1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<BitIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 CGF.Int8Ty, DirectAlign); 328 } else { 329 Addr = Address(Ptr, CGF.Int8Ty, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = 383 emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, DirectAlign, 384 SlotSizeAndAlign, AllowHigherAlign); 385 386 if (IsIndirect) { 387 Addr = Address::deprecated(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 388 } 389 390 return Addr; 391 } 392 393 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 394 QualType Ty, CharUnits SlotSize, 395 CharUnits EltSize, const ComplexType *CTy) { 396 Address Addr = 397 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 398 SlotSize, SlotSize, /*AllowHigher*/ true); 399 400 Address RealAddr = Addr; 401 Address ImagAddr = RealAddr; 402 if (CGF.CGM.getDataLayout().isBigEndian()) { 403 RealAddr = 404 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 405 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 406 2 * SlotSize - EltSize); 407 } else { 408 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 409 } 410 411 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 412 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 413 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 414 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 415 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 416 417 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 418 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 419 /*init*/ true); 420 return Temp; 421 } 422 423 static Address emitMergePHI(CodeGenFunction &CGF, 424 Address Addr1, llvm::BasicBlock *Block1, 425 Address Addr2, llvm::BasicBlock *Block2, 426 const llvm::Twine &Name = "") { 427 assert(Addr1.getType() == Addr2.getType()); 428 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 429 PHI->addIncoming(Addr1.getPointer(), Block1); 430 PHI->addIncoming(Addr2.getPointer(), Block2); 431 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 432 return Address(PHI, Addr1.getElementType(), Align); 433 } 434 435 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 436 437 // If someone can figure out a general rule for this, that would be great. 438 // It's probably just doomed to be platform-dependent, though. 439 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 440 // Verified for: 441 // x86-64 FreeBSD, Linux, Darwin 442 // x86-32 FreeBSD, Linux, Darwin 443 // PowerPC Linux, Darwin 444 // ARM Darwin (*not* EABI) 445 // AArch64 Linux 446 return 32; 447 } 448 449 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 450 const FunctionNoProtoType *fnType) const { 451 // The following conventions are known to require this to be false: 452 // x86_stdcall 453 // MIPS 454 // For everything else, we just prefer false unless we opt out. 455 return false; 456 } 457 458 void 459 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 460 llvm::SmallString<24> &Opt) const { 461 // This assumes the user is passing a library name like "rt" instead of a 462 // filename like "librt.a/so", and that they don't care whether it's static or 463 // dynamic. 464 Opt = "-l"; 465 Opt += Lib; 466 } 467 468 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 469 // OpenCL kernels are called via an explicit runtime API with arguments 470 // set with clSetKernelArg(), not as normal sub-functions. 471 // Return SPIR_KERNEL by default as the kernel calling convention to 472 // ensure the fingerprint is fixed such way that each OpenCL argument 473 // gets one matching argument in the produced kernel function argument 474 // list to enable feasible implementation of clSetKernelArg() with 475 // aggregates etc. In case we would use the default C calling conv here, 476 // clSetKernelArg() might break depending on the target-specific 477 // conventions; different targets might split structs passed as values 478 // to multiple function arguments etc. 479 return llvm::CallingConv::SPIR_KERNEL; 480 } 481 482 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 483 llvm::PointerType *T, QualType QT) const { 484 return llvm::ConstantPointerNull::get(T); 485 } 486 487 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 488 const VarDecl *D) const { 489 assert(!CGM.getLangOpts().OpenCL && 490 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 491 "Address space agnostic languages only"); 492 return D ? D->getType().getAddressSpace() : LangAS::Default; 493 } 494 495 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 496 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 497 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 498 // Since target may map different address spaces in AST to the same address 499 // space, an address space conversion may end up as a bitcast. 500 if (auto *C = dyn_cast<llvm::Constant>(Src)) 501 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 502 // Try to preserve the source's name to make IR more readable. 503 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 504 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 505 } 506 507 llvm::Constant * 508 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 509 LangAS SrcAddr, LangAS DestAddr, 510 llvm::Type *DestTy) const { 511 // Since target may map different address spaces in AST to the same address 512 // space, an address space conversion may end up as a bitcast. 513 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 514 } 515 516 llvm::SyncScope::ID 517 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 518 SyncScope Scope, 519 llvm::AtomicOrdering Ordering, 520 llvm::LLVMContext &Ctx) const { 521 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 522 } 523 524 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 525 526 /// isEmptyField - Return true iff a the field is "empty", that is it 527 /// is an unnamed bit-field or an (array of) empty record(s). 528 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 529 bool AllowArrays) { 530 if (FD->isUnnamedBitfield()) 531 return true; 532 533 QualType FT = FD->getType(); 534 535 // Constant arrays of empty records count as empty, strip them off. 536 // Constant arrays of zero length always count as empty. 537 bool WasArray = false; 538 if (AllowArrays) 539 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 540 if (AT->getSize() == 0) 541 return true; 542 FT = AT->getElementType(); 543 // The [[no_unique_address]] special case below does not apply to 544 // arrays of C++ empty records, so we need to remember this fact. 545 WasArray = true; 546 } 547 548 const RecordType *RT = FT->getAs<RecordType>(); 549 if (!RT) 550 return false; 551 552 // C++ record fields are never empty, at least in the Itanium ABI. 553 // 554 // FIXME: We should use a predicate for whether this behavior is true in the 555 // current ABI. 556 // 557 // The exception to the above rule are fields marked with the 558 // [[no_unique_address]] attribute (since C++20). Those do count as empty 559 // according to the Itanium ABI. The exception applies only to records, 560 // not arrays of records, so we must also check whether we stripped off an 561 // array type above. 562 if (isa<CXXRecordDecl>(RT->getDecl()) && 563 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 564 return false; 565 566 return isEmptyRecord(Context, FT, AllowArrays); 567 } 568 569 /// isEmptyRecord - Return true iff a structure contains only empty 570 /// fields. Note that a structure with a flexible array member is not 571 /// considered empty. 572 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 573 const RecordType *RT = T->getAs<RecordType>(); 574 if (!RT) 575 return false; 576 const RecordDecl *RD = RT->getDecl(); 577 if (RD->hasFlexibleArrayMember()) 578 return false; 579 580 // If this is a C++ record, check the bases first. 581 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 582 for (const auto &I : CXXRD->bases()) 583 if (!isEmptyRecord(Context, I.getType(), true)) 584 return false; 585 586 for (const auto *I : RD->fields()) 587 if (!isEmptyField(Context, I, AllowArrays)) 588 return false; 589 return true; 590 } 591 592 /// isSingleElementStruct - Determine if a structure is a "single 593 /// element struct", i.e. it has exactly one non-empty field or 594 /// exactly one field which is itself a single element 595 /// struct. Structures with flexible array members are never 596 /// considered single element structs. 597 /// 598 /// \return The field declaration for the single non-empty field, if 599 /// it exists. 600 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 601 const RecordType *RT = T->getAs<RecordType>(); 602 if (!RT) 603 return nullptr; 604 605 const RecordDecl *RD = RT->getDecl(); 606 if (RD->hasFlexibleArrayMember()) 607 return nullptr; 608 609 const Type *Found = nullptr; 610 611 // If this is a C++ record, check the bases first. 612 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 613 for (const auto &I : CXXRD->bases()) { 614 // Ignore empty records. 615 if (isEmptyRecord(Context, I.getType(), true)) 616 continue; 617 618 // If we already found an element then this isn't a single-element struct. 619 if (Found) 620 return nullptr; 621 622 // If this is non-empty and not a single element struct, the composite 623 // cannot be a single element struct. 624 Found = isSingleElementStruct(I.getType(), Context); 625 if (!Found) 626 return nullptr; 627 } 628 } 629 630 // Check for single element. 631 for (const auto *FD : RD->fields()) { 632 QualType FT = FD->getType(); 633 634 // Ignore empty fields. 635 if (isEmptyField(Context, FD, true)) 636 continue; 637 638 // If we already found an element then this isn't a single-element 639 // struct. 640 if (Found) 641 return nullptr; 642 643 // Treat single element arrays as the element. 644 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 645 if (AT->getSize().getZExtValue() != 1) 646 break; 647 FT = AT->getElementType(); 648 } 649 650 if (!isAggregateTypeForABI(FT)) { 651 Found = FT.getTypePtr(); 652 } else { 653 Found = isSingleElementStruct(FT, Context); 654 if (!Found) 655 return nullptr; 656 } 657 } 658 659 // We don't consider a struct a single-element struct if it has 660 // padding beyond the element type. 661 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 662 return nullptr; 663 664 return Found; 665 } 666 667 namespace { 668 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 669 const ABIArgInfo &AI) { 670 // This default implementation defers to the llvm backend's va_arg 671 // instruction. It can handle only passing arguments directly 672 // (typically only handled in the backend for primitive types), or 673 // aggregates passed indirectly by pointer (NOTE: if the "byval" 674 // flag has ABI impact in the callee, this implementation cannot 675 // work.) 676 677 // Only a few cases are covered here at the moment -- those needed 678 // by the default abi. 679 llvm::Value *Val; 680 681 if (AI.isIndirect()) { 682 assert(!AI.getPaddingType() && 683 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 684 assert( 685 !AI.getIndirectRealign() && 686 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 687 688 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 689 CharUnits TyAlignForABI = TyInfo.Align; 690 691 llvm::Type *BaseTy = 692 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 693 llvm::Value *Addr = 694 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 695 return Address::deprecated(Addr, TyAlignForABI); 696 } else { 697 assert((AI.isDirect() || AI.isExtend()) && 698 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 699 700 assert(!AI.getInReg() && 701 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 702 assert(!AI.getPaddingType() && 703 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 704 assert(!AI.getDirectOffset() && 705 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 706 assert(!AI.getCoerceToType() && 707 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 708 709 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 710 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), 711 CGF.ConvertTypeForMem(Ty)); 712 CGF.Builder.CreateStore(Val, Temp); 713 return Temp; 714 } 715 } 716 717 /// DefaultABIInfo - The default implementation for ABI specific 718 /// details. This implementation provides information which results in 719 /// self-consistent and sensible LLVM IR generation, but does not 720 /// conform to any particular ABI. 721 class DefaultABIInfo : public ABIInfo { 722 public: 723 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 724 725 ABIArgInfo classifyReturnType(QualType RetTy) const; 726 ABIArgInfo classifyArgumentType(QualType RetTy) const; 727 728 void computeInfo(CGFunctionInfo &FI) const override { 729 if (!getCXXABI().classifyReturnType(FI)) 730 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 731 for (auto &I : FI.arguments()) 732 I.info = classifyArgumentType(I.type); 733 } 734 735 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 736 QualType Ty) const override { 737 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 738 } 739 }; 740 741 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 742 public: 743 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 744 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 745 }; 746 747 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 748 Ty = useFirstFieldIfTransparentUnion(Ty); 749 750 if (isAggregateTypeForABI(Ty)) { 751 // Records with non-trivial destructors/copy-constructors should not be 752 // passed by value. 753 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 754 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 755 756 return getNaturalAlignIndirect(Ty); 757 } 758 759 // Treat an enum type as its underlying type. 760 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 761 Ty = EnumTy->getDecl()->getIntegerType(); 762 763 ASTContext &Context = getContext(); 764 if (const auto *EIT = Ty->getAs<BitIntType>()) 765 if (EIT->getNumBits() > 766 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 767 ? Context.Int128Ty 768 : Context.LongLongTy)) 769 return getNaturalAlignIndirect(Ty); 770 771 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 772 : ABIArgInfo::getDirect()); 773 } 774 775 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 776 if (RetTy->isVoidType()) 777 return ABIArgInfo::getIgnore(); 778 779 if (isAggregateTypeForABI(RetTy)) 780 return getNaturalAlignIndirect(RetTy); 781 782 // Treat an enum type as its underlying type. 783 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 784 RetTy = EnumTy->getDecl()->getIntegerType(); 785 786 if (const auto *EIT = RetTy->getAs<BitIntType>()) 787 if (EIT->getNumBits() > 788 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 789 ? getContext().Int128Ty 790 : getContext().LongLongTy)) 791 return getNaturalAlignIndirect(RetTy); 792 793 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 794 : ABIArgInfo::getDirect()); 795 } 796 797 //===----------------------------------------------------------------------===// 798 // WebAssembly ABI Implementation 799 // 800 // This is a very simple ABI that relies a lot on DefaultABIInfo. 801 //===----------------------------------------------------------------------===// 802 803 class WebAssemblyABIInfo final : public SwiftABIInfo { 804 public: 805 enum ABIKind { 806 MVP = 0, 807 ExperimentalMV = 1, 808 }; 809 810 private: 811 DefaultABIInfo defaultInfo; 812 ABIKind Kind; 813 814 public: 815 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 816 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 817 818 private: 819 ABIArgInfo classifyReturnType(QualType RetTy) const; 820 ABIArgInfo classifyArgumentType(QualType Ty) const; 821 822 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 823 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 824 // overload them. 825 void computeInfo(CGFunctionInfo &FI) const override { 826 if (!getCXXABI().classifyReturnType(FI)) 827 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 828 for (auto &Arg : FI.arguments()) 829 Arg.info = classifyArgumentType(Arg.type); 830 } 831 832 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 833 QualType Ty) const override; 834 835 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 836 bool asReturnValue) const override { 837 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 838 } 839 840 bool isSwiftErrorInRegister() const override { 841 return false; 842 } 843 }; 844 845 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 846 public: 847 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 848 WebAssemblyABIInfo::ABIKind K) 849 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 850 851 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 852 CodeGen::CodeGenModule &CGM) const override { 853 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 854 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 855 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 856 llvm::Function *Fn = cast<llvm::Function>(GV); 857 llvm::AttrBuilder B(GV->getContext()); 858 B.addAttribute("wasm-import-module", Attr->getImportModule()); 859 Fn->addFnAttrs(B); 860 } 861 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 862 llvm::Function *Fn = cast<llvm::Function>(GV); 863 llvm::AttrBuilder B(GV->getContext()); 864 B.addAttribute("wasm-import-name", Attr->getImportName()); 865 Fn->addFnAttrs(B); 866 } 867 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 868 llvm::Function *Fn = cast<llvm::Function>(GV); 869 llvm::AttrBuilder B(GV->getContext()); 870 B.addAttribute("wasm-export-name", Attr->getExportName()); 871 Fn->addFnAttrs(B); 872 } 873 } 874 875 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 876 llvm::Function *Fn = cast<llvm::Function>(GV); 877 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 878 Fn->addFnAttr("no-prototype"); 879 } 880 } 881 }; 882 883 /// Classify argument of given type \p Ty. 884 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 885 Ty = useFirstFieldIfTransparentUnion(Ty); 886 887 if (isAggregateTypeForABI(Ty)) { 888 // Records with non-trivial destructors/copy-constructors should not be 889 // passed by value. 890 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 891 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 892 // Ignore empty structs/unions. 893 if (isEmptyRecord(getContext(), Ty, true)) 894 return ABIArgInfo::getIgnore(); 895 // Lower single-element structs to just pass a regular value. TODO: We 896 // could do reasonable-size multiple-element structs too, using getExpand(), 897 // though watch out for things like bitfields. 898 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 899 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 900 // For the experimental multivalue ABI, fully expand all other aggregates 901 if (Kind == ABIKind::ExperimentalMV) { 902 const RecordType *RT = Ty->getAs<RecordType>(); 903 assert(RT); 904 bool HasBitField = false; 905 for (auto *Field : RT->getDecl()->fields()) { 906 if (Field->isBitField()) { 907 HasBitField = true; 908 break; 909 } 910 } 911 if (!HasBitField) 912 return ABIArgInfo::getExpand(); 913 } 914 } 915 916 // Otherwise just do the default thing. 917 return defaultInfo.classifyArgumentType(Ty); 918 } 919 920 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 921 if (isAggregateTypeForABI(RetTy)) { 922 // Records with non-trivial destructors/copy-constructors should not be 923 // returned by value. 924 if (!getRecordArgABI(RetTy, getCXXABI())) { 925 // Ignore empty structs/unions. 926 if (isEmptyRecord(getContext(), RetTy, true)) 927 return ABIArgInfo::getIgnore(); 928 // Lower single-element structs to just return a regular value. TODO: We 929 // could do reasonable-size multiple-element structs too, using 930 // ABIArgInfo::getDirect(). 931 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 932 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 933 // For the experimental multivalue ABI, return all other aggregates 934 if (Kind == ABIKind::ExperimentalMV) 935 return ABIArgInfo::getDirect(); 936 } 937 } 938 939 // Otherwise just do the default thing. 940 return defaultInfo.classifyReturnType(RetTy); 941 } 942 943 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 944 QualType Ty) const { 945 bool IsIndirect = isAggregateTypeForABI(Ty) && 946 !isEmptyRecord(getContext(), Ty, true) && 947 !isSingleElementStruct(Ty, getContext()); 948 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 949 getContext().getTypeInfoInChars(Ty), 950 CharUnits::fromQuantity(4), 951 /*AllowHigherAlign=*/true); 952 } 953 954 //===----------------------------------------------------------------------===// 955 // le32/PNaCl bitcode ABI Implementation 956 // 957 // This is a simplified version of the x86_32 ABI. Arguments and return values 958 // are always passed on the stack. 959 //===----------------------------------------------------------------------===// 960 961 class PNaClABIInfo : public ABIInfo { 962 public: 963 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 964 965 ABIArgInfo classifyReturnType(QualType RetTy) const; 966 ABIArgInfo classifyArgumentType(QualType RetTy) const; 967 968 void computeInfo(CGFunctionInfo &FI) const override; 969 Address EmitVAArg(CodeGenFunction &CGF, 970 Address VAListAddr, QualType Ty) const override; 971 }; 972 973 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 974 public: 975 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 976 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 977 }; 978 979 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 980 if (!getCXXABI().classifyReturnType(FI)) 981 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 982 983 for (auto &I : FI.arguments()) 984 I.info = classifyArgumentType(I.type); 985 } 986 987 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 988 QualType Ty) const { 989 // The PNaCL ABI is a bit odd, in that varargs don't use normal 990 // function classification. Structs get passed directly for varargs 991 // functions, through a rewriting transform in 992 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 993 // this target to actually support a va_arg instructions with an 994 // aggregate type, unlike other targets. 995 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 996 } 997 998 /// Classify argument of given type \p Ty. 999 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1000 if (isAggregateTypeForABI(Ty)) { 1001 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1002 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1003 return getNaturalAlignIndirect(Ty); 1004 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1005 // Treat an enum type as its underlying type. 1006 Ty = EnumTy->getDecl()->getIntegerType(); 1007 } else if (Ty->isFloatingType()) { 1008 // Floating-point types don't go inreg. 1009 return ABIArgInfo::getDirect(); 1010 } else if (const auto *EIT = Ty->getAs<BitIntType>()) { 1011 // Treat bit-precise integers as integers if <= 64, otherwise pass 1012 // indirectly. 1013 if (EIT->getNumBits() > 64) 1014 return getNaturalAlignIndirect(Ty); 1015 return ABIArgInfo::getDirect(); 1016 } 1017 1018 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1019 : ABIArgInfo::getDirect()); 1020 } 1021 1022 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1023 if (RetTy->isVoidType()) 1024 return ABIArgInfo::getIgnore(); 1025 1026 // In the PNaCl ABI we always return records/structures on the stack. 1027 if (isAggregateTypeForABI(RetTy)) 1028 return getNaturalAlignIndirect(RetTy); 1029 1030 // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly. 1031 if (const auto *EIT = RetTy->getAs<BitIntType>()) { 1032 if (EIT->getNumBits() > 64) 1033 return getNaturalAlignIndirect(RetTy); 1034 return ABIArgInfo::getDirect(); 1035 } 1036 1037 // Treat an enum type as its underlying type. 1038 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1039 RetTy = EnumTy->getDecl()->getIntegerType(); 1040 1041 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1042 : ABIArgInfo::getDirect()); 1043 } 1044 1045 /// IsX86_MMXType - Return true if this is an MMX type. 1046 bool IsX86_MMXType(llvm::Type *IRType) { 1047 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1048 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1049 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1050 IRType->getScalarSizeInBits() != 64; 1051 } 1052 1053 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1054 StringRef Constraint, 1055 llvm::Type* Ty) { 1056 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1057 .Cases("y", "&y", "^Ym", true) 1058 .Default(false); 1059 if (IsMMXCons && Ty->isVectorTy()) { 1060 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1061 64) { 1062 // Invalid MMX constraint 1063 return nullptr; 1064 } 1065 1066 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1067 } 1068 1069 // No operation needed 1070 return Ty; 1071 } 1072 1073 /// Returns true if this type can be passed in SSE registers with the 1074 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1075 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1076 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1077 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1078 if (BT->getKind() == BuiltinType::LongDouble) { 1079 if (&Context.getTargetInfo().getLongDoubleFormat() == 1080 &llvm::APFloat::x87DoubleExtended()) 1081 return false; 1082 } 1083 return true; 1084 } 1085 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1086 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1087 // registers specially. 1088 unsigned VecSize = Context.getTypeSize(VT); 1089 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1090 return true; 1091 } 1092 return false; 1093 } 1094 1095 /// Returns true if this aggregate is small enough to be passed in SSE registers 1096 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1097 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1098 return NumMembers <= 4; 1099 } 1100 1101 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1102 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1103 auto AI = ABIArgInfo::getDirect(T); 1104 AI.setInReg(true); 1105 AI.setCanBeFlattened(false); 1106 return AI; 1107 } 1108 1109 //===----------------------------------------------------------------------===// 1110 // X86-32 ABI Implementation 1111 //===----------------------------------------------------------------------===// 1112 1113 /// Similar to llvm::CCState, but for Clang. 