory: 2881 return getIndirectReturnResult(RetTy); 2882 2883 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2884 // available register of the sequence %rax, %rdx is used. 2885 case Integer: 2886 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2887 2888 // If we have a sign or zero extended integer, make sure to return Extend 2889 // so that the parameter gets the right LLVM IR attributes. 2890 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2891 // Treat an enum type as its underlying type. 2892 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2893 RetTy = EnumTy->getDecl()->getIntegerType(); 2894 2895 if (RetTy->isIntegralOrEnumerationType() && 2896 RetTy->isPromotableIntegerType()) 2897 return ABIArgInfo::getExtend(); 2898 } 2899 break; 2900 2901 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2902 // available SSE register of the sequence %xmm0, %xmm1 is used. 2903 case SSE: 2904 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2905 break; 2906 2907 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2908 // returned on the X87 stack in %st0 as 80-bit x87 number. 2909 case X87: 2910 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2911 break; 2912 2913 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2914 // part of the value is returned in %st0 and the imaginary part in 2915 // %st1. 2916 case ComplexX87: 2917 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2918 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2919 llvm::Type::getX86_FP80Ty(getVMContext()), 2920 nullptr); 2921 break; 2922 } 2923 2924 llvm::Type *HighPart = nullptr; 2925 switch (Hi) { 2926 // Memory was handled previously and X87 should 2927 // never occur as a hi class. 2928 case Memory: 2929 case X87: 2930 llvm_unreachable("Invalid classification for hi word."); 2931 2932 case ComplexX87: // Previously handled. 2933 case NoClass: 2934 break; 2935 2936 case Integer: 2937 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2938 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2939 return ABIArgInfo::getDirect(HighPart, 8); 2940 break; 2941 case SSE: 2942 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2943 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2944 return ABIArgInfo::getDirect(HighPart, 8); 2945 break; 2946 2947 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2948 // is passed in the next available eightbyte chunk if the last used 2949 // vector register. 2950 // 2951 // SSEUP should always be preceded by SSE, just widen. 2952 case SSEUp: 2953 assert(Lo == SSE && "Unexpected SSEUp classification."); 2954 ResType = GetByteVectorType(RetTy); 2955 break; 2956 2957 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2958 // returned together with the previous X87 value in %st0. 2959 case X87Up: 2960 // If X87Up is preceded by X87, we don't need to do 2961 // anything. However, in some cases with unions it may not be 2962 // preceded by X87. In such situations we follow gcc and pass the 2963 // extra bits in an SSE reg. 2964 if (Lo != X87) { 2965 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2966 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2967 return ABIArgInfo::getDirect(HighPart, 8); 2968 } 2969 break; 2970 } 2971 2972 // If a high part was specified, merge it together with the low part. It is 2973 // known to pass in the high eightbyte of the result. We do this by forming a 2974 // first class struct aggregate with the high and low part: {low, high} 2975 if (HighPart) 2976 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2977 2978 return ABIArgInfo::getDirect(ResType); 2979 } 2980 2981 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2982 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2983 bool isNamedArg) 2984 const 2985 { 2986 Ty = useFirstFieldIfTransparentUnion(Ty); 2987 2988 X86_64ABIInfo::Class Lo, Hi; 2989 classify(Ty, 0, Lo, Hi, isNamedArg); 2990 2991 // Check some invariants. 2992 // FIXME: Enforce these by construction. 2993 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2994 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2995 2996 neededInt = 0; 2997 neededSSE = 0; 2998 llvm::Type *ResType = nullptr; 2999 switch (Lo) { 3000 case NoClass: 3001 if (Hi == NoClass) 3002 return ABIArgInfo::getIgnore(); 3003 // If the low part is just padding, it takes no register, leave ResType 3004 // null. 3005 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3006 "Unknown missing lo part"); 3007 break; 3008 3009 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3010 // on the stack. 3011 case Memory: 3012 3013 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3014 // COMPLEX_X87, it is passed in memory. 3015 case X87: 3016 case ComplexX87: 3017 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3018 ++neededInt; 3019 return getIndirectResult(Ty, freeIntRegs); 3020 3021 case SSEUp: 3022 case X87Up: 3023 llvm_unreachable("Invalid classification for lo word."); 3024 3025 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3026 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3027 // and %r9 is used. 3028 case Integer: 3029 ++neededInt; 3030 3031 // Pick an 8-byte type based on the preferred type. 3032 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3033 3034 // If we have a sign or zero extended integer, make sure to return Extend 3035 // so that the parameter gets the right LLVM IR attributes. 3036 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3037 // Treat an enum type as its underlying type. 3038 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3039 Ty = EnumTy->getDecl()->getIntegerType(); 3040 3041 if (Ty->isIntegralOrEnumerationType() && 3042 Ty->isPromotableIntegerType()) 3043 return ABIArgInfo::getExtend(); 3044 } 3045 3046 break; 3047 3048 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3049 // available SSE register is used, the registers are taken in the 3050 // order from %xmm0 to %xmm7. 3051 case SSE: { 3052 llvm::Type *IRType = CGT.ConvertType(Ty); 3053 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3054 ++neededSSE; 3055 break; 3056 } 3057 } 3058 3059 llvm::Type *HighPart = nullptr; 3060 switch (Hi) { 3061 // Memory was handled previously, ComplexX87 and X87 should 3062 // never occur as hi classes, and X87Up must be preceded by X87, 3063 // which is passed in memory. 3064 case Memory: 3065 case X87: 3066 case ComplexX87: 3067 llvm_unreachable("Invalid classification for hi word."); 3068 3069 case NoClass: break; 3070 3071 case Integer: 3072 ++neededInt; 3073 // Pick an 8-byte type based on the preferred type. 3074 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3075 3076 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3077 return ABIArgInfo::getDirect(HighPart, 8); 3078 break; 3079 3080 // X87Up generally doesn't occur here (long double is passed in 3081 // memory), except in situations involving unions. 3082 case X87Up: 3083 case SSE: 3084 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3085 3086 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3087 return ABIArgInfo::getDirect(HighPart, 8); 3088 3089 ++neededSSE; 3090 break; 3091 3092 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3093 // eightbyte is passed in the upper half of the last used SSE 3094 // register. This only happens when 128-bit vectors are passed. 3095 case SSEUp: 3096 assert(Lo == SSE && "Unexpected SSEUp classification"); 3097 ResType = GetByteVectorType(Ty); 3098 break; 3099 } 3100 3101 // If a high part was specified, merge it together with the low part. It is 3102 // known to pass in the high eightbyte of the result. We do this by forming a 3103 // first class struct aggregate with the high and low part: {low, high} 3104 if (HighPart) 3105 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3106 3107 return ABIArgInfo::getDirect(ResType); 3108 } 3109 3110 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3111 3112 if (!getCXXABI().classifyReturnType(FI)) 3113 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3114 3115 // Keep track of the number of assigned registers. 3116 unsigned freeIntRegs = 6, freeSSERegs = 8; 3117 3118 // If the return value is indirect, then the hidden argument is consuming one 3119 // integer register. 3120 if (FI.getReturnInfo().isIndirect()) 3121 --freeIntRegs; 3122 3123 // The chain argument effectively gives us another free register. 3124 if (FI.isChainCall()) 3125 ++freeIntRegs; 3126 3127 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3128 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3129 // get assigned (in left-to-right order) for passing as follows... 3130 unsigned ArgNo = 0; 3131 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3132 it != ie; ++it, ++ArgNo) { 3133 bool IsNamedArg = ArgNo < NumRequiredArgs; 3134 3135 unsigned neededInt, neededSSE; 3136 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 3137 neededSSE, IsNamedArg); 3138 3139 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3140 // eightbyte of an argument, the whole argument is passed on the 3141 // stack. If registers have already been assigned for some 3142 // eightbytes of such an argument, the assignments get reverted. 3143 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 3144 freeIntRegs -= neededInt; 3145 freeSSERegs -= neededSSE; 3146 } else { 3147 it->info = getIndirectResult(it->type, freeIntRegs); 3148 } 3149 } 3150 } 3151 3152 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3153 Address VAListAddr, QualType Ty) { 3154 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3155 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3156 llvm::Value *overflow_arg_area = 3157 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3158 3159 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3160 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3161 // It isn't stated explicitly in the standard, but in practice we use 3162 // alignment greater than 16 where necessary. 3163 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3164 if (Align > CharUnits::fromQuantity(8)) { 3165 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3166 Align); 3167 } 3168 3169 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3170 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3171 llvm::Value *Res = 3172 CGF.Builder.CreateBitCast(overflow_arg_area, 3173 llvm::PointerType::getUnqual(LTy)); 3174 3175 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3176 // l->overflow_arg_area + sizeof(type). 3177 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3178 // an 8 byte boundary. 3179 3180 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3181 llvm::Value *Offset = 3182 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3183 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3184 "overflow_arg_area.next"); 3185 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3186 3187 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3188 return Address(Res, Align); 3189 } 3190 3191 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3192 QualType Ty) const { 3193 // Assume that va_list type is correct; should be pointer to LLVM type: 3194 // struct { 3195 // i32 gp_offset; 3196 // i32 fp_offset; 3197 // i8* overflow_arg_area; 3198 // i8* reg_save_area; 3199 // }; 3200 unsigned neededInt, neededSSE; 3201 3202 Ty = getContext().getCanonicalType(Ty); 3203 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3204 /*isNamedArg*/false); 3205 3206 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3207 // in the registers. If not go to step 7. 3208 if (!neededInt && !neededSSE) 3209 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3210 3211 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3212 // general purpose registers needed to pass type and num_fp to hold 3213 // the number of floating point registers needed. 3214 3215 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3216 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3217 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3218 // 3219 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3220 // register save space). 3221 3222 llvm::Value *InRegs = nullptr; 3223 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3224 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3225 if (neededInt) { 3226 gp_offset_p = 3227 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3228 "gp_offset_p"); 3229 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3230 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3231 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3232 } 3233 3234 if (neededSSE) { 3235 fp_offset_p = 3236 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3237 "fp_offset_p"); 3238 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3239 llvm::Value *FitsInFP = 3240 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3241 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3242 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3243 } 3244 3245 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3246 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3247 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3248 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3249 3250 // Emit code to load the value if it was passed in registers. 3251 3252 CGF.EmitBlock(InRegBlock); 3253 3254 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3255 // an offset of l->gp_offset and/or l->fp_offset. This may require 3256 // copying to a temporary location in case the parameter is passed 3257 // in different register classes or requires an alignment greater 3258 // than 8 for general purpose registers and 16 for XMM registers. 3259 // 3260 // FIXME: This really results in shameful code when we end up needing to 3261 // collect arguments from different places; often what should result in a 3262 // simple assembling of a structure from scattered addresses has many more 3263 // loads than necessary. Can we clean this up? 3264 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3265 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3266 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3267 "reg_save_area"); 3268 3269 Address RegAddr = Address::invalid(); 3270 if (neededInt && neededSSE) { 3271 // FIXME: Cleanup. 3272 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3273 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3274 Address Tmp = CGF.CreateMemTemp(Ty); 3275 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3276 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3277 llvm::Type *TyLo = ST->getElementType(0); 3278 llvm::Type *TyHi = ST->getElementType(1); 3279 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3280 "Unexpected ABI info for mixed regs"); 3281 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3282 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3283 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3284 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3285 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3286 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3287 3288 // Copy the first element. 3289 llvm::Value *V = 3290 CGF.Builder.CreateDefaultAlignedLoad( 3291 CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 3292 CGF.Builder.CreateStore(V, 3293 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3294 3295 // Copy the second element. 3296 V = CGF.Builder.CreateDefaultAlignedLoad( 3297 CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 3298 CharUnits Offset = CharUnits::fromQuantity( 3299 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3300 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3301 3302 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3303 } else if (neededInt) { 3304 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3305 CharUnits::fromQuantity(8)); 3306 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3307 3308 // Copy to a temporary if necessary to ensure the appropriate alignment. 3309 std::pair<CharUnits, CharUnits> SizeAlign = 3310 getContext().getTypeInfoInChars(Ty); 3311 uint64_t TySize = SizeAlign.first.getQuantity(); 3312 CharUnits TyAlign = SizeAlign.second; 3313 3314 // Copy into a temporary if the type is more aligned than the 3315 // register save area. 3316 if (TyAlign.getQuantity() > 8) { 3317 Address Tmp = CGF.CreateMemTemp(Ty); 3318 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3319 RegAddr = Tmp; 3320 } 3321 3322 } else if (neededSSE == 1) { 3323 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3324 CharUnits::fromQuantity(16)); 3325 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3326 } else { 3327 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3328 // SSE registers are spaced 16 bytes apart in the register save 3329 // area, we need to collect the two eightbytes together. 3330 // The ABI isn't explicit about this, but it seems reasonable 3331 // to assume that the slots are 16-byte aligned, since the stack is 3332 // naturally 16-byte aligned and the prologue is expected to store 3333 // all the SSE registers to the RSA. 3334 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3335 CharUnits::fromQuantity(16)); 3336 Address RegAddrHi = 3337 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3338 CharUnits::fromQuantity(16)); 3339 llvm::Type *DoubleTy = CGF.DoubleTy; 3340 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3341 llvm::Value *V; 3342 Address Tmp = CGF.CreateMemTemp(Ty); 3343 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3344 V = CGF.Builder.CreateLoad( 3345 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3346 CGF.Builder.CreateStore(V, 3347 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3348 V = CGF.Builder.CreateLoad( 3349 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3350 CGF.Builder.CreateStore(V, 3351 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3352 3353 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3354 } 3355 3356 // AMD64-ABI 3.5.7p5: Step 5. Set: 3357 // l->gp_offset = l->gp_offset + num_gp * 8 3358 // l->fp_offset = l->fp_offset + num_fp * 16. 3359 if (neededInt) { 3360 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3361 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3362 gp_offset_p); 3363 } 3364 if (neededSSE) { 3365 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3366 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3367 fp_offset_p); 3368 } 3369 CGF.EmitBranch(ContBlock); 3370 3371 // Emit code to load the value if it was passed in memory. 3372 3373 CGF.EmitBlock(InMemBlock); 3374 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3375 3376 // Return the appropriate result. 3377 3378 CGF.EmitBlock(ContBlock); 3379 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3380 "vaarg.addr"); 3381 return ResAddr; 3382 } 3383 3384 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3385 QualType Ty) const { 3386 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3387 CGF.getContext().getTypeInfoInChars(Ty), 3388 CharUnits::fromQuantity(8), 3389 /*allowHigherAlign*/ false); 3390 } 3391 3392 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3393 bool IsReturnType) const { 3394 3395 if (Ty->isVoidType()) 3396 return ABIArgInfo::getIgnore(); 3397 3398 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3399 Ty = EnumTy->getDecl()->getIntegerType(); 3400 3401 TypeInfo Info = getContext().getTypeInfo(Ty); 3402 uint64_t Width = Info.Width; 3403 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3404 3405 const RecordType *RT = Ty->getAs<RecordType>(); 3406 if (RT) { 3407 if (!IsReturnType) { 3408 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3409 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3410 } 3411 3412 if (RT->getDecl()->hasFlexibleArrayMember()) 3413 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3414 3415 } 3416 3417 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3418 // other targets. 3419 const Type *Base = nullptr; 3420 uint64_t NumElts = 0; 3421 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3422 if (FreeSSERegs >= NumElts) { 3423 FreeSSERegs -= NumElts; 3424 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3425 return ABIArgInfo::getDirect(); 3426 return ABIArgInfo::getExpand(); 3427 } 3428 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3429 } 3430 3431 3432 if (Ty->isMemberPointerType()) { 3433 // If the member pointer is represented by an LLVM int or ptr, pass it 3434 // directly. 3435 llvm::Type *LLTy = CGT.ConvertType(Ty); 3436 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3437 return ABIArgInfo::getDirect(); 3438 } 3439 3440 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3441 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3442 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3443 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3444 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3445 3446 // Otherwise, coerce it to a small integer. 