1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
41     Builder.CreateStore(Value, Cell);
42   }
43 }
44 
45 static bool isAggregateTypeForABI(QualType T) {
46   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
47          T->isMemberFunctionPointerType();
48 }
49 
50 ABIInfo::~ABIInfo() {}
51 
52 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
53                                               CGCXXABI &CXXABI) {
54   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
55   if (!RD)
56     return CGCXXABI::RAA_Default;
57   return CXXABI.getRecordArgABI(RD);
58 }
59 
60 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
61                                               CGCXXABI &CXXABI) {
62   const RecordType *RT = T->getAs<RecordType>();
63   if (!RT)
64     return CGCXXABI::RAA_Default;
65   return getRecordArgABI(RT, CXXABI);
66 }
67 
68 /// Pass transparent unions as if they were the type of the first element. Sema
69 /// should ensure that all elements of the union have the same "machine type".
70 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
71   if (const RecordType *UT = Ty->getAsUnionType()) {
72     const RecordDecl *UD = UT->getDecl();
73     if (UD->hasAttr<TransparentUnionAttr>()) {
74       assert(!UD->field_empty() && "sema created an empty transparent union");
75       return UD->field_begin()->getType();
76     }
77   }
78   return Ty;
79 }
80 
81 CGCXXABI &ABIInfo::getCXXABI() const {
82   return CGT.getCXXABI();
83 }
84 
85 ASTContext &ABIInfo::getContext() const {
86   return CGT.getContext();
87 }
88 
89 llvm::LLVMContext &ABIInfo::getVMContext() const {
90   return CGT.getLLVMContext();
91 }
92 
93 const llvm::DataLayout &ABIInfo::getDataLayout() const {
94   return CGT.getDataLayout();
95 }
96 
97 const TargetInfo &ABIInfo::getTarget() const {
98   return CGT.getTarget();
99 }
100 
101 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
102   return false;
103 }
104 
105 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
106                                                 uint64_t Members) const {
107   return false;
108 }
109 
110 void ABIArgInfo::dump() const {
111   raw_ostream &OS = llvm::errs();
112   OS << "(ABIArgInfo Kind=";
113   switch (TheKind) {
114   case Direct:
115     OS << "Direct Type=";
116     if (llvm::Type *Ty = getCoerceToType())
117       Ty->print(OS);
118     else
119       OS << "null";
120     break;
121   case Extend:
122     OS << "Extend";
123     break;
124   case Ignore:
125     OS << "Ignore";
126     break;
127   case InAlloca:
128     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
129     break;
130   case Indirect:
131     OS << "Indirect Align=" << getIndirectAlign()
132        << " ByVal=" << getIndirectByVal()
133        << " Realign=" << getIndirectRealign();
134     break;
135   case Expand:
136     OS << "Expand";
137     break;
138   }
139   OS << ")\n";
140 }
141 
142 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
143 
144 // If someone can figure out a general rule for this, that would be great.
145 // It's probably just doomed to be platform-dependent, though.
146 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
147   // Verified for:
148   //   x86-64     FreeBSD, Linux, Darwin
149   //   x86-32     FreeBSD, Linux, Darwin
150   //   PowerPC    Linux, Darwin
151   //   ARM        Darwin (*not* EABI)
152   //   AArch64    Linux
153   return 32;
154 }
155 
156 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
157                                      const FunctionNoProtoType *fnType) const {
158   // The following conventions are known to require this to be false:
159   //   x86_stdcall
160   //   MIPS
161   // For everything else, we just prefer false unless we opt out.
162   return false;
163 }
164 
165 void
166 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
167                                              llvm::SmallString<24> &Opt) const {
168   // This assumes the user is passing a library name like "rt" instead of a
169   // filename like "librt.a/so", and that they don't care whether it's static or
170   // dynamic.
171   Opt = "-l";
172   Opt += Lib;
173 }
174 
175 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
176 
177 /// isEmptyField - Return true iff a the field is "empty", that is it
178 /// is an unnamed bit-field or an (array of) empty record(s).
179 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
180                          bool AllowArrays) {
181   if (FD->isUnnamedBitfield())
182     return true;
183 
184   QualType FT = FD->getType();
185 
186   // Constant arrays of empty records count as empty, strip them off.
187   // Constant arrays of zero length always count as empty.
188   if (AllowArrays)
189     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
190       if (AT->getSize() == 0)
191         return true;
192       FT = AT->getElementType();
193     }
194 
195   const RecordType *RT = FT->getAs<RecordType>();
196   if (!RT)
197     return false;
198 
199   // C++ record fields are never empty, at least in the Itanium ABI.
200   //
201   // FIXME: We should use a predicate for whether this behavior is true in the
202   // current ABI.
203   if (isa<CXXRecordDecl>(RT->getDecl()))
204     return false;
205 
206   return isEmptyRecord(Context, FT, AllowArrays);
207 }
208 
209 /// isEmptyRecord - Return true iff a structure contains only empty
210 /// fields. Note that a structure with a flexible array member is not
211 /// considered empty.
212 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
213   const RecordType *RT = T->getAs<RecordType>();
214   if (!RT)
215     return 0;
216   const RecordDecl *RD = RT->getDecl();
217   if (RD->hasFlexibleArrayMember())
218     return false;
219 
220   // If this is a C++ record, check the bases first.
221   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
222     for (const auto &I : CXXRD->bases())
223       if (!isEmptyRecord(Context, I.getType(), true))
224         return false;
225 
226   for (const auto *I : RD->fields())
227     if (!isEmptyField(Context, I, AllowArrays))
228       return false;
229   return true;
230 }
231 
232 /// isSingleElementStruct - Determine if a structure is a "single
233 /// element struct", i.e. it has exactly one non-empty field or
234 /// exactly one field which is itself a single element
235 /// struct. Structures with flexible array members are never
236 /// considered single element structs.
237 ///
238 /// \return The field declaration for the single non-empty field, if
239 /// it exists.
240 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
241   const RecordType *RT = T->getAs<RecordType>();
242   if (!RT)
243     return nullptr;
244 
245   const RecordDecl *RD = RT->getDecl();
246   if (RD->hasFlexibleArrayMember())
247     return nullptr;
248 
249   const Type *Found = nullptr;
250 
251   // If this is a C++ record, check the bases first.
252   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
253     for (const auto &I : CXXRD->bases()) {
254       // Ignore empty records.
255       if (isEmptyRecord(Context, I.getType(), true))
256         continue;
257 
258       // If we already found an element then this isn't a single-element struct.
259       if (Found)
260         return nullptr;
261 
262       // If this is non-empty and not a single element struct, the composite
263       // cannot be a single element struct.
264       Found = isSingleElementStruct(I.getType(), Context);
265       if (!Found)
266         return nullptr;
267     }
268   }
269 
270   // Check for single element.
271   for (const auto *FD : RD->fields()) {
272     QualType FT = FD->getType();
273 
274     // Ignore empty fields.
275     if (isEmptyField(Context, FD, true))
276       continue;
277 
278     // If we already found an element then this isn't a single-element
279     // struct.
280     if (Found)
281       return nullptr;
282 
283     // Treat single element arrays as the element.
284     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
285       if (AT->getSize().getZExtValue() != 1)
286         break;
287       FT = AT->getElementType();
288     }
289 
290     if (!isAggregateTypeForABI(FT)) {
291       Found = FT.getTypePtr();
292     } else {
293       Found = isSingleElementStruct(FT, Context);
294       if (!Found)
295         return nullptr;
296     }
297   }
298 
299   // We don't consider a struct a single-element struct if it has
300   // padding beyond the element type.
301   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
302     return nullptr;
303 
304   return Found;
305 }
306 
307 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
308   // Treat complex types as the element type.
309   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
310     Ty = CTy->getElementType();
311 
312   // Check for a type which we know has a simple scalar argument-passing
313   // convention without any padding.  (We're specifically looking for 32
314   // and 64-bit integer and integer-equivalents, float, and double.)
315   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
316       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
317     return false;
318 
319   uint64_t Size = Context.getTypeSize(Ty);
320   return Size == 32 || Size == 64;
321 }
322 
323 /// canExpandIndirectArgument - Test whether an argument type which is to be
324 /// passed indirectly (on the stack) would have the equivalent layout if it was
325 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
326 /// inhibiting optimizations.
327 ///
328 // FIXME: This predicate is missing many cases, currently it just follows
329 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
330 // should probably make this smarter, or better yet make the LLVM backend
331 // capable of handling it.
332 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
333   // We can only expand structure types.
334   const RecordType *RT = Ty->getAs<RecordType>();
335   if (!RT)
336     return false;
337 
338   // We can only expand (C) structures.
339   //
340   // FIXME: This needs to be generalized to handle classes as well.
341   const RecordDecl *RD = RT->getDecl();
342   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
343     return false;
344 
345   uint64_t Size = 0;
346 
347   for (const auto *FD : RD->fields()) {
348     if (!is32Or64BitBasicType(FD->getType(), Context))
349       return false;
350 
351     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
352     // how to expand them yet, and the predicate for telling if a bitfield still
353     // counts as "basic" is more complicated than what we were doing previously.
354     if (FD->isBitField())
355       return false;
356 
357     Size += Context.getTypeSize(FD->getType());
358   }
359 
360   // Make sure there are not any holes in the struct.
361   if (Size != Context.getTypeSize(Ty))
362     return false;
363 
364   return true;
365 }
366 
367 namespace {
368 /// DefaultABIInfo - The default implementation for ABI specific
369 /// details. This implementation provides information which results in
370 /// self-consistent and sensible LLVM IR generation, but does not
371 /// conform to any particular ABI.
372 class DefaultABIInfo : public ABIInfo {
373 public:
374   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
375 
376   ABIArgInfo classifyReturnType(QualType RetTy) const;
377   ABIArgInfo classifyArgumentType(QualType RetTy) const;
378 
379   void computeInfo(CGFunctionInfo &FI) const override {
380     if (!getCXXABI().classifyReturnType(FI))
381       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
382     for (auto &I : FI.arguments())
383       I.info = classifyArgumentType(I.type);
384   }
385 
386   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
387                          CodeGenFunction &CGF) const override;
388 };
389 
390 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
391 public:
392   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
393     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
394 };
395 
396 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
397                                        CodeGenFunction &CGF) const {
398   return nullptr;
399 }
400 
401 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
402   if (isAggregateTypeForABI(Ty))
403     return ABIArgInfo::getIndirect(0);
404 
405   // Treat an enum type as its underlying type.
406   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
407     Ty = EnumTy->getDecl()->getIntegerType();
408 
409   return (Ty->isPromotableIntegerType() ?
410           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
411 }
412 
413 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
414   if (RetTy->isVoidType())
415     return ABIArgInfo::getIgnore();
416 
417   if (isAggregateTypeForABI(RetTy))
418     return ABIArgInfo::getIndirect(0);
419 
420   // Treat an enum type as its underlying type.
421   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
422     RetTy = EnumTy->getDecl()->getIntegerType();
423 
424   return (RetTy->isPromotableIntegerType() ?
425           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
426 }
427 
428 //===----------------------------------------------------------------------===//
429 // le32/PNaCl bitcode ABI Implementation
430 //
431 // This is a simplified version of the x86_32 ABI.  Arguments and return values
432 // are always passed on the stack.
433 //===----------------------------------------------------------------------===//
434 
435 class PNaClABIInfo : public ABIInfo {
436  public:
437   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
438 
439   ABIArgInfo classifyReturnType(QualType RetTy) const;
440   ABIArgInfo classifyArgumentType(QualType RetTy) const;
441 
442   void computeInfo(CGFunctionInfo &FI) const override;
443   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
444                          CodeGenFunction &CGF) const override;
445 };
446 
447 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
448  public:
449   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
450     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
451 };
452 
453 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
454   if (!getCXXABI().classifyReturnType(FI))
455     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456 
457   for (auto &I : FI.arguments())
458     I.info = classifyArgumentType(I.type);
459 }
460 
461 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
462                                        CodeGenFunction &CGF) const {
463   return nullptr;
464 }
465 
466 /// \brief Classify argument of given type \p Ty.
467 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
468   if (isAggregateTypeForABI(Ty)) {
469     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
470       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
471     return ABIArgInfo::getIndirect(0);
472   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
473     // Treat an enum type as its underlying type.
474     Ty = EnumTy->getDecl()->getIntegerType();
475   } else if (Ty->isFloatingType()) {
476     // Floating-point types don't go inreg.
477     return ABIArgInfo::getDirect();
478   }
479 
480   return (Ty->isPromotableIntegerType() ?
481           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
482 }
483 
484 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
485   if (RetTy->isVoidType())
486     return ABIArgInfo::getIgnore();
487 
488   // In the PNaCl ABI we always return records/structures on the stack.
489   if (isAggregateTypeForABI(RetTy))
490     return ABIArgInfo::getIndirect(0);
491 
492   // Treat an enum type as its underlying type.
493   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
494     RetTy = EnumTy->getDecl()->getIntegerType();
495 
496   return (RetTy->isPromotableIntegerType() ?
497           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
498 }
499 
500 /// IsX86_MMXType - Return true if this is an MMX type.
501 bool IsX86_MMXType(llvm::Type *IRType) {
502   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
503   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
504     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
505     IRType->getScalarSizeInBits() != 64;
506 }
507 
508 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
509                                           StringRef Constraint,
510                                           llvm::Type* Ty) {
511   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
512     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
513       // Invalid MMX constraint
514       return nullptr;
515     }
516 
517     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
518   }
519 
520   // No operation needed
521   return Ty;
522 }
523 
524 /// Returns true if this type can be passed in SSE registers with the
525 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
526 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
527   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
528     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
529       return true;
530   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
531     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
532     // registers specially.
533     unsigned VecSize = Context.getTypeSize(VT);
534     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
535       return true;
536   }
537   return false;
538 }
539 
540 /// Returns true if this aggregate is small enough to be passed in SSE registers
541 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
542 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
543   return NumMembers <= 4;
544 }
545 
546 //===----------------------------------------------------------------------===//
547 // X86-32 ABI Implementation
548 //===----------------------------------------------------------------------===//
549 
550 /// \brief Similar to llvm::CCState, but for Clang.
551 struct CCState {
552   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
553 
554   unsigned CC;
555   unsigned FreeRegs;
556   unsigned FreeSSERegs;
557 };
558 
559 /// X86_32ABIInfo - The X86-32 ABI information.
560 class X86_32ABIInfo : public ABIInfo {
561   enum Class {
562     Integer,
563     Float
564   };
565 
566   static const unsigned MinABIStackAlignInBytes = 4;
567 
568   bool IsDarwinVectorABI;
569   bool IsSmallStructInRegABI;
570   bool IsWin32StructABI;
571   unsigned DefaultNumRegisterParameters;
572 
573   static bool isRegisterSize(unsigned Size) {
574     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
575   }
576 
577   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
578     // FIXME: Assumes vectorcall is in use.
579     return isX86VectorTypeForVectorCall(getContext(), Ty);
580   }
581 
582   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
583                                          uint64_t NumMembers) const override {
584     // FIXME: Assumes vectorcall is in use.
585     return isX86VectorCallAggregateSmallEnough(NumMembers);
586   }
587 
588   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
589 
590   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
591   /// such that the argument will be passed in memory.
592   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
593 
594   ABIArgInfo getIndirectReturnResult(CCState &State) const;
595 
596   /// \brief Return the alignment to use for the given type on the stack.
597   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
598 
599   Class classify(QualType Ty) const;
600   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
601   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
602   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
603 
604   /// \brief Rewrite the function info so that all memory arguments use
605   /// inalloca.
606   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
607 
608   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
609                            unsigned &StackOffset, ABIArgInfo &Info,
610                            QualType Type) const;
611 
612 public:
613 
614   void computeInfo(CGFunctionInfo &FI) const override;
615   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
616                          CodeGenFunction &CGF) const override;
617 
618   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
619                 unsigned r)
620     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
621       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
622 };
623 
624 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
625 public:
626   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
627       bool d, bool p, bool w, unsigned r)
628     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
629 
630   static bool isStructReturnInRegABI(
631       const llvm::Triple &Triple, const CodeGenOptions &Opts);
632 
633   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
634                            CodeGen::CodeGenModule &CGM) const override;
635 
636   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
637     // Darwin uses different dwarf register numbers for EH.
638     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
639     return 4;
640   }
641 
642   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
643                                llvm::Value *Address) const override;
644 
645   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
646                                   StringRef Constraint,
647                                   llvm::Type* Ty) const override {
648     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
649   }
650 
651   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
652                                 std::string &Constraints,
653                                 std::vector<llvm::Type *> &ResultRegTypes,
654                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
655                                 std::vector<LValue> &ResultRegDests,
656                                 std::string &AsmString,
657                                 unsigned NumOutputs) const override;
658 
659   llvm::Constant *
660   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
661     unsigned Sig = (0xeb << 0) |  // jmp rel8
662                    (0x06 << 8) |  //           .+0x08
663                    ('F' << 16) |
664                    ('T' << 24);
665     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
666   }
667 
668   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
669     return true;
670   }
671 };
672 
673 }
674 
675 /// Rewrite input constraint references after adding some output constraints.
676 /// In the case where there is one output and one input and we add one output,
677 /// we need to replace all operand references greater than or equal to 1:
678 ///     mov $0, $1
679 ///     mov eax, $1
680 /// The result will be:
681 ///     mov $0, $2
682 ///     mov eax, $2
683 static void rewriteInputConstraintReferences(unsigned FirstIn,
684                                              unsigned NumNewOuts,
685                                              std::string &AsmString) {
686   std::string Buf;
687   llvm::raw_string_ostream OS(Buf);
688   size_t Pos = 0;
689   while (Pos < AsmString.size()) {
690     size_t DollarStart = AsmString.find('$', Pos);
691     if (DollarStart == std::string::npos)
692       DollarStart = AsmString.size();
693     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
694     if (DollarEnd == std::string::npos)
695       DollarEnd = AsmString.size();
696     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
697     Pos = DollarEnd;
698     size_t NumDollars = DollarEnd - DollarStart;
699     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
700       // We have an operand reference.
701       size_t DigitStart = Pos;
702       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
703       if (DigitEnd == std::string::npos)
704         DigitEnd = AsmString.size();
705       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
706       unsigned OperandIndex;
707       if (!OperandStr.getAsInteger(10, OperandIndex)) {
708         if (OperandIndex >= FirstIn)
709           OperandIndex += NumNewOuts;
710         OS << OperandIndex;
711       } else {
712         OS << OperandStr;
713       }
714       Pos = DigitEnd;
715     }
716   }
717   AsmString = std::move(OS.str());
718 }
719 
720 /// Add output constraints for EAX:EDX because they are return registers.
721 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
722     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
723     std::vector<llvm::Type *> &ResultRegTypes,
724     std::vector<llvm::Type *> &ResultTruncRegTypes,
725     std::vector<LValue> &ResultRegDests, std::string &AsmString,
726     unsigned NumOutputs) const {
727   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
728 
729   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
730   // larger.
731   if (!Constraints.empty())
732     Constraints += ',';
733   if (RetWidth <= 32) {
734     Constraints += "={eax}";
735     ResultRegTypes.push_back(CGF.Int32Ty);
736   } else {
737     // Use the 'A' constraint for EAX:EDX.
738     Constraints += "=A";
739     ResultRegTypes.push_back(CGF.Int64Ty);
740   }
741 
742   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
743   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
744   ResultTruncRegTypes.push_back(CoerceTy);
745 
746   // Coerce the integer by bitcasting the return slot pointer.
747   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
748                                                   CoerceTy->getPointerTo()));
749   ResultRegDests.push_back(ReturnSlot);
750 
751   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
752 }
753 
754 /// shouldReturnTypeInRegister - Determine if the given type should be
755 /// passed in a register (for the Darwin ABI).
756 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
757                                                ASTContext &Context) const {
758   uint64_t Size = Context.getTypeSize(Ty);
759 
760   // Type must be register sized.
761   if (!isRegisterSize(Size))
762     return false;
763 
764   if (Ty->isVectorType()) {
765     // 64- and 128- bit vectors inside structures are not returned in
766     // registers.
767     if (Size == 64 || Size == 128)
768       return false;
769 
770     return true;
771   }
772 
773   // If this is a builtin, pointer, enum, complex type, member pointer, or
774   // member function pointer it is ok.
775   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
776       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
777       Ty->isBlockPointerType() || Ty->isMemberPointerType())
778     return true;
779 
780   // Arrays are treated like records.
781   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
782     return shouldReturnTypeInRegister(AT->getElementType(), Context);
783 
784   // Otherwise, it must be a record type.
785   const RecordType *RT = Ty->getAs<RecordType>();
786   if (!RT) return false;
787 
788   // FIXME: Traverse bases here too.
789 
790   // Structure types are passed in register if all fields would be
791   // passed in a register.
792   for (const auto *FD : RT->getDecl()->fields()) {
793     // Empty fields are ignored.
794     if (isEmptyField(Context, FD, true))
795       continue;
796 
797     // Check fields recursively.
798     if (!shouldReturnTypeInRegister(FD->getType(), Context))
799       return false;
800   }
801   return true;
802 }
803 
804 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
805   // If the return value is indirect, then the hidden argument is consuming one
806   // integer register.
807   if (State.FreeRegs) {
808     --State.FreeRegs;
809     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
810   }
811   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
812 }
813 
814 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
815   if (RetTy->isVoidType())
816     return ABIArgInfo::getIgnore();
817 
818   const Type *Base = nullptr;
819   uint64_t NumElts = 0;
820   if (State.CC == llvm::CallingConv::X86_VectorCall &&
821       isHomogeneousAggregate(RetTy, Base, NumElts)) {
822     // The LLVM struct type for such an aggregate should lower properly.
823     return ABIArgInfo::getDirect();
824   }
825 
826   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
827     // On Darwin, some vectors are returned in registers.
828     if (IsDarwinVectorABI) {
829       uint64_t Size = getContext().getTypeSize(RetTy);
830 
831       // 128-bit vectors are a special case; they are returned in
832       // registers and we need to make sure to pick a type the LLVM
833       // backend will like.
834       if (Size == 128)
835         return ABIArgInfo::getDirect(llvm::VectorType::get(
836                   llvm::Type::getInt64Ty(getVMContext()), 2));
837 
838       // Always return in register if it fits in a general purpose
839       // register, or if it is 64 bits and has a single element.
840       if ((Size == 8 || Size == 16 || Size == 32) ||
841           (Size == 64 && VT->getNumElements() == 1))
842         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
843                                                             Size));
844 
845       return getIndirectReturnResult(State);
846     }
847 
848     return ABIArgInfo::getDirect();
849   }
850 
851   if (isAggregateTypeForABI(RetTy)) {
852     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
853       // Structures with flexible arrays are always indirect.
854       if (RT->getDecl()->hasFlexibleArrayMember())
855         return getIndirectReturnResult(State);
856     }
857 
858     // If specified, structs and unions are always indirect.
859     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
860       return getIndirectReturnResult(State);
861 
862     // Small structures which are register sized are generally returned
863     // in a register.
864     if (shouldReturnTypeInRegister(RetTy, getContext())) {
865       uint64_t Size = getContext().getTypeSize(RetTy);
866 
867       // As a special-case, if the struct is a "single-element" struct, and
868       // the field is of type "float" or "double", return it in a
869       // floating-point register. (MSVC does not apply this special case.)
870       // We apply a similar transformation for pointer types to improve the
871       // quality of the generated IR.
872       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
873         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
874             || SeltTy->hasPointerRepresentation())
875           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
876 
877       // FIXME: We should be able to narrow this integer in cases with dead
878       // padding.
879       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
880     }
881 
882     return getIndirectReturnResult(State);
883   }
884 
885   // Treat an enum type as its underlying type.
886   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
887     RetTy = EnumTy->getDecl()->getIntegerType();
888 
889   return (RetTy->isPromotableIntegerType() ?
890           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
891 }
892 
893 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
894   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
895 }
896 
897 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
898   const RecordType *RT = Ty->getAs<RecordType>();
899   if (!RT)
900     return 0;
901   const RecordDecl *RD = RT->getDecl();
902 
903   // If this is a C++ record, check the bases first.
904   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
905     for (const auto &I : CXXRD->bases())
906       if (!isRecordWithSSEVectorType(Context, I.getType()))
907         return false;
908 
909   for (const auto *i : RD->fields()) {
910     QualType FT = i->getType();
911 
912     if (isSSEVectorType(Context, FT))
913       return true;
914 
915     if (isRecordWithSSEVectorType(Context, FT))
916       return true;
917   }
918 
919   return false;
920 }
921 
922 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
923                                                  unsigned Align) const {
924   // Otherwise, if the alignment is less than or equal to the minimum ABI
925   // alignment, just use the default; the backend will handle this.
926   if (Align <= MinABIStackAlignInBytes)
927     return 0; // Use default alignment.
928 
929   // On non-Darwin, the stack type alignment is always 4.
930   if (!IsDarwinVectorABI) {
931     // Set explicit alignment, since we may need to realign the top.
932     return MinABIStackAlignInBytes;
933   }
934 
935   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
936   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
937                       isRecordWithSSEVectorType(getContext(), Ty)))
938     return 16;
939 
940   return MinABIStackAlignInBytes;
941 }
942 
943 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
944                                             CCState &State) const {
945   if (!ByVal) {
946     if (State.FreeRegs) {
947       --State.FreeRegs; // Non-byval indirects just use one pointer.