1114 struct CCState { 1115 CCState(CGFunctionInfo &FI) 1116 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1117 1118 llvm::SmallBitVector IsPreassigned; 1119 unsigned CC = CallingConv::CC_C; 1120 unsigned FreeRegs = 0; 1121 unsigned FreeSSERegs = 0; 1122 }; 1123 1124 /// X86_32ABIInfo - The X86-32 ABI information. 1125 class X86_32ABIInfo : public SwiftABIInfo { 1126 enum Class { 1127 Integer, 1128 Float 1129 }; 1130 1131 static const unsigned MinABIStackAlignInBytes = 4; 1132 1133 bool IsDarwinVectorABI; 1134 bool IsRetSmallStructInRegABI; 1135 bool IsWin32StructABI; 1136 bool IsSoftFloatABI; 1137 bool IsMCUABI; 1138 bool IsLinuxABI; 1139 unsigned DefaultNumRegisterParameters; 1140 1141 static bool isRegisterSize(unsigned Size) { 1142 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1143 } 1144 1145 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1146 // FIXME: Assumes vectorcall is in use. 1147 return isX86VectorTypeForVectorCall(getContext(), Ty); 1148 } 1149 1150 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1151 uint64_t NumMembers) const override { 1152 // FIXME: Assumes vectorcall is in use. 1153 return isX86VectorCallAggregateSmallEnough(NumMembers); 1154 } 1155 1156 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1157 1158 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1159 /// such that the argument will be passed in memory. 1160 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1161 1162 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1163 1164 /// Return the alignment to use for the given type on the stack. 1165 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1166 1167 Class classify(QualType Ty) const; 1168 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1169 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1170 1171 /// Updates the number of available free registers, returns 1172 /// true if any registers were allocated. 1173 bool updateFreeRegs(QualType Ty, CCState &State) const; 1174 1175 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1176 bool &NeedsPadding) const; 1177 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1178 1179 bool canExpandIndirectArgument(QualType Ty) const; 1180 1181 /// Rewrite the function info so that all memory arguments use 1182 /// inalloca. 1183 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1184 1185 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1186 CharUnits &StackOffset, ABIArgInfo &Info, 1187 QualType Type) const; 1188 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1189 1190 public: 1191 1192 void computeInfo(CGFunctionInfo &FI) const override; 1193 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1194 QualType Ty) const override; 1195 1196 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1197 bool RetSmallStructInRegABI, bool Win32StructABI, 1198 unsigned NumRegisterParameters, bool SoftFloatABI) 1199 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1200 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1201 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1202 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1203 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1204 CGT.getTarget().getTriple().isOSCygMing()), 1205 DefaultNumRegisterParameters(NumRegisterParameters) {} 1206 1207 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1208 bool asReturnValue) const override { 1209 // LLVM's x86-32 lowering currently only assigns up to three 1210 // integer registers and three fp registers. Oddly, it'll use up to 1211 // four vector registers for vectors, but those can overlap with the 1212 // scalar registers. 1213 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1214 } 1215 1216 bool isSwiftErrorInRegister() const override { 1217 // x86-32 lowering does not support passing swifterror in a register. 1218 return false; 1219 } 1220 }; 1221 1222 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1223 public: 1224 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1225 bool RetSmallStructInRegABI, bool Win32StructABI, 1226 unsigned NumRegisterParameters, bool SoftFloatABI) 1227 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1228 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1229 NumRegisterParameters, SoftFloatABI)) {} 1230 1231 static bool isStructReturnInRegABI( 1232 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1233 1234 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1235 CodeGen::CodeGenModule &CGM) const override; 1236 1237 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1238 // Darwin uses different dwarf register numbers for EH. 1239 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1240 return 4; 1241 } 1242 1243 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1244 llvm::Value *Address) const override; 1245 1246 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1247 StringRef Constraint, 1248 llvm::Type* Ty) const override { 1249 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1250 } 1251 1252 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1253 std::string &Constraints, 1254 std::vector<llvm::Type *> &ResultRegTypes, 1255 std::vector<llvm::Type *> &ResultTruncRegTypes, 1256 std::vector<LValue> &ResultRegDests, 1257 std::string &AsmString, 1258 unsigned NumOutputs) const override; 1259 1260 llvm::Constant * 1261 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1262 unsigned Sig = (0xeb << 0) | // jmp rel8 1263 (0x06 << 8) | // .+0x08 1264 ('v' << 16) | 1265 ('2' << 24); 1266 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1267 } 1268 1269 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1270 return "movl\t%ebp, %ebp" 1271 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1272 } 1273 }; 1274 1275 } 1276 1277 /// Rewrite input constraint references after adding some output constraints. 1278 /// In the case where there is one output and one input and we add one output, 1279 /// we need to replace all operand references greater than or equal to 1: 1280 /// mov $0, $1 1281 /// mov eax, $1 1282 /// The result will be: 1283 /// mov $0, $2 1284 /// mov eax, $2 1285 static void rewriteInputConstraintReferences(unsigned FirstIn, 1286 unsigned NumNewOuts, 1287 std::string &AsmString) { 1288 std::string Buf; 1289 llvm::raw_string_ostream OS(Buf); 1290 size_t Pos = 0; 1291 while (Pos < AsmString.size()) { 1292 size_t DollarStart = AsmString.find('$', Pos); 1293 if (DollarStart == std::string::npos) 1294 DollarStart = AsmString.size(); 1295 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1296 if (DollarEnd == std::string::npos) 1297 DollarEnd = AsmString.size(); 1298 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1299 Pos = DollarEnd; 1300 size_t NumDollars = DollarEnd - DollarStart; 1301 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1302 // We have an operand reference. 1303 size_t DigitStart = Pos; 1304 if (AsmString[DigitStart] == '{') { 1305 OS << '{'; 1306 ++DigitStart; 1307 } 1308 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1309 if (DigitEnd == std::string::npos) 1310 DigitEnd = AsmString.size(); 1311 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1312 unsigned OperandIndex; 1313 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1314 if (OperandIndex >= FirstIn) 1315 OperandIndex += NumNewOuts; 1316 OS << OperandIndex; 1317 } else { 1318 OS << OperandStr; 1319 } 1320 Pos = DigitEnd; 1321 } 1322 } 1323 AsmString = std::move(OS.str()); 1324 } 1325 1326 /// Add output constraints for EAX:EDX because they are return registers. 1327 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1328 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1329 std::vector<llvm::Type *> &ResultRegTypes, 1330 std::vector<llvm::Type *> &ResultTruncRegTypes, 1331 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1332 unsigned NumOutputs) const { 1333 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1334 1335 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1336 // larger. 1337 if (!Constraints.empty()) 1338 Constraints += ','; 1339 if (RetWidth <= 32) { 1340 Constraints += "={eax}"; 1341 ResultRegTypes.push_back(CGF.Int32Ty); 1342 } else { 1343 // Use the 'A' constraint for EAX:EDX. 1344 Constraints += "=A"; 1345 ResultRegTypes.push_back(CGF.Int64Ty); 1346 } 1347 1348 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1349 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1350 ResultTruncRegTypes.push_back(CoerceTy); 1351 1352 // Coerce the integer by bitcasting the return slot pointer. 1353 ReturnSlot.setAddress( 1354 CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy)); 1355 ResultRegDests.push_back(ReturnSlot); 1356 1357 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1358 } 1359 1360 /// shouldReturnTypeInRegister - Determine if the given type should be 1361 /// returned in a register (for the Darwin and MCU ABI). 1362 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1363 ASTContext &Context) const { 1364 uint64_t Size = Context.getTypeSize(Ty); 1365 1366 // For i386, type must be register sized. 1367 // For the MCU ABI, it only needs to be <= 8-byte 1368 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1369 return false; 1370 1371 if (Ty->isVectorType()) { 1372 // 64- and 128- bit vectors inside structures are not returned in 1373 // registers. 1374 if (Size == 64 || Size == 128) 1375 return false; 1376 1377 return true; 1378 } 1379 1380 // If this is a builtin, pointer, enum, complex type, member pointer, or 1381 // member function pointer it is ok. 1382 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1383 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1384 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1385 return true; 1386 1387 // Arrays are treated like records. 1388 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1389 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1390 1391 // Otherwise, it must be a record type. 1392 const RecordType *RT = Ty->getAs<RecordType>(); 1393 if (!RT) return false; 1394 1395 // FIXME: Traverse bases here too. 1396 1397 // Structure types are passed in register if all fields would be 1398 // passed in a register. 1399 for (const auto *FD : RT->getDecl()->fields()) { 1400 // Empty fields are ignored. 1401 if (isEmptyField(Context, FD, true)) 1402 continue; 1403 1404 // Check fields recursively. 1405 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1406 return false; 1407 } 1408 return true; 1409 } 1410 1411 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1412 // Treat complex types as the element type. 1413 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1414 Ty = CTy->getElementType(); 1415 1416 // Check for a type which we know has a simple scalar argument-passing 1417 // convention without any padding. (We're specifically looking for 32 1418 // and 64-bit integer and integer-equivalents, float, and double.) 1419 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1420 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1421 return false; 1422 1423 uint64_t Size = Context.getTypeSize(Ty); 1424 return Size == 32 || Size == 64; 1425 } 1426 1427 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1428 uint64_t &Size) { 1429 for (const auto *FD : RD->fields()) { 1430 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1431 // argument is smaller than 32-bits, expanding the struct will create 1432 // alignment padding. 1433 if (!is32Or64BitBasicType(FD->getType(), Context)) 1434 return false; 1435 1436 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1437 // how to expand them yet, and the predicate for telling if a bitfield still 1438 // counts as "basic" is more complicated than what we were doing previously. 1439 if (FD->isBitField()) 1440 return false; 1441 1442 Size += Context.getTypeSize(FD->getType()); 1443 } 1444 return true; 1445 } 1446 1447 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1448 uint64_t &Size) { 1449 // Don't do this if there are any non-empty bases. 1450 for (const CXXBaseSpecifier &Base : RD->bases()) { 1451 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1452 Size)) 1453 return false; 1454 } 1455 if (!addFieldSizes(Context, RD, Size)) 1456 return false; 1457 return true; 1458 } 1459 1460 /// Test whether an argument type which is to be passed indirectly (on the 1461 /// stack) would have the equivalent layout if it was expanded into separate 1462 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1463 /// optimizations. 1464 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1465 // We can only expand structure types. 1466 const RecordType *RT = Ty->getAs<RecordType>(); 1467 if (!RT) 1468 return false; 1469 const RecordDecl *RD = RT->getDecl(); 1470 uint64_t Size = 0; 1471 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1472 if (!IsWin32StructABI) { 1473 // On non-Windows, we have to conservatively match our old bitcode 1474 // prototypes in order to be ABI-compatible at the bitcode level. 1475 if (!CXXRD->isCLike()) 1476 return false; 1477 } else { 1478 // Don't do this for dynamic classes. 1479 if (CXXRD->isDynamicClass()) 1480 return false; 1481 } 1482 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1483 return false; 1484 } else { 1485 if (!addFieldSizes(getContext(), RD, Size)) 1486 return false; 1487 } 1488 1489 // We can do this if there was no alignment padding. 1490 return Size == getContext().getTypeSize(Ty); 1491 } 1492 1493 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1494 // If the return value is indirect, then the hidden argument is consuming one 1495 // integer register. 1496 if (State.FreeRegs) { 1497 --State.FreeRegs; 1498 if (!IsMCUABI) 1499 return getNaturalAlignIndirectInReg(RetTy); 1500 } 1501 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1502 } 1503 1504 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1505 CCState &State) const { 1506 if (RetTy->isVoidType()) 1507 return ABIArgInfo::getIgnore(); 1508 1509 const Type *Base = nullptr; 1510 uint64_t NumElts = 0; 1511 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1512 State.CC == llvm::CallingConv::X86_RegCall) && 1513 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1514 // The LLVM struct type for such an aggregate should lower properly. 1515 return ABIArgInfo::getDirect(); 1516 } 1517 1518 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1519 // On Darwin, some vectors are returned in registers. 1520 if (IsDarwinVectorABI) { 1521 uint64_t Size = getContext().getTypeSize(RetTy); 1522 1523 // 128-bit vectors are a special case; they are returned in 1524 // registers and we need to make sure to pick a type the LLVM 1525 // backend will like. 1526 if (Size == 128) 1527 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1528 llvm::Type::getInt64Ty(getVMContext()), 2)); 1529 1530 // Always return in register if it fits in a general purpose 1531 // register, or if it is 64 bits and has a single element. 1532 if ((Size == 8 || Size == 16 || Size == 32) || 1533 (Size == 64 && VT->getNumElements() == 1)) 1534 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1535 Size)); 1536 1537 return getIndirectReturnResult(RetTy, State); 1538 } 1539 1540 return ABIArgInfo::getDirect(); 1541 } 1542 1543 if (isAggregateTypeForABI(RetTy)) { 1544 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1545 // Structures with flexible arrays are always indirect. 1546 if (RT->getDecl()->hasFlexibleArrayMember()) 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // If specified, structs and unions are always indirect. 1551 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1552 return getIndirectReturnResult(RetTy, State); 1553 1554 // Ignore empty structs/unions. 1555 if (isEmptyRecord(getContext(), RetTy, true)) 1556 return ABIArgInfo::getIgnore(); 1557 1558 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1559 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1560 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1561 if (ET->isFloat16Type()) 1562 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1563 llvm::Type::getHalfTy(getVMContext()), 2)); 1564 } 1565 1566 // Small structures which are register sized are generally returned 1567 // in a register. 1568 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1569 uint64_t Size = getContext().getTypeSize(RetTy); 1570 1571 // As a special-case, if the struct is a "single-element" struct, and 1572 // the field is of type "float" or "double", return it in a 1573 // floating-point register. (MSVC does not apply this special case.) 1574 // We apply a similar transformation for pointer types to improve the 1575 // quality of the generated IR. 1576 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1577 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1578 || SeltTy->hasPointerRepresentation()) 1579 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1580 1581 // FIXME: We should be able to narrow this integer in cases with dead 1582 // padding. 1583 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1584 } 1585 1586 return getIndirectReturnResult(RetTy, State); 1587 } 1588 1589 // Treat an enum type as its underlying type. 1590 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1591 RetTy = EnumTy->getDecl()->getIntegerType(); 1592 1593 if (const auto *EIT = RetTy->getAs<BitIntType>()) 1594 if (EIT->getNumBits() > 64) 1595 return getIndirectReturnResult(RetTy, State); 1596 1597 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1598 : ABIArgInfo::getDirect()); 1599 } 1600 1601 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1602 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1603 } 1604 1605 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1606 const RecordType *RT = Ty->getAs<RecordType>(); 1607 if (!RT) 1608 return false; 1609 const RecordDecl *RD = RT->getDecl(); 1610 1611 // If this is a C++ record, check the bases first. 1612 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1613 for (const auto &I : CXXRD->bases()) 1614 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1615 return false; 1616 1617 for (const auto *i : RD->fields()) { 1618 QualType FT = i->getType(); 1619 1620 if (isSIMDVectorType(Context, FT)) 1621 return true; 1622 1623 if (isRecordWithSIMDVectorType(Context, FT)) 1624 return true; 1625 } 1626 1627 return false; 1628 } 1629 1630 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1631 unsigned Align) const { 1632 // Otherwise, if the alignment is less than or equal to the minimum ABI 1633 // alignment, just use the default; the backend will handle this. 1634 if (Align <= MinABIStackAlignInBytes) 1635 return 0; // Use default alignment. 1636 1637 if (IsLinuxABI) { 1638 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1639 // want to spend any effort dealing with the ramifications of ABI breaks. 1640 // 1641 // If the vector type is __m128/__m256/__m512, return the default alignment. 1642 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1643 return Align; 1644 } 1645 // On non-Darwin, the stack type alignment is always 4. 1646 if (!IsDarwinVectorABI) { 1647 // Set explicit alignment, since we may need to realign the top. 1648 return MinABIStackAlignInBytes; 1649 } 1650 1651 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1652 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1653 isRecordWithSIMDVectorType(getContext(), Ty))) 1654 return 16; 1655 1656 return MinABIStackAlignInBytes; 1657 } 1658 1659 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1660 CCState &State) const { 1661 if (!ByVal) { 1662 if (State.FreeRegs) { 1663 --State.FreeRegs; // Non-byval indirects just use one pointer. 1664 if (!IsMCUABI) 1665 return getNaturalAlignIndirectInReg(Ty); 1666 } 1667 return getNaturalAlignIndirect(Ty, false); 1668 } 1669 1670 // Compute the byval alignment. 1671 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1672 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1673 if (StackAlign == 0) 1674 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1675 1676 // If the stack alignment is less than the type alignment, realign the 1677 // argument. 1678 bool Realign = TypeAlign > StackAlign; 1679 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1680 /*ByVal=*/true, Realign); 1681 } 1682 1683 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1684 const Type *T = isSingleElementStruct(Ty, getContext()); 1685 if (!T) 1686 T = Ty.getTypePtr(); 1687 1688 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1689 BuiltinType::Kind K = BT->getKind(); 1690 if (K == BuiltinType::Float || K == BuiltinType::Double) 1691 return Float; 1692 } 1693 return Integer; 1694 } 1695 1696 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1697 if (!IsSoftFloatABI) { 1698 Class C = classify(Ty); 1699 if (C == Float) 1700 return false; 1701 } 1702 1703 unsigned Size = getContext().getTypeSize(Ty); 1704 unsigned SizeInRegs = (Size + 31) / 32; 1705 1706 if (SizeInRegs == 0) 1707 return false; 1708 1709 if (!IsMCUABI) { 1710 if (SizeInRegs > State.FreeRegs) { 1711 State.FreeRegs = 0; 1712 return false; 1713 } 1714 } else { 1715 // The MCU psABI allows passing parameters in-reg even if there are 1716 // earlier parameters that are passed on the stack. Also, 1717 // it does not allow passing >8-byte structs in-register, 1718 // even if there are 3 free registers available. 1719 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1720 return false; 1721 } 1722 1723 State.FreeRegs -= SizeInRegs; 1724 return true; 1725 } 1726 1727 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1728 bool &InReg, 1729 bool &NeedsPadding) const { 1730 // On Windows, aggregates other than HFAs are never passed in registers, and 1731 // they do not consume register slots. Homogenous floating-point aggregates 1732 // (HFAs) have already been dealt with at this point. 1733 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1734 return false; 1735 1736 NeedsPadding = false; 1737 InReg = !IsMCUABI; 1738 1739 if (!updateFreeRegs(Ty, State)) 1740 return false; 1741 1742 if (IsMCUABI) 1743 return true; 1744 1745 if (State.CC == llvm::CallingConv::X86_FastCall || 1746 State.CC == llvm::CallingConv::X86_VectorCall || 1747 State.CC == llvm::CallingConv::X86_RegCall) { 1748 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1749 NeedsPadding = true; 1750 1751 return false; 1752 } 1753 1754 return true; 1755 } 1756 1757 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1758 if (!updateFreeRegs(Ty, State)) 1759 return false; 1760 1761 if (IsMCUABI) 1762 return false; 1763 1764 if (State.CC == llvm::CallingConv::X86_FastCall || 1765 State.CC == llvm::CallingConv::X86_VectorCall || 1766 State.CC == llvm::CallingConv::X86_RegCall) { 1767 if (getContext().getTypeSize(Ty) > 32) 1768 return false; 1769 1770 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1771 Ty->isReferenceType()); 1772 } 1773 1774 return true; 1775 } 1776 1777 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1778 // Vectorcall x86 works subtly different than in x64, so the format is 1779 // a bit different than the x64 version. First, all vector types (not HVAs) 1780 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1781 // This differs from the x64 implementation, where the first 6 by INDEX get 1782 // registers. 1783 // In the second pass over the arguments, HVAs are passed in the remaining 1784 // vector registers if possible, or indirectly by address. The address will be 1785 // passed in ECX/EDX if available. Any other arguments are passed according to 1786 // the usual fastcall rules. 1787 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1788 for (int I = 0, E = Args.size(); I < E; ++I) { 1789 const Type *Base = nullptr; 1790 uint64_t NumElts = 0; 1791 const QualType &Ty = Args[I].type; 1792 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1793 isHomogeneousAggregate(Ty, Base, NumElts)) { 1794 if (State.FreeSSERegs >= NumElts) { 1795 State.FreeSSERegs -= NumElts; 1796 Args[I].info = ABIArgInfo::getDirectInReg(); 1797 State.IsPreassigned.set(I); 1798 } 1799 } 1800 } 1801 } 1802 1803 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1804 CCState &State) const { 1805 // FIXME: Set alignment on indirect arguments. 1806 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1807 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1808 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1809 1810 Ty = useFirstFieldIfTransparentUnion(Ty); 1811 TypeInfo TI = getContext().getTypeInfo(Ty); 1812 1813 // Check with the C++ ABI first. 1814 const RecordType *RT = Ty->getAs<RecordType>(); 1815 if (RT) { 1816 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1817 if (RAA == CGCXXABI::RAA_Indirect) { 1818 return getIndirectResult(Ty, false, State); 1819 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1820 // The field index doesn't matter, we'll fix it up later. 1821 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1822 } 1823 } 1824 1825 // Regcall uses the concept of a homogenous vector aggregate, similar 1826 // to other targets. 1827 const Type *Base = nullptr; 1828 uint64_t NumElts = 0; 1829 if ((IsRegCall || IsVectorCall) && 1830 isHomogeneousAggregate(Ty, Base, NumElts)) { 1831 if (State.FreeSSERegs >= NumElts) { 1832 State.FreeSSERegs -= NumElts; 1833 1834 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1835 // does. 1836 if (IsVectorCall) 1837 return getDirectX86Hva(); 1838 1839 if (Ty->isBuiltinType() || Ty->isVectorType()) 1840 return ABIArgInfo::getDirect(); 1841 return ABIArgInfo::getExpand(); 1842 } 1843 return getIndirectResult(Ty, /*ByVal=*/false, State); 1844 } 1845 1846 if (isAggregateTypeForABI(Ty)) { 1847 // Structures with flexible arrays are always indirect. 1848 // FIXME: This should not be byval! 1849 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1850 return getIndirectResult(Ty, true, State); 1851 1852 // Ignore empty structs/unions on non-Windows. 