1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGValue.h"
20 #include "CodeGenFunction.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "clang/CodeGen/SwiftCallingConv.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>    // std::sort
33 
34 using namespace clang;
35 using namespace CodeGen;
36 
37 // Helper for coercing an aggregate argument or return value into an integer
38 // array of the same size (including padding) and alignment.  This alternate
39 // coercion happens only for the RenderScript ABI and can be removed after
40 // runtimes that rely on it are no longer supported.
41 //
42 // RenderScript assumes that the size of the argument / return value in the IR
43 // is the same as the size of the corresponding qualified type. This helper
44 // coerces the aggregate type into an array of the same size (including
45 // padding).  This coercion is used in lieu of expansion of struct members or
46 // other canonical coercions that return a coerced-type of larger size.
47 //
48 // Ty          - The argument / return value type
49 // Context     - The associated ASTContext
50 // LLVMContext - The associated LLVMContext
51 static ABIArgInfo coerceToIntArray(QualType Ty,
52                                    ASTContext &Context,
53                                    llvm::LLVMContext &LLVMContext) {
54   // Alignment and Size are measured in bits.
55   const uint64_t Size = Context.getTypeSize(Ty);
56   const uint64_t Alignment = Context.getTypeAlign(Ty);
57   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
58   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
59   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
60 }
61 
62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
63                                llvm::Value *Array,
64                                llvm::Value *Value,
65                                unsigned FirstIndex,
66                                unsigned LastIndex) {
67   // Alternatively, we could emit this as a loop in the source.
68   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
69     llvm::Value *Cell =
70         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
71     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
72   }
73 }
74 
75 static bool isAggregateTypeForABI(QualType T) {
76   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
77          T->isMemberFunctionPointerType();
78 }
79 
80 ABIArgInfo
81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
82                                  llvm::Type *Padding) const {
83   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
84                                  ByRef, Realign, Padding);
85 }
86 
87 ABIArgInfo
88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
89   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
90                                       /*ByRef*/ false, Realign);
91 }
92 
93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
94                              QualType Ty) const {
95   return Address::invalid();
96 }
97 
98 ABIInfo::~ABIInfo() {}
99 
100 /// Does the given lowering require more than the given number of
101 /// registers when expanded?
102 ///
103 /// This is intended to be the basis of a reasonable basic implementation
104 /// of should{Pass,Return}IndirectlyForSwift.
105 ///
106 /// For most targets, a limit of four total registers is reasonable; this
107 /// limits the amount of code required in order to move around the value
108 /// in case it wasn't produced immediately prior to the call by the caller
109 /// (or wasn't produced in exactly the right registers) or isn't used
110 /// immediately within the callee.  But some targets may need to further
111 /// limit the register count due to an inability to support that many
112 /// return registers.
113 static bool occupiesMoreThan(CodeGenTypes &cgt,
114                              ArrayRef<llvm::Type*> scalarTypes,
115                              unsigned maxAllRegisters) {
116   unsigned intCount = 0, fpCount = 0;
117   for (llvm::Type *type : scalarTypes) {
118     if (type->isPointerTy()) {
119       intCount++;
120     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
121       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
122       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
123     } else {
124       assert(type->isVectorTy() || type->isFloatingPointTy());
125       fpCount++;
126     }
127   }
128 
129   return (intCount + fpCount > maxAllRegisters);
130 }
131 
132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
133                                              llvm::Type *eltTy,
134                                              unsigned numElts) const {
135   // The default implementation of this assumes that the target guarantees
136   // 128-bit SIMD support but nothing more.
137   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
138 }
139 
140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
141                                               CGCXXABI &CXXABI) {
142   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143   if (!RD) {
144     if (!RT->getDecl()->canPassInRegisters())
145       return CGCXXABI::RAA_Indirect;
146     return CGCXXABI::RAA_Default;
147   }
148   return CXXABI.getRecordArgABI(RD);
149 }
150 
151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
152                                               CGCXXABI &CXXABI) {
153   const RecordType *RT = T->getAs<RecordType>();
154   if (!RT)
155     return CGCXXABI::RAA_Default;
156   return getRecordArgABI(RT, CXXABI);
157 }
158 
159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
160                                const ABIInfo &Info) {
161   QualType Ty = FI.getReturnType();
162 
163   if (const auto *RT = Ty->getAs<RecordType>())
164     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
165         !RT->getDecl()->canPassInRegisters()) {
166       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
167       return true;
168     }
169 
170   return CXXABI.classifyReturnType(FI);
171 }
172 
173 /// Pass transparent unions as if they were the type of the first element. Sema
174 /// should ensure that all elements of the union have the same "machine type".
175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
176   if (const RecordType *UT = Ty->getAsUnionType()) {
177     const RecordDecl *UD = UT->getDecl();
178     if (UD->hasAttr<TransparentUnionAttr>()) {
179       assert(!UD->field_empty() && "sema created an empty transparent union");
180       return UD->field_begin()->getType();
181     }
182   }
183   return Ty;
184 }
185 
186 CGCXXABI &ABIInfo::getCXXABI() const {
187   return CGT.getCXXABI();
188 }
189 
190 ASTContext &ABIInfo::getContext() const {
191   return CGT.getContext();
192 }
193 
194 llvm::LLVMContext &ABIInfo::getVMContext() const {
195   return CGT.getLLVMContext();
196 }
197 
198 const llvm::DataLayout &ABIInfo::getDataLayout() const {
199   return CGT.getDataLayout();
200 }
201 
202 const TargetInfo &ABIInfo::getTarget() const {
203   return CGT.getTarget();
204 }
205 
206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
207   return CGT.getCodeGenOpts();
208 }
209 
210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
211 
212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
213   return false;
214 }
215 
216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
217                                                 uint64_t Members) const {
218   return false;
219 }
220 
221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
222   raw_ostream &OS = llvm::errs();
223   OS << "(ABIArgInfo Kind=";
224   switch (TheKind) {
225   case Direct:
226     OS << "Direct Type=";
227     if (llvm::Type *Ty = getCoerceToType())
228       Ty->print(OS);
229     else
230       OS << "null";
231     break;
232   case Extend:
233     OS << "Extend";
234     break;
235   case Ignore:
236     OS << "Ignore";
237     break;
238   case InAlloca:
239     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
240     break;
241   case Indirect:
242     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
243        << " ByVal=" << getIndirectByVal()
244        << " Realign=" << getIndirectRealign();
245     break;
246   case Expand:
247     OS << "Expand";
248     break;
249   case CoerceAndExpand:
250     OS << "CoerceAndExpand Type=";
251     getCoerceAndExpandType()->print(OS);
252     break;
253   }
254   OS << ")\n";
255 }
256 
257 // Dynamically round a pointer up to a multiple of the given alignment.
258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
259                                                   llvm::Value *Ptr,
260                                                   CharUnits Align) {
261   llvm::Value *PtrAsInt = Ptr;
262   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
263   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
264   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
265         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
266   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
267            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
268   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
269                                         Ptr->getType(),
270                                         Ptr->getName() + ".aligned");
271   return PtrAsInt;
272 }
273 
274 /// Emit va_arg for a platform using the common void* representation,
275 /// where arguments are simply emitted in an array of slots on the stack.
276 ///
277 /// This version implements the core direct-value passing rules.
278 ///
279 /// \param SlotSize - The size and alignment of a stack slot.
280 ///   Each argument will be allocated to a multiple of this number of
281 ///   slots, and all the slots will be aligned to this value.
282 /// \param AllowHigherAlign - The slot alignment is not a cap;
283 ///   an argument type with an alignment greater than the slot size
284 ///   will be emitted on a higher-alignment address, potentially
285 ///   leaving one or more empty slots behind as padding.  If this
286 ///   is false, the returned address might be less-aligned than
287 ///   DirectAlign.
288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
289                                       Address VAListAddr,
290                                       llvm::Type *DirectTy,
291                                       CharUnits DirectSize,
292                                       CharUnits DirectAlign,
293                                       CharUnits SlotSize,
294                                       bool AllowHigherAlign) {
295   // Cast the element type to i8* if necessary.  Some platforms define
296   // va_list as a struct containing an i8* instead of just an i8*.
297   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
298     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
299 
300   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
301 
302   // If the CC aligns values higher than the slot size, do so if needed.
303   Address Addr = Address::invalid();
304   if (AllowHigherAlign && DirectAlign > SlotSize) {
305     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
306                                                  DirectAlign);
307   } else {
308     Addr = Address(Ptr, SlotSize);
309   }
310 
311   // Advance the pointer past the argument, then store that back.
312   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
313   llvm::Value *NextPtr =
314     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
315                                            "argp.next");
316   CGF.Builder.CreateStore(NextPtr, VAListAddr);
317 
318   // If the argument is smaller than a slot, and this is a big-endian
319   // target, the argument will be right-adjusted in its slot.
320   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
321       !DirectTy->isStructTy()) {
322     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
323   }
324 
325   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
326   return Addr;
327 }
328 
329 /// Emit va_arg for a platform using the common void* representation,
330 /// where arguments are simply emitted in an array of slots on the stack.
331 ///
332 /// \param IsIndirect - Values of this type are passed indirectly.
333 /// \param ValueInfo - The size and alignment of this type, generally
334 ///   computed with getContext().getTypeInfoInChars(ValueTy).
335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
336 ///   Each argument will be allocated to a multiple of this number of
337 ///   slots, and all the slots will be aligned to this value.
338 /// \param AllowHigherAlign - The slot alignment is not a cap;
339 ///   an argument type with an alignment greater than the slot size
340 ///   will be emitted on a higher-alignment address, potentially
341 ///   leaving one or more empty slots behind as padding.
342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
343                                 QualType ValueTy, bool IsIndirect,
344                                 std::pair<CharUnits, CharUnits> ValueInfo,
345                                 CharUnits SlotSizeAndAlign,
346                                 bool AllowHigherAlign) {
347   // The size and alignment of the value that was passed directly.
348   CharUnits DirectSize, DirectAlign;
349   if (IsIndirect) {
350     DirectSize = CGF.getPointerSize();
351     DirectAlign = CGF.getPointerAlign();
352   } else {
353     DirectSize = ValueInfo.first;
354     DirectAlign = ValueInfo.second;
355   }
356 
357   // Cast the address we've calculated to the right type.
358   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
359   if (IsIndirect)
360     DirectTy = DirectTy->getPointerTo(0);
361 
362   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
363                                         DirectSize, DirectAlign,
364                                         SlotSizeAndAlign,
365                                         AllowHigherAlign);
366 
367   if (IsIndirect) {
368     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
369   }
370 
371   return Addr;
372 
373 }
374 
375 static Address emitMergePHI(CodeGenFunction &CGF,
376                             Address Addr1, llvm::BasicBlock *Block1,
377                             Address Addr2, llvm::BasicBlock *Block2,
378                             const llvm::Twine &Name = "") {
379   assert(Addr1.getType() == Addr2.getType());
380   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
381   PHI->addIncoming(Addr1.getPointer(), Block1);
382   PHI->addIncoming(Addr2.getPointer(), Block2);
383   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
384   return Address(PHI, Align);
385 }
386 
387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
388 
389 // If someone can figure out a general rule for this, that would be great.
390 // It's probably just doomed to be platform-dependent, though.
391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
392   // Verified for:
393   //   x86-64     FreeBSD, Linux, Darwin
394   //   x86-32     FreeBSD, Linux, Darwin
395   //   PowerPC    Linux, Darwin
396   //   ARM        Darwin (*not* EABI)
397   //   AArch64    Linux
398   return 32;
399 }
400 
401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
402                                      const FunctionNoProtoType *fnType) const {
403   // The following conventions are known to require this to be false:
404   //   x86_stdcall
405   //   MIPS
406   // For everything else, we just prefer false unless we opt out.
407   return false;
408 }
409 
410 void
411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
412                                              llvm::SmallString<24> &Opt) const {
413   // This assumes the user is passing a library name like "rt" instead of a
414   // filename like "librt.a/so", and that they don't care whether it's static or
415   // dynamic.
416   Opt = "-l";
417   Opt += Lib;
418 }
419 
420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
421   // OpenCL kernels are called via an explicit runtime API with arguments
422   // set with clSetKernelArg(), not as normal sub-functions.
423   // Return SPIR_KERNEL by default as the kernel calling convention to
424   // ensure the fingerprint is fixed such way that each OpenCL argument
425   // gets one matching argument in the produced kernel function argument
426   // list to enable feasible implementation of clSetKernelArg() with
427   // aggregates etc. In case we would use the default C calling conv here,
428   // clSetKernelArg() might break depending on the target-specific
429   // conventions; different targets might split structs passed as values
430   // to multiple function arguments etc.
431   return llvm::CallingConv::SPIR_KERNEL;
432 }
433 
434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
435     llvm::PointerType *T, QualType QT) const {
436   return llvm::ConstantPointerNull::get(T);
437 }
438 
439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
440                                                    const VarDecl *D) const {
441   assert(!CGM.getLangOpts().OpenCL &&
442          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
443          "Address space agnostic languages only");
444   return D ? D->getType().getAddressSpace() : LangAS::Default;
445 }
446 
447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
448     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
449     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
450   // Since target may map different address spaces in AST to the same address
451   // space, an address space conversion may end up as a bitcast.
452   if (auto *C = dyn_cast<llvm::Constant>(Src))
453     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
454   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
455 }
456 
457 llvm::Constant *
458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
459                                         LangAS SrcAddr, LangAS DestAddr,
460                                         llvm::Type *DestTy) const {
461   // Since target may map different address spaces in AST to the same address
462   // space, an address space conversion may end up as a bitcast.
463   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
464 }
465 
466 llvm::SyncScope::ID
467 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
468   return C.getOrInsertSyncScopeID(""); /* default sync scope */
469 }
470 
471 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
472 
473 /// isEmptyField - Return true iff a the field is "empty", that is it
474 /// is an unnamed bit-field or an (array of) empty record(s).
475 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
476                          bool AllowArrays) {
477   if (FD->isUnnamedBitfield())
478     return true;
479 
480   QualType FT = FD->getType();
481 
482   // Constant arrays of empty records count as empty, strip them off.
483   // Constant arrays of zero length always count as empty.
484   if (AllowArrays)
485     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
486       if (AT->getSize() == 0)
487         return true;
488       FT = AT->getElementType();
489     }
490 
491   const RecordType *RT = FT->getAs<RecordType>();
492   if (!RT)
493     return false;
494 
495   // C++ record fields are never empty, at least in the Itanium ABI.
496   //
497   // FIXME: We should use a predicate for whether this behavior is true in the
498   // current ABI.
499   if (isa<CXXRecordDecl>(RT->getDecl()))
500     return false;
501 
502   return isEmptyRecord(Context, FT, AllowArrays);
503 }
504 
505 /// isEmptyRecord - Return true iff a structure contains only empty
506 /// fields. Note that a structure with a flexible array member is not
507 /// considered empty.
508 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
509   const RecordType *RT = T->getAs<RecordType>();
510   if (!RT)
511     return false;
512   const RecordDecl *RD = RT->getDecl();
513   if (RD->hasFlexibleArrayMember())
514     return false;
515 
516   // If this is a C++ record, check the bases first.
517   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
518     for (const auto &I : CXXRD->bases())
519       if (!isEmptyRecord(Context, I.getType(), true))
520         return false;
521 
522   for (const auto *I : RD->fields())
523     if (!isEmptyField(Context, I, AllowArrays))
524       return false;
525   return true;
526 }
527 
528 /// isSingleElementStruct - Determine if a structure is a "single
529 /// element struct", i.e. it has exactly one non-empty field or
530 /// exactly one field which is itself a single element
531 /// struct. Structures with flexible array members are never
532 /// considered single element structs.
533 ///
534 /// \return The field declaration for the single non-empty field, if
535 /// it exists.
536 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
537   const RecordType *RT = T->getAs<RecordType>();
538   if (!RT)
539     return nullptr;
540 
541   const RecordDecl *RD = RT->getDecl();
542   if (RD->hasFlexibleArrayMember())
543     return nullptr;
544 
545   const Type *Found = nullptr;
546 
547   // If this is a C++ record, check the bases first.
548   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
549     for (const auto &I : CXXRD->bases()) {
550       // Ignore empty records.
551       if (isEmptyRecord(Context, I.getType(), true))
552         continue;
553 
554       // If we already found an element then this isn't a single-element struct.
555       if (Found)
556         return nullptr;
557 
558       // If this is non-empty and not a single element struct, the composite
559       // cannot be a single element struct.
560       Found = isSingleElementStruct(I.getType(), Context);
561       if (!Found)
562         return nullptr;
563     }
564   }
565 
566   // Check for single element.
567   for (const auto *FD : RD->fields()) {
568     QualType FT = FD->getType();
569 
570     // Ignore empty fields.
571     if (isEmptyField(Context, FD, true))
572       continue;
573 
574     // If we already found an element then this isn't a single-element
575     // struct.
576     if (Found)
577       return nullptr;
578 
579     // Treat single element arrays as the element.
580     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
581       if (AT->getSize().getZExtValue() != 1)
582         break;
583       FT = AT->getElementType();
584     }
585 
586     if (!isAggregateTypeForABI(FT)) {
587       Found = FT.getTypePtr();
588     } else {
589       Found = isSingleElementStruct(FT, Context);
590       if (!Found)
591         return nullptr;
592     }
593   }
594 
595   // We don't consider a struct a single-element struct if it has
596   // padding beyond the element type.
597   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
598     return nullptr;
599 
600   return Found;
601 }
602 
603 namespace {
604 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
605                        const ABIArgInfo &AI) {
606   // This default implementation defers to the llvm backend's va_arg
607   // instruction. It can handle only passing arguments directly
608   // (typically only handled in the backend for primitive types), or
609   // aggregates passed indirectly by pointer (NOTE: if the "byval"
610   // flag has ABI impact in the callee, this implementation cannot
611   // work.)
612 
613   // Only a few cases are covered here at the moment -- those needed
614   // by the default abi.
615   llvm::Value *Val;
616 
617   if (AI.isIndirect()) {
618     assert(!AI.getPaddingType() &&
619            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
620     assert(
621         !AI.getIndirectRealign() &&
622         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
623 
624     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
625     CharUnits TyAlignForABI = TyInfo.second;
626 
627     llvm::Type *BaseTy =
628         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
629     llvm::Value *Addr =
630         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
631     return Address(Addr, TyAlignForABI);
632   } else {
633     assert((AI.isDirect() || AI.isExtend()) &&
634            "Unexpected ArgInfo Kind in generic VAArg emitter!");
635 
636     assert(!AI.getInReg() &&
637            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
638     assert(!AI.getPaddingType() &&
639            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
640     assert(!AI.getDirectOffset() &&
641            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
642     assert(!AI.getCoerceToType() &&
643            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
644 
645     Address Temp = CGF.CreateMemTemp(Ty, "varet");
646     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
647     CGF.Builder.CreateStore(Val, Temp);
648     return Temp;
649   }
650 }
651 
652 /// DefaultABIInfo - The default implementation for ABI specific
653 /// details. This implementation provides information which results in
654 /// self-consistent and sensible LLVM IR generation, but does not
655 /// conform to any particular ABI.
656 class DefaultABIInfo : public ABIInfo {
657 public:
658   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
659 
660   ABIArgInfo classifyReturnType(QualType RetTy) const;
661   ABIArgInfo classifyArgumentType(QualType RetTy) const;
662 
663   void computeInfo(CGFunctionInfo &FI) const override {
664     if (!getCXXABI().classifyReturnType(FI))
665       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
666     for (auto &I : FI.arguments())
667       I.info = classifyArgumentType(I.type);
668   }
669 
670   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
671                     QualType Ty) const override {
672     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
673   }
674 };
675 
676 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
677 public:
678   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
679     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
680 };
681 
682 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
683   Ty = useFirstFieldIfTransparentUnion(Ty);
684 
685   if (isAggregateTypeForABI(Ty)) {
686     // Records with non-trivial destructors/copy-constructors should not be
687     // passed by value.
688     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
689       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
690 
691     return getNaturalAlignIndirect(Ty);
692   }
693 
694   // Treat an enum type as its underlying type.
695   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
696     Ty = EnumTy->getDecl()->getIntegerType();
697 
698   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
699                                         : ABIArgInfo::getDirect());
700 }
701 
702 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
703   if (RetTy->isVoidType())
704     return ABIArgInfo::getIgnore();
705 
706   if (isAggregateTypeForABI(RetTy))
707     return getNaturalAlignIndirect(RetTy);
708 
709   // Treat an enum type as its underlying type.
710   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
711     RetTy = EnumTy->getDecl()->getIntegerType();
712 
713   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
714                                            : ABIArgInfo::getDirect());
715 }
716 
717 //===----------------------------------------------------------------------===//
718 // WebAssembly ABI Implementation
719 //
720 // This is a very simple ABI that relies a lot on DefaultABIInfo.
721 //===----------------------------------------------------------------------===//
722 
723 class WebAssemblyABIInfo final : public DefaultABIInfo {
724 public:
725   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
726       : DefaultABIInfo(CGT) {}
727 
728 private:
729   ABIArgInfo classifyReturnType(QualType RetTy) const;
730   ABIArgInfo classifyArgumentType(QualType Ty) const;
731 
732   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
733   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
734   // overload them.
735   void computeInfo(CGFunctionInfo &FI) const override {
736     if (!getCXXABI().classifyReturnType(FI))
737       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
738     for (auto &Arg : FI.arguments())
739       Arg.info = classifyArgumentType(Arg.type);
740   }
741 
742   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
743                     QualType Ty) const override;
744 };
745 
746 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
747 public:
748   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
749       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
750 
751   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
752                            CodeGen::CodeGenModule &CGM) const override {
753     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
754       llvm::Function *Fn = cast<llvm::Function>(GV);
755       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
756         Fn->addFnAttr("no-prototype");
757     }
758   }
759 };
760 
761 /// Classify argument of given type \p Ty.
762 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
763   Ty = useFirstFieldIfTransparentUnion(Ty);
764 
765   if (isAggregateTypeForABI(Ty)) {
766     // Records with non-trivial destructors/copy-constructors should not be
767     // passed by value.
768     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
769       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
770     // Ignore empty structs/unions.
771     if (isEmptyRecord(getContext(), Ty, true))
772       return ABIArgInfo::getIgnore();
773     // Lower single-element structs to just pass a regular value. TODO: We
774     // could do reasonable-size multiple-element structs too, using getExpand(),
775     // though watch out for things like bitfields.
776     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
777       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
778   }
779 
780   // Otherwise just do the default thing.
781   return DefaultABIInfo::classifyArgumentType(Ty);
782 }
783 
784 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
785   if (isAggregateTypeForABI(RetTy)) {
786     // Records with non-trivial destructors/copy-constructors should not be
787     // returned by value.
788     if (!getRecordArgABI(RetTy, getCXXABI())) {
789       // Ignore empty structs/unions.
790       if (isEmptyRecord(getContext(), RetTy, true))
791         return ABIArgInfo::getIgnore();
792       // Lower single-element structs to just return a regular value. TODO: We
793       // could do reasonable-size multiple-element structs too, using
794       // ABIArgInfo::getDirect().
795       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
796         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
797     }
798   }
799 
800   // Otherwise just do the default thing.
801   return DefaultABIInfo::classifyReturnType(RetTy);
802 }
803 
804 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
805                                       QualType Ty) const {
806   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
807                           getContext().getTypeInfoInChars(Ty),
808                           CharUnits::fromQuantity(4),
809                           /*AllowHigherAlign=*/ true);
810 }
811 
812 //===----------------------------------------------------------------------===//
813 // le32/PNaCl bitcode ABI Implementation
814 //
815 // This is a simplified version of the x86_32 ABI.  Arguments and return values
816 // are always passed on the stack.
817 //===----------------------------------------------------------------------===//
818 
819 class PNaClABIInfo : public ABIInfo {
820  public:
821   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
822 
823   ABIArgInfo classifyReturnType(QualType RetTy) const;
824   ABIArgInfo classifyArgumentType(QualType RetTy) const;
825 
826   void computeInfo(CGFunctionInfo &FI) const override;
827   Address EmitVAArg(CodeGenFunction &CGF,
828                     Address VAListAddr, QualType Ty) const override;
829 };
830 
831 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
832  public:
833   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
834     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
835 };
836 
837 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
838   if (!getCXXABI().classifyReturnType(FI))
839     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
840 
841   for (auto &I : FI.arguments())
842     I.info = classifyArgumentType(I.type);
843 }
844 
845 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
846                                 QualType Ty) const {
847   // The PNaCL ABI is a bit odd, in that varargs don't use normal
848   // function classification. Structs get passed directly for varargs
849   // functions, through a rewriting transform in
850   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
851   // this target to actually support a va_arg instructions with an
852   // aggregate type, unlike other targets.
853   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
854 }
855 
856 /// Classify argument of given type \p Ty.
857 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
858   if (isAggregateTypeForABI(Ty)) {
859     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
860       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
861     return getNaturalAlignIndirect(Ty);
862   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
863     // Treat an enum type as its underlying type.
864     Ty = EnumTy->getDecl()->getIntegerType();
865   } else if (Ty->isFloatingType()) {
866     // Floating-point types don't go inreg.
867     return ABIArgInfo::getDirect();
868   }
869 
870   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
871                                         : ABIArgInfo::getDirect());
872 }
873 
874 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
875   if (RetTy->isVoidType())
876     return ABIArgInfo::getIgnore();
877 
878   // In the PNaCl ABI we always return records/structures on the stack.
879   if (isAggregateTypeForABI(RetTy))
880     return getNaturalAlignIndirect(RetTy);
881 
882   // Treat an enum type as its underlying type.
883   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
884     RetTy = EnumTy->getDecl()->getIntegerType();
885 
886   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
887                                            : ABIArgInfo::getDirect());
888 }
889 
890 /// IsX86_MMXType - Return true if this is an MMX type.
891 bool IsX86_MMXType(llvm::Type *IRType) {
892   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
893   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
894     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
895     IRType->getScalarSizeInBits() != 64;
896 }
897 
898 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
899                                           StringRef Constraint,
900                                           llvm::Type* Ty) {
901   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
902                      .Cases("y", "&y", "^Ym", true)
903                      .Default(false);
904   if (IsMMXCons && Ty->isVectorTy()) {
905     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
906       // Invalid MMX constraint
907       return nullptr;
908     }
909 
910     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
911   }
912 
913   // No operation needed
914   return Ty;
915 }
916 
917 /// Returns true if this type can be passed in SSE registers with the
918 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
919 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
920   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
921     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
922       if (BT->getKind() == BuiltinType::LongDouble) {
923         if (&Context.getTargetInfo().getLongDoubleFormat() ==
924             &llvm::APFloat::x87DoubleExtended())
925           return false;
926       }
927       return true;
928     }
929   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
930     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
931     // registers specially.
932     unsigned VecSize = Context.getTypeSize(VT);
933     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
934       return true;
935   }
936   return false;
937 }
938 
939 /// Returns true if this aggregate is small enough to be passed in SSE registers
940 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
941 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
942   return NumMembers <= 4;
943 }
944 
945 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
946 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
947   auto AI = ABIArgInfo::getDirect(T);
948   AI.setInReg(true);
949   AI.setCanBeFlattened(false);
950   return AI;
951 }
952 
953 //===----------------------------------------------------------------------===//
954 // X86-32 ABI Implementation
955 //===----------------------------------------------------------------------===//
956 
957 /// Similar to llvm::CCState, but for Clang.
958 struct CCState {
959   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
960 
961   unsigned CC;
962   unsigned FreeRegs;
963   unsigned FreeSSERegs;
964 };
965 
966 enum {
967   // Vectorcall only allows the first 6 parameters to be passed in registers.
968   VectorcallMaxParamNumAsReg = 6
969 };
970 
971 /// X86_32ABIInfo - The X86-32 ABI information.
972 class X86_32ABIInfo : public SwiftABIInfo {
973   enum Class {
974     Integer,
975     Float
976   };
977 
978   static const unsigned MinABIStackAlignInBytes = 4;
979 
980   bool IsDarwinVectorABI;
981   bool IsRetSmallStructInRegABI;
982   bool IsWin32StructABI;
983   bool IsSoftFloatABI;
984   bool IsMCUABI;
985   unsigned DefaultNumRegisterParameters;
986 
987   static bool isRegisterSize(unsigned Size) {
988     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
989   }
990 
991   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
992     // FIXME: Assumes vectorcall is in use.
993     return isX86VectorTypeForVectorCall(getContext(), Ty);
994   }
995 
996   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
997                                          uint64_t NumMembers) const override {
998     // FIXME: Assumes vectorcall is in use.
999     return isX86VectorCallAggregateSmallEnough(NumMembers);
1000   }
1001 
1002   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1003 
1004   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1005   /// such that the argument will be passed in memory.
1006   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1007 
1008   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1009 
1010   /// Return the alignment to use for the given type on the stack.
1011   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1012 
1013   Class classify(QualType Ty) const;
1014   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1015   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1016 
1017   /// Updates the number of available free registers, returns
1018   /// true if any registers were allocated.
1019   bool updateFreeRegs(QualType Ty, CCState &State) const;
1020 
1021   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1022                                 bool &NeedsPadding) const;
1023   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1024 
1025   bool canExpandIndirectArgument(QualType Ty) const;
1026 
1027   /// Rewrite the function info so that all memory arguments use
1028   /// inalloca.
1029   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1030 
1031   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1032                            CharUnits &StackOffset, ABIArgInfo &Info,
1033                            QualType Type) const;
1034   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1035                              bool &UsedInAlloca) const;
1036 
1037 public:
1038 
1039   void computeInfo(CGFunctionInfo &FI) const override;
1040   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1041                     QualType Ty) const override;
1042 
1043   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1044                 bool RetSmallStructInRegABI, bool Win32StructABI,
1045                 unsigned NumRegisterParameters, bool SoftFloatABI)
1046     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1047       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1048       IsWin32StructABI(Win32StructABI),
1049       IsSoftFloatABI(SoftFloatABI),
1050       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1051       DefaultNumRegisterParameters(NumRegisterParameters) {}
1052 
1053   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1054                                     bool asReturnValue) const override {
1055     // LLVM's x86-32 lowering currently only assigns up to three
1056     // integer registers and three fp registers.  Oddly, it'll use up to
1057     // four vector registers for vectors, but those can overlap with the
1058     // scalar registers.
1059     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1060   }
1061 
1062   bool isSwiftErrorInRegister() const override {
1063     // x86-32 lowering does not support passing swifterror in a register.
1064     return false;
1065   }
1066 };
1067 
1068 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1069 public:
1070   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1071                           bool RetSmallStructInRegABI, bool Win32StructABI,
1072                           unsigned NumRegisterParameters, bool SoftFloatABI)
1073       : TargetCodeGenInfo(new X86_32ABIInfo(
1074             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1075             NumRegisterParameters, SoftFloatABI)) {}
1076 
1077   static bool isStructReturnInRegABI(
1078       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1079 
1080   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1081                            CodeGen::CodeGenModule &CGM) const override;
1082 
1083   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1084     // Darwin uses different dwarf register numbers for EH.
1085     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1086     return 4;
1087   }
1088 
1089   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1090                                llvm::Value *Address) const override;
1091 
1092   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1093                                   StringRef Constraint,
1094                                   llvm::Type* Ty) const override {
1095     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1096   }
1097 
1098   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1099                                 std::string &Constraints,
1100                                 std::vector<llvm::Type *> &ResultRegTypes,
1101                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1102                                 std::vector<LValue> &ResultRegDests,
1103                                 std::string &AsmString,
1104                                 unsigned NumOutputs) const override;
1105 
1106   llvm::Constant *
1107   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1108     unsigned Sig = (0xeb << 0) |  // jmp rel8
1109                    (0x06 << 8) |  //           .+0x08
1110                    ('v' << 16) |
1111                    ('2' << 24);
1112     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1113   }
1114 
1115   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1116     return "movl\t%ebp, %ebp"
1117            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1118   }
1119 };
1120 
1121 }
1122 
1123 /// Rewrite input constraint references after adding some output constraints.
1124 /// In the case where there is one output and one input and we add one output,
1125 /// we need to replace all operand references greater than or equal to 1:
1126 ///     mov $0, $1
1127 ///     mov eax, $1
1128 /// The result will be:
1129 ///     mov $0, $2
1130 ///     mov eax, $2
1131 static void rewriteInputConstraintReferences(unsigned FirstIn,
1132                                              unsigned NumNewOuts,
1133                                              std::string &AsmString) {
1134   std::string Buf;
1135   llvm::raw_string_ostream OS(Buf);
1136   size_t Pos = 0;
1137   while (Pos < AsmString.size()) {
1138     size_t DollarStart = AsmString.find('$', Pos);
1139     if (DollarStart == std::string::npos)
1140       DollarStart = AsmString.size();
1141     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1142     if (DollarEnd == std::string::npos)
1143       DollarEnd = AsmString.size();
1144     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1145     Pos = DollarEnd;
1146     size_t NumDollars = DollarEnd - DollarStart;
1147     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1148       // We have an operand reference.
1149       size_t DigitStart = Pos;
1150       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1151       if (DigitEnd == std::string::npos)
1152         DigitEnd = AsmString.size();
1153       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1154       unsigned OperandIndex;
1155       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1156         if (OperandIndex >= FirstIn)
1157           OperandIndex += NumNewOuts;
1158         OS << OperandIndex;
1159       } else {
1160         OS << OperandStr;
1161       }
1162       Pos = DigitEnd;
1163     }
1164   }
1165   AsmString = std::move(OS.str());
1166 }
1167 
1168 /// Add output constraints for EAX:EDX because they are return registers.
1169 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1170     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1171     std::vector<llvm::Type *> &ResultRegTypes,
1172     std::vector<llvm::Type *> &ResultTruncRegTypes,
1173     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1174     unsigned NumOutputs) const {
1175   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1176 
1177   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1178   // larger.
1179   if (!Constraints.empty())
1180     Constraints += ',';
1181   if (RetWidth <= 32) {
1182     Constraints += "={eax}";
1183     ResultRegTypes.push_back(CGF.Int32Ty);
1184   } else {
1185     // Use the 'A' constraint for EAX:EDX.
1186     Constraints += "=A";
1187     ResultRegTypes.push_back(CGF.Int64Ty);
1188   }
1189 
1190   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1191   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1192   ResultTruncRegTypes.push_back(CoerceTy);
1193 
1194   // Coerce the integer by bitcasting the return slot pointer.