948       return ABIArgInfo::getIndirectInReg(0, false);
949     }
950     return ABIArgInfo::getIndirect(0, false);
951   }
952 
953   // Compute the byval alignment.
954   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
955   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
956   if (StackAlign == 0)
957     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
958 
959   // If the stack alignment is less than the type alignment, realign the
960   // argument.
961   bool Realign = TypeAlign > StackAlign;
962   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
963 }
964 
965 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
966   const Type *T = isSingleElementStruct(Ty, getContext());
967   if (!T)
968     T = Ty.getTypePtr();
969 
970   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
971     BuiltinType::Kind K = BT->getKind();
972     if (K == BuiltinType::Float || K == BuiltinType::Double)
973       return Float;
974   }
975   return Integer;
976 }
977 
978 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
979                                    bool &NeedsPadding) const {
980   NeedsPadding = false;
981   Class C = classify(Ty);
982   if (C == Float)
983     return false;
984 
985   unsigned Size = getContext().getTypeSize(Ty);
986   unsigned SizeInRegs = (Size + 31) / 32;
987 
988   if (SizeInRegs == 0)
989     return false;
990 
991   if (SizeInRegs > State.FreeRegs) {
992     State.FreeRegs = 0;
993     return false;
994   }
995 
996   State.FreeRegs -= SizeInRegs;
997 
998   if (State.CC == llvm::CallingConv::X86_FastCall ||
999       State.CC == llvm::CallingConv::X86_VectorCall) {
1000     if (Size > 32)
1001       return false;
1002 
1003     if (Ty->isIntegralOrEnumerationType())
1004       return true;
1005 
1006     if (Ty->isPointerType())
1007       return true;
1008 
1009     if (Ty->isReferenceType())
1010       return true;
1011 
1012     if (State.FreeRegs)
1013       NeedsPadding = true;
1014 
1015     return false;
1016   }
1017 
1018   return true;
1019 }
1020 
1021 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1022                                                CCState &State) const {
1023   // FIXME: Set alignment on indirect arguments.
1024 
1025   Ty = useFirstFieldIfTransparentUnion(Ty);
1026 
1027   // Check with the C++ ABI first.
1028   const RecordType *RT = Ty->getAs<RecordType>();
1029   if (RT) {
1030     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1031     if (RAA == CGCXXABI::RAA_Indirect) {
1032       return getIndirectResult(Ty, false, State);
1033     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1034       // The field index doesn't matter, we'll fix it up later.
1035       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1036     }
1037   }
1038 
1039   // vectorcall adds the concept of a homogenous vector aggregate, similar
1040   // to other targets.
1041   const Type *Base = nullptr;
1042   uint64_t NumElts = 0;
1043   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1044       isHomogeneousAggregate(Ty, Base, NumElts)) {
1045     if (State.FreeSSERegs >= NumElts) {
1046       State.FreeSSERegs -= NumElts;
1047       if (Ty->isBuiltinType() || Ty->isVectorType())
1048         return ABIArgInfo::getDirect();
1049       return ABIArgInfo::getExpand();
1050     }
1051     return getIndirectResult(Ty, /*ByVal=*/false, State);
1052   }
1053 
1054   if (isAggregateTypeForABI(Ty)) {
1055     if (RT) {
1056       // Structs are always byval on win32, regardless of what they contain.
1057       if (IsWin32StructABI)
1058         return getIndirectResult(Ty, true, State);
1059 
1060       // Structures with flexible arrays are always indirect.
1061       if (RT->getDecl()->hasFlexibleArrayMember())
1062         return getIndirectResult(Ty, true, State);
1063     }
1064 
1065     // Ignore empty structs/unions.
1066     if (isEmptyRecord(getContext(), Ty, true))
1067       return ABIArgInfo::getIgnore();
1068 
1069     llvm::LLVMContext &LLVMContext = getVMContext();
1070     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1071     bool NeedsPadding;
1072     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1073       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1074       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1075       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1076       return ABIArgInfo::getDirectInReg(Result);
1077     }
1078     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1079 
1080     // Expand small (<= 128-bit) record types when we know that the stack layout
1081     // of those arguments will match the struct. This is important because the
1082     // LLVM backend isn't smart enough to remove byval, which inhibits many
1083     // optimizations.
1084     if (getContext().getTypeSize(Ty) <= 4*32 &&
1085         canExpandIndirectArgument(Ty, getContext()))
1086       return ABIArgInfo::getExpandWithPadding(
1087           State.CC == llvm::CallingConv::X86_FastCall ||
1088               State.CC == llvm::CallingConv::X86_VectorCall,
1089           PaddingType);
1090 
1091     return getIndirectResult(Ty, true, State);
1092   }
1093 
1094   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1095     // On Darwin, some vectors are passed in memory, we handle this by passing
1096     // it as an i8/i16/i32/i64.
1097     if (IsDarwinVectorABI) {
1098       uint64_t Size = getContext().getTypeSize(Ty);
1099       if ((Size == 8 || Size == 16 || Size == 32) ||
1100           (Size == 64 && VT->getNumElements() == 1))
1101         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1102                                                             Size));
1103     }
1104 
1105     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1106       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1107 
1108     return ABIArgInfo::getDirect();
1109   }
1110 
1111 
1112   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1113     Ty = EnumTy->getDecl()->getIntegerType();
1114 
1115   bool NeedsPadding;
1116   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1117 
1118   if (Ty->isPromotableIntegerType()) {
1119     if (InReg)
1120       return ABIArgInfo::getExtendInReg();
1121     return ABIArgInfo::getExtend();
1122   }
1123   if (InReg)
1124     return ABIArgInfo::getDirectInReg();
1125   return ABIArgInfo::getDirect();
1126 }
1127 
1128 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1129   CCState State(FI.getCallingConvention());
1130   if (State.CC == llvm::CallingConv::X86_FastCall)
1131     State.FreeRegs = 2;
1132   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1133     State.FreeRegs = 2;
1134     State.FreeSSERegs = 6;
1135   } else if (FI.getHasRegParm())
1136     State.FreeRegs = FI.getRegParm();
1137   else
1138     State.FreeRegs = DefaultNumRegisterParameters;
1139 
1140   if (!getCXXABI().classifyReturnType(FI)) {
1141     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1142   } else if (FI.getReturnInfo().isIndirect()) {
1143     // The C++ ABI is not aware of register usage, so we have to check if the
1144     // return value was sret and put it in a register ourselves if appropriate.
1145     if (State.FreeRegs) {
1146       --State.FreeRegs;  // The sret parameter consumes a register.
1147       FI.getReturnInfo().setInReg(true);
1148     }
1149   }
1150 
1151   // The chain argument effectively gives us another free register.
1152   if (FI.isChainCall())
1153     ++State.FreeRegs;
1154 
1155   bool UsedInAlloca = false;
1156   for (auto &I : FI.arguments()) {
1157     I.info = classifyArgumentType(I.type, State);
1158     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1159   }
1160 
1161   // If we needed to use inalloca for any argument, do a second pass and rewrite
1162   // all the memory arguments to use inalloca.
1163   if (UsedInAlloca)
1164     rewriteWithInAlloca(FI);
1165 }
1166 
1167 void
1168 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1169                                    unsigned &StackOffset,
1170                                    ABIArgInfo &Info, QualType Type) const {
1171   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1172   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1173   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1174   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1175 
1176   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
1177   // byte aligned.
1178   if (StackOffset % 4U) {
1179     unsigned OldOffset = StackOffset;
1180     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1181     unsigned NumBytes = StackOffset - OldOffset;
1182     assert(NumBytes);
1183     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1184     Ty = llvm::ArrayType::get(Ty, NumBytes);
1185     FrameFields.push_back(Ty);
1186   }
1187 }
1188 
1189 static bool isArgInAlloca(const ABIArgInfo &Info) {
1190   // Leave ignored and inreg arguments alone.
1191   switch (Info.getKind()) {
1192   case ABIArgInfo::InAlloca:
1193     return true;
1194   case ABIArgInfo::Indirect:
1195     assert(Info.getIndirectByVal());
1196     return true;
1197   case ABIArgInfo::Ignore:
1198     return false;
1199   case ABIArgInfo::Direct:
1200   case ABIArgInfo::Extend:
1201   case ABIArgInfo::Expand:
1202     if (Info.getInReg())
1203       return false;
1204     return true;
1205   }
1206   llvm_unreachable("invalid enum");
1207 }
1208 
1209 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1210   assert(IsWin32StructABI && "inalloca only supported on win32");
1211 
1212   // Build a packed struct type for all of the arguments in memory.
1213   SmallVector<llvm::Type *, 6> FrameFields;
1214 
1215   unsigned StackOffset = 0;
1216   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1217 
1218   // Put 'this' into the struct before 'sret', if necessary.
1219   bool IsThisCall =
1220       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1221   ABIArgInfo &Ret = FI.getReturnInfo();
1222   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1223       isArgInAlloca(I->info)) {
1224     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1225     ++I;
1226   }
1227 
1228   // Put the sret parameter into the inalloca struct if it's in memory.
1229   if (Ret.isIndirect() && !Ret.getInReg()) {
1230     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1231     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1232     // On Windows, the hidden sret parameter is always returned in eax.
1233     Ret.setInAllocaSRet(IsWin32StructABI);
1234   }
1235 
1236   // Skip the 'this' parameter in ecx.
1237   if (IsThisCall)
1238     ++I;
1239 
1240   // Put arguments passed in memory into the struct.
1241   for (; I != E; ++I) {
1242     if (isArgInAlloca(I->info))
1243       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1244   }
1245 
1246   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1247                                         /*isPacked=*/true));
1248 }
1249 
1250 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1251                                       CodeGenFunction &CGF) const {
1252   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1253 
1254   CGBuilderTy &Builder = CGF.Builder;
1255   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1256                                                        "ap");
1257   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1258 
1259   // Compute if the address needs to be aligned
1260   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1261   Align = getTypeStackAlignInBytes(Ty, Align);
1262   Align = std::max(Align, 4U);
1263   if (Align > 4) {
1264     // addr = (addr + align - 1) & -align;
1265     llvm::Value *Offset =
1266       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1267     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1268     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1269                                                     CGF.Int32Ty);
1270     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1271     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1272                                       Addr->getType(),
1273                                       "ap.cur.aligned");
1274   }
1275 
1276   llvm::Type *PTy =
1277     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1278   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1279 
1280   uint64_t Offset =
1281     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1282   llvm::Value *NextAddr =
1283     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1284                       "ap.next");
1285   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1286 
1287   return AddrTyped;
1288 }
1289 
1290 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1291     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1292   assert(Triple.getArch() == llvm::Triple::x86);
1293 
1294   switch (Opts.getStructReturnConvention()) {
1295   case CodeGenOptions::SRCK_Default:
1296     break;
1297   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1298     return false;
1299   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1300     return true;
1301   }
1302 
1303   if (Triple.isOSDarwin())
1304     return true;
1305 
1306   switch (Triple.getOS()) {
1307   case llvm::Triple::DragonFly:
1308   case llvm::Triple::FreeBSD:
1309   case llvm::Triple::OpenBSD:
1310   case llvm::Triple::Bitrig:
1311   case llvm::Triple::Win32:
1312     return true;
1313   default:
1314     return false;
1315   }
1316 }
1317 
1318 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1319                                                   llvm::GlobalValue *GV,
1320                                             CodeGen::CodeGenModule &CGM) const {
1321   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1322     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1323       // Get the LLVM function.
1324       llvm::Function *Fn = cast<llvm::Function>(GV);
1325 
1326       // Now add the 'alignstack' attribute with a value of 16.
1327       llvm::AttrBuilder B;
1328       B.addStackAlignmentAttr(16);
1329       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1330                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1331                                               llvm::AttributeSet::FunctionIndex,
1332                                               B));
1333     }
1334   }
1335 }
1336 
1337 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1338                                                CodeGen::CodeGenFunction &CGF,
1339                                                llvm::Value *Address) const {
1340   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1341 
1342   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1343 
1344   // 0-7 are the eight integer registers;  the order is different
1345   //   on Darwin (for EH), but the range is the same.
1346   // 8 is %eip.
1347   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1348 
1349   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1350     // 12-16 are st(0..4).  Not sure why we stop at 4.
1351     // These have size 16, which is sizeof(long double) on
1352     // platforms with 8-byte alignment for that type.
1353     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1354     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1355 
1356   } else {
1357     // 9 is %eflags, which doesn't get a size on Darwin for some
1358     // reason.
1359     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1360 
1361     // 11-16 are st(0..5).  Not sure why we stop at 5.
1362     // These have size 12, which is sizeof(long double) on
1363     // platforms with 4-byte alignment for that type.
1364     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1365     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1366   }
1367 
1368   return false;
1369 }
1370 
1371 //===----------------------------------------------------------------------===//
1372 // X86-64 ABI Implementation
1373 //===----------------------------------------------------------------------===//
1374 
1375 
1376 namespace {
1377 /// X86_64ABIInfo - The X86_64 ABI information.
1378 class X86_64ABIInfo : public ABIInfo {
1379   enum Class {
1380     Integer = 0,
1381     SSE,
1382     SSEUp,
1383     X87,
1384     X87Up,
1385     ComplexX87,
1386     NoClass,
1387     Memory
1388   };
1389 
1390   /// merge - Implement the X86_64 ABI merging algorithm.
1391   ///
1392   /// Merge an accumulating classification \arg Accum with a field
1393   /// classification \arg Field.
1394   ///
1395   /// \param Accum - The accumulating classification. This should
1396   /// always be either NoClass or the result of a previous merge
1397   /// call. In addition, this should never be Memory (the caller
1398   /// should just return Memory for the aggregate).
1399   static Class merge(Class Accum, Class Field);
1400 
1401   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1402   ///
1403   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1404   /// final MEMORY or SSE classes when necessary.
1405   ///
1406   /// \param AggregateSize - The size of the current aggregate in
1407   /// the classification process.
1408   ///
1409   /// \param Lo - The classification for the parts of the type
1410   /// residing in the low word of the containing object.
1411   ///
1412   /// \param Hi - The classification for the parts of the type
1413   /// residing in the higher words of the containing object.
1414   ///
1415   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1416 
1417   /// classify - Determine the x86_64 register classes in which the
1418   /// given type T should be passed.
1419   ///
1420   /// \param Lo - The classification for the parts of the type
1421   /// residing in the low word of the containing object.
1422   ///
1423   /// \param Hi - The classification for the parts of the type
1424   /// residing in the high word of the containing object.
1425   ///
1426   /// \param OffsetBase - The bit offset of this type in the
1427   /// containing object.  Some parameters are classified different
1428   /// depending on whether they straddle an eightbyte boundary.
1429   ///
1430   /// \param isNamedArg - Whether the argument in question is a "named"
1431   /// argument, as used in AMD64-ABI 3.5.7.
1432   ///
1433   /// If a word is unused its result will be NoClass; if a type should
1434   /// be passed in Memory then at least the classification of \arg Lo
1435   /// will be Memory.
1436   ///
1437   /// The \arg Lo class will be NoClass iff the argument is ignored.
1438   ///
1439   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1440   /// also be ComplexX87.
1441   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1442                 bool isNamedArg) const;
1443 
1444   llvm::Type *GetByteVectorType(QualType Ty) const;
1445   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1446                                  unsigned IROffset, QualType SourceTy,
1447                                  unsigned SourceOffset) const;
1448   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1449                                      unsigned IROffset, QualType SourceTy,
1450                                      unsigned SourceOffset) const;
1451 
1452   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1453   /// such that the argument will be returned in memory.
1454   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1455 
1456   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1457   /// such that the argument will be passed in memory.
1458   ///
1459   /// \param freeIntRegs - The number of free integer registers remaining
1460   /// available.
1461   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1462 
1463   ABIArgInfo classifyReturnType(QualType RetTy) const;
1464 
1465   ABIArgInfo classifyArgumentType(QualType Ty,
1466                                   unsigned freeIntRegs,
1467                                   unsigned &neededInt,
1468                                   unsigned &neededSSE,
1469                                   bool isNamedArg) const;
1470 
1471   bool IsIllegalVectorType(QualType Ty) const;
1472 
1473   /// The 0.98 ABI revision clarified a lot of ambiguities,
1474   /// unfortunately in ways that were not always consistent with
1475   /// certain previous compilers.  In particular, platforms which
1476   /// required strict binary compatibility with older versions of GCC
1477   /// may need to exempt themselves.
1478   bool honorsRevision0_98() const {
1479     return !getTarget().getTriple().isOSDarwin();
1480   }
1481 
1482   bool HasAVX;
1483   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1484   // 64-bit hardware.
1485   bool Has64BitPointers;
1486 
1487 public:
1488   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1489       ABIInfo(CGT), HasAVX(hasavx),
1490       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1491   }
1492 
1493   bool isPassedUsingAVXType(QualType type) const {
1494     unsigned neededInt, neededSSE;
1495     // The freeIntRegs argument doesn't matter here.
1496     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1497                                            /*isNamedArg*/true);
1498     if (info.isDirect()) {
1499       llvm::Type *ty = info.getCoerceToType();
1500       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1501         return (vectorTy->getBitWidth() > 128);
1502     }
1503     return false;
1504   }
1505 
1506   void computeInfo(CGFunctionInfo &FI) const override;
1507 
1508   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1509                          CodeGenFunction &CGF) const override;
1510 
1511   bool has64BitPointers() const {
1512     return Has64BitPointers;
1513   }
1514 };
1515 
1516 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1517 class WinX86_64ABIInfo : public ABIInfo {
1518 
1519   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1520                       bool IsReturnType) const;
1521 
1522 public:
1523   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1524 
1525   void computeInfo(CGFunctionInfo &FI) const override;
1526 
1527   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1528                          CodeGenFunction &CGF) const override;
1529 
1530   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1531     // FIXME: Assumes vectorcall is in use.
1532     return isX86VectorTypeForVectorCall(getContext(), Ty);
1533   }
1534 
1535   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1536                                          uint64_t NumMembers) const override {
1537     // FIXME: Assumes vectorcall is in use.
1538     return isX86VectorCallAggregateSmallEnough(NumMembers);
1539   }
1540 };
1541 
1542 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1543   bool HasAVX;
1544 public:
1545   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1546       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {}
1547 
1548   const X86_64ABIInfo &getABIInfo() const {
1549     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1550   }
1551 
1552   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1553     return 7;
1554   }
1555 
1556   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1557                                llvm::Value *Address) const override {
1558     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1559 
1560     // 0-15 are the 16 integer registers.
1561     // 16 is %rip.
1562     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1563     return false;
1564   }
1565 
1566   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1567                                   StringRef Constraint,
1568                                   llvm::Type* Ty) const override {
1569     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1570   }
1571 
1572   bool isNoProtoCallVariadic(const CallArgList &args,
1573                              const FunctionNoProtoType *fnType) const override {
1574     // The default CC on x86-64 sets %al to the number of SSA
1575     // registers used, and GCC sets this when calling an unprototyped
1576     // function, so we override the default behavior.  However, don't do
1577     // that when AVX types are involved: the ABI explicitly states it is
1578     // undefined, and it doesn't work in practice because of how the ABI
1579     // defines varargs anyway.
1580     if (fnType->getCallConv() == CC_C) {
1581       bool HasAVXType = false;
1582       for (CallArgList::const_iterator
1583              it = args.begin(), ie = args.end(); it != ie; ++it) {
1584         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1585           HasAVXType = true;
1586           break;
1587         }
1588       }
1589 
1590       if (!HasAVXType)
1591         return true;
1592     }
1593 
1594     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1595   }
1596 
1597   llvm::Constant *
1598   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1599     unsigned Sig;
1600     if (getABIInfo().has64BitPointers())
1601       Sig = (0xeb << 0) |  // jmp rel8
1602             (0x0a << 8) |  //           .+0x0c
1603             ('F' << 16) |
1604             ('T' << 24);
1605     else
1606       Sig = (0xeb << 0) |  // jmp rel8
1607             (0x06 << 8) |  //           .+0x08
1608             ('F' << 16) |
1609             ('T' << 24);
1610     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1611   }
1612 
1613   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1614     return HasAVX ? 32 : 16;
1615   }
1616 
1617   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
1618     return true;
1619   }
1620 };
1621 
1622 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1623 public:
1624   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1625     : X86_64TargetCodeGenInfo(CGT, HasAVX) {}
1626 
1627   void getDependentLibraryOption(llvm::StringRef Lib,
1628                                  llvm::SmallString<24> &Opt) const {
1629     Opt = "\01";
1630     Opt += Lib;
1631   }
1632 };
1633 
1634 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1635   // If the argument does not end in .lib, automatically add the suffix.
1636   // If the argument contains a space, enclose it in quotes.
1637   // This matches the behavior of MSVC.
1638   bool Quote = (Lib.find(" ") != StringRef::npos);
1639   std::string ArgStr = Quote ? "\"" : "";
1640   ArgStr += Lib;
1641   if (!Lib.endswith_lower(".lib"))
1642     ArgStr += ".lib";
1643   ArgStr += Quote ? "\"" : "";
1644   return ArgStr;
1645 }
1646 
1647 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1648 public:
1649   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1650         bool d, bool p, bool w, unsigned RegParms)
1651     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1652 
1653   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1654                            CodeGen::CodeGenModule &CGM) const override;
1655 
1656   void getDependentLibraryOption(llvm::StringRef Lib,
1657                                  llvm::SmallString<24> &Opt) const override {
1658     Opt = "/DEFAULTLIB:";
1659     Opt += qualifyWindowsLibrary(Lib);
1660   }
1661 
1662   void getDetectMismatchOption(llvm::StringRef Name,
1663                                llvm::StringRef Value,
1664                                llvm::SmallString<32> &Opt) const override {
1665     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1666   }
1667 };
1668 
1669 static void addStackProbeSizeTargetAttribute(const Decl *D,
1670                                              llvm::GlobalValue *GV,
1671                                              CodeGen::CodeGenModule &CGM) {
1672   if (isa<FunctionDecl>(D)) {
1673     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1674       llvm::Function *Fn = cast<llvm::Function>(GV);
1675 
1676       Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1677     }
1678   }
1679 }
1680 
1681 void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1682                                                      llvm::GlobalValue *GV,
1683                                             CodeGen::CodeGenModule &CGM) const {
1684   X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1685 
1686   addStackProbeSizeTargetAttribute(D, GV, CGM);
1687 }
1688 
1689 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1690   bool HasAVX;
1691 public:
1692   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1693     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {}
1694 
1695   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1696                            CodeGen::CodeGenModule &CGM) const override;
1697 
1698   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1699     return 7;
1700   }
1701 
1702   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1703                                llvm::Value *Address) const override {
1704     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1705 
1706     // 0-15 are the 16 integer registers.
1707     // 16 is %rip.
1708     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1709     return false;
1710   }
1711 
1712   void getDependentLibraryOption(llvm::StringRef Lib,
1713                                  llvm::SmallString<24> &Opt) const override {
1714     Opt = "/DEFAULTLIB:";
1715     Opt += qualifyWindowsLibrary(Lib);
1716   }
1717 
1718   void getDetectMismatchOption(llvm::StringRef Name,
1719                                llvm::StringRef Value,
1720                                llvm::SmallString<32> &Opt) const override {
1721     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1722   }
1723 
1724   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1725     return HasAVX ? 32 : 16;
1726   }
1727 
1728   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
1729     return true;
1730   }
1731 };
1732 
1733 void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1734                                                      llvm::GlobalValue *GV,
1735                                             CodeGen::CodeGenModule &CGM) const {
1736   TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1737 
1738   addStackProbeSizeTargetAttribute(D, GV, CGM);
1739 }
1740 }
1741 
1742 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1743                               Class &Hi) const {
1744   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1745   //
1746   // (a) If one of the classes is Memory, the whole argument is passed in
1747   //     memory.
1748   //
1749   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1750   //     memory.
1751   //
1752   // (c) If the size of the aggregate exceeds two eightbytes and the first
1753   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1754   //     argument is passed in memory. NOTE: This is necessary to keep the
1755   //     ABI working for processors that don't support the __m256 type.
1756   //
1757   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1758   //
1759   // Some of these are enforced by the merging logic.  Others can arise
1760   // only with unions; for example:
1761   //   union { _Complex double; unsigned; }
1762   //
1763   // Note that clauses (b) and (c) were added in 0.98.
1764   //
1765   if (Hi == Memory)
1766     Lo = Memory;
1767   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1768     Lo = Memory;
1769   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1770     Lo = Memory;
1771   if (Hi == SSEUp && Lo != SSE)
1772     Hi = SSE;
1773 }
1774 
1775 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1776   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1777   // classified recursively so that always two fields are
1778   // considered. The resulting class is calculated according to
1779   // the classes of the fields in the eightbyte:
1780   //
1781   // (a) If both classes are equal, this is the resulting class.
1782   //
1783   // (b) If one of the classes is NO_CLASS, the resulting class is
1784   // the other class.
1785   //
1786   // (c) If one of the classes is MEMORY, the result is the MEMORY
1787   // class.
1788   //
1789   // (d) If one of the classes is INTEGER, the result is the
1790   // INTEGER.
1791   //
1792   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1793   // MEMORY is used as class.