3447 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3448 } 3449 3450 // Bool type is always extended to the ABI, other builtin types are not 3451 // extended. 3452 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3453 if (BT && BT->getKind() == BuiltinType::Bool) 3454 return ABIArgInfo::getExtend(); 3455 3456 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3457 // passes them indirectly through memory. 3458 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3459 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3460 if (LDF == &llvm::APFloat::x87DoubleExtended) 3461 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3462 } 3463 3464 return ABIArgInfo::getDirect(); 3465 } 3466 3467 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3468 bool IsVectorCall = 3469 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3470 3471 // We can use up to 4 SSE return registers with vectorcall. 3472 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3473 if (!getCXXABI().classifyReturnType(FI)) 3474 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3475 3476 // We can use up to 6 SSE register parameters with vectorcall. 3477 FreeSSERegs = IsVectorCall ? 6 : 0; 3478 for (auto &I : FI.arguments()) 3479 I.info = classify(I.type, FreeSSERegs, false); 3480 } 3481 3482 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3483 QualType Ty) const { 3484 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3485 CGF.getContext().getTypeInfoInChars(Ty), 3486 CharUnits::fromQuantity(8), 3487 /*allowHigherAlign*/ false); 3488 } 3489 3490 // PowerPC-32 3491 namespace { 3492 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3493 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3494 bool IsSoftFloatABI; 3495 public: 3496 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3497 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3498 3499 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3500 QualType Ty) const override; 3501 }; 3502 3503 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3504 public: 3505 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3506 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3507 3508 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3509 // This is recovered from gcc output. 3510 return 1; // r1 is the dedicated stack pointer 3511 } 3512 3513 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3514 llvm::Value *Address) const override; 3515 }; 3516 3517 } 3518 3519 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3520 QualType Ty) const { 3521 const unsigned OverflowLimit = 8; 3522 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3523 // TODO: Implement this. For now ignore. 3524 (void)CTy; 3525 return Address::invalid(); 3526 } 3527 3528 // struct __va_list_tag { 3529 // unsigned char gpr; 3530 // unsigned char fpr; 3531 // unsigned short reserved; 3532 // void *overflow_arg_area; 3533 // void *reg_save_area; 3534 // }; 3535 3536 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3537 bool isInt = 3538 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3539 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 3540 3541 // All aggregates are passed indirectly? That doesn't seem consistent 3542 // with the argument-lowering code. 3543 bool isIndirect = Ty->isAggregateType(); 3544 3545 CGBuilderTy &Builder = CGF.Builder; 3546 3547 // The calling convention either uses 1-2 GPRs or 1 FPR. 3548 Address NumRegsAddr = Address::invalid(); 3549 if (isInt || IsSoftFloatABI) { 3550 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 3551 } else { 3552 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 3553 } 3554 3555 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 3556 3557 // "Align" the register count when TY is i64. 3558 if (isI64 || (isF64 && IsSoftFloatABI)) { 3559 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 3560 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 3561 } 3562 3563 llvm::Value *CC = 3564 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 3565 3566 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3567 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3568 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3569 3570 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3571 3572 llvm::Type *DirectTy = CGF.ConvertType(Ty); 3573 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 3574 3575 // Case 1: consume registers. 3576 Address RegAddr = Address::invalid(); 3577 { 3578 CGF.EmitBlock(UsingRegs); 3579 3580 Address RegSaveAreaPtr = 3581 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 3582 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 3583 CharUnits::fromQuantity(8)); 3584 assert(RegAddr.getElementType() == CGF.Int8Ty); 3585 3586 // Floating-point registers start after the general-purpose registers. 3587 if (!(isInt || IsSoftFloatABI)) { 3588 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 3589 CharUnits::fromQuantity(32)); 3590 } 3591 3592 // Get the address of the saved value by scaling the number of 3593 // registers we've used by the number of 3594 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 3595 llvm::Value *RegOffset = 3596 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 3597 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 3598 RegAddr.getPointer(), RegOffset), 3599 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 3600 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 3601 3602 // Increase the used-register count. 3603 NumRegs = 3604 Builder.CreateAdd(NumRegs, 3605 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 3606 Builder.CreateStore(NumRegs, NumRegsAddr); 3607 3608 CGF.EmitBranch(Cont); 3609 } 3610 3611 // Case 2: consume space in the overflow area. 3612 Address MemAddr = Address::invalid(); 3613 { 3614 CGF.EmitBlock(UsingOverflow); 3615 3616 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 3617 3618 // Everything in the overflow area is rounded up to a size of at least 4. 3619 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 3620 3621 CharUnits Size; 3622 if (!isIndirect) { 3623 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 3624 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 3625 } else { 3626 Size = CGF.getPointerSize(); 3627 } 3628 3629 Address OverflowAreaAddr = 3630 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 3631 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 3632 OverflowAreaAlign); 3633 // Round up address of argument to alignment 3634 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3635 if (Align > OverflowAreaAlign) { 3636 llvm::Value *Ptr = OverflowArea.getPointer(); 3637 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 3638 Align); 3639 } 3640 3641 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 3642 3643 // Increase the overflow area. 3644 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 3645 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 3646 CGF.EmitBranch(Cont); 3647 } 3648 3649 CGF.EmitBlock(Cont); 3650 3651 // Merge the cases with a phi. 3652 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 3653 "vaarg.addr"); 3654 3655 // Load the pointer if the argument was passed indirectly. 3656 if (isIndirect) { 3657 Result = Address(Builder.CreateLoad(Result, "aggr"), 3658 getContext().getTypeAlignInChars(Ty)); 3659 } 3660 3661 return Result; 3662 } 3663 3664 bool 3665 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3666 llvm::Value *Address) const { 3667 // This is calculated from the LLVM and GCC tables and verified 3668 // against gcc output. AFAIK all ABIs use the same encoding. 3669 3670 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3671 3672 llvm::IntegerType *i8 = CGF.Int8Ty; 3673 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3674 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3675 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3676 3677 // 0-31: r0-31, the 4-byte general-purpose registers 3678 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3679 3680 // 32-63: fp0-31, the 8-byte floating-point registers 3681 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3682 3683 // 64-76 are various 4-byte special-purpose registers: 3684 // 64: mq 3685 // 65: lr 3686 // 66: ctr 3687 // 67: ap 3688 // 68-75 cr0-7 3689 // 76: xer 3690 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3691 3692 // 77-108: v0-31, the 16-byte vector registers 3693 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3694 3695 // 109: vrsave 3696 // 110: vscr 3697 // 111: spe_acc 3698 // 112: spefscr 3699 // 113: sfp 3700 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3701 3702 return false; 3703 } 3704 3705 // PowerPC-64 3706 3707 namespace { 3708 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3709 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3710 public: 3711 enum ABIKind { 3712 ELFv1 = 0, 3713 ELFv2 3714 }; 3715 3716 private: 3717 static const unsigned GPRBits = 64; 3718 ABIKind Kind; 3719 bool HasQPX; 3720 3721 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3722 // will be passed in a QPX register. 3723 bool IsQPXVectorTy(const Type *Ty) const { 3724 if (!HasQPX) 3725 return false; 3726 3727 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3728 unsigned NumElements = VT->getNumElements(); 3729 if (NumElements == 1) 3730 return false; 3731 3732 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3733 if (getContext().getTypeSize(Ty) <= 256) 3734 return true; 3735 } else if (VT->getElementType()-> 3736 isSpecificBuiltinType(BuiltinType::Float)) { 3737 if (getContext().getTypeSize(Ty) <= 128) 3738 return true; 3739 } 3740 } 3741 3742 return false; 3743 } 3744 3745 bool IsQPXVectorTy(QualType Ty) const { 3746 return IsQPXVectorTy(Ty.getTypePtr()); 3747 } 3748 3749 public: 3750 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3751 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3752 3753 bool isPromotableTypeForABI(QualType Ty) const; 3754 CharUnits getParamTypeAlignment(QualType Ty) const; 3755 3756 ABIArgInfo classifyReturnType(QualType RetTy) const; 3757 ABIArgInfo classifyArgumentType(QualType Ty) const; 3758 3759 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3760 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3761 uint64_t Members) const override; 3762 3763 // TODO: We can add more logic to computeInfo to improve performance. 3764 // Example: For aggregate arguments that fit in a register, we could 3765 // use getDirectInReg (as is done below for structs containing a single 3766 // floating-point value) to avoid pushing them to memory on function 3767 // entry. This would require changing the logic in PPCISelLowering 3768 // when lowering the parameters in the caller and args in the callee. 3769 void computeInfo(CGFunctionInfo &FI) const override { 3770 if (!getCXXABI().classifyReturnType(FI)) 3771 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3772 for (auto &I : FI.arguments()) { 3773 // We rely on the default argument classification for the most part. 3774 // One exception: An aggregate containing a single floating-point 3775 // or vector item must be passed in a register if one is available. 3776 const Type *T = isSingleElementStruct(I.type, getContext()); 3777 if (T) { 3778 const BuiltinType *BT = T->getAs<BuiltinType>(); 3779 if (IsQPXVectorTy(T) || 3780 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3781 (BT && BT->isFloatingPoint())) { 3782 QualType QT(T, 0); 3783 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3784 continue; 3785 } 3786 } 3787 I.info = classifyArgumentType(I.type); 3788 } 3789 } 3790 3791 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3792 QualType Ty) const override; 3793 }; 3794 3795 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3796 3797 public: 3798 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3799 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3800 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} 3801 3802 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3803 // This is recovered from gcc output. 3804 return 1; // r1 is the dedicated stack pointer 3805 } 3806 3807 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3808 llvm::Value *Address) const override; 3809 }; 3810 3811 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3812 public: 3813 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3814 3815 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3816 // This is recovered from gcc output. 3817 return 1; // r1 is the dedicated stack pointer 3818 } 3819 3820 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3821 llvm::Value *Address) const override; 3822 }; 3823 3824 } 3825 3826 // Return true if the ABI requires Ty to be passed sign- or zero- 3827 // extended to 64 bits. 3828 bool 3829 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3830 // Treat an enum type as its underlying type. 3831 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3832 Ty = EnumTy->getDecl()->getIntegerType(); 3833 3834 // Promotable integer types are required to be promoted by the ABI. 3835 if (Ty->isPromotableIntegerType()) 3836 return true; 3837 3838 // In addition to the usual promotable integer types, we also need to 3839 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3840 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3841 switch (BT->getKind()) { 3842 case BuiltinType::Int: 3843 case BuiltinType::UInt: 3844 return true; 3845 default: 3846 break; 3847 } 3848 3849 return false; 3850 } 3851 3852 /// isAlignedParamType - Determine whether a type requires 16-byte or 3853 /// higher alignment in the parameter area. Always returns at least 8. 3854 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 3855 // Complex types are passed just like their elements. 3856 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3857 Ty = CTy->getElementType(); 3858 3859 // Only vector types of size 16 bytes need alignment (larger types are 3860 // passed via reference, smaller types are not aligned). 3861 if (IsQPXVectorTy(Ty)) { 3862 if (getContext().getTypeSize(Ty) > 128) 3863 return CharUnits::fromQuantity(32); 3864 3865 return CharUnits::fromQuantity(16); 3866 } else if (Ty->isVectorType()) { 3867 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 3868 } 3869 3870 // For single-element float/vector structs, we consider the whole type 3871 // to have the same alignment requirements as its single element. 3872 const Type *AlignAsType = nullptr; 3873 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3874 if (EltType) { 3875 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3876 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 3877 getContext().getTypeSize(EltType) == 128) || 3878 (BT && BT->isFloatingPoint())) 3879 AlignAsType = EltType; 3880 } 3881 3882 // Likewise for ELFv2 homogeneous aggregates. 3883 const Type *Base = nullptr; 3884 uint64_t Members = 0; 3885 if (!AlignAsType && Kind == ELFv2 && 3886 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3887 AlignAsType = Base; 3888 3889 // With special case aggregates, only vector base types need alignment. 3890 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 3891 if (getContext().getTypeSize(AlignAsType) > 128) 3892 return CharUnits::fromQuantity(32); 3893 3894 return CharUnits::fromQuantity(16); 3895 } else if (AlignAsType) { 3896 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 3897 } 3898 3899 // Otherwise, we only need alignment for any aggregate type that 3900 // has an alignment requirement of >= 16 bytes. 3901 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 3902 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 3903 return CharUnits::fromQuantity(32); 3904 return CharUnits::fromQuantity(16); 3905 } 3906 3907 return CharUnits::fromQuantity(8); 3908 } 3909 3910 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3911 /// aggregate. Base is set to the base element type, and Members is set 3912 /// to the number of base elements. 3913 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3914 uint64_t &Members) const { 3915 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3916 uint64_t NElements = AT->getSize().getZExtValue(); 3917 if (NElements == 0) 3918 return false; 3919 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3920 return false; 3921 Members *= NElements; 3922 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3923 const RecordDecl *RD = RT->getDecl(); 3924 if (RD->hasFlexibleArrayMember()) 3925 return false; 3926 3927 Members = 0; 3928 3929 // If this is a C++ record, check the bases first. 3930 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3931 for (const auto &I : CXXRD->bases()) { 3932 // Ignore empty records. 3933 if (isEmptyRecord(getContext(), I.getType(), true)) 3934 continue; 3935 3936 uint64_t FldMembers; 3937 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3938 return false; 3939 3940 Members += FldMembers; 3941 } 3942 } 3943 3944 for (const auto *FD : RD->fields()) { 3945 // Ignore (non-zero arrays of) empty records. 3946 QualType FT = FD->getType(); 3947 while (const ConstantArrayType *AT = 3948 getContext().getAsConstantArrayType(FT)) { 3949 if (AT->getSize().getZExtValue() == 0) 3950 return false; 3951 FT = AT->getElementType(); 3952 } 3953 if (isEmptyRecord(getContext(), FT, true)) 3954 continue; 3955 3956 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3957 if (getContext().getLangOpts().CPlusPlus && 3958 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3959 continue; 3960 3961 uint64_t FldMembers; 3962 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3963 return false; 3964 3965 Members = (RD->isUnion() ? 3966 std::max(Members, FldMembers) : Members + FldMembers); 3967 } 3968 3969 if (!Base) 3970 return false; 3971 3972 // Ensure there is no padding. 3973 if (getContext().getTypeSize(Base) * Members != 3974 getContext().getTypeSize(Ty)) 3975 return false; 3976 } else { 3977 Members = 1; 3978 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3979 Members = 2; 3980 Ty = CT->getElementType(); 3981 } 3982 3983 // Most ABIs only support float, double, and some vector type widths. 3984 if (!isHomogeneousAggregateBaseType(Ty)) 3985 return false; 3986 3987 // The base type must be the same for all members. Types that 3988 // agree in both total size and mode (float vs. vector) are 3989 // treated as being equivalent here. 3990 const Type *TyPtr = Ty.getTypePtr(); 3991 if (!Base) 3992 Base = TyPtr; 3993 3994 if (Base->isVectorType() != TyPtr->isVectorType() || 3995 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3996 return false; 3997 } 3998 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3999 } 4000 4001 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4002 // Homogeneous aggregates for ELFv2 must have base types of float, 4003 // double, long double, or 128-bit vectors. 4004 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4005 if (BT->getKind() == BuiltinType::Float || 4006 BT->getKind() == BuiltinType::Double || 4007 BT->getKind() == BuiltinType::LongDouble) 4008 return true; 4009 } 4010 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4011 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4012 return true; 4013 } 4014 return false; 4015 } 4016 4017 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4018 const Type *Base, uint64_t Members) const { 4019 // Vector types require one register, floating point types require one 4020 // or two registers depending on their size. 4021 uint32_t NumRegs = 4022 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4023 4024 // Homogeneous Aggregates may occupy at most 8 registers. 4025 return Members * NumRegs <= 8; 4026 } 4027 4028 ABIArgInfo 4029 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4030 Ty = useFirstFieldIfTransparentUnion(Ty); 4031 4032 if (Ty->isAnyComplexType()) 4033 return ABIArgInfo::getDirect(); 4034 4035 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4036 // or via reference (larger than 16 bytes). 4037 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4038 uint64_t Size = getContext().getTypeSize(Ty); 4039 if (Size > 128) 4040 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4041 else if (Size < 128) { 4042 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4043 return ABIArgInfo::getDirect(CoerceTy); 4044 } 4045 } 4046 4047 if (isAggregateTypeForABI(Ty)) { 4048 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4049 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4050 4051 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4052 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4053 4054 // ELFv2 homogeneous aggregates are passed as array types. 4055 const Type *Base = nullptr; 4056 uint64_t Members = 0; 4057 if (Kind == ELFv2 && 4058 isHomogeneousAggregate(Ty, Base, Members)) { 4059 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4060 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4061 return ABIArgInfo::getDirect(CoerceTy); 4062 } 4063 4064 // If an aggregate may end up fully in registers, we do not 4065 // use the ByVal method, but pass the aggregate as array. 