1195   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1196                                                   CoerceTy->getPointerTo()));
1197   ResultRegDests.push_back(ReturnSlot);
1198 
1199   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1200 }
1201 
1202 /// shouldReturnTypeInRegister - Determine if the given type should be
1203 /// returned in a register (for the Darwin and MCU ABI).
1204 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1205                                                ASTContext &Context) const {
1206   uint64_t Size = Context.getTypeSize(Ty);
1207 
1208   // For i386, type must be register sized.
1209   // For the MCU ABI, it only needs to be <= 8-byte
1210   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1211    return false;
1212 
1213   if (Ty->isVectorType()) {
1214     // 64- and 128- bit vectors inside structures are not returned in
1215     // registers.
1216     if (Size == 64 || Size == 128)
1217       return false;
1218 
1219     return true;
1220   }
1221 
1222   // If this is a builtin, pointer, enum, complex type, member pointer, or
1223   // member function pointer it is ok.
1224   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1225       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1226       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1227     return true;
1228 
1229   // Arrays are treated like records.
1230   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1231     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1232 
1233   // Otherwise, it must be a record type.
1234   const RecordType *RT = Ty->getAs<RecordType>();
1235   if (!RT) return false;
1236 
1237   // FIXME: Traverse bases here too.
1238 
1239   // Structure types are passed in register if all fields would be
1240   // passed in a register.
1241   for (const auto *FD : RT->getDecl()->fields()) {
1242     // Empty fields are ignored.
1243     if (isEmptyField(Context, FD, true))
1244       continue;
1245 
1246     // Check fields recursively.
1247     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1248       return false;
1249   }
1250   return true;
1251 }
1252 
1253 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1254   // Treat complex types as the element type.
1255   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1256     Ty = CTy->getElementType();
1257 
1258   // Check for a type which we know has a simple scalar argument-passing
1259   // convention without any padding.  (We're specifically looking for 32
1260   // and 64-bit integer and integer-equivalents, float, and double.)
1261   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1262       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1263     return false;
1264 
1265   uint64_t Size = Context.getTypeSize(Ty);
1266   return Size == 32 || Size == 64;
1267 }
1268 
1269 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1270                           uint64_t &Size) {
1271   for (const auto *FD : RD->fields()) {
1272     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1273     // argument is smaller than 32-bits, expanding the struct will create
1274     // alignment padding.
1275     if (!is32Or64BitBasicType(FD->getType(), Context))
1276       return false;
1277 
1278     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1279     // how to expand them yet, and the predicate for telling if a bitfield still
1280     // counts as "basic" is more complicated than what we were doing previously.
1281     if (FD->isBitField())
1282       return false;
1283 
1284     Size += Context.getTypeSize(FD->getType());
1285   }
1286   return true;
1287 }
1288 
1289 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1290                                  uint64_t &Size) {
1291   // Don't do this if there are any non-empty bases.
1292   for (const CXXBaseSpecifier &Base : RD->bases()) {
1293     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1294                               Size))
1295       return false;
1296   }
1297   if (!addFieldSizes(Context, RD, Size))
1298     return false;
1299   return true;
1300 }
1301 
1302 /// Test whether an argument type which is to be passed indirectly (on the
1303 /// stack) would have the equivalent layout if it was expanded into separate
1304 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1305 /// optimizations.
1306 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1307   // We can only expand structure types.
1308   const RecordType *RT = Ty->getAs<RecordType>();
1309   if (!RT)
1310     return false;
1311   const RecordDecl *RD = RT->getDecl();
1312   uint64_t Size = 0;
1313   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1314     if (!IsWin32StructABI) {
1315       // On non-Windows, we have to conservatively match our old bitcode
1316       // prototypes in order to be ABI-compatible at the bitcode level.
1317       if (!CXXRD->isCLike())
1318         return false;
1319     } else {
1320       // Don't do this for dynamic classes.
1321       if (CXXRD->isDynamicClass())
1322         return false;
1323     }
1324     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1325       return false;
1326   } else {
1327     if (!addFieldSizes(getContext(), RD, Size))
1328       return false;
1329   }
1330 
1331   // We can do this if there was no alignment padding.
1332   return Size == getContext().getTypeSize(Ty);
1333 }
1334 
1335 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1336   // If the return value is indirect, then the hidden argument is consuming one
1337   // integer register.
1338   if (State.FreeRegs) {
1339     --State.FreeRegs;
1340     if (!IsMCUABI)
1341       return getNaturalAlignIndirectInReg(RetTy);
1342   }
1343   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1344 }
1345 
1346 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1347                                              CCState &State) const {
1348   if (RetTy->isVoidType())
1349     return ABIArgInfo::getIgnore();
1350 
1351   const Type *Base = nullptr;
1352   uint64_t NumElts = 0;
1353   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1354        State.CC == llvm::CallingConv::X86_RegCall) &&
1355       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1356     // The LLVM struct type for such an aggregate should lower properly.
1357     return ABIArgInfo::getDirect();
1358   }
1359 
1360   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1361     // On Darwin, some vectors are returned in registers.
1362     if (IsDarwinVectorABI) {
1363       uint64_t Size = getContext().getTypeSize(RetTy);
1364 
1365       // 128-bit vectors are a special case; they are returned in
1366       // registers and we need to make sure to pick a type the LLVM
1367       // backend will like.
1368       if (Size == 128)
1369         return ABIArgInfo::getDirect(llvm::VectorType::get(
1370                   llvm::Type::getInt64Ty(getVMContext()), 2));
1371 
1372       // Always return in register if it fits in a general purpose
1373       // register, or if it is 64 bits and has a single element.
1374       if ((Size == 8 || Size == 16 || Size == 32) ||
1375           (Size == 64 && VT->getNumElements() == 1))
1376         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1377                                                             Size));
1378 
1379       return getIndirectReturnResult(RetTy, State);
1380     }
1381 
1382     return ABIArgInfo::getDirect();
1383   }
1384 
1385   if (isAggregateTypeForABI(RetTy)) {
1386     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1387       // Structures with flexible arrays are always indirect.
1388       if (RT->getDecl()->hasFlexibleArrayMember())
1389         return getIndirectReturnResult(RetTy, State);
1390     }
1391 
1392     // If specified, structs and unions are always indirect.
1393     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1394       return getIndirectReturnResult(RetTy, State);
1395 
1396     // Ignore empty structs/unions.
1397     if (isEmptyRecord(getContext(), RetTy, true))
1398       return ABIArgInfo::getIgnore();
1399 
1400     // Small structures which are register sized are generally returned
1401     // in a register.
1402     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1403       uint64_t Size = getContext().getTypeSize(RetTy);
1404 
1405       // As a special-case, if the struct is a "single-element" struct, and
1406       // the field is of type "float" or "double", return it in a
1407       // floating-point register. (MSVC does not apply this special case.)
1408       // We apply a similar transformation for pointer types to improve the
1409       // quality of the generated IR.
1410       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1411         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1412             || SeltTy->hasPointerRepresentation())
1413           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1414 
1415       // FIXME: We should be able to narrow this integer in cases with dead
1416       // padding.
1417       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1418     }
1419 
1420     return getIndirectReturnResult(RetTy, State);
1421   }
1422 
1423   // Treat an enum type as its underlying type.
1424   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1425     RetTy = EnumTy->getDecl()->getIntegerType();
1426 
1427   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1428                                            : ABIArgInfo::getDirect());
1429 }
1430 
1431 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1432   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1433 }
1434 
1435 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1436   const RecordType *RT = Ty->getAs<RecordType>();
1437   if (!RT)
1438     return 0;
1439   const RecordDecl *RD = RT->getDecl();
1440 
1441   // If this is a C++ record, check the bases first.
1442   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1443     for (const auto &I : CXXRD->bases())
1444       if (!isRecordWithSSEVectorType(Context, I.getType()))
1445         return false;
1446 
1447   for (const auto *i : RD->fields()) {
1448     QualType FT = i->getType();
1449 
1450     if (isSSEVectorType(Context, FT))
1451       return true;
1452 
1453     if (isRecordWithSSEVectorType(Context, FT))
1454       return true;
1455   }
1456 
1457   return false;
1458 }
1459 
1460 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1461                                                  unsigned Align) const {
1462   // Otherwise, if the alignment is less than or equal to the minimum ABI
1463   // alignment, just use the default; the backend will handle this.
1464   if (Align <= MinABIStackAlignInBytes)
1465     return 0; // Use default alignment.
1466 
1467   // On non-Darwin, the stack type alignment is always 4.
1468   if (!IsDarwinVectorABI) {
1469     // Set explicit alignment, since we may need to realign the top.
1470     return MinABIStackAlignInBytes;
1471   }
1472 
1473   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1474   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1475                       isRecordWithSSEVectorType(getContext(), Ty)))
1476     return 16;
1477 
1478   return MinABIStackAlignInBytes;
1479 }
1480 
1481 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1482                                             CCState &State) const {
1483   if (!ByVal) {
1484     if (State.FreeRegs) {
1485       --State.FreeRegs; // Non-byval indirects just use one pointer.
1486       if (!IsMCUABI)
1487         return getNaturalAlignIndirectInReg(Ty);
1488     }
1489     return getNaturalAlignIndirect(Ty, false);
1490   }
1491 
1492   // Compute the byval alignment.
1493   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1494   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1495   if (StackAlign == 0)
1496     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1497 
1498   // If the stack alignment is less than the type alignment, realign the
1499   // argument.
1500   bool Realign = TypeAlign > StackAlign;
1501   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1502                                  /*ByVal=*/true, Realign);
1503 }
1504 
1505 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1506   const Type *T = isSingleElementStruct(Ty, getContext());
1507   if (!T)
1508     T = Ty.getTypePtr();
1509 
1510   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1511     BuiltinType::Kind K = BT->getKind();
1512     if (K == BuiltinType::Float || K == BuiltinType::Double)
1513       return Float;
1514   }
1515   return Integer;
1516 }
1517 
1518 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1519   if (!IsSoftFloatABI) {
1520     Class C = classify(Ty);
1521     if (C == Float)
1522       return false;
1523   }
1524 
1525   unsigned Size = getContext().getTypeSize(Ty);
1526   unsigned SizeInRegs = (Size + 31) / 32;
1527 
1528   if (SizeInRegs == 0)
1529     return false;
1530 
1531   if (!IsMCUABI) {
1532     if (SizeInRegs > State.FreeRegs) {
1533       State.FreeRegs = 0;
1534       return false;
1535     }
1536   } else {
1537     // The MCU psABI allows passing parameters in-reg even if there are
1538     // earlier parameters that are passed on the stack. Also,
1539     // it does not allow passing >8-byte structs in-register,
1540     // even if there are 3 free registers available.
1541     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1542       return false;
1543   }
1544 
1545   State.FreeRegs -= SizeInRegs;
1546   return true;
1547 }
1548 
1549 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1550                                              bool &InReg,
1551                                              bool &NeedsPadding) const {
1552   // On Windows, aggregates other than HFAs are never passed in registers, and
1553   // they do not consume register slots. Homogenous floating-point aggregates
1554   // (HFAs) have already been dealt with at this point.
1555   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1556     return false;
1557 
1558   NeedsPadding = false;
1559   InReg = !IsMCUABI;
1560 
1561   if (!updateFreeRegs(Ty, State))
1562     return false;
1563 
1564   if (IsMCUABI)
1565     return true;
1566 
1567   if (State.CC == llvm::CallingConv::X86_FastCall ||
1568       State.CC == llvm::CallingConv::X86_VectorCall ||
1569       State.CC == llvm::CallingConv::X86_RegCall) {
1570     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1571       NeedsPadding = true;
1572 
1573     return false;
1574   }
1575 
1576   return true;
1577 }
1578 
1579 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1580   if (!updateFreeRegs(Ty, State))
1581     return false;
1582 
1583   if (IsMCUABI)
1584     return false;
1585 
1586   if (State.CC == llvm::CallingConv::X86_FastCall ||
1587       State.CC == llvm::CallingConv::X86_VectorCall ||
1588       State.CC == llvm::CallingConv::X86_RegCall) {
1589     if (getContext().getTypeSize(Ty) > 32)
1590       return false;
1591 
1592     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1593         Ty->isReferenceType());
1594   }
1595 
1596   return true;
1597 }
1598 
1599 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1600                                                CCState &State) const {
1601   // FIXME: Set alignment on indirect arguments.
1602 
1603   Ty = useFirstFieldIfTransparentUnion(Ty);
1604 
1605   // Check with the C++ ABI first.
1606   const RecordType *RT = Ty->getAs<RecordType>();
1607   if (RT) {
1608     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1609     if (RAA == CGCXXABI::RAA_Indirect) {
1610       return getIndirectResult(Ty, false, State);
1611     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1612       // The field index doesn't matter, we'll fix it up later.
1613       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1614     }
1615   }
1616 
1617   // Regcall uses the concept of a homogenous vector aggregate, similar
1618   // to other targets.
1619   const Type *Base = nullptr;
1620   uint64_t NumElts = 0;
1621   if (State.CC == llvm::CallingConv::X86_RegCall &&
1622       isHomogeneousAggregate(Ty, Base, NumElts)) {
1623 
1624     if (State.FreeSSERegs >= NumElts) {
1625       State.FreeSSERegs -= NumElts;
1626       if (Ty->isBuiltinType() || Ty->isVectorType())
1627         return ABIArgInfo::getDirect();
1628       return ABIArgInfo::getExpand();
1629     }
1630     return getIndirectResult(Ty, /*ByVal=*/false, State);
1631   }
1632 
1633   if (isAggregateTypeForABI(Ty)) {
1634     // Structures with flexible arrays are always indirect.
1635     // FIXME: This should not be byval!
1636     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1637       return getIndirectResult(Ty, true, State);
1638 
1639     // Ignore empty structs/unions on non-Windows.
1640     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1641       return ABIArgInfo::getIgnore();
1642 
1643     llvm::LLVMContext &LLVMContext = getVMContext();
1644     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1645     bool NeedsPadding = false;
1646     bool InReg;
1647     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1648       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1649       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1650       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1651       if (InReg)
1652         return ABIArgInfo::getDirectInReg(Result);
1653       else
1654         return ABIArgInfo::getDirect(Result);
1655     }
1656     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1657 
1658     // Expand small (<= 128-bit) record types when we know that the stack layout
1659     // of those arguments will match the struct. This is important because the
1660     // LLVM backend isn't smart enough to remove byval, which inhibits many
1661     // optimizations.
1662     // Don't do this for the MCU if there are still free integer registers
1663     // (see X86_64 ABI for full explanation).
1664     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1665         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1666       return ABIArgInfo::getExpandWithPadding(
1667           State.CC == llvm::CallingConv::X86_FastCall ||
1668               State.CC == llvm::CallingConv::X86_VectorCall ||
1669               State.CC == llvm::CallingConv::X86_RegCall,
1670           PaddingType);
1671 
1672     return getIndirectResult(Ty, true, State);
1673   }
1674 
1675   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1676     // On Darwin, some vectors are passed in memory, we handle this by passing
1677     // it as an i8/i16/i32/i64.
1678     if (IsDarwinVectorABI) {
1679       uint64_t Size = getContext().getTypeSize(Ty);
1680       if ((Size == 8 || Size == 16 || Size == 32) ||
1681           (Size == 64 && VT->getNumElements() == 1))
1682         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1683                                                             Size));
1684     }
1685 
1686     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1687       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1688 
1689     return ABIArgInfo::getDirect();
1690   }
1691 
1692 
1693   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1694     Ty = EnumTy->getDecl()->getIntegerType();
1695 
1696   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1697 
1698   if (Ty->isPromotableIntegerType()) {
1699     if (InReg)
1700       return ABIArgInfo::getExtendInReg(Ty);
1701     return ABIArgInfo::getExtend(Ty);
1702   }
1703 
1704   if (InReg)
1705     return ABIArgInfo::getDirectInReg();
1706   return ABIArgInfo::getDirect();
1707 }
1708 
1709 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1710                                           bool &UsedInAlloca) const {
1711   // Vectorcall x86 works subtly different than in x64, so the format is
1712   // a bit different than the x64 version.  First, all vector types (not HVAs)
1713   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1714   // This differs from the x64 implementation, where the first 6 by INDEX get
1715   // registers.
1716   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1717   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1718   // first take up the remaining YMM/XMM registers. If insufficient registers
1719   // remain but an integer register (ECX/EDX) is available, it will be passed
1720   // in that, else, on the stack.
1721   for (auto &I : FI.arguments()) {
1722     // First pass do all the vector types.
1723     const Type *Base = nullptr;
1724     uint64_t NumElts = 0;
1725     const QualType& Ty = I.type;
1726     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1727         isHomogeneousAggregate(Ty, Base, NumElts)) {
1728       if (State.FreeSSERegs >= NumElts) {
1729         State.FreeSSERegs -= NumElts;
1730         I.info = ABIArgInfo::getDirect();
1731       } else {
1732         I.info = classifyArgumentType(Ty, State);
1733       }
1734       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1735     }
1736   }
1737 
1738   for (auto &I : FI.arguments()) {
1739     // Second pass, do the rest!
1740     const Type *Base = nullptr;
1741     uint64_t NumElts = 0;
1742     const QualType& Ty = I.type;
1743     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1744 
1745     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1746       // Assign true HVAs (non vector/native FP types).
1747       if (State.FreeSSERegs >= NumElts) {
1748         State.FreeSSERegs -= NumElts;
1749         I.info = getDirectX86Hva();
1750       } else {
1751         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1752       }
1753     } else if (!IsHva) {
1754       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1755       I.info = classifyArgumentType(Ty, State);
1756       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1757     }
1758   }
1759 }
1760 
1761 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1762   CCState State(FI.getCallingConvention());
1763   if (IsMCUABI)
1764     State.FreeRegs = 3;
1765   else if (State.CC == llvm::CallingConv::X86_FastCall)
1766     State.FreeRegs = 2;
1767   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1768     State.FreeRegs = 2;
1769     State.FreeSSERegs = 6;
1770   } else if (FI.getHasRegParm())
1771     State.FreeRegs = FI.getRegParm();
1772   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1773     State.FreeRegs = 5;
1774     State.FreeSSERegs = 8;
1775   } else
1776     State.FreeRegs = DefaultNumRegisterParameters;
1777 
1778   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1779     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1780   } else if (FI.getReturnInfo().isIndirect()) {
1781     // The C++ ABI is not aware of register usage, so we have to check if the
1782     // return value was sret and put it in a register ourselves if appropriate.
1783     if (State.FreeRegs) {
1784       --State.FreeRegs;  // The sret parameter consumes a register.
1785       if (!IsMCUABI)
1786         FI.getReturnInfo().setInReg(true);
1787     }
1788   }
1789 
1790   // The chain argument effectively gives us another free register.
1791   if (FI.isChainCall())
1792     ++State.FreeRegs;
1793 
1794   bool UsedInAlloca = false;
1795   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1796     computeVectorCallArgs(FI, State, UsedInAlloca);
1797   } else {
1798     // If not vectorcall, revert to normal behavior.
1799     for (auto &I : FI.arguments()) {
1800       I.info = classifyArgumentType(I.type, State);
1801       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1802     }
1803   }
1804 
1805   // If we needed to use inalloca for any argument, do a second pass and rewrite
1806   // all the memory arguments to use inalloca.
1807   if (UsedInAlloca)
1808     rewriteWithInAlloca(FI);
1809 }
1810 
1811 void
1812 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1813                                    CharUnits &StackOffset, ABIArgInfo &Info,
1814                                    QualType Type) const {
1815   // Arguments are always 4-byte-aligned.
1816   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1817 
1818   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1819   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1820   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1821   StackOffset += getContext().getTypeSizeInChars(Type);
1822 
1823   // Insert padding bytes to respect alignment.
1824   CharUnits FieldEnd = StackOffset;
1825   StackOffset = FieldEnd.alignTo(FieldAlign);
1826   if (StackOffset != FieldEnd) {
1827     CharUnits NumBytes = StackOffset - FieldEnd;
1828     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1829     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1830     FrameFields.push_back(Ty);
1831   }
1832 }
1833 
1834 static bool isArgInAlloca(const ABIArgInfo &Info) {
1835   // Leave ignored and inreg arguments alone.
1836   switch (Info.getKind()) {
1837   case ABIArgInfo::InAlloca:
1838     return true;
1839   case ABIArgInfo::Indirect:
1840     assert(Info.getIndirectByVal());
1841     return true;
1842   case ABIArgInfo::Ignore:
1843     return false;
1844   case ABIArgInfo::Direct:
1845   case ABIArgInfo::Extend:
1846     if (Info.getInReg())
1847       return false;
1848     return true;
1849   case ABIArgInfo::Expand:
1850   case ABIArgInfo::CoerceAndExpand:
1851     // These are aggregate types which are never passed in registers when
1852     // inalloca is involved.
1853     return true;
1854   }
1855   llvm_unreachable("invalid enum");
1856 }
1857 
1858 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1859   assert(IsWin32StructABI && "inalloca only supported on win32");
1860 
1861   // Build a packed struct type for all of the arguments in memory.
1862   SmallVector<llvm::Type *, 6> FrameFields;
1863 
1864   // The stack alignment is always 4.
1865   CharUnits StackAlign = CharUnits::fromQuantity(4);
1866 
1867   CharUnits StackOffset;
1868   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1869 
1870   // Put 'this' into the struct before 'sret', if necessary.
1871   bool IsThisCall =
1872       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1873   ABIArgInfo &Ret = FI.getReturnInfo();
1874   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1875       isArgInAlloca(I->info)) {
1876     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1877     ++I;
1878   }
1879 
1880   // Put the sret parameter into the inalloca struct if it's in memory.
1881   if (Ret.isIndirect() && !Ret.getInReg()) {
1882     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1883     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1884     // On Windows, the hidden sret parameter is always returned in eax.
1885     Ret.setInAllocaSRet(IsWin32StructABI);
1886   }
1887 
1888   // Skip the 'this' parameter in ecx.
1889   if (IsThisCall)
1890     ++I;
1891 
1892   // Put arguments passed in memory into the struct.
1893   for (; I != E; ++I) {
1894     if (isArgInAlloca(I->info))
1895       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1896   }
1897 
1898   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1899                                         /*isPacked=*/true),
1900                   StackAlign);
1901 }
1902 
1903 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1904                                  Address VAListAddr, QualType Ty) const {
1905 
1906   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1907 
1908   // x86-32 changes the alignment of certain arguments on the stack.
1909   //
1910   // Just messing with TypeInfo like this works because we never pass
1911   // anything indirectly.
1912   TypeInfo.second = CharUnits::fromQuantity(
1913                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1914 
1915   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1916                           TypeInfo, CharUnits::fromQuantity(4),
1917                           /*AllowHigherAlign*/ true);
1918 }
1919 
1920 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1921     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1922   assert(Triple.getArch() == llvm::Triple::x86);
1923 
1924   switch (Opts.getStructReturnConvention()) {
1925   case CodeGenOptions::SRCK_Default:
1926     break;
1927   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1928     return false;
1929   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1930     return true;
1931   }
1932 
1933   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1934     return true;
1935 
1936   switch (Triple.getOS()) {
1937   case llvm::Triple::DragonFly:
1938   case llvm::Triple::FreeBSD:
1939   case llvm::Triple::OpenBSD:
1940   case llvm::Triple::Win32:
1941     return true;
1942   default:
1943     return false;
1944   }
1945 }
1946 
1947 void X86_32TargetCodeGenInfo::setTargetAttributes(
1948     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1949   if (GV->isDeclaration())
1950     return;
1951   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1952     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1953       llvm::Function *Fn = cast<llvm::Function>(GV);
1954       Fn->addFnAttr("stackrealign");
1955     }
1956     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1957       llvm::Function *Fn = cast<llvm::Function>(GV);
1958       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1959     }
1960   }
1961 }
1962 
1963 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1964                                                CodeGen::CodeGenFunction &CGF,
1965                                                llvm::Value *Address) const {
1966   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1967 
1968   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1969 
1970   // 0-7 are the eight integer registers;  the order is different
1971   //   on Darwin (for EH), but the range is the same.
1972   // 8 is %eip.
1973   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1974 
1975   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1976     // 12-16 are st(0..4).  Not sure why we stop at 4.
1977     // These have size 16, which is sizeof(long double) on
1978     // platforms with 8-byte alignment for that type.
1979     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1980     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1981 
1982   } else {
1983     // 9 is %eflags, which doesn't get a size on Darwin for some
1984     // reason.
1985     Builder.CreateAlignedStore(
1986         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1987                                CharUnits::One());
1988 
1989     // 11-16 are st(0..5).  Not sure why we stop at 5.
1990     // These have size 12, which is sizeof(long double) on
1991     // platforms with 4-byte alignment for that type.
1992     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1993     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1994   }
1995 
1996   return false;
1997 }
1998 
1999 //===----------------------------------------------------------------------===//
2000 // X86-64 ABI Implementation
2001 //===----------------------------------------------------------------------===//
2002 
2003 
2004 namespace {
2005 /// The AVX ABI level for X86 targets.
2006 enum class X86AVXABILevel {
2007   None,
2008   AVX,
2009   AVX512
2010 };
2011 
2012 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2013 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2014   switch (AVXLevel) {
2015   case X86AVXABILevel::AVX512:
2016     return 512;
2017   case X86AVXABILevel::AVX:
2018     return 256;
2019   case X86AVXABILevel::None:
2020     return 128;
2021   }
2022   llvm_unreachable("Unknown AVXLevel");
2023 }
2024 
2025 /// X86_64ABIInfo - The X86_64 ABI information.
2026 class X86_64ABIInfo : public SwiftABIInfo {
2027   enum Class {
2028     Integer = 0,
2029     SSE,
2030     SSEUp,
2031     X87,
2032     X87Up,
2033     ComplexX87,
2034     NoClass,
2035     Memory
2036   };
2037 
2038   /// merge - Implement the X86_64 ABI merging algorithm.
2039   ///
2040   /// Merge an accumulating classification \arg Accum with a field
2041   /// classification \arg Field.
2042   ///
2043   /// \param Accum - The accumulating classification. This should
2044   /// always be either NoClass or the result of a previous merge
2045   /// call. In addition, this should never be Memory (the caller
2046   /// should just return Memory for the aggregate).
2047   static Class merge(Class Accum, Class Field);
2048 
2049   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2050   ///
2051   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2052   /// final MEMORY or SSE classes when necessary.
2053   ///
2054   /// \param AggregateSize - The size of the current aggregate in
2055   /// the classification process.
2056   ///
2057   /// \param Lo - The classification for the parts of the type
2058   /// residing in the low word of the containing object.
2059   ///
2060   /// \param Hi - The classification for the parts of the type
2061   /// residing in the higher words of the containing object.
2062   ///
2063   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2064 
2065   /// classify - Determine the x86_64 register classes in which the
2066   /// given type T should be passed.
2067   ///
2068   /// \param Lo - The classification for the parts of the type
2069   /// residing in the low word of the containing object.
2070   ///
2071   /// \param Hi - The classification for the parts of the type
2072   /// residing in the high word of the containing object.
2073   ///
2074   /// \param OffsetBase - The bit offset of this type in the
2075   /// containing object.  Some parameters are classified different
2076   /// depending on whether they straddle an eightbyte boundary.
2077   ///
2078   /// \param isNamedArg - Whether the argument in question is a "named"
2079   /// argument, as used in AMD64-ABI 3.5.7.
2080   ///
2081   /// If a word is unused its result will be NoClass; if a type should
2082   /// be passed in Memory then at least the classification of \arg Lo
2083   /// will be Memory.
2084   ///
2085   /// The \arg Lo class will be NoClass iff the argument is ignored.
2086   ///
2087   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2088   /// also be ComplexX87.
2089   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2090                 bool isNamedArg) const;
2091 
2092   llvm::Type *GetByteVectorType(QualType Ty) const;
2093   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2094                                  unsigned IROffset, QualType SourceTy,
2095                                  unsigned SourceOffset) const;
2096   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2097                                      unsigned IROffset, QualType SourceTy,
2098                                      unsigned SourceOffset) const;
2099 
2100   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2101   /// such that the argument will be returned in memory.
2102   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2103 
2104   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2105   /// such that the argument will be passed in memory.
2106   ///
2107   /// \param freeIntRegs - The number of free integer registers remaining
2108   /// available.
2109   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2110 
2111   ABIArgInfo classifyReturnType(QualType RetTy) const;
2112 
2113   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2114                                   unsigned &neededInt, unsigned &neededSSE,
2115                                   bool isNamedArg) const;
2116 
2117   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2118                                        unsigned &NeededSSE) const;
2119 
2120   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2121                                            unsigned &NeededSSE) const;
2122 
2123   bool IsIllegalVectorType(QualType Ty) const;
2124 
2125   /// The 0.98 ABI revision clarified a lot of ambiguities,
2126   /// unfortunately in ways that were not always consistent with
2127   /// certain previous compilers.  In particular, platforms which
2128   /// required strict binary compatibility with older versions of GCC
2129   /// may need to exempt themselves.
2130   bool honorsRevision0_98() const {
2131     return !getTarget().getTriple().isOSDarwin();
2132   }
2133 
2134   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2135   /// classify it as INTEGER (for compatibility with older clang compilers).
2136   bool classifyIntegerMMXAsSSE() const {
2137     // Clang <= 3.8 did not do this.
2138     if (getContext().getLangOpts().getClangABICompat() <=
2139         LangOptions::ClangABI::Ver3_8)
2140       return false;
2141 
2142     const llvm::Triple &Triple = getTarget().getTriple();
2143     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2144       return false;
2145     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2146       return false;
2147     return true;
2148   }
2149 
2150   X86AVXABILevel AVXLevel;
2151   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2152   // 64-bit hardware.
2153   bool Has64BitPointers;
2154 
2155 public:
2156   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2157       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2158       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2159   }
2160 
2161   bool isPassedUsingAVXType(QualType type) const {
2162     unsigned neededInt, neededSSE;
2163     // The freeIntRegs argument doesn't matter here.
2164     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2165                                            /*isNamedArg*/true);
2166     if (info.isDirect()) {
2167       llvm::Type *ty = info.getCoerceToType();
2168       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2169         return (vectorTy->getBitWidth() > 128);
2170     }
2171     return false;
2172   }
2173 
2174   void computeInfo(CGFunctionInfo &FI) const override;
2175 
2176   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2177                     QualType Ty) const override;
2178   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2179                       QualType Ty) const override;
2180 
2181   bool has64BitPointers() const {
2182     return Has64BitPointers;
2183   }
2184 
2185   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2186                                     bool asReturnValue) const override {
2187     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2188   }
2189   bool isSwiftErrorInRegister() const override {
2190     return true;
2191   }
2192 };
2193 
2194 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2195 class WinX86_64ABIInfo : public SwiftABIInfo {
2196 public:
2197   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2198       : SwiftABIInfo(CGT),
2199         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2200 
2201   void computeInfo(CGFunctionInfo &FI) const override;
2202 
2203   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2204                     QualType Ty) const override;
2205 
2206   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2207     // FIXME: Assumes vectorcall is in use.
2208     return isX86VectorTypeForVectorCall(getContext(), Ty);
2209   }
2210 
2211   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2212                                          uint64_t NumMembers) const override {
2213     // FIXME: Assumes vectorcall is in use.
2214     return isX86VectorCallAggregateSmallEnough(NumMembers);
2215   }
2216 
2217   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2218                                     bool asReturnValue) const override {
2219     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2220   }
2221 
2222   bool isSwiftErrorInRegister() const override {
2223     return true;
2224   }
2225 
2226 private:
2227   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2228                       bool IsVectorCall, bool IsRegCall) const;
2229   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2230                                       const ABIArgInfo &current) const;
2231   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2232                              bool IsVectorCall, bool IsRegCall) const;
2233 
2234     bool IsMingw64;
2235 };
2236 
2237 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2238 public:
2239   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2240       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2241 
2242   const X86_64ABIInfo &getABIInfo() const {
2243     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2244   }
2245 
2246   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2247     return 7;
2248   }
2249 
2250   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2251                                llvm::Value *Address) const override {
2252     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2253 
2254     // 0-15 are the 16 integer registers.
2255     // 16 is %rip.
2256     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2257     return false;
2258   }
2259 
2260   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2261                                   StringRef Constraint,
2262                                   llvm::Type* Ty) const override {
2263     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2264   }
2265 
2266   bool isNoProtoCallVariadic(const CallArgList &args,
2267                              const FunctionNoProtoType *fnType) const override {
2268     // The default CC on x86-64 sets %al to the number of SSA
2269     // registers used, and GCC sets this when calling an unprototyped
2270     // function, so we override the default behavior.  However, don't do
2271     // that when AVX types are involved: the ABI explicitly states it is
2272     // undefined, and it doesn't work in practice because of how the ABI
2273     // defines varargs anyway.
2274     if (fnType->getCallConv() == CC_C) {
2275       bool HasAVXType = false;
2276       for (CallArgList::const_iterator
2277              it = args.begin(), ie = args.end(); it != ie; ++it) {
2278         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2279           HasAVXType = true;
2280           break;
2281         }
2282       }
2283 
2284       if (!HasAVXType)
2285         return true;
2286     }
2287 
2288     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2289   }
2290 
2291   llvm::Constant *
2292   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2293     unsigned Sig = (0xeb << 0) | // jmp rel8
2294                    (0x06 << 8) | //           .+0x08
2295                    ('v' << 16) |
2296                    ('2' << 24);
2297     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2298   }
2299 
2300   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2301                            CodeGen::CodeGenModule &CGM) const override {
2302     if (GV->isDeclaration())
2303       return;
2304     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2305       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2306         llvm::Function *Fn = cast<llvm::Function>(GV);
2307         Fn->addFnAttr("stackrealign");
2308       }
2309       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2310         llvm::Function *Fn = cast<llvm::Function>(GV);
2311         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2312       }
2313     }
2314   }
2315 };
2316 
2317 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2318 public:
2319   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2320     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2321 
2322   void getDependentLibraryOption(llvm::StringRef Lib,
2323                                  llvm::SmallString<24> &Opt) const override {
2324     Opt = "\01";
2325     // If the argument contains a space, enclose it in quotes.
2326     if (Lib.find(" ") != StringRef::npos)
2327       Opt += "\"" + Lib.str() + "\"";
2328     else
2329       Opt += Lib;
2330   }
2331 };
2332 
2333 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2334   // If the argument does not end in .lib, automatically add the suffix.
2335   // If the argument contains a space, enclose it in quotes.
2336   // This matches the behavior of MSVC.