1794   //
1795   // (f) Otherwise class SSE is used.
1796 
1797   // Accum should never be memory (we should have returned) or
1798   // ComplexX87 (because this cannot be passed in a structure).
1799   assert((Accum != Memory && Accum != ComplexX87) &&
1800          "Invalid accumulated classification during merge.");
1801   if (Accum == Field || Field == NoClass)
1802     return Accum;
1803   if (Field == Memory)
1804     return Memory;
1805   if (Accum == NoClass)
1806     return Field;
1807   if (Accum == Integer || Field == Integer)
1808     return Integer;
1809   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1810       Accum == X87 || Accum == X87Up)
1811     return Memory;
1812   return SSE;
1813 }
1814 
1815 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1816                              Class &Lo, Class &Hi, bool isNamedArg) const {
1817   // FIXME: This code can be simplified by introducing a simple value class for
1818   // Class pairs with appropriate constructor methods for the various
1819   // situations.
1820 
1821   // FIXME: Some of the split computations are wrong; unaligned vectors
1822   // shouldn't be passed in registers for example, so there is no chance they
1823   // can straddle an eightbyte. Verify & simplify.
1824 
1825   Lo = Hi = NoClass;
1826 
1827   Class &Current = OffsetBase < 64 ? Lo : Hi;
1828   Current = Memory;
1829 
1830   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1831     BuiltinType::Kind k = BT->getKind();
1832 
1833     if (k == BuiltinType::Void) {
1834       Current = NoClass;
1835     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1836       Lo = Integer;
1837       Hi = Integer;
1838     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1839       Current = Integer;
1840     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1841                (k == BuiltinType::LongDouble &&
1842                 getTarget().getTriple().isOSNaCl())) {
1843       Current = SSE;
1844     } else if (k == BuiltinType::LongDouble) {
1845       Lo = X87;
1846       Hi = X87Up;
1847     }
1848     // FIXME: _Decimal32 and _Decimal64 are SSE.
1849     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1850     return;
1851   }
1852 
1853   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1854     // Classify the underlying integer type.
1855     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1856     return;
1857   }
1858 
1859   if (Ty->hasPointerRepresentation()) {
1860     Current = Integer;
1861     return;
1862   }
1863 
1864   if (Ty->isMemberPointerType()) {
1865     if (Ty->isMemberFunctionPointerType()) {
1866       if (Has64BitPointers) {
1867         // If Has64BitPointers, this is an {i64, i64}, so classify both
1868         // Lo and Hi now.
1869         Lo = Hi = Integer;
1870       } else {
1871         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1872         // straddles an eightbyte boundary, Hi should be classified as well.
1873         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1874         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1875         if (EB_FuncPtr != EB_ThisAdj) {
1876           Lo = Hi = Integer;
1877         } else {
1878           Current = Integer;
1879         }
1880       }
1881     } else {
1882       Current = Integer;
1883     }
1884     return;
1885   }
1886 
1887   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1888     uint64_t Size = getContext().getTypeSize(VT);
1889     if (Size == 32) {
1890       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1891       // float> as integer.
1892       Current = Integer;
1893 
1894       // If this type crosses an eightbyte boundary, it should be
1895       // split.
1896       uint64_t EB_Real = (OffsetBase) / 64;
1897       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1898       if (EB_Real != EB_Imag)
1899         Hi = Lo;
1900     } else if (Size == 64) {
1901       // gcc passes <1 x double> in memory. :(
1902       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1903         return;
1904 
1905       // gcc passes <1 x long long> as INTEGER.
1906       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1907           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1908           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1909           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1910         Current = Integer;
1911       else
1912         Current = SSE;
1913 
1914       // If this type crosses an eightbyte boundary, it should be
1915       // split.
1916       if (OffsetBase && OffsetBase != 64)
1917         Hi = Lo;
1918     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1919       // Arguments of 256-bits are split into four eightbyte chunks. The
1920       // least significant one belongs to class SSE and all the others to class
1921       // SSEUP. The original Lo and Hi design considers that types can't be
1922       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1923       // This design isn't correct for 256-bits, but since there're no cases
1924       // where the upper parts would need to be inspected, avoid adding
1925       // complexity and just consider Hi to match the 64-256 part.
1926       //
1927       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1928       // registers if they are "named", i.e. not part of the "..." of a
1929       // variadic function.
1930       Lo = SSE;
1931       Hi = SSEUp;
1932     }
1933     return;
1934   }
1935 
1936   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1937     QualType ET = getContext().getCanonicalType(CT->getElementType());
1938 
1939     uint64_t Size = getContext().getTypeSize(Ty);
1940     if (ET->isIntegralOrEnumerationType()) {
1941       if (Size <= 64)
1942         Current = Integer;
1943       else if (Size <= 128)
1944         Lo = Hi = Integer;
1945     } else if (ET == getContext().FloatTy)
1946       Current = SSE;
1947     else if (ET == getContext().DoubleTy ||
1948              (ET == getContext().LongDoubleTy &&
1949               getTarget().getTriple().isOSNaCl()))
1950       Lo = Hi = SSE;
1951     else if (ET == getContext().LongDoubleTy)
1952       Current = ComplexX87;
1953 
1954     // If this complex type crosses an eightbyte boundary then it
1955     // should be split.
1956     uint64_t EB_Real = (OffsetBase) / 64;
1957     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1958     if (Hi == NoClass && EB_Real != EB_Imag)
1959       Hi = Lo;
1960 
1961     return;
1962   }
1963 
1964   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1965     // Arrays are treated like structures.
1966 
1967     uint64_t Size = getContext().getTypeSize(Ty);
1968 
1969     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1970     // than four eightbytes, ..., it has class MEMORY.
1971     if (Size > 256)
1972       return;
1973 
1974     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1975     // fields, it has class MEMORY.
1976     //
1977     // Only need to check alignment of array base.
1978     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1979       return;
1980 
1981     // Otherwise implement simplified merge. We could be smarter about
1982     // this, but it isn't worth it and would be harder to verify.
1983     Current = NoClass;
1984     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1985     uint64_t ArraySize = AT->getSize().getZExtValue();
1986 
1987     // The only case a 256-bit wide vector could be used is when the array
1988     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1989     // to work for sizes wider than 128, early check and fallback to memory.
1990     if (Size > 128 && EltSize != 256)
1991       return;
1992 
1993     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1994       Class FieldLo, FieldHi;
1995       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1996       Lo = merge(Lo, FieldLo);
1997       Hi = merge(Hi, FieldHi);
1998       if (Lo == Memory || Hi == Memory)
1999         break;
2000     }
2001 
2002     postMerge(Size, Lo, Hi);
2003     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2004     return;
2005   }
2006 
2007   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2008     uint64_t Size = getContext().getTypeSize(Ty);
2009 
2010     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2011     // than four eightbytes, ..., it has class MEMORY.
2012     if (Size > 256)
2013       return;
2014 
2015     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2016     // copy constructor or a non-trivial destructor, it is passed by invisible
2017     // reference.
2018     if (getRecordArgABI(RT, getCXXABI()))
2019       return;
2020 
2021     const RecordDecl *RD = RT->getDecl();
2022 
2023     // Assume variable sized types are passed in memory.
2024     if (RD->hasFlexibleArrayMember())
2025       return;
2026 
2027     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2028 
2029     // Reset Lo class, this will be recomputed.
2030     Current = NoClass;
2031 
2032     // If this is a C++ record, classify the bases first.
2033     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2034       for (const auto &I : CXXRD->bases()) {
2035         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2036                "Unexpected base class!");
2037         const CXXRecordDecl *Base =
2038           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2039 
2040         // Classify this field.
2041         //
2042         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2043         // single eightbyte, each is classified separately. Each eightbyte gets
2044         // initialized to class NO_CLASS.
2045         Class FieldLo, FieldHi;
2046         uint64_t Offset =
2047           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2048         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2049         Lo = merge(Lo, FieldLo);
2050         Hi = merge(Hi, FieldHi);
2051         if (Lo == Memory || Hi == Memory)
2052           break;
2053       }
2054     }
2055 
2056     // Classify the fields one at a time, merging the results.
2057     unsigned idx = 0;
2058     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2059            i != e; ++i, ++idx) {
2060       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2061       bool BitField = i->isBitField();
2062 
2063       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2064       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2065       //
2066       // The only case a 256-bit wide vector could be used is when the struct
2067       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2068       // to work for sizes wider than 128, early check and fallback to memory.
2069       //
2070       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2071         Lo = Memory;
2072         return;
2073       }
2074       // Note, skip this test for bit-fields, see below.
2075       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2076         Lo = Memory;
2077         return;
2078       }
2079 
2080       // Classify this field.
2081       //
2082       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2083       // exceeds a single eightbyte, each is classified
2084       // separately. Each eightbyte gets initialized to class
2085       // NO_CLASS.
2086       Class FieldLo, FieldHi;
2087 
2088       // Bit-fields require special handling, they do not force the
2089       // structure to be passed in memory even if unaligned, and
2090       // therefore they can straddle an eightbyte.
2091       if (BitField) {
2092         // Ignore padding bit-fields.
2093         if (i->isUnnamedBitfield())
2094           continue;
2095 
2096         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2097         uint64_t Size = i->getBitWidthValue(getContext());
2098 
2099         uint64_t EB_Lo = Offset / 64;
2100         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2101 
2102         if (EB_Lo) {
2103           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2104           FieldLo = NoClass;
2105           FieldHi = Integer;
2106         } else {
2107           FieldLo = Integer;
2108           FieldHi = EB_Hi ? Integer : NoClass;
2109         }
2110       } else
2111         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2112       Lo = merge(Lo, FieldLo);
2113       Hi = merge(Hi, FieldHi);
2114       if (Lo == Memory || Hi == Memory)
2115         break;
2116     }
2117 
2118     postMerge(Size, Lo, Hi);
2119   }
2120 }
2121 
2122 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2123   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2124   // place naturally.
2125   if (!isAggregateTypeForABI(Ty)) {
2126     // Treat an enum type as its underlying type.
2127     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2128       Ty = EnumTy->getDecl()->getIntegerType();
2129 
2130     return (Ty->isPromotableIntegerType() ?
2131             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2132   }
2133 
2134   return ABIArgInfo::getIndirect(0);
2135 }
2136 
2137 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2138   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2139     uint64_t Size = getContext().getTypeSize(VecTy);
2140     unsigned LargestVector = HasAVX ? 256 : 128;
2141     if (Size <= 64 || Size > LargestVector)
2142       return true;
2143   }
2144 
2145   return false;
2146 }
2147 
2148 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2149                                             unsigned freeIntRegs) const {
2150   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2151   // place naturally.
2152   //
2153   // This assumption is optimistic, as there could be free registers available
2154   // when we need to pass this argument in memory, and LLVM could try to pass
2155   // the argument in the free register. This does not seem to happen currently,
2156   // but this code would be much safer if we could mark the argument with
2157   // 'onstack'. See PR12193.
2158   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2159     // Treat an enum type as its underlying type.
2160     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2161       Ty = EnumTy->getDecl()->getIntegerType();
2162 
2163     return (Ty->isPromotableIntegerType() ?
2164             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2165   }
2166 
2167   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2168     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2169 
2170   // Compute the byval alignment. We specify the alignment of the byval in all
2171   // cases so that the mid-level optimizer knows the alignment of the byval.
2172   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2173 
2174   // Attempt to avoid passing indirect results using byval when possible. This
2175   // is important for good codegen.
2176   //
2177   // We do this by coercing the value into a scalar type which the backend can
2178   // handle naturally (i.e., without using byval).
2179   //
2180   // For simplicity, we currently only do this when we have exhausted all of the
2181   // free integer registers. Doing this when there are free integer registers
2182   // would require more care, as we would have to ensure that the coerced value
2183   // did not claim the unused register. That would require either reording the
2184   // arguments to the function (so that any subsequent inreg values came first),
2185   // or only doing this optimization when there were no following arguments that
2186   // might be inreg.
2187   //
2188   // We currently expect it to be rare (particularly in well written code) for
2189   // arguments to be passed on the stack when there are still free integer
2190   // registers available (this would typically imply large structs being passed
2191   // by value), so this seems like a fair tradeoff for now.
2192   //
2193   // We can revisit this if the backend grows support for 'onstack' parameter
2194   // attributes. See PR12193.
2195   if (freeIntRegs == 0) {
2196     uint64_t Size = getContext().getTypeSize(Ty);
2197 
2198     // If this type fits in an eightbyte, coerce it into the matching integral
2199     // type, which will end up on the stack (with alignment 8).
2200     if (Align == 8 && Size <= 64)
2201       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2202                                                           Size));
2203   }
2204 
2205   return ABIArgInfo::getIndirect(Align);
2206 }
2207 
2208 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2209 /// register. Pick an LLVM IR type that will be passed as a vector register.
2210 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2211   // Wrapper structs/arrays that only contain vectors are passed just like
2212   // vectors; strip them off if present.
2213   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2214     Ty = QualType(InnerTy, 0);
2215 
2216   llvm::Type *IRType = CGT.ConvertType(Ty);
2217   assert(isa<llvm::VectorType>(IRType) &&
2218          "Trying to return a non-vector type in a vector register!");
2219   return IRType;
2220 }
2221 
2222 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2223 /// is known to either be off the end of the specified type or being in
2224 /// alignment padding.  The user type specified is known to be at most 128 bits
2225 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2226 /// classification that put one of the two halves in the INTEGER class.
2227 ///
2228 /// It is conservatively correct to return false.
2229 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2230                                   unsigned EndBit, ASTContext &Context) {
2231   // If the bytes being queried are off the end of the type, there is no user
2232   // data hiding here.  This handles analysis of builtins, vectors and other
2233   // types that don't contain interesting padding.
2234   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2235   if (TySize <= StartBit)
2236     return true;
2237 
2238   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2239     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2240     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2241 
2242     // Check each element to see if the element overlaps with the queried range.
2243     for (unsigned i = 0; i != NumElts; ++i) {
2244       // If the element is after the span we care about, then we're done..
2245       unsigned EltOffset = i*EltSize;
2246       if (EltOffset >= EndBit) break;
2247 
2248       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2249       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2250                                  EndBit-EltOffset, Context))
2251         return false;
2252     }
2253     // If it overlaps no elements, then it is safe to process as padding.
2254     return true;
2255   }
2256 
2257   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2258     const RecordDecl *RD = RT->getDecl();
2259     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2260 
2261     // If this is a C++ record, check the bases first.
2262     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2263       for (const auto &I : CXXRD->bases()) {
2264         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2265                "Unexpected base class!");
2266         const CXXRecordDecl *Base =
2267           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2268 
2269         // If the base is after the span we care about, ignore it.
2270         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2271         if (BaseOffset >= EndBit) continue;
2272 
2273         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2274         if (!BitsContainNoUserData(I.getType(), BaseStart,
2275                                    EndBit-BaseOffset, Context))
2276           return false;
2277       }
2278     }
2279 
2280     // Verify that no field has data that overlaps the region of interest.  Yes
2281     // this could be sped up a lot by being smarter about queried fields,
2282     // however we're only looking at structs up to 16 bytes, so we don't care
2283     // much.
2284     unsigned idx = 0;
2285     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2286          i != e; ++i, ++idx) {
2287       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2288 
2289       // If we found a field after the region we care about, then we're done.
2290       if (FieldOffset >= EndBit) break;
2291 
2292       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2293       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2294                                  Context))
2295         return false;
2296     }
2297 
2298     // If nothing in this record overlapped the area of interest, then we're
2299     // clean.
2300     return true;
2301   }
2302 
2303   return false;
2304 }
2305 
2306 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2307 /// float member at the specified offset.  For example, {int,{float}} has a
2308 /// float at offset 4.  It is conservatively correct for this routine to return
2309 /// false.
2310 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2311                                   const llvm::DataLayout &TD) {
2312   // Base case if we find a float.
2313   if (IROffset == 0 && IRType->isFloatTy())
2314     return true;
2315 
2316   // If this is a struct, recurse into the field at the specified offset.
2317   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2318     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2319     unsigned Elt = SL->getElementContainingOffset(IROffset);
2320     IROffset -= SL->getElementOffset(Elt);
2321     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2322   }
2323 
2324   // If this is an array, recurse into the field at the specified offset.
2325   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2326     llvm::Type *EltTy = ATy->getElementType();
2327     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2328     IROffset -= IROffset/EltSize*EltSize;
2329     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2330   }
2331 
2332   return false;
2333 }
2334 
2335 
2336 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2337 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2338 llvm::Type *X86_64ABIInfo::
2339 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2340                    QualType SourceTy, unsigned SourceOffset) const {
2341   // The only three choices we have are either double, <2 x float>, or float. We
2342   // pass as float if the last 4 bytes is just padding.  This happens for
2343   // structs that contain 3 floats.
2344   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2345                             SourceOffset*8+64, getContext()))
2346     return llvm::Type::getFloatTy(getVMContext());
2347 
2348   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2349   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2350   // case.
2351   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2352       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2353     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2354 
2355   return llvm::Type::getDoubleTy(getVMContext());
2356 }
2357 
2358 
2359 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2360 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2361 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2362 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2363 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2364 /// etc).
2365 ///
2366 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2367 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2368 /// the 8-byte value references.  PrefType may be null.
2369 ///
2370 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2371 /// an offset into this that we're processing (which is always either 0 or 8).
2372 ///
2373 llvm::Type *X86_64ABIInfo::
2374 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2375                        QualType SourceTy, unsigned SourceOffset) const {
2376   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2377   // returning an 8-byte unit starting with it.  See if we can safely use it.
2378   if (IROffset == 0) {
2379     // Pointers and int64's always fill the 8-byte unit.
2380     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2381         IRType->isIntegerTy(64))
2382       return IRType;
2383 
2384     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2385     // goodness in the source type is just tail padding.  This is allowed to
2386     // kick in for struct {double,int} on the int, but not on
2387     // struct{double,int,int} because we wouldn't return the second int.  We
2388     // have to do this analysis on the source type because we can't depend on
2389     // unions being lowered a specific way etc.
2390     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2391         IRType->isIntegerTy(32) ||
2392         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2393       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2394           cast<llvm::IntegerType>(IRType)->getBitWidth();
2395 
2396       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2397                                 SourceOffset*8+64, getContext()))
2398         return IRType;
2399     }
2400   }
2401 
2402   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2403     // If this is a struct, recurse into the field at the specified offset.
2404     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2405     if (IROffset < SL->getSizeInBytes()) {
2406       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2407       IROffset -= SL->getElementOffset(FieldIdx);
2408 
2409       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2410                                     SourceTy, SourceOffset);
2411     }
2412   }
2413 
2414   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2415     llvm::Type *EltTy = ATy->getElementType();
2416     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2417     unsigned EltOffset = IROffset/EltSize*EltSize;
2418     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2419                                   SourceOffset);
2420   }
2421 
2422   // Okay, we don't have any better idea of what to pass, so we pass this in an
2423   // integer register that isn't too big to fit the rest of the struct.
2424   unsigned TySizeInBytes =
2425     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2426 
2427   assert(TySizeInBytes != SourceOffset && "Empty field?");
2428 
2429   // It is always safe to classify this as an integer type up to i64 that
2430   // isn't larger than the structure.
2431   return llvm::IntegerType::get(getVMContext(),
2432                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2433 }
2434 
2435 
2436 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2437 /// be used as elements of a two register pair to pass or return, return a
2438 /// first class aggregate to represent them.  For example, if the low part of
2439 /// a by-value argument should be passed as i32* and the high part as float,
2440 /// return {i32*, float}.
2441 static llvm::Type *
2442 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2443                            const llvm::DataLayout &TD) {
2444   // In order to correctly satisfy the ABI, we need to the high part to start
2445   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2446   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2447   // the second element at offset 8.  Check for this:
2448   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2449   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2450   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2451   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2452 
2453   // To handle this, we have to increase the size of the low part so that the
2454   // second element will start at an 8 byte offset.  We can't increase the size
2455   // of the second element because it might make us access off the end of the
2456   // struct.
2457   if (HiStart != 8) {
2458     // There are only two sorts of types the ABI generation code can produce for
2459     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2460     // Promote these to a larger type.
2461     if (Lo->isFloatTy())
2462       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2463     else {
2464       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2465       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2466     }
2467   }
2468 
2469   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2470 
2471 
2472   // Verify that the second element is at an 8-byte offset.
2473   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2474          "Invalid x86-64 argument pair!");
2475   return Result;
2476 }
2477 
2478 ABIArgInfo X86_64ABIInfo::
2479 classifyReturnType(QualType RetTy) const {
2480   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2481   // classification algorithm.
2482   X86_64ABIInfo::Class Lo, Hi;
2483   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2484 
2485   // Check some invariants.
2486   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2487   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2488 
2489   llvm::Type *ResType = nullptr;
2490   switch (Lo) {
2491   case NoClass:
2492     if (Hi == NoClass)
2493       return ABIArgInfo::getIgnore();
2494     // If the low part is just padding, it takes no register, leave ResType
2495     // null.
2496     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2497            "Unknown missing lo part");
2498     break;
2499 
2500   case SSEUp:
2501   case X87Up:
2502     llvm_unreachable("Invalid classification for lo word.");
2503 
2504     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2505     // hidden argument.
2506   case Memory:
2507     return getIndirectReturnResult(RetTy);
2508 
2509     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2510     // available register of the sequence %rax, %rdx is used.
2511   case Integer:
2512     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2513 
2514     // If we have a sign or zero extended integer, make sure to return Extend
2515     // so that the parameter gets the right LLVM IR attributes.
2516     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2517       // Treat an enum type as its underlying type.
2518       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2519         RetTy = EnumTy->getDecl()->getIntegerType();
2520 
2521       if (RetTy->isIntegralOrEnumerationType() &&
2522           RetTy->isPromotableIntegerType())
2523         return ABIArgInfo::getExtend();
2524     }
2525     break;
2526 
2527     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2528     // available SSE register of the sequence %xmm0, %xmm1 is used.
2529   case SSE:
2530     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2531     break;
2532 
2533     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2534     // returned on the X87 stack in %st0 as 80-bit x87 number.
2535   case X87:
2536     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2537     break;
2538 
2539     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2540     // part of the value is returned in %st0 and the imaginary part in
2541     // %st1.
2542   case ComplexX87:
2543     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2544     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2545                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2546                                     nullptr);
2547     break;
2548   }
2549 
2550   llvm::Type *HighPart = nullptr;
2551   switch (Hi) {
2552     // Memory was handled previously and X87 should
2553     // never occur as a hi class.
2554   case Memory:
2555   case X87:
2556     llvm_unreachable("Invalid classification for hi word.");
2557 
2558   case ComplexX87: // Previously handled.
2559   case NoClass:
2560     break;
2561 
2562   case Integer:
2563     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2564     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2565       return ABIArgInfo::getDirect(HighPart, 8);
2566     break;
2567   case SSE:
2568     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2569     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2570       return ABIArgInfo::getDirect(HighPart, 8);
2571     break;
2572 
2573     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2574     // is passed in the next available eightbyte chunk if the last used
2575     // vector register.
2576     //
2577     // SSEUP should always be preceded by SSE, just widen.
2578   case SSEUp:
2579     assert(Lo == SSE && "Unexpected SSEUp classification.");
2580     ResType = GetByteVectorType(RetTy);
2581     break;
2582 
2583     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2584     // returned together with the previous X87 value in %st0.
2585   case X87Up:
2586     // If X87Up is preceded by X87, we don't need to do
2587     // anything. However, in some cases with unions it may not be
2588     // preceded by X87. In such situations we follow gcc and pass the
2589     // extra bits in an SSE reg.
2590     if (Lo != X87) {
2591       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2592       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2593         return ABIArgInfo::getDirect(HighPart, 8);
2594     }
2595     break;
2596   }
2597 
2598   // If a high part was specified, merge it together with the low part.  It is
2599   // known to pass in the high eightbyte of the result.  We do this by forming a
2600   // first class struct aggregate with the high and low part: {low, high}
2601   if (HighPart)
2602     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2603 
2604   return ABIArgInfo::getDirect(ResType);
2605 }
2606 
2607 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2608   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2609   bool isNamedArg)
2610   const
2611 {
2612   Ty = useFirstFieldIfTransparentUnion(Ty);
2613 
2614   X86_64ABIInfo::Class Lo, Hi;
2615   classify(Ty, 0, Lo, Hi, isNamedArg);
2616 
2617   // Check some invariants.
2618   // FIXME: Enforce these by construction.
2619   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2620   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2621 
2622   neededInt = 0;
2623   neededSSE = 0;
2624   llvm::Type *ResType = nullptr;
2625   switch (Lo) {
2626   case NoClass:
2627     if (Hi == NoClass)
2628       return ABIArgInfo::getIgnore();
2629     // If the low part is just padding, it takes no register, leave ResType
2630     // null.
2631     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2632            "Unknown missing lo part");
2633     break;
2634 
2635     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2636     // on the stack.
2637   case Memory:
2638 
2639     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2640     // COMPLEX_X87, it is passed in memory.
2641   case X87:
2642   case ComplexX87:
2643     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2644       ++neededInt;
2645     return getIndirectResult(Ty, freeIntRegs);
2646 
2647   case SSEUp:
2648   case X87Up:
2649     llvm_unreachable("Invalid classification for lo word.");
2650 
2651     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2652     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2653     // and %r9 is used.