1853 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1854 return ABIArgInfo::getIgnore(); 1855 1856 llvm::LLVMContext &LLVMContext = getVMContext(); 1857 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1858 bool NeedsPadding = false; 1859 bool InReg; 1860 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1861 unsigned SizeInRegs = (TI.Width + 31) / 32; 1862 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1863 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1864 if (InReg) 1865 return ABIArgInfo::getDirectInReg(Result); 1866 else 1867 return ABIArgInfo::getDirect(Result); 1868 } 1869 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1870 1871 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1872 // added in MSVC 2015. 1873 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1874 return getIndirectResult(Ty, /*ByVal=*/false, State); 1875 1876 // Expand small (<= 128-bit) record types when we know that the stack layout 1877 // of those arguments will match the struct. This is important because the 1878 // LLVM backend isn't smart enough to remove byval, which inhibits many 1879 // optimizations. 1880 // Don't do this for the MCU if there are still free integer registers 1881 // (see X86_64 ABI for full explanation). 1882 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1883 canExpandIndirectArgument(Ty)) 1884 return ABIArgInfo::getExpandWithPadding( 1885 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1886 1887 return getIndirectResult(Ty, true, State); 1888 } 1889 1890 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1891 // On Windows, vectors are passed directly if registers are available, or 1892 // indirectly if not. This avoids the need to align argument memory. Pass 1893 // user-defined vector types larger than 512 bits indirectly for simplicity. 1894 if (IsWin32StructABI) { 1895 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1896 --State.FreeSSERegs; 1897 return ABIArgInfo::getDirectInReg(); 1898 } 1899 return getIndirectResult(Ty, /*ByVal=*/false, State); 1900 } 1901 1902 // On Darwin, some vectors are passed in memory, we handle this by passing 1903 // it as an i8/i16/i32/i64. 1904 if (IsDarwinVectorABI) { 1905 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1906 (TI.Width == 64 && VT->getNumElements() == 1)) 1907 return ABIArgInfo::getDirect( 1908 llvm::IntegerType::get(getVMContext(), TI.Width)); 1909 } 1910 1911 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1912 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1913 1914 return ABIArgInfo::getDirect(); 1915 } 1916 1917 1918 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1919 Ty = EnumTy->getDecl()->getIntegerType(); 1920 1921 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1922 1923 if (isPromotableIntegerTypeForABI(Ty)) { 1924 if (InReg) 1925 return ABIArgInfo::getExtendInReg(Ty); 1926 return ABIArgInfo::getExtend(Ty); 1927 } 1928 1929 if (const auto *EIT = Ty->getAs<BitIntType>()) { 1930 if (EIT->getNumBits() <= 64) { 1931 if (InReg) 1932 return ABIArgInfo::getDirectInReg(); 1933 return ABIArgInfo::getDirect(); 1934 } 1935 return getIndirectResult(Ty, /*ByVal=*/false, State); 1936 } 1937 1938 if (InReg) 1939 return ABIArgInfo::getDirectInReg(); 1940 return ABIArgInfo::getDirect(); 1941 } 1942 1943 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1944 CCState State(FI); 1945 if (IsMCUABI) 1946 State.FreeRegs = 3; 1947 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1948 State.FreeRegs = 2; 1949 State.FreeSSERegs = 3; 1950 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1951 State.FreeRegs = 2; 1952 State.FreeSSERegs = 6; 1953 } else if (FI.getHasRegParm()) 1954 State.FreeRegs = FI.getRegParm(); 1955 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1956 State.FreeRegs = 5; 1957 State.FreeSSERegs = 8; 1958 } else if (IsWin32StructABI) { 1959 // Since MSVC 2015, the first three SSE vectors have been passed in 1960 // registers. The rest are passed indirectly. 1961 State.FreeRegs = DefaultNumRegisterParameters; 1962 State.FreeSSERegs = 3; 1963 } else 1964 State.FreeRegs = DefaultNumRegisterParameters; 1965 1966 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1967 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1968 } else if (FI.getReturnInfo().isIndirect()) { 1969 // The C++ ABI is not aware of register usage, so we have to check if the 1970 // return value was sret and put it in a register ourselves if appropriate. 1971 if (State.FreeRegs) { 1972 --State.FreeRegs; // The sret parameter consumes a register. 1973 if (!IsMCUABI) 1974 FI.getReturnInfo().setInReg(true); 1975 } 1976 } 1977 1978 // The chain argument effectively gives us another free register. 1979 if (FI.isChainCall()) 1980 ++State.FreeRegs; 1981 1982 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1983 // arguments to XMM registers as available. 1984 if (State.CC == llvm::CallingConv::X86_VectorCall) 1985 runVectorCallFirstPass(FI, State); 1986 1987 bool UsedInAlloca = false; 1988 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1989 for (int I = 0, E = Args.size(); I < E; ++I) { 1990 // Skip arguments that have already been assigned. 1991 if (State.IsPreassigned.test(I)) 1992 continue; 1993 1994 Args[I].info = classifyArgumentType(Args[I].type, State); 1995 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1996 } 1997 1998 // If we needed to use inalloca for any argument, do a second pass and rewrite 1999 // all the memory arguments to use inalloca. 2000 if (UsedInAlloca) 2001 rewriteWithInAlloca(FI); 2002 } 2003 2004 void 2005 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2006 CharUnits &StackOffset, ABIArgInfo &Info, 2007 QualType Type) const { 2008 // Arguments are always 4-byte-aligned. 2009 CharUnits WordSize = CharUnits::fromQuantity(4); 2010 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2011 2012 // sret pointers and indirect things will require an extra pointer 2013 // indirection, unless they are byval. Most things are byval, and will not 2014 // require this indirection. 2015 bool IsIndirect = false; 2016 if (Info.isIndirect() && !Info.getIndirectByVal()) 2017 IsIndirect = true; 2018 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2019 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2020 if (IsIndirect) 2021 LLTy = LLTy->getPointerTo(0); 2022 FrameFields.push_back(LLTy); 2023 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2024 2025 // Insert padding bytes to respect alignment. 2026 CharUnits FieldEnd = StackOffset; 2027 StackOffset = FieldEnd.alignTo(WordSize); 2028 if (StackOffset != FieldEnd) { 2029 CharUnits NumBytes = StackOffset - FieldEnd; 2030 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2031 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2032 FrameFields.push_back(Ty); 2033 } 2034 } 2035 2036 static bool isArgInAlloca(const ABIArgInfo &Info) { 2037 // Leave ignored and inreg arguments alone. 2038 switch (Info.getKind()) { 2039 case ABIArgInfo::InAlloca: 2040 return true; 2041 case ABIArgInfo::Ignore: 2042 case ABIArgInfo::IndirectAliased: 2043 return false; 2044 case ABIArgInfo::Indirect: 2045 case ABIArgInfo::Direct: 2046 case ABIArgInfo::Extend: 2047 return !Info.getInReg(); 2048 case ABIArgInfo::Expand: 2049 case ABIArgInfo::CoerceAndExpand: 2050 // These are aggregate types which are never passed in registers when 2051 // inalloca is involved. 2052 return true; 2053 } 2054 llvm_unreachable("invalid enum"); 2055 } 2056 2057 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2058 assert(IsWin32StructABI && "inalloca only supported on win32"); 2059 2060 // Build a packed struct type for all of the arguments in memory. 2061 SmallVector<llvm::Type *, 6> FrameFields; 2062 2063 // The stack alignment is always 4. 2064 CharUnits StackAlign = CharUnits::fromQuantity(4); 2065 2066 CharUnits StackOffset; 2067 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2068 2069 // Put 'this' into the struct before 'sret', if necessary. 2070 bool IsThisCall = 2071 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2072 ABIArgInfo &Ret = FI.getReturnInfo(); 2073 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2074 isArgInAlloca(I->info)) { 2075 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2076 ++I; 2077 } 2078 2079 // Put the sret parameter into the inalloca struct if it's in memory. 2080 if (Ret.isIndirect() && !Ret.getInReg()) { 2081 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2082 // On Windows, the hidden sret parameter is always returned in eax. 2083 Ret.setInAllocaSRet(IsWin32StructABI); 2084 } 2085 2086 // Skip the 'this' parameter in ecx. 2087 if (IsThisCall) 2088 ++I; 2089 2090 // Put arguments passed in memory into the struct. 2091 for (; I != E; ++I) { 2092 if (isArgInAlloca(I->info)) 2093 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2094 } 2095 2096 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2097 /*isPacked=*/true), 2098 StackAlign); 2099 } 2100 2101 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2102 Address VAListAddr, QualType Ty) const { 2103 2104 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2105 2106 // x86-32 changes the alignment of certain arguments on the stack. 2107 // 2108 // Just messing with TypeInfo like this works because we never pass 2109 // anything indirectly. 2110 TypeInfo.Align = CharUnits::fromQuantity( 2111 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2112 2113 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2114 TypeInfo, CharUnits::fromQuantity(4), 2115 /*AllowHigherAlign*/ true); 2116 } 2117 2118 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2119 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2120 assert(Triple.getArch() == llvm::Triple::x86); 2121 2122 switch (Opts.getStructReturnConvention()) { 2123 case CodeGenOptions::SRCK_Default: 2124 break; 2125 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2126 return false; 2127 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2128 return true; 2129 } 2130 2131 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2132 return true; 2133 2134 switch (Triple.getOS()) { 2135 case llvm::Triple::DragonFly: 2136 case llvm::Triple::FreeBSD: 2137 case llvm::Triple::OpenBSD: 2138 case llvm::Triple::Win32: 2139 return true; 2140 default: 2141 return false; 2142 } 2143 } 2144 2145 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2146 CodeGen::CodeGenModule &CGM) { 2147 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2148 return; 2149 2150 llvm::Function *Fn = cast<llvm::Function>(GV); 2151 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2152 if (FD->getNumParams() == 0) 2153 return; 2154 2155 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2156 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2157 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2158 Fn->getContext(), ByValTy); 2159 Fn->addParamAttr(0, NewAttr); 2160 } 2161 2162 void X86_32TargetCodeGenInfo::setTargetAttributes( 2163 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2164 if (GV->isDeclaration()) 2165 return; 2166 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2167 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2168 llvm::Function *Fn = cast<llvm::Function>(GV); 2169 Fn->addFnAttr("stackrealign"); 2170 } 2171 2172 addX86InterruptAttrs(FD, GV, CGM); 2173 } 2174 } 2175 2176 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2177 CodeGen::CodeGenFunction &CGF, 2178 llvm::Value *Address) const { 2179 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2180 2181 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2182 2183 // 0-7 are the eight integer registers; the order is different 2184 // on Darwin (for EH), but the range is the same. 2185 // 8 is %eip. 2186 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2187 2188 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2189 // 12-16 are st(0..4). Not sure why we stop at 4. 2190 // These have size 16, which is sizeof(long double) on 2191 // platforms with 8-byte alignment for that type. 2192 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2193 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2194 2195 } else { 2196 // 9 is %eflags, which doesn't get a size on Darwin for some 2197 // reason. 2198 Builder.CreateAlignedStore( 2199 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2200 CharUnits::One()); 2201 2202 // 11-16 are st(0..5). Not sure why we stop at 5. 2203 // These have size 12, which is sizeof(long double) on 2204 // platforms with 4-byte alignment for that type. 2205 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2206 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2207 } 2208 2209 return false; 2210 } 2211 2212 //===----------------------------------------------------------------------===// 2213 // X86-64 ABI Implementation 2214 //===----------------------------------------------------------------------===// 2215 2216 2217 namespace { 2218 /// The AVX ABI level for X86 targets. 2219 enum class X86AVXABILevel { 2220 None, 2221 AVX, 2222 AVX512 2223 }; 2224 2225 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2226 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2227 switch (AVXLevel) { 2228 case X86AVXABILevel::AVX512: 2229 return 512; 2230 case X86AVXABILevel::AVX: 2231 return 256; 2232 case X86AVXABILevel::None: 2233 return 128; 2234 } 2235 llvm_unreachable("Unknown AVXLevel"); 2236 } 2237 2238 /// X86_64ABIInfo - The X86_64 ABI information. 2239 class X86_64ABIInfo : public SwiftABIInfo { 2240 enum Class { 2241 Integer = 0, 2242 SSE, 2243 SSEUp, 2244 X87, 2245 X87Up, 2246 ComplexX87, 2247 NoClass, 2248 Memory 2249 }; 2250 2251 /// merge - Implement the X86_64 ABI merging algorithm. 2252 /// 2253 /// Merge an accumulating classification \arg Accum with a field 2254 /// classification \arg Field. 2255 /// 2256 /// \param Accum - The accumulating classification. This should 2257 /// always be either NoClass or the result of a previous merge 2258 /// call. In addition, this should never be Memory (the caller 2259 /// should just return Memory for the aggregate). 2260 static Class merge(Class Accum, Class Field); 2261 2262 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2263 /// 2264 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2265 /// final MEMORY or SSE classes when necessary. 2266 /// 2267 /// \param AggregateSize - The size of the current aggregate in 2268 /// the classification process. 2269 /// 2270 /// \param Lo - The classification for the parts of the type 2271 /// residing in the low word of the containing object. 2272 /// 2273 /// \param Hi - The classification for the parts of the type 2274 /// residing in the higher words of the containing object. 2275 /// 2276 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2277 2278 /// classify - Determine the x86_64 register classes in which the 2279 /// given type T should be passed. 2280 /// 2281 /// \param Lo - The classification for the parts of the type 2282 /// residing in the low word of the containing object. 2283 /// 2284 /// \param Hi - The classification for the parts of the type 2285 /// residing in the high word of the containing object. 2286 /// 2287 /// \param OffsetBase - The bit offset of this type in the 2288 /// containing object. Some parameters are classified different 2289 /// depending on whether they straddle an eightbyte boundary. 2290 /// 2291 /// \param isNamedArg - Whether the argument in question is a "named" 2292 /// argument, as used in AMD64-ABI 3.5.7. 2293 /// 2294 /// If a word is unused its result will be NoClass; if a type should 2295 /// be passed in Memory then at least the classification of \arg Lo 2296 /// will be Memory. 2297 /// 2298 /// The \arg Lo class will be NoClass iff the argument is ignored. 2299 /// 2300 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2301 /// also be ComplexX87. 2302 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2303 bool isNamedArg) const; 2304 2305 llvm::Type *GetByteVectorType(QualType Ty) const; 2306 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2307 unsigned IROffset, QualType SourceTy, 2308 unsigned SourceOffset) const; 2309 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2310 unsigned IROffset, QualType SourceTy, 2311 unsigned SourceOffset) const; 2312 2313 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2314 /// such that the argument will be returned in memory. 2315 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2316 2317 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2318 /// such that the argument will be passed in memory. 2319 /// 2320 /// \param freeIntRegs - The number of free integer registers remaining 2321 /// available. 2322 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2323 2324 ABIArgInfo classifyReturnType(QualType RetTy) const; 2325 2326 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2327 unsigned &neededInt, unsigned &neededSSE, 2328 bool isNamedArg) const; 2329 2330 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2331 unsigned &NeededSSE) const; 2332 2333 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2334 unsigned &NeededSSE) const; 2335 2336 bool IsIllegalVectorType(QualType Ty) const; 2337 2338 /// The 0.98 ABI revision clarified a lot of ambiguities, 2339 /// unfortunately in ways that were not always consistent with 2340 /// certain previous compilers. In particular, platforms which 2341 /// required strict binary compatibility with older versions of GCC 2342 /// may need to exempt themselves. 2343 bool honorsRevision0_98() const { 2344 return !getTarget().getTriple().isOSDarwin(); 2345 } 2346 2347 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2348 /// classify it as INTEGER (for compatibility with older clang compilers). 2349 bool classifyIntegerMMXAsSSE() const { 2350 // Clang <= 3.8 did not do this. 2351 if (getContext().getLangOpts().getClangABICompat() <= 2352 LangOptions::ClangABI::Ver3_8) 2353 return false; 2354 2355 const llvm::Triple &Triple = getTarget().getTriple(); 2356 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2357 return false; 2358 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2359 return false; 2360 return true; 2361 } 2362 2363 // GCC classifies vectors of __int128 as memory. 2364 bool passInt128VectorsInMem() const { 2365 // Clang <= 9.0 did not do this. 2366 if (getContext().getLangOpts().getClangABICompat() <= 2367 LangOptions::ClangABI::Ver9) 2368 return false; 2369 2370 const llvm::Triple &T = getTarget().getTriple(); 2371 return T.isOSLinux() || T.isOSNetBSD(); 2372 } 2373 2374 X86AVXABILevel AVXLevel; 2375 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2376 // 64-bit hardware. 2377 bool Has64BitPointers; 2378 2379 public: 2380 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2381 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2382 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2383 } 2384 2385 bool isPassedUsingAVXType(QualType type) const { 2386 unsigned neededInt, neededSSE; 2387 // The freeIntRegs argument doesn't matter here. 2388 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2389 /*isNamedArg*/true); 2390 if (info.isDirect()) { 2391 llvm::Type *ty = info.getCoerceToType(); 2392 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2393 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2394 } 2395 return false; 2396 } 2397 2398 void computeInfo(CGFunctionInfo &FI) const override; 2399 2400 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2401 QualType Ty) const override; 2402 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2403 QualType Ty) const override; 2404 2405 bool has64BitPointers() const { 2406 return Has64BitPointers; 2407 } 2408 2409 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2410 bool asReturnValue) const override { 2411 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2412 } 2413 bool isSwiftErrorInRegister() const override { 2414 return true; 2415 } 2416 }; 2417 2418 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2419 class WinX86_64ABIInfo : public SwiftABIInfo { 2420 public: 2421 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2422 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2423 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2424 2425 void computeInfo(CGFunctionInfo &FI) const override; 2426 2427 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2428 QualType Ty) const override; 2429 2430 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2431 // FIXME: Assumes vectorcall is in use. 2432 return isX86VectorTypeForVectorCall(getContext(), Ty); 2433 } 2434 2435 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2436 uint64_t NumMembers) const override { 2437 // FIXME: Assumes vectorcall is in use. 2438 return isX86VectorCallAggregateSmallEnough(NumMembers); 2439 } 2440 2441 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2442 bool asReturnValue) const override { 2443 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2444 } 2445 2446 bool isSwiftErrorInRegister() const override { 2447 return true; 2448 } 2449 2450 private: 2451 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2452 bool IsVectorCall, bool IsRegCall) const; 2453 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2454 const ABIArgInfo ¤t) const; 2455 2456 X86AVXABILevel AVXLevel; 2457 2458 bool IsMingw64; 2459 }; 2460 2461 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2462 public: 2463 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2464 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2465 2466 const X86_64ABIInfo &getABIInfo() const { 2467 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2468 } 2469 2470 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2471 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2472 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2473 2474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2475 return 7; 2476 } 2477 2478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2479 llvm::Value *Address) const override { 2480 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2481 2482 // 0-15 are the 16 integer registers. 2483 // 16 is %rip. 2484 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2485 return false; 2486 } 2487 2488 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2489 StringRef Constraint, 2490 llvm::Type* Ty) const override { 2491 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2492 } 2493 2494 bool isNoProtoCallVariadic(const CallArgList &args, 2495 const FunctionNoProtoType *fnType) const override { 2496 // The default CC on x86-64 sets %al to the number of SSA 2497 // registers used, and GCC sets this when calling an unprototyped 2498 // function, so we override the default behavior. However, don't do 2499 // that when AVX types are involved: the ABI explicitly states it is 2500 // undefined, and it doesn't work in practice because of how the ABI 2501 // defines varargs anyway. 2502 if (fnType->getCallConv() == CC_C) { 2503 bool HasAVXType = false; 2504 for (CallArgList::const_iterator 2505 it = args.begin(), ie = args.end(); it != ie; ++it) { 2506 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2507 HasAVXType = true; 2508 break; 2509 } 2510 } 2511 2512 if (!HasAVXType) 2513 return true; 2514 } 2515 2516 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2517 } 2518 2519 llvm::Constant * 2520 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2521 unsigned Sig = (0xeb << 0) | // jmp rel8 2522 (0x06 << 8) | // .+0x08 2523 ('v' << 16) | 2524 ('2' << 24); 2525 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2526 } 2527 2528 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2529 CodeGen::CodeGenModule &CGM) const override { 2530 if (GV->isDeclaration()) 2531 return; 2532 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2533 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2534 llvm::Function *Fn = cast<llvm::Function>(GV); 2535 Fn->addFnAttr("stackrealign"); 2536 } 2537 2538 addX86InterruptAttrs(FD, GV, CGM); 2539 } 2540 } 2541 2542 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2543 const FunctionDecl *Caller, 2544 const FunctionDecl *Callee, 2545 const CallArgList &Args) const override; 2546 }; 2547 2548 static void initFeatureMaps(const ASTContext &Ctx, 2549 llvm::StringMap<bool> &CallerMap, 2550 const FunctionDecl *Caller, 2551 llvm::StringMap<bool> &CalleeMap, 2552 const FunctionDecl *Callee) { 2553 if (CalleeMap.empty() && CallerMap.empty()) { 2554 // The caller is potentially nullptr in the case where the call isn't in a 2555 // function. In this case, the getFunctionFeatureMap ensures we just get 2556 // the TU level setting (since it cannot be modified by 'target'.. 2557 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2558 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2559 } 2560 } 2561 2562 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2563 SourceLocation CallLoc, 2564 const llvm::StringMap<bool> &CallerMap, 2565 const llvm::StringMap<bool> &CalleeMap, 2566 QualType Ty, StringRef Feature, 2567 bool IsArgument) { 2568 bool CallerHasFeat = CallerMap.lookup(Feature); 2569 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2570 if (!CallerHasFeat && !CalleeHasFeat) 2571 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2572 << IsArgument << Ty << Feature; 2573 2574 // Mixing calling conventions here is very clearly an error. 2575 if (!CallerHasFeat || !CalleeHasFeat) 2576 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2577 << IsArgument << Ty << Feature; 2578 2579 // Else, both caller and callee have the required feature, so there is no need 2580 // to diagnose. 2581 return false; 2582 } 2583 2584 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2585 SourceLocation CallLoc, 2586 const llvm::StringMap<bool> &CallerMap, 2587 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2588 bool IsArgument) { 2589 uint64_t Size = Ctx.getTypeSize(Ty); 2590 if (Size > 256) 2591 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2592 "avx512f", IsArgument); 2593 2594 if (Size > 128) 2595 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2596 IsArgument); 2597 2598 return false; 2599 } 2600 2601 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2602 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2603 const FunctionDecl *Callee, const CallArgList &Args) const { 2604 llvm::StringMap<bool> CallerMap; 2605 llvm::StringMap<bool> CalleeMap; 2606 unsigned ArgIndex = 0; 2607 2608 // We need to loop through the actual call arguments rather than the the 2609 // function's parameters, in case this variadic. 