2337   bool Quote = (Lib.find(" ") != StringRef::npos);
2338   std::string ArgStr = Quote ? "\"" : "";
2339   ArgStr += Lib;
2340   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2341     ArgStr += ".lib";
2342   ArgStr += Quote ? "\"" : "";
2343   return ArgStr;
2344 }
2345 
2346 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2347 public:
2348   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2349         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2350         unsigned NumRegisterParameters)
2351     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2352         Win32StructABI, NumRegisterParameters, false) {}
2353 
2354   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2355                            CodeGen::CodeGenModule &CGM) const override;
2356 
2357   void getDependentLibraryOption(llvm::StringRef Lib,
2358                                  llvm::SmallString<24> &Opt) const override {
2359     Opt = "/DEFAULTLIB:";
2360     Opt += qualifyWindowsLibrary(Lib);
2361   }
2362 
2363   void getDetectMismatchOption(llvm::StringRef Name,
2364                                llvm::StringRef Value,
2365                                llvm::SmallString<32> &Opt) const override {
2366     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2367   }
2368 };
2369 
2370 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2371                                           CodeGen::CodeGenModule &CGM) {
2372   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2373 
2374     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2375       Fn->addFnAttr("stack-probe-size",
2376                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2377     if (CGM.getCodeGenOpts().NoStackArgProbe)
2378       Fn->addFnAttr("no-stack-arg-probe");
2379   }
2380 }
2381 
2382 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2383     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2384   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2385   if (GV->isDeclaration())
2386     return;
2387   addStackProbeTargetAttributes(D, GV, CGM);
2388 }
2389 
2390 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2391 public:
2392   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2393                              X86AVXABILevel AVXLevel)
2394       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2395 
2396   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2397                            CodeGen::CodeGenModule &CGM) const override;
2398 
2399   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2400     return 7;
2401   }
2402 
2403   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2404                                llvm::Value *Address) const override {
2405     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2406 
2407     // 0-15 are the 16 integer registers.
2408     // 16 is %rip.
2409     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2410     return false;
2411   }
2412 
2413   void getDependentLibraryOption(llvm::StringRef Lib,
2414                                  llvm::SmallString<24> &Opt) const override {
2415     Opt = "/DEFAULTLIB:";
2416     Opt += qualifyWindowsLibrary(Lib);
2417   }
2418 
2419   void getDetectMismatchOption(llvm::StringRef Name,
2420                                llvm::StringRef Value,
2421                                llvm::SmallString<32> &Opt) const override {
2422     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2423   }
2424 };
2425 
2426 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2427     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2428   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2429   if (GV->isDeclaration())
2430     return;
2431   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2432     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2433       llvm::Function *Fn = cast<llvm::Function>(GV);
2434       Fn->addFnAttr("stackrealign");
2435     }
2436     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2437       llvm::Function *Fn = cast<llvm::Function>(GV);
2438       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2439     }
2440   }
2441 
2442   addStackProbeTargetAttributes(D, GV, CGM);
2443 }
2444 }
2445 
2446 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2447                               Class &Hi) const {
2448   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2449   //
2450   // (a) If one of the classes is Memory, the whole argument is passed in
2451   //     memory.
2452   //
2453   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2454   //     memory.
2455   //
2456   // (c) If the size of the aggregate exceeds two eightbytes and the first
2457   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2458   //     argument is passed in memory. NOTE: This is necessary to keep the
2459   //     ABI working for processors that don't support the __m256 type.
2460   //
2461   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2462   //
2463   // Some of these are enforced by the merging logic.  Others can arise
2464   // only with unions; for example:
2465   //   union { _Complex double; unsigned; }
2466   //
2467   // Note that clauses (b) and (c) were added in 0.98.
2468   //
2469   if (Hi == Memory)
2470     Lo = Memory;
2471   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2472     Lo = Memory;
2473   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2474     Lo = Memory;
2475   if (Hi == SSEUp && Lo != SSE)
2476     Hi = SSE;
2477 }
2478 
2479 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2480   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2481   // classified recursively so that always two fields are
2482   // considered. The resulting class is calculated according to
2483   // the classes of the fields in the eightbyte:
2484   //
2485   // (a) If both classes are equal, this is the resulting class.
2486   //
2487   // (b) If one of the classes is NO_CLASS, the resulting class is
2488   // the other class.
2489   //
2490   // (c) If one of the classes is MEMORY, the result is the MEMORY
2491   // class.
2492   //
2493   // (d) If one of the classes is INTEGER, the result is the
2494   // INTEGER.
2495   //
2496   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2497   // MEMORY is used as class.
2498   //
2499   // (f) Otherwise class SSE is used.
2500 
2501   // Accum should never be memory (we should have returned) or
2502   // ComplexX87 (because this cannot be passed in a structure).
2503   assert((Accum != Memory && Accum != ComplexX87) &&
2504          "Invalid accumulated classification during merge.");
2505   if (Accum == Field || Field == NoClass)
2506     return Accum;
2507   if (Field == Memory)
2508     return Memory;
2509   if (Accum == NoClass)
2510     return Field;
2511   if (Accum == Integer || Field == Integer)
2512     return Integer;
2513   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2514       Accum == X87 || Accum == X87Up)
2515     return Memory;
2516   return SSE;
2517 }
2518 
2519 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2520                              Class &Lo, Class &Hi, bool isNamedArg) const {
2521   // FIXME: This code can be simplified by introducing a simple value class for
2522   // Class pairs with appropriate constructor methods for the various
2523   // situations.
2524 
2525   // FIXME: Some of the split computations are wrong; unaligned vectors
2526   // shouldn't be passed in registers for example, so there is no chance they
2527   // can straddle an eightbyte. Verify & simplify.
2528 
2529   Lo = Hi = NoClass;
2530 
2531   Class &Current = OffsetBase < 64 ? Lo : Hi;
2532   Current = Memory;
2533 
2534   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2535     BuiltinType::Kind k = BT->getKind();
2536 
2537     if (k == BuiltinType::Void) {
2538       Current = NoClass;
2539     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2540       Lo = Integer;
2541       Hi = Integer;
2542     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2543       Current = Integer;
2544     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2545       Current = SSE;
2546     } else if (k == BuiltinType::LongDouble) {
2547       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2548       if (LDF == &llvm::APFloat::IEEEquad()) {
2549         Lo = SSE;
2550         Hi = SSEUp;
2551       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2552         Lo = X87;
2553         Hi = X87Up;
2554       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2555         Current = SSE;
2556       } else
2557         llvm_unreachable("unexpected long double representation!");
2558     }
2559     // FIXME: _Decimal32 and _Decimal64 are SSE.
2560     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2561     return;
2562   }
2563 
2564   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2565     // Classify the underlying integer type.
2566     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2567     return;
2568   }
2569 
2570   if (Ty->hasPointerRepresentation()) {
2571     Current = Integer;
2572     return;
2573   }
2574 
2575   if (Ty->isMemberPointerType()) {
2576     if (Ty->isMemberFunctionPointerType()) {
2577       if (Has64BitPointers) {
2578         // If Has64BitPointers, this is an {i64, i64}, so classify both
2579         // Lo and Hi now.
2580         Lo = Hi = Integer;
2581       } else {
2582         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2583         // straddles an eightbyte boundary, Hi should be classified as well.
2584         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2585         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2586         if (EB_FuncPtr != EB_ThisAdj) {
2587           Lo = Hi = Integer;
2588         } else {
2589           Current = Integer;
2590         }
2591       }
2592     } else {
2593       Current = Integer;
2594     }
2595     return;
2596   }
2597 
2598   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2599     uint64_t Size = getContext().getTypeSize(VT);
2600     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2601       // gcc passes the following as integer:
2602       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2603       // 2 bytes - <2 x char>, <1 x short>
2604       // 1 byte  - <1 x char>
2605       Current = Integer;
2606 
2607       // If this type crosses an eightbyte boundary, it should be
2608       // split.
2609       uint64_t EB_Lo = (OffsetBase) / 64;
2610       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2611       if (EB_Lo != EB_Hi)
2612         Hi = Lo;
2613     } else if (Size == 64) {
2614       QualType ElementType = VT->getElementType();
2615 
2616       // gcc passes <1 x double> in memory. :(
2617       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2618         return;
2619 
2620       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2621       // pass them as integer.  For platforms where clang is the de facto
2622       // platform compiler, we must continue to use integer.
2623       if (!classifyIntegerMMXAsSSE() &&
2624           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2625            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2626            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2627            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2628         Current = Integer;
2629       else
2630         Current = SSE;
2631 
2632       // If this type crosses an eightbyte boundary, it should be
2633       // split.
2634       if (OffsetBase && OffsetBase != 64)
2635         Hi = Lo;
2636     } else if (Size == 128 ||
2637                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2638       // Arguments of 256-bits are split into four eightbyte chunks. The
2639       // least significant one belongs to class SSE and all the others to class
2640       // SSEUP. The original Lo and Hi design considers that types can't be
2641       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2642       // This design isn't correct for 256-bits, but since there're no cases
2643       // where the upper parts would need to be inspected, avoid adding
2644       // complexity and just consider Hi to match the 64-256 part.
2645       //
2646       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2647       // registers if they are "named", i.e. not part of the "..." of a
2648       // variadic function.
2649       //
2650       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2651       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2652       Lo = SSE;
2653       Hi = SSEUp;
2654     }
2655     return;
2656   }
2657 
2658   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2659     QualType ET = getContext().getCanonicalType(CT->getElementType());
2660 
2661     uint64_t Size = getContext().getTypeSize(Ty);
2662     if (ET->isIntegralOrEnumerationType()) {
2663       if (Size <= 64)
2664         Current = Integer;
2665       else if (Size <= 128)
2666         Lo = Hi = Integer;
2667     } else if (ET == getContext().FloatTy) {
2668       Current = SSE;
2669     } else if (ET == getContext().DoubleTy) {
2670       Lo = Hi = SSE;
2671     } else if (ET == getContext().LongDoubleTy) {
2672       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2673       if (LDF == &llvm::APFloat::IEEEquad())
2674         Current = Memory;
2675       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2676         Current = ComplexX87;
2677       else if (LDF == &llvm::APFloat::IEEEdouble())
2678         Lo = Hi = SSE;
2679       else
2680         llvm_unreachable("unexpected long double representation!");
2681     }
2682 
2683     // If this complex type crosses an eightbyte boundary then it
2684     // should be split.
2685     uint64_t EB_Real = (OffsetBase) / 64;
2686     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2687     if (Hi == NoClass && EB_Real != EB_Imag)
2688       Hi = Lo;
2689 
2690     return;
2691   }
2692 
2693   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2694     // Arrays are treated like structures.
2695 
2696     uint64_t Size = getContext().getTypeSize(Ty);
2697 
2698     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2699     // than eight eightbytes, ..., it has class MEMORY.
2700     if (Size > 512)
2701       return;
2702 
2703     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2704     // fields, it has class MEMORY.
2705     //
2706     // Only need to check alignment of array base.
2707     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2708       return;
2709 
2710     // Otherwise implement simplified merge. We could be smarter about
2711     // this, but it isn't worth it and would be harder to verify.
2712     Current = NoClass;
2713     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2714     uint64_t ArraySize = AT->getSize().getZExtValue();
2715 
2716     // The only case a 256-bit wide vector could be used is when the array
2717     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2718     // to work for sizes wider than 128, early check and fallback to memory.
2719     //
2720     if (Size > 128 &&
2721         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2722       return;
2723 
2724     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2725       Class FieldLo, FieldHi;
2726       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2727       Lo = merge(Lo, FieldLo);
2728       Hi = merge(Hi, FieldHi);
2729       if (Lo == Memory || Hi == Memory)
2730         break;
2731     }
2732 
2733     postMerge(Size, Lo, Hi);
2734     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2735     return;
2736   }
2737 
2738   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2739     uint64_t Size = getContext().getTypeSize(Ty);
2740 
2741     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2742     // than eight eightbytes, ..., it has class MEMORY.
2743     if (Size > 512)
2744       return;
2745 
2746     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2747     // copy constructor or a non-trivial destructor, it is passed by invisible
2748     // reference.
2749     if (getRecordArgABI(RT, getCXXABI()))
2750       return;
2751 
2752     const RecordDecl *RD = RT->getDecl();
2753 
2754     // Assume variable sized types are passed in memory.
2755     if (RD->hasFlexibleArrayMember())
2756       return;
2757 
2758     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2759 
2760     // Reset Lo class, this will be recomputed.
2761     Current = NoClass;
2762 
2763     // If this is a C++ record, classify the bases first.
2764     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2765       for (const auto &I : CXXRD->bases()) {
2766         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2767                "Unexpected base class!");
2768         const CXXRecordDecl *Base =
2769           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2770 
2771         // Classify this field.
2772         //
2773         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2774         // single eightbyte, each is classified separately. Each eightbyte gets
2775         // initialized to class NO_CLASS.
2776         Class FieldLo, FieldHi;
2777         uint64_t Offset =
2778           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2779         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2780         Lo = merge(Lo, FieldLo);
2781         Hi = merge(Hi, FieldHi);
2782         if (Lo == Memory || Hi == Memory) {
2783           postMerge(Size, Lo, Hi);
2784           return;
2785         }
2786       }
2787     }
2788 
2789     // Classify the fields one at a time, merging the results.
2790     unsigned idx = 0;
2791     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2792            i != e; ++i, ++idx) {
2793       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2794       bool BitField = i->isBitField();
2795 
2796       // Ignore padding bit-fields.
2797       if (BitField && i->isUnnamedBitfield())
2798         continue;
2799 
2800       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2801       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2802       //
2803       // The only case a 256-bit wide vector could be used is when the struct
2804       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2805       // to work for sizes wider than 128, early check and fallback to memory.
2806       //
2807       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2808                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2809         Lo = Memory;
2810         postMerge(Size, Lo, Hi);
2811         return;
2812       }
2813       // Note, skip this test for bit-fields, see below.
2814       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2815         Lo = Memory;
2816         postMerge(Size, Lo, Hi);
2817         return;
2818       }
2819 
2820       // Classify this field.
2821       //
2822       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2823       // exceeds a single eightbyte, each is classified
2824       // separately. Each eightbyte gets initialized to class
2825       // NO_CLASS.
2826       Class FieldLo, FieldHi;
2827 
2828       // Bit-fields require special handling, they do not force the
2829       // structure to be passed in memory even if unaligned, and
2830       // therefore they can straddle an eightbyte.
2831       if (BitField) {
2832         assert(!i->isUnnamedBitfield());
2833         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2834         uint64_t Size = i->getBitWidthValue(getContext());
2835 
2836         uint64_t EB_Lo = Offset / 64;
2837         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2838 
2839         if (EB_Lo) {
2840           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2841           FieldLo = NoClass;
2842           FieldHi = Integer;
2843         } else {
2844           FieldLo = Integer;
2845           FieldHi = EB_Hi ? Integer : NoClass;
2846         }
2847       } else
2848         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2849       Lo = merge(Lo, FieldLo);
2850       Hi = merge(Hi, FieldHi);
2851       if (Lo == Memory || Hi == Memory)
2852         break;
2853     }
2854 
2855     postMerge(Size, Lo, Hi);
2856   }
2857 }
2858 
2859 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2860   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2861   // place naturally.
2862   if (!isAggregateTypeForABI(Ty)) {
2863     // Treat an enum type as its underlying type.
2864     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2865       Ty = EnumTy->getDecl()->getIntegerType();
2866 
2867     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2868                                           : ABIArgInfo::getDirect());
2869   }
2870 
2871   return getNaturalAlignIndirect(Ty);
2872 }
2873 
2874 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2875   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2876     uint64_t Size = getContext().getTypeSize(VecTy);
2877     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2878     if (Size <= 64 || Size > LargestVector)
2879       return true;
2880   }
2881 
2882   return false;
2883 }
2884 
2885 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2886                                             unsigned freeIntRegs) const {
2887   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2888   // place naturally.
2889   //
2890   // This assumption is optimistic, as there could be free registers available
2891   // when we need to pass this argument in memory, and LLVM could try to pass
2892   // the argument in the free register. This does not seem to happen currently,
2893   // but this code would be much safer if we could mark the argument with
2894   // 'onstack'. See PR12193.
2895   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2896     // Treat an enum type as its underlying type.
2897     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2898       Ty = EnumTy->getDecl()->getIntegerType();
2899 
2900     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2901                                           : ABIArgInfo::getDirect());
2902   }
2903 
2904   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2905     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2906 
2907   // Compute the byval alignment. We specify the alignment of the byval in all
2908   // cases so that the mid-level optimizer knows the alignment of the byval.
2909   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2910 
2911   // Attempt to avoid passing indirect results using byval when possible. This
2912   // is important for good codegen.
2913   //
2914   // We do this by coercing the value into a scalar type which the backend can
2915   // handle naturally (i.e., without using byval).
2916   //
2917   // For simplicity, we currently only do this when we have exhausted all of the
2918   // free integer registers. Doing this when there are free integer registers
2919   // would require more care, as we would have to ensure that the coerced value
2920   // did not claim the unused register. That would require either reording the
2921   // arguments to the function (so that any subsequent inreg values came first),
2922   // or only doing this optimization when there were no following arguments that
2923   // might be inreg.
2924   //
2925   // We currently expect it to be rare (particularly in well written code) for
2926   // arguments to be passed on the stack when there are still free integer
2927   // registers available (this would typically imply large structs being passed
2928   // by value), so this seems like a fair tradeoff for now.
2929   //
2930   // We can revisit this if the backend grows support for 'onstack' parameter
2931   // attributes. See PR12193.
2932   if (freeIntRegs == 0) {
2933     uint64_t Size = getContext().getTypeSize(Ty);
2934 
2935     // If this type fits in an eightbyte, coerce it into the matching integral
2936     // type, which will end up on the stack (with alignment 8).
2937     if (Align == 8 && Size <= 64)
2938       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2939                                                           Size));
2940   }
2941 
2942   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2943 }
2944 
2945 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2946 /// register. Pick an LLVM IR type that will be passed as a vector register.
2947 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2948   // Wrapper structs/arrays that only contain vectors are passed just like
2949   // vectors; strip them off if present.
2950   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2951     Ty = QualType(InnerTy, 0);
2952 
2953   llvm::Type *IRType = CGT.ConvertType(Ty);
2954   if (isa<llvm::VectorType>(IRType) ||
2955       IRType->getTypeID() == llvm::Type::FP128TyID)
2956     return IRType;
2957 
2958   // We couldn't find the preferred IR vector type for 'Ty'.
2959   uint64_t Size = getContext().getTypeSize(Ty);
2960   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2961 
2962   // Return a LLVM IR vector type based on the size of 'Ty'.
2963   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2964                                Size / 64);
2965 }
2966 
2967 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2968 /// is known to either be off the end of the specified type or being in
2969 /// alignment padding.  The user type specified is known to be at most 128 bits
2970 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2971 /// classification that put one of the two halves in the INTEGER class.
2972 ///
2973 /// It is conservatively correct to return false.
2974 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2975                                   unsigned EndBit, ASTContext &Context) {
2976   // If the bytes being queried are off the end of the type, there is no user
2977   // data hiding here.  This handles analysis of builtins, vectors and other
2978   // types that don't contain interesting padding.
2979   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2980   if (TySize <= StartBit)
2981     return true;
2982 
2983   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2984     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2985     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2986 
2987     // Check each element to see if the element overlaps with the queried range.
2988     for (unsigned i = 0; i != NumElts; ++i) {
2989       // If the element is after the span we care about, then we're done..
2990       unsigned EltOffset = i*EltSize;
2991       if (EltOffset >= EndBit) break;
2992 
2993       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2994       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2995                                  EndBit-EltOffset, Context))
2996         return false;
2997     }
2998     // If it overlaps no elements, then it is safe to process as padding.
2999     return true;
3000   }
3001 
3002   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3003     const RecordDecl *RD = RT->getDecl();
3004     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3005 
3006     // If this is a C++ record, check the bases first.
3007     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3008       for (const auto &I : CXXRD->bases()) {
3009         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3010                "Unexpected base class!");
3011         const CXXRecordDecl *Base =
3012           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3013 
3014         // If the base is after the span we care about, ignore it.
3015         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3016         if (BaseOffset >= EndBit) continue;
3017 
3018         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3019         if (!BitsContainNoUserData(I.getType(), BaseStart,
3020                                    EndBit-BaseOffset, Context))
3021           return false;
3022       }
3023     }
3024 
3025     // Verify that no field has data that overlaps the region of interest.  Yes
3026     // this could be sped up a lot by being smarter about queried fields,
3027     // however we're only looking at structs up to 16 bytes, so we don't care
3028     // much.
3029     unsigned idx = 0;
3030     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3031          i != e; ++i, ++idx) {
3032       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3033 
3034       // If we found a field after the region we care about, then we're done.
3035       if (FieldOffset >= EndBit) break;
3036 
3037       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3038       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3039                                  Context))
3040         return false;
3041     }
3042 
3043     // If nothing in this record overlapped the area of interest, then we're
3044     // clean.
3045     return true;
3046   }
3047 
3048   return false;
3049 }
3050 
3051 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3052 /// float member at the specified offset.  For example, {int,{float}} has a
3053 /// float at offset 4.  It is conservatively correct for this routine to return
3054 /// false.
3055 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3056                                   const llvm::DataLayout &TD) {
3057   // Base case if we find a float.
3058   if (IROffset == 0 && IRType->isFloatTy())
3059     return true;
3060 
3061   // If this is a struct, recurse into the field at the specified offset.
3062   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3063     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3064     unsigned Elt = SL->getElementContainingOffset(IROffset);
3065     IROffset -= SL->getElementOffset(Elt);
3066     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3067   }
3068 
3069   // If this is an array, recurse into the field at the specified offset.
3070   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3071     llvm::Type *EltTy = ATy->getElementType();
3072     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3073     IROffset -= IROffset/EltSize*EltSize;
3074     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3075   }
3076 
3077   return false;
3078 }
3079 
3080 
3081 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3082 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3083 llvm::Type *X86_64ABIInfo::
3084 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3085                    QualType SourceTy, unsigned SourceOffset) const {
3086   // The only three choices we have are either double, <2 x float>, or float. We
3087   // pass as float if the last 4 bytes is just padding.  This happens for
3088   // structs that contain 3 floats.
3089   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3090                             SourceOffset*8+64, getContext()))
3091     return llvm::Type::getFloatTy(getVMContext());
3092 
3093   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3094   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3095   // case.
3096   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3097       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3098     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3099 
3100   return llvm::Type::getDoubleTy(getVMContext());
3101 }
3102 
3103 
3104 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3105 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3106 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3107 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3108 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3109 /// etc).
3110 ///
3111 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3112 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3113 /// the 8-byte value references.  PrefType may be null.
3114 ///
3115 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3116 /// an offset into this that we're processing (which is always either 0 or 8).
3117 ///
3118 llvm::Type *X86_64ABIInfo::
3119 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3120                        QualType SourceTy, unsigned SourceOffset) const {
3121   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3122   // returning an 8-byte unit starting with it.  See if we can safely use it.
3123   if (IROffset == 0) {
3124     // Pointers and int64's always fill the 8-byte unit.
3125     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3126         IRType->isIntegerTy(64))
3127       return IRType;
3128 
3129     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3130     // goodness in the source type is just tail padding.  This is allowed to
3131     // kick in for struct {double,int} on the int, but not on
3132     // struct{double,int,int} because we wouldn't return the second int.  We
3133     // have to do this analysis on the source type because we can't depend on
3134     // unions being lowered a specific way etc.
3135     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3136         IRType->isIntegerTy(32) ||
3137         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3138       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3139           cast<llvm::IntegerType>(IRType)->getBitWidth();
3140 
3141       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3142                                 SourceOffset*8+64, getContext()))
3143         return IRType;
3144     }
3145   }
3146 
3147   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3148     // If this is a struct, recurse into the field at the specified offset.
3149     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3150     if (IROffset < SL->getSizeInBytes()) {
3151       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3152       IROffset -= SL->getElementOffset(FieldIdx);
3153 
3154       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3155                                     SourceTy, SourceOffset);
3156     }
3157   }
3158 
3159   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3160     llvm::Type *EltTy = ATy->getElementType();
3161     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3162     unsigned EltOffset = IROffset/EltSize*EltSize;
3163     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3164                                   SourceOffset);
3165   }
3166 
3167   // Okay, we don't have any better idea of what to pass, so we pass this in an
3168   // integer register that isn't too big to fit the rest of the struct.
3169   unsigned TySizeInBytes =
3170     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3171 
3172   assert(TySizeInBytes != SourceOffset && "Empty field?");
3173 
3174   // It is always safe to classify this as an integer type up to i64 that
3175   // isn't larger than the structure.
3176   return llvm::IntegerType::get(getVMContext(),
3177                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3178 }
3179 
3180 
3181 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3182 /// be used as elements of a two register pair to pass or return, return a
3183 /// first class aggregate to represent them.  For example, if the low part of
3184 /// a by-value argument should be passed as i32* and the high part as float,
3185 /// return {i32*, float}.
3186 static llvm::Type *
3187 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3188                            const llvm::DataLayout &TD) {
3189   // In order to correctly satisfy the ABI, we need to the high part to start
3190   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3191   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3192   // the second element at offset 8.  Check for this:
3193   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3194   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3195   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3196   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3197 
3198   // To handle this, we have to increase the size of the low part so that the
3199   // second element will start at an 8 byte offset.  We can't increase the size
3200   // of the second element because it might make us access off the end of the
3201   // struct.
3202   if (HiStart != 8) {
3203     // There are usually two sorts of types the ABI generation code can produce
3204     // for the low part of a pair that aren't 8 bytes in size: float or
3205     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3206     // NaCl).
3207     // Promote these to a larger type.
3208     if (Lo->isFloatTy())
3209       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3210     else {
3211       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3212              && "Invalid/unknown lo type");
3213       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3214     }
3215   }
3216 
3217   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3218 
3219   // Verify that the second element is at an 8-byte offset.
3220   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3221          "Invalid x86-64 argument pair!");
3222   return Result;
3223 }
3224 
3225 ABIArgInfo X86_64ABIInfo::
3226 classifyReturnType(QualType RetTy) const {
3227   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3228   // classification algorithm.
3229   X86_64ABIInfo::Class Lo, Hi;
3230   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3231 
3232   // Check some invariants.
3233   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3234   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3235 
3236   llvm::Type *ResType = nullptr;
3237   switch (Lo) {
3238   case NoClass:
3239     if (Hi == NoClass)
3240       return ABIArgInfo::getIgnore();
3241     // If the low part is just padding, it takes no register, leave ResType
3242     // null.
3243     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3244            "Unknown missing lo part");
3245     break;
3246 
3247   case SSEUp:
3248   case X87Up:
3249     llvm_unreachable("Invalid classification for lo word.");
3250 
3251     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3252     // hidden argument.
3253   case Memory:
3254     return getIndirectReturnResult(RetTy);
3255 
3256     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3257     // available register of the sequence %rax, %rdx is used.
3258   case Integer:
3259     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3260 
3261     // If we have a sign or zero extended integer, make sure to return Extend
3262     // so that the parameter gets the right LLVM IR attributes.
3263     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3264       // Treat an enum type as its underlying type.
3265       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3266         RetTy = EnumTy->getDecl()->getIntegerType();
3267 
3268       if (RetTy->isIntegralOrEnumerationType() &&
3269           RetTy->isPromotableIntegerType())
3270         return ABIArgInfo::getExtend(RetTy);
3271     }
3272     break;
3273 
3274     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3275     // available SSE register of the sequence %xmm0, %xmm1 is used.
3276   case SSE:
3277     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3278     break;
3279 
3280     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3281     // returned on the X87 stack in %st0 as 80-bit x87 number.
3282   case X87:
3283     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3284     break;
3285 
3286     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3287     // part of the value is returned in %st0 and the imaginary part in
3288     // %st1.
3289   case ComplexX87:
3290     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3291     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3292                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3293     break;
3294   }
3295 
3296   llvm::Type *HighPart = nullptr;
3297   switch (Hi) {
3298     // Memory was handled previously and X87 should
3299     // never occur as a hi class.
3300   case Memory:
3301   case X87:
3302     llvm_unreachable("Invalid classification for hi word.");
3303 
3304   case ComplexX87: // Previously handled.
3305   case NoClass:
3306     break;
3307 
3308   case Integer:
3309     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3310     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3311       return ABIArgInfo::getDirect(HighPart, 8);
3312     break;
3313   case SSE:
3314     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3315     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3316       return ABIArgInfo::getDirect(HighPart, 8);
3317     break;
3318 
3319     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3320     // is passed in the next available eightbyte chunk if the last used
3321     // vector register.
3322     //
3323     // SSEUP should always be preceded by SSE, just widen.
3324   case SSEUp:
3325     assert(Lo == SSE && "Unexpected SSEUp classification.");
3326     ResType = GetByteVectorType(RetTy);
3327     break;
3328 
3329     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3330     // returned together with the previous X87 value in %st0.
3331   case X87Up:
3332     // If X87Up is preceded by X87, we don't need to do
3333     // anything. However, in some cases with unions it may not be
3334     // preceded by X87. In such situations we follow gcc and pass the
3335     // extra bits in an SSE reg.
3336     if (Lo != X87) {
3337       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3338       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3339         return ABIArgInfo::getDirect(HighPart, 8);
3340     }
3341     break;
3342   }
3343 
3344   // If a high part was specified, merge it together with the low part.  It is
3345   // known to pass in the high eightbyte of the result.  We do this by forming a
3346   // first class struct aggregate with the high and low part: {low, high}
3347   if (HighPart)
3348     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3349 
3350   return ABIArgInfo::getDirect(ResType);
3351 }
3352 
3353 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3354   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3355   bool isNamedArg)
3356   const
3357 {
3358   Ty = useFirstFieldIfTransparentUnion(Ty);
3359 
3360   X86_64ABIInfo::Class Lo, Hi;
3361   classify(Ty, 0, Lo, Hi, isNamedArg);
3362 
3363   // Check some invariants.
3364   // FIXME: Enforce these by construction.
3365   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3366   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3367 
3368   neededInt = 0;
3369   neededSSE = 0;
3370   llvm::Type *ResType = nullptr;
3371   switch (Lo) {
3372   case NoClass:
3373     if (Hi == NoClass)
3374       return ABIArgInfo::getIgnore();
3375     // If the low part is just padding, it takes no register, leave ResType
3376     // null.
3377     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3378            "Unknown missing lo part");
3379     break;
3380 
3381     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3382     // on the stack.
3383   case Memory:
3384 
3385     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3386     // COMPLEX_X87, it is passed in memory.
3387   case X87:
3388   case ComplexX87:
3389     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3390       ++neededInt;
3391     return getIndirectResult(Ty, freeIntRegs);
3392 
3393   case SSEUp:
3394   case X87Up:
3395     llvm_unreachable("Invalid classification for lo word.");
3396 
3397     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3398     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3399     // and %r9 is used.
3400   case Integer:
3401     ++neededInt;
3402 
3403     // Pick an 8-byte type based on the preferred type.
3404     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3405 
3406     // If we have a sign or zero extended integer, make sure to return Extend
3407     // so that the parameter gets the right LLVM IR attributes.
3408     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3409       // Treat an enum type as its underlying type.
3410       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3411         Ty = EnumTy->getDecl()->getIntegerType();
3412 
3413       if (Ty->isIntegralOrEnumerationType() &&
3414           Ty->isPromotableIntegerType())
3415         return ABIArgInfo::getExtend(Ty);
3416     }
3417 
3418     break;
3419 
3420     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3421     // available SSE register is used, the registers are taken in the
3422     // order from %xmm0 to %xmm7.
3423   case SSE: {
3424     llvm::Type *IRType = CGT.ConvertType(Ty);
3425     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3426     ++neededSSE;
3427     break;
3428   }
3429   }
3430 
3431   llvm::Type *HighPart = nullptr;
3432   switch (Hi) {
3433     // Memory was handled previously, ComplexX87 and X87 should
3434     // never occur as hi classes, and X87Up must be preceded by X87,
3435     // which is passed in memory.
3436   case Memory:
3437   case X87:
3438   case ComplexX87:
3439     llvm_unreachable("Invalid classification for hi word.");
3440 
3441   case NoClass: break;
3442 
3443   case Integer:
3444     ++neededInt;
3445     // Pick an 8-byte type based on the preferred type.
3446     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3447 
3448     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3449       return ABIArgInfo::getDirect(HighPart, 8);
3450     break;
3451 
3452     // X87Up generally doesn't occur here (long double is passed in
3453     // memory), except in situations involving unions.
3454   case X87Up:
3455   case SSE:
3456     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3457 
3458     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3459       return ABIArgInfo::getDirect(HighPart, 8);
3460 
3461     ++neededSSE;
3462     break;
3463 
3464     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3465     // eightbyte is passed in the upper half of the last used SSE
3466     // register.  This only happens when 128-bit vectors are passed.
3467   case SSEUp:
3468     assert(Lo == SSE && "Unexpected SSEUp classification");
3469     ResType = GetByteVectorType(Ty);
3470     break;
3471   }
3472 
3473   // If a high part was specified, merge it together with the low part.  It is
3474   // known to pass in the high eightbyte of the result.  We do this by forming a
3475   // first class struct aggregate with the high and low part: {low, high}
3476   if (HighPart)
3477     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3478 
3479   return ABIArgInfo::getDirect(ResType);
3480 }
3481 
3482 ABIArgInfo
3483 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3484                                              unsigned &NeededSSE) const {
3485   auto RT = Ty->getAs<RecordType>();
3486   assert(RT && "classifyRegCallStructType only valid with struct types");
3487 
3488   if (RT->getDecl()->hasFlexibleArrayMember())
3489     return getIndirectReturnResult(Ty);
3490 
3491   // Sum up bases
3492   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3493     if (CXXRD->isDynamicClass()) {
3494       NeededInt = NeededSSE = 0;
3495       return getIndirectReturnResult(Ty);
3496     }
3497 
3498     for (const auto &I : CXXRD->bases())
3499       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3500               .isIndirect()) {
3501         NeededInt = NeededSSE = 0;
3502         return getIndirectReturnResult(Ty);
3503       }
3504   }
3505 
3506   // Sum up members
3507   for (const auto *FD : RT->getDecl()->fields()) {
3508     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3509       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3510               .isIndirect()) {
3511         NeededInt = NeededSSE = 0;
3512         return getIndirectReturnResult(Ty);
3513       }
3514     } else {
3515       unsigned LocalNeededInt, LocalNeededSSE;
3516       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3517                                LocalNeededSSE, true)
3518               .isIndirect()) {
3519         NeededInt = NeededSSE = 0;
3520         return getIndirectReturnResult(Ty);
3521       }
3522       NeededInt += LocalNeededInt;
3523       NeededSSE += LocalNeededSSE;
3524     }
3525   }
3526 
3527   return ABIArgInfo::getDirect();
3528 }
3529 
3530 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3531                                                     unsigned &NeededInt,
3532                                                     unsigned &NeededSSE) const {
3533 
3534   NeededInt = 0;
3535   NeededSSE = 0;
3536 
3537   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3538 }
3539 
3540 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3541 
3542   const unsigned CallingConv = FI.getCallingConvention();
3543   // It is possible to force Win64 calling convention on any x86_64 target by
3544   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3545   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3546   if (CallingConv == llvm::CallingConv::Win64) {
3547     WinX86_64ABIInfo Win64ABIInfo(CGT);
3548     Win64ABIInfo.computeInfo(FI);
3549     return;
3550   }
3551 
3552   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3553 
3554   // Keep track of the number of assigned registers.