2654   case Integer:
2655     ++neededInt;
2656 
2657     // Pick an 8-byte type based on the preferred type.
2658     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2659 
2660     // If we have a sign or zero extended integer, make sure to return Extend
2661     // so that the parameter gets the right LLVM IR attributes.
2662     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2663       // Treat an enum type as its underlying type.
2664       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2665         Ty = EnumTy->getDecl()->getIntegerType();
2666 
2667       if (Ty->isIntegralOrEnumerationType() &&
2668           Ty->isPromotableIntegerType())
2669         return ABIArgInfo::getExtend();
2670     }
2671 
2672     break;
2673 
2674     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2675     // available SSE register is used, the registers are taken in the
2676     // order from %xmm0 to %xmm7.
2677   case SSE: {
2678     llvm::Type *IRType = CGT.ConvertType(Ty);
2679     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2680     ++neededSSE;
2681     break;
2682   }
2683   }
2684 
2685   llvm::Type *HighPart = nullptr;
2686   switch (Hi) {
2687     // Memory was handled previously, ComplexX87 and X87 should
2688     // never occur as hi classes, and X87Up must be preceded by X87,
2689     // which is passed in memory.
2690   case Memory:
2691   case X87:
2692   case ComplexX87:
2693     llvm_unreachable("Invalid classification for hi word.");
2694 
2695   case NoClass: break;
2696 
2697   case Integer:
2698     ++neededInt;
2699     // Pick an 8-byte type based on the preferred type.
2700     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2701 
2702     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2703       return ABIArgInfo::getDirect(HighPart, 8);
2704     break;
2705 
2706     // X87Up generally doesn't occur here (long double is passed in
2707     // memory), except in situations involving unions.
2708   case X87Up:
2709   case SSE:
2710     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2711 
2712     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2713       return ABIArgInfo::getDirect(HighPart, 8);
2714 
2715     ++neededSSE;
2716     break;
2717 
2718     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2719     // eightbyte is passed in the upper half of the last used SSE
2720     // register.  This only happens when 128-bit vectors are passed.
2721   case SSEUp:
2722     assert(Lo == SSE && "Unexpected SSEUp classification");
2723     ResType = GetByteVectorType(Ty);
2724     break;
2725   }
2726 
2727   // If a high part was specified, merge it together with the low part.  It is
2728   // known to pass in the high eightbyte of the result.  We do this by forming a
2729   // first class struct aggregate with the high and low part: {low, high}
2730   if (HighPart)
2731     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2732 
2733   return ABIArgInfo::getDirect(ResType);
2734 }
2735 
2736 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2737 
2738   if (!getCXXABI().classifyReturnType(FI))
2739     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2740 
2741   // Keep track of the number of assigned registers.
2742   unsigned freeIntRegs = 6, freeSSERegs = 8;
2743 
2744   // If the return value is indirect, then the hidden argument is consuming one
2745   // integer register.
2746   if (FI.getReturnInfo().isIndirect())
2747     --freeIntRegs;
2748 
2749   // The chain argument effectively gives us another free register.
2750   if (FI.isChainCall())
2751     ++freeIntRegs;
2752 
2753   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2754   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2755   // get assigned (in left-to-right order) for passing as follows...
2756   unsigned ArgNo = 0;
2757   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2758        it != ie; ++it, ++ArgNo) {
2759     bool IsNamedArg = ArgNo < NumRequiredArgs;
2760 
2761     unsigned neededInt, neededSSE;
2762     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2763                                     neededSSE, IsNamedArg);
2764 
2765     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2766     // eightbyte of an argument, the whole argument is passed on the
2767     // stack. If registers have already been assigned for some
2768     // eightbytes of such an argument, the assignments get reverted.
2769     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2770       freeIntRegs -= neededInt;
2771       freeSSERegs -= neededSSE;
2772     } else {
2773       it->info = getIndirectResult(it->type, freeIntRegs);
2774     }
2775   }
2776 }
2777 
2778 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2779                                         QualType Ty,
2780                                         CodeGenFunction &CGF) {
2781   llvm::Value *overflow_arg_area_p =
2782     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2783   llvm::Value *overflow_arg_area =
2784     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2785 
2786   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2787   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2788   // It isn't stated explicitly in the standard, but in practice we use
2789   // alignment greater than 16 where necessary.
2790   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2791   if (Align > 8) {
2792     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2793     llvm::Value *Offset =
2794       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2795     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2796     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2797                                                     CGF.Int64Ty);
2798     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2799     overflow_arg_area =
2800       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2801                                  overflow_arg_area->getType(),
2802                                  "overflow_arg_area.align");
2803   }
2804 
2805   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2806   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2807   llvm::Value *Res =
2808     CGF.Builder.CreateBitCast(overflow_arg_area,
2809                               llvm::PointerType::getUnqual(LTy));
2810 
2811   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2812   // l->overflow_arg_area + sizeof(type).
2813   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2814   // an 8 byte boundary.
2815 
2816   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2817   llvm::Value *Offset =
2818       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2819   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2820                                             "overflow_arg_area.next");
2821   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2822 
2823   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2824   return Res;
2825 }
2826 
2827 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2828                                       CodeGenFunction &CGF) const {
2829   // Assume that va_list type is correct; should be pointer to LLVM type:
2830   // struct {
2831   //   i32 gp_offset;
2832   //   i32 fp_offset;
2833   //   i8* overflow_arg_area;
2834   //   i8* reg_save_area;
2835   // };
2836   unsigned neededInt, neededSSE;
2837 
2838   Ty = CGF.getContext().getCanonicalType(Ty);
2839   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2840                                        /*isNamedArg*/false);
2841 
2842   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2843   // in the registers. If not go to step 7.
2844   if (!neededInt && !neededSSE)
2845     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2846 
2847   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2848   // general purpose registers needed to pass type and num_fp to hold
2849   // the number of floating point registers needed.
2850 
2851   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2852   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2853   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2854   //
2855   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2856   // register save space).
2857 
2858   llvm::Value *InRegs = nullptr;
2859   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2860   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2861   if (neededInt) {
2862     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2863     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2864     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2865     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2866   }
2867 
2868   if (neededSSE) {
2869     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2870     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2871     llvm::Value *FitsInFP =
2872       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2873     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2874     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2875   }
2876 
2877   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2878   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2879   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2880   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2881 
2882   // Emit code to load the value if it was passed in registers.
2883 
2884   CGF.EmitBlock(InRegBlock);
2885 
2886   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2887   // an offset of l->gp_offset and/or l->fp_offset. This may require
2888   // copying to a temporary location in case the parameter is passed
2889   // in different register classes or requires an alignment greater
2890   // than 8 for general purpose registers and 16 for XMM registers.
2891   //
2892   // FIXME: This really results in shameful code when we end up needing to
2893   // collect arguments from different places; often what should result in a
2894   // simple assembling of a structure from scattered addresses has many more
2895   // loads than necessary. Can we clean this up?
2896   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2897   llvm::Value *RegAddr =
2898     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2899                            "reg_save_area");
2900   if (neededInt && neededSSE) {
2901     // FIXME: Cleanup.
2902     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2903     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2904     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2905     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2906     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2907     llvm::Type *TyLo = ST->getElementType(0);
2908     llvm::Type *TyHi = ST->getElementType(1);
2909     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2910            "Unexpected ABI info for mixed regs");
2911     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2912     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2913     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2914     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2915     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2916     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2917     llvm::Value *V =
2918       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2919     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2920     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2921     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2922 
2923     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2924                                         llvm::PointerType::getUnqual(LTy));
2925   } else if (neededInt) {
2926     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2927     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2928                                         llvm::PointerType::getUnqual(LTy));
2929 
2930     // Copy to a temporary if necessary to ensure the appropriate alignment.
2931     std::pair<CharUnits, CharUnits> SizeAlign =
2932         CGF.getContext().getTypeInfoInChars(Ty);
2933     uint64_t TySize = SizeAlign.first.getQuantity();
2934     unsigned TyAlign = SizeAlign.second.getQuantity();
2935     if (TyAlign > 8) {
2936       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2937       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2938       RegAddr = Tmp;
2939     }
2940   } else if (neededSSE == 1) {
2941     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2942     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2943                                         llvm::PointerType::getUnqual(LTy));
2944   } else {
2945     assert(neededSSE == 2 && "Invalid number of needed registers!");
2946     // SSE registers are spaced 16 bytes apart in the register save
2947     // area, we need to collect the two eightbytes together.
2948     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2949     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2950     llvm::Type *DoubleTy = CGF.DoubleTy;
2951     llvm::Type *DblPtrTy =
2952       llvm::PointerType::getUnqual(DoubleTy);
2953     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
2954     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2955     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2956     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2957                                                          DblPtrTy));
2958     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2959     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2960                                                          DblPtrTy));
2961     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2962     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2963                                         llvm::PointerType::getUnqual(LTy));
2964   }
2965 
2966   // AMD64-ABI 3.5.7p5: Step 5. Set:
2967   // l->gp_offset = l->gp_offset + num_gp * 8
2968   // l->fp_offset = l->fp_offset + num_fp * 16.
2969   if (neededInt) {
2970     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2971     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2972                             gp_offset_p);
2973   }
2974   if (neededSSE) {
2975     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2976     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2977                             fp_offset_p);
2978   }
2979   CGF.EmitBranch(ContBlock);
2980 
2981   // Emit code to load the value if it was passed in memory.
2982 
2983   CGF.EmitBlock(InMemBlock);
2984   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2985 
2986   // Return the appropriate result.
2987 
2988   CGF.EmitBlock(ContBlock);
2989   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2990                                                  "vaarg.addr");
2991   ResAddr->addIncoming(RegAddr, InRegBlock);
2992   ResAddr->addIncoming(MemAddr, InMemBlock);
2993   return ResAddr;
2994 }
2995 
2996 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
2997                                       bool IsReturnType) const {
2998 
2999   if (Ty->isVoidType())
3000     return ABIArgInfo::getIgnore();
3001 
3002   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3003     Ty = EnumTy->getDecl()->getIntegerType();
3004 
3005   TypeInfo Info = getContext().getTypeInfo(Ty);
3006   uint64_t Width = Info.Width;
3007   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3008 
3009   const RecordType *RT = Ty->getAs<RecordType>();
3010   if (RT) {
3011     if (!IsReturnType) {
3012       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3013         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3014     }
3015 
3016     if (RT->getDecl()->hasFlexibleArrayMember())
3017       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3018 
3019     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3020     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3021       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3022                                                           Width));
3023   }
3024 
3025   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3026   // other targets.
3027   const Type *Base = nullptr;
3028   uint64_t NumElts = 0;
3029   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3030     if (FreeSSERegs >= NumElts) {
3031       FreeSSERegs -= NumElts;
3032       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3033         return ABIArgInfo::getDirect();
3034       return ABIArgInfo::getExpand();
3035     }
3036     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3037   }
3038 
3039 
3040   if (Ty->isMemberPointerType()) {
3041     // If the member pointer is represented by an LLVM int or ptr, pass it
3042     // directly.
3043     llvm::Type *LLTy = CGT.ConvertType(Ty);
3044     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3045       return ABIArgInfo::getDirect();
3046   }
3047 
3048   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3049     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3050     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3051     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3052       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3053 
3054     // Otherwise, coerce it to a small integer.
3055     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3056   }
3057 
3058   // Bool type is always extended to the ABI, other builtin types are not
3059   // extended.
3060   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3061   if (BT && BT->getKind() == BuiltinType::Bool)
3062     return ABIArgInfo::getExtend();
3063 
3064   return ABIArgInfo::getDirect();
3065 }
3066 
3067 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3068   bool IsVectorCall =
3069       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3070 
3071   // We can use up to 4 SSE return registers with vectorcall.
3072   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3073   if (!getCXXABI().classifyReturnType(FI))
3074     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3075 
3076   // We can use up to 6 SSE register parameters with vectorcall.
3077   FreeSSERegs = IsVectorCall ? 6 : 0;
3078   for (auto &I : FI.arguments())
3079     I.info = classify(I.type, FreeSSERegs, false);
3080 }
3081 
3082 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3083                                       CodeGenFunction &CGF) const {
3084   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3085 
3086   CGBuilderTy &Builder = CGF.Builder;
3087   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3088                                                        "ap");
3089   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3090   llvm::Type *PTy =
3091     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3092   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3093 
3094   uint64_t Offset =
3095     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3096   llvm::Value *NextAddr =
3097     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3098                       "ap.next");
3099   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3100 
3101   return AddrTyped;
3102 }
3103 
3104 // PowerPC-32
3105 namespace {
3106 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3107 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3108 public:
3109   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3110 
3111   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3112                          CodeGenFunction &CGF) const override;
3113 };
3114 
3115 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3116 public:
3117   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3118 
3119   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3120     // This is recovered from gcc output.
3121     return 1; // r1 is the dedicated stack pointer
3122   }
3123 
3124   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3125                                llvm::Value *Address) const override;
3126 
3127   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3128     return 16; // Natural alignment for Altivec vectors.
3129   }
3130 
3131   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
3132     return true;
3133   }
3134 };
3135 
3136 }
3137 
3138 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3139                                            QualType Ty,
3140                                            CodeGenFunction &CGF) const {
3141   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3142     // TODO: Implement this. For now ignore.
3143     (void)CTy;
3144     return nullptr;
3145   }
3146 
3147   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3148   bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3149   llvm::Type *CharPtr = CGF.Int8PtrTy;
3150   llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3151 
3152   CGBuilderTy &Builder = CGF.Builder;
3153   llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3154   llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3155   llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3156   llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3157   llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3158   llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3159   llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3160   llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3161   llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3162   // Align GPR when TY is i64.
3163   if (isI64) {
3164     llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3165     llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3166     llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3167     GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3168   }
3169   llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3170   llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3171   llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3172   llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3173   llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3174 
3175   llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
3176                                           Builder.getInt8(8), "cond");
3177 
3178   llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
3179                                                Builder.getInt8(isInt ? 4 : 8));
3180 
3181   llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3182 
3183   if (Ty->isFloatingType())
3184     OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3185 
3186   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3187   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3188   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3189 
3190   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3191 
3192   CGF.EmitBlock(UsingRegs);
3193 
3194   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3195   llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3196   // Increase the GPR/FPR indexes.
3197   if (isInt) {
3198     GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3199     Builder.CreateStore(GPR, GPRPtr);
3200   } else {
3201     FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3202     Builder.CreateStore(FPR, FPRPtr);
3203   }
3204   CGF.EmitBranch(Cont);
3205 
3206   CGF.EmitBlock(UsingOverflow);
3207 
3208   // Increase the overflow area.
3209   llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3210   OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3211   Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
3212   CGF.EmitBranch(Cont);
3213 
3214   CGF.EmitBlock(Cont);
3215 
3216   llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3217   Result->addIncoming(Result1, UsingRegs);
3218   Result->addIncoming(Result2, UsingOverflow);
3219 
3220   if (Ty->isAggregateType()) {
3221     llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr")  ;
3222     return Builder.CreateLoad(AGGPtr, false, "aggr");
3223   }
3224 
3225   return Result;
3226 }
3227 
3228 bool
3229 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3230                                                 llvm::Value *Address) const {
3231   // This is calculated from the LLVM and GCC tables and verified
3232   // against gcc output.  AFAIK all ABIs use the same encoding.
3233 
3234   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3235 
3236   llvm::IntegerType *i8 = CGF.Int8Ty;
3237   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3238   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3239   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3240 
3241   // 0-31: r0-31, the 4-byte general-purpose registers
3242   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3243 
3244   // 32-63: fp0-31, the 8-byte floating-point registers
3245   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3246 
3247   // 64-76 are various 4-byte special-purpose registers:
3248   // 64: mq
3249   // 65: lr
3250   // 66: ctr
3251   // 67: ap
3252   // 68-75 cr0-7
3253   // 76: xer
3254   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3255 
3256   // 77-108: v0-31, the 16-byte vector registers
3257   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3258 
3259   // 109: vrsave
3260   // 110: vscr
3261   // 111: spe_acc
3262   // 112: spefscr
3263   // 113: sfp
3264   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3265 
3266   return false;
3267 }
3268 
3269 // PowerPC-64
3270 
3271 namespace {
3272 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3273 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3274 public:
3275   enum ABIKind {
3276     ELFv1 = 0,
3277     ELFv2
3278   };
3279 
3280 private:
3281   static const unsigned GPRBits = 64;
3282   ABIKind Kind;
3283 
3284 public:
3285   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
3286     : DefaultABIInfo(CGT), Kind(Kind) {}
3287 
3288   bool isPromotableTypeForABI(QualType Ty) const;
3289   bool isAlignedParamType(QualType Ty) const;
3290 
3291   ABIArgInfo classifyReturnType(QualType RetTy) const;
3292   ABIArgInfo classifyArgumentType(QualType Ty) const;
3293 
3294   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3295   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3296                                          uint64_t Members) const override;
3297 
3298   // TODO: We can add more logic to computeInfo to improve performance.
3299   // Example: For aggregate arguments that fit in a register, we could
3300   // use getDirectInReg (as is done below for structs containing a single
3301   // floating-point value) to avoid pushing them to memory on function
3302   // entry.  This would require changing the logic in PPCISelLowering
3303   // when lowering the parameters in the caller and args in the callee.
3304   void computeInfo(CGFunctionInfo &FI) const override {
3305     if (!getCXXABI().classifyReturnType(FI))
3306       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3307     for (auto &I : FI.arguments()) {
3308       // We rely on the default argument classification for the most part.
3309       // One exception:  An aggregate containing a single floating-point
3310       // or vector item must be passed in a register if one is available.
3311       const Type *T = isSingleElementStruct(I.type, getContext());
3312       if (T) {
3313         const BuiltinType *BT = T->getAs<BuiltinType>();
3314         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3315             (BT && BT->isFloatingPoint())) {
3316           QualType QT(T, 0);
3317           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3318           continue;
3319         }
3320       }
3321       I.info = classifyArgumentType(I.type);
3322     }
3323   }
3324 
3325   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3326                          CodeGenFunction &CGF) const override;
3327 };
3328 
3329 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3330 public:
3331   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3332                                PPC64_SVR4_ABIInfo::ABIKind Kind)
3333     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {}
3334 
3335   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3336     // This is recovered from gcc output.
3337     return 1; // r1 is the dedicated stack pointer
3338   }
3339 
3340   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3341                                llvm::Value *Address) const override;
3342 
3343   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3344     return 16; // Natural alignment for Altivec and VSX vectors.
3345   }
3346 
3347   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
3348     return true;
3349   }
3350 };
3351 
3352 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3353 public:
3354   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3355 
3356   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3357     // This is recovered from gcc output.
3358     return 1; // r1 is the dedicated stack pointer
3359   }
3360 
3361   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3362                                llvm::Value *Address) const override;
3363 
3364   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3365     return 16; // Natural alignment for Altivec vectors.
3366   }
3367 
3368   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
3369     return true;
3370   }
3371 };
3372 
3373 }
3374 
3375 // Return true if the ABI requires Ty to be passed sign- or zero-
3376 // extended to 64 bits.
3377 bool
3378 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3379   // Treat an enum type as its underlying type.
3380   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3381     Ty = EnumTy->getDecl()->getIntegerType();
3382 
3383   // Promotable integer types are required to be promoted by the ABI.
3384   if (Ty->isPromotableIntegerType())
3385     return true;
3386 
3387   // In addition to the usual promotable integer types, we also need to
3388   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3389   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3390     switch (BT->getKind()) {
3391     case BuiltinType::Int:
3392     case BuiltinType::UInt:
3393       return true;
3394     default:
3395       break;
3396     }
3397 
3398   return false;
3399 }
3400 
3401 /// isAlignedParamType - Determine whether a type requires 16-byte
3402 /// alignment in the parameter area.
3403 bool
3404 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
3405   // Complex types are passed just like their elements.
3406   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3407     Ty = CTy->getElementType();
3408 
3409   // Only vector types of size 16 bytes need alignment (larger types are
3410   // passed via reference, smaller types are not aligned).
3411   if (Ty->isVectorType())
3412     return getContext().getTypeSize(Ty) == 128;
3413 
3414   // For single-element float/vector structs, we consider the whole type
3415   // to have the same alignment requirements as its single element.
3416   const Type *AlignAsType = nullptr;
3417   const Type *EltType = isSingleElementStruct(Ty, getContext());
3418   if (EltType) {
3419     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3420     if ((EltType->isVectorType() &&
3421          getContext().getTypeSize(EltType) == 128) ||
3422         (BT && BT->isFloatingPoint()))
3423       AlignAsType = EltType;
3424   }
3425 
3426   // Likewise for ELFv2 homogeneous aggregates.
3427   const Type *Base = nullptr;
3428   uint64_t Members = 0;
3429   if (!AlignAsType && Kind == ELFv2 &&
3430       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3431     AlignAsType = Base;
3432 
3433   // With special case aggregates, only vector base types need alignment.
3434   if (AlignAsType)
3435     return AlignAsType->isVectorType();
3436 
3437   // Otherwise, we only need alignment for any aggregate type that
3438   // has an alignment requirement of >= 16 bytes.
3439   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
3440     return true;
3441 
3442   return false;
3443 }
3444 
3445 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3446 /// aggregate.  Base is set to the base element type, and Members is set
3447 /// to the number of base elements.
3448 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3449                                      uint64_t &Members) const {
3450   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3451     uint64_t NElements = AT->getSize().getZExtValue();
3452     if (NElements == 0)
3453       return false;
3454     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3455       return false;
3456     Members *= NElements;
3457   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3458     const RecordDecl *RD = RT->getDecl();
3459     if (RD->hasFlexibleArrayMember())
3460       return false;
3461 
3462     Members = 0;
3463 
3464     // If this is a C++ record, check the bases first.
3465     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3466       for (const auto &I : CXXRD->bases()) {
3467         // Ignore empty records.
3468         if (isEmptyRecord(getContext(), I.getType(), true))
3469           continue;
3470 
3471         uint64_t FldMembers;
3472         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3473           return false;
3474 
3475         Members += FldMembers;
3476       }
3477     }
3478 
3479     for (const auto *FD : RD->fields()) {
3480       // Ignore (non-zero arrays of) empty records.
3481       QualType FT = FD->getType();
3482       while (const ConstantArrayType *AT =
3483              getContext().getAsConstantArrayType(FT)) {
3484         if (AT->getSize().getZExtValue() == 0)
3485           return false;
3486         FT = AT->getElementType();
3487       }
3488       if (isEmptyRecord(getContext(), FT, true))
3489         continue;
3490 
3491       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3492       if (getContext().getLangOpts().CPlusPlus &&
3493           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3494         continue;
3495 
3496       uint64_t FldMembers;
3497       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3498         return false;
3499 
3500       Members = (RD->isUnion() ?
3501                  std::max(Members, FldMembers) : Members + FldMembers);
3502     }
3503 
3504     if (!Base)
3505       return false;
3506 
3507     // Ensure there is no padding.
3508     if (getContext().getTypeSize(Base) * Members !=
3509         getContext().getTypeSize(Ty))
3510       return false;
3511   } else {
3512     Members = 1;
3513     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3514       Members = 2;
3515       Ty = CT->getElementType();
3516     }
3517 
3518     // Most ABIs only support float, double, and some vector type widths.
3519     if (!isHomogeneousAggregateBaseType(Ty))
3520       return false;
3521 
3522     // The base type must be the same for all members.  Types that
3523     // agree in both total size and mode (float vs. vector) are
3524     // treated as being equivalent here.
3525     const Type *TyPtr = Ty.getTypePtr();
3526     if (!Base)
3527       Base = TyPtr;
3528 
3529     if (Base->isVectorType() != TyPtr->isVectorType() ||
3530         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3531       return false;
3532   }
3533   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3534 }
3535 
3536 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3537   // Homogeneous aggregates for ELFv2 must have base types of float,
3538   // double, long double, or 128-bit vectors.
3539   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3540     if (BT->getKind() == BuiltinType::Float ||
3541         BT->getKind() == BuiltinType::Double ||
3542         BT->getKind() == BuiltinType::LongDouble)
3543       return true;
3544   }
3545   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3546     if (getContext().getTypeSize(VT) == 128)
3547       return true;
3548   }
3549   return false;
3550 }
3551 
3552 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3553     const Type *Base, uint64_t Members) const {
3554   // Vector types require one register, floating point types require one
3555   // or two registers depending on their size.
3556   uint32_t NumRegs =
3557       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3558 
3559   // Homogeneous Aggregates may occupy at most 8 registers.
3560   return Members * NumRegs <= 8;
3561 }
3562 
3563 ABIArgInfo
3564 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3565   Ty = useFirstFieldIfTransparentUnion(Ty);
3566 
3567   if (Ty->isAnyComplexType())
3568     return ABIArgInfo::getDirect();
3569 
3570   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3571   // or via reference (larger than 16 bytes).
3572   if (Ty->isVectorType()) {
3573     uint64_t Size = getContext().getTypeSize(Ty);
3574     if (Size > 128)
3575       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3576     else if (Size < 128) {
3577       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3578       return ABIArgInfo::getDirect(CoerceTy);
3579     }
3580   }
3581 
3582   if (isAggregateTypeForABI(Ty)) {
3583     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3584       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3585 
3586     uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
3587     uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3588 
3589     // ELFv2 homogeneous aggregates are passed as array types.