2610 for (const CallArg &Arg : Args) { 2611 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2612 // additionally changes how vectors >256 in size are passed. Like GCC, we 2613 // warn when a function is called with an argument where this will change. 2614 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2615 // the caller and callee features are mismatched. 2616 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2617 // change its ABI with attribute-target after this call. 2618 if (Arg.getType()->isVectorType() && 2619 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2620 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2621 QualType Ty = Arg.getType(); 2622 // The CallArg seems to have desugared the type already, so for clearer 2623 // diagnostics, replace it with the type in the FunctionDecl if possible. 2624 if (ArgIndex < Callee->getNumParams()) 2625 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2626 2627 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2628 CalleeMap, Ty, /*IsArgument*/ true)) 2629 return; 2630 } 2631 ++ArgIndex; 2632 } 2633 2634 // Check return always, as we don't have a good way of knowing in codegen 2635 // whether this value is used, tail-called, etc. 2636 if (Callee->getReturnType()->isVectorType() && 2637 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2638 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2639 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2640 CalleeMap, Callee->getReturnType(), 2641 /*IsArgument*/ false); 2642 } 2643 } 2644 2645 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2646 // If the argument does not end in .lib, automatically add the suffix. 2647 // If the argument contains a space, enclose it in quotes. 2648 // This matches the behavior of MSVC. 2649 bool Quote = Lib.contains(' '); 2650 std::string ArgStr = Quote ? "\"" : ""; 2651 ArgStr += Lib; 2652 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2653 ArgStr += ".lib"; 2654 ArgStr += Quote ? "\"" : ""; 2655 return ArgStr; 2656 } 2657 2658 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2659 public: 2660 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2661 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2662 unsigned NumRegisterParameters) 2663 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2664 Win32StructABI, NumRegisterParameters, false) {} 2665 2666 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2667 CodeGen::CodeGenModule &CGM) const override; 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2683 CodeGen::CodeGenModule &CGM) { 2684 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2685 2686 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2687 Fn->addFnAttr("stack-probe-size", 2688 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2689 if (CGM.getCodeGenOpts().NoStackArgProbe) 2690 Fn->addFnAttr("no-stack-arg-probe"); 2691 } 2692 } 2693 2694 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2695 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2696 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2697 if (GV->isDeclaration()) 2698 return; 2699 addStackProbeTargetAttributes(D, GV, CGM); 2700 } 2701 2702 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2703 public: 2704 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2705 X86AVXABILevel AVXLevel) 2706 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2707 2708 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2709 CodeGen::CodeGenModule &CGM) const override; 2710 2711 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2712 return 7; 2713 } 2714 2715 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2716 llvm::Value *Address) const override { 2717 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2718 2719 // 0-15 are the 16 integer registers. 2720 // 16 is %rip. 2721 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2722 return false; 2723 } 2724 2725 void getDependentLibraryOption(llvm::StringRef Lib, 2726 llvm::SmallString<24> &Opt) const override { 2727 Opt = "/DEFAULTLIB:"; 2728 Opt += qualifyWindowsLibrary(Lib); 2729 } 2730 2731 void getDetectMismatchOption(llvm::StringRef Name, 2732 llvm::StringRef Value, 2733 llvm::SmallString<32> &Opt) const override { 2734 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2735 } 2736 }; 2737 2738 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2739 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2740 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2741 if (GV->isDeclaration()) 2742 return; 2743 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2744 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2745 llvm::Function *Fn = cast<llvm::Function>(GV); 2746 Fn->addFnAttr("stackrealign"); 2747 } 2748 2749 addX86InterruptAttrs(FD, GV, CGM); 2750 } 2751 2752 addStackProbeTargetAttributes(D, GV, CGM); 2753 } 2754 } 2755 2756 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2757 Class &Hi) const { 2758 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2759 // 2760 // (a) If one of the classes is Memory, the whole argument is passed in 2761 // memory. 2762 // 2763 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2764 // memory. 2765 // 2766 // (c) If the size of the aggregate exceeds two eightbytes and the first 2767 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2768 // argument is passed in memory. NOTE: This is necessary to keep the 2769 // ABI working for processors that don't support the __m256 type. 2770 // 2771 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2772 // 2773 // Some of these are enforced by the merging logic. Others can arise 2774 // only with unions; for example: 2775 // union { _Complex double; unsigned; } 2776 // 2777 // Note that clauses (b) and (c) were added in 0.98. 2778 // 2779 if (Hi == Memory) 2780 Lo = Memory; 2781 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2782 Lo = Memory; 2783 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2784 Lo = Memory; 2785 if (Hi == SSEUp && Lo != SSE) 2786 Hi = SSE; 2787 } 2788 2789 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2790 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2791 // classified recursively so that always two fields are 2792 // considered. The resulting class is calculated according to 2793 // the classes of the fields in the eightbyte: 2794 // 2795 // (a) If both classes are equal, this is the resulting class. 2796 // 2797 // (b) If one of the classes is NO_CLASS, the resulting class is 2798 // the other class. 2799 // 2800 // (c) If one of the classes is MEMORY, the result is the MEMORY 2801 // class. 2802 // 2803 // (d) If one of the classes is INTEGER, the result is the 2804 // INTEGER. 2805 // 2806 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2807 // MEMORY is used as class. 2808 // 2809 // (f) Otherwise class SSE is used. 2810 2811 // Accum should never be memory (we should have returned) or 2812 // ComplexX87 (because this cannot be passed in a structure). 2813 assert((Accum != Memory && Accum != ComplexX87) && 2814 "Invalid accumulated classification during merge."); 2815 if (Accum == Field || Field == NoClass) 2816 return Accum; 2817 if (Field == Memory) 2818 return Memory; 2819 if (Accum == NoClass) 2820 return Field; 2821 if (Accum == Integer || Field == Integer) 2822 return Integer; 2823 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2824 Accum == X87 || Accum == X87Up) 2825 return Memory; 2826 return SSE; 2827 } 2828 2829 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2830 Class &Lo, Class &Hi, bool isNamedArg) const { 2831 // FIXME: This code can be simplified by introducing a simple value class for 2832 // Class pairs with appropriate constructor methods for the various 2833 // situations. 2834 2835 // FIXME: Some of the split computations are wrong; unaligned vectors 2836 // shouldn't be passed in registers for example, so there is no chance they 2837 // can straddle an eightbyte. Verify & simplify. 2838 2839 Lo = Hi = NoClass; 2840 2841 Class &Current = OffsetBase < 64 ? Lo : Hi; 2842 Current = Memory; 2843 2844 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2845 BuiltinType::Kind k = BT->getKind(); 2846 2847 if (k == BuiltinType::Void) { 2848 Current = NoClass; 2849 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2850 Lo = Integer; 2851 Hi = Integer; 2852 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2853 Current = Integer; 2854 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2855 k == BuiltinType::Float16) { 2856 Current = SSE; 2857 } else if (k == BuiltinType::LongDouble) { 2858 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2859 if (LDF == &llvm::APFloat::IEEEquad()) { 2860 Lo = SSE; 2861 Hi = SSEUp; 2862 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2863 Lo = X87; 2864 Hi = X87Up; 2865 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2866 Current = SSE; 2867 } else 2868 llvm_unreachable("unexpected long double representation!"); 2869 } 2870 // FIXME: _Decimal32 and _Decimal64 are SSE. 2871 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2872 return; 2873 } 2874 2875 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2876 // Classify the underlying integer type. 2877 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2878 return; 2879 } 2880 2881 if (Ty->hasPointerRepresentation()) { 2882 Current = Integer; 2883 return; 2884 } 2885 2886 if (Ty->isMemberPointerType()) { 2887 if (Ty->isMemberFunctionPointerType()) { 2888 if (Has64BitPointers) { 2889 // If Has64BitPointers, this is an {i64, i64}, so classify both 2890 // Lo and Hi now. 2891 Lo = Hi = Integer; 2892 } else { 2893 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2894 // straddles an eightbyte boundary, Hi should be classified as well. 2895 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2896 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2897 if (EB_FuncPtr != EB_ThisAdj) { 2898 Lo = Hi = Integer; 2899 } else { 2900 Current = Integer; 2901 } 2902 } 2903 } else { 2904 Current = Integer; 2905 } 2906 return; 2907 } 2908 2909 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2910 uint64_t Size = getContext().getTypeSize(VT); 2911 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2912 // gcc passes the following as integer: 2913 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2914 // 2 bytes - <2 x char>, <1 x short> 2915 // 1 byte - <1 x char> 2916 Current = Integer; 2917 2918 // If this type crosses an eightbyte boundary, it should be 2919 // split. 2920 uint64_t EB_Lo = (OffsetBase) / 64; 2921 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2922 if (EB_Lo != EB_Hi) 2923 Hi = Lo; 2924 } else if (Size == 64) { 2925 QualType ElementType = VT->getElementType(); 2926 2927 // gcc passes <1 x double> in memory. :( 2928 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2929 return; 2930 2931 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2932 // pass them as integer. For platforms where clang is the de facto 2933 // platform compiler, we must continue to use integer. 2934 if (!classifyIntegerMMXAsSSE() && 2935 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2936 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2937 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2938 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2939 Current = Integer; 2940 else 2941 Current = SSE; 2942 2943 // If this type crosses an eightbyte boundary, it should be 2944 // split. 2945 if (OffsetBase && OffsetBase != 64) 2946 Hi = Lo; 2947 } else if (Size == 128 || 2948 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2949 QualType ElementType = VT->getElementType(); 2950 2951 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2952 if (passInt128VectorsInMem() && Size != 128 && 2953 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2954 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2955 return; 2956 2957 // Arguments of 256-bits are split into four eightbyte chunks. The 2958 // least significant one belongs to class SSE and all the others to class 2959 // SSEUP. The original Lo and Hi design considers that types can't be 2960 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2961 // This design isn't correct for 256-bits, but since there're no cases 2962 // where the upper parts would need to be inspected, avoid adding 2963 // complexity and just consider Hi to match the 64-256 part. 2964 // 2965 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2966 // registers if they are "named", i.e. not part of the "..." of a 2967 // variadic function. 2968 // 2969 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2970 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2971 Lo = SSE; 2972 Hi = SSEUp; 2973 } 2974 return; 2975 } 2976 2977 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2978 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2979 2980 uint64_t Size = getContext().getTypeSize(Ty); 2981 if (ET->isIntegralOrEnumerationType()) { 2982 if (Size <= 64) 2983 Current = Integer; 2984 else if (Size <= 128) 2985 Lo = Hi = Integer; 2986 } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { 2987 Current = SSE; 2988 } else if (ET == getContext().DoubleTy) { 2989 Lo = Hi = SSE; 2990 } else if (ET == getContext().LongDoubleTy) { 2991 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2992 if (LDF == &llvm::APFloat::IEEEquad()) 2993 Current = Memory; 2994 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2995 Current = ComplexX87; 2996 else if (LDF == &llvm::APFloat::IEEEdouble()) 2997 Lo = Hi = SSE; 2998 else 2999 llvm_unreachable("unexpected long double representation!"); 3000 } 3001 3002 // If this complex type crosses an eightbyte boundary then it 3003 // should be split. 3004 uint64_t EB_Real = (OffsetBase) / 64; 3005 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3006 if (Hi == NoClass && EB_Real != EB_Imag) 3007 Hi = Lo; 3008 3009 return; 3010 } 3011 3012 if (const auto *EITy = Ty->getAs<BitIntType>()) { 3013 if (EITy->getNumBits() <= 64) 3014 Current = Integer; 3015 else if (EITy->getNumBits() <= 128) 3016 Lo = Hi = Integer; 3017 // Larger values need to get passed in memory. 3018 return; 3019 } 3020 3021 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3022 // Arrays are treated like structures. 3023 3024 uint64_t Size = getContext().getTypeSize(Ty); 3025 3026 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3027 // than eight eightbytes, ..., it has class MEMORY. 3028 if (Size > 512) 3029 return; 3030 3031 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3032 // fields, it has class MEMORY. 3033 // 3034 // Only need to check alignment of array base. 3035 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3036 return; 3037 3038 // Otherwise implement simplified merge. We could be smarter about 3039 // this, but it isn't worth it and would be harder to verify. 3040 Current = NoClass; 3041 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3042 uint64_t ArraySize = AT->getSize().getZExtValue(); 3043 3044 // The only case a 256-bit wide vector could be used is when the array 3045 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3046 // to work for sizes wider than 128, early check and fallback to memory. 3047 // 3048 if (Size > 128 && 3049 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3050 return; 3051 3052 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3053 Class FieldLo, FieldHi; 3054 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3055 Lo = merge(Lo, FieldLo); 3056 Hi = merge(Hi, FieldHi); 3057 if (Lo == Memory || Hi == Memory) 3058 break; 3059 } 3060 3061 postMerge(Size, Lo, Hi); 3062 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3063 return; 3064 } 3065 3066 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3067 uint64_t Size = getContext().getTypeSize(Ty); 3068 3069 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3070 // than eight eightbytes, ..., it has class MEMORY. 3071 if (Size > 512) 3072 return; 3073 3074 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3075 // copy constructor or a non-trivial destructor, it is passed by invisible 3076 // reference. 3077 if (getRecordArgABI(RT, getCXXABI())) 3078 return; 3079 3080 const RecordDecl *RD = RT->getDecl(); 3081 3082 // Assume variable sized types are passed in memory. 3083 if (RD->hasFlexibleArrayMember()) 3084 return; 3085 3086 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3087 3088 // Reset Lo class, this will be recomputed. 3089 Current = NoClass; 3090 3091 // If this is a C++ record, classify the bases first. 3092 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3093 for (const auto &I : CXXRD->bases()) { 3094 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3095 "Unexpected base class!"); 3096 const auto *Base = 3097 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3098 3099 // Classify this field. 3100 // 3101 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3102 // single eightbyte, each is classified separately. Each eightbyte gets 3103 // initialized to class NO_CLASS. 3104 Class FieldLo, FieldHi; 3105 uint64_t Offset = 3106 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3107 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3108 Lo = merge(Lo, FieldLo); 3109 Hi = merge(Hi, FieldHi); 3110 if (Lo == Memory || Hi == Memory) { 3111 postMerge(Size, Lo, Hi); 3112 return; 3113 } 3114 } 3115 } 3116 3117 // Classify the fields one at a time, merging the results. 3118 unsigned idx = 0; 3119 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3120 LangOptions::ClangABI::Ver11 || 3121 getContext().getTargetInfo().getTriple().isPS4(); 3122 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3123 3124 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3125 i != e; ++i, ++idx) { 3126 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3127 bool BitField = i->isBitField(); 3128 3129 // Ignore padding bit-fields. 3130 if (BitField && i->isUnnamedBitfield()) 3131 continue; 3132 3133 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3134 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3135 // 3136 // The only case a 256-bit or a 512-bit wide vector could be used is when 3137 // the struct contains a single 256-bit or 512-bit element. Early check 3138 // and fallback to memory. 3139 // 3140 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3141 // than 128. 3142 if (Size > 128 && 3143 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3144 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3145 Lo = Memory; 3146 postMerge(Size, Lo, Hi); 3147 return; 3148 } 3149 // Note, skip this test for bit-fields, see below. 3150 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3151 Lo = Memory; 3152 postMerge(Size, Lo, Hi); 3153 return; 3154 } 3155 3156 // Classify this field. 3157 // 3158 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3159 // exceeds a single eightbyte, each is classified 3160 // separately. Each eightbyte gets initialized to class 3161 // NO_CLASS. 3162 Class FieldLo, FieldHi; 3163 3164 // Bit-fields require special handling, they do not force the 3165 // structure to be passed in memory even if unaligned, and 3166 // therefore they can straddle an eightbyte. 3167 if (BitField) { 3168 assert(!i->isUnnamedBitfield()); 3169 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3170 uint64_t Size = i->getBitWidthValue(getContext()); 3171 3172 uint64_t EB_Lo = Offset / 64; 3173 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3174 3175 if (EB_Lo) { 3176 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3177 FieldLo = NoClass; 3178 FieldHi = Integer; 3179 } else { 3180 FieldLo = Integer; 3181 FieldHi = EB_Hi ? Integer : NoClass; 3182 } 3183 } else 3184 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3185 Lo = merge(Lo, FieldLo); 3186 Hi = merge(Hi, FieldHi); 3187 if (Lo == Memory || Hi == Memory) 3188 break; 3189 } 3190 3191 postMerge(Size, Lo, Hi); 3192 } 3193 } 3194 3195 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3196 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3197 // place naturally. 3198 if (!isAggregateTypeForABI(Ty)) { 3199 // Treat an enum type as its underlying type. 3200 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3201 Ty = EnumTy->getDecl()->getIntegerType(); 3202 3203 if (Ty->isBitIntType()) 3204 return getNaturalAlignIndirect(Ty); 3205 3206 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3207 : ABIArgInfo::getDirect()); 3208 } 3209 3210 return getNaturalAlignIndirect(Ty); 3211 } 3212 3213 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3214 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3215 uint64_t Size = getContext().getTypeSize(VecTy); 3216 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3217 if (Size <= 64 || Size > LargestVector) 3218 return true; 3219 QualType EltTy = VecTy->getElementType(); 3220 if (passInt128VectorsInMem() && 3221 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3222 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3230 unsigned freeIntRegs) const { 3231 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3232 // place naturally. 3233 // 3234 // This assumption is optimistic, as there could be free registers available 3235 // when we need to pass this argument in memory, and LLVM could try to pass 3236 // the argument in the free register. This does not seem to happen currently, 3237 // but this code would be much safer if we could mark the argument with 3238 // 'onstack'. See PR12193. 3239 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3240 !Ty->isBitIntType()) { 3241 // Treat an enum type as its underlying type. 3242 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3243 Ty = EnumTy->getDecl()->getIntegerType(); 3244 3245 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3246 : ABIArgInfo::getDirect()); 3247 } 3248 3249 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3250 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3251 3252 // Compute the byval alignment. We specify the alignment of the byval in all 3253 // cases so that the mid-level optimizer knows the alignment of the byval. 3254 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3255 3256 // Attempt to avoid passing indirect results using byval when possible. This 3257 // is important for good codegen. 3258 // 3259 // We do this by coercing the value into a scalar type which the backend can 3260 // handle naturally (i.e., without using byval). 3261 // 3262 // For simplicity, we currently only do this when we have exhausted all of the 3263 // free integer registers. Doing this when there are free integer registers 3264 // would require more care, as we would have to ensure that the coerced value 3265 // did not claim the unused register. That would require either reording the 3266 // arguments to the function (so that any subsequent inreg values came first), 3267 // or only doing this optimization when there were no following arguments that 3268 // might be inreg. 3269 // 3270 // We currently expect it to be rare (particularly in well written code) for 3271 // arguments to be passed on the stack when there are still free integer 3272 // registers available (this would typically imply large structs being passed 3273 // by value), so this seems like a fair tradeoff for now. 3274 // 3275 // We can revisit this if the backend grows support for 'onstack' parameter 3276 // attributes. See PR12193. 3277 if (freeIntRegs == 0) { 3278 uint64_t Size = getContext().getTypeSize(Ty); 3279 3280 // If this type fits in an eightbyte, coerce it into the matching integral 3281 // type, which will end up on the stack (with alignment 8). 3282 if (Align == 8 && Size <= 64) 3283 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3284 Size)); 3285 } 3286 3287 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3288 } 3289 3290 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3291 /// register. Pick an LLVM IR type that will be passed as a vector register. 3292 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3293 // Wrapper structs/arrays that only contain vectors are passed just like 3294 // vectors; strip them off if present. 3295 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3296 Ty = QualType(InnerTy, 0); 3297 3298 llvm::Type *IRType = CGT.ConvertType(Ty); 3299 if (isa<llvm::VectorType>(IRType)) { 3300 // Don't pass vXi128 vectors in their native type, the backend can't 3301 // legalize them. 3302 if (passInt128VectorsInMem() && 3303 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3304 // Use a vXi64 vector. 3305 uint64_t Size = getContext().getTypeSize(Ty); 3306 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3307 Size / 64); 3308 } 3309 3310 return IRType; 3311 } 3312 3313 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3314 return IRType; 3315 3316 // We couldn't find the preferred IR vector type for 'Ty'. 3317 uint64_t Size = getContext().getTypeSize(Ty); 3318 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3319 3320 3321 // Return a LLVM IR vector type based on the size of 'Ty'. 3322 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3323 Size / 64); 3324 } 3325 3326 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3327 /// is known to either be off the end of the specified type or being in 3328 /// alignment padding. The user type specified is known to be at most 128 bits 3329 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3330 /// classification that put one of the two halves in the INTEGER class. 3331 /// 3332 /// It is conservatively correct to return false. 3333 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3334 unsigned EndBit, ASTContext &Context) { 3335 // If the bytes being queried are off the end of the type, there is no user 3336 // data hiding here. This handles analysis of builtins, vectors and other 3337 // types that don't contain interesting padding. 3338 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3339 if (TySize <= StartBit) 3340 return true; 3341 3342 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3343 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3344 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3345 3346 // Check each element to see if the element overlaps with the queried range. 