3555   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3556   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3557   unsigned NeededInt, NeededSSE;
3558 
3559   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3560     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3561         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3562       FI.getReturnInfo() =
3563           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3564       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3565         FreeIntRegs -= NeededInt;
3566         FreeSSERegs -= NeededSSE;
3567       } else {
3568         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3569       }
3570     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3571       // Complex Long Double Type is passed in Memory when Regcall
3572       // calling convention is used.
3573       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3574       if (getContext().getCanonicalType(CT->getElementType()) ==
3575           getContext().LongDoubleTy)
3576         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3577     } else
3578       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3579   }
3580 
3581   // If the return value is indirect, then the hidden argument is consuming one
3582   // integer register.
3583   if (FI.getReturnInfo().isIndirect())
3584     --FreeIntRegs;
3585 
3586   // The chain argument effectively gives us another free register.
3587   if (FI.isChainCall())
3588     ++FreeIntRegs;
3589 
3590   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3591   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3592   // get assigned (in left-to-right order) for passing as follows...
3593   unsigned ArgNo = 0;
3594   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3595        it != ie; ++it, ++ArgNo) {
3596     bool IsNamedArg = ArgNo < NumRequiredArgs;
3597 
3598     if (IsRegCall && it->type->isStructureOrClassType())
3599       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3600     else
3601       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3602                                       NeededSSE, IsNamedArg);
3603 
3604     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3605     // eightbyte of an argument, the whole argument is passed on the
3606     // stack. If registers have already been assigned for some
3607     // eightbytes of such an argument, the assignments get reverted.
3608     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3609       FreeIntRegs -= NeededInt;
3610       FreeSSERegs -= NeededSSE;
3611     } else {
3612       it->info = getIndirectResult(it->type, FreeIntRegs);
3613     }
3614   }
3615 }
3616 
3617 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3618                                          Address VAListAddr, QualType Ty) {
3619   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3620       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3621   llvm::Value *overflow_arg_area =
3622     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3623 
3624   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3625   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3626   // It isn't stated explicitly in the standard, but in practice we use
3627   // alignment greater than 16 where necessary.
3628   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3629   if (Align > CharUnits::fromQuantity(8)) {
3630     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3631                                                       Align);
3632   }
3633 
3634   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3635   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3636   llvm::Value *Res =
3637     CGF.Builder.CreateBitCast(overflow_arg_area,
3638                               llvm::PointerType::getUnqual(LTy));
3639 
3640   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3641   // l->overflow_arg_area + sizeof(type).
3642   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3643   // an 8 byte boundary.
3644 
3645   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3646   llvm::Value *Offset =
3647       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3648   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3649                                             "overflow_arg_area.next");
3650   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3651 
3652   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3653   return Address(Res, Align);
3654 }
3655 
3656 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3657                                  QualType Ty) const {
3658   // Assume that va_list type is correct; should be pointer to LLVM type:
3659   // struct {
3660   //   i32 gp_offset;
3661   //   i32 fp_offset;
3662   //   i8* overflow_arg_area;
3663   //   i8* reg_save_area;
3664   // };
3665   unsigned neededInt, neededSSE;
3666 
3667   Ty = getContext().getCanonicalType(Ty);
3668   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3669                                        /*isNamedArg*/false);
3670 
3671   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3672   // in the registers. If not go to step 7.
3673   if (!neededInt && !neededSSE)
3674     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3675 
3676   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3677   // general purpose registers needed to pass type and num_fp to hold
3678   // the number of floating point registers needed.
3679 
3680   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3681   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3682   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3683   //
3684   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3685   // register save space).
3686 
3687   llvm::Value *InRegs = nullptr;
3688   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3689   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3690   if (neededInt) {
3691     gp_offset_p =
3692         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3693                                     "gp_offset_p");
3694     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3695     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3696     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3697   }
3698 
3699   if (neededSSE) {
3700     fp_offset_p =
3701         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3702                                     "fp_offset_p");
3703     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3704     llvm::Value *FitsInFP =
3705       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3706     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3707     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3708   }
3709 
3710   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3711   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3712   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3713   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3714 
3715   // Emit code to load the value if it was passed in registers.
3716 
3717   CGF.EmitBlock(InRegBlock);
3718 
3719   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3720   // an offset of l->gp_offset and/or l->fp_offset. This may require
3721   // copying to a temporary location in case the parameter is passed
3722   // in different register classes or requires an alignment greater
3723   // than 8 for general purpose registers and 16 for XMM registers.
3724   //
3725   // FIXME: This really results in shameful code when we end up needing to
3726   // collect arguments from different places; often what should result in a
3727   // simple assembling of a structure from scattered addresses has many more
3728   // loads than necessary. Can we clean this up?
3729   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3730   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3731       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3732                                   "reg_save_area");
3733 
3734   Address RegAddr = Address::invalid();
3735   if (neededInt && neededSSE) {
3736     // FIXME: Cleanup.
3737     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3738     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3739     Address Tmp = CGF.CreateMemTemp(Ty);
3740     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3741     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3742     llvm::Type *TyLo = ST->getElementType(0);
3743     llvm::Type *TyHi = ST->getElementType(1);
3744     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3745            "Unexpected ABI info for mixed regs");
3746     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3747     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3748     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3749     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3750     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3751     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3752 
3753     // Copy the first element.
3754     // FIXME: Our choice of alignment here and below is probably pessimistic.
3755     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3756         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3757         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3758     CGF.Builder.CreateStore(V,
3759                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3760 
3761     // Copy the second element.
3762     V = CGF.Builder.CreateAlignedLoad(
3763         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3764         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3765     CharUnits Offset = CharUnits::fromQuantity(
3766                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3767     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3768 
3769     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3770   } else if (neededInt) {
3771     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3772                       CharUnits::fromQuantity(8));
3773     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3774 
3775     // Copy to a temporary if necessary to ensure the appropriate alignment.
3776     std::pair<CharUnits, CharUnits> SizeAlign =
3777         getContext().getTypeInfoInChars(Ty);
3778     uint64_t TySize = SizeAlign.first.getQuantity();
3779     CharUnits TyAlign = SizeAlign.second;
3780 
3781     // Copy into a temporary if the type is more aligned than the
3782     // register save area.
3783     if (TyAlign.getQuantity() > 8) {
3784       Address Tmp = CGF.CreateMemTemp(Ty);
3785       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3786       RegAddr = Tmp;
3787     }
3788 
3789   } else if (neededSSE == 1) {
3790     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3791                       CharUnits::fromQuantity(16));
3792     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3793   } else {
3794     assert(neededSSE == 2 && "Invalid number of needed registers!");
3795     // SSE registers are spaced 16 bytes apart in the register save
3796     // area, we need to collect the two eightbytes together.
3797     // The ABI isn't explicit about this, but it seems reasonable
3798     // to assume that the slots are 16-byte aligned, since the stack is
3799     // naturally 16-byte aligned and the prologue is expected to store
3800     // all the SSE registers to the RSA.
3801     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3802                                 CharUnits::fromQuantity(16));
3803     Address RegAddrHi =
3804       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3805                                              CharUnits::fromQuantity(16));
3806     llvm::Type *ST = AI.canHaveCoerceToType()
3807                          ? AI.getCoerceToType()
3808                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3809     llvm::Value *V;
3810     Address Tmp = CGF.CreateMemTemp(Ty);
3811     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3812     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3813         RegAddrLo, ST->getStructElementType(0)));
3814     CGF.Builder.CreateStore(V,
3815                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3816     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3817         RegAddrHi, ST->getStructElementType(1)));
3818     CGF.Builder.CreateStore(V,
3819           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3820 
3821     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3822   }
3823 
3824   // AMD64-ABI 3.5.7p5: Step 5. Set:
3825   // l->gp_offset = l->gp_offset + num_gp * 8
3826   // l->fp_offset = l->fp_offset + num_fp * 16.
3827   if (neededInt) {
3828     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3829     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3830                             gp_offset_p);
3831   }
3832   if (neededSSE) {
3833     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3834     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3835                             fp_offset_p);
3836   }
3837   CGF.EmitBranch(ContBlock);
3838 
3839   // Emit code to load the value if it was passed in memory.
3840 
3841   CGF.EmitBlock(InMemBlock);
3842   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3843 
3844   // Return the appropriate result.
3845 
3846   CGF.EmitBlock(ContBlock);
3847   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3848                                  "vaarg.addr");
3849   return ResAddr;
3850 }
3851 
3852 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3853                                    QualType Ty) const {
3854   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3855                           CGF.getContext().getTypeInfoInChars(Ty),
3856                           CharUnits::fromQuantity(8),
3857                           /*allowHigherAlign*/ false);
3858 }
3859 
3860 ABIArgInfo
3861 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3862                                     const ABIArgInfo &current) const {
3863   // Assumes vectorCall calling convention.
3864   const Type *Base = nullptr;
3865   uint64_t NumElts = 0;
3866 
3867   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3868       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3869     FreeSSERegs -= NumElts;
3870     return getDirectX86Hva();
3871   }
3872   return current;
3873 }
3874 
3875 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3876                                       bool IsReturnType, bool IsVectorCall,
3877                                       bool IsRegCall) const {
3878 
3879   if (Ty->isVoidType())
3880     return ABIArgInfo::getIgnore();
3881 
3882   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3883     Ty = EnumTy->getDecl()->getIntegerType();
3884 
3885   TypeInfo Info = getContext().getTypeInfo(Ty);
3886   uint64_t Width = Info.Width;
3887   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3888 
3889   const RecordType *RT = Ty->getAs<RecordType>();
3890   if (RT) {
3891     if (!IsReturnType) {
3892       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3893         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3894     }
3895 
3896     if (RT->getDecl()->hasFlexibleArrayMember())
3897       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3898 
3899   }
3900 
3901   const Type *Base = nullptr;
3902   uint64_t NumElts = 0;
3903   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3904   // other targets.
3905   if ((IsVectorCall || IsRegCall) &&
3906       isHomogeneousAggregate(Ty, Base, NumElts)) {
3907     if (IsRegCall) {
3908       if (FreeSSERegs >= NumElts) {
3909         FreeSSERegs -= NumElts;
3910         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3911           return ABIArgInfo::getDirect();
3912         return ABIArgInfo::getExpand();
3913       }
3914       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3915     } else if (IsVectorCall) {
3916       if (FreeSSERegs >= NumElts &&
3917           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3918         FreeSSERegs -= NumElts;
3919         return ABIArgInfo::getDirect();
3920       } else if (IsReturnType) {
3921         return ABIArgInfo::getExpand();
3922       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3923         // HVAs are delayed and reclassified in the 2nd step.
3924         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3925       }
3926     }
3927   }
3928 
3929   if (Ty->isMemberPointerType()) {
3930     // If the member pointer is represented by an LLVM int or ptr, pass it
3931     // directly.
3932     llvm::Type *LLTy = CGT.ConvertType(Ty);
3933     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3934       return ABIArgInfo::getDirect();
3935   }
3936 
3937   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3938     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3939     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3940     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3941       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3942 
3943     // Otherwise, coerce it to a small integer.
3944     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3945   }
3946 
3947   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3948     switch (BT->getKind()) {
3949     case BuiltinType::Bool:
3950       // Bool type is always extended to the ABI, other builtin types are not
3951       // extended.
3952       return ABIArgInfo::getExtend(Ty);
3953 
3954     case BuiltinType::LongDouble:
3955       // Mingw64 GCC uses the old 80 bit extended precision floating point
3956       // unit. It passes them indirectly through memory.
3957       if (IsMingw64) {
3958         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3959         if (LDF == &llvm::APFloat::x87DoubleExtended())
3960           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3961       }
3962       break;
3963 
3964     case BuiltinType::Int128:
3965     case BuiltinType::UInt128:
3966       // If it's a parameter type, the normal ABI rule is that arguments larger
3967       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3968       // even though it isn't particularly efficient.
3969       if (!IsReturnType)
3970         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3971 
3972       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3973       // Clang matches them for compatibility.
3974       return ABIArgInfo::getDirect(
3975           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
3976 
3977     default:
3978       break;
3979     }
3980   }
3981 
3982   return ABIArgInfo::getDirect();
3983 }
3984 
3985 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3986                                              unsigned FreeSSERegs,
3987                                              bool IsVectorCall,
3988                                              bool IsRegCall) const {
3989   unsigned Count = 0;
3990   for (auto &I : FI.arguments()) {
3991     // Vectorcall in x64 only permits the first 6 arguments to be passed
3992     // as XMM/YMM registers.
3993     if (Count < VectorcallMaxParamNumAsReg)
3994       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3995     else {
3996       // Since these cannot be passed in registers, pretend no registers
3997       // are left.
3998       unsigned ZeroSSERegsAvail = 0;
3999       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4000                         IsVectorCall, IsRegCall);
4001     }
4002     ++Count;
4003   }
4004 
4005   for (auto &I : FI.arguments()) {
4006     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4007   }
4008 }
4009 
4010 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4011   bool IsVectorCall =
4012       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
4013   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
4014 
4015   unsigned FreeSSERegs = 0;
4016   if (IsVectorCall) {
4017     // We can use up to 4 SSE return registers with vectorcall.
4018     FreeSSERegs = 4;
4019   } else if (IsRegCall) {
4020     // RegCall gives us 16 SSE registers.
4021     FreeSSERegs = 16;
4022   }
4023 
4024   if (!getCXXABI().classifyReturnType(FI))
4025     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4026                                   IsVectorCall, IsRegCall);
4027 
4028   if (IsVectorCall) {
4029     // We can use up to 6 SSE register parameters with vectorcall.
4030     FreeSSERegs = 6;
4031   } else if (IsRegCall) {
4032     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4033     FreeSSERegs = 16;
4034   }
4035 
4036   if (IsVectorCall) {
4037     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4038   } else {
4039     for (auto &I : FI.arguments())
4040       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4041   }
4042 
4043 }
4044 
4045 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4046                                     QualType Ty) const {
4047 
4048   bool IsIndirect = false;
4049 
4050   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4051   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4052   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4053     uint64_t Width = getContext().getTypeSize(Ty);
4054     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4055   }
4056 
4057   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4058                           CGF.getContext().getTypeInfoInChars(Ty),
4059                           CharUnits::fromQuantity(8),
4060                           /*allowHigherAlign*/ false);
4061 }
4062 
4063 // PowerPC-32
4064 namespace {
4065 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4066 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4067   bool IsSoftFloatABI;
4068 
4069   CharUnits getParamTypeAlignment(QualType Ty) const;
4070 
4071 public:
4072   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4073       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4074 
4075   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4076                     QualType Ty) const override;
4077 };
4078 
4079 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4080 public:
4081   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4082       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4083 
4084   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4085     // This is recovered from gcc output.
4086     return 1; // r1 is the dedicated stack pointer
4087   }
4088 
4089   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4090                                llvm::Value *Address) const override;
4091 };
4092 }
4093 
4094 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4095   // Complex types are passed just like their elements
4096   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4097     Ty = CTy->getElementType();
4098 
4099   if (Ty->isVectorType())
4100     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4101                                                                        : 4);
4102 
4103   // For single-element float/vector structs, we consider the whole type
4104   // to have the same alignment requirements as its single element.
4105   const Type *AlignTy = nullptr;
4106   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4107     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4108     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4109         (BT && BT->isFloatingPoint()))
4110       AlignTy = EltType;
4111   }
4112 
4113   if (AlignTy)
4114     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4115   return CharUnits::fromQuantity(4);
4116 }
4117 
4118 // TODO: this implementation is now likely redundant with
4119 // DefaultABIInfo::EmitVAArg.
4120 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4121                                       QualType Ty) const {
4122   if (getTarget().getTriple().isOSDarwin()) {
4123     auto TI = getContext().getTypeInfoInChars(Ty);
4124     TI.second = getParamTypeAlignment(Ty);
4125 
4126     CharUnits SlotSize = CharUnits::fromQuantity(4);
4127     return emitVoidPtrVAArg(CGF, VAList, Ty,
4128                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4129                             /*AllowHigherAlign=*/true);
4130   }
4131 
4132   const unsigned OverflowLimit = 8;
4133   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4134     // TODO: Implement this. For now ignore.
4135     (void)CTy;
4136     return Address::invalid(); // FIXME?
4137   }
4138 
4139   // struct __va_list_tag {
4140   //   unsigned char gpr;
4141   //   unsigned char fpr;
4142   //   unsigned short reserved;
4143   //   void *overflow_arg_area;
4144   //   void *reg_save_area;
4145   // };
4146 
4147   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4148   bool isInt =
4149       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4150   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4151 
4152   // All aggregates are passed indirectly?  That doesn't seem consistent
4153   // with the argument-lowering code.
4154   bool isIndirect = Ty->isAggregateType();
4155 
4156   CGBuilderTy &Builder = CGF.Builder;
4157 
4158   // The calling convention either uses 1-2 GPRs or 1 FPR.
4159   Address NumRegsAddr = Address::invalid();
4160   if (isInt || IsSoftFloatABI) {
4161     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4162   } else {
4163     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4164   }
4165 
4166   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4167 
4168   // "Align" the register count when TY is i64.
4169   if (isI64 || (isF64 && IsSoftFloatABI)) {
4170     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4171     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4172   }
4173 
4174   llvm::Value *CC =
4175       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4176 
4177   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4178   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4179   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4180 
4181   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4182 
4183   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4184   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4185 
4186   // Case 1: consume registers.
4187   Address RegAddr = Address::invalid();
4188   {
4189     CGF.EmitBlock(UsingRegs);
4190 
4191     Address RegSaveAreaPtr =
4192       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4193     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4194                       CharUnits::fromQuantity(8));
4195     assert(RegAddr.getElementType() == CGF.Int8Ty);
4196 
4197     // Floating-point registers start after the general-purpose registers.
4198     if (!(isInt || IsSoftFloatABI)) {
4199       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4200                                                    CharUnits::fromQuantity(32));
4201     }
4202 
4203     // Get the address of the saved value by scaling the number of
4204     // registers we've used by the number of
4205     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4206     llvm::Value *RegOffset =
4207       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4208     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4209                                             RegAddr.getPointer(), RegOffset),
4210                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4211     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4212 
4213     // Increase the used-register count.
4214     NumRegs =
4215       Builder.CreateAdd(NumRegs,
4216                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4217     Builder.CreateStore(NumRegs, NumRegsAddr);
4218 
4219     CGF.EmitBranch(Cont);
4220   }
4221 
4222   // Case 2: consume space in the overflow area.
4223   Address MemAddr = Address::invalid();
4224   {
4225     CGF.EmitBlock(UsingOverflow);
4226 
4227     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4228 
4229     // Everything in the overflow area is rounded up to a size of at least 4.
4230     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4231 
4232     CharUnits Size;
4233     if (!isIndirect) {
4234       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4235       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4236     } else {
4237       Size = CGF.getPointerSize();
4238     }
4239 
4240     Address OverflowAreaAddr =
4241       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4242     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4243                          OverflowAreaAlign);
4244     // Round up address of argument to alignment
4245     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4246     if (Align > OverflowAreaAlign) {
4247       llvm::Value *Ptr = OverflowArea.getPointer();
4248       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4249                                                            Align);
4250     }
4251 
4252     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4253 
4254     // Increase the overflow area.
4255     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4256     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4257     CGF.EmitBranch(Cont);
4258   }
4259 
4260   CGF.EmitBlock(Cont);
4261 
4262   // Merge the cases with a phi.
4263   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4264                                 "vaarg.addr");
4265 
4266   // Load the pointer if the argument was passed indirectly.
4267   if (isIndirect) {
4268     Result = Address(Builder.CreateLoad(Result, "aggr"),
4269                      getContext().getTypeAlignInChars(Ty));
4270   }
4271 
4272   return Result;
4273 }
4274 
4275 bool
4276 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4277                                                 llvm::Value *Address) const {
4278   // This is calculated from the LLVM and GCC tables and verified
4279   // against gcc output.  AFAIK all ABIs use the same encoding.
4280 
4281   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4282 
4283   llvm::IntegerType *i8 = CGF.Int8Ty;
4284   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4285   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4286   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4287 
4288   // 0-31: r0-31, the 4-byte general-purpose registers
4289   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4290 
4291   // 32-63: fp0-31, the 8-byte floating-point registers
4292   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4293 
4294   // 64-76 are various 4-byte special-purpose registers:
4295   // 64: mq
4296   // 65: lr
4297   // 66: ctr
4298   // 67: ap
4299   // 68-75 cr0-7
4300   // 76: xer
4301   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4302 
4303   // 77-108: v0-31, the 16-byte vector registers
4304   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4305 
4306   // 109: vrsave
4307   // 110: vscr
4308   // 111: spe_acc
4309   // 112: spefscr
4310   // 113: sfp
4311   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4312 
4313   return false;
4314 }
4315 
4316 // PowerPC-64
4317 
4318 namespace {
4319 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4320 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4321 public:
4322   enum ABIKind {
4323     ELFv1 = 0,
4324     ELFv2
4325   };
4326 
4327 private:
4328   static const unsigned GPRBits = 64;
4329   ABIKind Kind;
4330   bool HasQPX;
4331   bool IsSoftFloatABI;
4332 
4333   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4334   // will be passed in a QPX register.
4335   bool IsQPXVectorTy(const Type *Ty) const {
4336     if (!HasQPX)
4337       return false;
4338 
4339     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4340       unsigned NumElements = VT->getNumElements();
4341       if (NumElements == 1)
4342         return false;
4343 
4344       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4345         if (getContext().getTypeSize(Ty) <= 256)
4346           return true;
4347       } else if (VT->getElementType()->
4348                    isSpecificBuiltinType(BuiltinType::Float)) {
4349         if (getContext().getTypeSize(Ty) <= 128)
4350           return true;
4351       }
4352     }
4353 
4354     return false;
4355   }
4356 
4357   bool IsQPXVectorTy(QualType Ty) const {
4358     return IsQPXVectorTy(Ty.getTypePtr());
4359   }
4360 
4361 public:
4362   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4363                      bool SoftFloatABI)
4364       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4365         IsSoftFloatABI(SoftFloatABI) {}
4366 
4367   bool isPromotableTypeForABI(QualType Ty) const;
4368   CharUnits getParamTypeAlignment(QualType Ty) const;
4369 
4370   ABIArgInfo classifyReturnType(QualType RetTy) const;
4371   ABIArgInfo classifyArgumentType(QualType Ty) const;
4372 
4373   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4374   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4375                                          uint64_t Members) const override;
4376 
4377   // TODO: We can add more logic to computeInfo to improve performance.
4378   // Example: For aggregate arguments that fit in a register, we could
4379   // use getDirectInReg (as is done below for structs containing a single
4380   // floating-point value) to avoid pushing them to memory on function
4381   // entry.  This would require changing the logic in PPCISelLowering
4382   // when lowering the parameters in the caller and args in the callee.
4383   void computeInfo(CGFunctionInfo &FI) const override {
4384     if (!getCXXABI().classifyReturnType(FI))
4385       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4386     for (auto &I : FI.arguments()) {
4387       // We rely on the default argument classification for the most part.
4388       // One exception:  An aggregate containing a single floating-point
4389       // or vector item must be passed in a register if one is available.
4390       const Type *T = isSingleElementStruct(I.type, getContext());
4391       if (T) {
4392         const BuiltinType *BT = T->getAs<BuiltinType>();
4393         if (IsQPXVectorTy(T) ||
4394             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4395             (BT && BT->isFloatingPoint())) {
4396           QualType QT(T, 0);
4397           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4398           continue;
4399         }
4400       }
4401       I.info = classifyArgumentType(I.type);
4402     }
4403   }
4404 
4405   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4406                     QualType Ty) const override;
4407 
4408   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4409                                     bool asReturnValue) const override {
4410     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4411   }
4412 
4413   bool isSwiftErrorInRegister() const override {
4414     return false;
4415   }
4416 };
4417 
4418 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4419 
4420 public:
4421   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4422                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4423                                bool SoftFloatABI)
4424       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4425                                                  SoftFloatABI)) {}
4426 
4427   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4428     // This is recovered from gcc output.
4429     return 1; // r1 is the dedicated stack pointer
4430   }
4431 
4432   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4433                                llvm::Value *Address) const override;
4434 };
4435 
4436 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4437 public:
4438   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4439 
4440   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4441     // This is recovered from gcc output.
4442     return 1; // r1 is the dedicated stack pointer
4443   }
4444 
4445   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4446                                llvm::Value *Address) const override;
4447 };
4448 
4449 }
4450 
4451 // Return true if the ABI requires Ty to be passed sign- or zero-
4452 // extended to 64 bits.
4453 bool
4454 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4455   // Treat an enum type as its underlying type.
4456   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4457     Ty = EnumTy->getDecl()->getIntegerType();
4458 
4459   // Promotable integer types are required to be promoted by the ABI.
4460   if (Ty->isPromotableIntegerType())
4461     return true;
4462 
4463   // In addition to the usual promotable integer types, we also need to
4464   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4465   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4466     switch (BT->getKind()) {
4467     case BuiltinType::Int:
4468     case BuiltinType::UInt:
4469       return true;
4470     default:
4471       break;
4472     }
4473 
4474   return false;
4475 }
4476 
4477 /// isAlignedParamType - Determine whether a type requires 16-byte or
4478 /// higher alignment in the parameter area.  Always returns at least 8.
4479 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4480   // Complex types are passed just like their elements.
4481   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4482     Ty = CTy->getElementType();
4483 
4484   // Only vector types of size 16 bytes need alignment (larger types are
4485   // passed via reference, smaller types are not aligned).
4486   if (IsQPXVectorTy(Ty)) {
4487     if (getContext().getTypeSize(Ty) > 128)
4488       return CharUnits::fromQuantity(32);
4489 
4490     return CharUnits::fromQuantity(16);
4491   } else if (Ty->isVectorType()) {
4492     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4493   }
4494 
4495   // For single-element float/vector structs, we consider the whole type
4496   // to have the same alignment requirements as its single element.
4497   const Type *AlignAsType = nullptr;
4498   const Type *EltType = isSingleElementStruct(Ty, getContext());
4499   if (EltType) {
4500     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4501     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4502          getContext().getTypeSize(EltType) == 128) ||
4503         (BT && BT->isFloatingPoint()))
4504       AlignAsType = EltType;
4505   }
4506 
4507   // Likewise for ELFv2 homogeneous aggregates.
4508   const Type *Base = nullptr;
4509   uint64_t Members = 0;
4510   if (!AlignAsType && Kind == ELFv2 &&
4511       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4512     AlignAsType = Base;
4513 
4514   // With special case aggregates, only vector base types need alignment.
4515   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4516     if (getContext().getTypeSize(AlignAsType) > 128)
4517       return CharUnits::fromQuantity(32);
4518 
4519     return CharUnits::fromQuantity(16);
4520   } else if (AlignAsType) {
4521     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4522   }
4523 
4524   // Otherwise, we only need alignment for any aggregate type that
4525   // has an alignment requirement of >= 16 bytes.
4526   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4527     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4528       return CharUnits::fromQuantity(32);
4529     return CharUnits::fromQuantity(16);
4530   }
4531 
4532   return CharUnits::fromQuantity(8);
4533 }
4534 
4535 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4536 /// aggregate.  Base is set to the base element type, and Members is set
4537 /// to the number of base elements.
4538 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4539                                      uint64_t &Members) const {
4540   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4541     uint64_t NElements = AT->getSize().getZExtValue();
4542     if (NElements == 0)
4543       return false;
4544     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4545       return false;
4546     Members *= NElements;
4547   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4548     const RecordDecl *RD = RT->getDecl();
4549     if (RD->hasFlexibleArrayMember())
4550       return false;
4551 
4552     Members = 0;
4553 
4554     // If this is a C++ record, check the bases first.
4555     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4556       for (const auto &I : CXXRD->bases()) {
4557         // Ignore empty records.
4558         if (isEmptyRecord(getContext(), I.getType(), true))
4559           continue;
4560 
4561         uint64_t FldMembers;
4562         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4563           return false;
4564 
4565         Members += FldMembers;
4566       }
4567     }
4568 
4569     for (const auto *FD : RD->fields()) {
4570       // Ignore (non-zero arrays of) empty records.
4571       QualType FT = FD->getType();
4572       while (const ConstantArrayType *AT =
4573              getContext().getAsConstantArrayType(FT)) {
4574         if (AT->getSize().getZExtValue() == 0)
4575           return false;
4576         FT = AT->getElementType();
4577       }
4578       if (isEmptyRecord(getContext(), FT, true))
4579         continue;
4580 
4581       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4582       if (getContext().getLangOpts().CPlusPlus &&
4583           FD->isZeroLengthBitField(getContext()))
4584         continue;
4585 
4586       uint64_t FldMembers;
4587       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4588         return false;
4589 
4590       Members = (RD->isUnion() ?
4591                  std::max(Members, FldMembers) : Members + FldMembers);
4592     }
4593 
4594     if (!Base)
4595       return false;
4596 
4597     // Ensure there is no padding.
4598     if (getContext().getTypeSize(Base) * Members !=
4599         getContext().getTypeSize(Ty))
4600       return false;
4601   } else {
4602     Members = 1;
4603     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4604       Members = 2;
4605       Ty = CT->getElementType();
4606     }
4607 
4608     // Most ABIs only support float, double, and some vector type widths.
4609     if (!isHomogeneousAggregateBaseType(Ty))
4610       return false;
4611 
4612     // The base type must be the same for all members.  Types that
4613     // agree in both total size and mode (float vs. vector) are
4614     // treated as being equivalent here.
4615     const Type *TyPtr = Ty.getTypePtr();
4616     if (!Base) {
4617       Base = TyPtr;
4618       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4619       // so make sure to widen it explicitly.
4620       if (const VectorType *VT = Base->getAs<VectorType>()) {
4621         QualType EltTy = VT->getElementType();
4622         unsigned NumElements =
4623             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4624         Base = getContext()
4625                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4626                    .getTypePtr();
4627       }
4628     }
4629 
4630     if (Base->isVectorType() != TyPtr->isVectorType() ||
4631         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4632       return false;
4633   }
4634   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4635 }
4636 
4637 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4638   // Homogeneous aggregates for ELFv2 must have base types of float,
4639   // double, long double, or 128-bit vectors.
4640   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4641     if (BT->getKind() == BuiltinType::Float ||
4642         BT->getKind() == BuiltinType::Double ||
4643         BT->getKind() == BuiltinType::LongDouble ||
4644         (getContext().getTargetInfo().hasFloat128Type() &&
4645           (BT->getKind() == BuiltinType::Float128))) {
4646       if (IsSoftFloatABI)
4647         return false;
4648       return true;
4649     }
4650   }
4651   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4652     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4653       return true;
4654   }
4655   return false;
4656 }
4657 
4658 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4659     const Type *Base, uint64_t Members) const {
4660   // Vector and fp128 types require one register, other floating point types
4661   // require one or two registers depending on their size.
4662   uint32_t NumRegs =
4663       ((getContext().getTargetInfo().hasFloat128Type() &&
4664           Base->isFloat128Type()) ||
4665         Base->isVectorType()) ? 1
4666                               : (getContext().getTypeSize(Base) + 63) / 64;
4667 
4668   // Homogeneous Aggregates may occupy at most 8 registers.
4669   return Members * NumRegs <= 8;
4670 }
4671 
4672 ABIArgInfo
4673 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4674   Ty = useFirstFieldIfTransparentUnion(Ty);
4675 
4676   if (Ty->isAnyComplexType())
4677     return ABIArgInfo::getDirect();
4678 
4679   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4680   // or via reference (larger than 16 bytes).
4681   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4682     uint64_t Size = getContext().getTypeSize(Ty);
4683     if (Size > 128)
4684       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4685     else if (Size < 128) {
4686       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4687       return ABIArgInfo::getDirect(CoerceTy);
4688     }
4689   }
4690 
4691   if (isAggregateTypeForABI(Ty)) {
4692     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4693       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4694 
4695     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4696     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4697 
4698     // ELFv2 homogeneous aggregates are passed as array types.
4699     const Type *Base = nullptr;
4700     uint64_t Members = 0;
4701     if (Kind == ELFv2 &&
4702         isHomogeneousAggregate(Ty, Base, Members)) {
4703       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4704       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4705       return ABIArgInfo::getDirect(CoerceTy);
4706     }
4707 
4708     // If an aggregate may end up fully in registers, we do not
4709     // use the ByVal method, but pass the aggregate as array.
4710     // This is usually beneficial since we avoid forcing the
4711     // back-end to store the argument to memory.
4712     uint64_t Bits = getContext().getTypeSize(Ty);
4713     if (Bits > 0 && Bits <= 8 * GPRBits) {
4714       llvm::Type *CoerceTy;
4715 
4716       // Types up to 8 bytes are passed as integer type (which will be
4717       // properly aligned in the argument save area doubleword).
4718       if (Bits <= GPRBits)
4719         CoerceTy =
4720             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4721       // Larger types are passed as arrays, with the base type selected
4722       // according to the required alignment in the save area.
4723       else {
4724         uint64_t RegBits = ABIAlign * 8;
4725         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4726         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4727         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4728       }
4729 
4730       return ABIArgInfo::getDirect(CoerceTy);
4731     }
4732 
4733     // All other aggregates are passed ByVal.
4734     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4735                                    /*ByVal=*/true,
4736                                    /*Realign=*/TyAlign > ABIAlign);
4737   }
4738 
4739   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4740                                      : ABIArgInfo::getDirect());
4741 }
4742 
4743 ABIArgInfo
4744 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4745   if (RetTy->isVoidType())
4746     return ABIArgInfo::getIgnore();
4747 
4748   if (RetTy->isAnyComplexType())
4749     return ABIArgInfo::getDirect();
4750 
4751   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4752   // or via reference (larger than 16 bytes).