3590     const Type *Base = nullptr;
3591     uint64_t Members = 0;
3592     if (Kind == ELFv2 &&
3593         isHomogeneousAggregate(Ty, Base, Members)) {
3594       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3595       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3596       return ABIArgInfo::getDirect(CoerceTy);
3597     }
3598 
3599     // If an aggregate may end up fully in registers, we do not
3600     // use the ByVal method, but pass the aggregate as array.
3601     // This is usually beneficial since we avoid forcing the
3602     // back-end to store the argument to memory.
3603     uint64_t Bits = getContext().getTypeSize(Ty);
3604     if (Bits > 0 && Bits <= 8 * GPRBits) {
3605       llvm::Type *CoerceTy;
3606 
3607       // Types up to 8 bytes are passed as integer type (which will be
3608       // properly aligned in the argument save area doubleword).
3609       if (Bits <= GPRBits)
3610         CoerceTy = llvm::IntegerType::get(getVMContext(),
3611                                           llvm::RoundUpToAlignment(Bits, 8));
3612       // Larger types are passed as arrays, with the base type selected
3613       // according to the required alignment in the save area.
3614       else {
3615         uint64_t RegBits = ABIAlign * 8;
3616         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3617         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3618         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3619       }
3620 
3621       return ABIArgInfo::getDirect(CoerceTy);
3622     }
3623 
3624     // All other aggregates are passed ByVal.
3625     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3626                                    /*Realign=*/TyAlign > ABIAlign);
3627   }
3628 
3629   return (isPromotableTypeForABI(Ty) ?
3630           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3631 }
3632 
3633 ABIArgInfo
3634 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3635   if (RetTy->isVoidType())
3636     return ABIArgInfo::getIgnore();
3637 
3638   if (RetTy->isAnyComplexType())
3639     return ABIArgInfo::getDirect();
3640 
3641   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3642   // or via reference (larger than 16 bytes).
3643   if (RetTy->isVectorType()) {
3644     uint64_t Size = getContext().getTypeSize(RetTy);
3645     if (Size > 128)
3646       return ABIArgInfo::getIndirect(0);
3647     else if (Size < 128) {
3648       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3649       return ABIArgInfo::getDirect(CoerceTy);
3650     }
3651   }
3652 
3653   if (isAggregateTypeForABI(RetTy)) {
3654     // ELFv2 homogeneous aggregates are returned as array types.
3655     const Type *Base = nullptr;
3656     uint64_t Members = 0;
3657     if (Kind == ELFv2 &&
3658         isHomogeneousAggregate(RetTy, Base, Members)) {
3659       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3660       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3661       return ABIArgInfo::getDirect(CoerceTy);
3662     }
3663 
3664     // ELFv2 small aggregates are returned in up to two registers.
3665     uint64_t Bits = getContext().getTypeSize(RetTy);
3666     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3667       if (Bits == 0)
3668         return ABIArgInfo::getIgnore();
3669 
3670       llvm::Type *CoerceTy;
3671       if (Bits > GPRBits) {
3672         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3673         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3674       } else
3675         CoerceTy = llvm::IntegerType::get(getVMContext(),
3676                                           llvm::RoundUpToAlignment(Bits, 8));
3677       return ABIArgInfo::getDirect(CoerceTy);
3678     }
3679 
3680     // All other aggregates are returned indirectly.
3681     return ABIArgInfo::getIndirect(0);
3682   }
3683 
3684   return (isPromotableTypeForABI(RetTy) ?
3685           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3686 }
3687 
3688 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3689 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3690                                            QualType Ty,
3691                                            CodeGenFunction &CGF) const {
3692   llvm::Type *BP = CGF.Int8PtrTy;
3693   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3694 
3695   CGBuilderTy &Builder = CGF.Builder;
3696   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3697   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3698 
3699   // Handle types that require 16-byte alignment in the parameter save area.
3700   if (isAlignedParamType(Ty)) {
3701     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3702     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
3703     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
3704     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3705   }
3706 
3707   // Update the va_list pointer.  The pointer should be bumped by the
3708   // size of the object.  We can trust getTypeSize() except for a complex
3709   // type whose base type is smaller than a doubleword.  For these, the
3710   // size of the object is 16 bytes; see below for further explanation.
3711   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3712   QualType BaseTy;
3713   unsigned CplxBaseSize = 0;
3714 
3715   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3716     BaseTy = CTy->getElementType();
3717     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3718     if (CplxBaseSize < 8)
3719       SizeInBytes = 16;
3720   }
3721 
3722   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3723   llvm::Value *NextAddr =
3724     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3725                       "ap.next");
3726   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3727 
3728   // If we have a complex type and the base type is smaller than 8 bytes,
3729   // the ABI calls for the real and imaginary parts to be right-adjusted
3730   // in separate doublewords.  However, Clang expects us to produce a
3731   // pointer to a structure with the two parts packed tightly.  So generate
3732   // loads of the real and imaginary parts relative to the va_list pointer,
3733   // and store them to a temporary structure.
3734   if (CplxBaseSize && CplxBaseSize < 8) {
3735     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3736     llvm::Value *ImagAddr = RealAddr;
3737     if (CGF.CGM.getDataLayout().isBigEndian()) {
3738       RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3739       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3740     } else {
3741       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3742     }
3743     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3744     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3745     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3746     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3747     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3748     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3749                                             "vacplx");
3750     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3751     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3752     Builder.CreateStore(Real, RealPtr, false);
3753     Builder.CreateStore(Imag, ImagPtr, false);
3754     return Ptr;
3755   }
3756 
3757   // If the argument is smaller than 8 bytes, it is right-adjusted in
3758   // its doubleword slot.  Adjust the pointer to pick it up from the
3759   // correct offset.
3760   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3761     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3762     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3763     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3764   }
3765 
3766   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3767   return Builder.CreateBitCast(Addr, PTy);
3768 }
3769 
3770 static bool
3771 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3772                               llvm::Value *Address) {
3773   // This is calculated from the LLVM and GCC tables and verified
3774   // against gcc output.  AFAIK all ABIs use the same encoding.
3775 
3776   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3777 
3778   llvm::IntegerType *i8 = CGF.Int8Ty;
3779   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3780   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3781   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3782 
3783   // 0-31: r0-31, the 8-byte general-purpose registers
3784   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3785 
3786   // 32-63: fp0-31, the 8-byte floating-point registers
3787   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3788 
3789   // 64-76 are various 4-byte special-purpose registers:
3790   // 64: mq
3791   // 65: lr
3792   // 66: ctr
3793   // 67: ap
3794   // 68-75 cr0-7
3795   // 76: xer
3796   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3797 
3798   // 77-108: v0-31, the 16-byte vector registers
3799   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3800 
3801   // 109: vrsave
3802   // 110: vscr
3803   // 111: spe_acc
3804   // 112: spefscr
3805   // 113: sfp
3806   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3807 
3808   return false;
3809 }
3810 
3811 bool
3812 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3813   CodeGen::CodeGenFunction &CGF,
3814   llvm::Value *Address) const {
3815 
3816   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3817 }
3818 
3819 bool
3820 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3821                                                 llvm::Value *Address) const {
3822 
3823   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3824 }
3825 
3826 //===----------------------------------------------------------------------===//
3827 // AArch64 ABI Implementation
3828 //===----------------------------------------------------------------------===//
3829 
3830 namespace {
3831 
3832 class AArch64ABIInfo : public ABIInfo {
3833 public:
3834   enum ABIKind {
3835     AAPCS = 0,
3836     DarwinPCS
3837   };
3838 
3839 private:
3840   ABIKind Kind;
3841 
3842 public:
3843   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3844 
3845 private:
3846   ABIKind getABIKind() const { return Kind; }
3847   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3848 
3849   ABIArgInfo classifyReturnType(QualType RetTy) const;
3850   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3851   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3852   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3853                                          uint64_t Members) const override;
3854 
3855   bool isIllegalVectorType(QualType Ty) const;
3856 
3857   void computeInfo(CGFunctionInfo &FI) const override {
3858     if (!getCXXABI().classifyReturnType(FI))
3859       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3860 
3861     for (auto &it : FI.arguments())
3862       it.info = classifyArgumentType(it.type);
3863   }
3864 
3865   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3866                                CodeGenFunction &CGF) const;
3867 
3868   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3869                               CodeGenFunction &CGF) const;
3870 
3871   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3872                                  CodeGenFunction &CGF) const override {
3873     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3874                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3875   }
3876 };
3877 
3878 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3879 public:
3880   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3881       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3882 
3883   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3884     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3885   }
3886 
3887   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
3888 
3889   virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
3890 };
3891 }
3892 
3893 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
3894   Ty = useFirstFieldIfTransparentUnion(Ty);
3895 
3896   // Handle illegal vector types here.
3897   if (isIllegalVectorType(Ty)) {
3898     uint64_t Size = getContext().getTypeSize(Ty);
3899     if (Size <= 32) {
3900       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3901       return ABIArgInfo::getDirect(ResType);
3902     }
3903     if (Size == 64) {
3904       llvm::Type *ResType =
3905           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3906       return ABIArgInfo::getDirect(ResType);
3907     }
3908     if (Size == 128) {
3909       llvm::Type *ResType =
3910           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3911       return ABIArgInfo::getDirect(ResType);
3912     }
3913     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3914   }
3915 
3916   if (!isAggregateTypeForABI(Ty)) {
3917     // Treat an enum type as its underlying type.
3918     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3919       Ty = EnumTy->getDecl()->getIntegerType();
3920 
3921     return (Ty->isPromotableIntegerType() && isDarwinPCS()
3922                 ? ABIArgInfo::getExtend()
3923                 : ABIArgInfo::getDirect());
3924   }
3925 
3926   // Structures with either a non-trivial destructor or a non-trivial
3927   // copy constructor are always indirect.
3928   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3929     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3930                                    CGCXXABI::RAA_DirectInMemory);
3931   }
3932 
3933   // Empty records are always ignored on Darwin, but actually passed in C++ mode
3934   // elsewhere for GNU compatibility.
3935   if (isEmptyRecord(getContext(), Ty, true)) {
3936     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3937       return ABIArgInfo::getIgnore();
3938 
3939     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3940   }
3941 
3942   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3943   const Type *Base = nullptr;
3944   uint64_t Members = 0;
3945   if (isHomogeneousAggregate(Ty, Base, Members)) {
3946     return ABIArgInfo::getDirect(
3947         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
3948   }
3949 
3950   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
3951   uint64_t Size = getContext().getTypeSize(Ty);
3952   if (Size <= 128) {
3953     unsigned Alignment = getContext().getTypeAlign(Ty);
3954     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3955 
3956     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
3957     // For aggregates with 16-byte alignment, we use i128.
3958     if (Alignment < 128 && Size == 128) {
3959       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
3960       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3961     }
3962     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3963   }
3964 
3965   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3966 }
3967 
3968 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
3969   if (RetTy->isVoidType())
3970     return ABIArgInfo::getIgnore();
3971 
3972   // Large vector types should be returned via memory.
3973   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3974     return ABIArgInfo::getIndirect(0);
3975 
3976   if (!isAggregateTypeForABI(RetTy)) {
3977     // Treat an enum type as its underlying type.
3978     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3979       RetTy = EnumTy->getDecl()->getIntegerType();
3980 
3981     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
3982                 ? ABIArgInfo::getExtend()
3983                 : ABIArgInfo::getDirect());
3984   }
3985 
3986   if (isEmptyRecord(getContext(), RetTy, true))
3987     return ABIArgInfo::getIgnore();
3988 
3989   const Type *Base = nullptr;
3990   uint64_t Members = 0;
3991   if (isHomogeneousAggregate(RetTy, Base, Members))
3992     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
3993     return ABIArgInfo::getDirect();
3994 
3995   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
3996   uint64_t Size = getContext().getTypeSize(RetTy);
3997   if (Size <= 128) {
3998     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3999     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4000   }
4001 
4002   return ABIArgInfo::getIndirect(0);
4003 }
4004 
4005 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4006 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4007   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4008     // Check whether VT is legal.
4009     unsigned NumElements = VT->getNumElements();
4010     uint64_t Size = getContext().getTypeSize(VT);
4011     // NumElements should be power of 2 between 1 and 16.
4012     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4013       return true;
4014     return Size != 64 && (Size != 128 || NumElements == 1);
4015   }
4016   return false;
4017 }
4018 
4019 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4020   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4021   // point type or a short-vector type. This is the same as the 32-bit ABI,
4022   // but with the difference that any floating-point type is allowed,
4023   // including __fp16.
4024   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4025     if (BT->isFloatingPoint())
4026       return true;
4027   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4028     unsigned VecSize = getContext().getTypeSize(VT);
4029     if (VecSize == 64 || VecSize == 128)
4030       return true;
4031   }
4032   return false;
4033 }
4034 
4035 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4036                                                        uint64_t Members) const {
4037   return Members <= 4;
4038 }
4039 
4040 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4041                                             QualType Ty,
4042                                             CodeGenFunction &CGF) const {
4043   ABIArgInfo AI = classifyArgumentType(Ty);
4044   bool IsIndirect = AI.isIndirect();
4045 
4046   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4047   if (IsIndirect)
4048     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4049   else if (AI.getCoerceToType())
4050     BaseTy = AI.getCoerceToType();
4051 
4052   unsigned NumRegs = 1;
4053   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4054     BaseTy = ArrTy->getElementType();
4055     NumRegs = ArrTy->getNumElements();
4056   }
4057   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4058 
4059   // The AArch64 va_list type and handling is specified in the Procedure Call
4060   // Standard, section B.4:
4061   //
4062   // struct {
4063   //   void *__stack;
4064   //   void *__gr_top;
4065   //   void *__vr_top;
4066   //   int __gr_offs;
4067   //   int __vr_offs;
4068   // };
4069 
4070   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4071   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4072   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4073   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4074   auto &Ctx = CGF.getContext();
4075 
4076   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4077   int reg_top_index;
4078   int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4079   if (!IsFPR) {
4080     // 3 is the field number of __gr_offs
4081     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
4082     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4083     reg_top_index = 1; // field number for __gr_top
4084     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4085   } else {
4086     // 4 is the field number of __vr_offs.
4087     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4088     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4089     reg_top_index = 2; // field number for __vr_top
4090     RegSize = 16 * NumRegs;
4091   }
4092 
4093   //=======================================
4094   // Find out where argument was passed
4095   //=======================================
4096 
4097   // If reg_offs >= 0 we're already using the stack for this type of
4098   // argument. We don't want to keep updating reg_offs (in case it overflows,
4099   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4100   // whatever they get).
4101   llvm::Value *UsingStack = nullptr;
4102   UsingStack = CGF.Builder.CreateICmpSGE(
4103       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4104 
4105   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4106 
4107   // Otherwise, at least some kind of argument could go in these registers, the
4108   // question is whether this particular type is too big.
4109   CGF.EmitBlock(MaybeRegBlock);
4110 
4111   // Integer arguments may need to correct register alignment (for example a
4112   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4113   // align __gr_offs to calculate the potential address.
4114   if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4115     int Align = Ctx.getTypeAlign(Ty) / 8;
4116 
4117     reg_offs = CGF.Builder.CreateAdd(
4118         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4119         "align_regoffs");
4120     reg_offs = CGF.Builder.CreateAnd(
4121         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4122         "aligned_regoffs");
4123   }
4124 
4125   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4126   llvm::Value *NewOffset = nullptr;
4127   NewOffset = CGF.Builder.CreateAdd(
4128       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4129   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4130 
4131   // Now we're in a position to decide whether this argument really was in
4132   // registers or not.
4133   llvm::Value *InRegs = nullptr;
4134   InRegs = CGF.Builder.CreateICmpSLE(
4135       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4136 
4137   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4138 
4139   //=======================================
4140   // Argument was in registers
4141   //=======================================
4142 
4143   // Now we emit the code for if the argument was originally passed in
4144   // registers. First start the appropriate block:
4145   CGF.EmitBlock(InRegBlock);
4146 
4147   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4148   reg_top_p =
4149       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4150   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4151   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4152   llvm::Value *RegAddr = nullptr;
4153   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4154 
4155   if (IsIndirect) {
4156     // If it's been passed indirectly (actually a struct), whatever we find from
4157     // stored registers or on the stack will actually be a struct **.
4158     MemTy = llvm::PointerType::getUnqual(MemTy);
4159   }
4160 
4161   const Type *Base = nullptr;
4162   uint64_t NumMembers = 0;
4163   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4164   if (IsHFA && NumMembers > 1) {
4165     // Homogeneous aggregates passed in registers will have their elements split
4166     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4167     // qN+1, ...). We reload and store into a temporary local variable
4168     // contiguously.
4169     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4170     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4171     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4172     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4173     int Offset = 0;
4174 
4175     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4176       Offset = 16 - Ctx.getTypeSize(Base) / 8;
4177     for (unsigned i = 0; i < NumMembers; ++i) {
4178       llvm::Value *BaseOffset =
4179           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4180       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4181       LoadAddr = CGF.Builder.CreateBitCast(
4182           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4183       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4184 
4185       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4186       CGF.Builder.CreateStore(Elem, StoreAddr);
4187     }
4188 
4189     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4190   } else {
4191     // Otherwise the object is contiguous in memory
4192     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4193     if (CGF.CGM.getDataLayout().isBigEndian() &&
4194         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4195         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4196       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4197       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4198 
4199       BaseAddr = CGF.Builder.CreateAdd(
4200           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4201 
4202       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4203     }
4204 
4205     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4206   }
4207 
4208   CGF.EmitBranch(ContBlock);
4209 
4210   //=======================================
4211   // Argument was on the stack
4212   //=======================================
4213   CGF.EmitBlock(OnStackBlock);
4214 
4215   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4216   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4217   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4218 
4219   // Again, stack arguments may need realigmnent. In this case both integer and
4220   // floating-point ones might be affected.
4221   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4222     int Align = Ctx.getTypeAlign(Ty) / 8;
4223 
4224     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4225 
4226     OnStackAddr = CGF.Builder.CreateAdd(
4227         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4228         "align_stack");
4229     OnStackAddr = CGF.Builder.CreateAnd(
4230         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4231         "align_stack");
4232 
4233     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4234   }
4235 
4236   uint64_t StackSize;
4237   if (IsIndirect)
4238     StackSize = 8;
4239   else
4240     StackSize = Ctx.getTypeSize(Ty) / 8;
4241 
4242   // All stack slots are 8 bytes
4243   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4244 
4245   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4246   llvm::Value *NewStack =
4247       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4248 
4249   // Write the new value of __stack for the next call to va_arg
4250   CGF.Builder.CreateStore(NewStack, stack_p);
4251 
4252   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4253       Ctx.getTypeSize(Ty) < 64) {
4254     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4255     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4256 
4257     OnStackAddr = CGF.Builder.CreateAdd(
4258         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4259 
4260     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4261   }
4262 
4263   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4264 
4265   CGF.EmitBranch(ContBlock);
4266 
4267   //=======================================
4268   // Tidy up
4269   //=======================================
4270   CGF.EmitBlock(ContBlock);
4271 
4272   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4273   ResAddr->addIncoming(RegAddr, InRegBlock);
4274   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4275 
4276   if (IsIndirect)
4277     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4278 
4279   return ResAddr;
4280 }
4281 
4282 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
4283                                            CodeGenFunction &CGF) const {
4284   // We do not support va_arg for aggregates or illegal vector types.
4285   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4286   // other cases.
4287   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4288     return nullptr;
4289 
4290   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4291   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4292 
4293   const Type *Base = nullptr;
4294   uint64_t Members = 0;
4295   bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4296 
4297   bool isIndirect = false;
4298   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4299   // be passed indirectly.
4300   if (Size > 16 && !isHA) {
4301     isIndirect = true;
4302     Size = 8;
4303     Align = 8;
4304   }
4305 
4306   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4307   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4308 
4309   CGBuilderTy &Builder = CGF.Builder;
4310   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4311   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4312 
4313   if (isEmptyRecord(getContext(), Ty, true)) {
4314     // These are ignored for parameter passing purposes.
4315     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4316     return Builder.CreateBitCast(Addr, PTy);
4317   }
4318 
4319   const uint64_t MinABIAlign = 8;
4320   if (Align > MinABIAlign) {
4321     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4322     Addr = Builder.CreateGEP(Addr, Offset);
4323     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4324     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4325     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4326     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4327   }
4328 
4329   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4330   llvm::Value *NextAddr = Builder.CreateGEP(
4331       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4332   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4333 
4334   if (isIndirect)
4335     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4336   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4337   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4338 
4339   return AddrTyped;
4340 }
4341 
4342 //===----------------------------------------------------------------------===//
4343 // ARM ABI Implementation
4344 //===----------------------------------------------------------------------===//
4345 
4346 namespace {
4347 
4348 class ARMABIInfo : public ABIInfo {
4349 public:
4350   enum ABIKind {
4351     APCS = 0,
4352     AAPCS = 1,
4353     AAPCS_VFP
4354   };
4355 
4356 private:
4357   ABIKind Kind;
4358 
4359 public:
4360   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4361     setCCs();
4362   }
4363 
4364   bool isEABI() const {
4365     switch (getTarget().getTriple().getEnvironment()) {
4366     case llvm::Triple::Android:
4367     case llvm::Triple::EABI:
4368     case llvm::Triple::EABIHF:
4369     case llvm::Triple::GNUEABI:
4370     case llvm::Triple::GNUEABIHF:
4371       return true;
4372     default:
4373       return false;
4374     }
4375   }
4376 
4377   bool isEABIHF() const {
4378     switch (getTarget().getTriple().getEnvironment()) {
4379     case llvm::Triple::EABIHF:
4380     case llvm::Triple::GNUEABIHF:
4381       return true;
4382     default:
4383       return false;
4384     }
4385   }
4386 
4387   ABIKind getABIKind() const { return Kind; }
4388 
4389 private:
4390   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4391   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4392   bool isIllegalVectorType(QualType Ty) const;
4393 
4394   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4395   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4396                                          uint64_t Members) const override;
4397 
4398   void computeInfo(CGFunctionInfo &FI) const override;
4399 
4400   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4401                          CodeGenFunction &CGF) const override;
4402 
4403   llvm::CallingConv::ID getLLVMDefaultCC() const;
4404   llvm::CallingConv::ID getABIDefaultCC() const;
4405   void setCCs();
4406 };
4407 
4408 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4409 public:
4410   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4411     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4412 
4413   const ARMABIInfo &getABIInfo() const {
4414     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4415   }
4416 
4417   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4418     return 13;
4419   }
4420 
4421   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4422     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4423   }
4424 
4425   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4426                                llvm::Value *Address) const override {
4427     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4428 
4429     // 0-15 are the 16 integer registers.
4430     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4431     return false;
4432   }
4433 
4434   unsigned getSizeOfUnwindException() const override {
4435     if (getABIInfo().isEABI()) return 88;
4436     return TargetCodeGenInfo::getSizeOfUnwindException();
4437   }
4438 
4439   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4440                            CodeGen::CodeGenModule &CGM) const override {
4441     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4442     if (!FD)
4443       return;
4444 
4445     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4446     if (!Attr)
4447       return;
4448 
4449     const char *Kind;
4450     switch (Attr->getInterrupt()) {
4451     case ARMInterruptAttr::Generic: Kind = ""; break;
4452     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4453     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4454     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4455     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4456     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4457     }
4458 
4459     llvm::Function *Fn = cast<llvm::Function>(GV);
4460 
4461     Fn->addFnAttr("interrupt", Kind);
4462 
4463     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4464       return;
4465 
4466     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4467     // however this is not necessarily true on taking any interrupt. Instruct
4468     // the backend to perform a realignment as part of the function prologue.
4469     llvm::AttrBuilder B;
4470     B.addStackAlignmentAttr(8);
4471     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4472                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4473                                               llvm::AttributeSet::FunctionIndex,
4474                                               B));
4475   }
4476 
4477   bool hasSjLjLowering(CodeGen::CodeGenFunction &CGF) const override {
4478     return false;
4479     // FIXME: backend implementation too restricted, even on Darwin.
4480     // return CGF.getTarget().getTriple().isOSDarwin();
4481   }
4482 };
4483 
4484 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4485   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4486                                         CodeGen::CodeGenModule &CGM) const;
4487 
4488 public:
4489   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4490       : ARMTargetCodeGenInfo(CGT, K) {}
4491 
4492   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4493                            CodeGen::CodeGenModule &CGM) const override;
4494 };
4495 
4496 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4497     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4498   if (!isa<FunctionDecl>(D))
4499     return;
4500   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4501     return;
4502 
4503   llvm::Function *F = cast<llvm::Function>(GV);
4504   F->addFnAttr("stack-probe-size",
4505                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4506 }
4507 
4508 void WindowsARMTargetCodeGenInfo::SetTargetAttributes(
4509     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4510   ARMTargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
4511   addStackProbeSizeTargetAttribute(D, GV, CGM);
4512 }
4513 }
4514 
4515 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4516   if (!getCXXABI().classifyReturnType(FI))
4517     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
4518 
4519   for (auto &I : FI.arguments())
4520     I.info = classifyArgumentType(I.type, FI.isVariadic());
4521 
4522   // Always honor user-specified calling convention.