4066 // This is usually beneficial since we avoid forcing the 4067 // back-end to store the argument to memory. 4068 uint64_t Bits = getContext().getTypeSize(Ty); 4069 if (Bits > 0 && Bits <= 8 * GPRBits) { 4070 llvm::Type *CoerceTy; 4071 4072 // Types up to 8 bytes are passed as integer type (which will be 4073 // properly aligned in the argument save area doubleword). 4074 if (Bits <= GPRBits) 4075 CoerceTy = 4076 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4077 // Larger types are passed as arrays, with the base type selected 4078 // according to the required alignment in the save area. 4079 else { 4080 uint64_t RegBits = ABIAlign * 8; 4081 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4082 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4083 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4084 } 4085 4086 return ABIArgInfo::getDirect(CoerceTy); 4087 } 4088 4089 // All other aggregates are passed ByVal. 4090 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4091 /*ByVal=*/true, 4092 /*Realign=*/TyAlign > ABIAlign); 4093 } 4094 4095 return (isPromotableTypeForABI(Ty) ? 4096 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4097 } 4098 4099 ABIArgInfo 4100 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4101 if (RetTy->isVoidType()) 4102 return ABIArgInfo::getIgnore(); 4103 4104 if (RetTy->isAnyComplexType()) 4105 return ABIArgInfo::getDirect(); 4106 4107 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4108 // or via reference (larger than 16 bytes). 4109 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4110 uint64_t Size = getContext().getTypeSize(RetTy); 4111 if (Size > 128) 4112 return getNaturalAlignIndirect(RetTy); 4113 else if (Size < 128) { 4114 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4115 return ABIArgInfo::getDirect(CoerceTy); 4116 } 4117 } 4118 4119 if (isAggregateTypeForABI(RetTy)) { 4120 // ELFv2 homogeneous aggregates are returned as array types. 4121 const Type *Base = nullptr; 4122 uint64_t Members = 0; 4123 if (Kind == ELFv2 && 4124 isHomogeneousAggregate(RetTy, Base, Members)) { 4125 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4126 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4127 return ABIArgInfo::getDirect(CoerceTy); 4128 } 4129 4130 // ELFv2 small aggregates are returned in up to two registers. 4131 uint64_t Bits = getContext().getTypeSize(RetTy); 4132 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4133 if (Bits == 0) 4134 return ABIArgInfo::getIgnore(); 4135 4136 llvm::Type *CoerceTy; 4137 if (Bits > GPRBits) { 4138 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4139 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4140 } else 4141 CoerceTy = 4142 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4143 return ABIArgInfo::getDirect(CoerceTy); 4144 } 4145 4146 // All other aggregates are returned indirectly. 4147 return getNaturalAlignIndirect(RetTy); 4148 } 4149 4150 return (isPromotableTypeForABI(RetTy) ? 4151 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4152 } 4153 4154 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4155 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4156 QualType Ty) const { 4157 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4158 TypeInfo.second = getParamTypeAlignment(Ty); 4159 4160 CharUnits SlotSize = CharUnits::fromQuantity(8); 4161 4162 // If we have a complex type and the base type is smaller than 8 bytes, 4163 // the ABI calls for the real and imaginary parts to be right-adjusted 4164 // in separate doublewords. However, Clang expects us to produce a 4165 // pointer to a structure with the two parts packed tightly. So generate 4166 // loads of the real and imaginary parts relative to the va_list pointer, 4167 // and store them to a temporary structure. 4168 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4169 CharUnits EltSize = TypeInfo.first / 2; 4170 if (EltSize < SlotSize) { 4171 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4172 SlotSize * 2, SlotSize, 4173 SlotSize, /*AllowHigher*/ true); 4174 4175 Address RealAddr = Addr; 4176 Address ImagAddr = RealAddr; 4177 if (CGF.CGM.getDataLayout().isBigEndian()) { 4178 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4179 SlotSize - EltSize); 4180 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4181 2 * SlotSize - EltSize); 4182 } else { 4183 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4184 } 4185 4186 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4187 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4188 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4189 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4190 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4191 4192 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4193 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4194 /*init*/ true); 4195 return Temp; 4196 } 4197 } 4198 4199 // Otherwise, just use the general rule. 4200 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4201 TypeInfo, SlotSize, /*AllowHigher*/ true); 4202 } 4203 4204 static bool 4205 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4206 llvm::Value *Address) { 4207 // This is calculated from the LLVM and GCC tables and verified 4208 // against gcc output. AFAIK all ABIs use the same encoding. 4209 4210 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4211 4212 llvm::IntegerType *i8 = CGF.Int8Ty; 4213 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4214 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4215 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4216 4217 // 0-31: r0-31, the 8-byte general-purpose registers 4218 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4219 4220 // 32-63: fp0-31, the 8-byte floating-point registers 4221 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4222 4223 // 64-76 are various 4-byte special-purpose registers: 4224 // 64: mq 4225 // 65: lr 4226 // 66: ctr 4227 // 67: ap 4228 // 68-75 cr0-7 4229 // 76: xer 4230 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4231 4232 // 77-108: v0-31, the 16-byte vector registers 4233 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4234 4235 // 109: vrsave 4236 // 110: vscr 4237 // 111: spe_acc 4238 // 112: spefscr 4239 // 113: sfp 4240 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4241 4242 return false; 4243 } 4244 4245 bool 4246 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4247 CodeGen::CodeGenFunction &CGF, 4248 llvm::Value *Address) const { 4249 4250 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4251 } 4252 4253 bool 4254 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4255 llvm::Value *Address) const { 4256 4257 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4258 } 4259 4260 //===----------------------------------------------------------------------===// 4261 // AArch64 ABI Implementation 4262 //===----------------------------------------------------------------------===// 4263 4264 namespace { 4265 4266 class AArch64ABIInfo : public ABIInfo { 4267 public: 4268 enum ABIKind { 4269 AAPCS = 0, 4270 DarwinPCS 4271 }; 4272 4273 private: 4274 ABIKind Kind; 4275 4276 public: 4277 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 4278 4279 private: 4280 ABIKind getABIKind() const { return Kind; } 4281 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4282 4283 ABIArgInfo classifyReturnType(QualType RetTy) const; 4284 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4285 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4286 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4287 uint64_t Members) const override; 4288 4289 bool isIllegalVectorType(QualType Ty) const; 4290 4291 void computeInfo(CGFunctionInfo &FI) const override { 4292 if (!getCXXABI().classifyReturnType(FI)) 4293 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4294 4295 for (auto &it : FI.arguments()) 4296 it.info = classifyArgumentType(it.type); 4297 } 4298 4299 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4300 CodeGenFunction &CGF) const; 4301 4302 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4303 CodeGenFunction &CGF) const; 4304 4305 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4306 QualType Ty) const override { 4307 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4308 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4309 } 4310 }; 4311 4312 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4313 public: 4314 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4315 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4316 4317 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4318 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4319 } 4320 4321 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4322 return 31; 4323 } 4324 4325 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4326 }; 4327 } 4328 4329 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4330 Ty = useFirstFieldIfTransparentUnion(Ty); 4331 4332 // Handle illegal vector types here. 4333 if (isIllegalVectorType(Ty)) { 4334 uint64_t Size = getContext().getTypeSize(Ty); 4335 // Android promotes <2 x i8> to i16, not i32 4336 if(isAndroid() && (Size <= 16)) { 4337 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4338 return ABIArgInfo::getDirect(ResType); 4339 } 4340 if (Size <= 32) { 4341 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4342 return ABIArgInfo::getDirect(ResType); 4343 } 4344 if (Size == 64) { 4345 llvm::Type *ResType = 4346 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4347 return ABIArgInfo::getDirect(ResType); 4348 } 4349 if (Size == 128) { 4350 llvm::Type *ResType = 4351 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4352 return ABIArgInfo::getDirect(ResType); 4353 } 4354 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4355 } 4356 4357 if (!isAggregateTypeForABI(Ty)) { 4358 // Treat an enum type as its underlying type. 4359 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4360 Ty = EnumTy->getDecl()->getIntegerType(); 4361 4362 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4363 ? ABIArgInfo::getExtend() 4364 : ABIArgInfo::getDirect()); 4365 } 4366 4367 // Structures with either a non-trivial destructor or a non-trivial 4368 // copy constructor are always indirect. 4369 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4370 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4371 CGCXXABI::RAA_DirectInMemory); 4372 } 4373 4374 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4375 // elsewhere for GNU compatibility. 4376 if (isEmptyRecord(getContext(), Ty, true)) { 4377 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4378 return ABIArgInfo::getIgnore(); 4379 4380 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4381 } 4382 4383 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4384 const Type *Base = nullptr; 4385 uint64_t Members = 0; 4386 if (isHomogeneousAggregate(Ty, Base, Members)) { 4387 return ABIArgInfo::getDirect( 4388 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4389 } 4390 4391 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4392 uint64_t Size = getContext().getTypeSize(Ty); 4393 if (Size <= 128) { 4394 unsigned Alignment = getContext().getTypeAlign(Ty); 4395 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4396 4397 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4398 // For aggregates with 16-byte alignment, we use i128. 4399 if (Alignment < 128 && Size == 128) { 4400 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4401 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4402 } 4403 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4404 } 4405 4406 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4407 } 4408 4409 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4410 if (RetTy->isVoidType()) 4411 return ABIArgInfo::getIgnore(); 4412 4413 // Large vector types should be returned via memory. 4414 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4415 return getNaturalAlignIndirect(RetTy); 4416 4417 if (!isAggregateTypeForABI(RetTy)) { 4418 // Treat an enum type as its underlying type. 4419 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4420 RetTy = EnumTy->getDecl()->getIntegerType(); 4421 4422 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4423 ? ABIArgInfo::getExtend() 4424 : ABIArgInfo::getDirect()); 4425 } 4426 4427 if (isEmptyRecord(getContext(), RetTy, true)) 4428 return ABIArgInfo::getIgnore(); 4429 4430 const Type *Base = nullptr; 4431 uint64_t Members = 0; 4432 if (isHomogeneousAggregate(RetTy, Base, Members)) 4433 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4434 return ABIArgInfo::getDirect(); 4435 4436 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4437 uint64_t Size = getContext().getTypeSize(RetTy); 4438 if (Size <= 128) { 4439 unsigned Alignment = getContext().getTypeAlign(RetTy); 4440 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4441 4442 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4443 // For aggregates with 16-byte alignment, we use i128. 4444 if (Alignment < 128 && Size == 128) { 4445 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4446 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4447 } 4448 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4449 } 4450 4451 return getNaturalAlignIndirect(RetTy); 4452 } 4453 4454 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4455 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4456 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4457 // Check whether VT is legal. 4458 unsigned NumElements = VT->getNumElements(); 4459 uint64_t Size = getContext().getTypeSize(VT); 4460 // NumElements should be power of 2 between 1 and 16. 4461 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 4462 return true; 4463 return Size != 64 && (Size != 128 || NumElements == 1); 4464 } 4465 return false; 4466 } 4467 4468 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4469 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4470 // point type or a short-vector type. This is the same as the 32-bit ABI, 4471 // but with the difference that any floating-point type is allowed, 4472 // including __fp16. 4473 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4474 if (BT->isFloatingPoint()) 4475 return true; 4476 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4477 unsigned VecSize = getContext().getTypeSize(VT); 4478 if (VecSize == 64 || VecSize == 128) 4479 return true; 4480 } 4481 return false; 4482 } 4483 4484 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4485 uint64_t Members) const { 4486 return Members <= 4; 4487 } 4488 4489 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 4490 QualType Ty, 4491 CodeGenFunction &CGF) const { 4492 ABIArgInfo AI = classifyArgumentType(Ty); 4493 bool IsIndirect = AI.isIndirect(); 4494 4495 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4496 if (IsIndirect) 4497 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4498 else if (AI.getCoerceToType()) 4499 BaseTy = AI.getCoerceToType(); 4500 4501 unsigned NumRegs = 1; 4502 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4503 BaseTy = ArrTy->getElementType(); 4504 NumRegs = ArrTy->getNumElements(); 4505 } 4506 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4507 4508 // The AArch64 va_list type and handling is specified in the Procedure Call 4509 // Standard, section B.4: 4510 // 4511 // struct { 4512 // void *__stack; 4513 // void *__gr_top; 4514 // void *__vr_top; 4515 // int __gr_offs; 4516 // int __vr_offs; 4517 // }; 4518 4519 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4520 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4521 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4522 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4523 4524 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4525 CharUnits TyAlign = TyInfo.second; 4526 4527 Address reg_offs_p = Address::invalid(); 4528 llvm::Value *reg_offs = nullptr; 4529 int reg_top_index; 4530 CharUnits reg_top_offset; 4531 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 4532 if (!IsFPR) { 4533 // 3 is the field number of __gr_offs 4534 reg_offs_p = 4535 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 4536 "gr_offs_p"); 4537 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4538 reg_top_index = 1; // field number for __gr_top 4539 reg_top_offset = CharUnits::fromQuantity(8); 4540 RegSize = llvm::alignTo(RegSize, 8); 4541 } else { 4542 // 4 is the field number of __vr_offs. 4543 reg_offs_p = 4544 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 4545 "vr_offs_p"); 4546 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4547 reg_top_index = 2; // field number for __vr_top 4548 reg_top_offset = CharUnits::fromQuantity(16); 4549 RegSize = 16 * NumRegs; 4550 } 4551 4552 //======================================= 4553 // Find out where argument was passed 4554 //======================================= 4555 4556 // If reg_offs >= 0 we're already using the stack for this type of 4557 // argument. We don't want to keep updating reg_offs (in case it overflows, 4558 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4559 // whatever they get). 4560 llvm::Value *UsingStack = nullptr; 4561 UsingStack = CGF.Builder.CreateICmpSGE( 4562 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4563 4564 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4565 4566 // Otherwise, at least some kind of argument could go in these registers, the 4567 // question is whether this particular type is too big. 4568 CGF.EmitBlock(MaybeRegBlock); 4569 4570 // Integer arguments may need to correct register alignment (for example a 4571 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4572 // align __gr_offs to calculate the potential address. 4573 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 4574 int Align = TyAlign.getQuantity(); 4575 4576 reg_offs = CGF.Builder.CreateAdd( 4577 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4578 "align_regoffs"); 4579 reg_offs = CGF.Builder.CreateAnd( 4580 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4581 "aligned_regoffs"); 4582 } 4583 4584 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4585 // The fact that this is done unconditionally reflects the fact that 4586 // allocating an argument to the stack also uses up all the remaining 4587 // registers of the appropriate kind. 4588 llvm::Value *NewOffset = nullptr; 4589 NewOffset = CGF.Builder.CreateAdd( 4590 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4591 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4592 4593 // Now we're in a position to decide whether this argument really was in 4594 // registers or not. 4595 llvm::Value *InRegs = nullptr; 4596 InRegs = CGF.Builder.CreateICmpSLE( 4597 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4598 4599 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4600 4601 //======================================= 4602 // Argument was in registers 4603 //======================================= 4604 4605 // Now we emit the code for if the argument was originally passed in 4606 // registers. First start the appropriate block: 4607 CGF.EmitBlock(InRegBlock); 4608 4609 llvm::Value *reg_top = nullptr; 4610 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 4611 reg_top_offset, "reg_top_p"); 4612 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4613 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 4614 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 4615 Address RegAddr = Address::invalid(); 4616 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 4617 4618 if (IsIndirect) { 4619 // If it's been passed indirectly (actually a struct), whatever we find from 4620 // stored registers or on the stack will actually be a struct **. 4621 MemTy = llvm::PointerType::getUnqual(MemTy); 4622 } 4623 4624 const Type *Base = nullptr; 4625 uint64_t NumMembers = 0; 4626 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4627 if (IsHFA && NumMembers > 1) { 4628 // Homogeneous aggregates passed in registers will have their elements split 4629 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4630 // qN+1, ...). We reload and store into a temporary local variable 4631 // contiguously. 4632 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4633 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 4634 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4635 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4636 Address Tmp = CGF.CreateTempAlloca(HFATy, 4637 std::max(TyAlign, BaseTyInfo.second)); 4638 4639 // On big-endian platforms, the value will be right-aligned in its slot. 4640 int Offset = 0; 4641 if (CGF.CGM.getDataLayout().isBigEndian() && 4642 BaseTyInfo.first.getQuantity() < 16) 4643 Offset = 16 - BaseTyInfo.first.getQuantity(); 4644 4645 for (unsigned i = 0; i < NumMembers; ++i) { 4646 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 4647 Address LoadAddr = 4648 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 4649 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 4650 4651 Address StoreAddr = 4652 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 4653 4654 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4655 CGF.Builder.CreateStore(Elem, StoreAddr); 4656 } 4657 4658 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 4659 } else { 4660 // Otherwise the object is contiguous in memory. 