4753   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4754     uint64_t Size = getContext().getTypeSize(RetTy);
4755     if (Size > 128)
4756       return getNaturalAlignIndirect(RetTy);
4757     else if (Size < 128) {
4758       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4759       return ABIArgInfo::getDirect(CoerceTy);
4760     }
4761   }
4762 
4763   if (isAggregateTypeForABI(RetTy)) {
4764     // ELFv2 homogeneous aggregates are returned as array types.
4765     const Type *Base = nullptr;
4766     uint64_t Members = 0;
4767     if (Kind == ELFv2 &&
4768         isHomogeneousAggregate(RetTy, Base, Members)) {
4769       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4770       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4771       return ABIArgInfo::getDirect(CoerceTy);
4772     }
4773 
4774     // ELFv2 small aggregates are returned in up to two registers.
4775     uint64_t Bits = getContext().getTypeSize(RetTy);
4776     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4777       if (Bits == 0)
4778         return ABIArgInfo::getIgnore();
4779 
4780       llvm::Type *CoerceTy;
4781       if (Bits > GPRBits) {
4782         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4783         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4784       } else
4785         CoerceTy =
4786             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4787       return ABIArgInfo::getDirect(CoerceTy);
4788     }
4789 
4790     // All other aggregates are returned indirectly.
4791     return getNaturalAlignIndirect(RetTy);
4792   }
4793 
4794   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4795                                         : ABIArgInfo::getDirect());
4796 }
4797 
4798 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4799 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4800                                       QualType Ty) const {
4801   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4802   TypeInfo.second = getParamTypeAlignment(Ty);
4803 
4804   CharUnits SlotSize = CharUnits::fromQuantity(8);
4805 
4806   // If we have a complex type and the base type is smaller than 8 bytes,
4807   // the ABI calls for the real and imaginary parts to be right-adjusted
4808   // in separate doublewords.  However, Clang expects us to produce a
4809   // pointer to a structure with the two parts packed tightly.  So generate
4810   // loads of the real and imaginary parts relative to the va_list pointer,
4811   // and store them to a temporary structure.
4812   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4813     CharUnits EltSize = TypeInfo.first / 2;
4814     if (EltSize < SlotSize) {
4815       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4816                                             SlotSize * 2, SlotSize,
4817                                             SlotSize, /*AllowHigher*/ true);
4818 
4819       Address RealAddr = Addr;
4820       Address ImagAddr = RealAddr;
4821       if (CGF.CGM.getDataLayout().isBigEndian()) {
4822         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4823                                                           SlotSize - EltSize);
4824         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4825                                                       2 * SlotSize - EltSize);
4826       } else {
4827         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4828       }
4829 
4830       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4831       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4832       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4833       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4834       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4835 
4836       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4837       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4838                              /*init*/ true);
4839       return Temp;
4840     }
4841   }
4842 
4843   // Otherwise, just use the general rule.
4844   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4845                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4846 }
4847 
4848 static bool
4849 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4850                               llvm::Value *Address) {
4851   // This is calculated from the LLVM and GCC tables and verified
4852   // against gcc output.  AFAIK all ABIs use the same encoding.
4853 
4854   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4855 
4856   llvm::IntegerType *i8 = CGF.Int8Ty;
4857   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4858   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4859   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4860 
4861   // 0-31: r0-31, the 8-byte general-purpose registers
4862   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4863 
4864   // 32-63: fp0-31, the 8-byte floating-point registers
4865   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4866 
4867   // 64-67 are various 8-byte special-purpose registers:
4868   // 64: mq
4869   // 65: lr
4870   // 66: ctr
4871   // 67: ap
4872   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4873 
4874   // 68-76 are various 4-byte special-purpose registers:
4875   // 68-75 cr0-7
4876   // 76: xer
4877   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4878 
4879   // 77-108: v0-31, the 16-byte vector registers
4880   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4881 
4882   // 109: vrsave
4883   // 110: vscr
4884   // 111: spe_acc
4885   // 112: spefscr
4886   // 113: sfp
4887   // 114: tfhar
4888   // 115: tfiar
4889   // 116: texasr
4890   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4891 
4892   return false;
4893 }
4894 
4895 bool
4896 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4897   CodeGen::CodeGenFunction &CGF,
4898   llvm::Value *Address) const {
4899 
4900   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4901 }
4902 
4903 bool
4904 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4905                                                 llvm::Value *Address) const {
4906 
4907   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4908 }
4909 
4910 //===----------------------------------------------------------------------===//
4911 // AArch64 ABI Implementation
4912 //===----------------------------------------------------------------------===//
4913 
4914 namespace {
4915 
4916 class AArch64ABIInfo : public SwiftABIInfo {
4917 public:
4918   enum ABIKind {
4919     AAPCS = 0,
4920     DarwinPCS,
4921     Win64
4922   };
4923 
4924 private:
4925   ABIKind Kind;
4926 
4927 public:
4928   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4929     : SwiftABIInfo(CGT), Kind(Kind) {}
4930 
4931 private:
4932   ABIKind getABIKind() const { return Kind; }
4933   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4934 
4935   ABIArgInfo classifyReturnType(QualType RetTy) const;
4936   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4937   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4938   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4939                                          uint64_t Members) const override;
4940 
4941   bool isIllegalVectorType(QualType Ty) const;
4942 
4943   void computeInfo(CGFunctionInfo &FI) const override {
4944     if (!::classifyReturnType(getCXXABI(), FI, *this))
4945       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4946 
4947     for (auto &it : FI.arguments())
4948       it.info = classifyArgumentType(it.type);
4949   }
4950 
4951   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4952                           CodeGenFunction &CGF) const;
4953 
4954   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4955                          CodeGenFunction &CGF) const;
4956 
4957   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4958                     QualType Ty) const override {
4959     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4960                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4961                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4962   }
4963 
4964   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4965                       QualType Ty) const override;
4966 
4967   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4968                                     bool asReturnValue) const override {
4969     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4970   }
4971   bool isSwiftErrorInRegister() const override {
4972     return true;
4973   }
4974 
4975   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4976                                  unsigned elts) const override;
4977 };
4978 
4979 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4980 public:
4981   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4982       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4983 
4984   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4985     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
4986   }
4987 
4988   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4989     return 31;
4990   }
4991 
4992   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4993 
4994   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4995                            CodeGen::CodeGenModule &CGM) const override {
4996     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
4997     if (!FD)
4998       return;
4999     llvm::Function *Fn = cast<llvm::Function>(GV);
5000 
5001     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5002     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5003       Fn->addFnAttr("sign-return-address",
5004                     Kind == CodeGenOptions::SignReturnAddressScope::All
5005                         ? "all"
5006                         : "non-leaf");
5007 
5008       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5009       Fn->addFnAttr("sign-return-address-key",
5010                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5011                         ? "a_key"
5012                         : "b_key");
5013     }
5014 
5015     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5016       Fn->addFnAttr("branch-target-enforcement");
5017   }
5018 };
5019 
5020 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5021 public:
5022   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5023       : AArch64TargetCodeGenInfo(CGT, K) {}
5024 
5025   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5026                            CodeGen::CodeGenModule &CGM) const override;
5027 
5028   void getDependentLibraryOption(llvm::StringRef Lib,
5029                                  llvm::SmallString<24> &Opt) const override {
5030     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5031   }
5032 
5033   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5034                                llvm::SmallString<32> &Opt) const override {
5035     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5036   }
5037 };
5038 
5039 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5040     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5041   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5042   if (GV->isDeclaration())
5043     return;
5044   addStackProbeTargetAttributes(D, GV, CGM);
5045 }
5046 }
5047 
5048 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5049   Ty = useFirstFieldIfTransparentUnion(Ty);
5050 
5051   // Handle illegal vector types here.
5052   if (isIllegalVectorType(Ty)) {
5053     uint64_t Size = getContext().getTypeSize(Ty);
5054     // Android promotes <2 x i8> to i16, not i32
5055     if (isAndroid() && (Size <= 16)) {
5056       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5057       return ABIArgInfo::getDirect(ResType);
5058     }
5059     if (Size <= 32) {
5060       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5061       return ABIArgInfo::getDirect(ResType);
5062     }
5063     if (Size == 64) {
5064       llvm::Type *ResType =
5065           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5066       return ABIArgInfo::getDirect(ResType);
5067     }
5068     if (Size == 128) {
5069       llvm::Type *ResType =
5070           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5071       return ABIArgInfo::getDirect(ResType);
5072     }
5073     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5074   }
5075 
5076   if (!isAggregateTypeForABI(Ty)) {
5077     // Treat an enum type as its underlying type.
5078     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5079       Ty = EnumTy->getDecl()->getIntegerType();
5080 
5081     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5082                 ? ABIArgInfo::getExtend(Ty)
5083                 : ABIArgInfo::getDirect());
5084   }
5085 
5086   // Structures with either a non-trivial destructor or a non-trivial
5087   // copy constructor are always indirect.
5088   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5089     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5090                                      CGCXXABI::RAA_DirectInMemory);
5091   }
5092 
5093   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5094   // elsewhere for GNU compatibility.
5095   uint64_t Size = getContext().getTypeSize(Ty);
5096   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5097   if (IsEmpty || Size == 0) {
5098     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5099       return ABIArgInfo::getIgnore();
5100 
5101     // GNU C mode. The only argument that gets ignored is an empty one with size
5102     // 0.
5103     if (IsEmpty && Size == 0)
5104       return ABIArgInfo::getIgnore();
5105     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5106   }
5107 
5108   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5109   const Type *Base = nullptr;
5110   uint64_t Members = 0;
5111   if (isHomogeneousAggregate(Ty, Base, Members)) {
5112     return ABIArgInfo::getDirect(
5113         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5114   }
5115 
5116   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5117   if (Size <= 128) {
5118     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5119     // same size and alignment.
5120     if (getTarget().isRenderScriptTarget()) {
5121       return coerceToIntArray(Ty, getContext(), getVMContext());
5122     }
5123     unsigned Alignment;
5124     if (Kind == AArch64ABIInfo::AAPCS) {
5125       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5126       Alignment = Alignment < 128 ? 64 : 128;
5127     } else {
5128       Alignment = getContext().getTypeAlign(Ty);
5129     }
5130     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5131 
5132     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5133     // For aggregates with 16-byte alignment, we use i128.
5134     if (Alignment < 128 && Size == 128) {
5135       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5136       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5137     }
5138     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5139   }
5140 
5141   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5142 }
5143 
5144 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5145   if (RetTy->isVoidType())
5146     return ABIArgInfo::getIgnore();
5147 
5148   // Large vector types should be returned via memory.
5149   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5150     return getNaturalAlignIndirect(RetTy);
5151 
5152   if (!isAggregateTypeForABI(RetTy)) {
5153     // Treat an enum type as its underlying type.
5154     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5155       RetTy = EnumTy->getDecl()->getIntegerType();
5156 
5157     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5158                 ? ABIArgInfo::getExtend(RetTy)
5159                 : ABIArgInfo::getDirect());
5160   }
5161 
5162   uint64_t Size = getContext().getTypeSize(RetTy);
5163   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5164     return ABIArgInfo::getIgnore();
5165 
5166   const Type *Base = nullptr;
5167   uint64_t Members = 0;
5168   if (isHomogeneousAggregate(RetTy, Base, Members))
5169     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5170     return ABIArgInfo::getDirect();
5171 
5172   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5173   if (Size <= 128) {
5174     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5175     // same size and alignment.
5176     if (getTarget().isRenderScriptTarget()) {
5177       return coerceToIntArray(RetTy, getContext(), getVMContext());
5178     }
5179     unsigned Alignment = getContext().getTypeAlign(RetTy);
5180     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5181 
5182     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5183     // For aggregates with 16-byte alignment, we use i128.
5184     if (Alignment < 128 && Size == 128) {
5185       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5186       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5187     }
5188     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5189   }
5190 
5191   return getNaturalAlignIndirect(RetTy);
5192 }
5193 
5194 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5195 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5196   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5197     // Check whether VT is legal.
5198     unsigned NumElements = VT->getNumElements();
5199     uint64_t Size = getContext().getTypeSize(VT);
5200     // NumElements should be power of 2.
5201     if (!llvm::isPowerOf2_32(NumElements))
5202       return true;
5203     return Size != 64 && (Size != 128 || NumElements == 1);
5204   }
5205   return false;
5206 }
5207 
5208 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5209                                                llvm::Type *eltTy,
5210                                                unsigned elts) const {
5211   if (!llvm::isPowerOf2_32(elts))
5212     return false;
5213   if (totalSize.getQuantity() != 8 &&
5214       (totalSize.getQuantity() != 16 || elts == 1))
5215     return false;
5216   return true;
5217 }
5218 
5219 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5220   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5221   // point type or a short-vector type. This is the same as the 32-bit ABI,
5222   // but with the difference that any floating-point type is allowed,
5223   // including __fp16.
5224   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5225     if (BT->isFloatingPoint())
5226       return true;
5227   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5228     unsigned VecSize = getContext().getTypeSize(VT);
5229     if (VecSize == 64 || VecSize == 128)
5230       return true;
5231   }
5232   return false;
5233 }
5234 
5235 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5236                                                        uint64_t Members) const {
5237   return Members <= 4;
5238 }
5239 
5240 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5241                                             QualType Ty,
5242                                             CodeGenFunction &CGF) const {
5243   ABIArgInfo AI = classifyArgumentType(Ty);
5244   bool IsIndirect = AI.isIndirect();
5245 
5246   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5247   if (IsIndirect)
5248     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5249   else if (AI.getCoerceToType())
5250     BaseTy = AI.getCoerceToType();
5251 
5252   unsigned NumRegs = 1;
5253   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5254     BaseTy = ArrTy->getElementType();
5255     NumRegs = ArrTy->getNumElements();
5256   }
5257   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5258 
5259   // The AArch64 va_list type and handling is specified in the Procedure Call
5260   // Standard, section B.4:
5261   //
5262   // struct {
5263   //   void *__stack;
5264   //   void *__gr_top;
5265   //   void *__vr_top;
5266   //   int __gr_offs;
5267   //   int __vr_offs;
5268   // };
5269 
5270   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5271   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5272   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5273   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5274 
5275   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5276   CharUnits TyAlign = TyInfo.second;
5277 
5278   Address reg_offs_p = Address::invalid();
5279   llvm::Value *reg_offs = nullptr;
5280   int reg_top_index;
5281   CharUnits reg_top_offset;
5282   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5283   if (!IsFPR) {
5284     // 3 is the field number of __gr_offs
5285     reg_offs_p =
5286         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5287                                     "gr_offs_p");
5288     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5289     reg_top_index = 1; // field number for __gr_top
5290     reg_top_offset = CharUnits::fromQuantity(8);
5291     RegSize = llvm::alignTo(RegSize, 8);
5292   } else {
5293     // 4 is the field number of __vr_offs.
5294     reg_offs_p =
5295         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5296                                     "vr_offs_p");
5297     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5298     reg_top_index = 2; // field number for __vr_top
5299     reg_top_offset = CharUnits::fromQuantity(16);
5300     RegSize = 16 * NumRegs;
5301   }
5302 
5303   //=======================================
5304   // Find out where argument was passed
5305   //=======================================
5306 
5307   // If reg_offs >= 0 we're already using the stack for this type of
5308   // argument. We don't want to keep updating reg_offs (in case it overflows,
5309   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5310   // whatever they get).
5311   llvm::Value *UsingStack = nullptr;
5312   UsingStack = CGF.Builder.CreateICmpSGE(
5313       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5314 
5315   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5316 
5317   // Otherwise, at least some kind of argument could go in these registers, the
5318   // question is whether this particular type is too big.
5319   CGF.EmitBlock(MaybeRegBlock);
5320 
5321   // Integer arguments may need to correct register alignment (for example a
5322   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5323   // align __gr_offs to calculate the potential address.
5324   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5325     int Align = TyAlign.getQuantity();
5326 
5327     reg_offs = CGF.Builder.CreateAdd(
5328         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5329         "align_regoffs");
5330     reg_offs = CGF.Builder.CreateAnd(
5331         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5332         "aligned_regoffs");
5333   }
5334 
5335   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5336   // The fact that this is done unconditionally reflects the fact that
5337   // allocating an argument to the stack also uses up all the remaining
5338   // registers of the appropriate kind.
5339   llvm::Value *NewOffset = nullptr;
5340   NewOffset = CGF.Builder.CreateAdd(
5341       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5342   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5343 
5344   // Now we're in a position to decide whether this argument really was in
5345   // registers or not.
5346   llvm::Value *InRegs = nullptr;
5347   InRegs = CGF.Builder.CreateICmpSLE(
5348       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5349 
5350   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5351 
5352   //=======================================
5353   // Argument was in registers
5354   //=======================================
5355 
5356   // Now we emit the code for if the argument was originally passed in
5357   // registers. First start the appropriate block:
5358   CGF.EmitBlock(InRegBlock);
5359 
5360   llvm::Value *reg_top = nullptr;
5361   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5362                                                   reg_top_offset, "reg_top_p");
5363   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5364   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5365                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5366   Address RegAddr = Address::invalid();
5367   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5368 
5369   if (IsIndirect) {
5370     // If it's been passed indirectly (actually a struct), whatever we find from
5371     // stored registers or on the stack will actually be a struct **.
5372     MemTy = llvm::PointerType::getUnqual(MemTy);
5373   }
5374 
5375   const Type *Base = nullptr;
5376   uint64_t NumMembers = 0;
5377   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5378   if (IsHFA && NumMembers > 1) {
5379     // Homogeneous aggregates passed in registers will have their elements split
5380     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5381     // qN+1, ...). We reload and store into a temporary local variable
5382     // contiguously.
5383     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5384     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5385     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5386     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5387     Address Tmp = CGF.CreateTempAlloca(HFATy,
5388                                        std::max(TyAlign, BaseTyInfo.second));
5389 
5390     // On big-endian platforms, the value will be right-aligned in its slot.
5391     int Offset = 0;
5392     if (CGF.CGM.getDataLayout().isBigEndian() &&
5393         BaseTyInfo.first.getQuantity() < 16)
5394       Offset = 16 - BaseTyInfo.first.getQuantity();
5395 
5396     for (unsigned i = 0; i < NumMembers; ++i) {
5397       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5398       Address LoadAddr =
5399         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5400       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5401 
5402       Address StoreAddr =
5403         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5404 
5405       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5406       CGF.Builder.CreateStore(Elem, StoreAddr);
5407     }
5408 
5409     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5410   } else {
5411     // Otherwise the object is contiguous in memory.
5412 
5413     // It might be right-aligned in its slot.
5414     CharUnits SlotSize = BaseAddr.getAlignment();
5415     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5416         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5417         TyInfo.first < SlotSize) {
5418       CharUnits Offset = SlotSize - TyInfo.first;
5419       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5420     }
5421 
5422     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5423   }
5424 
5425   CGF.EmitBranch(ContBlock);
5426 
5427   //=======================================
5428   // Argument was on the stack
5429   //=======================================
5430   CGF.EmitBlock(OnStackBlock);
5431 
5432   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5433                                                 CharUnits::Zero(), "stack_p");
5434   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5435 
5436   // Again, stack arguments may need realignment. In this case both integer and
5437   // floating-point ones might be affected.
5438   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5439     int Align = TyAlign.getQuantity();
5440 
5441     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5442 
5443     OnStackPtr = CGF.Builder.CreateAdd(
5444         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5445         "align_stack");
5446     OnStackPtr = CGF.Builder.CreateAnd(
5447         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5448         "align_stack");
5449 
5450     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5451   }
5452   Address OnStackAddr(OnStackPtr,
5453                       std::max(CharUnits::fromQuantity(8), TyAlign));
5454 
5455   // All stack slots are multiples of 8 bytes.
5456   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5457   CharUnits StackSize;
5458   if (IsIndirect)
5459     StackSize = StackSlotSize;
5460   else
5461     StackSize = TyInfo.first.alignTo(StackSlotSize);
5462 
5463   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5464   llvm::Value *NewStack =
5465       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5466 
5467   // Write the new value of __stack for the next call to va_arg
5468   CGF.Builder.CreateStore(NewStack, stack_p);
5469 
5470   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5471       TyInfo.first < StackSlotSize) {
5472     CharUnits Offset = StackSlotSize - TyInfo.first;
5473     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5474   }
5475 
5476   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5477 
5478   CGF.EmitBranch(ContBlock);
5479 
5480   //=======================================
5481   // Tidy up
5482   //=======================================
5483   CGF.EmitBlock(ContBlock);
5484 
5485   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5486                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5487 
5488   if (IsIndirect)
5489     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5490                    TyInfo.second);
5491 
5492   return ResAddr;
5493 }
5494 
5495 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5496                                         CodeGenFunction &CGF) const {
5497   // The backend's lowering doesn't support va_arg for aggregates or
5498   // illegal vector types.  Lower VAArg here for these cases and use
5499   // the LLVM va_arg instruction for everything else.
5500   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5501     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5502 
5503   CharUnits SlotSize = CharUnits::fromQuantity(8);
5504 
5505   // Empty records are ignored for parameter passing purposes.
5506   if (isEmptyRecord(getContext(), Ty, true)) {
5507     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5508     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5509     return Addr;
5510   }
5511 
5512   // The size of the actual thing passed, which might end up just
5513   // being a pointer for indirect types.
5514   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5515 
5516   // Arguments bigger than 16 bytes which aren't homogeneous
5517   // aggregates should be passed indirectly.
5518   bool IsIndirect = false;
5519   if (TyInfo.first.getQuantity() > 16) {
5520     const Type *Base = nullptr;
5521     uint64_t Members = 0;
5522     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5523   }
5524 
5525   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5526                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5527 }
5528 
5529 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5530                                     QualType Ty) const {
5531   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5532                           CGF.getContext().getTypeInfoInChars(Ty),
5533                           CharUnits::fromQuantity(8),
5534                           /*allowHigherAlign*/ false);
5535 }
5536 
5537 //===----------------------------------------------------------------------===//
5538 // ARM ABI Implementation
5539 //===----------------------------------------------------------------------===//
5540 
5541 namespace {
5542 
5543 class ARMABIInfo : public SwiftABIInfo {
5544 public:
5545   enum ABIKind {
5546     APCS = 0,
5547     AAPCS = 1,
5548     AAPCS_VFP = 2,
5549     AAPCS16_VFP = 3,
5550   };
5551 
5552 private:
5553   ABIKind Kind;
5554 
5555 public:
5556   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5557       : SwiftABIInfo(CGT), Kind(_Kind) {
5558     setCCs();
5559   }
5560 
5561   bool isEABI() const {
5562     switch (getTarget().getTriple().getEnvironment()) {
5563     case llvm::Triple::Android:
5564     case llvm::Triple::EABI:
5565     case llvm::Triple::EABIHF:
5566     case llvm::Triple::GNUEABI:
5567     case llvm::Triple::GNUEABIHF:
5568     case llvm::Triple::MuslEABI:
5569     case llvm::Triple::MuslEABIHF:
5570       return true;
5571     default:
5572       return false;
5573     }
5574   }
5575 
5576   bool isEABIHF() const {
5577     switch (getTarget().getTriple().getEnvironment()) {
5578     case llvm::Triple::EABIHF:
5579     case llvm::Triple::GNUEABIHF:
5580     case llvm::Triple::MuslEABIHF:
5581       return true;
5582     default:
5583       return false;
5584     }
5585   }
5586 
5587   ABIKind getABIKind() const { return Kind; }
5588 
5589 private:
5590   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5591   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5592   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5593                                           uint64_t Members) const;
5594   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5595   bool isIllegalVectorType(QualType Ty) const;
5596 
5597   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5598   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5599                                          uint64_t Members) const override;
5600 
5601   void computeInfo(CGFunctionInfo &FI) const override;
5602 
5603   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5604                     QualType Ty) const override;
5605 
5606   llvm::CallingConv::ID getLLVMDefaultCC() const;
5607   llvm::CallingConv::ID getABIDefaultCC() const;
5608   void setCCs();
5609 
5610   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5611                                     bool asReturnValue) const override {
5612     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5613   }
5614   bool isSwiftErrorInRegister() const override {
5615     return true;
5616   }
5617   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5618                                  unsigned elts) const override;
5619 };
5620 
5621 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5622 public:
5623   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5624     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5625 
5626   const ARMABIInfo &getABIInfo() const {
5627     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5628   }
5629 
5630   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5631     return 13;
5632   }
5633 
5634   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5635     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5636   }
5637 
5638   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5639                                llvm::Value *Address) const override {
5640     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5641 
5642     // 0-15 are the 16 integer registers.
5643     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5644     return false;
5645   }
5646 
5647   unsigned getSizeOfUnwindException() const override {
5648     if (getABIInfo().isEABI()) return 88;
5649     return TargetCodeGenInfo::getSizeOfUnwindException();
5650   }
5651 
5652   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5653                            CodeGen::CodeGenModule &CGM) const override {
5654     if (GV->isDeclaration())
5655       return;
5656     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5657     if (!FD)
5658       return;
5659 
5660     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5661     if (!Attr)
5662       return;
5663 
5664     const char *Kind;
5665     switch (Attr->getInterrupt()) {
5666     case ARMInterruptAttr::Generic: Kind = ""; break;
5667     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5668     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5669     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5670     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5671     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5672     }
5673 
5674     llvm::Function *Fn = cast<llvm::Function>(GV);
5675 
5676     Fn->addFnAttr("interrupt", Kind);
5677 
5678     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5679     if (ABI == ARMABIInfo::APCS)
5680       return;
5681 
5682     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5683     // however this is not necessarily true on taking any interrupt. Instruct
5684     // the backend to perform a realignment as part of the function prologue.
5685     llvm::AttrBuilder B;
5686     B.addStackAlignmentAttr(8);
5687     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5688   }
5689 };
5690 
5691 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5692 public:
5693   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5694       : ARMTargetCodeGenInfo(CGT, K) {}
5695 
5696   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5697                            CodeGen::CodeGenModule &CGM) const override;
5698 
5699   void getDependentLibraryOption(llvm::StringRef Lib,
5700                                  llvm::SmallString<24> &Opt) const override {
5701     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5702   }
5703 
5704   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5705                                llvm::SmallString<32> &Opt) const override {
5706     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5707   }
5708 };
5709 
5710 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5711     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5712   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5713   if (GV->isDeclaration())
5714     return;
5715   addStackProbeTargetAttributes(D, GV, CGM);
5716 }
5717 }
5718 
5719 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5720   if (!::classifyReturnType(getCXXABI(), FI, *this))
5721     FI.getReturnInfo() =
5722         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5723 
5724   for (auto &I : FI.arguments())
5725     I.info = classifyArgumentType(I.type, FI.isVariadic());
5726 
5727   // Always honor user-specified calling convention.
5728   if (FI.getCallingConvention() != llvm::CallingConv::C)
5729     return;
5730 
5731   llvm::CallingConv::ID cc = getRuntimeCC();
5732   if (cc != llvm::CallingConv::C)
5733     FI.setEffectiveCallingConvention(cc);
5734 }
5735 
5736 /// Return the default calling convention that LLVM will use.
5737 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5738   // The default calling convention that LLVM will infer.
5739   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5740     return llvm::CallingConv::ARM_AAPCS_VFP;
5741   else if (isEABI())
5742     return llvm::CallingConv::ARM_AAPCS;
5743   else
5744     return llvm::CallingConv::ARM_APCS;
5745 }
5746 
5747 /// Return the calling convention that our ABI would like us to use
5748 /// as the C calling convention.
5749 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5750   switch (getABIKind()) {
5751   case APCS: return llvm::CallingConv::ARM_APCS;
5752   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5753   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5754   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5755   }
5756   llvm_unreachable("bad ABI kind");
5757 }
5758 
5759 void ARMABIInfo::setCCs() {
5760   assert(getRuntimeCC() == llvm::CallingConv::C);
5761 
5762   // Don't muddy up the IR with a ton of explicit annotations if
5763   // they'd just match what LLVM will infer from the triple.
5764   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5765   if (abiCC != getLLVMDefaultCC())
5766     RuntimeCC = abiCC;
5767 }
5768 
5769 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5770   uint64_t Size = getContext().getTypeSize(Ty);
5771   if (Size <= 32) {
5772     llvm::Type *ResType =
5773         llvm::Type::getInt32Ty(getVMContext());
5774     return ABIArgInfo::getDirect(ResType);
5775   }
5776   if (Size == 64 || Size == 128) {
5777     llvm::Type *ResType = llvm::VectorType::get(
5778         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5779     return ABIArgInfo::getDirect(ResType);
5780   }
5781   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5782 }
5783 
5784 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5785                                                     const Type *Base,
5786                                                     uint64_t Members) const {
5787   assert(Base && "Base class should be set for homogeneous aggregate");
5788   // Base can be a floating-point or a vector.
5789   if (const VectorType *VT = Base->getAs<VectorType>()) {
5790     // FP16 vectors should be converted to integer vectors
5791     if (!getTarget().hasLegalHalfType() &&
5792         (VT->getElementType()->isFloat16Type() ||
5793           VT->getElementType()->isHalfType())) {
5794       uint64_t Size = getContext().getTypeSize(VT);
5795       llvm::Type *NewVecTy = llvm::VectorType::get(
5796           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5797       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5798       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5799     }
5800   }
5801   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5802 }
5803 
5804 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5805                                             bool isVariadic) const {
5806   // 6.1.2.1 The following argument types are VFP CPRCs:
5807   //   A single-precision floating-point type (including promoted
5808   //   half-precision types); A double-precision floating-point type;
5809   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5810   //   with a Base Type of a single- or double-precision floating-point type,
5811   //   64-bit containerized vectors or 128-bit containerized vectors with one
5812   //   to four Elements.
5813   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5814 
5815   Ty = useFirstFieldIfTransparentUnion(Ty);
5816 
5817   // Handle illegal vector types here.
5818   if (isIllegalVectorType(Ty))
5819     return coerceIllegalVector(Ty);
5820 
5821   // _Float16 and __fp16 get passed as if it were an int or float, but with
5822   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5823   // half type natively, and does not need to interwork with AAPCS code.
5824   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5825       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5826     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5827       llvm::Type::getFloatTy(getVMContext()) :
5828       llvm::Type::getInt32Ty(getVMContext());
5829     return ABIArgInfo::getDirect(ResType);
5830   }
5831 
5832   if (!isAggregateTypeForABI(Ty)) {
5833     // Treat an enum type as its underlying type.
5834     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5835       Ty = EnumTy->getDecl()->getIntegerType();
5836     }
5837 
5838     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5839                                           : ABIArgInfo::getDirect());
5840   }
5841 
5842   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5843     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5844   }
5845 
5846   // Ignore empty records.
5847   if (isEmptyRecord(getContext(), Ty, true))
5848     return ABIArgInfo::getIgnore();
5849 
5850   if (IsEffectivelyAAPCS_VFP) {
5851     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5852     // into VFP registers.
5853     const Type *Base = nullptr;
5854     uint64_t Members = 0;
5855     if (isHomogeneousAggregate(Ty, Base, Members))
5856       return classifyHomogeneousAggregate(Ty, Base, Members);
5857   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5858     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5859     // this convention even for a variadic function: the backend will use GPRs
5860     // if needed.
5861     const Type *Base = nullptr;
5862     uint64_t Members = 0;
5863     if (isHomogeneousAggregate(Ty, Base, Members)) {
5864       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5865       llvm::Type *Ty =
5866         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5867       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5868     }
5869   }
5870 
5871   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5872       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5873     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5874     // bigger than 128-bits, they get placed in space allocated by the caller,
5875     // and a pointer is passed.
5876     return ABIArgInfo::getIndirect(
5877         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5878   }
5879 
5880   // Support byval for ARM.
5881   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5882   // most 8-byte. We realign the indirect argument if type alignment is bigger
5883   // than ABI alignment.
5884   uint64_t ABIAlign = 4;
5885   uint64_t TyAlign;
5886   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5887       getABIKind() == ARMABIInfo::AAPCS) {
5888     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5889     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5890   } else {
5891     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5892   }
5893   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5894     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5895     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5896                                    /*ByVal=*/true,
5897                                    /*Realign=*/TyAlign > ABIAlign);
5898   }
5899 
5900   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5901   // same size and alignment.
5902   if (getTarget().isRenderScriptTarget()) {
5903     return coerceToIntArray(Ty, getContext(), getVMContext());
5904   }
5905 
5906   // Otherwise, pass by coercing to a structure of the appropriate size.
5907   llvm::Type* ElemTy;
5908   unsigned SizeRegs;
5909   // FIXME: Try to match the types of the arguments more accurately where
5910   // we can.
5911   if (TyAlign <= 4) {
5912     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5913     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5914   } else {
5915     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5916     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5917   }
5918 
5919   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5920 }
5921 
5922 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5923                               llvm::LLVMContext &VMContext) {
5924   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5925   // is called integer-like if its size is less than or equal to one word, and
5926   // the offset of each of its addressable sub-fields is zero.
5927 
5928   uint64_t Size = Context.getTypeSize(Ty);
5929 
5930   // Check that the type fits in a word.
5931   if (Size > 32)
5932     return false;
5933 
5934   // FIXME: Handle vector types!
5935   if (Ty->isVectorType())
5936     return false;
5937 
5938   // Float types are never treated as "integer like".
5939   if (Ty->isRealFloatingType())
5940     return false;
5941 
5942   // If this is a builtin or pointer type then it is ok.
5943   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5944     return true;
5945 
5946   // Small complex integer types are "integer like".
5947   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5948     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5949 
5950   // Single element and zero sized arrays should be allowed, by the definition
5951   // above, but they are not.
5952 
5953   // Otherwise, it must be a record type.
5954   const RecordType *RT = Ty->getAs<RecordType>();
5955   if (!RT) return false;
5956 
5957   // Ignore records with flexible arrays.
5958   const RecordDecl *RD = RT->getDecl();
5959   if (RD->hasFlexibleArrayMember())
5960     return false;
5961 
5962   // Check that all sub-fields are at offset 0, and are themselves "integer
5963   // like".
5964   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5965 
5966   bool HadField = false;
5967   unsigned idx = 0;
5968   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5969        i != e; ++i, ++idx) {
5970     const FieldDecl *FD = *i;
5971 
5972     // Bit-fields are not addressable, we only need to verify they are "integer
5973     // like". We still have to disallow a subsequent non-bitfield, for example:
5974     //   struct { int : 0; int x }
5975     // is non-integer like according to gcc.
5976     if (FD->isBitField()) {
5977       if (!RD->isUnion())
5978         HadField = true;
5979 
5980       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5981         return false;
5982 
5983       continue;
5984     }
5985 
5986     // Check if this field is at offset 0.