4523   if (FI.getCallingConvention() != llvm::CallingConv::C)
4524     return;
4525 
4526   llvm::CallingConv::ID cc = getRuntimeCC();
4527   if (cc != llvm::CallingConv::C)
4528     FI.setEffectiveCallingConvention(cc);
4529 }
4530 
4531 /// Return the default calling convention that LLVM will use.
4532 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4533   // The default calling convention that LLVM will infer.
4534   if (isEABIHF())
4535     return llvm::CallingConv::ARM_AAPCS_VFP;
4536   else if (isEABI())
4537     return llvm::CallingConv::ARM_AAPCS;
4538   else
4539     return llvm::CallingConv::ARM_APCS;
4540 }
4541 
4542 /// Return the calling convention that our ABI would like us to use
4543 /// as the C calling convention.
4544 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4545   switch (getABIKind()) {
4546   case APCS: return llvm::CallingConv::ARM_APCS;
4547   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4548   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4549   }
4550   llvm_unreachable("bad ABI kind");
4551 }
4552 
4553 void ARMABIInfo::setCCs() {
4554   assert(getRuntimeCC() == llvm::CallingConv::C);
4555 
4556   // Don't muddy up the IR with a ton of explicit annotations if
4557   // they'd just match what LLVM will infer from the triple.
4558   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4559   if (abiCC != getLLVMDefaultCC())
4560     RuntimeCC = abiCC;
4561 
4562   BuiltinCC = (getABIKind() == APCS ?
4563                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4564 }
4565 
4566 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4567                                             bool isVariadic) const {
4568   // 6.1.2.1 The following argument types are VFP CPRCs:
4569   //   A single-precision floating-point type (including promoted
4570   //   half-precision types); A double-precision floating-point type;
4571   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4572   //   with a Base Type of a single- or double-precision floating-point type,
4573   //   64-bit containerized vectors or 128-bit containerized vectors with one
4574   //   to four Elements.
4575   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4576 
4577   Ty = useFirstFieldIfTransparentUnion(Ty);
4578 
4579   // Handle illegal vector types here.
4580   if (isIllegalVectorType(Ty)) {
4581     uint64_t Size = getContext().getTypeSize(Ty);
4582     if (Size <= 32) {
4583       llvm::Type *ResType =
4584           llvm::Type::getInt32Ty(getVMContext());
4585       return ABIArgInfo::getDirect(ResType);
4586     }
4587     if (Size == 64) {
4588       llvm::Type *ResType = llvm::VectorType::get(
4589           llvm::Type::getInt32Ty(getVMContext()), 2);
4590       return ABIArgInfo::getDirect(ResType);
4591     }
4592     if (Size == 128) {
4593       llvm::Type *ResType = llvm::VectorType::get(
4594           llvm::Type::getInt32Ty(getVMContext()), 4);
4595       return ABIArgInfo::getDirect(ResType);
4596     }
4597     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4598   }
4599 
4600   if (!isAggregateTypeForABI(Ty)) {
4601     // Treat an enum type as its underlying type.
4602     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4603       Ty = EnumTy->getDecl()->getIntegerType();
4604     }
4605 
4606     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4607                                           : ABIArgInfo::getDirect());
4608   }
4609 
4610   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4611     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4612   }
4613 
4614   // Ignore empty records.
4615   if (isEmptyRecord(getContext(), Ty, true))
4616     return ABIArgInfo::getIgnore();
4617 
4618   if (IsEffectivelyAAPCS_VFP) {
4619     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4620     // into VFP registers.
4621     const Type *Base = nullptr;
4622     uint64_t Members = 0;
4623     if (isHomogeneousAggregate(Ty, Base, Members)) {
4624       assert(Base && "Base class should be set for homogeneous aggregate");
4625       // Base can be a floating-point or a vector.
4626       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4627     }
4628   }
4629 
4630   // Support byval for ARM.
4631   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4632   // most 8-byte. We realign the indirect argument if type alignment is bigger
4633   // than ABI alignment.
4634   uint64_t ABIAlign = 4;
4635   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4636   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4637       getABIKind() == ARMABIInfo::AAPCS)
4638     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4639   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4640     // Update Allocated GPRs. Since this is only used when the size of the
4641     // argument is greater than 64 bytes, this will always use up any available
4642     // registers (of which there are 4). We also don't care about getting the
4643     // alignment right, because general-purpose registers cannot be back-filled.
4644     return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
4645            /*Realign=*/TyAlign > ABIAlign);
4646   }
4647 
4648   // Otherwise, pass by coercing to a structure of the appropriate size.
4649   llvm::Type* ElemTy;
4650   unsigned SizeRegs;
4651   // FIXME: Try to match the types of the arguments more accurately where
4652   // we can.
4653   if (getContext().getTypeAlign(Ty) <= 32) {
4654     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4655     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4656   } else {
4657     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4658     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4659   }
4660 
4661   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4662 }
4663 
4664 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4665                               llvm::LLVMContext &VMContext) {
4666   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4667   // is called integer-like if its size is less than or equal to one word, and
4668   // the offset of each of its addressable sub-fields is zero.
4669 
4670   uint64_t Size = Context.getTypeSize(Ty);
4671 
4672   // Check that the type fits in a word.
4673   if (Size > 32)
4674     return false;
4675 
4676   // FIXME: Handle vector types!
4677   if (Ty->isVectorType())
4678     return false;
4679 
4680   // Float types are never treated as "integer like".
4681   if (Ty->isRealFloatingType())
4682     return false;
4683 
4684   // If this is a builtin or pointer type then it is ok.
4685   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4686     return true;
4687 
4688   // Small complex integer types are "integer like".
4689   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4690     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4691 
4692   // Single element and zero sized arrays should be allowed, by the definition
4693   // above, but they are not.
4694 
4695   // Otherwise, it must be a record type.
4696   const RecordType *RT = Ty->getAs<RecordType>();
4697   if (!RT) return false;
4698 
4699   // Ignore records with flexible arrays.
4700   const RecordDecl *RD = RT->getDecl();
4701   if (RD->hasFlexibleArrayMember())
4702     return false;
4703 
4704   // Check that all sub-fields are at offset 0, and are themselves "integer
4705   // like".
4706   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4707 
4708   bool HadField = false;
4709   unsigned idx = 0;
4710   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4711        i != e; ++i, ++idx) {
4712     const FieldDecl *FD = *i;
4713 
4714     // Bit-fields are not addressable, we only need to verify they are "integer
4715     // like". We still have to disallow a subsequent non-bitfield, for example:
4716     //   struct { int : 0; int x }
4717     // is non-integer like according to gcc.
4718     if (FD->isBitField()) {
4719       if (!RD->isUnion())
4720         HadField = true;
4721 
4722       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4723         return false;
4724 
4725       continue;
4726     }
4727 
4728     // Check if this field is at offset 0.
4729     if (Layout.getFieldOffset(idx) != 0)
4730       return false;
4731 
4732     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4733       return false;
4734 
4735     // Only allow at most one field in a structure. This doesn't match the
4736     // wording above, but follows gcc in situations with a field following an
4737     // empty structure.
4738     if (!RD->isUnion()) {
4739       if (HadField)
4740         return false;
4741 
4742       HadField = true;
4743     }
4744   }
4745 
4746   return true;
4747 }
4748 
4749 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4750                                           bool isVariadic) const {
4751   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4752 
4753   if (RetTy->isVoidType())
4754     return ABIArgInfo::getIgnore();
4755 
4756   // Large vector types should be returned via memory.
4757   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4758     return ABIArgInfo::getIndirect(0);
4759   }
4760 
4761   if (!isAggregateTypeForABI(RetTy)) {
4762     // Treat an enum type as its underlying type.
4763     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4764       RetTy = EnumTy->getDecl()->getIntegerType();
4765 
4766     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4767                                             : ABIArgInfo::getDirect();
4768   }
4769 
4770   // Are we following APCS?
4771   if (getABIKind() == APCS) {
4772     if (isEmptyRecord(getContext(), RetTy, false))
4773       return ABIArgInfo::getIgnore();
4774 
4775     // Complex types are all returned as packed integers.
4776     //
4777     // FIXME: Consider using 2 x vector types if the back end handles them
4778     // correctly.
4779     if (RetTy->isAnyComplexType())
4780       return ABIArgInfo::getDirect(llvm::IntegerType::get(
4781           getVMContext(), getContext().getTypeSize(RetTy)));
4782 
4783     // Integer like structures are returned in r0.
4784     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4785       // Return in the smallest viable integer type.
4786       uint64_t Size = getContext().getTypeSize(RetTy);
4787       if (Size <= 8)
4788         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4789       if (Size <= 16)
4790         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4791       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4792     }
4793 
4794     // Otherwise return in memory.
4795     return ABIArgInfo::getIndirect(0);
4796   }
4797 
4798   // Otherwise this is an AAPCS variant.
4799 
4800   if (isEmptyRecord(getContext(), RetTy, true))
4801     return ABIArgInfo::getIgnore();
4802 
4803   // Check for homogeneous aggregates with AAPCS-VFP.
4804   if (IsEffectivelyAAPCS_VFP) {
4805     const Type *Base = nullptr;
4806     uint64_t Members;
4807     if (isHomogeneousAggregate(RetTy, Base, Members)) {
4808       assert(Base && "Base class should be set for homogeneous aggregate");
4809       // Homogeneous Aggregates are returned directly.
4810       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4811     }
4812   }
4813 
4814   // Aggregates <= 4 bytes are returned in r0; other aggregates
4815   // are returned indirectly.
4816   uint64_t Size = getContext().getTypeSize(RetTy);
4817   if (Size <= 32) {
4818     if (getDataLayout().isBigEndian())
4819       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4820       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4821 
4822     // Return in the smallest viable integer type.
4823     if (Size <= 8)
4824       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4825     if (Size <= 16)
4826       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4827     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4828   }
4829 
4830   return ABIArgInfo::getIndirect(0);
4831 }
4832 
4833 /// isIllegalVector - check whether Ty is an illegal vector type.
4834 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4835   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4836     // Check whether VT is legal.
4837     unsigned NumElements = VT->getNumElements();
4838     uint64_t Size = getContext().getTypeSize(VT);
4839     // NumElements should be power of 2.
4840     if ((NumElements & (NumElements - 1)) != 0)
4841       return true;
4842     // Size should be greater than 32 bits.
4843     return Size <= 32;
4844   }
4845   return false;
4846 }
4847 
4848 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4849   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4850   // double, or 64-bit or 128-bit vectors.
4851   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4852     if (BT->getKind() == BuiltinType::Float ||
4853         BT->getKind() == BuiltinType::Double ||
4854         BT->getKind() == BuiltinType::LongDouble)
4855       return true;
4856   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4857     unsigned VecSize = getContext().getTypeSize(VT);
4858     if (VecSize == 64 || VecSize == 128)
4859       return true;
4860   }
4861   return false;
4862 }
4863 
4864 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4865                                                    uint64_t Members) const {
4866   return Members <= 4;
4867 }
4868 
4869 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4870                                    CodeGenFunction &CGF) const {
4871   llvm::Type *BP = CGF.Int8PtrTy;
4872   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4873 
4874   CGBuilderTy &Builder = CGF.Builder;
4875   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4876   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4877 
4878   if (isEmptyRecord(getContext(), Ty, true)) {
4879     // These are ignored for parameter passing purposes.
4880     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4881     return Builder.CreateBitCast(Addr, PTy);
4882   }
4883 
4884   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4885   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4886   bool IsIndirect = false;
4887 
4888   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4889   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4890   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4891       getABIKind() == ARMABIInfo::AAPCS)
4892     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4893   else
4894     TyAlign = 4;
4895   // Use indirect if size of the illegal vector is bigger than 16 bytes.
4896   if (isIllegalVectorType(Ty) && Size > 16) {
4897     IsIndirect = true;
4898     Size = 4;
4899     TyAlign = 4;
4900   }
4901 
4902   // Handle address alignment for ABI alignment > 4 bytes.
4903   if (TyAlign > 4) {
4904     assert((TyAlign & (TyAlign - 1)) == 0 &&
4905            "Alignment is not power of 2!");
4906     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
4907     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
4908     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
4909     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
4910   }
4911 
4912   uint64_t Offset =
4913     llvm::RoundUpToAlignment(Size, 4);
4914   llvm::Value *NextAddr =
4915     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4916                       "ap.next");
4917   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4918 
4919   if (IsIndirect)
4920     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4921   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
4922     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
4923     // may not be correctly aligned for the vector type. We create an aligned
4924     // temporary space and copy the content over from ap.cur to the temporary
4925     // space. This is necessary if the natural alignment of the type is greater
4926     // than the ABI alignment.
4927     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
4928     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
4929     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
4930                                                     "var.align");
4931     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
4932     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
4933     Builder.CreateMemCpy(Dst, Src,
4934         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
4935         TyAlign, false);
4936     Addr = AlignedTemp; //The content is in aligned location.
4937   }
4938   llvm::Type *PTy =
4939     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4940   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4941 
4942   return AddrTyped;
4943 }
4944 
4945 //===----------------------------------------------------------------------===//
4946 // NVPTX ABI Implementation
4947 //===----------------------------------------------------------------------===//
4948 
4949 namespace {
4950 
4951 class NVPTXABIInfo : public ABIInfo {
4952 public:
4953   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4954 
4955   ABIArgInfo classifyReturnType(QualType RetTy) const;
4956   ABIArgInfo classifyArgumentType(QualType Ty) const;
4957 
4958   void computeInfo(CGFunctionInfo &FI) const override;
4959   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4960                          CodeGenFunction &CFG) const override;
4961 };
4962 
4963 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4964 public:
4965   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4966     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4967 
4968   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4969                            CodeGen::CodeGenModule &M) const override;
4970 private:
4971   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
4972   // resulting MDNode to the nvvm.annotations MDNode.
4973   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
4974 };
4975 
4976 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4977   if (RetTy->isVoidType())
4978     return ABIArgInfo::getIgnore();
4979 
4980   // note: this is different from default ABI
4981   if (!RetTy->isScalarType())
4982     return ABIArgInfo::getDirect();
4983 
4984   // Treat an enum type as its underlying type.
4985   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4986     RetTy = EnumTy->getDecl()->getIntegerType();
4987 
4988   return (RetTy->isPromotableIntegerType() ?
4989           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4990 }
4991 
4992 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4993   // Treat an enum type as its underlying type.
4994   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4995     Ty = EnumTy->getDecl()->getIntegerType();
4996 
4997   // Return aggregates type as indirect by value
4998   if (isAggregateTypeForABI(Ty))
4999     return ABIArgInfo::getIndirect(0, /* byval */ true);
5000 
5001   return (Ty->isPromotableIntegerType() ?
5002           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5003 }
5004 
5005 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5006   if (!getCXXABI().classifyReturnType(FI))
5007     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5008   for (auto &I : FI.arguments())
5009     I.info = classifyArgumentType(I.type);
5010 
5011   // Always honor user-specified calling convention.
5012   if (FI.getCallingConvention() != llvm::CallingConv::C)
5013     return;
5014 
5015   FI.setEffectiveCallingConvention(getRuntimeCC());
5016 }
5017 
5018 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5019                                      CodeGenFunction &CFG) const {
5020   llvm_unreachable("NVPTX does not support varargs");
5021 }
5022 
5023 void NVPTXTargetCodeGenInfo::
5024 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5025                     CodeGen::CodeGenModule &M) const{
5026   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5027   if (!FD) return;
5028 
5029   llvm::Function *F = cast<llvm::Function>(GV);
5030 
5031   // Perform special handling in OpenCL mode
5032   if (M.getLangOpts().OpenCL) {
5033     // Use OpenCL function attributes to check for kernel functions
5034     // By default, all functions are device functions
5035     if (FD->hasAttr<OpenCLKernelAttr>()) {
5036       // OpenCL __kernel functions get kernel metadata
5037       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5038       addNVVMMetadata(F, "kernel", 1);
5039       // And kernel functions are not subject to inlining
5040       F->addFnAttr(llvm::Attribute::NoInline);
5041     }
5042   }
5043 
5044   // Perform special handling in CUDA mode.
5045   if (M.getLangOpts().CUDA) {
5046     // CUDA __global__ functions get a kernel metadata entry.  Since
5047     // __global__ functions cannot be called from the device, we do not
5048     // need to set the noinline attribute.
5049     if (FD->hasAttr<CUDAGlobalAttr>()) {
5050       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5051       addNVVMMetadata(F, "kernel", 1);
5052     }
5053     if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
5054       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5055       addNVVMMetadata(F, "maxntidx",
5056                       FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
5057       // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
5058       // zero value from getMinBlocks either means it was not specified in
5059       // __launch_bounds__ or the user specified a 0 value. In both cases, we
5060       // don't have to add a PTX directive.
5061       int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
5062       if (MinCTASM > 0) {
5063         // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5064         addNVVMMetadata(F, "minctasm", MinCTASM);
5065       }
5066     }
5067   }
5068 }
5069 
5070 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5071                                              int Operand) {
5072   llvm::Module *M = F->getParent();
5073   llvm::LLVMContext &Ctx = M->getContext();
5074 
5075   // Get "nvvm.annotations" metadata node
5076   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5077 
5078   llvm::Metadata *MDVals[] = {
5079       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5080       llvm::ConstantAsMetadata::get(
5081           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5082   // Append metadata to nvvm.annotations
5083   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5084 }
5085 }
5086 
5087 //===----------------------------------------------------------------------===//
5088 // SystemZ ABI Implementation
5089 //===----------------------------------------------------------------------===//
5090 
5091 namespace {
5092 
5093 class SystemZABIInfo : public ABIInfo {
5094 public:
5095   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5096 
5097   bool isPromotableIntegerType(QualType Ty) const;
5098   bool isCompoundType(QualType Ty) const;
5099   bool isFPArgumentType(QualType Ty) const;
5100 
5101   ABIArgInfo classifyReturnType(QualType RetTy) const;
5102   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5103 
5104   void computeInfo(CGFunctionInfo &FI) const override {
5105     if (!getCXXABI().classifyReturnType(FI))
5106       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5107     for (auto &I : FI.arguments())
5108       I.info = classifyArgumentType(I.type);
5109   }
5110 
5111   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5112                          CodeGenFunction &CGF) const override;
5113 };
5114 
5115 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5116 public:
5117   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
5118     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
5119 };
5120 
5121 }
5122 
5123 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5124   // Treat an enum type as its underlying type.
5125   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5126     Ty = EnumTy->getDecl()->getIntegerType();
5127 
5128   // Promotable integer types are required to be promoted by the ABI.
5129   if (Ty->isPromotableIntegerType())
5130     return true;
5131 
5132   // 32-bit values must also be promoted.
5133   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5134     switch (BT->getKind()) {
5135     case BuiltinType::Int:
5136     case BuiltinType::UInt:
5137       return true;
5138     default:
5139       return false;
5140     }
5141   return false;
5142 }
5143 
5144 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5145   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
5146 }
5147 
5148 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5149   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5150     switch (BT->getKind()) {
5151     case BuiltinType::Float:
5152     case BuiltinType::Double:
5153       return true;
5154     default:
5155       return false;
5156     }
5157 
5158   if (const RecordType *RT = Ty->getAsStructureType()) {
5159     const RecordDecl *RD = RT->getDecl();
5160     bool Found = false;
5161 
5162     // If this is a C++ record, check the bases first.
5163     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5164       for (const auto &I : CXXRD->bases()) {
5165         QualType Base = I.getType();
5166 
5167         // Empty bases don't affect things either way.
5168         if (isEmptyRecord(getContext(), Base, true))
5169           continue;
5170 
5171         if (Found)
5172           return false;
5173         Found = isFPArgumentType(Base);
5174         if (!Found)
5175           return false;
5176       }
5177 
5178     // Check the fields.
5179     for (const auto *FD : RD->fields()) {
5180       // Empty bitfields don't affect things either way.
5181       // Unlike isSingleElementStruct(), empty structure and array fields
5182       // do count.  So do anonymous bitfields that aren't zero-sized.
5183       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5184         return true;
5185 
5186       // Unlike isSingleElementStruct(), arrays do not count.
5187       // Nested isFPArgumentType structures still do though.
5188       if (Found)
5189         return false;
5190       Found = isFPArgumentType(FD->getType());
5191       if (!Found)
5192         return false;
5193     }
5194 
5195     // Unlike isSingleElementStruct(), trailing padding is allowed.
5196     // An 8-byte aligned struct s { float f; } is passed as a double.
5197     return Found;
5198   }
5199 
5200   return false;
5201 }
5202 
5203 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5204                                        CodeGenFunction &CGF) const {
5205   // Assume that va_list type is correct; should be pointer to LLVM type:
5206   // struct {
5207   //   i64 __gpr;
5208   //   i64 __fpr;
5209   //   i8 *__overflow_arg_area;
5210   //   i8 *__reg_save_area;
5211   // };
5212 
5213   // Every argument occupies 8 bytes and is passed by preference in either
5214   // GPRs or FPRs.
5215   Ty = CGF.getContext().getCanonicalType(Ty);
5216   ABIArgInfo AI = classifyArgumentType(Ty);
5217   bool InFPRs = isFPArgumentType(Ty);
5218 
5219   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
5220   bool IsIndirect = AI.isIndirect();
5221   unsigned UnpaddedBitSize;
5222   if (IsIndirect) {
5223     APTy = llvm::PointerType::getUnqual(APTy);
5224     UnpaddedBitSize = 64;
5225   } else
5226     UnpaddedBitSize = getContext().getTypeSize(Ty);
5227   unsigned PaddedBitSize = 64;
5228   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5229 
5230   unsigned PaddedSize = PaddedBitSize / 8;
5231   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5232 
5233   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5234   if (InFPRs) {
5235     MaxRegs = 4; // Maximum of 4 FPR arguments
5236     RegCountField = 1; // __fpr
5237     RegSaveIndex = 16; // save offset for f0
5238     RegPadding = 0; // floats are passed in the high bits of an FPR
5239   } else {
5240     MaxRegs = 5; // Maximum of 5 GPR arguments
5241     RegCountField = 0; // __gpr
5242     RegSaveIndex = 2; // save offset for r2
5243     RegPadding = Padding; // values are passed in the low bits of a GPR
5244   }
5245 
5246   llvm::Value *RegCountPtr =
5247     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
5248   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5249   llvm::Type *IndexTy = RegCount->getType();
5250   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5251   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5252                                                  "fits_in_regs");
5253 
5254   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5255   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5256   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5257   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5258 
5259   // Emit code to load the value if it was passed in registers.
5260   CGF.EmitBlock(InRegBlock);
5261 
5262   // Work out the address of an argument register.
5263   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5264   llvm::Value *ScaledRegCount =
5265     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5266   llvm::Value *RegBase =
5267     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5268   llvm::Value *RegOffset =
5269     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5270   llvm::Value *RegSaveAreaPtr =
5271     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
5272   llvm::Value *RegSaveArea =
5273     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5274   llvm::Value *RawRegAddr =
5275     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5276   llvm::Value *RegAddr =
5277     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5278 
5279   // Update the register count
5280   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5281   llvm::Value *NewRegCount =
5282     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5283   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5284   CGF.EmitBranch(ContBlock);
5285 
5286   // Emit code to load the value if it was passed in memory.
5287   CGF.EmitBlock(InMemBlock);
5288 
5289   // Work out the address of a stack argument.
5290   llvm::Value *OverflowArgAreaPtr =
5291     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
5292   llvm::Value *OverflowArgArea =
5293     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5294   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5295   llvm::Value *RawMemAddr =
5296     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5297   llvm::Value *MemAddr =
5298     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5299 
5300   // Update overflow_arg_area_ptr pointer
5301   llvm::Value *NewOverflowArgArea =
5302     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5303   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5304   CGF.EmitBranch(ContBlock);
5305 
5306   // Return the appropriate result.
5307   CGF.EmitBlock(ContBlock);
5308   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5309   ResAddr->addIncoming(RegAddr, InRegBlock);
5310   ResAddr->addIncoming(MemAddr, InMemBlock);
5311 
5312   if (IsIndirect)
5313     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5314 
5315   return ResAddr;
5316 }
5317 
5318 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5319   if (RetTy->isVoidType())
5320     return ABIArgInfo::getIgnore();
5321   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5322     return ABIArgInfo::getIndirect(0);
5323   return (isPromotableIntegerType(RetTy) ?
5324           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5325 }
5326 
5327 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5328   // Handle the generic C++ ABI.
5329   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5330     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5331 
5332   // Integers and enums are extended to full register width.
5333   if (isPromotableIntegerType(Ty))
5334     return ABIArgInfo::getExtend();
5335 
5336   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5337   uint64_t Size = getContext().getTypeSize(Ty);
5338   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5339     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5340 
5341   // Handle small structures.
5342   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5343     // Structures with flexible arrays have variable length, so really
5344     // fail the size test above.
5345     const RecordDecl *RD = RT->getDecl();
5346     if (RD->hasFlexibleArrayMember())
5347       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5348 
5349     // The structure is passed as an unextended integer, a float, or a double.