4661 4662 // It might be right-aligned in its slot. 4663 CharUnits SlotSize = BaseAddr.getAlignment(); 4664 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 4665 (IsHFA || !isAggregateTypeForABI(Ty)) && 4666 TyInfo.first < SlotSize) { 4667 CharUnits Offset = SlotSize - TyInfo.first; 4668 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 4669 } 4670 4671 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 4672 } 4673 4674 CGF.EmitBranch(ContBlock); 4675 4676 //======================================= 4677 // Argument was on the stack 4678 //======================================= 4679 CGF.EmitBlock(OnStackBlock); 4680 4681 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 4682 CharUnits::Zero(), "stack_p"); 4683 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 4684 4685 // Again, stack arguments may need realignment. In this case both integer and 4686 // floating-point ones might be affected. 4687 if (!IsIndirect && TyAlign.getQuantity() > 8) { 4688 int Align = TyAlign.getQuantity(); 4689 4690 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 4691 4692 OnStackPtr = CGF.Builder.CreateAdd( 4693 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4694 "align_stack"); 4695 OnStackPtr = CGF.Builder.CreateAnd( 4696 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4697 "align_stack"); 4698 4699 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 4700 } 4701 Address OnStackAddr(OnStackPtr, 4702 std::max(CharUnits::fromQuantity(8), TyAlign)); 4703 4704 // All stack slots are multiples of 8 bytes. 4705 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 4706 CharUnits StackSize; 4707 if (IsIndirect) 4708 StackSize = StackSlotSize; 4709 else 4710 StackSize = TyInfo.first.alignTo(StackSlotSize); 4711 4712 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 4713 llvm::Value *NewStack = 4714 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 4715 4716 // Write the new value of __stack for the next call to va_arg 4717 CGF.Builder.CreateStore(NewStack, stack_p); 4718 4719 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4720 TyInfo.first < StackSlotSize) { 4721 CharUnits Offset = StackSlotSize - TyInfo.first; 4722 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 4723 } 4724 4725 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 4726 4727 CGF.EmitBranch(ContBlock); 4728 4729 //======================================= 4730 // Tidy up 4731 //======================================= 4732 CGF.EmitBlock(ContBlock); 4733 4734 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 4735 OnStackAddr, OnStackBlock, "vaargs.addr"); 4736 4737 if (IsIndirect) 4738 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 4739 TyInfo.second); 4740 4741 return ResAddr; 4742 } 4743 4744 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4745 CodeGenFunction &CGF) const { 4746 // The backend's lowering doesn't support va_arg for aggregates or 4747 // illegal vector types. Lower VAArg here for these cases and use 4748 // the LLVM va_arg instruction for everything else. 4749 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4750 return Address::invalid(); 4751 4752 CharUnits SlotSize = CharUnits::fromQuantity(8); 4753 4754 // Empty records are ignored for parameter passing purposes. 4755 if (isEmptyRecord(getContext(), Ty, true)) { 4756 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 4757 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 4758 return Addr; 4759 } 4760 4761 // The size of the actual thing passed, which might end up just 4762 // being a pointer for indirect types. 4763 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4764 4765 // Arguments bigger than 16 bytes which aren't homogeneous 4766 // aggregates should be passed indirectly. 4767 bool IsIndirect = false; 4768 if (TyInfo.first.getQuantity() > 16) { 4769 const Type *Base = nullptr; 4770 uint64_t Members = 0; 4771 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 4772 } 4773 4774 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4775 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 4776 } 4777 4778 //===----------------------------------------------------------------------===// 4779 // ARM ABI Implementation 4780 //===----------------------------------------------------------------------===// 4781 4782 namespace { 4783 4784 class ARMABIInfo : public ABIInfo { 4785 public: 4786 enum ABIKind { 4787 APCS = 0, 4788 AAPCS = 1, 4789 AAPCS_VFP = 2, 4790 AAPCS16_VFP = 3, 4791 }; 4792 4793 private: 4794 ABIKind Kind; 4795 4796 public: 4797 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 4798 setCCs(); 4799 } 4800 4801 bool isEABI() const { 4802 switch (getTarget().getTriple().getEnvironment()) { 4803 case llvm::Triple::Android: 4804 case llvm::Triple::EABI: 4805 case llvm::Triple::EABIHF: 4806 case llvm::Triple::GNUEABI: 4807 case llvm::Triple::GNUEABIHF: 4808 return true; 4809 default: 4810 return false; 4811 } 4812 } 4813 4814 bool isEABIHF() const { 4815 switch (getTarget().getTriple().getEnvironment()) { 4816 case llvm::Triple::EABIHF: 4817 case llvm::Triple::GNUEABIHF: 4818 return true; 4819 default: 4820 return false; 4821 } 4822 } 4823 4824 ABIKind getABIKind() const { return Kind; } 4825 4826 private: 4827 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4828 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4829 bool isIllegalVectorType(QualType Ty) const; 4830 4831 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4832 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4833 uint64_t Members) const override; 4834 4835 void computeInfo(CGFunctionInfo &FI) const override; 4836 4837 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4838 QualType Ty) const override; 4839 4840 llvm::CallingConv::ID getLLVMDefaultCC() const; 4841 llvm::CallingConv::ID getABIDefaultCC() const; 4842 void setCCs(); 4843 }; 4844 4845 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4846 public: 4847 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4848 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4849 4850 const ARMABIInfo &getABIInfo() const { 4851 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4852 } 4853 4854 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4855 return 13; 4856 } 4857 4858 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4859 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4860 } 4861 4862 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4863 llvm::Value *Address) const override { 4864 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4865 4866 // 0-15 are the 16 integer registers. 4867 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4868 return false; 4869 } 4870 4871 unsigned getSizeOfUnwindException() const override { 4872 if (getABIInfo().isEABI()) return 88; 4873 return TargetCodeGenInfo::getSizeOfUnwindException(); 4874 } 4875 4876 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4877 CodeGen::CodeGenModule &CGM) const override { 4878 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 4879 if (!FD) 4880 return; 4881 4882 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4883 if (!Attr) 4884 return; 4885 4886 const char *Kind; 4887 switch (Attr->getInterrupt()) { 4888 case ARMInterruptAttr::Generic: Kind = ""; break; 4889 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4890 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4891 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4892 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4893 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4894 } 4895 4896 llvm::Function *Fn = cast<llvm::Function>(GV); 4897 4898 Fn->addFnAttr("interrupt", Kind); 4899 4900 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 4901 if (ABI == ARMABIInfo::APCS) 4902 return; 4903 4904 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4905 // however this is not necessarily true on taking any interrupt. Instruct 4906 // the backend to perform a realignment as part of the function prologue. 4907 llvm::AttrBuilder B; 4908 B.addStackAlignmentAttr(8); 4909 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4910 llvm::AttributeSet::get(CGM.getLLVMContext(), 4911 llvm::AttributeSet::FunctionIndex, 4912 B)); 4913 } 4914 }; 4915 4916 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 4917 public: 4918 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4919 : ARMTargetCodeGenInfo(CGT, K) {} 4920 4921 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4922 CodeGen::CodeGenModule &CGM) const override; 4923 }; 4924 4925 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 4926 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4927 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 4928 addStackProbeSizeTargetAttribute(D, GV, CGM); 4929 } 4930 } 4931 4932 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4933 if (!getCXXABI().classifyReturnType(FI)) 4934 FI.getReturnInfo() = 4935 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4936 4937 for (auto &I : FI.arguments()) 4938 I.info = classifyArgumentType(I.type, FI.isVariadic()); 4939 4940 // Always honor user-specified calling convention. 4941 if (FI.getCallingConvention() != llvm::CallingConv::C) 4942 return; 4943 4944 llvm::CallingConv::ID cc = getRuntimeCC(); 4945 if (cc != llvm::CallingConv::C) 4946 FI.setEffectiveCallingConvention(cc); 4947 } 4948 4949 /// Return the default calling convention that LLVM will use. 4950 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4951 // The default calling convention that LLVM will infer. 4952 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 4953 return llvm::CallingConv::ARM_AAPCS_VFP; 4954 else if (isEABI()) 4955 return llvm::CallingConv::ARM_AAPCS; 4956 else 4957 return llvm::CallingConv::ARM_APCS; 4958 } 4959 4960 /// Return the calling convention that our ABI would like us to use 4961 /// as the C calling convention. 4962 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4963 switch (getABIKind()) { 4964 case APCS: return llvm::CallingConv::ARM_APCS; 4965 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4966 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4967 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4968 } 4969 llvm_unreachable("bad ABI kind"); 4970 } 4971 4972 void ARMABIInfo::setCCs() { 4973 assert(getRuntimeCC() == llvm::CallingConv::C); 4974 4975 // Don't muddy up the IR with a ton of explicit annotations if 4976 // they'd just match what LLVM will infer from the triple. 4977 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4978 if (abiCC != getLLVMDefaultCC()) 4979 RuntimeCC = abiCC; 4980 4981 // AAPCS apparently requires runtime support functions to be soft-float, but 4982 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 4983 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 4984 switch (getABIKind()) { 4985 case APCS: 4986 case AAPCS16_VFP: 4987 if (abiCC != getLLVMDefaultCC()) 4988 BuiltinCC = abiCC; 4989 break; 4990 case AAPCS: 4991 case AAPCS_VFP: 4992 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 4993 break; 4994 } 4995 } 4996 4997 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 4998 bool isVariadic) const { 4999 // 6.1.2.1 The following argument types are VFP CPRCs: 5000 // A single-precision floating-point type (including promoted 5001 // half-precision types); A double-precision floating-point type; 5002 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5003 // with a Base Type of a single- or double-precision floating-point type, 5004 // 64-bit containerized vectors or 128-bit containerized vectors with one 5005 // to four Elements. 5006 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5007 5008 Ty = useFirstFieldIfTransparentUnion(Ty); 5009 5010 // Handle illegal vector types here. 5011 if (isIllegalVectorType(Ty)) { 5012 uint64_t Size = getContext().getTypeSize(Ty); 5013 if (Size <= 32) { 5014 llvm::Type *ResType = 5015 llvm::Type::getInt32Ty(getVMContext()); 5016 return ABIArgInfo::getDirect(ResType); 5017 } 5018 if (Size == 64) { 5019 llvm::Type *ResType = llvm::VectorType::get( 5020 llvm::Type::getInt32Ty(getVMContext()), 2); 5021 return ABIArgInfo::getDirect(ResType); 5022 } 5023 if (Size == 128) { 5024 llvm::Type *ResType = llvm::VectorType::get( 5025 llvm::Type::getInt32Ty(getVMContext()), 4); 5026 return ABIArgInfo::getDirect(ResType); 5027 } 5028 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5029 } 5030 5031 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5032 // unspecified. This is not done for OpenCL as it handles the half type 5033 // natively, and does not need to interwork with AAPCS code. 5034 if (Ty->isHalfType() && !getContext().getLangOpts().OpenCL) { 5035 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5036 llvm::Type::getFloatTy(getVMContext()) : 5037 llvm::Type::getInt32Ty(getVMContext()); 5038 return ABIArgInfo::getDirect(ResType); 5039 } 5040 5041 if (!isAggregateTypeForABI(Ty)) { 5042 // Treat an enum type as its underlying type. 5043 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5044 Ty = EnumTy->getDecl()->getIntegerType(); 5045 } 5046 5047 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5048 : ABIArgInfo::getDirect()); 5049 } 5050 5051 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5052 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5053 } 5054 5055 // Ignore empty records. 5056 if (isEmptyRecord(getContext(), Ty, true)) 5057 return ABIArgInfo::getIgnore(); 5058 5059 if (IsEffectivelyAAPCS_VFP) { 5060 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5061 // into VFP registers. 5062 const Type *Base = nullptr; 5063 uint64_t Members = 0; 5064 if (isHomogeneousAggregate(Ty, Base, Members)) { 5065 assert(Base && "Base class should be set for homogeneous aggregate"); 5066 // Base can be a floating-point or a vector. 5067 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5068 } 5069 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5070 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5071 // this convention even for a variadic function: the backend will use GPRs 5072 // if needed. 5073 const Type *Base = nullptr; 5074 uint64_t Members = 0; 5075 if (isHomogeneousAggregate(Ty, Base, Members)) { 5076 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5077 llvm::Type *Ty = 5078 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5079 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5080 } 5081 } 5082 5083 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5084 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5085 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5086 // bigger than 128-bits, they get placed in space allocated by the caller, 5087 // and a pointer is passed. 5088 return ABIArgInfo::getIndirect( 5089 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5090 } 5091 5092 // Support byval for ARM. 5093 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5094 // most 8-byte. We realign the indirect argument if type alignment is bigger 5095 // than ABI alignment. 5096 uint64_t ABIAlign = 4; 5097 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5098 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5099 getABIKind() == ARMABIInfo::AAPCS) 5100 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5101 5102 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5103 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5104 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5105 /*ByVal=*/true, 5106 /*Realign=*/TyAlign > ABIAlign); 5107 } 5108 5109 // Otherwise, pass by coercing to a structure of the appropriate size. 5110 llvm::Type* ElemTy; 5111 unsigned SizeRegs; 5112 // FIXME: Try to match the types of the arguments more accurately where 5113 // we can. 5114 if (getContext().getTypeAlign(Ty) <= 32) { 5115 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5116 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5117 } else { 5118 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5119 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5120 } 5121 5122 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5123 } 5124 5125 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5126 llvm::LLVMContext &VMContext) { 5127 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5128 // is called integer-like if its size is less than or equal to one word, and 5129 // the offset of each of its addressable sub-fields is zero. 5130 5131 uint64_t Size = Context.getTypeSize(Ty); 5132 5133 // Check that the type fits in a word. 5134 if (Size > 32) 5135 return false; 5136 5137 // FIXME: Handle vector types! 5138 if (Ty->isVectorType()) 5139 return false; 5140 5141 // Float types are never treated as "integer like". 5142 if (Ty->isRealFloatingType()) 5143 return false; 5144 5145 // If this is a builtin or pointer type then it is ok. 5146 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5147 return true; 5148 5149 // Small complex integer types are "integer like". 5150 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5151 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5152 5153 // Single element and zero sized arrays should be allowed, by the definition 5154 // above, but they are not. 5155 5156 // Otherwise, it must be a record type. 5157 const RecordType *RT = Ty->getAs<RecordType>(); 5158 if (!RT) return false; 5159 5160 // Ignore records with flexible arrays. 5161 const RecordDecl *RD = RT->getDecl(); 5162 if (RD->hasFlexibleArrayMember()) 5163 return false; 5164 5165 // Check that all sub-fields are at offset 0, and are themselves "integer 5166 // like". 5167 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5168 5169 bool HadField = false; 5170 unsigned idx = 0; 5171 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5172 i != e; ++i, ++idx) { 5173 const FieldDecl *FD = *i; 5174 5175 // Bit-fields are not addressable, we only need to verify they are "integer 5176 // like". We still have to disallow a subsequent non-bitfield, for example: 5177 // struct { int : 0; int x } 5178 // is non-integer like according to gcc. 5179 if (FD->isBitField()) { 5180 if (!RD->isUnion()) 5181 HadField = true; 5182 5183 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5184 return false; 5185 5186 continue; 5187 } 5188 5189 // Check if this field is at offset 0. 5190 if (Layout.getFieldOffset(idx) != 0) 5191 return false; 5192 5193 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5194 return false; 5195 5196 // Only allow at most one field in a structure. This doesn't match the 5197 // wording above, but follows gcc in situations with a field following an 5198 // empty structure. 5199 if (!RD->isUnion()) { 5200 if (HadField) 5201 return false; 5202 5203 HadField = true; 5204 } 5205 } 5206 5207 return true; 5208 } 5209 5210 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5211 bool isVariadic) const { 5212 bool IsEffectivelyAAPCS_VFP = 5213 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5214 5215 if (RetTy->isVoidType()) 5216 return ABIArgInfo::getIgnore(); 5217 5218 // Large vector types should be returned via memory. 5219 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5220 return getNaturalAlignIndirect(RetTy); 5221 } 5222 5223 // __fp16 gets returned as if it were an int or float, but with the top 16 5224 // bits unspecified. This is not done for OpenCL as it handles the half type 5225 // natively, and does not need to interwork with AAPCS code. 5226 if (RetTy->isHalfType() && !getContext().getLangOpts().OpenCL) { 5227 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5228 llvm::Type::getFloatTy(getVMContext()) : 5229 llvm::Type::getInt32Ty(getVMContext()); 5230 return ABIArgInfo::getDirect(ResType); 5231 } 5232 5233 if (!isAggregateTypeForABI(RetTy)) { 5234 // Treat an enum type as its underlying type. 5235 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5236 RetTy = EnumTy->getDecl()->getIntegerType(); 5237 5238 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5239 : ABIArgInfo::getDirect(); 5240 } 5241 5242 // Are we following APCS? 5243 if (getABIKind() == APCS) { 5244 if (isEmptyRecord(getContext(), RetTy, false)) 5245 return ABIArgInfo::getIgnore(); 5246 5247 // Complex types are all returned as packed integers. 5248 // 5249 // FIXME: Consider using 2 x vector types if the back end handles them 5250 // correctly. 