3347 for (unsigned i = 0; i != NumElts; ++i) { 3348 // If the element is after the span we care about, then we're done.. 3349 unsigned EltOffset = i*EltSize; 3350 if (EltOffset >= EndBit) break; 3351 3352 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3353 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3354 EndBit-EltOffset, Context)) 3355 return false; 3356 } 3357 // If it overlaps no elements, then it is safe to process as padding. 3358 return true; 3359 } 3360 3361 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3362 const RecordDecl *RD = RT->getDecl(); 3363 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3364 3365 // If this is a C++ record, check the bases first. 3366 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3367 for (const auto &I : CXXRD->bases()) { 3368 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3369 "Unexpected base class!"); 3370 const auto *Base = 3371 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3372 3373 // If the base is after the span we care about, ignore it. 3374 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3375 if (BaseOffset >= EndBit) continue; 3376 3377 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3378 if (!BitsContainNoUserData(I.getType(), BaseStart, 3379 EndBit-BaseOffset, Context)) 3380 return false; 3381 } 3382 } 3383 3384 // Verify that no field has data that overlaps the region of interest. Yes 3385 // this could be sped up a lot by being smarter about queried fields, 3386 // however we're only looking at structs up to 16 bytes, so we don't care 3387 // much. 3388 unsigned idx = 0; 3389 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3390 i != e; ++i, ++idx) { 3391 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3392 3393 // If we found a field after the region we care about, then we're done. 3394 if (FieldOffset >= EndBit) break; 3395 3396 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3397 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3398 Context)) 3399 return false; 3400 } 3401 3402 // If nothing in this record overlapped the area of interest, then we're 3403 // clean. 3404 return true; 3405 } 3406 3407 return false; 3408 } 3409 3410 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3411 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3412 const llvm::DataLayout &TD) { 3413 if (IROffset == 0 && IRType->isFloatingPointTy()) 3414 return IRType; 3415 3416 // If this is a struct, recurse into the field at the specified offset. 3417 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3418 if (!STy->getNumContainedTypes()) 3419 return nullptr; 3420 3421 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3422 unsigned Elt = SL->getElementContainingOffset(IROffset); 3423 IROffset -= SL->getElementOffset(Elt); 3424 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3425 } 3426 3427 // If this is an array, recurse into the field at the specified offset. 3428 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3429 llvm::Type *EltTy = ATy->getElementType(); 3430 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3431 IROffset -= IROffset / EltSize * EltSize; 3432 return getFPTypeAtOffset(EltTy, IROffset, TD); 3433 } 3434 3435 return nullptr; 3436 } 3437 3438 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3439 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3440 llvm::Type *X86_64ABIInfo:: 3441 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3442 QualType SourceTy, unsigned SourceOffset) const { 3443 const llvm::DataLayout &TD = getDataLayout(); 3444 unsigned SourceSize = 3445 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3446 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3447 if (!T0 || T0->isDoubleTy()) 3448 return llvm::Type::getDoubleTy(getVMContext()); 3449 3450 // Get the adjacent FP type. 3451 llvm::Type *T1 = nullptr; 3452 unsigned T0Size = TD.getTypeAllocSize(T0); 3453 if (SourceSize > T0Size) 3454 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3455 if (T1 == nullptr) { 3456 // Check if IRType is a half + float. float type will be in IROffset+4 due 3457 // to its alignment. 3458 if (T0->isHalfTy() && SourceSize > 4) 3459 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3460 // If we can't get a second FP type, return a simple half or float. 3461 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3462 // {float, i8} too. 3463 if (T1 == nullptr) 3464 return T0; 3465 } 3466 3467 if (T0->isFloatTy() && T1->isFloatTy()) 3468 return llvm::FixedVectorType::get(T0, 2); 3469 3470 if (T0->isHalfTy() && T1->isHalfTy()) { 3471 llvm::Type *T2 = nullptr; 3472 if (SourceSize > 4) 3473 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3474 if (T2 == nullptr) 3475 return llvm::FixedVectorType::get(T0, 2); 3476 return llvm::FixedVectorType::get(T0, 4); 3477 } 3478 3479 if (T0->isHalfTy() || T1->isHalfTy()) 3480 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3481 3482 return llvm::Type::getDoubleTy(getVMContext()); 3483 } 3484 3485 3486 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3487 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3488 /// about the high or low part of an up-to-16-byte struct. This routine picks 3489 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3490 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3491 /// etc). 3492 /// 3493 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3494 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3495 /// the 8-byte value references. PrefType may be null. 3496 /// 3497 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3498 /// an offset into this that we're processing (which is always either 0 or 8). 3499 /// 3500 llvm::Type *X86_64ABIInfo:: 3501 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3502 QualType SourceTy, unsigned SourceOffset) const { 3503 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3504 // returning an 8-byte unit starting with it. See if we can safely use it. 3505 if (IROffset == 0) { 3506 // Pointers and int64's always fill the 8-byte unit. 3507 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3508 IRType->isIntegerTy(64)) 3509 return IRType; 3510 3511 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3512 // goodness in the source type is just tail padding. This is allowed to 3513 // kick in for struct {double,int} on the int, but not on 3514 // struct{double,int,int} because we wouldn't return the second int. We 3515 // have to do this analysis on the source type because we can't depend on 3516 // unions being lowered a specific way etc. 3517 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3518 IRType->isIntegerTy(32) || 3519 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3520 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3521 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3522 3523 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3524 SourceOffset*8+64, getContext())) 3525 return IRType; 3526 } 3527 } 3528 3529 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3530 // If this is a struct, recurse into the field at the specified offset. 3531 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3532 if (IROffset < SL->getSizeInBytes()) { 3533 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3534 IROffset -= SL->getElementOffset(FieldIdx); 3535 3536 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3537 SourceTy, SourceOffset); 3538 } 3539 } 3540 3541 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3542 llvm::Type *EltTy = ATy->getElementType(); 3543 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3544 unsigned EltOffset = IROffset/EltSize*EltSize; 3545 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3546 SourceOffset); 3547 } 3548 3549 // Okay, we don't have any better idea of what to pass, so we pass this in an 3550 // integer register that isn't too big to fit the rest of the struct. 3551 unsigned TySizeInBytes = 3552 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3553 3554 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3555 3556 // It is always safe to classify this as an integer type up to i64 that 3557 // isn't larger than the structure. 3558 return llvm::IntegerType::get(getVMContext(), 3559 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3560 } 3561 3562 3563 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3564 /// be used as elements of a two register pair to pass or return, return a 3565 /// first class aggregate to represent them. For example, if the low part of 3566 /// a by-value argument should be passed as i32* and the high part as float, 3567 /// return {i32*, float}. 3568 static llvm::Type * 3569 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3570 const llvm::DataLayout &TD) { 3571 // In order to correctly satisfy the ABI, we need to the high part to start 3572 // at offset 8. If the high and low parts we inferred are both 4-byte types 3573 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3574 // the second element at offset 8. Check for this: 3575 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3576 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3577 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3578 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3579 3580 // To handle this, we have to increase the size of the low part so that the 3581 // second element will start at an 8 byte offset. We can't increase the size 3582 // of the second element because it might make us access off the end of the 3583 // struct. 3584 if (HiStart != 8) { 3585 // There are usually two sorts of types the ABI generation code can produce 3586 // for the low part of a pair that aren't 8 bytes in size: half, float or 3587 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3588 // NaCl). 3589 // Promote these to a larger type. 3590 if (Lo->isHalfTy() || Lo->isFloatTy()) 3591 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3592 else { 3593 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3594 && "Invalid/unknown lo type"); 3595 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3596 } 3597 } 3598 3599 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3600 3601 // Verify that the second element is at an 8-byte offset. 3602 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3603 "Invalid x86-64 argument pair!"); 3604 return Result; 3605 } 3606 3607 ABIArgInfo X86_64ABIInfo:: 3608 classifyReturnType(QualType RetTy) const { 3609 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3610 // classification algorithm. 3611 X86_64ABIInfo::Class Lo, Hi; 3612 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3613 3614 // Check some invariants. 3615 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3616 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3617 3618 llvm::Type *ResType = nullptr; 3619 switch (Lo) { 3620 case NoClass: 3621 if (Hi == NoClass) 3622 return ABIArgInfo::getIgnore(); 3623 // If the low part is just padding, it takes no register, leave ResType 3624 // null. 3625 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3626 "Unknown missing lo part"); 3627 break; 3628 3629 case SSEUp: 3630 case X87Up: 3631 llvm_unreachable("Invalid classification for lo word."); 3632 3633 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3634 // hidden argument. 3635 case Memory: 3636 return getIndirectReturnResult(RetTy); 3637 3638 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3639 // available register of the sequence %rax, %rdx is used. 3640 case Integer: 3641 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3642 3643 // If we have a sign or zero extended integer, make sure to return Extend 3644 // so that the parameter gets the right LLVM IR attributes. 3645 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3646 // Treat an enum type as its underlying type. 3647 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3648 RetTy = EnumTy->getDecl()->getIntegerType(); 3649 3650 if (RetTy->isIntegralOrEnumerationType() && 3651 isPromotableIntegerTypeForABI(RetTy)) 3652 return ABIArgInfo::getExtend(RetTy); 3653 } 3654 break; 3655 3656 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3657 // available SSE register of the sequence %xmm0, %xmm1 is used. 3658 case SSE: 3659 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3660 break; 3661 3662 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3663 // returned on the X87 stack in %st0 as 80-bit x87 number. 3664 case X87: 3665 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3666 break; 3667 3668 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3669 // part of the value is returned in %st0 and the imaginary part in 3670 // %st1. 3671 case ComplexX87: 3672 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3673 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3674 llvm::Type::getX86_FP80Ty(getVMContext())); 3675 break; 3676 } 3677 3678 llvm::Type *HighPart = nullptr; 3679 switch (Hi) { 3680 // Memory was handled previously and X87 should 3681 // never occur as a hi class. 3682 case Memory: 3683 case X87: 3684 llvm_unreachable("Invalid classification for hi word."); 3685 3686 case ComplexX87: // Previously handled. 3687 case NoClass: 3688 break; 3689 3690 case Integer: 3691 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3692 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3693 return ABIArgInfo::getDirect(HighPart, 8); 3694 break; 3695 case SSE: 3696 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3697 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3698 return ABIArgInfo::getDirect(HighPart, 8); 3699 break; 3700 3701 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3702 // is passed in the next available eightbyte chunk if the last used 3703 // vector register. 3704 // 3705 // SSEUP should always be preceded by SSE, just widen. 3706 case SSEUp: 3707 assert(Lo == SSE && "Unexpected SSEUp classification."); 3708 ResType = GetByteVectorType(RetTy); 3709 break; 3710 3711 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3712 // returned together with the previous X87 value in %st0. 3713 case X87Up: 3714 // If X87Up is preceded by X87, we don't need to do 3715 // anything. However, in some cases with unions it may not be 3716 // preceded by X87. In such situations we follow gcc and pass the 3717 // extra bits in an SSE reg. 3718 if (Lo != X87) { 3719 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3720 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3721 return ABIArgInfo::getDirect(HighPart, 8); 3722 } 3723 break; 3724 } 3725 3726 // If a high part was specified, merge it together with the low part. It is 3727 // known to pass in the high eightbyte of the result. We do this by forming a 3728 // first class struct aggregate with the high and low part: {low, high} 3729 if (HighPart) 3730 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3731 3732 return ABIArgInfo::getDirect(ResType); 3733 } 3734 3735 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3736 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3737 bool isNamedArg) 3738 const 3739 { 3740 Ty = useFirstFieldIfTransparentUnion(Ty); 3741 3742 X86_64ABIInfo::Class Lo, Hi; 3743 classify(Ty, 0, Lo, Hi, isNamedArg); 3744 3745 // Check some invariants. 3746 // FIXME: Enforce these by construction. 3747 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3748 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3749 3750 neededInt = 0; 3751 neededSSE = 0; 3752 llvm::Type *ResType = nullptr; 3753 switch (Lo) { 3754 case NoClass: 3755 if (Hi == NoClass) 3756 return ABIArgInfo::getIgnore(); 3757 // If the low part is just padding, it takes no register, leave ResType 3758 // null. 3759 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3760 "Unknown missing lo part"); 3761 break; 3762 3763 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3764 // on the stack. 3765 case Memory: 3766 3767 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3768 // COMPLEX_X87, it is passed in memory. 3769 case X87: 3770 case ComplexX87: 3771 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3772 ++neededInt; 3773 return getIndirectResult(Ty, freeIntRegs); 3774 3775 case SSEUp: 3776 case X87Up: 3777 llvm_unreachable("Invalid classification for lo word."); 3778 3779 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3780 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3781 // and %r9 is used. 3782 case Integer: 3783 ++neededInt; 3784 3785 // Pick an 8-byte type based on the preferred type. 3786 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3787 3788 // If we have a sign or zero extended integer, make sure to return Extend 3789 // so that the parameter gets the right LLVM IR attributes. 3790 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3791 // Treat an enum type as its underlying type. 3792 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3793 Ty = EnumTy->getDecl()->getIntegerType(); 3794 3795 if (Ty->isIntegralOrEnumerationType() && 3796 isPromotableIntegerTypeForABI(Ty)) 3797 return ABIArgInfo::getExtend(Ty); 3798 } 3799 3800 break; 3801 3802 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3803 // available SSE register is used, the registers are taken in the 3804 // order from %xmm0 to %xmm7. 3805 case SSE: { 3806 llvm::Type *IRType = CGT.ConvertType(Ty); 3807 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3808 ++neededSSE; 3809 break; 3810 } 3811 } 3812 3813 llvm::Type *HighPart = nullptr; 3814 switch (Hi) { 3815 // Memory was handled previously, ComplexX87 and X87 should 3816 // never occur as hi classes, and X87Up must be preceded by X87, 3817 // which is passed in memory. 3818 case Memory: 3819 case X87: 3820 case ComplexX87: 3821 llvm_unreachable("Invalid classification for hi word."); 3822 3823 case NoClass: break; 3824 3825 case Integer: 3826 ++neededInt; 3827 // Pick an 8-byte type based on the preferred type. 3828 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3829 3830 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3831 return ABIArgInfo::getDirect(HighPart, 8); 3832 break; 3833 3834 // X87Up generally doesn't occur here (long double is passed in 3835 // memory), except in situations involving unions. 3836 case X87Up: 3837 case SSE: 3838 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3839 3840 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3841 return ABIArgInfo::getDirect(HighPart, 8); 3842 3843 ++neededSSE; 3844 break; 3845 3846 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3847 // eightbyte is passed in the upper half of the last used SSE 3848 // register. This only happens when 128-bit vectors are passed. 3849 case SSEUp: 3850 assert(Lo == SSE && "Unexpected SSEUp classification"); 3851 ResType = GetByteVectorType(Ty); 3852 break; 3853 } 3854 3855 // If a high part was specified, merge it together with the low part. It is 3856 // known to pass in the high eightbyte of the result. We do this by forming a 3857 // first class struct aggregate with the high and low part: {low, high} 3858 if (HighPart) 3859 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3860 3861 return ABIArgInfo::getDirect(ResType); 3862 } 3863 3864 ABIArgInfo 3865 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3866 unsigned &NeededSSE) const { 3867 auto RT = Ty->getAs<RecordType>(); 3868 assert(RT && "classifyRegCallStructType only valid with struct types"); 3869 3870 if (RT->getDecl()->hasFlexibleArrayMember()) 3871 return getIndirectReturnResult(Ty); 3872 3873 // Sum up bases 3874 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3875 if (CXXRD->isDynamicClass()) { 3876 NeededInt = NeededSSE = 0; 3877 return getIndirectReturnResult(Ty); 3878 } 3879 3880 for (const auto &I : CXXRD->bases()) 3881 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3882 .isIndirect()) { 3883 NeededInt = NeededSSE = 0; 3884 return getIndirectReturnResult(Ty); 3885 } 3886 } 3887 3888 // Sum up members 3889 for (const auto *FD : RT->getDecl()->fields()) { 3890 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3891 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3892 .isIndirect()) { 3893 NeededInt = NeededSSE = 0; 3894 return getIndirectReturnResult(Ty); 3895 } 3896 } else { 3897 unsigned LocalNeededInt, LocalNeededSSE; 3898 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3899 LocalNeededSSE, true) 3900 .isIndirect()) { 3901 NeededInt = NeededSSE = 0; 3902 return getIndirectReturnResult(Ty); 3903 } 3904 NeededInt += LocalNeededInt; 3905 NeededSSE += LocalNeededSSE; 3906 } 3907 } 3908 3909 return ABIArgInfo::getDirect(); 3910 } 3911 3912 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3913 unsigned &NeededInt, 3914 unsigned &NeededSSE) const { 3915 3916 NeededInt = 0; 3917 NeededSSE = 0; 3918 3919 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3920 } 3921 3922 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3923 3924 const unsigned CallingConv = FI.getCallingConvention(); 3925 // It is possible to force Win64 calling convention on any x86_64 target by 3926 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3927 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3928 if (CallingConv == llvm::CallingConv::Win64) { 3929 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3930 Win64ABIInfo.computeInfo(FI); 3931 return; 3932 } 3933 3934 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3935 3936 // Keep track of the number of assigned registers. 3937 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3938 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3939 unsigned NeededInt, NeededSSE; 3940 3941 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3942 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3943 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3944 FI.getReturnInfo() = 3945 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3946 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3947 FreeIntRegs -= NeededInt; 3948 FreeSSERegs -= NeededSSE; 3949 } else { 3950 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3951 } 3952 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3953 getContext().getCanonicalType(FI.getReturnType() 3954 ->getAs<ComplexType>() 3955 ->getElementType()) == 3956 getContext().LongDoubleTy) 3957 // Complex Long Double Type is passed in Memory when Regcall 3958 // calling convention is used. 3959 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3960 else 3961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3962 } 3963 3964 // If the return value is indirect, then the hidden argument is consuming one 3965 // integer register. 3966 if (FI.getReturnInfo().isIndirect()) 3967 --FreeIntRegs; 3968 3969 // The chain argument effectively gives us another free register. 3970 if (FI.isChainCall()) 3971 ++FreeIntRegs; 3972 3973 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3974 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3975 // get assigned (in left-to-right order) for passing as follows... 3976 unsigned ArgNo = 0; 3977 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3978 it != ie; ++it, ++ArgNo) { 3979 bool IsNamedArg = ArgNo < NumRequiredArgs; 3980 3981 if (IsRegCall && it->type->isStructureOrClassType()) 3982 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3983 else 3984 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3985 NeededSSE, IsNamedArg); 3986 3987 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3988 // eightbyte of an argument, the whole argument is passed on the 3989 // stack. If registers have already been assigned for some 3990 // eightbytes of such an argument, the assignments get reverted. 3991 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3992 FreeIntRegs -= NeededInt; 3993 FreeSSERegs -= NeededSSE; 3994 } else { 3995 it->info = getIndirectResult(it->type, FreeIntRegs); 3996 } 3997 } 3998 } 3999 4000 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4001 Address VAListAddr, QualType Ty) { 4002 Address overflow_arg_area_p = 4003 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4004 llvm::Value *overflow_arg_area = 4005 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4006 4007 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4008 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4009 // It isn't stated explicitly in the standard, but in practice we use 4010 // alignment greater than 16 where necessary. 4011 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4012 if (Align > CharUnits::fromQuantity(8)) { 4013 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4014 Align); 4015 } 4016 4017 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4018 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4019 llvm::Value *Res = 4020 CGF.Builder.CreateBitCast(overflow_arg_area, 4021 llvm::PointerType::getUnqual(LTy)); 4022 4023 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4024 // l->overflow_arg_area + sizeof(type). 4025 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4026 // an 8 byte boundary. 4027 4028 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4029 llvm::Value *Offset = 4030 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4031 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4032 Offset, "overflow_arg_area.next"); 4033 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4034 4035 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4036 return Address(Res, LTy, Align); 4037 } 4038 4039 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4040 QualType Ty) const { 4041 // Assume that va_list type is correct; should be pointer to LLVM type: 4042 // struct { 4043 // i32 gp_offset; 4044 // i32 fp_offset; 4045 // i8* overflow_arg_area; 4046 // i8* reg_save_area; 4047 // }; 4048 unsigned neededInt, neededSSE; 4049 4050 Ty = getContext().getCanonicalType(Ty); 4051 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4052 /*isNamedArg*/false); 4053 4054 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4055 // in the registers. If not go to step 7. 4056 if (!neededInt && !neededSSE) 4057 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4058 4059 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4060 // general purpose registers needed to pass type and num_fp to hold 4061 // the number of floating point registers needed. 4062 4063 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4064 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4065 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4066 // 4067 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4068 // register save space). 