5350     llvm::Type *PassTy;
5351     if (isFPArgumentType(Ty)) {
5352       assert(Size == 32 || Size == 64);
5353       if (Size == 32)
5354         PassTy = llvm::Type::getFloatTy(getVMContext());
5355       else
5356         PassTy = llvm::Type::getDoubleTy(getVMContext());
5357     } else
5358       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5359     return ABIArgInfo::getDirect(PassTy);
5360   }
5361 
5362   // Non-structure compounds are passed indirectly.
5363   if (isCompoundType(Ty))
5364     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5365 
5366   return ABIArgInfo::getDirect(nullptr);
5367 }
5368 
5369 //===----------------------------------------------------------------------===//
5370 // MSP430 ABI Implementation
5371 //===----------------------------------------------------------------------===//
5372 
5373 namespace {
5374 
5375 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5376 public:
5377   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5378     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5379   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5380                            CodeGen::CodeGenModule &M) const override;
5381 };
5382 
5383 }
5384 
5385 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5386                                                   llvm::GlobalValue *GV,
5387                                              CodeGen::CodeGenModule &M) const {
5388   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5389     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5390       // Handle 'interrupt' attribute:
5391       llvm::Function *F = cast<llvm::Function>(GV);
5392 
5393       // Step 1: Set ISR calling convention.
5394       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5395 
5396       // Step 2: Add attributes goodness.
5397       F->addFnAttr(llvm::Attribute::NoInline);
5398 
5399       // Step 3: Emit ISR vector alias.
5400       unsigned Num = attr->getNumber() / 2;
5401       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5402                                 "__isr_" + Twine(Num), F);
5403     }
5404   }
5405 }
5406 
5407 //===----------------------------------------------------------------------===//
5408 // MIPS ABI Implementation.  This works for both little-endian and
5409 // big-endian variants.
5410 //===----------------------------------------------------------------------===//
5411 
5412 namespace {
5413 class MipsABIInfo : public ABIInfo {
5414   bool IsO32;
5415   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5416   void CoerceToIntArgs(uint64_t TySize,
5417                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5418   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5419   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5420   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5421 public:
5422   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5423     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5424     StackAlignInBytes(IsO32 ? 8 : 16) {}
5425 
5426   ABIArgInfo classifyReturnType(QualType RetTy) const;
5427   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5428   void computeInfo(CGFunctionInfo &FI) const override;
5429   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5430                          CodeGenFunction &CGF) const override;
5431 };
5432 
5433 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5434   unsigned SizeOfUnwindException;
5435 public:
5436   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5437     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5438       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5439 
5440   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5441     return 29;
5442   }
5443 
5444   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5445                            CodeGen::CodeGenModule &CGM) const override {
5446     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5447     if (!FD) return;
5448     llvm::Function *Fn = cast<llvm::Function>(GV);
5449     if (FD->hasAttr<Mips16Attr>()) {
5450       Fn->addFnAttr("mips16");
5451     }
5452     else if (FD->hasAttr<NoMips16Attr>()) {
5453       Fn->addFnAttr("nomips16");
5454     }
5455   }
5456 
5457   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5458                                llvm::Value *Address) const override;
5459 
5460   unsigned getSizeOfUnwindException() const override {
5461     return SizeOfUnwindException;
5462   }
5463 };
5464 }
5465 
5466 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5467                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
5468   llvm::IntegerType *IntTy =
5469     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5470 
5471   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5472   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5473     ArgList.push_back(IntTy);
5474 
5475   // If necessary, add one more integer type to ArgList.
5476   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5477 
5478   if (R)
5479     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5480 }
5481 
5482 // In N32/64, an aligned double precision floating point field is passed in
5483 // a register.
5484 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5485   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5486 
5487   if (IsO32) {
5488     CoerceToIntArgs(TySize, ArgList);
5489     return llvm::StructType::get(getVMContext(), ArgList);
5490   }
5491 
5492   if (Ty->isComplexType())
5493     return CGT.ConvertType(Ty);
5494 
5495   const RecordType *RT = Ty->getAs<RecordType>();
5496 
5497   // Unions/vectors are passed in integer registers.
5498   if (!RT || !RT->isStructureOrClassType()) {
5499     CoerceToIntArgs(TySize, ArgList);
5500     return llvm::StructType::get(getVMContext(), ArgList);
5501   }
5502 
5503   const RecordDecl *RD = RT->getDecl();
5504   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5505   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5506 
5507   uint64_t LastOffset = 0;
5508   unsigned idx = 0;
5509   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5510 
5511   // Iterate over fields in the struct/class and check if there are any aligned
5512   // double fields.
5513   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5514        i != e; ++i, ++idx) {
5515     const QualType Ty = i->getType();
5516     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5517 
5518     if (!BT || BT->getKind() != BuiltinType::Double)
5519       continue;
5520 
5521     uint64_t Offset = Layout.getFieldOffset(idx);
5522     if (Offset % 64) // Ignore doubles that are not aligned.
5523       continue;
5524 
5525     // Add ((Offset - LastOffset) / 64) args of type i64.
5526     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5527       ArgList.push_back(I64);
5528 
5529     // Add double type.
5530     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5531     LastOffset = Offset + 64;
5532   }
5533 
5534   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5535   ArgList.append(IntArgList.begin(), IntArgList.end());
5536 
5537   return llvm::StructType::get(getVMContext(), ArgList);
5538 }
5539 
5540 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5541                                         uint64_t Offset) const {
5542   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5543     return nullptr;
5544 
5545   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5546 }
5547 
5548 ABIArgInfo
5549 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5550   Ty = useFirstFieldIfTransparentUnion(Ty);
5551 
5552   uint64_t OrigOffset = Offset;
5553   uint64_t TySize = getContext().getTypeSize(Ty);
5554   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5555 
5556   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5557                    (uint64_t)StackAlignInBytes);
5558   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5559   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5560 
5561   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5562     // Ignore empty aggregates.
5563     if (TySize == 0)
5564       return ABIArgInfo::getIgnore();
5565 
5566     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5567       Offset = OrigOffset + MinABIStackAlignInBytes;
5568       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5569     }
5570 
5571     // If we have reached here, aggregates are passed directly by coercing to
5572     // another structure type. Padding is inserted if the offset of the
5573     // aggregate is unaligned.
5574     ABIArgInfo ArgInfo =
5575         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5576                               getPaddingType(OrigOffset, CurrOffset));
5577     ArgInfo.setInReg(true);
5578     return ArgInfo;
5579   }
5580 
5581   // Treat an enum type as its underlying type.
5582   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5583     Ty = EnumTy->getDecl()->getIntegerType();
5584 
5585   // All integral types are promoted to the GPR width.
5586   if (Ty->isIntegralOrEnumerationType())
5587     return ABIArgInfo::getExtend();
5588 
5589   return ABIArgInfo::getDirect(
5590       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5591 }
5592 
5593 llvm::Type*
5594 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5595   const RecordType *RT = RetTy->getAs<RecordType>();
5596   SmallVector<llvm::Type*, 8> RTList;
5597 
5598   if (RT && RT->isStructureOrClassType()) {
5599     const RecordDecl *RD = RT->getDecl();
5600     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5601     unsigned FieldCnt = Layout.getFieldCount();
5602 
5603     // N32/64 returns struct/classes in floating point registers if the
5604     // following conditions are met:
5605     // 1. The size of the struct/class is no larger than 128-bit.
5606     // 2. The struct/class has one or two fields all of which are floating
5607     //    point types.
5608     // 3. The offset of the first field is zero (this follows what gcc does).
5609     //
5610     // Any other composite results are returned in integer registers.
5611     //
5612     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5613       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5614       for (; b != e; ++b) {
5615         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5616 
5617         if (!BT || !BT->isFloatingPoint())
5618           break;
5619 
5620         RTList.push_back(CGT.ConvertType(b->getType()));
5621       }
5622 
5623       if (b == e)
5624         return llvm::StructType::get(getVMContext(), RTList,
5625                                      RD->hasAttr<PackedAttr>());
5626 
5627       RTList.clear();
5628     }
5629   }
5630 
5631   CoerceToIntArgs(Size, RTList);
5632   return llvm::StructType::get(getVMContext(), RTList);
5633 }
5634 
5635 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5636   uint64_t Size = getContext().getTypeSize(RetTy);
5637 
5638   if (RetTy->isVoidType())
5639     return ABIArgInfo::getIgnore();
5640 
5641   // O32 doesn't treat zero-sized structs differently from other structs.
5642   // However, N32/N64 ignores zero sized return values.
5643   if (!IsO32 && Size == 0)
5644     return ABIArgInfo::getIgnore();
5645 
5646   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5647     if (Size <= 128) {
5648       if (RetTy->isAnyComplexType())
5649         return ABIArgInfo::getDirect();
5650 
5651       // O32 returns integer vectors in registers and N32/N64 returns all small
5652       // aggregates in registers.
5653       if (!IsO32 ||
5654           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5655         ABIArgInfo ArgInfo =
5656             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5657         ArgInfo.setInReg(true);
5658         return ArgInfo;
5659       }
5660     }
5661 
5662     return ABIArgInfo::getIndirect(0);
5663   }
5664 
5665   // Treat an enum type as its underlying type.
5666   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5667     RetTy = EnumTy->getDecl()->getIntegerType();
5668 
5669   return (RetTy->isPromotableIntegerType() ?
5670           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5671 }
5672 
5673 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5674   ABIArgInfo &RetInfo = FI.getReturnInfo();
5675   if (!getCXXABI().classifyReturnType(FI))
5676     RetInfo = classifyReturnType(FI.getReturnType());
5677 
5678   // Check if a pointer to an aggregate is passed as a hidden argument.
5679   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5680 
5681   for (auto &I : FI.arguments())
5682     I.info = classifyArgumentType(I.type, Offset);
5683 }
5684 
5685 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5686                                     CodeGenFunction &CGF) const {
5687   llvm::Type *BP = CGF.Int8PtrTy;
5688   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5689 
5690   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5691   // Pointers are also promoted in the same way but this only matters for N32.
5692   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5693   unsigned PtrWidth = getTarget().getPointerWidth(0);
5694   if ((Ty->isIntegerType() &&
5695           CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5696       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5697     Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5698                                                 Ty->isSignedIntegerType());
5699   }
5700 
5701   CGBuilderTy &Builder = CGF.Builder;
5702   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5703   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5704   int64_t TypeAlign =
5705       std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5706   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5707   llvm::Value *AddrTyped;
5708   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5709 
5710   if (TypeAlign > MinABIStackAlignInBytes) {
5711     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5712     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5713     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5714     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5715     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5716     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5717   }
5718   else
5719     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5720 
5721   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5722   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5723   unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5724   uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5725   llvm::Value *NextAddr =
5726     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5727                       "ap.next");
5728   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5729 
5730   return AddrTyped;
5731 }
5732 
5733 bool
5734 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5735                                                llvm::Value *Address) const {
5736   // This information comes from gcc's implementation, which seems to
5737   // as canonical as it gets.
5738 
5739   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5740   // are aliased to pairs of single-precision FP registers.
5741   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5742 
5743   // 0-31 are the general purpose registers, $0 - $31.
5744   // 32-63 are the floating-point registers, $f0 - $f31.
5745   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5746   // 66 is the (notional, I think) register for signal-handler return.
5747   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5748 
5749   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5750   // They are one bit wide and ignored here.
5751 
5752   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5753   // (coprocessor 1 is the FP unit)
5754   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5755   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5756   // 176-181 are the DSP accumulator registers.
5757   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5758   return false;
5759 }
5760 
5761 //===----------------------------------------------------------------------===//
5762 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5763 // Currently subclassed only to implement custom OpenCL C function attribute
5764 // handling.
5765 //===----------------------------------------------------------------------===//
5766 
5767 namespace {
5768 
5769 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5770 public:
5771   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5772     : DefaultTargetCodeGenInfo(CGT) {}
5773 
5774   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5775                            CodeGen::CodeGenModule &M) const override;
5776 };
5777 
5778 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5779                                                llvm::GlobalValue *GV,
5780                                                CodeGen::CodeGenModule &M) const {
5781   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5782   if (!FD) return;
5783 
5784   llvm::Function *F = cast<llvm::Function>(GV);
5785 
5786   if (M.getLangOpts().OpenCL) {
5787     if (FD->hasAttr<OpenCLKernelAttr>()) {
5788       // OpenCL C Kernel functions are not subject to inlining
5789       F->addFnAttr(llvm::Attribute::NoInline);
5790       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5791       if (Attr) {
5792         // Convert the reqd_work_group_size() attributes to metadata.
5793         llvm::LLVMContext &Context = F->getContext();
5794         llvm::NamedMDNode *OpenCLMetadata =
5795             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5796 
5797         SmallVector<llvm::Metadata *, 5> Operands;
5798         Operands.push_back(llvm::ConstantAsMetadata::get(F));
5799 
5800         Operands.push_back(
5801             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5802                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5803         Operands.push_back(
5804             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5805                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5806         Operands.push_back(
5807             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5808                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5809 
5810         // Add a boolean constant operand for "required" (true) or "hint" (false)
5811         // for implementing the work_group_size_hint attr later. Currently
5812         // always true as the hint is not yet implemented.
5813         Operands.push_back(
5814             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5815         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5816       }
5817     }
5818   }
5819 }
5820 
5821 }
5822 
5823 //===----------------------------------------------------------------------===//
5824 // Hexagon ABI Implementation
5825 //===----------------------------------------------------------------------===//
5826 
5827 namespace {
5828 
5829 class HexagonABIInfo : public ABIInfo {
5830 
5831 
5832 public:
5833   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5834 
5835 private:
5836 
5837   ABIArgInfo classifyReturnType(QualType RetTy) const;
5838   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5839 
5840   void computeInfo(CGFunctionInfo &FI) const override;
5841 
5842   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5843                          CodeGenFunction &CGF) const override;
5844 };
5845 
5846 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5847 public:
5848   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5849     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5850 
5851   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5852     return 29;
5853   }
5854 };
5855 
5856 }
5857 
5858 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5859   if (!getCXXABI().classifyReturnType(FI))
5860     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5861   for (auto &I : FI.arguments())
5862     I.info = classifyArgumentType(I.type);
5863 }
5864 
5865 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5866   if (!isAggregateTypeForABI(Ty)) {
5867     // Treat an enum type as its underlying type.
5868     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5869       Ty = EnumTy->getDecl()->getIntegerType();
5870 
5871     return (Ty->isPromotableIntegerType() ?
5872             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5873   }
5874 
5875   // Ignore empty records.
5876   if (isEmptyRecord(getContext(), Ty, true))
5877     return ABIArgInfo::getIgnore();
5878 
5879   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5880     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5881 
5882   uint64_t Size = getContext().getTypeSize(Ty);
5883   if (Size > 64)
5884     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5885     // Pass in the smallest viable integer type.
5886   else if (Size > 32)
5887       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5888   else if (Size > 16)
5889       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5890   else if (Size > 8)
5891       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5892   else
5893       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5894 }
5895 
5896 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5897   if (RetTy->isVoidType())
5898     return ABIArgInfo::getIgnore();
5899 
5900   // Large vector types should be returned via memory.
5901   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5902     return ABIArgInfo::getIndirect(0);
5903 
5904   if (!isAggregateTypeForABI(RetTy)) {
5905     // Treat an enum type as its underlying type.
5906     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5907       RetTy = EnumTy->getDecl()->getIntegerType();
5908 
5909     return (RetTy->isPromotableIntegerType() ?
5910             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5911   }
5912 
5913   if (isEmptyRecord(getContext(), RetTy, true))
5914     return ABIArgInfo::getIgnore();
5915 
5916   // Aggregates <= 8 bytes are returned in r0; other aggregates
5917   // are returned indirectly.
5918   uint64_t Size = getContext().getTypeSize(RetTy);
5919   if (Size <= 64) {
5920     // Return in the smallest viable integer type.
5921     if (Size <= 8)
5922       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5923     if (Size <= 16)
5924       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5925     if (Size <= 32)
5926       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5927     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5928   }
5929 
5930   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5931 }
5932 
5933 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5934                                        CodeGenFunction &CGF) const {
5935   // FIXME: Need to handle alignment
5936   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5937 
5938   CGBuilderTy &Builder = CGF.Builder;
5939   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5940                                                        "ap");
5941   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5942   llvm::Type *PTy =
5943     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5944   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5945 
5946   uint64_t Offset =
5947     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5948   llvm::Value *NextAddr =
5949     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5950                       "ap.next");
5951   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5952 
5953   return AddrTyped;
5954 }
5955 
5956 //===----------------------------------------------------------------------===//
5957 // AMDGPU ABI Implementation
5958 //===----------------------------------------------------------------------===//
5959 
5960 namespace {
5961 
5962 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
5963 public:
5964   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
5965     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5966   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5967                            CodeGen::CodeGenModule &M) const override;
5968 };
5969 
5970 }
5971 
5972 void AMDGPUTargetCodeGenInfo::SetTargetAttributes(
5973   const Decl *D,
5974   llvm::GlobalValue *GV,
5975   CodeGen::CodeGenModule &M) const {
5976   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5977   if (!FD)
5978     return;
5979 
5980   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
5981     llvm::Function *F = cast<llvm::Function>(GV);
5982     uint32_t NumVGPR = Attr->getNumVGPR();
5983     if (NumVGPR != 0)
5984       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
5985   }
5986 
5987   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
5988     llvm::Function *F = cast<llvm::Function>(GV);
5989     unsigned NumSGPR = Attr->getNumSGPR();
5990     if (NumSGPR != 0)
5991       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
5992   }
5993 }
5994 
5995 
5996 //===----------------------------------------------------------------------===//
5997 // SPARC v9 ABI Implementation.
5998 // Based on the SPARC Compliance Definition version 2.4.1.
5999 //
6000 // Function arguments a mapped to a nominal "parameter array" and promoted to
6001 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6002 // the array, structs larger than 16 bytes are passed indirectly.
6003 //
6004 // One case requires special care:
6005 //
6006 //   struct mixed {
6007 //     int i;
6008 //     float f;
6009 //   };
6010 //
6011 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6012 // parameter array, but the int is passed in an integer register, and the float
6013 // is passed in a floating point register. This is represented as two arguments
6014 // with the LLVM IR inreg attribute:
6015 //
6016 //   declare void f(i32 inreg %i, float inreg %f)
6017 //
6018 // The code generator will only allocate 4 bytes from the parameter array for
6019 // the inreg arguments. All other arguments are allocated a multiple of 8
6020 // bytes.
6021 //
6022 namespace {
6023 class SparcV9ABIInfo : public ABIInfo {
6024 public:
6025   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6026 
6027 private:
6028   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6029   void computeInfo(CGFunctionInfo &FI) const override;
6030   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6031                          CodeGenFunction &CGF) const override;
6032 
6033   // Coercion type builder for structs passed in registers. The coercion type
6034   // serves two purposes:
6035   //
6036   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6037   //    in registers.
6038   // 2. Expose aligned floating point elements as first-level elements, so the
6039   //    code generator knows to pass them in floating point registers.
6040   //
6041   // We also compute the InReg flag which indicates that the struct contains
6042   // aligned 32-bit floats.
6043   //
6044   struct CoerceBuilder {
6045     llvm::LLVMContext &Context;
6046     const llvm::DataLayout &DL;
6047     SmallVector<llvm::Type*, 8> Elems;
6048     uint64_t Size;
6049     bool InReg;
6050 
6051     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6052       : Context(c), DL(dl), Size(0), InReg(false) {}
6053 
6054     // Pad Elems with integers until Size is ToSize.
6055     void pad(uint64_t ToSize) {
6056       assert(ToSize >= Size && "Cannot remove elements");
6057       if (ToSize == Size)
6058         return;
6059 
6060       // Finish the current 64-bit word.
6061       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6062       if (Aligned > Size && Aligned <= ToSize) {
6063         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6064         Size = Aligned;
6065       }
6066 
6067       // Add whole 64-bit words.
6068       while (Size + 64 <= ToSize) {
6069         Elems.push_back(llvm::Type::getInt64Ty(Context));
6070         Size += 64;
6071       }
6072 
6073       // Final in-word padding.
6074       if (Size < ToSize) {
6075         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6076         Size = ToSize;
6077       }
6078     }
6079 
6080     // Add a floating point element at Offset.
6081     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6082       // Unaligned floats are treated as integers.
6083       if (Offset % Bits)
6084         return;
6085       // The InReg flag is only required if there are any floats < 64 bits.
6086       if (Bits < 64)
6087         InReg = true;
6088       pad(Offset);
6089       Elems.push_back(Ty);
6090       Size = Offset + Bits;
6091     }
6092 
6093     // Add a struct type to the coercion type, starting at Offset (in bits).
6094     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6095       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6096       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6097         llvm::Type *ElemTy = StrTy->getElementType(i);
6098         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6099         switch (ElemTy->getTypeID()) {
6100         case llvm::Type::StructTyID:
6101           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6102           break;
6103         case llvm::Type::FloatTyID:
6104           addFloat(ElemOffset, ElemTy, 32);
6105           break;
6106         case llvm::Type::DoubleTyID:
6107           addFloat(ElemOffset, ElemTy, 64);
6108           break;
6109         case llvm::Type::FP128TyID:
6110           addFloat(ElemOffset, ElemTy, 128);
6111           break;
6112         case llvm::Type::PointerTyID:
6113           if (ElemOffset % 64 == 0) {
6114             pad(ElemOffset);
6115             Elems.push_back(ElemTy);
6116             Size += 64;
6117           }
6118           break;
6119         default:
6120           break;
6121         }
6122       }
6123     }
6124 
6125     // Check if Ty is a usable substitute for the coercion type.
6126     bool isUsableType(llvm::StructType *Ty) const {
6127       return llvm::makeArrayRef(Elems) == Ty->elements();
6128     }
6129 
6130     // Get the coercion type as a literal struct type.
6131     llvm::Type *getType() const {
6132       if (Elems.size() == 1)
6133         return Elems.front();
6134       else
6135         return llvm::StructType::get(Context, Elems);
6136     }
6137   };
6138 };
6139 } // end anonymous namespace
6140 
6141 ABIArgInfo
6142 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6143   if (Ty->isVoidType())
6144     return ABIArgInfo::getIgnore();
6145 
6146   uint64_t Size = getContext().getTypeSize(Ty);
6147 
6148   // Anything too big to fit in registers is passed with an explicit indirect
6149   // pointer / sret pointer.
6150   if (Size > SizeLimit)
6151     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6152 
6153   // Treat an enum type as its underlying type.
6154   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6155     Ty = EnumTy->getDecl()->getIntegerType();
6156 
6157   // Integer types smaller than a register are extended.
6158   if (Size < 64 && Ty->isIntegerType())
6159     return ABIArgInfo::getExtend();
6160 
6161   // Other non-aggregates go in registers.
6162   if (!isAggregateTypeForABI(Ty))
6163     return ABIArgInfo::getDirect();
6164 
6165   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6166   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6167   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6168     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6169 
6170   // This is a small aggregate type that should be passed in registers.
6171   // Build a coercion type from the LLVM struct type.
6172   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6173   if (!StrTy)
6174     return ABIArgInfo::getDirect();
6175 
6176   CoerceBuilder CB(getVMContext(), getDataLayout());
6177   CB.addStruct(0, StrTy);
6178   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6179 
6180   // Try to use the original type for coercion.
6181   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6182 
6183   if (CB.InReg)
6184     return ABIArgInfo::getDirectInReg(CoerceTy);
6185   else
6186     return ABIArgInfo::getDirect(CoerceTy);
6187 }
6188 
6189 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6190                                        CodeGenFunction &CGF) const {
6191   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6192   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6193   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6194     AI.setCoerceToType(ArgTy);
6195 
6196   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6197   CGBuilderTy &Builder = CGF.Builder;
6198   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6199   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6200   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6201   llvm::Value *ArgAddr;
6202   unsigned Stride;
6203 
6204   switch (AI.getKind()) {
6205   case ABIArgInfo::Expand:
6206   case ABIArgInfo::InAlloca:
6207     llvm_unreachable("Unsupported ABI kind for va_arg");
6208 
6209   case ABIArgInfo::Extend:
6210     Stride = 8;
6211     ArgAddr = Builder
6212       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6213                           "extend");
6214     break;
6215 
6216   case ABIArgInfo::Direct:
6217     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6218     ArgAddr = Addr;
6219     break;
6220 
6221   case ABIArgInfo::Indirect:
6222     Stride = 8;
6223     ArgAddr = Builder.CreateBitCast(Addr,
6224                                     llvm::PointerType::getUnqual(ArgPtrTy),
6225                                     "indirect");
6226     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6227     break;
6228 
6229   case ABIArgInfo::Ignore:
6230     return llvm::UndefValue::get(ArgPtrTy);
6231   }
6232 
6233   // Update VAList.
6234   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6235   Builder.CreateStore(Addr, VAListAddrAsBPP);
6236 
6237   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6238 }
6239 
6240 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6241   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6242   for (auto &I : FI.arguments())
6243     I.info = classifyType(I.type, 16 * 8);
6244 }
6245 
6246 namespace {
6247 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6248 public:
6249   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6250     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6251 
6252   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6253     return 14;
6254   }
6255 
6256   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6257                                llvm::Value *Address) const override;
6258 };
6259 } // end anonymous namespace
6260 
6261 bool
6262 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6263                                                 llvm::Value *Address) const {
6264   // This is calculated from the LLVM and GCC tables and verified
6265   // against gcc output.  AFAIK all ABIs use the same encoding.