5251 if (RetTy->isAnyComplexType()) 5252 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5253 getVMContext(), getContext().getTypeSize(RetTy))); 5254 5255 // Integer like structures are returned in r0. 5256 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5257 // Return in the smallest viable integer type. 5258 uint64_t Size = getContext().getTypeSize(RetTy); 5259 if (Size <= 8) 5260 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5261 if (Size <= 16) 5262 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5263 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5264 } 5265 5266 // Otherwise return in memory. 5267 return getNaturalAlignIndirect(RetTy); 5268 } 5269 5270 // Otherwise this is an AAPCS variant. 5271 5272 if (isEmptyRecord(getContext(), RetTy, true)) 5273 return ABIArgInfo::getIgnore(); 5274 5275 // Check for homogeneous aggregates with AAPCS-VFP. 5276 if (IsEffectivelyAAPCS_VFP) { 5277 const Type *Base = nullptr; 5278 uint64_t Members = 0; 5279 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5280 assert(Base && "Base class should be set for homogeneous aggregate"); 5281 // Homogeneous Aggregates are returned directly. 5282 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5283 } 5284 } 5285 5286 // Aggregates <= 4 bytes are returned in r0; other aggregates 5287 // are returned indirectly. 5288 uint64_t Size = getContext().getTypeSize(RetTy); 5289 if (Size <= 32) { 5290 if (getDataLayout().isBigEndian()) 5291 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5292 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5293 5294 // Return in the smallest viable integer type. 5295 if (Size <= 8) 5296 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5297 if (Size <= 16) 5298 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5299 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5300 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5301 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5302 llvm::Type *CoerceTy = 5303 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5304 return ABIArgInfo::getDirect(CoerceTy); 5305 } 5306 5307 return getNaturalAlignIndirect(RetTy); 5308 } 5309 5310 /// isIllegalVector - check whether Ty is an illegal vector type. 5311 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5312 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5313 if (isAndroid()) { 5314 // Android shipped using Clang 3.1, which supported a slightly different 5315 // vector ABI. The primary differences were that 3-element vector types 5316 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5317 // accepts that legacy behavior for Android only. 5318 // Check whether VT is legal. 5319 unsigned NumElements = VT->getNumElements(); 5320 // NumElements should be power of 2 or equal to 3. 5321 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5322 return true; 5323 } else { 5324 // Check whether VT is legal. 5325 unsigned NumElements = VT->getNumElements(); 5326 uint64_t Size = getContext().getTypeSize(VT); 5327 // NumElements should be power of 2. 5328 if (!llvm::isPowerOf2_32(NumElements)) 5329 return true; 5330 // Size should be greater than 32 bits. 5331 return Size <= 32; 5332 } 5333 } 5334 return false; 5335 } 5336 5337 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5338 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5339 // double, or 64-bit or 128-bit vectors. 5340 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5341 if (BT->getKind() == BuiltinType::Float || 5342 BT->getKind() == BuiltinType::Double || 5343 BT->getKind() == BuiltinType::LongDouble) 5344 return true; 5345 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5346 unsigned VecSize = getContext().getTypeSize(VT); 5347 if (VecSize == 64 || VecSize == 128) 5348 return true; 5349 } 5350 return false; 5351 } 5352 5353 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5354 uint64_t Members) const { 5355 return Members <= 4; 5356 } 5357 5358 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5359 QualType Ty) const { 5360 CharUnits SlotSize = CharUnits::fromQuantity(4); 5361 5362 // Empty records are ignored for parameter passing purposes. 5363 if (isEmptyRecord(getContext(), Ty, true)) { 5364 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5365 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5366 return Addr; 5367 } 5368 5369 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5370 CharUnits TyAlignForABI = TyInfo.second; 5371 5372 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5373 bool IsIndirect = false; 5374 const Type *Base = nullptr; 5375 uint64_t Members = 0; 5376 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5377 IsIndirect = true; 5378 5379 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5380 // allocated by the caller. 5381 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5382 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5383 !isHomogeneousAggregate(Ty, Base, Members)) { 5384 IsIndirect = true; 5385 5386 // Otherwise, bound the type's ABI alignment. 5387 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5388 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5389 // Our callers should be prepared to handle an under-aligned address. 5390 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5391 getABIKind() == ARMABIInfo::AAPCS) { 5392 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5393 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5394 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5395 // ARMv7k allows type alignment up to 16 bytes. 5396 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5397 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5398 } else { 5399 TyAlignForABI = CharUnits::fromQuantity(4); 5400 } 5401 TyInfo.second = TyAlignForABI; 5402 5403 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5404 SlotSize, /*AllowHigherAlign*/ true); 5405 } 5406 5407 //===----------------------------------------------------------------------===// 5408 // NVPTX ABI Implementation 5409 //===----------------------------------------------------------------------===// 5410 5411 namespace { 5412 5413 class NVPTXABIInfo : public ABIInfo { 5414 public: 5415 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5416 5417 ABIArgInfo classifyReturnType(QualType RetTy) const; 5418 ABIArgInfo classifyArgumentType(QualType Ty) const; 5419 5420 void computeInfo(CGFunctionInfo &FI) const override; 5421 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5422 QualType Ty) const override; 5423 }; 5424 5425 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5426 public: 5427 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5428 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5429 5430 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5431 CodeGen::CodeGenModule &M) const override; 5432 private: 5433 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5434 // resulting MDNode to the nvvm.annotations MDNode. 5435 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5436 }; 5437 5438 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5439 if (RetTy->isVoidType()) 5440 return ABIArgInfo::getIgnore(); 5441 5442 // note: this is different from default ABI 5443 if (!RetTy->isScalarType()) 5444 return ABIArgInfo::getDirect(); 5445 5446 // Treat an enum type as its underlying type. 5447 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5448 RetTy = EnumTy->getDecl()->getIntegerType(); 5449 5450 return (RetTy->isPromotableIntegerType() ? 5451 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5452 } 5453 5454 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5455 // Treat an enum type as its underlying type. 5456 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5457 Ty = EnumTy->getDecl()->getIntegerType(); 5458 5459 // Return aggregates type as indirect by value 5460 if (isAggregateTypeForABI(Ty)) 5461 return getNaturalAlignIndirect(Ty, /* byval */ true); 5462 5463 return (Ty->isPromotableIntegerType() ? 5464 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5465 } 5466 5467 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5468 if (!getCXXABI().classifyReturnType(FI)) 5469 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5470 for (auto &I : FI.arguments()) 5471 I.info = classifyArgumentType(I.type); 5472 5473 // Always honor user-specified calling convention. 5474 if (FI.getCallingConvention() != llvm::CallingConv::C) 5475 return; 5476 5477 FI.setEffectiveCallingConvention(getRuntimeCC()); 5478 } 5479 5480 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5481 QualType Ty) const { 5482 llvm_unreachable("NVPTX does not support varargs"); 5483 } 5484 5485 void NVPTXTargetCodeGenInfo:: 5486 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5487 CodeGen::CodeGenModule &M) const{ 5488 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5489 if (!FD) return; 5490 5491 llvm::Function *F = cast<llvm::Function>(GV); 5492 5493 // Perform special handling in OpenCL mode 5494 if (M.getLangOpts().OpenCL) { 5495 // Use OpenCL function attributes to check for kernel functions 5496 // By default, all functions are device functions 5497 if (FD->hasAttr<OpenCLKernelAttr>()) { 5498 // OpenCL __kernel functions get kernel metadata 5499 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5500 addNVVMMetadata(F, "kernel", 1); 5501 // And kernel functions are not subject to inlining 5502 F->addFnAttr(llvm::Attribute::NoInline); 5503 } 5504 } 5505 5506 // Perform special handling in CUDA mode. 5507 if (M.getLangOpts().CUDA) { 5508 // CUDA __global__ functions get a kernel metadata entry. Since 5509 // __global__ functions cannot be called from the device, we do not 5510 // need to set the noinline attribute. 5511 if (FD->hasAttr<CUDAGlobalAttr>()) { 5512 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5513 addNVVMMetadata(F, "kernel", 1); 5514 } 5515 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5516 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5517 llvm::APSInt MaxThreads(32); 5518 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5519 if (MaxThreads > 0) 5520 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5521 5522 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5523 // not specified in __launch_bounds__ or if the user specified a 0 value, 5524 // we don't have to add a PTX directive. 5525 if (Attr->getMinBlocks()) { 5526 llvm::APSInt MinBlocks(32); 5527 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5528 if (MinBlocks > 0) 5529 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5530 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5531 } 5532 } 5533 } 5534 } 5535 5536 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5537 int Operand) { 5538 llvm::Module *M = F->getParent(); 5539 llvm::LLVMContext &Ctx = M->getContext(); 5540 5541 // Get "nvvm.annotations" metadata node 5542 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5543 5544 llvm::Metadata *MDVals[] = { 5545 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5546 llvm::ConstantAsMetadata::get( 5547 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5548 // Append metadata to nvvm.annotations 5549 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5550 } 5551 } 5552 5553 //===----------------------------------------------------------------------===// 5554 // SystemZ ABI Implementation 5555 //===----------------------------------------------------------------------===// 5556 5557 namespace { 5558 5559 class SystemZABIInfo : public ABIInfo { 5560 bool HasVector; 5561 5562 public: 5563 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5564 : ABIInfo(CGT), HasVector(HV) {} 5565 5566 bool isPromotableIntegerType(QualType Ty) const; 5567 bool isCompoundType(QualType Ty) const; 5568 bool isVectorArgumentType(QualType Ty) const; 5569 bool isFPArgumentType(QualType Ty) const; 5570 QualType GetSingleElementType(QualType Ty) const; 5571 5572 ABIArgInfo classifyReturnType(QualType RetTy) const; 5573 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5574 5575 void computeInfo(CGFunctionInfo &FI) const override { 5576 if (!getCXXABI().classifyReturnType(FI)) 5577 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5578 for (auto &I : FI.arguments()) 5579 I.info = classifyArgumentType(I.type); 5580 } 5581 5582 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5583 QualType Ty) const override; 5584 }; 5585 5586 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5587 public: 5588 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5589 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5590 }; 5591 5592 } 5593 5594 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5595 // Treat an enum type as its underlying type. 5596 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5597 Ty = EnumTy->getDecl()->getIntegerType(); 5598 5599 // Promotable integer types are required to be promoted by the ABI. 5600 if (Ty->isPromotableIntegerType()) 5601 return true; 5602 5603 // 32-bit values must also be promoted. 5604 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5605 switch (BT->getKind()) { 5606 case BuiltinType::Int: 5607 case BuiltinType::UInt: 5608 return true; 5609 default: 5610 return false; 5611 } 5612 return false; 5613 } 5614 5615 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5616 return (Ty->isAnyComplexType() || 5617 Ty->isVectorType() || 5618 isAggregateTypeForABI(Ty)); 5619 } 5620 5621 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5622 return (HasVector && 5623 Ty->isVectorType() && 5624 getContext().getTypeSize(Ty) <= 128); 5625 } 5626 5627 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5628 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5629 switch (BT->getKind()) { 5630 case BuiltinType::Float: 5631 case BuiltinType::Double: 5632 return true; 5633 default: 5634 return false; 5635 } 5636 5637 return false; 5638 } 5639 5640 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5641 if (const RecordType *RT = Ty->getAsStructureType()) { 5642 const RecordDecl *RD = RT->getDecl(); 5643 QualType Found; 5644 5645 // If this is a C++ record, check the bases first. 5646 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5647 for (const auto &I : CXXRD->bases()) { 5648 QualType Base = I.getType(); 5649 5650 // Empty bases don't affect things either way. 5651 if (isEmptyRecord(getContext(), Base, true)) 5652 continue; 5653 5654 if (!Found.isNull()) 5655 return Ty; 5656 Found = GetSingleElementType(Base); 5657 } 5658 5659 // Check the fields. 5660 for (const auto *FD : RD->fields()) { 5661 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5662 // Unlike isSingleElementStruct(), empty structure and array fields 5663 // do count. So do anonymous bitfields that aren't zero-sized. 5664 if (getContext().getLangOpts().CPlusPlus && 5665 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5666 continue; 5667 5668 // Unlike isSingleElementStruct(), arrays do not count. 5669 // Nested structures still do though. 5670 if (!Found.isNull()) 5671 return Ty; 5672 Found = GetSingleElementType(FD->getType()); 5673 } 5674 5675 // Unlike isSingleElementStruct(), trailing padding is allowed. 5676 // An 8-byte aligned struct s { float f; } is passed as a double. 5677 if (!Found.isNull()) 5678 return Found; 5679 } 5680 5681 return Ty; 5682 } 5683 5684 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5685 QualType Ty) const { 5686 // Assume that va_list type is correct; should be pointer to LLVM type: 5687 // struct { 5688 // i64 __gpr; 5689 // i64 __fpr; 5690 // i8 *__overflow_arg_area; 5691 // i8 *__reg_save_area; 5692 // }; 5693 5694 // Every non-vector argument occupies 8 bytes and is passed by preference 5695 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5696 // always passed on the stack. 5697 Ty = getContext().getCanonicalType(Ty); 5698 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5699 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5700 llvm::Type *DirectTy = ArgTy; 5701 ABIArgInfo AI = classifyArgumentType(Ty); 5702 bool IsIndirect = AI.isIndirect(); 5703 bool InFPRs = false; 5704 bool IsVector = false; 5705 CharUnits UnpaddedSize; 5706 CharUnits DirectAlign; 5707 if (IsIndirect) { 5708 DirectTy = llvm::PointerType::getUnqual(DirectTy); 5709 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 5710 } else { 5711 if (AI.getCoerceToType()) 5712 ArgTy = AI.getCoerceToType(); 5713 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5714 IsVector = ArgTy->isVectorTy(); 5715 UnpaddedSize = TyInfo.first; 5716 DirectAlign = TyInfo.second; 5717 } 5718 CharUnits PaddedSize = CharUnits::fromQuantity(8); 5719 if (IsVector && UnpaddedSize > PaddedSize) 5720 PaddedSize = CharUnits::fromQuantity(16); 5721 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 5722 5723 CharUnits Padding = (PaddedSize - UnpaddedSize); 5724 5725 llvm::Type *IndexTy = CGF.Int64Ty; 5726 llvm::Value *PaddedSizeV = 5727 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 5728 5729 if (IsVector) { 5730 // Work out the address of a vector argument on the stack. 5731 // Vector arguments are always passed in the high bits of a 5732 // single (8 byte) or double (16 byte) stack slot. 5733 Address OverflowArgAreaPtr = 5734 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 5735 "overflow_arg_area_ptr"); 5736 Address OverflowArgArea = 5737 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 5738 TyInfo.second); 5739 Address MemAddr = 5740 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 5741 5742 // Update overflow_arg_area_ptr pointer 5743 llvm::Value *NewOverflowArgArea = 5744 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 5745 "overflow_arg_area"); 5746 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5747 5748 return MemAddr; 5749 } 5750 5751 assert(PaddedSize.getQuantity() == 8); 5752 5753 unsigned MaxRegs, RegCountField, RegSaveIndex; 5754 CharUnits RegPadding; 5755 if (InFPRs) { 5756 MaxRegs = 4; // Maximum of 4 FPR arguments 5757 RegCountField = 1; // __fpr 5758 RegSaveIndex = 16; // save offset for f0 5759 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 5760 } else { 5761 MaxRegs = 5; // Maximum of 5 GPR arguments 5762 RegCountField = 0; // __gpr 5763 RegSaveIndex = 2; // save offset for r2 5764 RegPadding = Padding; // values are passed in the low bits of a GPR 5765 } 5766 5767 Address RegCountPtr = CGF.Builder.CreateStructGEP( 5768 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 5769 "reg_count_ptr"); 5770 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5771 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5772 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5773 "fits_in_regs"); 5774 5775 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5776 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5777 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5778 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5779 5780 // Emit code to load the value if it was passed in registers. 5781 CGF.EmitBlock(InRegBlock); 5782 5783 // Work out the address of an argument register. 5784 llvm::Value *ScaledRegCount = 5785 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5786 llvm::Value *RegBase = 5787 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 5788 + RegPadding.getQuantity()); 5789 llvm::Value *RegOffset = 5790 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5791 Address RegSaveAreaPtr = 5792 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5793 "reg_save_area_ptr"); 5794 llvm::Value *RegSaveArea = 5795 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5796 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 5797 "raw_reg_addr"), 5798 PaddedSize); 5799 Address RegAddr = 5800 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 5801 5802 // Update the register count 5803 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5804 llvm::Value *NewRegCount = 5805 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5806 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5807 CGF.EmitBranch(ContBlock); 5808 5809 // Emit code to load the value if it was passed in memory. 5810 CGF.EmitBlock(InMemBlock); 5811 5812 // Work out the address of a stack argument. 5813 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 5814 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 5815 Address OverflowArgArea = 5816 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 5817 PaddedSize); 5818 Address RawMemAddr = 5819 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 5820 Address MemAddr = 5821 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 5822 5823 // Update overflow_arg_area_ptr pointer 5824 llvm::Value *NewOverflowArgArea = 5825 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 5826 "overflow_arg_area"); 5827 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5828 CGF.EmitBranch(ContBlock); 5829 5830 // Return the appropriate result. 