4069 4070 llvm::Value *InRegs = nullptr; 4071 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4072 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4073 if (neededInt) { 4074 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4075 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4076 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4077 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4078 } 4079 4080 if (neededSSE) { 4081 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4082 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4083 llvm::Value *FitsInFP = 4084 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4085 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4086 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4087 } 4088 4089 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4090 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4091 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4092 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4093 4094 // Emit code to load the value if it was passed in registers. 4095 4096 CGF.EmitBlock(InRegBlock); 4097 4098 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4099 // an offset of l->gp_offset and/or l->fp_offset. This may require 4100 // copying to a temporary location in case the parameter is passed 4101 // in different register classes or requires an alignment greater 4102 // than 8 for general purpose registers and 16 for XMM registers. 4103 // 4104 // FIXME: This really results in shameful code when we end up needing to 4105 // collect arguments from different places; often what should result in a 4106 // simple assembling of a structure from scattered addresses has many more 4107 // loads than necessary. Can we clean this up? 4108 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4109 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4110 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4111 4112 Address RegAddr = Address::invalid(); 4113 if (neededInt && neededSSE) { 4114 // FIXME: Cleanup. 4115 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4116 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4117 Address Tmp = CGF.CreateMemTemp(Ty); 4118 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4119 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4120 llvm::Type *TyLo = ST->getElementType(0); 4121 llvm::Type *TyHi = ST->getElementType(1); 4122 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4123 "Unexpected ABI info for mixed regs"); 4124 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4125 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4126 llvm::Value *GPAddr = 4127 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4128 llvm::Value *FPAddr = 4129 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4130 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4131 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4132 4133 // Copy the first element. 4134 // FIXME: Our choice of alignment here and below is probably pessimistic. 4135 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4136 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4137 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4138 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4139 4140 // Copy the second element. 4141 V = CGF.Builder.CreateAlignedLoad( 4142 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4143 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4144 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4145 4146 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4147 } else if (neededInt) { 4148 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4149 CGF.Int8Ty, CharUnits::fromQuantity(8)); 4150 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4151 4152 // Copy to a temporary if necessary to ensure the appropriate alignment. 4153 auto TInfo = getContext().getTypeInfoInChars(Ty); 4154 uint64_t TySize = TInfo.Width.getQuantity(); 4155 CharUnits TyAlign = TInfo.Align; 4156 4157 // Copy into a temporary if the type is more aligned than the 4158 // register save area. 4159 if (TyAlign.getQuantity() > 8) { 4160 Address Tmp = CGF.CreateMemTemp(Ty); 4161 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4162 RegAddr = Tmp; 4163 } 4164 4165 } else if (neededSSE == 1) { 4166 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4167 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4168 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4169 } else { 4170 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4171 // SSE registers are spaced 16 bytes apart in the register save 4172 // area, we need to collect the two eightbytes together. 4173 // The ABI isn't explicit about this, but it seems reasonable 4174 // to assume that the slots are 16-byte aligned, since the stack is 4175 // naturally 16-byte aligned and the prologue is expected to store 4176 // all the SSE registers to the RSA. 4177 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4178 fp_offset), 4179 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4180 Address RegAddrHi = 4181 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4182 CharUnits::fromQuantity(16)); 4183 llvm::Type *ST = AI.canHaveCoerceToType() 4184 ? AI.getCoerceToType() 4185 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4186 llvm::Value *V; 4187 Address Tmp = CGF.CreateMemTemp(Ty); 4188 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4189 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4190 RegAddrLo, ST->getStructElementType(0))); 4191 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4192 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4193 RegAddrHi, ST->getStructElementType(1))); 4194 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4195 4196 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4197 } 4198 4199 // AMD64-ABI 3.5.7p5: Step 5. Set: 4200 // l->gp_offset = l->gp_offset + num_gp * 8 4201 // l->fp_offset = l->fp_offset + num_fp * 16. 4202 if (neededInt) { 4203 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4204 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4205 gp_offset_p); 4206 } 4207 if (neededSSE) { 4208 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4209 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4210 fp_offset_p); 4211 } 4212 CGF.EmitBranch(ContBlock); 4213 4214 // Emit code to load the value if it was passed in memory. 4215 4216 CGF.EmitBlock(InMemBlock); 4217 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4218 4219 // Return the appropriate result. 4220 4221 CGF.EmitBlock(ContBlock); 4222 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4223 "vaarg.addr"); 4224 return ResAddr; 4225 } 4226 4227 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4228 QualType Ty) const { 4229 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4230 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4231 uint64_t Width = getContext().getTypeSize(Ty); 4232 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4233 4234 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4235 CGF.getContext().getTypeInfoInChars(Ty), 4236 CharUnits::fromQuantity(8), 4237 /*allowHigherAlign*/ false); 4238 } 4239 4240 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4241 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4242 const Type *Base = nullptr; 4243 uint64_t NumElts = 0; 4244 4245 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4246 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4247 FreeSSERegs -= NumElts; 4248 return getDirectX86Hva(); 4249 } 4250 return current; 4251 } 4252 4253 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4254 bool IsReturnType, bool IsVectorCall, 4255 bool IsRegCall) const { 4256 4257 if (Ty->isVoidType()) 4258 return ABIArgInfo::getIgnore(); 4259 4260 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4261 Ty = EnumTy->getDecl()->getIntegerType(); 4262 4263 TypeInfo Info = getContext().getTypeInfo(Ty); 4264 uint64_t Width = Info.Width; 4265 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4266 4267 const RecordType *RT = Ty->getAs<RecordType>(); 4268 if (RT) { 4269 if (!IsReturnType) { 4270 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4271 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4272 } 4273 4274 if (RT->getDecl()->hasFlexibleArrayMember()) 4275 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4276 4277 } 4278 4279 const Type *Base = nullptr; 4280 uint64_t NumElts = 0; 4281 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4282 // other targets. 4283 if ((IsVectorCall || IsRegCall) && 4284 isHomogeneousAggregate(Ty, Base, NumElts)) { 4285 if (IsRegCall) { 4286 if (FreeSSERegs >= NumElts) { 4287 FreeSSERegs -= NumElts; 4288 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4289 return ABIArgInfo::getDirect(); 4290 return ABIArgInfo::getExpand(); 4291 } 4292 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4293 } else if (IsVectorCall) { 4294 if (FreeSSERegs >= NumElts && 4295 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4296 FreeSSERegs -= NumElts; 4297 return ABIArgInfo::getDirect(); 4298 } else if (IsReturnType) { 4299 return ABIArgInfo::getExpand(); 4300 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4301 // HVAs are delayed and reclassified in the 2nd step. 4302 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4303 } 4304 } 4305 } 4306 4307 if (Ty->isMemberPointerType()) { 4308 // If the member pointer is represented by an LLVM int or ptr, pass it 4309 // directly. 4310 llvm::Type *LLTy = CGT.ConvertType(Ty); 4311 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4312 return ABIArgInfo::getDirect(); 4313 } 4314 4315 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4316 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4317 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4318 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4319 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4320 4321 // Otherwise, coerce it to a small integer. 4322 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4323 } 4324 4325 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4326 switch (BT->getKind()) { 4327 case BuiltinType::Bool: 4328 // Bool type is always extended to the ABI, other builtin types are not 4329 // extended. 4330 return ABIArgInfo::getExtend(Ty); 4331 4332 case BuiltinType::LongDouble: 4333 // Mingw64 GCC uses the old 80 bit extended precision floating point 4334 // unit. It passes them indirectly through memory. 4335 if (IsMingw64) { 4336 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4337 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4338 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4339 } 4340 break; 4341 4342 case BuiltinType::Int128: 4343 case BuiltinType::UInt128: 4344 // If it's a parameter type, the normal ABI rule is that arguments larger 4345 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4346 // even though it isn't particularly efficient. 4347 if (!IsReturnType) 4348 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4349 4350 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4351 // Clang matches them for compatibility. 4352 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4353 llvm::Type::getInt64Ty(getVMContext()), 2)); 4354 4355 default: 4356 break; 4357 } 4358 } 4359 4360 if (Ty->isBitIntType()) { 4361 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4362 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4363 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 4364 // or 8 bytes anyway as long is it fits in them, so we don't have to check 4365 // the power of 2. 4366 if (Width <= 64) 4367 return ABIArgInfo::getDirect(); 4368 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4369 } 4370 4371 return ABIArgInfo::getDirect(); 4372 } 4373 4374 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4375 const unsigned CC = FI.getCallingConvention(); 4376 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4377 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4378 4379 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4380 // classification rules. 4381 if (CC == llvm::CallingConv::X86_64_SysV) { 4382 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4383 SysVABIInfo.computeInfo(FI); 4384 return; 4385 } 4386 4387 unsigned FreeSSERegs = 0; 4388 if (IsVectorCall) { 4389 // We can use up to 4 SSE return registers with vectorcall. 4390 FreeSSERegs = 4; 4391 } else if (IsRegCall) { 4392 // RegCall gives us 16 SSE registers. 4393 FreeSSERegs = 16; 4394 } 4395 4396 if (!getCXXABI().classifyReturnType(FI)) 4397 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4398 IsVectorCall, IsRegCall); 4399 4400 if (IsVectorCall) { 4401 // We can use up to 6 SSE register parameters with vectorcall. 4402 FreeSSERegs = 6; 4403 } else if (IsRegCall) { 4404 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4405 FreeSSERegs = 16; 4406 } 4407 4408 unsigned ArgNum = 0; 4409 unsigned ZeroSSERegs = 0; 4410 for (auto &I : FI.arguments()) { 4411 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4412 // XMM/YMM registers. After the sixth argument, pretend no vector 4413 // registers are left. 4414 unsigned *MaybeFreeSSERegs = 4415 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4416 I.info = 4417 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4418 ++ArgNum; 4419 } 4420 4421 if (IsVectorCall) { 4422 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4423 // second pass. 4424 for (auto &I : FI.arguments()) 4425 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4426 } 4427 } 4428 4429 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4430 QualType Ty) const { 4431 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4432 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4433 uint64_t Width = getContext().getTypeSize(Ty); 4434 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4435 4436 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4437 CGF.getContext().getTypeInfoInChars(Ty), 4438 CharUnits::fromQuantity(8), 4439 /*allowHigherAlign*/ false); 4440 } 4441 4442 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4443 llvm::Value *Address, bool Is64Bit, 4444 bool IsAIX) { 4445 // This is calculated from the LLVM and GCC tables and verified 4446 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4447 4448 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4449 4450 llvm::IntegerType *i8 = CGF.Int8Ty; 4451 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4452 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4453 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4454 4455 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4456 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4457 4458 // 32-63: fp0-31, the 8-byte floating-point registers 4459 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4460 4461 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4462 // 64: mq 4463 // 65: lr 4464 // 66: ctr 4465 // 67: ap 4466 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4467 4468 // 68-76 are various 4-byte special-purpose registers: 4469 // 68-75 cr0-7 4470 // 76: xer 4471 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4472 4473 // 77-108: v0-31, the 16-byte vector registers 4474 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4475 4476 // 109: vrsave 4477 // 110: vscr 4478 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4479 4480 // AIX does not utilize the rest of the registers. 4481 if (IsAIX) 4482 return false; 4483 4484 // 111: spe_acc 4485 // 112: spefscr 4486 // 113: sfp 4487 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4488 4489 if (!Is64Bit) 4490 return false; 4491 4492 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4493 // or above CPU. 4494 // 64-bit only registers: 4495 // 114: tfhar 4496 // 115: tfiar 4497 // 116: texasr 4498 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4499 4500 return false; 4501 } 4502 4503 // AIX 4504 namespace { 4505 /// AIXABIInfo - The AIX XCOFF ABI information. 4506 class AIXABIInfo : public ABIInfo { 4507 const bool Is64Bit; 4508 const unsigned PtrByteSize; 4509 CharUnits getParamTypeAlignment(QualType Ty) const; 4510 4511 public: 4512 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4513 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4514 4515 bool isPromotableTypeForABI(QualType Ty) const; 4516 4517 ABIArgInfo classifyReturnType(QualType RetTy) const; 4518 ABIArgInfo classifyArgumentType(QualType Ty) const; 4519 4520 void computeInfo(CGFunctionInfo &FI) const override { 4521 if (!getCXXABI().classifyReturnType(FI)) 4522 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4523 4524 for (auto &I : FI.arguments()) 4525 I.info = classifyArgumentType(I.type); 4526 } 4527 4528 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4529 QualType Ty) const override; 4530 }; 4531 4532 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4533 const bool Is64Bit; 4534 4535 public: 4536 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4537 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4538 Is64Bit(Is64Bit) {} 4539 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4540 return 1; // r1 is the dedicated stack pointer 4541 } 4542 4543 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4544 llvm::Value *Address) const override; 4545 }; 4546 } // namespace 4547 4548 // Return true if the ABI requires Ty to be passed sign- or zero- 4549 // extended to 32/64 bits. 4550 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4551 // Treat an enum type as its underlying type. 4552 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4553 Ty = EnumTy->getDecl()->getIntegerType(); 4554 4555 // Promotable integer types are required to be promoted by the ABI. 4556 if (Ty->isPromotableIntegerType()) 4557 return true; 4558 4559 if (!Is64Bit) 4560 return false; 4561 4562 // For 64 bit mode, in addition to the usual promotable integer types, we also 4563 // need to extend all 32-bit types, since the ABI requires promotion to 64 4564 // bits. 4565 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4566 switch (BT->getKind()) { 4567 case BuiltinType::Int: 4568 case BuiltinType::UInt: 4569 return true; 4570 default: 4571 break; 4572 } 4573 4574 return false; 4575 } 4576 4577 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4578 if (RetTy->isAnyComplexType()) 4579 return ABIArgInfo::getDirect(); 4580 4581 if (RetTy->isVectorType()) 4582 return ABIArgInfo::getDirect(); 4583 4584 if (RetTy->isVoidType()) 4585 return ABIArgInfo::getIgnore(); 4586 4587 if (isAggregateTypeForABI(RetTy)) 4588 return getNaturalAlignIndirect(RetTy); 4589 4590 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4591 : ABIArgInfo::getDirect()); 4592 } 4593 4594 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4595 Ty = useFirstFieldIfTransparentUnion(Ty); 4596 4597 if (Ty->isAnyComplexType()) 4598 return ABIArgInfo::getDirect(); 4599 4600 if (Ty->isVectorType()) 4601 return ABIArgInfo::getDirect(); 4602 4603 if (isAggregateTypeForABI(Ty)) { 4604 // Records with non-trivial destructors/copy-constructors should not be 4605 // passed by value. 4606 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4607 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4608 4609 CharUnits CCAlign = getParamTypeAlignment(Ty); 4610 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4611 4612 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4613 /*Realign*/ TyAlign > CCAlign); 4614 } 4615 4616 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4617 : ABIArgInfo::getDirect()); 4618 } 4619 4620 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4621 // Complex types are passed just like their elements. 4622 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4623 Ty = CTy->getElementType(); 4624 4625 if (Ty->isVectorType()) 4626 return CharUnits::fromQuantity(16); 4627 4628 // If the structure contains a vector type, the alignment is 16. 4629 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4630 return CharUnits::fromQuantity(16); 4631 4632 return CharUnits::fromQuantity(PtrByteSize); 4633 } 4634 4635 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4636 QualType Ty) const { 4637 4638 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4639 TypeInfo.Align = getParamTypeAlignment(Ty); 4640 4641 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4642 4643 // If we have a complex type and the base type is smaller than the register 4644 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4645 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4646 // Clang expects us to produce a pointer to a structure with the two parts 4647 // packed tightly. So generate loads of the real and imaginary parts relative 4648 // to the va_list pointer, and store them to a temporary structure. We do the 4649 // same as the PPC64ABI here. 4650 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4651 CharUnits EltSize = TypeInfo.Width / 2; 4652 if (EltSize < SlotSize) 4653 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4654 } 4655 4656 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4657 SlotSize, /*AllowHigher*/ true); 4658 } 4659 4660 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4661 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4662 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4663 } 4664 4665 // PowerPC-32 4666 namespace { 4667 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4668 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4669 bool IsSoftFloatABI; 4670 bool IsRetSmallStructInRegABI; 4671 4672 CharUnits getParamTypeAlignment(QualType Ty) const; 4673 4674 public: 4675 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4676 bool RetSmallStructInRegABI) 4677 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4678 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4679 4680 ABIArgInfo classifyReturnType(QualType RetTy) const; 4681 4682 void computeInfo(CGFunctionInfo &FI) const override { 4683 if (!getCXXABI().classifyReturnType(FI)) 4684 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4685 for (auto &I : FI.arguments()) 4686 I.info = classifyArgumentType(I.type); 4687 } 4688 4689 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4690 QualType Ty) const override; 4691 }; 4692 4693 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4694 public: 4695 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4696 bool RetSmallStructInRegABI) 4697 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4698 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4699 4700 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4701 const CodeGenOptions &Opts); 4702 4703 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4704 // This is recovered from gcc output. 4705 return 1; // r1 is the dedicated stack pointer 4706 } 4707 4708 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4709 llvm::Value *Address) const override; 4710 }; 4711 } 4712 4713 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4714 // Complex types are passed just like their elements. 4715 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4716 Ty = CTy->getElementType(); 4717 4718 if (Ty->isVectorType()) 4719 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4720 : 4); 4721 4722 // For single-element float/vector structs, we consider the whole type 4723 // to have the same alignment requirements as its single element. 4724 const Type *AlignTy = nullptr; 4725 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4726 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4727 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4728 (BT && BT->isFloatingPoint())) 4729 AlignTy = EltType; 4730 } 4731 4732 if (AlignTy) 4733 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4734 return CharUnits::fromQuantity(4); 4735 } 4736 4737 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4738 uint64_t Size; 4739 4740 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4741 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4742 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4743 // System V ABI (1995), page 3-22, specified: 4744 // > A structure or union whose size is less than or equal to 8 bytes 4745 // > shall be returned in r3 and r4, as if it were first stored in the 4746 // > 8-byte aligned memory area and then the low addressed word were 4747 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4748 // > the last member of the structure or union are not defined. 4749 // 4750 // GCC for big-endian PPC32 inserts the pad before the first member, 4751 // not "beyond the last member" of the struct. To stay compatible 4752 // with GCC, we coerce the struct to an integer of the same size. 4753 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4754 if (Size == 0) 4755 return ABIArgInfo::getIgnore(); 4756 else { 4757 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4758 return ABIArgInfo::getDirect(CoerceTy); 4759 } 4760 } 4761 4762 return DefaultABIInfo::classifyReturnType(RetTy); 4763 } 4764 4765 // TODO: this implementation is now likely redundant with 4766 // DefaultABIInfo::EmitVAArg. 4767 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4768 QualType Ty) const { 4769 if (getTarget().getTriple().isOSDarwin()) { 4770 auto TI = getContext().getTypeInfoInChars(Ty); 4771 TI.Align = getParamTypeAlignment(Ty); 4772 4773 CharUnits SlotSize = CharUnits::fromQuantity(4); 4774 return emitVoidPtrVAArg(CGF, VAList, Ty, 4775 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4776 /*AllowHigherAlign=*/true); 4777 } 4778 4779 const unsigned OverflowLimit = 8; 4780 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4781 // TODO: Implement this. For now ignore. 4782 (void)CTy; 4783 return Address::invalid(); // FIXME? 4784 } 4785 4786 // struct __va_list_tag { 4787 // unsigned char gpr; 4788 // unsigned char fpr; 4789 // unsigned short reserved; 4790 // void *overflow_arg_area; 4791 // void *reg_save_area; 4792 // }; 4793 4794 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4795 bool isInt = !Ty->isFloatingType(); 4796 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4797 4798 // All aggregates are passed indirectly? That doesn't seem consistent 4799 // with the argument-lowering code. 4800 bool isIndirect = isAggregateTypeForABI(Ty); 4801 4802 CGBuilderTy &Builder = CGF.Builder; 4803 4804 // The calling convention either uses 1-2 GPRs or 1 FPR. 4805 Address NumRegsAddr = Address::invalid(); 4806 if (isInt || IsSoftFloatABI) { 4807 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4808 } else { 4809 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4810 } 4811 4812 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4813 4814 // "Align" the register count when TY is i64. 