6266 
6267   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6268 
6269   llvm::IntegerType *i8 = CGF.Int8Ty;
6270   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6271   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6272 
6273   // 0-31: the 8-byte general-purpose registers
6274   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6275 
6276   // 32-63: f0-31, the 4-byte floating-point registers
6277   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6278 
6279   //   Y   = 64
6280   //   PSR = 65
6281   //   WIM = 66
6282   //   TBR = 67
6283   //   PC  = 68
6284   //   NPC = 69
6285   //   FSR = 70
6286   //   CSR = 71
6287   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6288 
6289   // 72-87: d0-15, the 8-byte floating-point registers
6290   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6291 
6292   return false;
6293 }
6294 
6295 
6296 //===----------------------------------------------------------------------===//
6297 // XCore ABI Implementation
6298 //===----------------------------------------------------------------------===//
6299 
6300 namespace {
6301 
6302 /// A SmallStringEnc instance is used to build up the TypeString by passing
6303 /// it by reference between functions that append to it.
6304 typedef llvm::SmallString<128> SmallStringEnc;
6305 
6306 /// TypeStringCache caches the meta encodings of Types.
6307 ///
6308 /// The reason for caching TypeStrings is two fold:
6309 ///   1. To cache a type's encoding for later uses;
6310 ///   2. As a means to break recursive member type inclusion.
6311 ///
6312 /// A cache Entry can have a Status of:
6313 ///   NonRecursive:   The type encoding is not recursive;
6314 ///   Recursive:      The type encoding is recursive;
6315 ///   Incomplete:     An incomplete TypeString;
6316 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6317 ///                   Recursive type encoding.
6318 ///
6319 /// A NonRecursive entry will have all of its sub-members expanded as fully
6320 /// as possible. Whilst it may contain types which are recursive, the type
6321 /// itself is not recursive and thus its encoding may be safely used whenever
6322 /// the type is encountered.
6323 ///
6324 /// A Recursive entry will have all of its sub-members expanded as fully as
6325 /// possible. The type itself is recursive and it may contain other types which
6326 /// are recursive. The Recursive encoding must not be used during the expansion
6327 /// of a recursive type's recursive branch. For simplicity the code uses
6328 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6329 ///
6330 /// An Incomplete entry is always a RecordType and only encodes its
6331 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6332 /// are placed into the cache during type expansion as a means to identify and
6333 /// handle recursive inclusion of types as sub-members. If there is recursion
6334 /// the entry becomes IncompleteUsed.
6335 ///
6336 /// During the expansion of a RecordType's members:
6337 ///
6338 ///   If the cache contains a NonRecursive encoding for the member type, the
6339 ///   cached encoding is used;
6340 ///
6341 ///   If the cache contains a Recursive encoding for the member type, the
6342 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6343 ///
6344 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6345 ///   cache to break potential recursive inclusion of itself as a sub-member;
6346 ///
6347 ///   Once a member RecordType has been expanded, its temporary incomplete
6348 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6349 ///   it is swapped back in;
6350 ///
6351 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6352 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6353 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6354 ///
6355 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6356 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6357 ///   Else the member is part of a recursive type and thus the recursion has
6358 ///   been exited too soon for the encoding to be correct for the member.
6359 ///
6360 class TypeStringCache {
6361   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6362   struct Entry {
6363     std::string Str;     // The encoded TypeString for the type.
6364     enum Status State;   // Information about the encoding in 'Str'.
6365     std::string Swapped; // A temporary place holder for a Recursive encoding
6366                          // during the expansion of RecordType's members.
6367   };
6368   std::map<const IdentifierInfo *, struct Entry> Map;
6369   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6370   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6371 public:
6372   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6373   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6374   bool removeIncomplete(const IdentifierInfo *ID);
6375   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6376                      bool IsRecursive);
6377   StringRef lookupStr(const IdentifierInfo *ID);
6378 };
6379 
6380 /// TypeString encodings for enum & union fields must be order.
6381 /// FieldEncoding is a helper for this ordering process.
6382 class FieldEncoding {
6383   bool HasName;
6384   std::string Enc;
6385 public:
6386   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
6387   StringRef str() {return Enc.c_str();};
6388   bool operator<(const FieldEncoding &rhs) const {
6389     if (HasName != rhs.HasName) return HasName;
6390     return Enc < rhs.Enc;
6391   }
6392 };
6393 
6394 class XCoreABIInfo : public DefaultABIInfo {
6395 public:
6396   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6397   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6398                          CodeGenFunction &CGF) const override;
6399 };
6400 
6401 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6402   mutable TypeStringCache TSC;
6403 public:
6404   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6405     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6406   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6407                     CodeGen::CodeGenModule &M) const override;
6408 };
6409 
6410 } // End anonymous namespace.
6411 
6412 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6413                                      CodeGenFunction &CGF) const {
6414   CGBuilderTy &Builder = CGF.Builder;
6415 
6416   // Get the VAList.
6417   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6418                                                        CGF.Int8PtrPtrTy);
6419   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6420 
6421   // Handle the argument.
6422   ABIArgInfo AI = classifyArgumentType(Ty);
6423   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6424   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6425     AI.setCoerceToType(ArgTy);
6426   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6427   llvm::Value *Val;
6428   uint64_t ArgSize = 0;
6429   switch (AI.getKind()) {
6430   case ABIArgInfo::Expand:
6431   case ABIArgInfo::InAlloca:
6432     llvm_unreachable("Unsupported ABI kind for va_arg");
6433   case ABIArgInfo::Ignore:
6434     Val = llvm::UndefValue::get(ArgPtrTy);
6435     ArgSize = 0;
6436     break;
6437   case ABIArgInfo::Extend:
6438   case ABIArgInfo::Direct:
6439     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6440     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6441     if (ArgSize < 4)
6442       ArgSize = 4;
6443     break;
6444   case ABIArgInfo::Indirect:
6445     llvm::Value *ArgAddr;
6446     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6447     ArgAddr = Builder.CreateLoad(ArgAddr);
6448     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6449     ArgSize = 4;
6450     break;
6451   }
6452 
6453   // Increment the VAList.
6454   if (ArgSize) {
6455     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6456     Builder.CreateStore(APN, VAListAddrAsBPP);
6457   }
6458   return Val;
6459 }
6460 
6461 /// During the expansion of a RecordType, an incomplete TypeString is placed
6462 /// into the cache as a means to identify and break recursion.
6463 /// If there is a Recursive encoding in the cache, it is swapped out and will
6464 /// be reinserted by removeIncomplete().
6465 /// All other types of encoding should have been used rather than arriving here.
6466 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6467                                     std::string StubEnc) {
6468   if (!ID)
6469     return;
6470   Entry &E = Map[ID];
6471   assert( (E.Str.empty() || E.State == Recursive) &&
6472          "Incorrectly use of addIncomplete");
6473   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6474   E.Swapped.swap(E.Str); // swap out the Recursive
6475   E.Str.swap(StubEnc);
6476   E.State = Incomplete;
6477   ++IncompleteCount;
6478 }
6479 
6480 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6481 /// must be removed from the cache.
6482 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6483 /// Returns true if the RecordType was defined recursively.
6484 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6485   if (!ID)
6486     return false;
6487   auto I = Map.find(ID);
6488   assert(I != Map.end() && "Entry not present");
6489   Entry &E = I->second;
6490   assert( (E.State == Incomplete ||
6491            E.State == IncompleteUsed) &&
6492          "Entry must be an incomplete type");
6493   bool IsRecursive = false;
6494   if (E.State == IncompleteUsed) {
6495     // We made use of our Incomplete encoding, thus we are recursive.
6496     IsRecursive = true;
6497     --IncompleteUsedCount;
6498   }
6499   if (E.Swapped.empty())
6500     Map.erase(I);
6501   else {
6502     // Swap the Recursive back.
6503     E.Swapped.swap(E.Str);
6504     E.Swapped.clear();
6505     E.State = Recursive;
6506   }
6507   --IncompleteCount;
6508   return IsRecursive;
6509 }
6510 
6511 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6512 /// Recursive (viz: all sub-members were expanded as fully as possible).
6513 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6514                                     bool IsRecursive) {
6515   if (!ID || IncompleteUsedCount)
6516     return; // No key or it is is an incomplete sub-type so don't add.
6517   Entry &E = Map[ID];
6518   if (IsRecursive && !E.Str.empty()) {
6519     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6520            "This is not the same Recursive entry");
6521     // The parent container was not recursive after all, so we could have used
6522     // this Recursive sub-member entry after all, but we assumed the worse when
6523     // we started viz: IncompleteCount!=0.
6524     return;
6525   }
6526   assert(E.Str.empty() && "Entry already present");
6527   E.Str = Str.str();
6528   E.State = IsRecursive? Recursive : NonRecursive;
6529 }
6530 
6531 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6532 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6533 /// encoding is Recursive, return an empty StringRef.
6534 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6535   if (!ID)
6536     return StringRef();   // We have no key.
6537   auto I = Map.find(ID);
6538   if (I == Map.end())
6539     return StringRef();   // We have no encoding.
6540   Entry &E = I->second;
6541   if (E.State == Recursive && IncompleteCount)
6542     return StringRef();   // We don't use Recursive encodings for member types.
6543 
6544   if (E.State == Incomplete) {
6545     // The incomplete type is being used to break out of recursion.
6546     E.State = IncompleteUsed;
6547     ++IncompleteUsedCount;
6548   }
6549   return E.Str.c_str();
6550 }
6551 
6552 /// The XCore ABI includes a type information section that communicates symbol
6553 /// type information to the linker. The linker uses this information to verify
6554 /// safety/correctness of things such as array bound and pointers et al.
6555 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6556 /// This type information (TypeString) is emitted into meta data for all global
6557 /// symbols: definitions, declarations, functions & variables.
6558 ///
6559 /// The TypeString carries type, qualifier, name, size & value details.
6560 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6561 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6562 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6563 ///
6564 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6565                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6566 
6567 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6568 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6569                                           CodeGen::CodeGenModule &CGM) const {
6570   SmallStringEnc Enc;
6571   if (getTypeString(Enc, D, CGM, TSC)) {
6572     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6573     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6574     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6575     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6576     llvm::NamedMDNode *MD =
6577       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6578     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6579   }
6580 }
6581 
6582 static bool appendType(SmallStringEnc &Enc, QualType QType,
6583                        const CodeGen::CodeGenModule &CGM,
6584                        TypeStringCache &TSC);
6585 
6586 /// Helper function for appendRecordType().
6587 /// Builds a SmallVector containing the encoded field types in declaration order.
6588 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6589                              const RecordDecl *RD,
6590                              const CodeGen::CodeGenModule &CGM,
6591                              TypeStringCache &TSC) {
6592   for (const auto *Field : RD->fields()) {
6593     SmallStringEnc Enc;
6594     Enc += "m(";
6595     Enc += Field->getName();
6596     Enc += "){";
6597     if (Field->isBitField()) {
6598       Enc += "b(";
6599       llvm::raw_svector_ostream OS(Enc);
6600       OS.resync();
6601       OS << Field->getBitWidthValue(CGM.getContext());
6602       OS.flush();
6603       Enc += ':';
6604     }
6605     if (!appendType(Enc, Field->getType(), CGM, TSC))
6606       return false;
6607     if (Field->isBitField())
6608       Enc += ')';
6609     Enc += '}';
6610     FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
6611   }
6612   return true;
6613 }
6614 
6615 /// Appends structure and union types to Enc and adds encoding to cache.
6616 /// Recursively calls appendType (via extractFieldType) for each field.
6617 /// Union types have their fields ordered according to the ABI.
6618 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6619                              const CodeGen::CodeGenModule &CGM,
6620                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6621   // Append the cached TypeString if we have one.
6622   StringRef TypeString = TSC.lookupStr(ID);
6623   if (!TypeString.empty()) {
6624     Enc += TypeString;
6625     return true;
6626   }
6627 
6628   // Start to emit an incomplete TypeString.
6629   size_t Start = Enc.size();
6630   Enc += (RT->isUnionType()? 'u' : 's');
6631   Enc += '(';
6632   if (ID)
6633     Enc += ID->getName();
6634   Enc += "){";
6635 
6636   // We collect all encoded fields and order as necessary.
6637   bool IsRecursive = false;
6638   const RecordDecl *RD = RT->getDecl()->getDefinition();
6639   if (RD && !RD->field_empty()) {
6640     // An incomplete TypeString stub is placed in the cache for this RecordType
6641     // so that recursive calls to this RecordType will use it whilst building a
6642     // complete TypeString for this RecordType.
6643     SmallVector<FieldEncoding, 16> FE;
6644     std::string StubEnc(Enc.substr(Start).str());
6645     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6646     TSC.addIncomplete(ID, std::move(StubEnc));
6647     if (!extractFieldType(FE, RD, CGM, TSC)) {
6648       (void) TSC.removeIncomplete(ID);
6649       return false;
6650     }
6651     IsRecursive = TSC.removeIncomplete(ID);
6652     // The ABI requires unions to be sorted but not structures.
6653     // See FieldEncoding::operator< for sort algorithm.
6654     if (RT->isUnionType())
6655       std::sort(FE.begin(), FE.end());
6656     // We can now complete the TypeString.
6657     unsigned E = FE.size();
6658     for (unsigned I = 0; I != E; ++I) {
6659       if (I)
6660         Enc += ',';
6661       Enc += FE[I].str();
6662     }
6663   }
6664   Enc += '}';
6665   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6666   return true;
6667 }
6668 
6669 /// Appends enum types to Enc and adds the encoding to the cache.
6670 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6671                            TypeStringCache &TSC,
6672                            const IdentifierInfo *ID) {
6673   // Append the cached TypeString if we have one.
6674   StringRef TypeString = TSC.lookupStr(ID);
6675   if (!TypeString.empty()) {
6676     Enc += TypeString;
6677     return true;
6678   }
6679 
6680   size_t Start = Enc.size();
6681   Enc += "e(";
6682   if (ID)
6683     Enc += ID->getName();
6684   Enc += "){";
6685 
6686   // We collect all encoded enumerations and order them alphanumerically.
6687   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6688     SmallVector<FieldEncoding, 16> FE;
6689     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6690          ++I) {
6691       SmallStringEnc EnumEnc;
6692       EnumEnc += "m(";
6693       EnumEnc += I->getName();
6694       EnumEnc += "){";
6695       I->getInitVal().toString(EnumEnc);
6696       EnumEnc += '}';
6697       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6698     }
6699     std::sort(FE.begin(), FE.end());
6700     unsigned E = FE.size();
6701     for (unsigned I = 0; I != E; ++I) {
6702       if (I)
6703         Enc += ',';
6704       Enc += FE[I].str();
6705     }
6706   }
6707   Enc += '}';
6708   TSC.addIfComplete(ID, Enc.substr(Start), false);
6709   return true;
6710 }
6711 
6712 /// Appends type's qualifier to Enc.
6713 /// This is done prior to appending the type's encoding.
6714 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6715   // Qualifiers are emitted in alphabetical order.
6716   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6717   int Lookup = 0;
6718   if (QT.isConstQualified())
6719     Lookup += 1<<0;
6720   if (QT.isRestrictQualified())
6721     Lookup += 1<<1;
6722   if (QT.isVolatileQualified())
6723     Lookup += 1<<2;
6724   Enc += Table[Lookup];
6725 }
6726 
6727 /// Appends built-in types to Enc.
6728 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6729   const char *EncType;
6730   switch (BT->getKind()) {
6731     case BuiltinType::Void:
6732       EncType = "0";
6733       break;
6734     case BuiltinType::Bool:
6735       EncType = "b";
6736       break;
6737     case BuiltinType::Char_U:
6738       EncType = "uc";
6739       break;
6740     case BuiltinType::UChar:
6741       EncType = "uc";
6742       break;
6743     case BuiltinType::SChar:
6744       EncType = "sc";
6745       break;
6746     case BuiltinType::UShort:
6747       EncType = "us";
6748       break;
6749     case BuiltinType::Short:
6750       EncType = "ss";
6751       break;
6752     case BuiltinType::UInt:
6753       EncType = "ui";
6754       break;
6755     case BuiltinType::Int:
6756       EncType = "si";
6757       break;
6758     case BuiltinType::ULong:
6759       EncType = "ul";
6760       break;
6761     case BuiltinType::Long:
6762       EncType = "sl";
6763       break;
6764     case BuiltinType::ULongLong:
6765       EncType = "ull";
6766       break;
6767     case BuiltinType::LongLong:
6768       EncType = "sll";
6769       break;
6770     case BuiltinType::Float:
6771       EncType = "ft";
6772       break;
6773     case BuiltinType::Double:
6774       EncType = "d";
6775       break;
6776     case BuiltinType::LongDouble:
6777       EncType = "ld";
6778       break;
6779     default:
6780       return false;
6781   }
6782   Enc += EncType;
6783   return true;
6784 }
6785 
6786 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
6787 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6788                               const CodeGen::CodeGenModule &CGM,
6789                               TypeStringCache &TSC) {
6790   Enc += "p(";
6791   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6792     return false;
6793   Enc += ')';
6794   return true;
6795 }
6796 
6797 /// Appends array encoding to Enc before calling appendType for the element.
6798 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6799                             const ArrayType *AT,
6800                             const CodeGen::CodeGenModule &CGM,
6801                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6802   if (AT->getSizeModifier() != ArrayType::Normal)
6803     return false;
6804   Enc += "a(";
6805   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6806     CAT->getSize().toStringUnsigned(Enc);
6807   else
6808     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6809   Enc += ':';
6810   // The Qualifiers should be attached to the type rather than the array.
6811   appendQualifier(Enc, QT);
6812   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6813     return false;
6814   Enc += ')';
6815   return true;
6816 }
6817 
6818 /// Appends a function encoding to Enc, calling appendType for the return type
6819 /// and the arguments.
6820 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6821                              const CodeGen::CodeGenModule &CGM,
6822                              TypeStringCache &TSC) {
6823   Enc += "f{";
6824   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6825     return false;
6826   Enc += "}(";
6827   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6828     // N.B. we are only interested in the adjusted param types.
6829     auto I = FPT->param_type_begin();
6830     auto E = FPT->param_type_end();
6831     if (I != E) {
6832       do {
6833         if (!appendType(Enc, *I, CGM, TSC))
6834           return false;
6835         ++I;
6836         if (I != E)
6837           Enc += ',';
6838       } while (I != E);
6839       if (FPT->isVariadic())
6840         Enc += ",va";
6841     } else {
6842       if (FPT->isVariadic())
6843         Enc += "va";
6844       else
6845         Enc += '0';
6846     }
6847   }
6848   Enc += ')';
6849   return true;
6850 }
6851 
6852 /// Handles the type's qualifier before dispatching a call to handle specific
6853 /// type encodings.
6854 static bool appendType(SmallStringEnc &Enc, QualType QType,
6855                        const CodeGen::CodeGenModule &CGM,
6856                        TypeStringCache &TSC) {
6857 
6858   QualType QT = QType.getCanonicalType();
6859 
6860   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
6861     // The Qualifiers should be attached to the type rather than the array.
6862     // Thus we don't call appendQualifier() here.
6863     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
6864 
6865   appendQualifier(Enc, QT);
6866 
6867   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
6868     return appendBuiltinType(Enc, BT);
6869 
6870   if (const PointerType *PT = QT->getAs<PointerType>())
6871     return appendPointerType(Enc, PT, CGM, TSC);
6872 
6873   if (const EnumType *ET = QT->getAs<EnumType>())
6874     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
6875 
6876   if (const RecordType *RT = QT->getAsStructureType())
6877     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6878 
6879   if (const RecordType *RT = QT->getAsUnionType())
6880     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6881 
6882   if (const FunctionType *FT = QT->getAs<FunctionType>())
6883     return appendFunctionType(Enc, FT, CGM, TSC);
6884 
6885   return false;
6886 }
6887 
6888 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6889                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
6890   if (!D)
6891     return false;
6892 
6893   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6894     if (FD->getLanguageLinkage() != CLanguageLinkage)
6895       return false;
6896     return appendType(Enc, FD->getType(), CGM, TSC);
6897   }
6898 
6899   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6900     if (VD->getLanguageLinkage() != CLanguageLinkage)
6901       return false;
6902     QualType QT = VD->getType().getCanonicalType();
6903     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
6904       // Global ArrayTypes are given a size of '*' if the size is unknown.
6905       // The Qualifiers should be attached to the type rather than the array.
6906       // Thus we don't call appendQualifier() here.
6907       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
6908     }
6909     return appendType(Enc, QT, CGM, TSC);
6910   }
6911   return false;
6912 }
6913 
6914 
6915 //===----------------------------------------------------------------------===//
6916 // Driver code
6917 //===----------------------------------------------------------------------===//
6918 
6919 const llvm::Triple &CodeGenModule::getTriple() const {
6920   return getTarget().getTriple();
6921 }
6922 
6923 bool CodeGenModule::supportsCOMDAT() const {
6924   return !getTriple().isOSBinFormatMachO();
6925 }
6926 
6927 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
6928   if (TheTargetCodeGenInfo)
6929     return *TheTargetCodeGenInfo;
6930 
6931   const llvm::Triple &Triple = getTarget().getTriple();
6932   switch (Triple.getArch()) {
6933   default:
6934     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
6935 
6936   case llvm::Triple::le32:
6937     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
6938   case llvm::Triple::mips:
6939   case llvm::Triple::mipsel:
6940     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
6941 
6942   case llvm::Triple::mips64:
6943   case llvm::Triple::mips64el:
6944     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
6945 
6946   case llvm::Triple::aarch64:
6947   case llvm::Triple::aarch64_be: {
6948     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
6949     if (getTarget().getABI() == "darwinpcs")
6950       Kind = AArch64ABIInfo::DarwinPCS;
6951 
6952     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
6953   }
6954 
6955   case llvm::Triple::arm:
6956   case llvm::Triple::armeb:
6957   case llvm::Triple::thumb:
6958   case llvm::Triple::thumbeb:
6959     {
6960       if (Triple.getOS() == llvm::Triple::Win32) {
6961         TheTargetCodeGenInfo =
6962             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
6963         return *TheTargetCodeGenInfo;
6964       }
6965 
6966       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
6967       if (getTarget().getABI() == "apcs-gnu")
6968         Kind = ARMABIInfo::APCS;
6969       else if (CodeGenOpts.FloatABI == "hard" ||
6970                (CodeGenOpts.FloatABI != "soft" &&
6971                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
6972         Kind = ARMABIInfo::AAPCS_VFP;
6973 
6974       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
6975     }
6976 
6977   case llvm::Triple::ppc:
6978     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
6979   case llvm::Triple::ppc64:
6980     if (Triple.isOSBinFormatELF()) {
6981       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
6982       if (getTarget().getABI() == "elfv2")
6983         Kind = PPC64_SVR4_ABIInfo::ELFv2;
6984 
6985       return *(TheTargetCodeGenInfo =
6986                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
6987     } else
6988       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
6989   case llvm::Triple::ppc64le: {
6990     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
6991     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
6992     if (getTarget().getABI() == "elfv1")
6993       Kind = PPC64_SVR4_ABIInfo::ELFv1;
6994 
6995     return *(TheTargetCodeGenInfo =
6996              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
6997   }
6998 
6999   case llvm::Triple::nvptx:
7000   case llvm::Triple::nvptx64:
7001     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7002 
7003   case llvm::Triple::msp430:
7004     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7005 
7006   case llvm::Triple::systemz:
7007     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
7008 
7009   case llvm::Triple::tce:
7010     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7011 
7012   case llvm::Triple::x86: {
7013     bool IsDarwinVectorABI = Triple.isOSDarwin();
7014     bool IsSmallStructInRegABI =
7015         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7016     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7017 
7018     if (Triple.getOS() == llvm::Triple::Win32) {
7019       return *(TheTargetCodeGenInfo =
7020                new WinX86_32TargetCodeGenInfo(Types,
7021                                               IsDarwinVectorABI, IsSmallStructInRegABI,
7022                                               IsWin32FloatStructABI,
7023                                               CodeGenOpts.NumRegisterParameters));
7024     } else {
7025       return *(TheTargetCodeGenInfo =
7026                new X86_32TargetCodeGenInfo(Types,
7027                                            IsDarwinVectorABI, IsSmallStructInRegABI,
7028                                            IsWin32FloatStructABI,
7029                                            CodeGenOpts.NumRegisterParameters));
7030     }
7031   }
7032 
7033   case llvm::Triple::x86_64: {
7034     bool HasAVX = getTarget().getABI() == "avx";
7035 
7036     switch (Triple.getOS()) {
7037     case llvm::Triple::Win32:
7038       return *(TheTargetCodeGenInfo =
7039                    new WinX86_64TargetCodeGenInfo(Types, HasAVX));
7040     case llvm::Triple::PS4:
7041       return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types, HasAVX));
7042     default:
7043       return *(TheTargetCodeGenInfo =
7044                    new X86_64TargetCodeGenInfo(Types, HasAVX));
7045     }
7046   }
7047   case llvm::Triple::hexagon:
7048     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7049   case llvm::Triple::r600:
7050     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7051   case llvm::Triple::amdgcn:
7052     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7053   case llvm::Triple::sparcv9:
7054     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7055   case llvm::Triple::xcore:
7056     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7057   }
7058 }
7059