5831 CGF.EmitBlock(ContBlock); 5832 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5833 MemAddr, InMemBlock, "va_arg.addr"); 5834 5835 if (IsIndirect) 5836 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 5837 TyInfo.second); 5838 5839 return ResAddr; 5840 } 5841 5842 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5843 if (RetTy->isVoidType()) 5844 return ABIArgInfo::getIgnore(); 5845 if (isVectorArgumentType(RetTy)) 5846 return ABIArgInfo::getDirect(); 5847 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5848 return getNaturalAlignIndirect(RetTy); 5849 return (isPromotableIntegerType(RetTy) ? 5850 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5851 } 5852 5853 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5854 // Handle the generic C++ ABI. 5855 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5856 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5857 5858 // Integers and enums are extended to full register width. 5859 if (isPromotableIntegerType(Ty)) 5860 return ABIArgInfo::getExtend(); 5861 5862 // Handle vector types and vector-like structure types. Note that 5863 // as opposed to float-like structure types, we do not allow any 5864 // padding for vector-like structures, so verify the sizes match. 5865 uint64_t Size = getContext().getTypeSize(Ty); 5866 QualType SingleElementTy = GetSingleElementType(Ty); 5867 if (isVectorArgumentType(SingleElementTy) && 5868 getContext().getTypeSize(SingleElementTy) == Size) 5869 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 5870 5871 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5872 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5873 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5874 5875 // Handle small structures. 5876 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5877 // Structures with flexible arrays have variable length, so really 5878 // fail the size test above. 5879 const RecordDecl *RD = RT->getDecl(); 5880 if (RD->hasFlexibleArrayMember()) 5881 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5882 5883 // The structure is passed as an unextended integer, a float, or a double. 5884 llvm::Type *PassTy; 5885 if (isFPArgumentType(SingleElementTy)) { 5886 assert(Size == 32 || Size == 64); 5887 if (Size == 32) 5888 PassTy = llvm::Type::getFloatTy(getVMContext()); 5889 else 5890 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5891 } else 5892 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5893 return ABIArgInfo::getDirect(PassTy); 5894 } 5895 5896 // Non-structure compounds are passed indirectly. 5897 if (isCompoundType(Ty)) 5898 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5899 5900 return ABIArgInfo::getDirect(nullptr); 5901 } 5902 5903 //===----------------------------------------------------------------------===// 5904 // MSP430 ABI Implementation 5905 //===----------------------------------------------------------------------===// 5906 5907 namespace { 5908 5909 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5910 public: 5911 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5912 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5913 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5914 CodeGen::CodeGenModule &M) const override; 5915 }; 5916 5917 } 5918 5919 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 5920 llvm::GlobalValue *GV, 5921 CodeGen::CodeGenModule &M) const { 5922 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 5923 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5924 // Handle 'interrupt' attribute: 5925 llvm::Function *F = cast<llvm::Function>(GV); 5926 5927 // Step 1: Set ISR calling convention. 5928 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5929 5930 // Step 2: Add attributes goodness. 5931 F->addFnAttr(llvm::Attribute::NoInline); 5932 5933 // Step 3: Emit ISR vector alias. 5934 unsigned Num = attr->getNumber() / 2; 5935 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5936 "__isr_" + Twine(Num), F); 5937 } 5938 } 5939 } 5940 5941 //===----------------------------------------------------------------------===// 5942 // MIPS ABI Implementation. This works for both little-endian and 5943 // big-endian variants. 5944 //===----------------------------------------------------------------------===// 5945 5946 namespace { 5947 class MipsABIInfo : public ABIInfo { 5948 bool IsO32; 5949 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5950 void CoerceToIntArgs(uint64_t TySize, 5951 SmallVectorImpl<llvm::Type *> &ArgList) const; 5952 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5953 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5954 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5955 public: 5956 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5957 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5958 StackAlignInBytes(IsO32 ? 8 : 16) {} 5959 5960 ABIArgInfo classifyReturnType(QualType RetTy) const; 5961 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5962 void computeInfo(CGFunctionInfo &FI) const override; 5963 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5964 QualType Ty) const override; 5965 bool shouldSignExtUnsignedType(QualType Ty) const override; 5966 }; 5967 5968 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5969 unsigned SizeOfUnwindException; 5970 public: 5971 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5972 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5973 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5974 5975 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5976 return 29; 5977 } 5978 5979 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5980 CodeGen::CodeGenModule &CGM) const override { 5981 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5982 if (!FD) return; 5983 llvm::Function *Fn = cast<llvm::Function>(GV); 5984 if (FD->hasAttr<Mips16Attr>()) { 5985 Fn->addFnAttr("mips16"); 5986 } 5987 else if (FD->hasAttr<NoMips16Attr>()) { 5988 Fn->addFnAttr("nomips16"); 5989 } 5990 5991 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 5992 if (!Attr) 5993 return; 5994 5995 const char *Kind; 5996 switch (Attr->getInterrupt()) { 5997 case MipsInterruptAttr::eic: Kind = "eic"; break; 5998 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 5999 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6000 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6001 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6002 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6003 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6004 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6005 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6006 } 6007 6008 Fn->addFnAttr("interrupt", Kind); 6009 6010 } 6011 6012 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6013 llvm::Value *Address) const override; 6014 6015 unsigned getSizeOfUnwindException() const override { 6016 return SizeOfUnwindException; 6017 } 6018 }; 6019 } 6020 6021 void MipsABIInfo::CoerceToIntArgs( 6022 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6023 llvm::IntegerType *IntTy = 6024 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6025 6026 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6027 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6028 ArgList.push_back(IntTy); 6029 6030 // If necessary, add one more integer type to ArgList. 6031 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6032 6033 if (R) 6034 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6035 } 6036 6037 // In N32/64, an aligned double precision floating point field is passed in 6038 // a register. 6039 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6040 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6041 6042 if (IsO32) { 6043 CoerceToIntArgs(TySize, ArgList); 6044 return llvm::StructType::get(getVMContext(), ArgList); 6045 } 6046 6047 if (Ty->isComplexType()) 6048 return CGT.ConvertType(Ty); 6049 6050 const RecordType *RT = Ty->getAs<RecordType>(); 6051 6052 // Unions/vectors are passed in integer registers. 6053 if (!RT || !RT->isStructureOrClassType()) { 6054 CoerceToIntArgs(TySize, ArgList); 6055 return llvm::StructType::get(getVMContext(), ArgList); 6056 } 6057 6058 const RecordDecl *RD = RT->getDecl(); 6059 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6060 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6061 6062 uint64_t LastOffset = 0; 6063 unsigned idx = 0; 6064 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6065 6066 // Iterate over fields in the struct/class and check if there are any aligned 6067 // double fields. 6068 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6069 i != e; ++i, ++idx) { 6070 const QualType Ty = i->getType(); 6071 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6072 6073 if (!BT || BT->getKind() != BuiltinType::Double) 6074 continue; 6075 6076 uint64_t Offset = Layout.getFieldOffset(idx); 6077 if (Offset % 64) // Ignore doubles that are not aligned. 6078 continue; 6079 6080 // Add ((Offset - LastOffset) / 64) args of type i64. 6081 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6082 ArgList.push_back(I64); 6083 6084 // Add double type. 6085 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6086 LastOffset = Offset + 64; 6087 } 6088 6089 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6090 ArgList.append(IntArgList.begin(), IntArgList.end()); 6091 6092 return llvm::StructType::get(getVMContext(), ArgList); 6093 } 6094 6095 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6096 uint64_t Offset) const { 6097 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6098 return nullptr; 6099 6100 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6101 } 6102 6103 ABIArgInfo 6104 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6105 Ty = useFirstFieldIfTransparentUnion(Ty); 6106 6107 uint64_t OrigOffset = Offset; 6108 uint64_t TySize = getContext().getTypeSize(Ty); 6109 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6110 6111 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6112 (uint64_t)StackAlignInBytes); 6113 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6114 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6115 6116 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6117 // Ignore empty aggregates. 6118 if (TySize == 0) 6119 return ABIArgInfo::getIgnore(); 6120 6121 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6122 Offset = OrigOffset + MinABIStackAlignInBytes; 6123 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6124 } 6125 6126 // If we have reached here, aggregates are passed directly by coercing to 6127 // another structure type. Padding is inserted if the offset of the 6128 // aggregate is unaligned. 6129 ABIArgInfo ArgInfo = 6130 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6131 getPaddingType(OrigOffset, CurrOffset)); 6132 ArgInfo.setInReg(true); 6133 return ArgInfo; 6134 } 6135 6136 // Treat an enum type as its underlying type. 6137 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6138 Ty = EnumTy->getDecl()->getIntegerType(); 6139 6140 // All integral types are promoted to the GPR width. 6141 if (Ty->isIntegralOrEnumerationType()) 6142 return ABIArgInfo::getExtend(); 6143 6144 return ABIArgInfo::getDirect( 6145 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6146 } 6147 6148 llvm::Type* 6149 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6150 const RecordType *RT = RetTy->getAs<RecordType>(); 6151 SmallVector<llvm::Type*, 8> RTList; 6152 6153 if (RT && RT->isStructureOrClassType()) { 6154 const RecordDecl *RD = RT->getDecl(); 6155 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6156 unsigned FieldCnt = Layout.getFieldCount(); 6157 6158 // N32/64 returns struct/classes in floating point registers if the 6159 // following conditions are met: 6160 // 1. The size of the struct/class is no larger than 128-bit. 6161 // 2. The struct/class has one or two fields all of which are floating 6162 // point types. 6163 // 3. The offset of the first field is zero (this follows what gcc does). 6164 // 6165 // Any other composite results are returned in integer registers. 6166 // 6167 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6168 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6169 for (; b != e; ++b) { 6170 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6171 6172 if (!BT || !BT->isFloatingPoint()) 6173 break; 6174 6175 RTList.push_back(CGT.ConvertType(b->getType())); 6176 } 6177 6178 if (b == e) 6179 return llvm::StructType::get(getVMContext(), RTList, 6180 RD->hasAttr<PackedAttr>()); 6181 6182 RTList.clear(); 6183 } 6184 } 6185 6186 CoerceToIntArgs(Size, RTList); 6187 return llvm::StructType::get(getVMContext(), RTList); 6188 } 6189 6190 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6191 uint64_t Size = getContext().getTypeSize(RetTy); 6192 6193 if (RetTy->isVoidType()) 6194 return ABIArgInfo::getIgnore(); 6195 6196 // O32 doesn't treat zero-sized structs differently from other structs. 6197 // However, N32/N64 ignores zero sized return values. 6198 if (!IsO32 && Size == 0) 6199 return ABIArgInfo::getIgnore(); 6200 6201 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6202 if (Size <= 128) { 6203 if (RetTy->isAnyComplexType()) 6204 return ABIArgInfo::getDirect(); 6205 6206 // O32 returns integer vectors in registers and N32/N64 returns all small 6207 // aggregates in registers. 6208 if (!IsO32 || 6209 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6210 ABIArgInfo ArgInfo = 6211 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6212 ArgInfo.setInReg(true); 6213 return ArgInfo; 6214 } 6215 } 6216 6217 return getNaturalAlignIndirect(RetTy); 6218 } 6219 6220 // Treat an enum type as its underlying type. 6221 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6222 RetTy = EnumTy->getDecl()->getIntegerType(); 6223 6224 return (RetTy->isPromotableIntegerType() ? 6225 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6226 } 6227 6228 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6229 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6230 if (!getCXXABI().classifyReturnType(FI)) 6231 RetInfo = classifyReturnType(FI.getReturnType()); 6232 6233 // Check if a pointer to an aggregate is passed as a hidden argument. 6234 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6235 6236 for (auto &I : FI.arguments()) 6237 I.info = classifyArgumentType(I.type, Offset); 6238 } 6239 6240 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6241 QualType OrigTy) const { 6242 QualType Ty = OrigTy; 6243 6244 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6245 // Pointers are also promoted in the same way but this only matters for N32. 6246 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6247 unsigned PtrWidth = getTarget().getPointerWidth(0); 6248 bool DidPromote = false; 6249 if ((Ty->isIntegerType() && 6250 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6251 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6252 DidPromote = true; 6253 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6254 Ty->isSignedIntegerType()); 6255 } 6256 6257 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6258 6259 // The alignment of things in the argument area is never larger than 6260 // StackAlignInBytes. 6261 TyInfo.second = 6262 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6263 6264 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6265 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6266 6267 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6268 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6269 6270 6271 // If there was a promotion, "unpromote" into a temporary. 6272 // TODO: can we just use a pointer into a subset of the original slot? 6273 if (DidPromote) { 6274 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6275 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6276 6277 // Truncate down to the right width. 6278 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6279 : CGF.IntPtrTy); 6280 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6281 if (OrigTy->isPointerType()) 6282 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6283 6284 CGF.Builder.CreateStore(V, Temp); 6285 Addr = Temp; 6286 } 6287 6288 return Addr; 6289 } 6290 6291 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6292 int TySize = getContext().getTypeSize(Ty); 6293 6294 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6295 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6296 return true; 6297 6298 return false; 6299 } 6300 6301 bool 6302 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6303 llvm::Value *Address) const { 6304 // This information comes from gcc's implementation, which seems to 6305 // as canonical as it gets. 6306 6307 // Everything on MIPS is 4 bytes. Double-precision FP registers 6308 // are aliased to pairs of single-precision FP registers. 6309 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6310 6311 // 0-31 are the general purpose registers, $0 - $31. 6312 // 32-63 are the floating-point registers, $f0 - $f31. 6313 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6314 // 66 is the (notional, I think) register for signal-handler return. 6315 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6316 6317 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6318 // They are one bit wide and ignored here. 6319 6320 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6321 // (coprocessor 1 is the FP unit) 6322 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6323 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6324 // 176-181 are the DSP accumulator registers. 6325 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6326 return false; 6327 } 6328 6329 //===----------------------------------------------------------------------===// 6330 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6331 // Currently subclassed only to implement custom OpenCL C function attribute 6332 // handling. 6333 //===----------------------------------------------------------------------===// 6334 6335 namespace { 6336 6337 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6338 public: 6339 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6340 : DefaultTargetCodeGenInfo(CGT) {} 6341 6342 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6343 CodeGen::CodeGenModule &M) const override; 6344 }; 6345 6346 void TCETargetCodeGenInfo::setTargetAttributes( 6347 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6348 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6349 if (!FD) return; 6350 6351 llvm::Function *F = cast<llvm::Function>(GV); 6352 6353 if (M.getLangOpts().OpenCL) { 6354 if (FD->hasAttr<OpenCLKernelAttr>()) { 6355 // OpenCL C Kernel functions are not subject to inlining 6356 F->addFnAttr(llvm::Attribute::NoInline); 6357 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6358 if (Attr) { 6359 // Convert the reqd_work_group_size() attributes to metadata. 6360 llvm::LLVMContext &Context = F->getContext(); 6361 llvm::NamedMDNode *OpenCLMetadata = 6362 M.getModule().getOrInsertNamedMetadata( 6363 "opencl.kernel_wg_size_info"); 6364 6365 SmallVector<llvm::Metadata *, 5> Operands; 6366 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6367 6368 Operands.push_back( 6369 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6370 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6371 Operands.push_back( 6372 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6373 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6374 Operands.push_back( 6375 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6376 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6377 6378 // Add a boolean constant operand for "required" (true) or "hint" 6379 // (false) for implementing the work_group_size_hint attr later. 6380 // Currently always true as the hint is not yet implemented. 6381 Operands.push_back( 6382 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6383 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6384 } 6385 } 6386 } 6387 } 6388 6389 } 6390 6391 //===----------------------------------------------------------------------===// 6392 // Hexagon ABI Implementation 6393 //===----------------------------------------------------------------------===// 6394 6395 namespace { 6396 6397 class HexagonABIInfo : public ABIInfo { 6398 6399 6400 public: 6401 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6402 6403 private: 6404 6405 ABIArgInfo classifyReturnType(QualType RetTy) const; 6406 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6407 6408 void computeInfo(CGFunctionInfo &FI) const override; 6409 6410 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6411 QualType Ty) const override; 6412 }; 6413 6414 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6415 public: 6416 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6417 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6418 6419 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6420 return 29; 6421 } 6422 }; 6423 6424 } 6425 6426 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6427 if (!getCXXABI().classifyReturnType(FI)) 6428 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6429 for (auto &I : FI.arguments()) 6430 I.info = classifyArgumentType(I.type); 6431 } 6432 6433 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6434 if (!isAggregateTypeForABI(Ty)) { 6435 // Treat an enum type as its underlying type. 6436 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6437 Ty = EnumTy->getDecl()->getIntegerType(); 6438 6439 return (Ty->isPromotableIntegerType() ? 