4815 if (isI64 || (isF64 && IsSoftFloatABI)) { 4816 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4817 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4818 } 4819 4820 llvm::Value *CC = 4821 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4822 4823 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4824 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4825 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4826 4827 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4828 4829 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4830 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4831 4832 // Case 1: consume registers. 4833 Address RegAddr = Address::invalid(); 4834 { 4835 CGF.EmitBlock(UsingRegs); 4836 4837 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4838 RegAddr = Address::deprecated(Builder.CreateLoad(RegSaveAreaPtr), 4839 CharUnits::fromQuantity(8)); 4840 assert(RegAddr.getElementType() == CGF.Int8Ty); 4841 4842 // Floating-point registers start after the general-purpose registers. 4843 if (!(isInt || IsSoftFloatABI)) { 4844 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4845 CharUnits::fromQuantity(32)); 4846 } 4847 4848 // Get the address of the saved value by scaling the number of 4849 // registers we've used by the number of 4850 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4851 llvm::Value *RegOffset = 4852 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4853 RegAddr = Address( 4854 Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset), 4855 CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4856 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4857 4858 // Increase the used-register count. 4859 NumRegs = 4860 Builder.CreateAdd(NumRegs, 4861 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4862 Builder.CreateStore(NumRegs, NumRegsAddr); 4863 4864 CGF.EmitBranch(Cont); 4865 } 4866 4867 // Case 2: consume space in the overflow area. 4868 Address MemAddr = Address::invalid(); 4869 { 4870 CGF.EmitBlock(UsingOverflow); 4871 4872 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4873 4874 // Everything in the overflow area is rounded up to a size of at least 4. 4875 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4876 4877 CharUnits Size; 4878 if (!isIndirect) { 4879 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4880 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4881 } else { 4882 Size = CGF.getPointerSize(); 4883 } 4884 4885 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4886 Address OverflowArea = Address::deprecated( 4887 Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), OverflowAreaAlign); 4888 // Round up address of argument to alignment 4889 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4890 if (Align > OverflowAreaAlign) { 4891 llvm::Value *Ptr = OverflowArea.getPointer(); 4892 OverflowArea = Address::deprecated( 4893 emitRoundPointerUpToAlignment(CGF, Ptr, Align), Align); 4894 } 4895 4896 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4897 4898 // Increase the overflow area. 4899 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4900 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4901 CGF.EmitBranch(Cont); 4902 } 4903 4904 CGF.EmitBlock(Cont); 4905 4906 // Merge the cases with a phi. 4907 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4908 "vaarg.addr"); 4909 4910 // Load the pointer if the argument was passed indirectly. 4911 if (isIndirect) { 4912 Result = Address::deprecated(Builder.CreateLoad(Result, "aggr"), 4913 getContext().getTypeAlignInChars(Ty)); 4914 } 4915 4916 return Result; 4917 } 4918 4919 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4920 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4921 assert(Triple.isPPC32()); 4922 4923 switch (Opts.getStructReturnConvention()) { 4924 case CodeGenOptions::SRCK_Default: 4925 break; 4926 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4927 return false; 4928 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4929 return true; 4930 } 4931 4932 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4933 return true; 4934 4935 return false; 4936 } 4937 4938 bool 4939 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4940 llvm::Value *Address) const { 4941 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4942 /*IsAIX*/ false); 4943 } 4944 4945 // PowerPC-64 4946 4947 namespace { 4948 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4949 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4950 public: 4951 enum ABIKind { 4952 ELFv1 = 0, 4953 ELFv2 4954 }; 4955 4956 private: 4957 static const unsigned GPRBits = 64; 4958 ABIKind Kind; 4959 bool IsSoftFloatABI; 4960 4961 public: 4962 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4963 bool SoftFloatABI) 4964 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4965 4966 bool isPromotableTypeForABI(QualType Ty) const; 4967 CharUnits getParamTypeAlignment(QualType Ty) const; 4968 4969 ABIArgInfo classifyReturnType(QualType RetTy) const; 4970 ABIArgInfo classifyArgumentType(QualType Ty) const; 4971 4972 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4973 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4974 uint64_t Members) const override; 4975 4976 // TODO: We can add more logic to computeInfo to improve performance. 4977 // Example: For aggregate arguments that fit in a register, we could 4978 // use getDirectInReg (as is done below for structs containing a single 4979 // floating-point value) to avoid pushing them to memory on function 4980 // entry. This would require changing the logic in PPCISelLowering 4981 // when lowering the parameters in the caller and args in the callee. 4982 void computeInfo(CGFunctionInfo &FI) const override { 4983 if (!getCXXABI().classifyReturnType(FI)) 4984 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4985 for (auto &I : FI.arguments()) { 4986 // We rely on the default argument classification for the most part. 4987 // One exception: An aggregate containing a single floating-point 4988 // or vector item must be passed in a register if one is available. 4989 const Type *T = isSingleElementStruct(I.type, getContext()); 4990 if (T) { 4991 const BuiltinType *BT = T->getAs<BuiltinType>(); 4992 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4993 (BT && BT->isFloatingPoint())) { 4994 QualType QT(T, 0); 4995 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4996 continue; 4997 } 4998 } 4999 I.info = classifyArgumentType(I.type); 5000 } 5001 } 5002 5003 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5004 QualType Ty) const override; 5005 5006 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5007 bool asReturnValue) const override { 5008 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5009 } 5010 5011 bool isSwiftErrorInRegister() const override { 5012 return false; 5013 } 5014 }; 5015 5016 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5017 5018 public: 5019 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5020 PPC64_SVR4_ABIInfo::ABIKind Kind, 5021 bool SoftFloatABI) 5022 : TargetCodeGenInfo( 5023 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5024 5025 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5026 // This is recovered from gcc output. 5027 return 1; // r1 is the dedicated stack pointer 5028 } 5029 5030 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5031 llvm::Value *Address) const override; 5032 }; 5033 5034 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5035 public: 5036 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5037 5038 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5039 // This is recovered from gcc output. 5040 return 1; // r1 is the dedicated stack pointer 5041 } 5042 5043 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5044 llvm::Value *Address) const override; 5045 }; 5046 5047 } 5048 5049 // Return true if the ABI requires Ty to be passed sign- or zero- 5050 // extended to 64 bits. 5051 bool 5052 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5053 // Treat an enum type as its underlying type. 5054 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5055 Ty = EnumTy->getDecl()->getIntegerType(); 5056 5057 // Promotable integer types are required to be promoted by the ABI. 5058 if (isPromotableIntegerTypeForABI(Ty)) 5059 return true; 5060 5061 // In addition to the usual promotable integer types, we also need to 5062 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5063 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5064 switch (BT->getKind()) { 5065 case BuiltinType::Int: 5066 case BuiltinType::UInt: 5067 return true; 5068 default: 5069 break; 5070 } 5071 5072 if (const auto *EIT = Ty->getAs<BitIntType>()) 5073 if (EIT->getNumBits() < 64) 5074 return true; 5075 5076 return false; 5077 } 5078 5079 /// isAlignedParamType - Determine whether a type requires 16-byte or 5080 /// higher alignment in the parameter area. Always returns at least 8. 5081 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5082 // Complex types are passed just like their elements. 5083 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5084 Ty = CTy->getElementType(); 5085 5086 auto FloatUsesVector = [this](QualType Ty){ 5087 return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( 5088 Ty) == &llvm::APFloat::IEEEquad(); 5089 }; 5090 5091 // Only vector types of size 16 bytes need alignment (larger types are 5092 // passed via reference, smaller types are not aligned). 5093 if (Ty->isVectorType()) { 5094 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5095 } else if (FloatUsesVector(Ty)) { 5096 // According to ABI document section 'Optional Save Areas': If extended 5097 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5098 // format are supported, map them to a single quadword, quadword aligned. 5099 return CharUnits::fromQuantity(16); 5100 } 5101 5102 // For single-element float/vector structs, we consider the whole type 5103 // to have the same alignment requirements as its single element. 5104 const Type *AlignAsType = nullptr; 5105 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5106 if (EltType) { 5107 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5108 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5109 (BT && BT->isFloatingPoint())) 5110 AlignAsType = EltType; 5111 } 5112 5113 // Likewise for ELFv2 homogeneous aggregates. 5114 const Type *Base = nullptr; 5115 uint64_t Members = 0; 5116 if (!AlignAsType && Kind == ELFv2 && 5117 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5118 AlignAsType = Base; 5119 5120 // With special case aggregates, only vector base types need alignment. 5121 if (AlignAsType) { 5122 bool UsesVector = AlignAsType->isVectorType() || 5123 FloatUsesVector(QualType(AlignAsType, 0)); 5124 return CharUnits::fromQuantity(UsesVector ? 16 : 8); 5125 } 5126 5127 // Otherwise, we only need alignment for any aggregate type that 5128 // has an alignment requirement of >= 16 bytes. 5129 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5130 return CharUnits::fromQuantity(16); 5131 } 5132 5133 return CharUnits::fromQuantity(8); 5134 } 5135 5136 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5137 /// aggregate. Base is set to the base element type, and Members is set 5138 /// to the number of base elements. 5139 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5140 uint64_t &Members) const { 5141 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5142 uint64_t NElements = AT->getSize().getZExtValue(); 5143 if (NElements == 0) 5144 return false; 5145 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5146 return false; 5147 Members *= NElements; 5148 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5149 const RecordDecl *RD = RT->getDecl(); 5150 if (RD->hasFlexibleArrayMember()) 5151 return false; 5152 5153 Members = 0; 5154 5155 // If this is a C++ record, check the properties of the record such as 5156 // bases and ABI specific restrictions 5157 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5158 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5159 return false; 5160 5161 for (const auto &I : CXXRD->bases()) { 5162 // Ignore empty records. 5163 if (isEmptyRecord(getContext(), I.getType(), true)) 5164 continue; 5165 5166 uint64_t FldMembers; 5167 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5168 return false; 5169 5170 Members += FldMembers; 5171 } 5172 } 5173 5174 for (const auto *FD : RD->fields()) { 5175 // Ignore (non-zero arrays of) empty records. 5176 QualType FT = FD->getType(); 5177 while (const ConstantArrayType *AT = 5178 getContext().getAsConstantArrayType(FT)) { 5179 if (AT->getSize().getZExtValue() == 0) 5180 return false; 5181 FT = AT->getElementType(); 5182 } 5183 if (isEmptyRecord(getContext(), FT, true)) 5184 continue; 5185 5186 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5187 if (getContext().getLangOpts().CPlusPlus && 5188 FD->isZeroLengthBitField(getContext())) 5189 continue; 5190 5191 uint64_t FldMembers; 5192 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5193 return false; 5194 5195 Members = (RD->isUnion() ? 5196 std::max(Members, FldMembers) : Members + FldMembers); 5197 } 5198 5199 if (!Base) 5200 return false; 5201 5202 // Ensure there is no padding. 5203 if (getContext().getTypeSize(Base) * Members != 5204 getContext().getTypeSize(Ty)) 5205 return false; 5206 } else { 5207 Members = 1; 5208 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5209 Members = 2; 5210 Ty = CT->getElementType(); 5211 } 5212 5213 // Most ABIs only support float, double, and some vector type widths. 5214 if (!isHomogeneousAggregateBaseType(Ty)) 5215 return false; 5216 5217 // The base type must be the same for all members. Types that 5218 // agree in both total size and mode (float vs. vector) are 5219 // treated as being equivalent here. 5220 const Type *TyPtr = Ty.getTypePtr(); 5221 if (!Base) { 5222 Base = TyPtr; 5223 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5224 // so make sure to widen it explicitly. 5225 if (const VectorType *VT = Base->getAs<VectorType>()) { 5226 QualType EltTy = VT->getElementType(); 5227 unsigned NumElements = 5228 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5229 Base = getContext() 5230 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5231 .getTypePtr(); 5232 } 5233 } 5234 5235 if (Base->isVectorType() != TyPtr->isVectorType() || 5236 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5237 return false; 5238 } 5239 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5240 } 5241 5242 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5243 // Homogeneous aggregates for ELFv2 must have base types of float, 5244 // double, long double, or 128-bit vectors. 5245 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5246 if (BT->getKind() == BuiltinType::Float || 5247 BT->getKind() == BuiltinType::Double || 5248 BT->getKind() == BuiltinType::LongDouble || 5249 BT->getKind() == BuiltinType::Ibm128 || 5250 (getContext().getTargetInfo().hasFloat128Type() && 5251 (BT->getKind() == BuiltinType::Float128))) { 5252 if (IsSoftFloatABI) 5253 return false; 5254 return true; 5255 } 5256 } 5257 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5258 if (getContext().getTypeSize(VT) == 128) 5259 return true; 5260 } 5261 return false; 5262 } 5263 5264 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5265 const Type *Base, uint64_t Members) const { 5266 // Vector and fp128 types require one register, other floating point types 5267 // require one or two registers depending on their size. 5268 uint32_t NumRegs = 5269 ((getContext().getTargetInfo().hasFloat128Type() && 5270 Base->isFloat128Type()) || 5271 Base->isVectorType()) ? 1 5272 : (getContext().getTypeSize(Base) + 63) / 64; 5273 5274 // Homogeneous Aggregates may occupy at most 8 registers. 5275 return Members * NumRegs <= 8; 5276 } 5277 5278 ABIArgInfo 5279 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5280 Ty = useFirstFieldIfTransparentUnion(Ty); 5281 5282 if (Ty->isAnyComplexType()) 5283 return ABIArgInfo::getDirect(); 5284 5285 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5286 // or via reference (larger than 16 bytes). 5287 if (Ty->isVectorType()) { 5288 uint64_t Size = getContext().getTypeSize(Ty); 5289 if (Size > 128) 5290 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5291 else if (Size < 128) { 5292 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5293 return ABIArgInfo::getDirect(CoerceTy); 5294 } 5295 } 5296 5297 if (const auto *EIT = Ty->getAs<BitIntType>()) 5298 if (EIT->getNumBits() > 128) 5299 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5300 5301 if (isAggregateTypeForABI(Ty)) { 5302 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5303 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5304 5305 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5306 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5307 5308 // ELFv2 homogeneous aggregates are passed as array types. 5309 const Type *Base = nullptr; 5310 uint64_t Members = 0; 5311 if (Kind == ELFv2 && 5312 isHomogeneousAggregate(Ty, Base, Members)) { 5313 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5314 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5315 return ABIArgInfo::getDirect(CoerceTy); 5316 } 5317 5318 // If an aggregate may end up fully in registers, we do not 5319 // use the ByVal method, but pass the aggregate as array. 5320 // This is usually beneficial since we avoid forcing the 5321 // back-end to store the argument to memory. 5322 uint64_t Bits = getContext().getTypeSize(Ty); 5323 if (Bits > 0 && Bits <= 8 * GPRBits) { 5324 llvm::Type *CoerceTy; 5325 5326 // Types up to 8 bytes are passed as integer type (which will be 5327 // properly aligned in the argument save area doubleword). 5328 if (Bits <= GPRBits) 5329 CoerceTy = 5330 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5331 // Larger types are passed as arrays, with the base type selected 5332 // according to the required alignment in the save area. 5333 else { 5334 uint64_t RegBits = ABIAlign * 8; 5335 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5336 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5337 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5338 } 5339 5340 return ABIArgInfo::getDirect(CoerceTy); 5341 } 5342 5343 // All other aggregates are passed ByVal. 5344 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5345 /*ByVal=*/true, 5346 /*Realign=*/TyAlign > ABIAlign); 5347 } 5348 5349 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5350 : ABIArgInfo::getDirect()); 5351 } 5352 5353 ABIArgInfo 5354 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5355 if (RetTy->isVoidType()) 5356 return ABIArgInfo::getIgnore(); 5357 5358 if (RetTy->isAnyComplexType()) 5359 return ABIArgInfo::getDirect(); 5360 5361 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5362 // or via reference (larger than 16 bytes). 5363 if (RetTy->isVectorType()) { 5364 uint64_t Size = getContext().getTypeSize(RetTy); 5365 if (Size > 128) 5366 return getNaturalAlignIndirect(RetTy); 5367 else if (Size < 128) { 5368 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5369 return ABIArgInfo::getDirect(CoerceTy); 5370 } 5371 } 5372 5373 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5374 if (EIT->getNumBits() > 128) 5375 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5376 5377 if (isAggregateTypeForABI(RetTy)) { 5378 // ELFv2 homogeneous aggregates are returned as array types. 5379 const Type *Base = nullptr; 5380 uint64_t Members = 0; 5381 if (Kind == ELFv2 && 5382 isHomogeneousAggregate(RetTy, Base, Members)) { 5383 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5384 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5385 return ABIArgInfo::getDirect(CoerceTy); 5386 } 5387 5388 // ELFv2 small aggregates are returned in up to two registers. 5389 uint64_t Bits = getContext().getTypeSize(RetTy); 5390 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5391 if (Bits == 0) 5392 return ABIArgInfo::getIgnore(); 5393 5394 llvm::Type *CoerceTy; 5395 if (Bits > GPRBits) { 5396 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5397 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5398 } else 5399 CoerceTy = 5400 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5401 return ABIArgInfo::getDirect(CoerceTy); 5402 } 5403 5404 // All other aggregates are returned indirectly. 5405 return getNaturalAlignIndirect(RetTy); 5406 } 5407 5408 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5409 : ABIArgInfo::getDirect()); 5410 } 5411 5412 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5413 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5414 QualType Ty) const { 5415 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5416 TypeInfo.Align = getParamTypeAlignment(Ty); 5417 5418 CharUnits SlotSize = CharUnits::fromQuantity(8); 5419 5420 // If we have a complex type and the base type is smaller than 8 bytes, 5421 // the ABI calls for the real and imaginary parts to be right-adjusted 5422 // in separate doublewords. However, Clang expects us to produce a 5423 // pointer to a structure with the two parts packed tightly. So generate 5424 // loads of the real and imaginary parts relative to the va_list pointer, 5425 // and store them to a temporary structure. 5426 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5427 CharUnits EltSize = TypeInfo.Width / 2; 5428 if (EltSize < SlotSize) 5429 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5430 } 5431 5432 // Otherwise, just use the general rule. 5433 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5434 TypeInfo, SlotSize, /*AllowHigher*/ true); 5435 } 5436 5437 bool 5438 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5439 CodeGen::CodeGenFunction &CGF, 5440 llvm::Value *Address) const { 5441 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5442 /*IsAIX*/ false); 5443 } 5444 5445 bool 5446 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5447 llvm::Value *Address) const { 5448 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5449 /*IsAIX*/ false); 5450 } 5451 5452 //===----------------------------------------------------------------------===// 5453 // AArch64 ABI Implementation 5454 //===----------------------------------------------------------------------===// 5455 5456 namespace { 5457 5458 class AArch64ABIInfo : public SwiftABIInfo { 5459 public: 5460 enum ABIKind { 5461 AAPCS = 0, 5462 DarwinPCS, 5463 Win64 5464 }; 5465 5466 private: 5467 ABIKind Kind; 5468 5469 public: 5470 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5471 : SwiftABIInfo(CGT), Kind(Kind) {} 5472 5473 private: 5474 ABIKind getABIKind() const { return Kind; } 5475 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5476 5477 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5478 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5479 unsigned CallingConvention) const; 5480 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5481 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5482 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5483 uint64_t Members) const override; 5484 5485 bool isIllegalVectorType(QualType Ty) const; 5486 5487 void computeInfo(CGFunctionInfo &FI) const override { 5488 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5489 FI.getReturnInfo() = 5490 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5491 5492 for (auto &it : FI.arguments()) 5493 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5494 FI.getCallingConvention()); 5495 } 5496 5497 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5498 CodeGenFunction &CGF) const; 5499 5500 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5501 CodeGenFunction &CGF) const; 5502 5503 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5504 QualType Ty) const override { 5505 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5506 if (isa<llvm::ScalableVectorType>(BaseTy)) 5507 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5508 "currently not supported"); 5509 5510 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5511 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5512 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5513 } 5514 5515 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5516 QualType Ty) const override; 5517 5518 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5519 bool asReturnValue) const override { 5520 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5521 } 5522 bool isSwiftErrorInRegister() const override { 5523 return true; 5524 } 5525 5526 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5527 unsigned elts) const override; 5528 5529 bool allowBFloatArgsAndRet() const override { 5530 return getTarget().hasBFloat16Type(); 5531 } 5532 }; 5533 5534 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5535 public: 5536 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5537 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5538 5539 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5540 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5541 } 5542 5543 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5544 return 31; 5545 } 5546 5547 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5548 5549 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5550 CodeGen::CodeGenModule &CGM) const override { 5551 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5552 if (!FD) 5553 return; 5554 5555 const auto *TA = FD->getAttr<TargetAttr>(); 5556 if (TA == nullptr) 5557 return; 5558 5559 ParsedTargetAttr Attr = TA->parse(); 5560 if (Attr.BranchProtection.empty()) 5561 return; 5562 5563 TargetInfo::BranchProtectionInfo BPI; 5564 StringRef Error; 5565 (void)CGM.getTarget().validateBranchProtection( 5566 Attr.BranchProtection, Attr.Architecture, BPI, Error); 5567 assert(Error.empty()); 5568 5569 auto *Fn = cast<llvm::Function>(GV); 5570 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5571 