5987     if (Layout.getFieldOffset(idx) != 0)
5988       return false;
5989 
5990     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5991       return false;
5992 
5993     // Only allow at most one field in a structure. This doesn't match the
5994     // wording above, but follows gcc in situations with a field following an
5995     // empty structure.
5996     if (!RD->isUnion()) {
5997       if (HadField)
5998         return false;
5999 
6000       HadField = true;
6001     }
6002   }
6003 
6004   return true;
6005 }
6006 
6007 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
6008                                           bool isVariadic) const {
6009   bool IsEffectivelyAAPCS_VFP =
6010       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
6011 
6012   if (RetTy->isVoidType())
6013     return ABIArgInfo::getIgnore();
6014 
6015   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6016     // Large vector types should be returned via memory.
6017     if (getContext().getTypeSize(RetTy) > 128)
6018       return getNaturalAlignIndirect(RetTy);
6019     // FP16 vectors should be converted to integer vectors
6020     if (!getTarget().hasLegalHalfType() &&
6021         (VT->getElementType()->isFloat16Type() ||
6022          VT->getElementType()->isHalfType()))
6023       return coerceIllegalVector(RetTy);
6024   }
6025 
6026   // _Float16 and __fp16 get returned as if it were an int or float, but with
6027   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6028   // half type natively, and does not need to interwork with AAPCS code.
6029   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6030       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6031     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
6032       llvm::Type::getFloatTy(getVMContext()) :
6033       llvm::Type::getInt32Ty(getVMContext());
6034     return ABIArgInfo::getDirect(ResType);
6035   }
6036 
6037   if (!isAggregateTypeForABI(RetTy)) {
6038     // Treat an enum type as its underlying type.
6039     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6040       RetTy = EnumTy->getDecl()->getIntegerType();
6041 
6042     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6043                                             : ABIArgInfo::getDirect();
6044   }
6045 
6046   // Are we following APCS?
6047   if (getABIKind() == APCS) {
6048     if (isEmptyRecord(getContext(), RetTy, false))
6049       return ABIArgInfo::getIgnore();
6050 
6051     // Complex types are all returned as packed integers.
6052     //
6053     // FIXME: Consider using 2 x vector types if the back end handles them
6054     // correctly.
6055     if (RetTy->isAnyComplexType())
6056       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6057           getVMContext(), getContext().getTypeSize(RetTy)));
6058 
6059     // Integer like structures are returned in r0.
6060     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6061       // Return in the smallest viable integer type.
6062       uint64_t Size = getContext().getTypeSize(RetTy);
6063       if (Size <= 8)
6064         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6065       if (Size <= 16)
6066         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6067       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6068     }
6069 
6070     // Otherwise return in memory.
6071     return getNaturalAlignIndirect(RetTy);
6072   }
6073 
6074   // Otherwise this is an AAPCS variant.
6075 
6076   if (isEmptyRecord(getContext(), RetTy, true))
6077     return ABIArgInfo::getIgnore();
6078 
6079   // Check for homogeneous aggregates with AAPCS-VFP.
6080   if (IsEffectivelyAAPCS_VFP) {
6081     const Type *Base = nullptr;
6082     uint64_t Members = 0;
6083     if (isHomogeneousAggregate(RetTy, Base, Members))
6084       return classifyHomogeneousAggregate(RetTy, Base, Members);
6085   }
6086 
6087   // Aggregates <= 4 bytes are returned in r0; other aggregates
6088   // are returned indirectly.
6089   uint64_t Size = getContext().getTypeSize(RetTy);
6090   if (Size <= 32) {
6091     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6092     // same size and alignment.
6093     if (getTarget().isRenderScriptTarget()) {
6094       return coerceToIntArray(RetTy, getContext(), getVMContext());
6095     }
6096     if (getDataLayout().isBigEndian())
6097       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6098       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6099 
6100     // Return in the smallest viable integer type.
6101     if (Size <= 8)
6102       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6103     if (Size <= 16)
6104       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6105     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6106   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6107     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6108     llvm::Type *CoerceTy =
6109         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6110     return ABIArgInfo::getDirect(CoerceTy);
6111   }
6112 
6113   return getNaturalAlignIndirect(RetTy);
6114 }
6115 
6116 /// isIllegalVector - check whether Ty is an illegal vector type.
6117 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6118   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6119     // On targets that don't support FP16, FP16 is expanded into float, and we
6120     // don't want the ABI to depend on whether or not FP16 is supported in
6121     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6122     if (!getTarget().hasLegalHalfType() &&
6123         (VT->getElementType()->isFloat16Type() ||
6124          VT->getElementType()->isHalfType()))
6125       return true;
6126     if (isAndroid()) {
6127       // Android shipped using Clang 3.1, which supported a slightly different
6128       // vector ABI. The primary differences were that 3-element vector types
6129       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6130       // accepts that legacy behavior for Android only.
6131       // Check whether VT is legal.
6132       unsigned NumElements = VT->getNumElements();
6133       // NumElements should be power of 2 or equal to 3.
6134       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6135         return true;
6136     } else {
6137       // Check whether VT is legal.
6138       unsigned NumElements = VT->getNumElements();
6139       uint64_t Size = getContext().getTypeSize(VT);
6140       // NumElements should be power of 2.
6141       if (!llvm::isPowerOf2_32(NumElements))
6142         return true;
6143       // Size should be greater than 32 bits.
6144       return Size <= 32;
6145     }
6146   }
6147   return false;
6148 }
6149 
6150 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6151                                            llvm::Type *eltTy,
6152                                            unsigned numElts) const {
6153   if (!llvm::isPowerOf2_32(numElts))
6154     return false;
6155   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6156   if (size > 64)
6157     return false;
6158   if (vectorSize.getQuantity() != 8 &&
6159       (vectorSize.getQuantity() != 16 || numElts == 1))
6160     return false;
6161   return true;
6162 }
6163 
6164 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6165   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6166   // double, or 64-bit or 128-bit vectors.
6167   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6168     if (BT->getKind() == BuiltinType::Float ||
6169         BT->getKind() == BuiltinType::Double ||
6170         BT->getKind() == BuiltinType::LongDouble)
6171       return true;
6172   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6173     unsigned VecSize = getContext().getTypeSize(VT);
6174     if (VecSize == 64 || VecSize == 128)
6175       return true;
6176   }
6177   return false;
6178 }
6179 
6180 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6181                                                    uint64_t Members) const {
6182   return Members <= 4;
6183 }
6184 
6185 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6186                               QualType Ty) const {
6187   CharUnits SlotSize = CharUnits::fromQuantity(4);
6188 
6189   // Empty records are ignored for parameter passing purposes.
6190   if (isEmptyRecord(getContext(), Ty, true)) {
6191     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6192     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6193     return Addr;
6194   }
6195 
6196   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6197   CharUnits TyAlignForABI = TyInfo.second;
6198 
6199   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6200   bool IsIndirect = false;
6201   const Type *Base = nullptr;
6202   uint64_t Members = 0;
6203   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6204     IsIndirect = true;
6205 
6206   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6207   // allocated by the caller.
6208   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6209              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6210              !isHomogeneousAggregate(Ty, Base, Members)) {
6211     IsIndirect = true;
6212 
6213   // Otherwise, bound the type's ABI alignment.
6214   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6215   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6216   // Our callers should be prepared to handle an under-aligned address.
6217   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6218              getABIKind() == ARMABIInfo::AAPCS) {
6219     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6220     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6221   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6222     // ARMv7k allows type alignment up to 16 bytes.
6223     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6224     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6225   } else {
6226     TyAlignForABI = CharUnits::fromQuantity(4);
6227   }
6228   TyInfo.second = TyAlignForABI;
6229 
6230   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6231                           SlotSize, /*AllowHigherAlign*/ true);
6232 }
6233 
6234 //===----------------------------------------------------------------------===//
6235 // NVPTX ABI Implementation
6236 //===----------------------------------------------------------------------===//
6237 
6238 namespace {
6239 
6240 class NVPTXABIInfo : public ABIInfo {
6241 public:
6242   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6243 
6244   ABIArgInfo classifyReturnType(QualType RetTy) const;
6245   ABIArgInfo classifyArgumentType(QualType Ty) const;
6246 
6247   void computeInfo(CGFunctionInfo &FI) const override;
6248   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6249                     QualType Ty) const override;
6250 };
6251 
6252 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6253 public:
6254   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6255     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6256 
6257   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6258                            CodeGen::CodeGenModule &M) const override;
6259   bool shouldEmitStaticExternCAliases() const override;
6260 
6261 private:
6262   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6263   // resulting MDNode to the nvvm.annotations MDNode.
6264   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6265 };
6266 
6267 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6268   if (RetTy->isVoidType())
6269     return ABIArgInfo::getIgnore();
6270 
6271   // note: this is different from default ABI
6272   if (!RetTy->isScalarType())
6273     return ABIArgInfo::getDirect();
6274 
6275   // Treat an enum type as its underlying type.
6276   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6277     RetTy = EnumTy->getDecl()->getIntegerType();
6278 
6279   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6280                                            : ABIArgInfo::getDirect());
6281 }
6282 
6283 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6284   // Treat an enum type as its underlying type.
6285   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6286     Ty = EnumTy->getDecl()->getIntegerType();
6287 
6288   // Return aggregates type as indirect by value
6289   if (isAggregateTypeForABI(Ty))
6290     return getNaturalAlignIndirect(Ty, /* byval */ true);
6291 
6292   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6293                                         : ABIArgInfo::getDirect());
6294 }
6295 
6296 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6297   if (!getCXXABI().classifyReturnType(FI))
6298     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6299   for (auto &I : FI.arguments())
6300     I.info = classifyArgumentType(I.type);
6301 
6302   // Always honor user-specified calling convention.
6303   if (FI.getCallingConvention() != llvm::CallingConv::C)
6304     return;
6305 
6306   FI.setEffectiveCallingConvention(getRuntimeCC());
6307 }
6308 
6309 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6310                                 QualType Ty) const {
6311   llvm_unreachable("NVPTX does not support varargs");
6312 }
6313 
6314 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6315     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6316   if (GV->isDeclaration())
6317     return;
6318   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6319   if (!FD) return;
6320 
6321   llvm::Function *F = cast<llvm::Function>(GV);
6322 
6323   // Perform special handling in OpenCL mode
6324   if (M.getLangOpts().OpenCL) {
6325     // Use OpenCL function attributes to check for kernel functions
6326     // By default, all functions are device functions
6327     if (FD->hasAttr<OpenCLKernelAttr>()) {
6328       // OpenCL __kernel functions get kernel metadata
6329       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6330       addNVVMMetadata(F, "kernel", 1);
6331       // And kernel functions are not subject to inlining
6332       F->addFnAttr(llvm::Attribute::NoInline);
6333     }
6334   }
6335 
6336   // Perform special handling in CUDA mode.
6337   if (M.getLangOpts().CUDA) {
6338     // CUDA __global__ functions get a kernel metadata entry.  Since
6339     // __global__ functions cannot be called from the device, we do not
6340     // need to set the noinline attribute.
6341     if (FD->hasAttr<CUDAGlobalAttr>()) {
6342       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6343       addNVVMMetadata(F, "kernel", 1);
6344     }
6345     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6346       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6347       llvm::APSInt MaxThreads(32);
6348       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6349       if (MaxThreads > 0)
6350         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6351 
6352       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6353       // not specified in __launch_bounds__ or if the user specified a 0 value,
6354       // we don't have to add a PTX directive.
6355       if (Attr->getMinBlocks()) {
6356         llvm::APSInt MinBlocks(32);
6357         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6358         if (MinBlocks > 0)
6359           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6360           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6361       }
6362     }
6363   }
6364 }
6365 
6366 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6367                                              int Operand) {
6368   llvm::Module *M = F->getParent();
6369   llvm::LLVMContext &Ctx = M->getContext();
6370 
6371   // Get "nvvm.annotations" metadata node
6372   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6373 
6374   llvm::Metadata *MDVals[] = {
6375       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6376       llvm::ConstantAsMetadata::get(
6377           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6378   // Append metadata to nvvm.annotations
6379   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6380 }
6381 
6382 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6383   return false;
6384 }
6385 }
6386 
6387 //===----------------------------------------------------------------------===//
6388 // SystemZ ABI Implementation
6389 //===----------------------------------------------------------------------===//
6390 
6391 namespace {
6392 
6393 class SystemZABIInfo : public SwiftABIInfo {
6394   bool HasVector;
6395 
6396 public:
6397   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6398     : SwiftABIInfo(CGT), HasVector(HV) {}
6399 
6400   bool isPromotableIntegerType(QualType Ty) const;
6401   bool isCompoundType(QualType Ty) const;
6402   bool isVectorArgumentType(QualType Ty) const;
6403   bool isFPArgumentType(QualType Ty) const;
6404   QualType GetSingleElementType(QualType Ty) const;
6405 
6406   ABIArgInfo classifyReturnType(QualType RetTy) const;
6407   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6408 
6409   void computeInfo(CGFunctionInfo &FI) const override {
6410     if (!getCXXABI().classifyReturnType(FI))
6411       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6412     for (auto &I : FI.arguments())
6413       I.info = classifyArgumentType(I.type);
6414   }
6415 
6416   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6417                     QualType Ty) const override;
6418 
6419   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6420                                     bool asReturnValue) const override {
6421     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6422   }
6423   bool isSwiftErrorInRegister() const override {
6424     return false;
6425   }
6426 };
6427 
6428 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6429 public:
6430   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6431     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6432 };
6433 
6434 }
6435 
6436 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6437   // Treat an enum type as its underlying type.
6438   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6439     Ty = EnumTy->getDecl()->getIntegerType();
6440 
6441   // Promotable integer types are required to be promoted by the ABI.
6442   if (Ty->isPromotableIntegerType())
6443     return true;
6444 
6445   // 32-bit values must also be promoted.
6446   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6447     switch (BT->getKind()) {
6448     case BuiltinType::Int:
6449     case BuiltinType::UInt:
6450       return true;
6451     default:
6452       return false;
6453     }
6454   return false;
6455 }
6456 
6457 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6458   return (Ty->isAnyComplexType() ||
6459           Ty->isVectorType() ||
6460           isAggregateTypeForABI(Ty));
6461 }
6462 
6463 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6464   return (HasVector &&
6465           Ty->isVectorType() &&
6466           getContext().getTypeSize(Ty) <= 128);
6467 }
6468 
6469 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6470   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6471     switch (BT->getKind()) {
6472     case BuiltinType::Float:
6473     case BuiltinType::Double:
6474       return true;
6475     default:
6476       return false;
6477     }
6478 
6479   return false;
6480 }
6481 
6482 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6483   if (const RecordType *RT = Ty->getAsStructureType()) {
6484     const RecordDecl *RD = RT->getDecl();
6485     QualType Found;
6486 
6487     // If this is a C++ record, check the bases first.
6488     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6489       for (const auto &I : CXXRD->bases()) {
6490         QualType Base = I.getType();
6491 
6492         // Empty bases don't affect things either way.
6493         if (isEmptyRecord(getContext(), Base, true))
6494           continue;
6495 
6496         if (!Found.isNull())
6497           return Ty;
6498         Found = GetSingleElementType(Base);
6499       }
6500 
6501     // Check the fields.
6502     for (const auto *FD : RD->fields()) {
6503       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6504       // Unlike isSingleElementStruct(), empty structure and array fields
6505       // do count.  So do anonymous bitfields that aren't zero-sized.
6506       if (getContext().getLangOpts().CPlusPlus &&
6507           FD->isZeroLengthBitField(getContext()))
6508         continue;
6509 
6510       // Unlike isSingleElementStruct(), arrays do not count.
6511       // Nested structures still do though.
6512       if (!Found.isNull())
6513         return Ty;
6514       Found = GetSingleElementType(FD->getType());
6515     }
6516 
6517     // Unlike isSingleElementStruct(), trailing padding is allowed.
6518     // An 8-byte aligned struct s { float f; } is passed as a double.
6519     if (!Found.isNull())
6520       return Found;
6521   }
6522 
6523   return Ty;
6524 }
6525 
6526 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6527                                   QualType Ty) const {
6528   // Assume that va_list type is correct; should be pointer to LLVM type:
6529   // struct {
6530   //   i64 __gpr;
6531   //   i64 __fpr;
6532   //   i8 *__overflow_arg_area;
6533   //   i8 *__reg_save_area;
6534   // };
6535 
6536   // Every non-vector argument occupies 8 bytes and is passed by preference
6537   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6538   // always passed on the stack.
6539   Ty = getContext().getCanonicalType(Ty);
6540   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6541   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6542   llvm::Type *DirectTy = ArgTy;
6543   ABIArgInfo AI = classifyArgumentType(Ty);
6544   bool IsIndirect = AI.isIndirect();
6545   bool InFPRs = false;
6546   bool IsVector = false;
6547   CharUnits UnpaddedSize;
6548   CharUnits DirectAlign;
6549   if (IsIndirect) {
6550     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6551     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6552   } else {
6553     if (AI.getCoerceToType())
6554       ArgTy = AI.getCoerceToType();
6555     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6556     IsVector = ArgTy->isVectorTy();
6557     UnpaddedSize = TyInfo.first;
6558     DirectAlign = TyInfo.second;
6559   }
6560   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6561   if (IsVector && UnpaddedSize > PaddedSize)
6562     PaddedSize = CharUnits::fromQuantity(16);
6563   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6564 
6565   CharUnits Padding = (PaddedSize - UnpaddedSize);
6566 
6567   llvm::Type *IndexTy = CGF.Int64Ty;
6568   llvm::Value *PaddedSizeV =
6569     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6570 
6571   if (IsVector) {
6572     // Work out the address of a vector argument on the stack.
6573     // Vector arguments are always passed in the high bits of a
6574     // single (8 byte) or double (16 byte) stack slot.
6575     Address OverflowArgAreaPtr =
6576       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6577                                   "overflow_arg_area_ptr");
6578     Address OverflowArgArea =
6579       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6580               TyInfo.second);
6581     Address MemAddr =
6582       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6583 
6584     // Update overflow_arg_area_ptr pointer
6585     llvm::Value *NewOverflowArgArea =
6586       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6587                             "overflow_arg_area");
6588     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6589 
6590     return MemAddr;
6591   }
6592 
6593   assert(PaddedSize.getQuantity() == 8);
6594 
6595   unsigned MaxRegs, RegCountField, RegSaveIndex;
6596   CharUnits RegPadding;
6597   if (InFPRs) {
6598     MaxRegs = 4; // Maximum of 4 FPR arguments
6599     RegCountField = 1; // __fpr
6600     RegSaveIndex = 16; // save offset for f0
6601     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6602   } else {
6603     MaxRegs = 5; // Maximum of 5 GPR arguments
6604     RegCountField = 0; // __gpr
6605     RegSaveIndex = 2; // save offset for r2
6606     RegPadding = Padding; // values are passed in the low bits of a GPR
6607   }
6608 
6609   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6610       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6611       "reg_count_ptr");
6612   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6613   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6614   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6615                                                  "fits_in_regs");
6616 
6617   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6618   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6619   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6620   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6621 
6622   // Emit code to load the value if it was passed in registers.
6623   CGF.EmitBlock(InRegBlock);
6624 
6625   // Work out the address of an argument register.
6626   llvm::Value *ScaledRegCount =
6627     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6628   llvm::Value *RegBase =
6629     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6630                                       + RegPadding.getQuantity());
6631   llvm::Value *RegOffset =
6632     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6633   Address RegSaveAreaPtr =
6634       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6635                                   "reg_save_area_ptr");
6636   llvm::Value *RegSaveArea =
6637     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6638   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6639                                            "raw_reg_addr"),
6640                      PaddedSize);
6641   Address RegAddr =
6642     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6643 
6644   // Update the register count
6645   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6646   llvm::Value *NewRegCount =
6647     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6648   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6649   CGF.EmitBranch(ContBlock);
6650 
6651   // Emit code to load the value if it was passed in memory.
6652   CGF.EmitBlock(InMemBlock);
6653 
6654   // Work out the address of a stack argument.
6655   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6656       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6657   Address OverflowArgArea =
6658     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6659             PaddedSize);
6660   Address RawMemAddr =
6661     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6662   Address MemAddr =
6663     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6664 
6665   // Update overflow_arg_area_ptr pointer
6666   llvm::Value *NewOverflowArgArea =
6667     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6668                           "overflow_arg_area");
6669   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6670   CGF.EmitBranch(ContBlock);
6671 
6672   // Return the appropriate result.
6673   CGF.EmitBlock(ContBlock);
6674   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6675                                  MemAddr, InMemBlock, "va_arg.addr");
6676 
6677   if (IsIndirect)
6678     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6679                       TyInfo.second);
6680 
6681   return ResAddr;
6682 }
6683 
6684 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6685   if (RetTy->isVoidType())
6686     return ABIArgInfo::getIgnore();
6687   if (isVectorArgumentType(RetTy))
6688     return ABIArgInfo::getDirect();
6689   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6690     return getNaturalAlignIndirect(RetTy);
6691   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6692                                          : ABIArgInfo::getDirect());
6693 }
6694 
6695 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6696   // Handle the generic C++ ABI.
6697   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6698     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6699 
6700   // Integers and enums are extended to full register width.
6701   if (isPromotableIntegerType(Ty))
6702     return ABIArgInfo::getExtend(Ty);
6703 
6704   // Handle vector types and vector-like structure types.  Note that
6705   // as opposed to float-like structure types, we do not allow any
6706   // padding for vector-like structures, so verify the sizes match.
6707   uint64_t Size = getContext().getTypeSize(Ty);
6708   QualType SingleElementTy = GetSingleElementType(Ty);
6709   if (isVectorArgumentType(SingleElementTy) &&
6710       getContext().getTypeSize(SingleElementTy) == Size)
6711     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6712 
6713   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6714   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6715     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6716 
6717   // Handle small structures.
6718   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6719     // Structures with flexible arrays have variable length, so really
6720     // fail the size test above.
6721     const RecordDecl *RD = RT->getDecl();
6722     if (RD->hasFlexibleArrayMember())
6723       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6724 
6725     // The structure is passed as an unextended integer, a float, or a double.
6726     llvm::Type *PassTy;
6727     if (isFPArgumentType(SingleElementTy)) {
6728       assert(Size == 32 || Size == 64);
6729       if (Size == 32)
6730         PassTy = llvm::Type::getFloatTy(getVMContext());
6731       else
6732         PassTy = llvm::Type::getDoubleTy(getVMContext());
6733     } else
6734       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6735     return ABIArgInfo::getDirect(PassTy);
6736   }
6737 
6738   // Non-structure compounds are passed indirectly.
6739   if (isCompoundType(Ty))
6740     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6741 
6742   return ABIArgInfo::getDirect(nullptr);
6743 }
6744 
6745 //===----------------------------------------------------------------------===//
6746 // MSP430 ABI Implementation
6747 //===----------------------------------------------------------------------===//
6748 
6749 namespace {
6750 
6751 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6752 public:
6753   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6754     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6755   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6756                            CodeGen::CodeGenModule &M) const override;
6757 };
6758 
6759 }
6760 
6761 void MSP430TargetCodeGenInfo::setTargetAttributes(
6762     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6763   if (GV->isDeclaration())
6764     return;
6765   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6766     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6767       // Handle 'interrupt' attribute:
6768       llvm::Function *F = cast<llvm::Function>(GV);
6769 
6770       // Step 1: Set ISR calling convention.
6771       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6772 
6773       // Step 2: Add attributes goodness.
6774       F->addFnAttr(llvm::Attribute::NoInline);
6775 
6776       // Step 3: Emit ISR vector alias.
6777       unsigned Num = attr->getNumber() / 2;
6778       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6779                                 "__isr_" + Twine(Num), F);
6780     }
6781   }
6782 }
6783 
6784 //===----------------------------------------------------------------------===//
6785 // MIPS ABI Implementation.  This works for both little-endian and
6786 // big-endian variants.
6787 //===----------------------------------------------------------------------===//
6788 
6789 namespace {
6790 class MipsABIInfo : public ABIInfo {
6791   bool IsO32;
6792   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6793   void CoerceToIntArgs(uint64_t TySize,
6794                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6795   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6796   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6797   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6798 public:
6799   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6800     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6801     StackAlignInBytes(IsO32 ? 8 : 16) {}
6802 
6803   ABIArgInfo classifyReturnType(QualType RetTy) const;
6804   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6805   void computeInfo(CGFunctionInfo &FI) const override;
6806   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6807                     QualType Ty) const override;
6808   ABIArgInfo extendType(QualType Ty) const;
6809 };
6810 
6811 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6812   unsigned SizeOfUnwindException;
6813 public:
6814   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6815     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6816       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6817 
6818   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6819     return 29;
6820   }
6821 
6822   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6823                            CodeGen::CodeGenModule &CGM) const override {
6824     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6825     if (!FD) return;
6826     llvm::Function *Fn = cast<llvm::Function>(GV);
6827 
6828     if (FD->hasAttr<MipsLongCallAttr>())
6829       Fn->addFnAttr("long-call");
6830     else if (FD->hasAttr<MipsShortCallAttr>())
6831       Fn->addFnAttr("short-call");
6832 
6833     // Other attributes do not have a meaning for declarations.
6834     if (GV->isDeclaration())
6835       return;
6836 
6837     if (FD->hasAttr<Mips16Attr>()) {
6838       Fn->addFnAttr("mips16");
6839     }
6840     else if (FD->hasAttr<NoMips16Attr>()) {
6841       Fn->addFnAttr("nomips16");
6842     }
6843 
6844     if (FD->hasAttr<MicroMipsAttr>())
6845       Fn->addFnAttr("micromips");
6846     else if (FD->hasAttr<NoMicroMipsAttr>())
6847       Fn->addFnAttr("nomicromips");
6848 
6849     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6850     if (!Attr)
6851       return;
6852 
6853     const char *Kind;
6854     switch (Attr->getInterrupt()) {
6855     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6856     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6857     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6858     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6859     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6860     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6861     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6862     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6863     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6864     }
6865 
6866     Fn->addFnAttr("interrupt", Kind);
6867 
6868   }
6869 
6870   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6871                                llvm::Value *Address) const override;
6872 
6873   unsigned getSizeOfUnwindException() const override {
6874     return SizeOfUnwindException;
6875   }
6876 };
6877 }
6878 
6879 void MipsABIInfo::CoerceToIntArgs(
6880     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6881   llvm::IntegerType *IntTy =
6882     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6883 
6884   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6885   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6886     ArgList.push_back(IntTy);
6887 
6888   // If necessary, add one more integer type to ArgList.
6889   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6890 
6891   if (R)
6892     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6893 }
6894 
6895 // In N32/64, an aligned double precision floating point field is passed in
6896 // a register.
6897 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6898   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6899 
6900   if (IsO32) {
6901     CoerceToIntArgs(TySize, ArgList);
6902     return llvm::StructType::get(getVMContext(), ArgList);
6903   }
6904 
6905   if (Ty->isComplexType())
6906     return CGT.ConvertType(Ty);
6907 
6908   const RecordType *RT = Ty->getAs<RecordType>();
6909 
6910   // Unions/vectors are passed in integer registers.
6911   if (!RT || !RT->isStructureOrClassType()) {
6912     CoerceToIntArgs(TySize, ArgList);
6913     return llvm::StructType::get(getVMContext(), ArgList);
6914   }
6915 
6916   const RecordDecl *RD = RT->getDecl();
6917   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6918   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6919 
6920   uint64_t LastOffset = 0;
6921   unsigned idx = 0;
6922   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6923 
6924   // Iterate over fields in the struct/class and check if there are any aligned
6925   // double fields.
6926   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6927        i != e; ++i, ++idx) {
6928     const QualType Ty = i->getType();
6929     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6930 
6931     if (!BT || BT->getKind() != BuiltinType::Double)
6932       continue;
6933 
6934     uint64_t Offset = Layout.getFieldOffset(idx);
6935     if (Offset % 64) // Ignore doubles that are not aligned.
6936       continue;
6937 
6938     // Add ((Offset - LastOffset) / 64) args of type i64.
6939     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6940       ArgList.push_back(I64);
6941 
6942     // Add double type.
6943     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6944     LastOffset = Offset + 64;
6945   }
6946 
6947   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6948   ArgList.append(IntArgList.begin(), IntArgList.end());
6949 
6950   return llvm::StructType::get(getVMContext(), ArgList);
6951 }
6952 
6953 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6954                                         uint64_t Offset) const {
6955   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6956     return nullptr;
6957 
6958   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6959 }
6960 
6961 ABIArgInfo
6962 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6963   Ty = useFirstFieldIfTransparentUnion(Ty);
6964 
6965   uint64_t OrigOffset = Offset;
6966   uint64_t TySize = getContext().getTypeSize(Ty);
6967   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6968 
6969   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6970                    (uint64_t)StackAlignInBytes);
6971   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6972   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6973 
6974   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6975     // Ignore empty aggregates.
6976     if (TySize == 0)
6977       return ABIArgInfo::getIgnore();
6978 
6979     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6980       Offset = OrigOffset + MinABIStackAlignInBytes;
6981       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6982     }
6983 
6984     // If we have reached here, aggregates are passed directly by coercing to
6985     // another structure type. Padding is inserted if the offset of the
6986     // aggregate is unaligned.
6987     ABIArgInfo ArgInfo =
6988         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6989                               getPaddingType(OrigOffset, CurrOffset));
6990     ArgInfo.setInReg(true);
6991     return ArgInfo;
6992   }
6993 
6994   // Treat an enum type as its underlying type.
6995   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6996     Ty = EnumTy->getDecl()->getIntegerType();
6997 
6998   // All integral types are promoted to the GPR width.
6999   if (Ty->isIntegralOrEnumerationType())
7000     return extendType(Ty);
7001 
7002   return ABIArgInfo::getDirect(
7003       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7004 }
7005 
7006 llvm::Type*
7007 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7008   const RecordType *RT = RetTy->getAs<RecordType>();
7009   SmallVector<llvm::Type*, 8> RTList;
7010 
7011   if (RT && RT->isStructureOrClassType()) {
7012     const RecordDecl *RD = RT->getDecl();
7013     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7014     unsigned FieldCnt = Layout.getFieldCount();
7015 
7016     // N32/64 returns struct/classes in floating point registers if the
7017     // following conditions are met:
7018     // 1. The size of the struct/class is no larger than 128-bit.
7019     // 2. The struct/class has one or two fields all of which are floating
7020     //    point types.
7021     // 3. The offset of the first field is zero (this follows what gcc does).
7022     //
7023     // Any other composite results are returned in integer registers.
7024     //
7025     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7026       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7027       for (; b != e; ++b) {
7028         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7029 
7030         if (!BT || !BT->isFloatingPoint())
7031           break;
7032 
7033         RTList.push_back(CGT.ConvertType(b->getType()));
7034       }
7035 
7036       if (b == e)
7037         return llvm::StructType::get(getVMContext(), RTList,
7038                                      RD->hasAttr<PackedAttr>());
7039 
7040       RTList.clear();
7041     }
7042   }
7043 
7044   CoerceToIntArgs(Size, RTList);
7045   return llvm::StructType::get(getVMContext(), RTList);
7046 }
7047 
7048 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7049   uint64_t Size = getContext().getTypeSize(RetTy);
7050 
7051   if (RetTy->isVoidType())
7052     return ABIArgInfo::getIgnore();
7053 
7054   // O32 doesn't treat zero-sized structs differently from other structs.
7055   // However, N32/N64 ignores zero sized return values.
7056   if (!IsO32 && Size == 0)
7057     return ABIArgInfo::getIgnore();
7058 
7059   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7060     if (Size <= 128) {
7061       if (RetTy->isAnyComplexType())
7062         return ABIArgInfo::getDirect();
7063 
7064       // O32 returns integer vectors in registers and N32/N64 returns all small
7065       // aggregates in registers.
7066       if (!IsO32 ||
7067           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7068         ABIArgInfo ArgInfo =
7069             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7070         ArgInfo.setInReg(true);
7071         return ArgInfo;
7072       }
7073     }
7074 
7075     return getNaturalAlignIndirect(RetTy);
7076   }
7077 
7078   // Treat an enum type as its underlying type.
7079   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7080     RetTy = EnumTy->getDecl()->getIntegerType();
7081 
7082   if (RetTy->isPromotableIntegerType())
7083     return ABIArgInfo::getExtend(RetTy);
7084 
7085   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7086       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7087     return ABIArgInfo::getSignExtend(RetTy);
7088 
7089   return ABIArgInfo::getDirect();
7090 }
7091 
7092 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7093   ABIArgInfo &RetInfo = FI.getReturnInfo();
7094   if (!getCXXABI().classifyReturnType(FI))
7095     RetInfo = classifyReturnType(FI.getReturnType());
7096 
7097   // Check if a pointer to an aggregate is passed as a hidden argument.
7098   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7099 
7100   for (auto &I : FI.arguments())
7101     I.info = classifyArgumentType(I.type, Offset);
7102 }
7103 
7104 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7105                                QualType OrigTy) const {
7106   QualType Ty = OrigTy;
7107 
7108   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7109   // Pointers are also promoted in the same way but this only matters for N32.
7110   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7111   unsigned PtrWidth = getTarget().getPointerWidth(0);
7112   bool DidPromote = false;
7113   if ((Ty->isIntegerType() &&
7114           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7115       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7116     DidPromote = true;
7117     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7118                                             Ty->isSignedIntegerType());
7119   }
7120 
7121   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7122 
7123   // The alignment of things in the argument area is never larger than
7124   // StackAlignInBytes.
7125   TyInfo.second =
7126     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7127 
7128   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7129   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7130 
7131   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7132                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7133 
7134 
7135   // If there was a promotion, "unpromote" into a temporary.
7136   // TODO: can we just use a pointer into a subset of the original slot?
7137   if (DidPromote) {
7138     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7139     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7140 
7141     // Truncate down to the right width.
7142     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7143                                                  : CGF.IntPtrTy);
7144     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7145     if (OrigTy->isPointerType())
7146       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7147 
7148     CGF.Builder.CreateStore(V, Temp);
7149     Addr = Temp;
7150   }
7151 
7152   return Addr;
7153 }
7154 
7155 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7156   int TySize = getContext().getTypeSize(Ty);
7157 
7158   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7159   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7160     return ABIArgInfo::getSignExtend(Ty);
7161 
7162   return ABIArgInfo::getExtend(Ty);
7163 }
7164 
7165 bool
7166 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7167                                                llvm::Value *Address) const {
7168   // This information comes from gcc's implementation, which seems to
7169   // as canonical as it gets.