6440 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6441 } 6442 6443 // Ignore empty records. 6444 if (isEmptyRecord(getContext(), Ty, true)) 6445 return ABIArgInfo::getIgnore(); 6446 6447 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6448 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6449 6450 uint64_t Size = getContext().getTypeSize(Ty); 6451 if (Size > 64) 6452 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6453 // Pass in the smallest viable integer type. 6454 else if (Size > 32) 6455 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6456 else if (Size > 16) 6457 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6458 else if (Size > 8) 6459 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6460 else 6461 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6462 } 6463 6464 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6465 if (RetTy->isVoidType()) 6466 return ABIArgInfo::getIgnore(); 6467 6468 // Large vector types should be returned via memory. 6469 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6470 return getNaturalAlignIndirect(RetTy); 6471 6472 if (!isAggregateTypeForABI(RetTy)) { 6473 // Treat an enum type as its underlying type. 6474 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6475 RetTy = EnumTy->getDecl()->getIntegerType(); 6476 6477 return (RetTy->isPromotableIntegerType() ? 6478 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6479 } 6480 6481 if (isEmptyRecord(getContext(), RetTy, true)) 6482 return ABIArgInfo::getIgnore(); 6483 6484 // Aggregates <= 8 bytes are returned in r0; other aggregates 6485 // are returned indirectly. 6486 uint64_t Size = getContext().getTypeSize(RetTy); 6487 if (Size <= 64) { 6488 // Return in the smallest viable integer type. 6489 if (Size <= 8) 6490 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6491 if (Size <= 16) 6492 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6493 if (Size <= 32) 6494 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6495 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6496 } 6497 6498 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 6499 } 6500 6501 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6502 QualType Ty) const { 6503 // FIXME: Someone needs to audit that this handle alignment correctly. 6504 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6505 getContext().getTypeInfoInChars(Ty), 6506 CharUnits::fromQuantity(4), 6507 /*AllowHigherAlign*/ true); 6508 } 6509 6510 //===----------------------------------------------------------------------===// 6511 // AMDGPU ABI Implementation 6512 //===----------------------------------------------------------------------===// 6513 6514 namespace { 6515 6516 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6517 public: 6518 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6519 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6520 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6521 CodeGen::CodeGenModule &M) const override; 6522 }; 6523 6524 } 6525 6526 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6527 const Decl *D, 6528 llvm::GlobalValue *GV, 6529 CodeGen::CodeGenModule &M) const { 6530 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6531 if (!FD) 6532 return; 6533 6534 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6535 llvm::Function *F = cast<llvm::Function>(GV); 6536 uint32_t NumVGPR = Attr->getNumVGPR(); 6537 if (NumVGPR != 0) 6538 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6539 } 6540 6541 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6542 llvm::Function *F = cast<llvm::Function>(GV); 6543 unsigned NumSGPR = Attr->getNumSGPR(); 6544 if (NumSGPR != 0) 6545 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6546 } 6547 } 6548 6549 6550 //===----------------------------------------------------------------------===// 6551 // SPARC v9 ABI Implementation. 6552 // Based on the SPARC Compliance Definition version 2.4.1. 6553 // 6554 // Function arguments a mapped to a nominal "parameter array" and promoted to 6555 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6556 // the array, structs larger than 16 bytes are passed indirectly. 6557 // 6558 // One case requires special care: 6559 // 6560 // struct mixed { 6561 // int i; 6562 // float f; 6563 // }; 6564 // 6565 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6566 // parameter array, but the int is passed in an integer register, and the float 6567 // is passed in a floating point register. This is represented as two arguments 6568 // with the LLVM IR inreg attribute: 6569 // 6570 // declare void f(i32 inreg %i, float inreg %f) 6571 // 6572 // The code generator will only allocate 4 bytes from the parameter array for 6573 // the inreg arguments. All other arguments are allocated a multiple of 8 6574 // bytes. 6575 // 6576 namespace { 6577 class SparcV9ABIInfo : public ABIInfo { 6578 public: 6579 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6580 6581 private: 6582 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6583 void computeInfo(CGFunctionInfo &FI) const override; 6584 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6585 QualType Ty) const override; 6586 6587 // Coercion type builder for structs passed in registers. The coercion type 6588 // serves two purposes: 6589 // 6590 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6591 // in registers. 6592 // 2. Expose aligned floating point elements as first-level elements, so the 6593 // code generator knows to pass them in floating point registers. 6594 // 6595 // We also compute the InReg flag which indicates that the struct contains 6596 // aligned 32-bit floats. 6597 // 6598 struct CoerceBuilder { 6599 llvm::LLVMContext &Context; 6600 const llvm::DataLayout &DL; 6601 SmallVector<llvm::Type*, 8> Elems; 6602 uint64_t Size; 6603 bool InReg; 6604 6605 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6606 : Context(c), DL(dl), Size(0), InReg(false) {} 6607 6608 // Pad Elems with integers until Size is ToSize. 6609 void pad(uint64_t ToSize) { 6610 assert(ToSize >= Size && "Cannot remove elements"); 6611 if (ToSize == Size) 6612 return; 6613 6614 // Finish the current 64-bit word. 6615 uint64_t Aligned = llvm::alignTo(Size, 64); 6616 if (Aligned > Size && Aligned <= ToSize) { 6617 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6618 Size = Aligned; 6619 } 6620 6621 // Add whole 64-bit words. 6622 while (Size + 64 <= ToSize) { 6623 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6624 Size += 64; 6625 } 6626 6627 // Final in-word padding. 6628 if (Size < ToSize) { 6629 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6630 Size = ToSize; 6631 } 6632 } 6633 6634 // Add a floating point element at Offset. 6635 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6636 // Unaligned floats are treated as integers. 6637 if (Offset % Bits) 6638 return; 6639 // The InReg flag is only required if there are any floats < 64 bits. 6640 if (Bits < 64) 6641 InReg = true; 6642 pad(Offset); 6643 Elems.push_back(Ty); 6644 Size = Offset + Bits; 6645 } 6646 6647 // Add a struct type to the coercion type, starting at Offset (in bits). 6648 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6649 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6650 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6651 llvm::Type *ElemTy = StrTy->getElementType(i); 6652 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6653 switch (ElemTy->getTypeID()) { 6654 case llvm::Type::StructTyID: 6655 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6656 break; 6657 case llvm::Type::FloatTyID: 6658 addFloat(ElemOffset, ElemTy, 32); 6659 break; 6660 case llvm::Type::DoubleTyID: 6661 addFloat(ElemOffset, ElemTy, 64); 6662 break; 6663 case llvm::Type::FP128TyID: 6664 addFloat(ElemOffset, ElemTy, 128); 6665 break; 6666 case llvm::Type::PointerTyID: 6667 if (ElemOffset % 64 == 0) { 6668 pad(ElemOffset); 6669 Elems.push_back(ElemTy); 6670 Size += 64; 6671 } 6672 break; 6673 default: 6674 break; 6675 } 6676 } 6677 } 6678 6679 // Check if Ty is a usable substitute for the coercion type. 6680 bool isUsableType(llvm::StructType *Ty) const { 6681 return llvm::makeArrayRef(Elems) == Ty->elements(); 6682 } 6683 6684 // Get the coercion type as a literal struct type. 6685 llvm::Type *getType() const { 6686 if (Elems.size() == 1) 6687 return Elems.front(); 6688 else 6689 return llvm::StructType::get(Context, Elems); 6690 } 6691 }; 6692 }; 6693 } // end anonymous namespace 6694 6695 ABIArgInfo 6696 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6697 if (Ty->isVoidType()) 6698 return ABIArgInfo::getIgnore(); 6699 6700 uint64_t Size = getContext().getTypeSize(Ty); 6701 6702 // Anything too big to fit in registers is passed with an explicit indirect 6703 // pointer / sret pointer. 6704 if (Size > SizeLimit) 6705 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6706 6707 // Treat an enum type as its underlying type. 6708 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6709 Ty = EnumTy->getDecl()->getIntegerType(); 6710 6711 // Integer types smaller than a register are extended. 6712 if (Size < 64 && Ty->isIntegerType()) 6713 return ABIArgInfo::getExtend(); 6714 6715 // Other non-aggregates go in registers. 6716 if (!isAggregateTypeForABI(Ty)) 6717 return ABIArgInfo::getDirect(); 6718 6719 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6720 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6721 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6722 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6723 6724 // This is a small aggregate type that should be passed in registers. 6725 // Build a coercion type from the LLVM struct type. 6726 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6727 if (!StrTy) 6728 return ABIArgInfo::getDirect(); 6729 6730 CoerceBuilder CB(getVMContext(), getDataLayout()); 6731 CB.addStruct(0, StrTy); 6732 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 6733 6734 // Try to use the original type for coercion. 6735 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6736 6737 if (CB.InReg) 6738 return ABIArgInfo::getDirectInReg(CoerceTy); 6739 else 6740 return ABIArgInfo::getDirect(CoerceTy); 6741 } 6742 6743 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6744 QualType Ty) const { 6745 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6746 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6747 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6748 AI.setCoerceToType(ArgTy); 6749 6750 CharUnits SlotSize = CharUnits::fromQuantity(8); 6751 6752 CGBuilderTy &Builder = CGF.Builder; 6753 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6754 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6755 6756 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 6757 6758 Address ArgAddr = Address::invalid(); 6759 CharUnits Stride; 6760 switch (AI.getKind()) { 6761 case ABIArgInfo::Expand: 6762 case ABIArgInfo::InAlloca: 6763 llvm_unreachable("Unsupported ABI kind for va_arg"); 6764 6765 case ABIArgInfo::Extend: { 6766 Stride = SlotSize; 6767 CharUnits Offset = SlotSize - TypeInfo.first; 6768 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 6769 break; 6770 } 6771 6772 case ABIArgInfo::Direct: { 6773 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6774 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 6775 ArgAddr = Addr; 6776 break; 6777 } 6778 6779 case ABIArgInfo::Indirect: 6780 Stride = SlotSize; 6781 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 6782 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 6783 TypeInfo.second); 6784 break; 6785 6786 case ABIArgInfo::Ignore: 6787 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 6788 } 6789 6790 // Update VAList. 6791 llvm::Value *NextPtr = 6792 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 6793 Builder.CreateStore(NextPtr, VAListAddr); 6794 6795 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 6796 } 6797 6798 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6799 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6800 for (auto &I : FI.arguments()) 6801 I.info = classifyType(I.type, 16 * 8); 6802 } 6803 6804 namespace { 6805 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6806 public: 6807 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6808 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6809 6810 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6811 return 14; 6812 } 6813 6814 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6815 llvm::Value *Address) const override; 6816 }; 6817 } // end anonymous namespace 6818 6819 bool 6820 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6821 llvm::Value *Address) const { 6822 // This is calculated from the LLVM and GCC tables and verified 6823 // against gcc output. AFAIK all ABIs use the same encoding. 6824 6825 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6826 6827 llvm::IntegerType *i8 = CGF.Int8Ty; 6828 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6829 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6830 6831 // 0-31: the 8-byte general-purpose registers 6832 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6833 6834 // 32-63: f0-31, the 4-byte floating-point registers 6835 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6836 6837 // Y = 64 6838 // PSR = 65 6839 // WIM = 66 6840 // TBR = 67 6841 // PC = 68 6842 // NPC = 69 6843 // FSR = 70 6844 // CSR = 71 6845 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6846 6847 // 72-87: d0-15, the 8-byte floating-point registers 6848 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6849 6850 return false; 6851 } 6852 6853 6854 //===----------------------------------------------------------------------===// 6855 // XCore ABI Implementation 6856 //===----------------------------------------------------------------------===// 6857 6858 namespace { 6859 6860 /// A SmallStringEnc instance is used to build up the TypeString by passing 6861 /// it by reference between functions that append to it. 6862 typedef llvm::SmallString<128> SmallStringEnc; 6863 6864 /// TypeStringCache caches the meta encodings of Types. 6865 /// 6866 /// The reason for caching TypeStrings is two fold: 6867 /// 1. To cache a type's encoding for later uses; 6868 /// 2. As a means to break recursive member type inclusion. 6869 /// 6870 /// A cache Entry can have a Status of: 6871 /// NonRecursive: The type encoding is not recursive; 6872 /// Recursive: The type encoding is recursive; 6873 /// Incomplete: An incomplete TypeString; 6874 /// IncompleteUsed: An incomplete TypeString that has been used in a 6875 /// Recursive type encoding. 6876 /// 6877 /// A NonRecursive entry will have all of its sub-members expanded as fully 6878 /// as possible. Whilst it may contain types which are recursive, the type 6879 /// itself is not recursive and thus its encoding may be safely used whenever 6880 /// the type is encountered. 6881 /// 6882 /// A Recursive entry will have all of its sub-members expanded as fully as 6883 /// possible. The type itself is recursive and it may contain other types which 6884 /// are recursive. The Recursive encoding must not be used during the expansion 6885 /// of a recursive type's recursive branch. For simplicity the code uses 6886 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6887 /// 6888 /// An Incomplete entry is always a RecordType and only encodes its 6889 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6890 /// are placed into the cache during type expansion as a means to identify and 6891 /// handle recursive inclusion of types as sub-members. If there is recursion 6892 /// the entry becomes IncompleteUsed. 6893 /// 6894 /// During the expansion of a RecordType's members: 6895 /// 6896 /// If the cache contains a NonRecursive encoding for the member type, the 6897 /// cached encoding is used; 6898 /// 6899 /// If the cache contains a Recursive encoding for the member type, the 6900 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6901 /// 6902 /// If the member is a RecordType, an Incomplete encoding is placed into the 6903 /// cache to break potential recursive inclusion of itself as a sub-member; 6904 /// 6905 /// Once a member RecordType has been expanded, its temporary incomplete 6906 /// entry is removed from the cache. If a Recursive encoding was swapped out 6907 /// it is swapped back in; 6908 /// 6909 /// If an incomplete entry is used to expand a sub-member, the incomplete 6910 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6911 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6912 /// 6913 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6914 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6915 /// Else the member is part of a recursive type and thus the recursion has 6916 /// been exited too soon for the encoding to be correct for the member. 6917 /// 6918 class TypeStringCache { 6919 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6920 struct Entry { 6921 std::string Str; // The encoded TypeString for the type. 6922 enum Status State; // Information about the encoding in 'Str'. 6923 std::string Swapped; // A temporary place holder for a Recursive encoding 6924 // during the expansion of RecordType's members. 6925 }; 6926 std::map<const IdentifierInfo *, struct Entry> Map; 6927 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6928 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6929 public: 6930 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 6931 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6932 bool removeIncomplete(const IdentifierInfo *ID); 6933 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6934 bool IsRecursive); 6935 StringRef lookupStr(const IdentifierInfo *ID); 6936 }; 6937 6938 /// TypeString encodings for enum & union fields must be order. 6939 /// FieldEncoding is a helper for this ordering process. 6940 class FieldEncoding { 6941 bool HasName; 6942 std::string Enc; 6943 public: 6944 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 6945 StringRef str() {return Enc.c_str();} 6946 bool operator<(const FieldEncoding &rhs) const { 6947 if (HasName != rhs.HasName) return HasName; 6948 return Enc < rhs.Enc; 6949 } 6950 }; 6951 6952 class XCoreABIInfo : public DefaultABIInfo { 6953 public: 6954 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6955 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6956 QualType Ty) const override; 6957 }; 6958 6959 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6960 mutable TypeStringCache TSC; 6961 public: 6962 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6963 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6964 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6965 CodeGen::CodeGenModule &M) const override; 6966 }; 6967 6968 } // End anonymous namespace. 6969 6970 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6971 QualType Ty) const { 6972 CGBuilderTy &Builder = CGF.Builder; 6973 6974 // Get the VAList. 6975 CharUnits SlotSize = CharUnits::fromQuantity(4); 6976 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 6977 6978 // Handle the argument. 6979 ABIArgInfo AI = classifyArgumentType(Ty); 6980 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 6981 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6982 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6983 AI.setCoerceToType(ArgTy); 6984 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6985 6986 Address Val = Address::invalid(); 6987 CharUnits ArgSize = CharUnits::Zero(); 6988 switch (AI.getKind()) { 6989 case ABIArgInfo::Expand: 6990 case ABIArgInfo::InAlloca: 6991 llvm_unreachable("Unsupported ABI kind for va_arg"); 6992 case ABIArgInfo::Ignore: 6993 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 6994 ArgSize = CharUnits::Zero(); 6995 break; 6996 case ABIArgInfo::Extend: 6997 case ABIArgInfo::Direct: 6998 Val = Builder.CreateBitCast(AP, ArgPtrTy); 6999 ArgSize = CharUnits::fromQuantity( 7000 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7001 ArgSize = ArgSize.alignTo(SlotSize); 7002 break; 7003 case ABIArgInfo::Indirect: 7004 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7005 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7006 ArgSize = SlotSize; 7007 break; 7008 } 7009 7010 // Increment the VAList. 