7170 
7171   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7172   // are aliased to pairs of single-precision FP registers.
7173   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7174 
7175   // 0-31 are the general purpose registers, $0 - $31.
7176   // 32-63 are the floating-point registers, $f0 - $f31.
7177   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7178   // 66 is the (notional, I think) register for signal-handler return.
7179   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7180 
7181   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7182   // They are one bit wide and ignored here.
7183 
7184   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7185   // (coprocessor 1 is the FP unit)
7186   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7187   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7188   // 176-181 are the DSP accumulator registers.
7189   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7190   return false;
7191 }
7192 
7193 //===----------------------------------------------------------------------===//
7194 // AVR ABI Implementation.
7195 //===----------------------------------------------------------------------===//
7196 
7197 namespace {
7198 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7199 public:
7200   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7201     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7202 
7203   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7204                            CodeGen::CodeGenModule &CGM) const override {
7205     if (GV->isDeclaration())
7206       return;
7207     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7208     if (!FD) return;
7209     auto *Fn = cast<llvm::Function>(GV);
7210 
7211     if (FD->getAttr<AVRInterruptAttr>())
7212       Fn->addFnAttr("interrupt");
7213 
7214     if (FD->getAttr<AVRSignalAttr>())
7215       Fn->addFnAttr("signal");
7216   }
7217 };
7218 }
7219 
7220 //===----------------------------------------------------------------------===//
7221 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7222 // Currently subclassed only to implement custom OpenCL C function attribute
7223 // handling.
7224 //===----------------------------------------------------------------------===//
7225 
7226 namespace {
7227 
7228 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7229 public:
7230   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7231     : DefaultTargetCodeGenInfo(CGT) {}
7232 
7233   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7234                            CodeGen::CodeGenModule &M) const override;
7235 };
7236 
7237 void TCETargetCodeGenInfo::setTargetAttributes(
7238     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7239   if (GV->isDeclaration())
7240     return;
7241   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7242   if (!FD) return;
7243 
7244   llvm::Function *F = cast<llvm::Function>(GV);
7245 
7246   if (M.getLangOpts().OpenCL) {
7247     if (FD->hasAttr<OpenCLKernelAttr>()) {
7248       // OpenCL C Kernel functions are not subject to inlining
7249       F->addFnAttr(llvm::Attribute::NoInline);
7250       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7251       if (Attr) {
7252         // Convert the reqd_work_group_size() attributes to metadata.
7253         llvm::LLVMContext &Context = F->getContext();
7254         llvm::NamedMDNode *OpenCLMetadata =
7255             M.getModule().getOrInsertNamedMetadata(
7256                 "opencl.kernel_wg_size_info");
7257 
7258         SmallVector<llvm::Metadata *, 5> Operands;
7259         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7260 
7261         Operands.push_back(
7262             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7263                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7264         Operands.push_back(
7265             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7266                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7267         Operands.push_back(
7268             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7269                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7270 
7271         // Add a boolean constant operand for "required" (true) or "hint"
7272         // (false) for implementing the work_group_size_hint attr later.
7273         // Currently always true as the hint is not yet implemented.
7274         Operands.push_back(
7275             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7276         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7277       }
7278     }
7279   }
7280 }
7281 
7282 }
7283 
7284 //===----------------------------------------------------------------------===//
7285 // Hexagon ABI Implementation
7286 //===----------------------------------------------------------------------===//
7287 
7288 namespace {
7289 
7290 class HexagonABIInfo : public ABIInfo {
7291 
7292 
7293 public:
7294   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7295 
7296 private:
7297 
7298   ABIArgInfo classifyReturnType(QualType RetTy) const;
7299   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7300 
7301   void computeInfo(CGFunctionInfo &FI) const override;
7302 
7303   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7304                     QualType Ty) const override;
7305 };
7306 
7307 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7308 public:
7309   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7310     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7311 
7312   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7313     return 29;
7314   }
7315 };
7316 
7317 }
7318 
7319 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7320   if (!getCXXABI().classifyReturnType(FI))
7321     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7322   for (auto &I : FI.arguments())
7323     I.info = classifyArgumentType(I.type);
7324 }
7325 
7326 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7327   if (!isAggregateTypeForABI(Ty)) {
7328     // Treat an enum type as its underlying type.
7329     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7330       Ty = EnumTy->getDecl()->getIntegerType();
7331 
7332     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7333                                           : ABIArgInfo::getDirect());
7334   }
7335 
7336   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7337     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7338 
7339   // Ignore empty records.
7340   if (isEmptyRecord(getContext(), Ty, true))
7341     return ABIArgInfo::getIgnore();
7342 
7343   uint64_t Size = getContext().getTypeSize(Ty);
7344   if (Size > 64)
7345     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7346     // Pass in the smallest viable integer type.
7347   else if (Size > 32)
7348       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7349   else if (Size > 16)
7350       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7351   else if (Size > 8)
7352       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7353   else
7354       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7355 }
7356 
7357 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7358   if (RetTy->isVoidType())
7359     return ABIArgInfo::getIgnore();
7360 
7361   // Large vector types should be returned via memory.
7362   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7363     return getNaturalAlignIndirect(RetTy);
7364 
7365   if (!isAggregateTypeForABI(RetTy)) {
7366     // Treat an enum type as its underlying type.
7367     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7368       RetTy = EnumTy->getDecl()->getIntegerType();
7369 
7370     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7371                                              : ABIArgInfo::getDirect());
7372   }
7373 
7374   if (isEmptyRecord(getContext(), RetTy, true))
7375     return ABIArgInfo::getIgnore();
7376 
7377   // Aggregates <= 8 bytes are returned in r0; other aggregates
7378   // are returned indirectly.
7379   uint64_t Size = getContext().getTypeSize(RetTy);
7380   if (Size <= 64) {
7381     // Return in the smallest viable integer type.
7382     if (Size <= 8)
7383       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7384     if (Size <= 16)
7385       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7386     if (Size <= 32)
7387       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7388     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7389   }
7390 
7391   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7392 }
7393 
7394 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7395                                   QualType Ty) const {
7396   // FIXME: Someone needs to audit that this handle alignment correctly.
7397   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7398                           getContext().getTypeInfoInChars(Ty),
7399                           CharUnits::fromQuantity(4),
7400                           /*AllowHigherAlign*/ true);
7401 }
7402 
7403 //===----------------------------------------------------------------------===//
7404 // Lanai ABI Implementation
7405 //===----------------------------------------------------------------------===//
7406 
7407 namespace {
7408 class LanaiABIInfo : public DefaultABIInfo {
7409 public:
7410   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7411 
7412   bool shouldUseInReg(QualType Ty, CCState &State) const;
7413 
7414   void computeInfo(CGFunctionInfo &FI) const override {
7415     CCState State(FI.getCallingConvention());
7416     // Lanai uses 4 registers to pass arguments unless the function has the
7417     // regparm attribute set.
7418     if (FI.getHasRegParm()) {
7419       State.FreeRegs = FI.getRegParm();
7420     } else {
7421       State.FreeRegs = 4;
7422     }
7423 
7424     if (!getCXXABI().classifyReturnType(FI))
7425       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7426     for (auto &I : FI.arguments())
7427       I.info = classifyArgumentType(I.type, State);
7428   }
7429 
7430   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7431   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7432 };
7433 } // end anonymous namespace
7434 
7435 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7436   unsigned Size = getContext().getTypeSize(Ty);
7437   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7438 
7439   if (SizeInRegs == 0)
7440     return false;
7441 
7442   if (SizeInRegs > State.FreeRegs) {
7443     State.FreeRegs = 0;
7444     return false;
7445   }
7446 
7447   State.FreeRegs -= SizeInRegs;
7448 
7449   return true;
7450 }
7451 
7452 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7453                                            CCState &State) const {
7454   if (!ByVal) {
7455     if (State.FreeRegs) {
7456       --State.FreeRegs; // Non-byval indirects just use one pointer.
7457       return getNaturalAlignIndirectInReg(Ty);
7458     }
7459     return getNaturalAlignIndirect(Ty, false);
7460   }
7461 
7462   // Compute the byval alignment.
7463   const unsigned MinABIStackAlignInBytes = 4;
7464   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7465   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7466                                  /*Realign=*/TypeAlign >
7467                                      MinABIStackAlignInBytes);
7468 }
7469 
7470 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7471                                               CCState &State) const {
7472   // Check with the C++ ABI first.
7473   const RecordType *RT = Ty->getAs<RecordType>();
7474   if (RT) {
7475     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7476     if (RAA == CGCXXABI::RAA_Indirect) {
7477       return getIndirectResult(Ty, /*ByVal=*/false, State);
7478     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7479       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7480     }
7481   }
7482 
7483   if (isAggregateTypeForABI(Ty)) {
7484     // Structures with flexible arrays are always indirect.
7485     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7486       return getIndirectResult(Ty, /*ByVal=*/true, State);
7487 
7488     // Ignore empty structs/unions.
7489     if (isEmptyRecord(getContext(), Ty, true))
7490       return ABIArgInfo::getIgnore();
7491 
7492     llvm::LLVMContext &LLVMContext = getVMContext();
7493     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7494     if (SizeInRegs <= State.FreeRegs) {
7495       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7496       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7497       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7498       State.FreeRegs -= SizeInRegs;
7499       return ABIArgInfo::getDirectInReg(Result);
7500     } else {
7501       State.FreeRegs = 0;
7502     }
7503     return getIndirectResult(Ty, true, State);
7504   }
7505 
7506   // Treat an enum type as its underlying type.
7507   if (const auto *EnumTy = Ty->getAs<EnumType>())
7508     Ty = EnumTy->getDecl()->getIntegerType();
7509 
7510   bool InReg = shouldUseInReg(Ty, State);
7511   if (Ty->isPromotableIntegerType()) {
7512     if (InReg)
7513       return ABIArgInfo::getDirectInReg();
7514     return ABIArgInfo::getExtend(Ty);
7515   }
7516   if (InReg)
7517     return ABIArgInfo::getDirectInReg();
7518   return ABIArgInfo::getDirect();
7519 }
7520 
7521 namespace {
7522 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7523 public:
7524   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7525       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7526 };
7527 }
7528 
7529 //===----------------------------------------------------------------------===//
7530 // AMDGPU ABI Implementation
7531 //===----------------------------------------------------------------------===//
7532 
7533 namespace {
7534 
7535 class AMDGPUABIInfo final : public DefaultABIInfo {
7536 private:
7537   static const unsigned MaxNumRegsForArgsRet = 16;
7538 
7539   unsigned numRegsForType(QualType Ty) const;
7540 
7541   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7542   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7543                                          uint64_t Members) const override;
7544 
7545 public:
7546   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7547     DefaultABIInfo(CGT) {}
7548 
7549   ABIArgInfo classifyReturnType(QualType RetTy) const;
7550   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7551   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7552 
7553   void computeInfo(CGFunctionInfo &FI) const override;
7554 };
7555 
7556 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7557   return true;
7558 }
7559 
7560 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7561   const Type *Base, uint64_t Members) const {
7562   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7563 
7564   // Homogeneous Aggregates may occupy at most 16 registers.
7565   return Members * NumRegs <= MaxNumRegsForArgsRet;
7566 }
7567 
7568 /// Estimate number of registers the type will use when passed in registers.
7569 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7570   unsigned NumRegs = 0;
7571 
7572   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7573     // Compute from the number of elements. The reported size is based on the
7574     // in-memory size, which includes the padding 4th element for 3-vectors.
7575     QualType EltTy = VT->getElementType();
7576     unsigned EltSize = getContext().getTypeSize(EltTy);
7577 
7578     // 16-bit element vectors should be passed as packed.
7579     if (EltSize == 16)
7580       return (VT->getNumElements() + 1) / 2;
7581 
7582     unsigned EltNumRegs = (EltSize + 31) / 32;
7583     return EltNumRegs * VT->getNumElements();
7584   }
7585 
7586   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7587     const RecordDecl *RD = RT->getDecl();
7588     assert(!RD->hasFlexibleArrayMember());
7589 
7590     for (const FieldDecl *Field : RD->fields()) {
7591       QualType FieldTy = Field->getType();
7592       NumRegs += numRegsForType(FieldTy);
7593     }
7594 
7595     return NumRegs;
7596   }
7597 
7598   return (getContext().getTypeSize(Ty) + 31) / 32;
7599 }
7600 
7601 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7602   llvm::CallingConv::ID CC = FI.getCallingConvention();
7603 
7604   if (!getCXXABI().classifyReturnType(FI))
7605     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7606 
7607   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7608   for (auto &Arg : FI.arguments()) {
7609     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7610       Arg.info = classifyKernelArgumentType(Arg.type);
7611     } else {
7612       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7613     }
7614   }
7615 }
7616 
7617 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7618   if (isAggregateTypeForABI(RetTy)) {
7619     // Records with non-trivial destructors/copy-constructors should not be
7620     // returned by value.
7621     if (!getRecordArgABI(RetTy, getCXXABI())) {
7622       // Ignore empty structs/unions.
7623       if (isEmptyRecord(getContext(), RetTy, true))
7624         return ABIArgInfo::getIgnore();
7625 
7626       // Lower single-element structs to just return a regular value.
7627       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7628         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7629 
7630       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7631         const RecordDecl *RD = RT->getDecl();
7632         if (RD->hasFlexibleArrayMember())
7633           return DefaultABIInfo::classifyReturnType(RetTy);
7634       }
7635 
7636       // Pack aggregates <= 4 bytes into single VGPR or pair.
7637       uint64_t Size = getContext().getTypeSize(RetTy);
7638       if (Size <= 16)
7639         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7640 
7641       if (Size <= 32)
7642         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7643 
7644       if (Size <= 64) {
7645         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7646         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7647       }
7648 
7649       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7650         return ABIArgInfo::getDirect();
7651     }
7652   }
7653 
7654   // Otherwise just do the default thing.
7655   return DefaultABIInfo::classifyReturnType(RetTy);
7656 }
7657 
7658 /// For kernels all parameters are really passed in a special buffer. It doesn't
7659 /// make sense to pass anything byval, so everything must be direct.
7660 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7661   Ty = useFirstFieldIfTransparentUnion(Ty);
7662 
7663   // TODO: Can we omit empty structs?
7664 
7665   // Coerce single element structs to its element.
7666   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7667     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7668 
7669   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7670   // individual elements, which confuses the Clover OpenCL backend; therefore we
7671   // have to set it to false here. Other args of getDirect() are just defaults.
7672   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7673 }
7674 
7675 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7676                                                unsigned &NumRegsLeft) const {
7677   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7678 
7679   Ty = useFirstFieldIfTransparentUnion(Ty);
7680 
7681   if (isAggregateTypeForABI(Ty)) {
7682     // Records with non-trivial destructors/copy-constructors should not be
7683     // passed by value.
7684     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7685       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7686 
7687     // Ignore empty structs/unions.
7688     if (isEmptyRecord(getContext(), Ty, true))
7689       return ABIArgInfo::getIgnore();
7690 
7691     // Lower single-element structs to just pass a regular value. TODO: We
7692     // could do reasonable-size multiple-element structs too, using getExpand(),
7693     // though watch out for things like bitfields.
7694     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7695       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7696 
7697     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7698       const RecordDecl *RD = RT->getDecl();
7699       if (RD->hasFlexibleArrayMember())
7700         return DefaultABIInfo::classifyArgumentType(Ty);
7701     }
7702 
7703     // Pack aggregates <= 8 bytes into single VGPR or pair.
7704     uint64_t Size = getContext().getTypeSize(Ty);
7705     if (Size <= 64) {
7706       unsigned NumRegs = (Size + 31) / 32;
7707       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7708 
7709       if (Size <= 16)
7710         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7711 
7712       if (Size <= 32)
7713         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7714 
7715       // XXX: Should this be i64 instead, and should the limit increase?
7716       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7717       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7718     }
7719 
7720     if (NumRegsLeft > 0) {
7721       unsigned NumRegs = numRegsForType(Ty);
7722       if (NumRegsLeft >= NumRegs) {
7723         NumRegsLeft -= NumRegs;
7724         return ABIArgInfo::getDirect();
7725       }
7726     }
7727   }
7728 
7729   // Otherwise just do the default thing.
7730   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7731   if (!ArgInfo.isIndirect()) {
7732     unsigned NumRegs = numRegsForType(Ty);
7733     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7734   }
7735 
7736   return ArgInfo;
7737 }
7738 
7739 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7740 public:
7741   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7742     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7743   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7744                            CodeGen::CodeGenModule &M) const override;
7745   unsigned getOpenCLKernelCallingConv() const override;
7746 
7747   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7748       llvm::PointerType *T, QualType QT) const override;
7749 
7750   LangAS getASTAllocaAddressSpace() const override {
7751     return getLangASFromTargetAS(
7752         getABIInfo().getDataLayout().getAllocaAddrSpace());
7753   }
7754   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7755                                   const VarDecl *D) const override;
7756   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7757                                          llvm::LLVMContext &C) const override;
7758   llvm::Function *
7759   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7760                             llvm::Function *BlockInvokeFunc,
7761                             llvm::Value *BlockLiteral) const override;
7762   bool shouldEmitStaticExternCAliases() const override;
7763   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7764 };
7765 }
7766 
7767 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7768     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7769   if (GV->isDeclaration())
7770     return;
7771   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7772   if (!FD)
7773     return;
7774 
7775   llvm::Function *F = cast<llvm::Function>(GV);
7776 
7777   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7778     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7779 
7780   if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
7781       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7782     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7783 
7784   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7785   if (ReqdWGS || FlatWGS) {
7786     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7787     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7788     if (ReqdWGS && Min == 0 && Max == 0)
7789       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7790 
7791     if (Min != 0) {
7792       assert(Min <= Max && "Min must be less than or equal Max");
7793 
7794       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7795       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7796     } else
7797       assert(Max == 0 && "Max must be zero");
7798   }
7799 
7800   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7801     unsigned Min = Attr->getMin();
7802     unsigned Max = Attr->getMax();
7803 
7804     if (Min != 0) {
7805       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7806 
7807       std::string AttrVal = llvm::utostr(Min);
7808       if (Max != 0)
7809         AttrVal = AttrVal + "," + llvm::utostr(Max);
7810       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7811     } else
7812       assert(Max == 0 && "Max must be zero");
7813   }
7814 
7815   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7816     unsigned NumSGPR = Attr->getNumSGPR();
7817 
7818     if (NumSGPR != 0)
7819       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7820   }
7821 
7822   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7823     uint32_t NumVGPR = Attr->getNumVGPR();
7824 
7825     if (NumVGPR != 0)
7826       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7827   }
7828 }
7829 
7830 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7831   return llvm::CallingConv::AMDGPU_KERNEL;
7832 }
7833 
7834 // Currently LLVM assumes null pointers always have value 0,
7835 // which results in incorrectly transformed IR. Therefore, instead of
7836 // emitting null pointers in private and local address spaces, a null
7837 // pointer in generic address space is emitted which is casted to a
7838 // pointer in local or private address space.
7839 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7840     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7841     QualType QT) const {
7842   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7843     return llvm::ConstantPointerNull::get(PT);
7844 
7845   auto &Ctx = CGM.getContext();
7846   auto NPT = llvm::PointerType::get(PT->getElementType(),
7847       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7848   return llvm::ConstantExpr::getAddrSpaceCast(
7849       llvm::ConstantPointerNull::get(NPT), PT);
7850 }
7851 
7852 LangAS
7853 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7854                                                   const VarDecl *D) const {
7855   assert(!CGM.getLangOpts().OpenCL &&
7856          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7857          "Address space agnostic languages only");
7858   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7859       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7860   if (!D)
7861     return DefaultGlobalAS;
7862 
7863   LangAS AddrSpace = D->getType().getAddressSpace();
7864   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7865   if (AddrSpace != LangAS::Default)
7866     return AddrSpace;
7867 
7868   if (CGM.isTypeConstant(D->getType(), false)) {
7869     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7870       return ConstAS.getValue();
7871   }
7872   return DefaultGlobalAS;
7873 }
7874 
7875 llvm::SyncScope::ID
7876 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7877                                             llvm::LLVMContext &C) const {
7878   StringRef Name;
7879   switch (S) {
7880   case SyncScope::OpenCLWorkGroup:
7881     Name = "workgroup";
7882     break;
7883   case SyncScope::OpenCLDevice:
7884     Name = "agent";
7885     break;
7886   case SyncScope::OpenCLAllSVMDevices:
7887     Name = "";
7888     break;
7889   case SyncScope::OpenCLSubGroup:
7890     Name = "subgroup";
7891   }
7892   return C.getOrInsertSyncScopeID(Name);
7893 }
7894 
7895 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7896   return false;
7897 }
7898 
7899 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
7900     const FunctionType *&FT) const {
7901   FT = getABIInfo().getContext().adjustFunctionType(
7902       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
7903 }
7904 
7905 //===----------------------------------------------------------------------===//
7906 // SPARC v8 ABI Implementation.
7907 // Based on the SPARC Compliance Definition version 2.4.1.
7908 //
7909 // Ensures that complex values are passed in registers.
7910 //
7911 namespace {
7912 class SparcV8ABIInfo : public DefaultABIInfo {
7913 public:
7914   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7915 
7916 private:
7917   ABIArgInfo classifyReturnType(QualType RetTy) const;
7918   void computeInfo(CGFunctionInfo &FI) const override;
7919 };
7920 } // end anonymous namespace
7921 
7922 
7923 ABIArgInfo
7924 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7925   if (Ty->isAnyComplexType()) {
7926     return ABIArgInfo::getDirect();
7927   }
7928   else {
7929     return DefaultABIInfo::classifyReturnType(Ty);
7930   }
7931 }
7932 
7933 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7934 
7935   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7936   for (auto &Arg : FI.arguments())
7937     Arg.info = classifyArgumentType(Arg.type);
7938 }
7939 
7940 namespace {
7941 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7942 public:
7943   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7944     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7945 };
7946 } // end anonymous namespace
7947 
7948 //===----------------------------------------------------------------------===//
7949 // SPARC v9 ABI Implementation.
7950 // Based on the SPARC Compliance Definition version 2.4.1.
7951 //
7952 // Function arguments a mapped to a nominal "parameter array" and promoted to
7953 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7954 // the array, structs larger than 16 bytes are passed indirectly.
7955 //
7956 // One case requires special care:
7957 //
7958 //   struct mixed {
7959 //     int i;
7960 //     float f;
7961 //   };
7962 //
7963 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7964 // parameter array, but the int is passed in an integer register, and the float
7965 // is passed in a floating point register. This is represented as two arguments
7966 // with the LLVM IR inreg attribute:
7967 //
7968 //   declare void f(i32 inreg %i, float inreg %f)
7969 //
7970 // The code generator will only allocate 4 bytes from the parameter array for
7971 // the inreg arguments. All other arguments are allocated a multiple of 8
7972 // bytes.
7973 //
7974 namespace {
7975 class SparcV9ABIInfo : public ABIInfo {
7976 public:
7977   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7978 
7979 private:
7980   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7981   void computeInfo(CGFunctionInfo &FI) const override;
7982   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7983                     QualType Ty) const override;
7984 
7985   // Coercion type builder for structs passed in registers. The coercion type
7986   // serves two purposes:
7987   //
7988   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7989   //    in registers.
7990   // 2. Expose aligned floating point elements as first-level elements, so the
7991   //    code generator knows to pass them in floating point registers.
7992   //
7993   // We also compute the InReg flag which indicates that the struct contains
7994   // aligned 32-bit floats.
7995   //
7996   struct CoerceBuilder {
7997     llvm::LLVMContext &Context;
7998     const llvm::DataLayout &DL;
7999     SmallVector<llvm::Type*, 8> Elems;
8000     uint64_t Size;
8001     bool InReg;
8002 
8003     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8004       : Context(c), DL(dl), Size(0), InReg(false) {}
8005 
8006     // Pad Elems with integers until Size is ToSize.
8007     void pad(uint64_t ToSize) {
8008       assert(ToSize >= Size && "Cannot remove elements");
8009       if (ToSize == Size)
8010         return;
8011 
8012       // Finish the current 64-bit word.
8013       uint64_t Aligned = llvm::alignTo(Size, 64);
8014       if (Aligned > Size && Aligned <= ToSize) {
8015         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8016         Size = Aligned;
8017       }
8018 
8019       // Add whole 64-bit words.
8020       while (Size + 64 <= ToSize) {
8021         Elems.push_back(llvm::Type::getInt64Ty(Context));
8022         Size += 64;
8023       }
8024 
8025       // Final in-word padding.
8026       if (Size < ToSize) {
8027         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8028         Size = ToSize;
8029       }
8030     }
8031 
8032     // Add a floating point element at Offset.
8033     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8034       // Unaligned floats are treated as integers.
8035       if (Offset % Bits)
8036         return;
8037       // The InReg flag is only required if there are any floats < 64 bits.
8038       if (Bits < 64)
8039         InReg = true;
8040       pad(Offset);
8041       Elems.push_back(Ty);
8042       Size = Offset + Bits;
8043     }
8044 
8045     // Add a struct type to the coercion type, starting at Offset (in bits).
8046     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8047       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8048       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8049         llvm::Type *ElemTy = StrTy->getElementType(i);
8050         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8051         switch (ElemTy->getTypeID()) {
8052         case llvm::Type::StructTyID:
8053           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8054           break;
8055         case llvm::Type::FloatTyID:
8056           addFloat(ElemOffset, ElemTy, 32);
8057           break;
8058         case llvm::Type::DoubleTyID:
8059           addFloat(ElemOffset, ElemTy, 64);
8060           break;
8061         case llvm::Type::FP128TyID:
8062           addFloat(ElemOffset, ElemTy, 128);
8063           break;
8064         case llvm::Type::PointerTyID:
8065           if (ElemOffset % 64 == 0) {
8066             pad(ElemOffset);
8067             Elems.push_back(ElemTy);
8068             Size += 64;
8069           }
8070           break;
8071         default:
8072           break;
8073         }
8074       }
8075     }
8076 
8077     // Check if Ty is a usable substitute for the coercion type.
8078     bool isUsableType(llvm::StructType *Ty) const {
8079       return llvm::makeArrayRef(Elems) == Ty->elements();
8080     }
8081 
8082     // Get the coercion type as a literal struct type.
8083     llvm::Type *getType() const {
8084       if (Elems.size() == 1)
8085         return Elems.front();
8086       else
8087         return llvm::StructType::get(Context, Elems);
8088     }
8089   };
8090 };
8091 } // end anonymous namespace
8092 
8093 ABIArgInfo
8094 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8095   if (Ty->isVoidType())
8096     return ABIArgInfo::getIgnore();
8097 
8098   uint64_t Size = getContext().getTypeSize(Ty);
8099 
8100   // Anything too big to fit in registers is passed with an explicit indirect
8101   // pointer / sret pointer.
8102   if (Size > SizeLimit)
8103     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8104 
8105   // Treat an enum type as its underlying type.
8106   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8107     Ty = EnumTy->getDecl()->getIntegerType();
8108 
8109   // Integer types smaller than a register are extended.
8110   if (Size < 64 && Ty->isIntegerType())
8111     return ABIArgInfo::getExtend(Ty);
8112 
8113   // Other non-aggregates go in registers.
8114   if (!isAggregateTypeForABI(Ty))
8115     return ABIArgInfo::getDirect();
8116 
8117   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8118   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8119   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8120     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8121 
8122   // This is a small aggregate type that should be passed in registers.
8123   // Build a coercion type from the LLVM struct type.
8124   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8125   if (!StrTy)
8126     return ABIArgInfo::getDirect();
8127 
8128   CoerceBuilder CB(getVMContext(), getDataLayout());
8129   CB.addStruct(0, StrTy);
8130   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8131 
8132   // Try to use the original type for coercion.
8133   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8134 
8135   if (CB.InReg)
8136     return ABIArgInfo::getDirectInReg(CoerceTy);
8137   else
8138     return ABIArgInfo::getDirect(CoerceTy);
8139 }
8140 
8141 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8142                                   QualType Ty) const {
8143   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8144   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8145   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8146     AI.setCoerceToType(ArgTy);
8147 
8148   CharUnits SlotSize = CharUnits::fromQuantity(8);
8149 
8150   CGBuilderTy &Builder = CGF.Builder;
8151   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8152   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8153 
8154   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8155 
8156   Address ArgAddr = Address::invalid();
8157   CharUnits Stride;
8158   switch (AI.getKind()) {
8159   case ABIArgInfo::Expand:
8160   case ABIArgInfo::CoerceAndExpand:
8161   case ABIArgInfo::InAlloca:
8162     llvm_unreachable("Unsupported ABI kind for va_arg");
8163 
8164   case ABIArgInfo::Extend: {
8165     Stride = SlotSize;
8166     CharUnits Offset = SlotSize - TypeInfo.first;
8167     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8168     break;
8169   }
8170 
8171   case ABIArgInfo::Direct: {
8172     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8173     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8174     ArgAddr = Addr;
8175     break;
8176   }
8177 
8178   case ABIArgInfo::Indirect:
8179     Stride = SlotSize;
8180     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8181     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8182                       TypeInfo.second);
8183     break;
8184 
8185   case ABIArgInfo::Ignore:
8186     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8187   }
8188 
8189   // Update VAList.
8190   llvm::Value *NextPtr =
8191     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8192   Builder.CreateStore(NextPtr, VAListAddr);
8193 
8194   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8195 }
8196 
8197 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8198   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8199   for (auto &I : FI.arguments())
8200     I.info = classifyType(I.type, 16 * 8);
8201 }
8202 
8203 namespace {
8204 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8205 public:
8206   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8207     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8208 
8209   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8210     return 14;
8211   }
8212 
8213   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8214                                llvm::Value *Address) const override;
8215 };
8216 } // end anonymous namespace
8217 
8218 bool
8219 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8220                                                 llvm::Value *Address) const {
8221   // This is calculated from the LLVM and GCC tables and verified
8222   // against gcc output.  AFAIK all ABIs use the same encoding.
8223 
8224   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8225 
8226   llvm::IntegerType *i8 = CGF.Int8Ty;
8227   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8228   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8229 
8230   // 0-31: the 8-byte general-purpose registers
8231   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8232 
8233   // 32-63: f0-31, the 4-byte floating-point registers
8234   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8235 
8236   //   Y   = 64
8237   //   PSR = 65
8238   //   WIM = 66
8239   //   TBR = 67
8240   //   PC  = 68
8241   //   NPC = 69
8242   //   FSR = 70
8243   //   CSR = 71
8244   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8245 
8246   // 72-87: d0-15, the 8-byte floating-point registers
8247   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8248 
8249   return false;
8250 }
8251 
8252 // ARC ABI implementation.
8253 namespace {
8254 
8255 class ARCABIInfo : public DefaultABIInfo {
8256 public:
8257   using DefaultABIInfo::DefaultABIInfo;
8258 
8259 private:
8260   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8261                     QualType Ty) const override;
8262 
8263   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8264     if (!State.FreeRegs)
8265       return;
8266     if (Info.isIndirect() && Info.getInReg())
8267       State.FreeRegs--;
8268     else if (Info.isDirect() && Info.getInReg()) {
8269       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8270       if (sz < State.FreeRegs)
8271         State.FreeRegs -= sz;
8272       else
8273         State.FreeRegs = 0;
8274     }
8275   }
8276 
8277   void computeInfo(CGFunctionInfo &FI) const override {
8278     CCState State(FI.getCallingConvention());
8279     // ARC uses 8 registers to pass arguments.
8280     State.FreeRegs = 8;
8281 
8282     if (!getCXXABI().classifyReturnType(FI))
8283       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8284     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8285     for (auto &I : FI.arguments()) {
8286       I.info = classifyArgumentType(I.type, State.FreeRegs);
8287       updateState(I.info, I.type, State);
8288     }
8289   }
8290 
8291   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8292   ABIArgInfo getIndirectByValue(QualType Ty) const;
8293   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8294   ABIArgInfo classifyReturnType(QualType RetTy) const;
8295 };
8296 
8297 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8298 public:
8299   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8300       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8301 };
8302 
8303 
8304 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8305   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8306                        getNaturalAlignIndirect(Ty, false);
8307 }
8308 
8309 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8310   // Compute the byval alignment.
8311   const unsigned MinABIStackAlignInBytes = 4;
8312   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8313   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8314                                  TypeAlign > MinABIStackAlignInBytes);
8315 }
8316 
8317 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8318                               QualType Ty) const {
8319   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8320                           getContext().getTypeInfoInChars(Ty),
8321                           CharUnits::fromQuantity(4), true);
8322 }
8323 
8324 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8325                                             uint8_t FreeRegs) const {
8326   // Handle the generic C++ ABI.
8327   const RecordType *RT = Ty->getAs<RecordType>();
8328   if (RT) {
8329     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8330     if (RAA == CGCXXABI::RAA_Indirect)
8331       return getIndirectByRef(Ty, FreeRegs > 0);
8332 
8333     if (RAA == CGCXXABI::RAA_DirectInMemory)
8334       return getIndirectByValue(Ty);
8335   }
8336 
8337   // Treat an enum type as its underlying type.
8338   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8339     Ty = EnumTy->getDecl()->getIntegerType();
8340 
8341   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8342 
8343   if (isAggregateTypeForABI(Ty)) {
8344     // Structures with flexible arrays are always indirect.
8345     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8346       return getIndirectByValue(Ty);
8347 
8348     // Ignore empty structs/unions.
8349     if (isEmptyRecord(getContext(), Ty, true))
8350       return ABIArgInfo::getIgnore();
8351 
8352     llvm::LLVMContext &LLVMContext = getVMContext();
8353 
8354     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8355     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8356     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8357 
8358     return FreeRegs >= SizeInRegs ?
8359         ABIArgInfo::getDirectInReg(Result) :
8360         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8361   }
8362 
8363   return Ty->isPromotableIntegerType() ?
8364       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8365                                 ABIArgInfo::getExtend(Ty)) :
8366       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8367                                 ABIArgInfo::getDirect());
8368 }
8369 
8370 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8371   if (RetTy->isAnyComplexType())
8372     return ABIArgInfo::getDirectInReg();
8373 
8374   // Arguments of size > 4 registers are indirect.
8375   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8376   if (RetSize > 4)
8377     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8378 
8379   return DefaultABIInfo::classifyReturnType(RetTy);
8380 }
8381 
8382 } // End anonymous namespace.
8383 
8384 //===----------------------------------------------------------------------===//
8385 // XCore ABI Implementation
8386 //===----------------------------------------------------------------------===//
8387 
8388 namespace {
8389 
8390 /// A SmallStringEnc instance is used to build up the TypeString by passing
8391 /// it by reference between functions that append to it.