7011 if (!ArgSize.isZero()) { 7012 llvm::Value *APN = 7013 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7014 Builder.CreateStore(APN, VAListAddr); 7015 } 7016 7017 return Val; 7018 } 7019 7020 /// During the expansion of a RecordType, an incomplete TypeString is placed 7021 /// into the cache as a means to identify and break recursion. 7022 /// If there is a Recursive encoding in the cache, it is swapped out and will 7023 /// be reinserted by removeIncomplete(). 7024 /// All other types of encoding should have been used rather than arriving here. 7025 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7026 std::string StubEnc) { 7027 if (!ID) 7028 return; 7029 Entry &E = Map[ID]; 7030 assert( (E.Str.empty() || E.State == Recursive) && 7031 "Incorrectly use of addIncomplete"); 7032 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7033 E.Swapped.swap(E.Str); // swap out the Recursive 7034 E.Str.swap(StubEnc); 7035 E.State = Incomplete; 7036 ++IncompleteCount; 7037 } 7038 7039 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7040 /// must be removed from the cache. 7041 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7042 /// Returns true if the RecordType was defined recursively. 7043 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7044 if (!ID) 7045 return false; 7046 auto I = Map.find(ID); 7047 assert(I != Map.end() && "Entry not present"); 7048 Entry &E = I->second; 7049 assert( (E.State == Incomplete || 7050 E.State == IncompleteUsed) && 7051 "Entry must be an incomplete type"); 7052 bool IsRecursive = false; 7053 if (E.State == IncompleteUsed) { 7054 // We made use of our Incomplete encoding, thus we are recursive. 7055 IsRecursive = true; 7056 --IncompleteUsedCount; 7057 } 7058 if (E.Swapped.empty()) 7059 Map.erase(I); 7060 else { 7061 // Swap the Recursive back. 7062 E.Swapped.swap(E.Str); 7063 E.Swapped.clear(); 7064 E.State = Recursive; 7065 } 7066 --IncompleteCount; 7067 return IsRecursive; 7068 } 7069 7070 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7071 /// Recursive (viz: all sub-members were expanded as fully as possible). 7072 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7073 bool IsRecursive) { 7074 if (!ID || IncompleteUsedCount) 7075 return; // No key or it is is an incomplete sub-type so don't add. 7076 Entry &E = Map[ID]; 7077 if (IsRecursive && !E.Str.empty()) { 7078 assert(E.State==Recursive && E.Str.size() == Str.size() && 7079 "This is not the same Recursive entry"); 7080 // The parent container was not recursive after all, so we could have used 7081 // this Recursive sub-member entry after all, but we assumed the worse when 7082 // we started viz: IncompleteCount!=0. 7083 return; 7084 } 7085 assert(E.Str.empty() && "Entry already present"); 7086 E.Str = Str.str(); 7087 E.State = IsRecursive? Recursive : NonRecursive; 7088 } 7089 7090 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7091 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7092 /// encoding is Recursive, return an empty StringRef. 7093 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7094 if (!ID) 7095 return StringRef(); // We have no key. 7096 auto I = Map.find(ID); 7097 if (I == Map.end()) 7098 return StringRef(); // We have no encoding. 7099 Entry &E = I->second; 7100 if (E.State == Recursive && IncompleteCount) 7101 return StringRef(); // We don't use Recursive encodings for member types. 7102 7103 if (E.State == Incomplete) { 7104 // The incomplete type is being used to break out of recursion. 7105 E.State = IncompleteUsed; 7106 ++IncompleteUsedCount; 7107 } 7108 return E.Str.c_str(); 7109 } 7110 7111 /// The XCore ABI includes a type information section that communicates symbol 7112 /// type information to the linker. The linker uses this information to verify 7113 /// safety/correctness of things such as array bound and pointers et al. 7114 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7115 /// This type information (TypeString) is emitted into meta data for all global 7116 /// symbols: definitions, declarations, functions & variables. 7117 /// 7118 /// The TypeString carries type, qualifier, name, size & value details. 7119 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7120 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7121 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7122 /// 7123 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7124 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7125 7126 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7127 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7128 CodeGen::CodeGenModule &CGM) const { 7129 SmallStringEnc Enc; 7130 if (getTypeString(Enc, D, CGM, TSC)) { 7131 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7132 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 7133 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 7134 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 7135 llvm::NamedMDNode *MD = 7136 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7137 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7138 } 7139 } 7140 7141 static bool appendType(SmallStringEnc &Enc, QualType QType, 7142 const CodeGen::CodeGenModule &CGM, 7143 TypeStringCache &TSC); 7144 7145 /// Helper function for appendRecordType(). 7146 /// Builds a SmallVector containing the encoded field types in declaration 7147 /// order. 7148 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 7149 const RecordDecl *RD, 7150 const CodeGen::CodeGenModule &CGM, 7151 TypeStringCache &TSC) { 7152 for (const auto *Field : RD->fields()) { 7153 SmallStringEnc Enc; 7154 Enc += "m("; 7155 Enc += Field->getName(); 7156 Enc += "){"; 7157 if (Field->isBitField()) { 7158 Enc += "b("; 7159 llvm::raw_svector_ostream OS(Enc); 7160 OS << Field->getBitWidthValue(CGM.getContext()); 7161 Enc += ':'; 7162 } 7163 if (!appendType(Enc, Field->getType(), CGM, TSC)) 7164 return false; 7165 if (Field->isBitField()) 7166 Enc += ')'; 7167 Enc += '}'; 7168 FE.emplace_back(!Field->getName().empty(), Enc); 7169 } 7170 return true; 7171 } 7172 7173 /// Appends structure and union types to Enc and adds encoding to cache. 7174 /// Recursively calls appendType (via extractFieldType) for each field. 7175 /// Union types have their fields ordered according to the ABI. 7176 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 7177 const CodeGen::CodeGenModule &CGM, 7178 TypeStringCache &TSC, const IdentifierInfo *ID) { 7179 // Append the cached TypeString if we have one. 7180 StringRef TypeString = TSC.lookupStr(ID); 7181 if (!TypeString.empty()) { 7182 Enc += TypeString; 7183 return true; 7184 } 7185 7186 // Start to emit an incomplete TypeString. 7187 size_t Start = Enc.size(); 7188 Enc += (RT->isUnionType()? 'u' : 's'); 7189 Enc += '('; 7190 if (ID) 7191 Enc += ID->getName(); 7192 Enc += "){"; 7193 7194 // We collect all encoded fields and order as necessary. 7195 bool IsRecursive = false; 7196 const RecordDecl *RD = RT->getDecl()->getDefinition(); 7197 if (RD && !RD->field_empty()) { 7198 // An incomplete TypeString stub is placed in the cache for this RecordType 7199 // so that recursive calls to this RecordType will use it whilst building a 7200 // complete TypeString for this RecordType. 7201 SmallVector<FieldEncoding, 16> FE; 7202 std::string StubEnc(Enc.substr(Start).str()); 7203 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 7204 TSC.addIncomplete(ID, std::move(StubEnc)); 7205 if (!extractFieldType(FE, RD, CGM, TSC)) { 7206 (void) TSC.removeIncomplete(ID); 7207 return false; 7208 } 7209 IsRecursive = TSC.removeIncomplete(ID); 7210 // The ABI requires unions to be sorted but not structures. 7211 // See FieldEncoding::operator< for sort algorithm. 7212 if (RT->isUnionType()) 7213 std::sort(FE.begin(), FE.end()); 7214 // We can now complete the TypeString. 7215 unsigned E = FE.size(); 7216 for (unsigned I = 0; I != E; ++I) { 7217 if (I) 7218 Enc += ','; 7219 Enc += FE[I].str(); 7220 } 7221 } 7222 Enc += '}'; 7223 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 7224 return true; 7225 } 7226 7227 /// Appends enum types to Enc and adds the encoding to the cache. 7228 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 7229 TypeStringCache &TSC, 7230 const IdentifierInfo *ID) { 7231 // Append the cached TypeString if we have one. 7232 StringRef TypeString = TSC.lookupStr(ID); 7233 if (!TypeString.empty()) { 7234 Enc += TypeString; 7235 return true; 7236 } 7237 7238 size_t Start = Enc.size(); 7239 Enc += "e("; 7240 if (ID) 7241 Enc += ID->getName(); 7242 Enc += "){"; 7243 7244 // We collect all encoded enumerations and order them alphanumerically. 7245 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 7246 SmallVector<FieldEncoding, 16> FE; 7247 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 7248 ++I) { 7249 SmallStringEnc EnumEnc; 7250 EnumEnc += "m("; 7251 EnumEnc += I->getName(); 7252 EnumEnc += "){"; 7253 I->getInitVal().toString(EnumEnc); 7254 EnumEnc += '}'; 7255 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 7256 } 7257 std::sort(FE.begin(), FE.end()); 7258 unsigned E = FE.size(); 7259 for (unsigned I = 0; I != E; ++I) { 7260 if (I) 7261 Enc += ','; 7262 Enc += FE[I].str(); 7263 } 7264 } 7265 Enc += '}'; 7266 TSC.addIfComplete(ID, Enc.substr(Start), false); 7267 return true; 7268 } 7269 7270 /// Appends type's qualifier to Enc. 7271 /// This is done prior to appending the type's encoding. 7272 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 7273 // Qualifiers are emitted in alphabetical order. 7274 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 7275 int Lookup = 0; 7276 if (QT.isConstQualified()) 7277 Lookup += 1<<0; 7278 if (QT.isRestrictQualified()) 7279 Lookup += 1<<1; 7280 if (QT.isVolatileQualified()) 7281 Lookup += 1<<2; 7282 Enc += Table[Lookup]; 7283 } 7284 7285 /// Appends built-in types to Enc. 7286 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 7287 const char *EncType; 7288 switch (BT->getKind()) { 7289 case BuiltinType::Void: 7290 EncType = "0"; 7291 break; 7292 case BuiltinType::Bool: 7293 EncType = "b"; 7294 break; 7295 case BuiltinType::Char_U: 7296 EncType = "uc"; 7297 break; 7298 case BuiltinType::UChar: 7299 EncType = "uc"; 7300 break; 7301 case BuiltinType::SChar: 7302 EncType = "sc"; 7303 break; 7304 case BuiltinType::UShort: 7305 EncType = "us"; 7306 break; 7307 case BuiltinType::Short: 7308 EncType = "ss"; 7309 break; 7310 case BuiltinType::UInt: 7311 EncType = "ui"; 7312 break; 7313 case BuiltinType::Int: 7314 EncType = "si"; 7315 break; 7316 case BuiltinType::ULong: 7317 EncType = "ul"; 7318 break; 7319 case BuiltinType::Long: 7320 EncType = "sl"; 7321 break; 7322 case BuiltinType::ULongLong: 7323 EncType = "ull"; 7324 break; 7325 case BuiltinType::LongLong: 7326 EncType = "sll"; 7327 break; 7328 case BuiltinType::Float: 7329 EncType = "ft"; 7330 break; 7331 case BuiltinType::Double: 7332 EncType = "d"; 7333 break; 7334 case BuiltinType::LongDouble: 7335 EncType = "ld"; 7336 break; 7337 default: 7338 return false; 7339 } 7340 Enc += EncType; 7341 return true; 7342 } 7343 7344 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 7345 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 7346 const CodeGen::CodeGenModule &CGM, 7347 TypeStringCache &TSC) { 7348 Enc += "p("; 7349 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 7350 return false; 7351 Enc += ')'; 7352 return true; 7353 } 7354 7355 /// Appends array encoding to Enc before calling appendType for the element. 7356 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 7357 const ArrayType *AT, 7358 const CodeGen::CodeGenModule &CGM, 7359 TypeStringCache &TSC, StringRef NoSizeEnc) { 7360 if (AT->getSizeModifier() != ArrayType::Normal) 7361 return false; 7362 Enc += "a("; 7363 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 7364 CAT->getSize().toStringUnsigned(Enc); 7365 else 7366 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 7367 Enc += ':'; 7368 // The Qualifiers should be attached to the type rather than the array. 7369 appendQualifier(Enc, QT); 7370 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 7371 return false; 7372 Enc += ')'; 7373 return true; 7374 } 7375 7376 /// Appends a function encoding to Enc, calling appendType for the return type 7377 /// and the arguments. 7378 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 7379 const CodeGen::CodeGenModule &CGM, 7380 TypeStringCache &TSC) { 7381 Enc += "f{"; 7382 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 7383 return false; 7384 Enc += "}("; 7385 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 7386 // N.B. we are only interested in the adjusted param types. 7387 auto I = FPT->param_type_begin(); 7388 auto E = FPT->param_type_end(); 7389 if (I != E) { 7390 do { 7391 if (!appendType(Enc, *I, CGM, TSC)) 7392 return false; 7393 ++I; 7394 if (I != E) 7395 Enc += ','; 7396 } while (I != E); 7397 if (FPT->isVariadic()) 7398 Enc += ",va"; 7399 } else { 7400 if (FPT->isVariadic()) 7401 Enc += "va"; 7402 else 7403 Enc += '0'; 7404 } 7405 } 7406 Enc += ')'; 7407 return true; 7408 } 7409 7410 /// Handles the type's qualifier before dispatching a call to handle specific 7411 /// type encodings. 7412 static bool appendType(SmallStringEnc &Enc, QualType QType, 7413 const CodeGen::CodeGenModule &CGM, 7414 TypeStringCache &TSC) { 7415 7416 QualType QT = QType.getCanonicalType(); 7417 7418 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7419 // The Qualifiers should be attached to the type rather than the array. 7420 // Thus we don't call appendQualifier() here. 7421 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7422 7423 appendQualifier(Enc, QT); 7424 7425 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7426 return appendBuiltinType(Enc, BT); 7427 7428 if (const PointerType *PT = QT->getAs<PointerType>()) 7429 return appendPointerType(Enc, PT, CGM, TSC); 7430 7431 if (const EnumType *ET = QT->getAs<EnumType>()) 7432 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7433 7434 if (const RecordType *RT = QT->getAsStructureType()) 7435 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7436 7437 if (const RecordType *RT = QT->getAsUnionType()) 7438 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7439 7440 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7441 return appendFunctionType(Enc, FT, CGM, TSC); 7442 7443 return false; 7444 } 7445 7446 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7447 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7448 if (!D) 7449 return false; 7450 7451 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7452 if (FD->getLanguageLinkage() != CLanguageLinkage) 7453 return false; 7454 return appendType(Enc, FD->getType(), CGM, TSC); 7455 } 7456 7457 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7458 if (VD->getLanguageLinkage() != CLanguageLinkage) 7459 return false; 7460 QualType QT = VD->getType().getCanonicalType(); 7461 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7462 // Global ArrayTypes are given a size of '*' if the size is unknown. 7463 // The Qualifiers should be attached to the type rather than the array. 7464 // Thus we don't call appendQualifier() here. 7465 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7466 } 7467 return appendType(Enc, QT, CGM, TSC); 7468 } 7469 return false; 7470 } 7471 7472 7473 //===----------------------------------------------------------------------===// 7474 // Driver code 7475 //===----------------------------------------------------------------------===// 7476 7477 const llvm::Triple &CodeGenModule::getTriple() const { 7478 return getTarget().getTriple(); 7479 } 7480 7481 bool CodeGenModule::supportsCOMDAT() const { 7482 return !getTriple().isOSBinFormatMachO(); 7483 } 7484 7485 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7486 if (TheTargetCodeGenInfo) 7487 return *TheTargetCodeGenInfo; 7488 7489 const llvm::Triple &Triple = getTarget().getTriple(); 7490 switch (Triple.getArch()) { 7491 default: 7492 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7493 7494 case llvm::Triple::le32: 7495 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7496 case llvm::Triple::mips: 7497 case llvm::Triple::mipsel: 7498 if (Triple.getOS() == llvm::Triple::NaCl) 7499 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7500 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7501 7502 case llvm::Triple::mips64: 7503 case llvm::Triple::mips64el: 7504 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7505 7506 case llvm::Triple::aarch64: 7507 case llvm::Triple::aarch64_be: { 7508 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7509 if (getTarget().getABI() == "darwinpcs") 7510 Kind = AArch64ABIInfo::DarwinPCS; 7511 7512 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7513 } 7514 7515 case llvm::Triple::wasm32: 7516 case llvm::Triple::wasm64: 7517 return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types)); 7518 7519 case llvm::Triple::arm: 7520 case llvm::Triple::armeb: 7521 case llvm::Triple::thumb: 7522 case llvm::Triple::thumbeb: 7523 { 7524 if (Triple.getOS() == llvm::Triple::Win32) { 7525 TheTargetCodeGenInfo = 7526 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP); 7527 return *TheTargetCodeGenInfo; 7528 } 7529 7530 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7531 StringRef ABIStr = getTarget().getABI(); 7532 if (ABIStr == "apcs-gnu") 7533 Kind = ARMABIInfo::APCS; 7534 else if (ABIStr == "aapcs16") 7535 Kind = ARMABIInfo::AAPCS16_VFP; 7536 else if (CodeGenOpts.FloatABI == "hard" || 7537 (CodeGenOpts.FloatABI != "soft" && 7538 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7539 Kind = ARMABIInfo::AAPCS_VFP; 7540 7541 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 7542 } 7543 7544 case llvm::Triple::ppc: 7545 return *(TheTargetCodeGenInfo = 7546 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 7547 case llvm::Triple::ppc64: 7548 if (Triple.isOSBinFormatELF()) { 7549 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7550 if (getTarget().getABI() == "elfv2") 7551 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7552 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7553 7554 return *(TheTargetCodeGenInfo = 7555 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7556 } else 7557 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7558 case llvm::Triple::ppc64le: { 7559 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7560 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7561 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7562 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7563 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7564 7565 return *(TheTargetCodeGenInfo = 7566 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7567 } 7568 7569 case llvm::Triple::nvptx: 7570 case llvm::Triple::nvptx64: 7571 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7572 7573 case llvm::Triple::msp430: 7574 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7575 7576 case llvm::Triple::systemz: { 7577 bool HasVector = getTarget().getABI() == "vector"; 7578 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types, 7579 HasVector)); 7580 } 7581 7582 case llvm::Triple::tce: 7583 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7584 7585 case llvm::Triple::x86: { 7586 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7587 bool RetSmallStructInRegABI = 7588 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7589 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7590 7591 if (Triple.getOS() == llvm::Triple::Win32) { 7592 return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo( 7593 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 7594 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7595 } else { 7596 return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo( 7597 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 7598 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 7599 CodeGenOpts.FloatABI == "soft")); 7600 } 7601 } 7602 7603 case llvm::Triple::x86_64: { 7604 StringRef ABI = getTarget().getABI(); 7605 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 : 7606 ABI == "avx" ? X86AVXABILevel::AVX : 7607 X86AVXABILevel::None); 7608 7609 switch (Triple.getOS()) { 7610 case llvm::Triple::Win32: 7611 return *(TheTargetCodeGenInfo = 7612 new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 7613 case llvm::Triple::PS4: 7614 return *(TheTargetCodeGenInfo = 7615 new PS4TargetCodeGenInfo(Types, AVXLevel)); 7616 default: 7617 return *(TheTargetCodeGenInfo = 7618 new X86_64TargetCodeGenInfo(Types, AVXLevel)); 7619 } 7620 } 7621 case llvm::Triple::hexagon: 7622 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7623 case llvm::Triple::r600: 7624 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7625 case llvm::Triple::amdgcn: 7626 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7627 case llvm::Triple::sparcv9: 7628 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7629 case llvm::Triple::xcore: 7630 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7631 } 7632 } 7633