8392 typedef llvm::SmallString<128> SmallStringEnc;
8393 
8394 /// TypeStringCache caches the meta encodings of Types.
8395 ///
8396 /// The reason for caching TypeStrings is two fold:
8397 ///   1. To cache a type's encoding for later uses;
8398 ///   2. As a means to break recursive member type inclusion.
8399 ///
8400 /// A cache Entry can have a Status of:
8401 ///   NonRecursive:   The type encoding is not recursive;
8402 ///   Recursive:      The type encoding is recursive;
8403 ///   Incomplete:     An incomplete TypeString;
8404 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8405 ///                   Recursive type encoding.
8406 ///
8407 /// A NonRecursive entry will have all of its sub-members expanded as fully
8408 /// as possible. Whilst it may contain types which are recursive, the type
8409 /// itself is not recursive and thus its encoding may be safely used whenever
8410 /// the type is encountered.
8411 ///
8412 /// A Recursive entry will have all of its sub-members expanded as fully as
8413 /// possible. The type itself is recursive and it may contain other types which
8414 /// are recursive. The Recursive encoding must not be used during the expansion
8415 /// of a recursive type's recursive branch. For simplicity the code uses
8416 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8417 ///
8418 /// An Incomplete entry is always a RecordType and only encodes its
8419 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8420 /// are placed into the cache during type expansion as a means to identify and
8421 /// handle recursive inclusion of types as sub-members. If there is recursion
8422 /// the entry becomes IncompleteUsed.
8423 ///
8424 /// During the expansion of a RecordType's members:
8425 ///
8426 ///   If the cache contains a NonRecursive encoding for the member type, the
8427 ///   cached encoding is used;
8428 ///
8429 ///   If the cache contains a Recursive encoding for the member type, the
8430 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8431 ///
8432 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8433 ///   cache to break potential recursive inclusion of itself as a sub-member;
8434 ///
8435 ///   Once a member RecordType has been expanded, its temporary incomplete
8436 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8437 ///   it is swapped back in;
8438 ///
8439 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8440 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8441 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8442 ///
8443 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8444 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8445 ///   Else the member is part of a recursive type and thus the recursion has
8446 ///   been exited too soon for the encoding to be correct for the member.
8447 ///
8448 class TypeStringCache {
8449   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8450   struct Entry {
8451     std::string Str;     // The encoded TypeString for the type.
8452     enum Status State;   // Information about the encoding in 'Str'.
8453     std::string Swapped; // A temporary place holder for a Recursive encoding
8454                          // during the expansion of RecordType's members.
8455   };
8456   std::map<const IdentifierInfo *, struct Entry> Map;
8457   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8458   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8459 public:
8460   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8461   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8462   bool removeIncomplete(const IdentifierInfo *ID);
8463   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8464                      bool IsRecursive);
8465   StringRef lookupStr(const IdentifierInfo *ID);
8466 };
8467 
8468 /// TypeString encodings for enum & union fields must be order.
8469 /// FieldEncoding is a helper for this ordering process.
8470 class FieldEncoding {
8471   bool HasName;
8472   std::string Enc;
8473 public:
8474   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8475   StringRef str() { return Enc; }
8476   bool operator<(const FieldEncoding &rhs) const {
8477     if (HasName != rhs.HasName) return HasName;
8478     return Enc < rhs.Enc;
8479   }
8480 };
8481 
8482 class XCoreABIInfo : public DefaultABIInfo {
8483 public:
8484   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8485   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8486                     QualType Ty) const override;
8487 };
8488 
8489 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8490   mutable TypeStringCache TSC;
8491 public:
8492   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8493     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8494   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8495                     CodeGen::CodeGenModule &M) const override;
8496 };
8497 
8498 } // End anonymous namespace.
8499 
8500 // TODO: this implementation is likely now redundant with the default
8501 // EmitVAArg.
8502 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8503                                 QualType Ty) const {
8504   CGBuilderTy &Builder = CGF.Builder;
8505 
8506   // Get the VAList.
8507   CharUnits SlotSize = CharUnits::fromQuantity(4);
8508   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8509 
8510   // Handle the argument.
8511   ABIArgInfo AI = classifyArgumentType(Ty);
8512   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8513   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8514   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8515     AI.setCoerceToType(ArgTy);
8516   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8517 
8518   Address Val = Address::invalid();
8519   CharUnits ArgSize = CharUnits::Zero();
8520   switch (AI.getKind()) {
8521   case ABIArgInfo::Expand:
8522   case ABIArgInfo::CoerceAndExpand:
8523   case ABIArgInfo::InAlloca:
8524     llvm_unreachable("Unsupported ABI kind for va_arg");
8525   case ABIArgInfo::Ignore:
8526     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8527     ArgSize = CharUnits::Zero();
8528     break;
8529   case ABIArgInfo::Extend:
8530   case ABIArgInfo::Direct:
8531     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8532     ArgSize = CharUnits::fromQuantity(
8533                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8534     ArgSize = ArgSize.alignTo(SlotSize);
8535     break;
8536   case ABIArgInfo::Indirect:
8537     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8538     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8539     ArgSize = SlotSize;
8540     break;
8541   }
8542 
8543   // Increment the VAList.
8544   if (!ArgSize.isZero()) {
8545     llvm::Value *APN =
8546       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8547     Builder.CreateStore(APN, VAListAddr);
8548   }
8549 
8550   return Val;
8551 }
8552 
8553 /// During the expansion of a RecordType, an incomplete TypeString is placed
8554 /// into the cache as a means to identify and break recursion.
8555 /// If there is a Recursive encoding in the cache, it is swapped out and will
8556 /// be reinserted by removeIncomplete().
8557 /// All other types of encoding should have been used rather than arriving here.
8558 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8559                                     std::string StubEnc) {
8560   if (!ID)
8561     return;
8562   Entry &E = Map[ID];
8563   assert( (E.Str.empty() || E.State == Recursive) &&
8564          "Incorrectly use of addIncomplete");
8565   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8566   E.Swapped.swap(E.Str); // swap out the Recursive
8567   E.Str.swap(StubEnc);
8568   E.State = Incomplete;
8569   ++IncompleteCount;
8570 }
8571 
8572 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8573 /// must be removed from the cache.
8574 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8575 /// Returns true if the RecordType was defined recursively.
8576 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8577   if (!ID)
8578     return false;
8579   auto I = Map.find(ID);
8580   assert(I != Map.end() && "Entry not present");
8581   Entry &E = I->second;
8582   assert( (E.State == Incomplete ||
8583            E.State == IncompleteUsed) &&
8584          "Entry must be an incomplete type");
8585   bool IsRecursive = false;
8586   if (E.State == IncompleteUsed) {
8587     // We made use of our Incomplete encoding, thus we are recursive.
8588     IsRecursive = true;
8589     --IncompleteUsedCount;
8590   }
8591   if (E.Swapped.empty())
8592     Map.erase(I);
8593   else {
8594     // Swap the Recursive back.
8595     E.Swapped.swap(E.Str);
8596     E.Swapped.clear();
8597     E.State = Recursive;
8598   }
8599   --IncompleteCount;
8600   return IsRecursive;
8601 }
8602 
8603 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8604 /// Recursive (viz: all sub-members were expanded as fully as possible).
8605 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8606                                     bool IsRecursive) {
8607   if (!ID || IncompleteUsedCount)
8608     return; // No key or it is is an incomplete sub-type so don't add.
8609   Entry &E = Map[ID];
8610   if (IsRecursive && !E.Str.empty()) {
8611     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8612            "This is not the same Recursive entry");
8613     // The parent container was not recursive after all, so we could have used
8614     // this Recursive sub-member entry after all, but we assumed the worse when
8615     // we started viz: IncompleteCount!=0.
8616     return;
8617   }
8618   assert(E.Str.empty() && "Entry already present");
8619   E.Str = Str.str();
8620   E.State = IsRecursive? Recursive : NonRecursive;
8621 }
8622 
8623 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8624 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8625 /// encoding is Recursive, return an empty StringRef.
8626 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8627   if (!ID)
8628     return StringRef();   // We have no key.
8629   auto I = Map.find(ID);
8630   if (I == Map.end())
8631     return StringRef();   // We have no encoding.
8632   Entry &E = I->second;
8633   if (E.State == Recursive && IncompleteCount)
8634     return StringRef();   // We don't use Recursive encodings for member types.
8635 
8636   if (E.State == Incomplete) {
8637     // The incomplete type is being used to break out of recursion.
8638     E.State = IncompleteUsed;
8639     ++IncompleteUsedCount;
8640   }
8641   return E.Str;
8642 }
8643 
8644 /// The XCore ABI includes a type information section that communicates symbol
8645 /// type information to the linker. The linker uses this information to verify
8646 /// safety/correctness of things such as array bound and pointers et al.
8647 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8648 /// This type information (TypeString) is emitted into meta data for all global
8649 /// symbols: definitions, declarations, functions & variables.
8650 ///
8651 /// The TypeString carries type, qualifier, name, size & value details.
8652 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8653 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8654 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8655 ///
8656 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8657                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8658 
8659 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8660 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8661                                           CodeGen::CodeGenModule &CGM) const {
8662   SmallStringEnc Enc;
8663   if (getTypeString(Enc, D, CGM, TSC)) {
8664     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8665     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8666                                 llvm::MDString::get(Ctx, Enc.str())};
8667     llvm::NamedMDNode *MD =
8668       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8669     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8670   }
8671 }
8672 
8673 //===----------------------------------------------------------------------===//
8674 // SPIR ABI Implementation
8675 //===----------------------------------------------------------------------===//
8676 
8677 namespace {
8678 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8679 public:
8680   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8681     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8682   unsigned getOpenCLKernelCallingConv() const override;
8683 };
8684 
8685 } // End anonymous namespace.
8686 
8687 namespace clang {
8688 namespace CodeGen {
8689 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8690   DefaultABIInfo SPIRABI(CGM.getTypes());
8691   SPIRABI.computeInfo(FI);
8692 }
8693 }
8694 }
8695 
8696 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8697   return llvm::CallingConv::SPIR_KERNEL;
8698 }
8699 
8700 static bool appendType(SmallStringEnc &Enc, QualType QType,
8701                        const CodeGen::CodeGenModule &CGM,
8702                        TypeStringCache &TSC);
8703 
8704 /// Helper function for appendRecordType().
8705 /// Builds a SmallVector containing the encoded field types in declaration
8706 /// order.
8707 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8708                              const RecordDecl *RD,
8709                              const CodeGen::CodeGenModule &CGM,
8710                              TypeStringCache &TSC) {
8711   for (const auto *Field : RD->fields()) {
8712     SmallStringEnc Enc;
8713     Enc += "m(";
8714     Enc += Field->getName();
8715     Enc += "){";
8716     if (Field->isBitField()) {
8717       Enc += "b(";
8718       llvm::raw_svector_ostream OS(Enc);
8719       OS << Field->getBitWidthValue(CGM.getContext());
8720       Enc += ':';
8721     }
8722     if (!appendType(Enc, Field->getType(), CGM, TSC))
8723       return false;
8724     if (Field->isBitField())
8725       Enc += ')';
8726     Enc += '}';
8727     FE.emplace_back(!Field->getName().empty(), Enc);
8728   }
8729   return true;
8730 }
8731 
8732 /// Appends structure and union types to Enc and adds encoding to cache.
8733 /// Recursively calls appendType (via extractFieldType) for each field.
8734 /// Union types have their fields ordered according to the ABI.
8735 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8736                              const CodeGen::CodeGenModule &CGM,
8737                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8738   // Append the cached TypeString if we have one.
8739   StringRef TypeString = TSC.lookupStr(ID);
8740   if (!TypeString.empty()) {
8741     Enc += TypeString;
8742     return true;
8743   }
8744 
8745   // Start to emit an incomplete TypeString.
8746   size_t Start = Enc.size();
8747   Enc += (RT->isUnionType()? 'u' : 's');
8748   Enc += '(';
8749   if (ID)
8750     Enc += ID->getName();
8751   Enc += "){";
8752 
8753   // We collect all encoded fields and order as necessary.
8754   bool IsRecursive = false;
8755   const RecordDecl *RD = RT->getDecl()->getDefinition();
8756   if (RD && !RD->field_empty()) {
8757     // An incomplete TypeString stub is placed in the cache for this RecordType
8758     // so that recursive calls to this RecordType will use it whilst building a
8759     // complete TypeString for this RecordType.
8760     SmallVector<FieldEncoding, 16> FE;
8761     std::string StubEnc(Enc.substr(Start).str());
8762     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8763     TSC.addIncomplete(ID, std::move(StubEnc));
8764     if (!extractFieldType(FE, RD, CGM, TSC)) {
8765       (void) TSC.removeIncomplete(ID);
8766       return false;
8767     }
8768     IsRecursive = TSC.removeIncomplete(ID);
8769     // The ABI requires unions to be sorted but not structures.
8770     // See FieldEncoding::operator< for sort algorithm.
8771     if (RT->isUnionType())
8772       llvm::sort(FE);
8773     // We can now complete the TypeString.
8774     unsigned E = FE.size();
8775     for (unsigned I = 0; I != E; ++I) {
8776       if (I)
8777         Enc += ',';
8778       Enc += FE[I].str();
8779     }
8780   }
8781   Enc += '}';
8782   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8783   return true;
8784 }
8785 
8786 /// Appends enum types to Enc and adds the encoding to the cache.
8787 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8788                            TypeStringCache &TSC,
8789                            const IdentifierInfo *ID) {
8790   // Append the cached TypeString if we have one.
8791   StringRef TypeString = TSC.lookupStr(ID);
8792   if (!TypeString.empty()) {
8793     Enc += TypeString;
8794     return true;
8795   }
8796 
8797   size_t Start = Enc.size();
8798   Enc += "e(";
8799   if (ID)
8800     Enc += ID->getName();
8801   Enc += "){";
8802 
8803   // We collect all encoded enumerations and order them alphanumerically.
8804   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8805     SmallVector<FieldEncoding, 16> FE;
8806     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8807          ++I) {
8808       SmallStringEnc EnumEnc;
8809       EnumEnc += "m(";
8810       EnumEnc += I->getName();
8811       EnumEnc += "){";
8812       I->getInitVal().toString(EnumEnc);
8813       EnumEnc += '}';
8814       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8815     }
8816     llvm::sort(FE);
8817     unsigned E = FE.size();
8818     for (unsigned I = 0; I != E; ++I) {
8819       if (I)
8820         Enc += ',';
8821       Enc += FE[I].str();
8822     }
8823   }
8824   Enc += '}';
8825   TSC.addIfComplete(ID, Enc.substr(Start), false);
8826   return true;
8827 }
8828 
8829 /// Appends type's qualifier to Enc.
8830 /// This is done prior to appending the type's encoding.
8831 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8832   // Qualifiers are emitted in alphabetical order.
8833   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8834   int Lookup = 0;
8835   if (QT.isConstQualified())
8836     Lookup += 1<<0;
8837   if (QT.isRestrictQualified())
8838     Lookup += 1<<1;
8839   if (QT.isVolatileQualified())
8840     Lookup += 1<<2;
8841   Enc += Table[Lookup];
8842 }
8843 
8844 /// Appends built-in types to Enc.
8845 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8846   const char *EncType;
8847   switch (BT->getKind()) {
8848     case BuiltinType::Void:
8849       EncType = "0";
8850       break;
8851     case BuiltinType::Bool:
8852       EncType = "b";
8853       break;
8854     case BuiltinType::Char_U:
8855       EncType = "uc";
8856       break;
8857     case BuiltinType::UChar:
8858       EncType = "uc";
8859       break;
8860     case BuiltinType::SChar:
8861       EncType = "sc";
8862       break;
8863     case BuiltinType::UShort:
8864       EncType = "us";
8865       break;
8866     case BuiltinType::Short:
8867       EncType = "ss";
8868       break;
8869     case BuiltinType::UInt:
8870       EncType = "ui";
8871       break;
8872     case BuiltinType::Int:
8873       EncType = "si";
8874       break;
8875     case BuiltinType::ULong:
8876       EncType = "ul";
8877       break;
8878     case BuiltinType::Long:
8879       EncType = "sl";
8880       break;
8881     case BuiltinType::ULongLong:
8882       EncType = "ull";
8883       break;
8884     case BuiltinType::LongLong:
8885       EncType = "sll";
8886       break;
8887     case BuiltinType::Float:
8888       EncType = "ft";
8889       break;
8890     case BuiltinType::Double:
8891       EncType = "d";
8892       break;
8893     case BuiltinType::LongDouble:
8894       EncType = "ld";
8895       break;
8896     default:
8897       return false;
8898   }
8899   Enc += EncType;
8900   return true;
8901 }
8902 
8903 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8904 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8905                               const CodeGen::CodeGenModule &CGM,
8906                               TypeStringCache &TSC) {
8907   Enc += "p(";
8908   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8909     return false;
8910   Enc += ')';
8911   return true;
8912 }
8913 
8914 /// Appends array encoding to Enc before calling appendType for the element.
8915 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8916                             const ArrayType *AT,
8917                             const CodeGen::CodeGenModule &CGM,
8918                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8919   if (AT->getSizeModifier() != ArrayType::Normal)
8920     return false;
8921   Enc += "a(";
8922   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8923     CAT->getSize().toStringUnsigned(Enc);
8924   else
8925     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8926   Enc += ':';
8927   // The Qualifiers should be attached to the type rather than the array.
8928   appendQualifier(Enc, QT);
8929   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8930     return false;
8931   Enc += ')';
8932   return true;
8933 }
8934 
8935 /// Appends a function encoding to Enc, calling appendType for the return type
8936 /// and the arguments.
8937 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8938                              const CodeGen::CodeGenModule &CGM,
8939                              TypeStringCache &TSC) {
8940   Enc += "f{";
8941   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8942     return false;
8943   Enc += "}(";
8944   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8945     // N.B. we are only interested in the adjusted param types.
8946     auto I = FPT->param_type_begin();
8947     auto E = FPT->param_type_end();
8948     if (I != E) {
8949       do {
8950         if (!appendType(Enc, *I, CGM, TSC))
8951           return false;
8952         ++I;
8953         if (I != E)
8954           Enc += ',';
8955       } while (I != E);
8956       if (FPT->isVariadic())
8957         Enc += ",va";
8958     } else {
8959       if (FPT->isVariadic())
8960         Enc += "va";
8961       else
8962         Enc += '0';
8963     }
8964   }
8965   Enc += ')';
8966   return true;
8967 }
8968 
8969 /// Handles the type's qualifier before dispatching a call to handle specific
8970 /// type encodings.
8971 static bool appendType(SmallStringEnc &Enc, QualType QType,
8972                        const CodeGen::CodeGenModule &CGM,
8973                        TypeStringCache &TSC) {
8974 
8975   QualType QT = QType.getCanonicalType();
8976 
8977   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8978     // The Qualifiers should be attached to the type rather than the array.
8979     // Thus we don't call appendQualifier() here.
8980     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8981 
8982   appendQualifier(Enc, QT);
8983 
8984   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8985     return appendBuiltinType(Enc, BT);
8986 
8987   if (const PointerType *PT = QT->getAs<PointerType>())
8988     return appendPointerType(Enc, PT, CGM, TSC);
8989 
8990   if (const EnumType *ET = QT->getAs<EnumType>())
8991     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
8992 
8993   if (const RecordType *RT = QT->getAsStructureType())
8994     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8995 
8996   if (const RecordType *RT = QT->getAsUnionType())
8997     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8998 
8999   if (const FunctionType *FT = QT->getAs<FunctionType>())
9000     return appendFunctionType(Enc, FT, CGM, TSC);
9001 
9002   return false;
9003 }
9004 
9005 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9006                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9007   if (!D)
9008     return false;
9009 
9010   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9011     if (FD->getLanguageLinkage() != CLanguageLinkage)
9012       return false;
9013     return appendType(Enc, FD->getType(), CGM, TSC);
9014   }
9015 
9016   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9017     if (VD->getLanguageLinkage() != CLanguageLinkage)
9018       return false;
9019     QualType QT = VD->getType().getCanonicalType();
9020     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9021       // Global ArrayTypes are given a size of '*' if the size is unknown.
9022       // The Qualifiers should be attached to the type rather than the array.
9023       // Thus we don't call appendQualifier() here.
9024       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9025     }
9026     return appendType(Enc, QT, CGM, TSC);
9027   }
9028   return false;
9029 }
9030 
9031 //===----------------------------------------------------------------------===//
9032 // RISCV ABI Implementation
9033 //===----------------------------------------------------------------------===//
9034 
9035 namespace {
9036 class RISCVABIInfo : public DefaultABIInfo {
9037 private:
9038   unsigned XLen; // Size of the integer ('x') registers in bits.
9039   static const int NumArgGPRs = 8;
9040 
9041 public:
9042   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9043       : DefaultABIInfo(CGT), XLen(XLen) {}
9044 
9045   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9046   // non-virtual, but computeInfo is virtual, so we overload it.
9047   void computeInfo(CGFunctionInfo &FI) const override;
9048 
9049   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
9050                                   int &ArgGPRsLeft) const;
9051   ABIArgInfo classifyReturnType(QualType RetTy) const;
9052 
9053   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9054                     QualType Ty) const override;
9055 
9056   ABIArgInfo extendType(QualType Ty) const;
9057 };
9058 } // end anonymous namespace
9059 
9060 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9061   QualType RetTy = FI.getReturnType();
9062   if (!getCXXABI().classifyReturnType(FI))
9063     FI.getReturnInfo() = classifyReturnType(RetTy);
9064 
9065   // IsRetIndirect is true if classifyArgumentType indicated the value should
9066   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9067   // is passed direct in LLVM IR, relying on the backend lowering code to
9068   // rewrite the argument list and pass indirectly on RV32.
9069   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9070                        getContext().getTypeSize(RetTy) > (2 * XLen);
9071 
9072   // We must track the number of GPRs used in order to conform to the RISC-V
9073   // ABI, as integer scalars passed in registers should have signext/zeroext
9074   // when promoted, but are anyext if passed on the stack. As GPR usage is
9075   // different for variadic arguments, we must also track whether we are
9076   // examining a vararg or not.
9077   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9078   int NumFixedArgs = FI.getNumRequiredArgs();
9079 
9080   int ArgNum = 0;
9081   for (auto &ArgInfo : FI.arguments()) {
9082     bool IsFixed = ArgNum < NumFixedArgs;
9083     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
9084     ArgNum++;
9085   }
9086 }
9087 
9088 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9089                                               int &ArgGPRsLeft) const {
9090   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9091   Ty = useFirstFieldIfTransparentUnion(Ty);
9092 
9093   // Structures with either a non-trivial destructor or a non-trivial
9094   // copy constructor are always passed indirectly.
9095   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9096     if (ArgGPRsLeft)
9097       ArgGPRsLeft -= 1;
9098     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9099                                            CGCXXABI::RAA_DirectInMemory);
9100   }
9101 
9102   // Ignore empty structs/unions.
9103   if (isEmptyRecord(getContext(), Ty, true))
9104     return ABIArgInfo::getIgnore();
9105 
9106   uint64_t Size = getContext().getTypeSize(Ty);
9107   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9108   bool MustUseStack = false;
9109   // Determine the number of GPRs needed to pass the current argument
9110   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9111   // register pairs, so may consume 3 registers.
9112   int NeededArgGPRs = 1;
9113   if (!IsFixed && NeededAlign == 2 * XLen)
9114     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9115   else if (Size > XLen && Size <= 2 * XLen)
9116     NeededArgGPRs = 2;
9117 
9118   if (NeededArgGPRs > ArgGPRsLeft) {
9119     MustUseStack = true;
9120     NeededArgGPRs = ArgGPRsLeft;
9121   }
9122 
9123   ArgGPRsLeft -= NeededArgGPRs;
9124 
9125   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9126     // Treat an enum type as its underlying type.
9127     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9128       Ty = EnumTy->getDecl()->getIntegerType();
9129 
9130     // All integral types are promoted to XLen width, unless passed on the
9131     // stack.
9132     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9133       return extendType(Ty);
9134     }
9135 
9136     return ABIArgInfo::getDirect();
9137   }
9138 
9139   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9140   // so coerce to integers.
9141   if (Size <= 2 * XLen) {
9142     unsigned Alignment = getContext().getTypeAlign(Ty);
9143 
9144     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9145     // required, and a 2-element XLen array if only XLen alignment is required.
9146     if (Size <= XLen) {
9147       return ABIArgInfo::getDirect(
9148           llvm::IntegerType::get(getVMContext(), XLen));
9149     } else if (Alignment == 2 * XLen) {
9150       return ABIArgInfo::getDirect(
9151           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9152     } else {
9153       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9154           llvm::IntegerType::get(getVMContext(), XLen), 2));
9155     }
9156   }
9157   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9158 }
9159 
9160 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9161   if (RetTy->isVoidType())
9162     return ABIArgInfo::getIgnore();
9163 
9164   int ArgGPRsLeft = 2;
9165 
9166   // The rules for return and argument types are the same, so defer to
9167   // classifyArgumentType.
9168   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
9169 }
9170 
9171 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9172                                 QualType Ty) const {
9173   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9174 
9175   // Empty records are ignored for parameter passing purposes.
9176   if (isEmptyRecord(getContext(), Ty, true)) {
9177     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9178     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9179     return Addr;
9180   }
9181 
9182   std::pair<CharUnits, CharUnits> SizeAndAlign =
9183       getContext().getTypeInfoInChars(Ty);
9184 
9185   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9186   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9187 
9188   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9189                           SlotSize, /*AllowHigherAlign=*/true);
9190 }
9191 
9192 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9193   int TySize = getContext().getTypeSize(Ty);
9194   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9195   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9196     return ABIArgInfo::getSignExtend(Ty);
9197   return ABIArgInfo::getExtend(Ty);
9198 }
9199 
9200 namespace {
9201 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9202 public:
9203   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9204       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
9205 
9206   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9207                            CodeGen::CodeGenModule &CGM) const override {
9208     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9209     if (!FD) return;
9210 
9211     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9212     if (!Attr)
9213       return;
9214 
9215     const char *Kind;
9216     switch (Attr->getInterrupt()) {
9217     case RISCVInterruptAttr::user: Kind = "user"; break;
9218     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9219     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9220     }
9221 
9222     auto *Fn = cast<llvm::Function>(GV);
9223 
9224     Fn->addFnAttr("interrupt", Kind);
9225   }
9226 };
9227 } // namespace
9228 
9229 //===----------------------------------------------------------------------===//
9230 // Driver code
9231 //===----------------------------------------------------------------------===//
9232 
9233 bool CodeGenModule::supportsCOMDAT() const {
9234   return getTriple().supportsCOMDAT();
9235 }
9236 
9237 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9238   if (TheTargetCodeGenInfo)
9239     return *TheTargetCodeGenInfo;
9240 
9241   // Helper to set the unique_ptr while still keeping the return value.
9242   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9243     this->TheTargetCodeGenInfo.reset(P);
9244     return *P;
9245   };
9246 
9247   const llvm::Triple &Triple = getTarget().getTriple();
9248   switch (Triple.getArch()) {
9249   default:
9250     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9251 
9252   case llvm::Triple::le32:
9253     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9254   case llvm::Triple::mips:
9255   case llvm::Triple::mipsel:
9256     if (Triple.getOS() == llvm::Triple::NaCl)
9257       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9258     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9259 
9260   case llvm::Triple::mips64:
9261   case llvm::Triple::mips64el:
9262     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9263 
9264   case llvm::Triple::avr:
9265     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9266 
9267   case llvm::Triple::aarch64:
9268   case llvm::Triple::aarch64_be: {
9269     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9270     if (getTarget().getABI() == "darwinpcs")
9271       Kind = AArch64ABIInfo::DarwinPCS;
9272     else if (Triple.isOSWindows())
9273       return SetCGInfo(
9274           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9275 
9276     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9277   }
9278 
9279   case llvm::Triple::wasm32:
9280   case llvm::Triple::wasm64:
9281     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9282 
9283   case llvm::Triple::arm:
9284   case llvm::Triple::armeb:
9285   case llvm::Triple::thumb:
9286   case llvm::Triple::thumbeb: {
9287     if (Triple.getOS() == llvm::Triple::Win32) {
9288       return SetCGInfo(
9289           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9290     }
9291 
9292     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9293     StringRef ABIStr = getTarget().getABI();
9294     if (ABIStr == "apcs-gnu")
9295       Kind = ARMABIInfo::APCS;
9296     else if (ABIStr == "aapcs16")
9297       Kind = ARMABIInfo::AAPCS16_VFP;
9298     else if (CodeGenOpts.FloatABI == "hard" ||
9299              (CodeGenOpts.FloatABI != "soft" &&
9300               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9301                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9302                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9303       Kind = ARMABIInfo::AAPCS_VFP;
9304 
9305     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9306   }
9307 
9308   case llvm::Triple::ppc:
9309     return SetCGInfo(
9310         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9311   case llvm::Triple::ppc64:
9312     if (Triple.isOSBinFormatELF()) {
9313       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9314       if (getTarget().getABI() == "elfv2")
9315         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9316       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9317       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9318 
9319       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9320                                                         IsSoftFloat));
9321     } else
9322       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9323   case llvm::Triple::ppc64le: {
9324     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9325     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9326     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9327       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9328     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9329     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9330 
9331     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9332                                                       IsSoftFloat));
9333   }
9334 
9335   case llvm::Triple::nvptx:
9336   case llvm::Triple::nvptx64:
9337     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9338 
9339   case llvm::Triple::msp430:
9340     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9341 
9342   case llvm::Triple::riscv32:
9343     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9344   case llvm::Triple::riscv64:
9345     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9346 
9347   case llvm::Triple::systemz: {
9348     bool HasVector = getTarget().getABI() == "vector";
9349     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9350   }
9351 
9352   case llvm::Triple::tce:
9353   case llvm::Triple::tcele:
9354     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9355 
9356   case llvm::Triple::x86: {
9357     bool IsDarwinVectorABI = Triple.isOSDarwin();
9358     bool RetSmallStructInRegABI =
9359         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9360     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9361 
9362     if (Triple.getOS() == llvm::Triple::Win32) {
9363       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9364           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9365           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9366     } else {
9367       return SetCGInfo(new X86_32TargetCodeGenInfo(
9368           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9369           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9370           CodeGenOpts.FloatABI == "soft"));
9371     }
9372   }
9373 
9374   case llvm::Triple::x86_64: {
9375     StringRef ABI = getTarget().getABI();
9376     X86AVXABILevel AVXLevel =
9377         (ABI == "avx512"
9378              ? X86AVXABILevel::AVX512
9379              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9380 
9381     switch (Triple.getOS()) {
9382     case llvm::Triple::Win32:
9383       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9384     case llvm::Triple::PS4:
9385       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
9386     default:
9387       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9388     }
9389   }
9390   case llvm::Triple::hexagon:
9391     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9392   case llvm::Triple::lanai:
9393     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9394   case llvm::Triple::r600:
9395     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9396   case llvm::Triple::amdgcn:
9397     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9398   case llvm::Triple::sparc:
9399     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9400   case llvm::Triple::sparcv9:
9401     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9402   case llvm::Triple::xcore:
9403     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9404   case llvm::Triple::arc:
9405     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9406   case llvm::Triple::spir:
9407   case llvm::Triple::spir64:
9408     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9409   }
9410 }
9411 
9412 /// Create an OpenCL kernel for an enqueued block.
9413 ///
9414 /// The kernel has the same function type as the block invoke function. Its
9415 /// name is the name of the block invoke function postfixed with "_kernel".
9416 /// It simply calls the block invoke function then returns.
9417 llvm::Function *
9418 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9419                                              llvm::Function *Invoke,
9420                                              llvm::Value *BlockLiteral) const {
9421   auto *InvokeFT = Invoke->getFunctionType();
9422   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9423   for (auto &P : InvokeFT->params())
9424     ArgTys.push_back(P);
9425   auto &C = CGF.getLLVMContext();
9426   std::string Name = Invoke->getName().str() + "_kernel";
9427   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9428   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9429                                    &CGF.CGM.getModule());
9430   auto IP = CGF.Builder.saveIP();
9431   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9432   auto &Builder = CGF.Builder;
9433   Builder.SetInsertPoint(BB);
9434   llvm::SmallVector<llvm::Value *, 2> Args;
9435   for (auto &A : F->args())
9436     Args.push_back(&A);
9437   Builder.CreateCall(Invoke, Args);
9438   Builder.CreateRetVoid();
9439   Builder.restoreIP(IP);
9440   return F;
9441 }
9442 
9443 /// Create an OpenCL kernel for an enqueued block.
9444 ///
9445 /// The type of the first argument (the block literal) is the struct type
9446 /// of the block literal instead of a pointer type. The first argument
9447 /// (block literal) is passed directly by value to the kernel. The kernel
9448 /// allocates the same type of struct on stack and stores the block literal
9449 /// to it and passes its pointer to the block invoke function. The kernel
9450 /// has "enqueued-block" function attribute and kernel argument metadata.
9451 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9452     CodeGenFunction &CGF, llvm::Function *Invoke,
9453     llvm::Value *BlockLiteral) const {
9454   auto &Builder = CGF.Builder;
9455   auto &C = CGF.getLLVMContext();
9456 
9457   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9458   auto *InvokeFT = Invoke->getFunctionType();
9459   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9460   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9461   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9462   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9463   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9464   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9465   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9466 
9467   ArgTys.push_back(BlockTy);
9468   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9469   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9470   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9471   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9472   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9473   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9474   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9475     ArgTys.push_back(InvokeFT->getParamType(I));
9476     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9477     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9478     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9479     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9480     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9481     ArgNames.push_back(
9482         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9483   }
9484   std::string Name = Invoke->getName().str() + "_kernel";
9485   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9486   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9487                                    &CGF.CGM.getModule());
9488   F->addFnAttr("enqueued-block");
9489   auto IP = CGF.Builder.saveIP();
9490   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9491   Builder.SetInsertPoint(BB);
9492   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9493   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9494   BlockPtr->setAlignment(BlockAlign);
9495   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9496   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9497   llvm::SmallVector<llvm::Value *, 2> Args;
9498   Args.push_back(Cast);
9499   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9500     Args.push_back(I);
9501   Builder.CreateCall(Invoke, Args);
9502   Builder.CreateRetVoid();
9503   Builder.restoreIP(IP);
9504 
9505   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9506   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9507   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9508   F->setMetadata("kernel_arg_base_type",
9509                  llvm::MDNode::get(C, ArgBaseTypeNames));
9510   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9511   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9512     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9513 
9514   return F;
9515 }
9516