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5572 5573 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5574 Fn->addFnAttr("sign-return-address-key", 5575 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5576 ? "a_key" 5577 : "b_key"); 5578 } 5579 5580 Fn->addFnAttr("branch-target-enforcement", 5581 BPI.BranchTargetEnforcement ? "true" : "false"); 5582 } 5583 5584 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5585 llvm::Type *Ty) const override { 5586 if (CGF.getTarget().hasFeature("ls64")) { 5587 auto *ST = dyn_cast<llvm::StructType>(Ty); 5588 if (ST && ST->getNumElements() == 1) { 5589 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5590 if (AT && AT->getNumElements() == 8 && 5591 AT->getElementType()->isIntegerTy(64)) 5592 return true; 5593 } 5594 } 5595 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5596 } 5597 }; 5598 5599 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5600 public: 5601 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5602 : AArch64TargetCodeGenInfo(CGT, K) {} 5603 5604 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5605 CodeGen::CodeGenModule &CGM) const override; 5606 5607 void getDependentLibraryOption(llvm::StringRef Lib, 5608 llvm::SmallString<24> &Opt) const override { 5609 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5610 } 5611 5612 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5613 llvm::SmallString<32> &Opt) const override { 5614 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5615 } 5616 }; 5617 5618 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5619 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5620 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5621 if (GV->isDeclaration()) 5622 return; 5623 addStackProbeTargetAttributes(D, GV, CGM); 5624 } 5625 } 5626 5627 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5628 assert(Ty->isVectorType() && "expected vector type!"); 5629 5630 const auto *VT = Ty->castAs<VectorType>(); 5631 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5632 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5633 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5634 BuiltinType::UChar && 5635 "unexpected builtin type for SVE predicate!"); 5636 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5637 llvm::Type::getInt1Ty(getVMContext()), 16)); 5638 } 5639 5640 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5641 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5642 5643 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5644 llvm::ScalableVectorType *ResType = nullptr; 5645 switch (BT->getKind()) { 5646 default: 5647 llvm_unreachable("unexpected builtin type for SVE vector!"); 5648 case BuiltinType::SChar: 5649 case BuiltinType::UChar: 5650 ResType = llvm::ScalableVectorType::get( 5651 llvm::Type::getInt8Ty(getVMContext()), 16); 5652 break; 5653 case BuiltinType::Short: 5654 case BuiltinType::UShort: 5655 ResType = llvm::ScalableVectorType::get( 5656 llvm::Type::getInt16Ty(getVMContext()), 8); 5657 break; 5658 case BuiltinType::Int: 5659 case BuiltinType::UInt: 5660 ResType = llvm::ScalableVectorType::get( 5661 llvm::Type::getInt32Ty(getVMContext()), 4); 5662 break; 5663 case BuiltinType::Long: 5664 case BuiltinType::ULong: 5665 ResType = llvm::ScalableVectorType::get( 5666 llvm::Type::getInt64Ty(getVMContext()), 2); 5667 break; 5668 case BuiltinType::Half: 5669 ResType = llvm::ScalableVectorType::get( 5670 llvm::Type::getHalfTy(getVMContext()), 8); 5671 break; 5672 case BuiltinType::Float: 5673 ResType = llvm::ScalableVectorType::get( 5674 llvm::Type::getFloatTy(getVMContext()), 4); 5675 break; 5676 case BuiltinType::Double: 5677 ResType = llvm::ScalableVectorType::get( 5678 llvm::Type::getDoubleTy(getVMContext()), 2); 5679 break; 5680 case BuiltinType::BFloat16: 5681 ResType = llvm::ScalableVectorType::get( 5682 llvm::Type::getBFloatTy(getVMContext()), 8); 5683 break; 5684 } 5685 return ABIArgInfo::getDirect(ResType); 5686 } 5687 5688 uint64_t Size = getContext().getTypeSize(Ty); 5689 // Android promotes <2 x i8> to i16, not i32 5690 if (isAndroid() && (Size <= 16)) { 5691 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5692 return ABIArgInfo::getDirect(ResType); 5693 } 5694 if (Size <= 32) { 5695 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5696 return ABIArgInfo::getDirect(ResType); 5697 } 5698 if (Size == 64) { 5699 auto *ResType = 5700 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5701 return ABIArgInfo::getDirect(ResType); 5702 } 5703 if (Size == 128) { 5704 auto *ResType = 5705 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5706 return ABIArgInfo::getDirect(ResType); 5707 } 5708 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5709 } 5710 5711 ABIArgInfo 5712 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5713 unsigned CallingConvention) const { 5714 Ty = useFirstFieldIfTransparentUnion(Ty); 5715 5716 // Handle illegal vector types here. 5717 if (isIllegalVectorType(Ty)) 5718 return coerceIllegalVector(Ty); 5719 5720 if (!isAggregateTypeForABI(Ty)) { 5721 // Treat an enum type as its underlying type. 5722 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5723 Ty = EnumTy->getDecl()->getIntegerType(); 5724 5725 if (const auto *EIT = Ty->getAs<BitIntType>()) 5726 if (EIT->getNumBits() > 128) 5727 return getNaturalAlignIndirect(Ty); 5728 5729 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5730 ? ABIArgInfo::getExtend(Ty) 5731 : ABIArgInfo::getDirect()); 5732 } 5733 5734 // Structures with either a non-trivial destructor or a non-trivial 5735 // copy constructor are always indirect. 5736 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5737 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5738 CGCXXABI::RAA_DirectInMemory); 5739 } 5740 5741 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5742 // elsewhere for GNU compatibility. 5743 uint64_t Size = getContext().getTypeSize(Ty); 5744 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5745 if (IsEmpty || Size == 0) { 5746 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5747 return ABIArgInfo::getIgnore(); 5748 5749 // GNU C mode. The only argument that gets ignored is an empty one with size 5750 // 0. 5751 if (IsEmpty && Size == 0) 5752 return ABIArgInfo::getIgnore(); 5753 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5754 } 5755 5756 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5757 const Type *Base = nullptr; 5758 uint64_t Members = 0; 5759 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5760 bool IsWinVariadic = IsWin64 && IsVariadic; 5761 // In variadic functions on Windows, all composite types are treated alike, 5762 // no special handling of HFAs/HVAs. 5763 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5764 if (Kind != AArch64ABIInfo::AAPCS) 5765 return ABIArgInfo::getDirect( 5766 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5767 5768 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5769 // default otherwise. 5770 unsigned Align = 5771 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5772 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5773 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5774 return ABIArgInfo::getDirect( 5775 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5776 nullptr, true, Align); 5777 } 5778 5779 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5780 if (Size <= 128) { 5781 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5782 // same size and alignment. 5783 if (getTarget().isRenderScriptTarget()) { 5784 return coerceToIntArray(Ty, getContext(), getVMContext()); 5785 } 5786 unsigned Alignment; 5787 if (Kind == AArch64ABIInfo::AAPCS) { 5788 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5789 Alignment = Alignment < 128 ? 64 : 128; 5790 } else { 5791 Alignment = std::max(getContext().getTypeAlign(Ty), 5792 (unsigned)getTarget().getPointerWidth(0)); 5793 } 5794 Size = llvm::alignTo(Size, Alignment); 5795 5796 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5797 // For aggregates with 16-byte alignment, we use i128. 5798 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5799 return ABIArgInfo::getDirect( 5800 Size == Alignment ? BaseTy 5801 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5802 } 5803 5804 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5805 } 5806 5807 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5808 bool IsVariadic) const { 5809 if (RetTy->isVoidType()) 5810 return ABIArgInfo::getIgnore(); 5811 5812 if (const auto *VT = RetTy->getAs<VectorType>()) { 5813 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5814 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5815 return coerceIllegalVector(RetTy); 5816 } 5817 5818 // Large vector types should be returned via memory. 5819 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5820 return getNaturalAlignIndirect(RetTy); 5821 5822 if (!isAggregateTypeForABI(RetTy)) { 5823 // Treat an enum type as its underlying type. 5824 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5825 RetTy = EnumTy->getDecl()->getIntegerType(); 5826 5827 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5828 if (EIT->getNumBits() > 128) 5829 return getNaturalAlignIndirect(RetTy); 5830 5831 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5832 ? ABIArgInfo::getExtend(RetTy) 5833 : ABIArgInfo::getDirect()); 5834 } 5835 5836 uint64_t Size = getContext().getTypeSize(RetTy); 5837 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5838 return ABIArgInfo::getIgnore(); 5839 5840 const Type *Base = nullptr; 5841 uint64_t Members = 0; 5842 if (isHomogeneousAggregate(RetTy, Base, Members) && 5843 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5844 IsVariadic)) 5845 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5846 return ABIArgInfo::getDirect(); 5847 5848 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5849 if (Size <= 128) { 5850 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5851 // same size and alignment. 5852 if (getTarget().isRenderScriptTarget()) { 5853 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5854 } 5855 5856 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5857 // Composite types are returned in lower bits of a 64-bit register for LE, 5858 // and in higher bits for BE. However, integer types are always returned 5859 // in lower bits for both LE and BE, and they are not rounded up to 5860 // 64-bits. We can skip rounding up of composite types for LE, but not for 5861 // BE, otherwise composite types will be indistinguishable from integer 5862 // types. 5863 return ABIArgInfo::getDirect( 5864 llvm::IntegerType::get(getVMContext(), Size)); 5865 } 5866 5867 unsigned Alignment = getContext().getTypeAlign(RetTy); 5868 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5869 5870 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5871 // For aggregates with 16-byte alignment, we use i128. 5872 if (Alignment < 128 && Size == 128) { 5873 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5874 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5875 } 5876 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5877 } 5878 5879 return getNaturalAlignIndirect(RetTy); 5880 } 5881 5882 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5883 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5884 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5885 // Check whether VT is a fixed-length SVE vector. These types are 5886 // represented as scalable vectors in function args/return and must be 5887 // coerced from fixed vectors. 5888 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5889 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5890 return true; 5891 5892 // Check whether VT is legal. 5893 unsigned NumElements = VT->getNumElements(); 5894 uint64_t Size = getContext().getTypeSize(VT); 5895 // NumElements should be power of 2. 5896 if (!llvm::isPowerOf2_32(NumElements)) 5897 return true; 5898 5899 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5900 // vectors for some reason. 5901 llvm::Triple Triple = getTarget().getTriple(); 5902 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5903 Triple.isOSBinFormatMachO()) 5904 return Size <= 32; 5905 5906 return Size != 64 && (Size != 128 || NumElements == 1); 5907 } 5908 return false; 5909 } 5910 5911 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5912 llvm::Type *eltTy, 5913 unsigned elts) const { 5914 if (!llvm::isPowerOf2_32(elts)) 5915 return false; 5916 if (totalSize.getQuantity() != 8 && 5917 (totalSize.getQuantity() != 16 || elts == 1)) 5918 return false; 5919 return true; 5920 } 5921 5922 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5923 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5924 // point type or a short-vector type. This is the same as the 32-bit ABI, 5925 // but with the difference that any floating-point type is allowed, 5926 // including __fp16. 5927 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5928 if (BT->isFloatingPoint()) 5929 return true; 5930 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5931 unsigned VecSize = getContext().getTypeSize(VT); 5932 if (VecSize == 64 || VecSize == 128) 5933 return true; 5934 } 5935 return false; 5936 } 5937 5938 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5939 uint64_t Members) const { 5940 return Members <= 4; 5941 } 5942 5943 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5944 CodeGenFunction &CGF) const { 5945 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5946 CGF.CurFnInfo->getCallingConvention()); 5947 bool IsIndirect = AI.isIndirect(); 5948 5949 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5950 if (IsIndirect) 5951 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5952 else if (AI.getCoerceToType()) 5953 BaseTy = AI.getCoerceToType(); 5954 5955 unsigned NumRegs = 1; 5956 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5957 BaseTy = ArrTy->getElementType(); 5958 NumRegs = ArrTy->getNumElements(); 5959 } 5960 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5961 5962 // The AArch64 va_list type and handling is specified in the Procedure Call 5963 // Standard, section B.4: 5964 // 5965 // struct { 5966 // void *__stack; 5967 // void *__gr_top; 5968 // void *__vr_top; 5969 // int __gr_offs; 5970 // int __vr_offs; 5971 // }; 5972 5973 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5974 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5975 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5976 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5977 5978 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5979 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5980 5981 Address reg_offs_p = Address::invalid(); 5982 llvm::Value *reg_offs = nullptr; 5983 int reg_top_index; 5984 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5985 if (!IsFPR) { 5986 // 3 is the field number of __gr_offs 5987 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5988 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5989 reg_top_index = 1; // field number for __gr_top 5990 RegSize = llvm::alignTo(RegSize, 8); 5991 } else { 5992 // 4 is the field number of __vr_offs. 5993 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5994 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5995 reg_top_index = 2; // field number for __vr_top 5996 RegSize = 16 * NumRegs; 5997 } 5998 5999 //======================================= 6000 // Find out where argument was passed 6001 //======================================= 6002 6003 // If reg_offs >= 0 we're already using the stack for this type of 6004 // argument. We don't want to keep updating reg_offs (in case it overflows, 6005 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6006 // whatever they get). 6007 llvm::Value *UsingStack = nullptr; 6008 UsingStack = CGF.Builder.CreateICmpSGE( 6009 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6010 6011 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6012 6013 // Otherwise, at least some kind of argument could go in these registers, the 6014 // question is whether this particular type is too big. 6015 CGF.EmitBlock(MaybeRegBlock); 6016 6017 // Integer arguments may need to correct register alignment (for example a 6018 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6019 // align __gr_offs to calculate the potential address. 6020 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6021 int Align = TyAlign.getQuantity(); 6022 6023 reg_offs = CGF.Builder.CreateAdd( 6024 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6025 "align_regoffs"); 6026 reg_offs = CGF.Builder.CreateAnd( 6027 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6028 "aligned_regoffs"); 6029 } 6030 6031 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6032 // The fact that this is done unconditionally reflects the fact that 6033 // allocating an argument to the stack also uses up all the remaining 6034 // registers of the appropriate kind. 6035 llvm::Value *NewOffset = nullptr; 6036 NewOffset = CGF.Builder.CreateAdd( 6037 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6038 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6039 6040 // Now we're in a position to decide whether this argument really was in 6041 // registers or not. 6042 llvm::Value *InRegs = nullptr; 6043 InRegs = CGF.Builder.CreateICmpSLE( 6044 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6045 6046 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6047 6048 //======================================= 6049 // Argument was in registers 6050 //======================================= 6051 6052 // Now we emit the code for if the argument was originally passed in 6053 // registers. First start the appropriate block: 6054 CGF.EmitBlock(InRegBlock); 6055 6056 llvm::Value *reg_top = nullptr; 6057 Address reg_top_p = 6058 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6059 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6060 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6061 CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6062 Address RegAddr = Address::invalid(); 6063 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 6064 6065 if (IsIndirect) { 6066 // If it's been passed indirectly (actually a struct), whatever we find from 6067 // stored registers or on the stack will actually be a struct **. 6068 MemTy = llvm::PointerType::getUnqual(MemTy); 6069 } 6070 6071 const Type *Base = nullptr; 6072 uint64_t NumMembers = 0; 6073 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6074 if (IsHFA && NumMembers > 1) { 6075 // Homogeneous aggregates passed in registers will have their elements split 6076 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6077 // qN+1, ...). We reload and store into a temporary local variable 6078 // contiguously. 6079 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6080 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6081 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6082 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6083 Address Tmp = CGF.CreateTempAlloca(HFATy, 6084 std::max(TyAlign, BaseTyInfo.Align)); 6085 6086 // On big-endian platforms, the value will be right-aligned in its slot. 6087 int Offset = 0; 6088 if (CGF.CGM.getDataLayout().isBigEndian() && 6089 BaseTyInfo.Width.getQuantity() < 16) 6090 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6091 6092 for (unsigned i = 0; i < NumMembers; ++i) { 6093 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6094 Address LoadAddr = 6095 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6096 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6097 6098 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6099 6100 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6101 CGF.Builder.CreateStore(Elem, StoreAddr); 6102 } 6103 6104 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6105 } else { 6106 // Otherwise the object is contiguous in memory. 6107 6108 // It might be right-aligned in its slot. 6109 CharUnits SlotSize = BaseAddr.getAlignment(); 6110 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6111 (IsHFA || !isAggregateTypeForABI(Ty)) && 6112 TySize < SlotSize) { 6113 CharUnits Offset = SlotSize - TySize; 6114 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6115 } 6116 6117 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6118 } 6119 6120 CGF.EmitBranch(ContBlock); 6121 6122 //======================================= 6123 // Argument was on the stack 6124 //======================================= 6125 CGF.EmitBlock(OnStackBlock); 6126 6127 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6128 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6129 6130 // Again, stack arguments may need realignment. In this case both integer and 6131 // floating-point ones might be affected. 6132 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6133 int Align = TyAlign.getQuantity(); 6134 6135 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6136 6137 OnStackPtr = CGF.Builder.CreateAdd( 6138 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6139 "align_stack"); 6140 OnStackPtr = CGF.Builder.CreateAnd( 6141 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6142 "align_stack"); 6143 6144 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6145 } 6146 Address OnStackAddr = Address::deprecated( 6147 OnStackPtr, std::max(CharUnits::fromQuantity(8), TyAlign)); 6148 6149 // All stack slots are multiples of 8 bytes. 6150 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6151 CharUnits StackSize; 6152 if (IsIndirect) 6153 StackSize = StackSlotSize; 6154 else 6155 StackSize = TySize.alignTo(StackSlotSize); 6156 6157 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6158 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6159 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6160 6161 // Write the new value of __stack for the next call to va_arg 6162 CGF.Builder.CreateStore(NewStack, stack_p); 6163 6164 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6165 TySize < StackSlotSize) { 6166 CharUnits Offset = StackSlotSize - TySize; 6167 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6168 } 6169 6170 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6171 6172 CGF.EmitBranch(ContBlock); 6173 6174 //======================================= 6175 // Tidy up 6176 //======================================= 6177 CGF.EmitBlock(ContBlock); 6178 6179 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr, 6180 OnStackBlock, "vaargs.addr"); 6181 6182 if (IsIndirect) 6183 return Address::deprecated(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6184 TyAlign); 6185 6186 return ResAddr; 6187 } 6188 6189 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6190 CodeGenFunction &CGF) const { 6191 // The backend's lowering doesn't support va_arg for aggregates or 6192 // illegal vector types. Lower VAArg here for these cases and use 6193 // the LLVM va_arg instruction for everything else. 6194 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6195 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6196 6197 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6198 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6199 6200 // Empty records are ignored for parameter passing purposes. 6201 if (isEmptyRecord(getContext(), Ty, true)) { 6202 Address Addr = Address::deprecated( 6203 CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6204 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6205 return Addr; 6206 } 6207 6208 // The size of the actual thing passed, which might end up just 6209 // being a pointer for indirect types. 6210 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6211 6212 // Arguments bigger than 16 bytes which aren't homogeneous 6213 // aggregates should be passed indirectly. 6214 bool IsIndirect = false; 6215 if (TyInfo.Width.getQuantity() > 16) { 6216 const Type *Base = nullptr; 6217 uint64_t Members = 0; 6218 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6219 } 6220 6221 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6222 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6223 } 6224 6225 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6226 QualType Ty) const { 6227 bool IsIndirect = false; 6228 6229 // Composites larger than 16 bytes are passed by reference. 6230 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6231 IsIndirect = true; 6232 6233 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6234 CGF.getContext().getTypeInfoInChars(Ty), 6235 CharUnits::fromQuantity(8), 6236 /*allowHigherAlign*/ false); 6237 } 6238 6239 //===----------------------------------------------------------------------===// 6240 // ARM ABI Implementation 6241 //===----------------------------------------------------------------------===// 6242 6243 namespace { 6244 6245 class ARMABIInfo : public SwiftABIInfo { 6246 public: 6247 enum ABIKind { 6248 APCS = 0, 6249 AAPCS = 1, 6250 AAPCS_VFP = 2, 6251 AAPCS16_VFP = 3, 6252 }; 6253 6254 private: 6255 ABIKind Kind; 6256 bool IsFloatABISoftFP; 6257 6258 public: 6259 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6260 : SwiftABIInfo(CGT), Kind(_Kind) { 6261 setCCs(); 6262 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6263 CGT.getCodeGenOpts().FloatABI == ""; // default 6264 } 6265 6266 bool isEABI() const { 6267 switch (getTarget().getTriple().getEnvironment()) { 6268 case llvm::Triple::Android: 6269 case llvm::Triple::EABI: 6270 case llvm::Triple::EABIHF: 6271 case llvm::Triple::GNUEABI: 6272 case llvm::Triple::GNUEABIHF: 6273 case llvm::Triple::MuslEABI: 6274 case llvm::Triple::MuslEABIHF: 6275 return true; 6276 default: 6277 return false; 6278 } 6279 } 6280 6281 bool isEABIHF() const { 6282 switch (getTarget().getTriple().getEnvironment()) { 6283 case llvm::Triple::EABIHF: 6284 case llvm::Triple::GNUEABIHF: 6285 case llvm::Triple::MuslEABIHF: 6286 return true; 6287 default: 6288 return false; 6289 } 6290 } 6291 6292 ABIKind getABIKind() const { return Kind; } 6293 6294 bool allowBFloatArgsAndRet() const override { 6295 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6296 } 6297 6298 private: 6299 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6300 unsigned functionCallConv) const; 6301 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6302 unsigned functionCallConv) const; 6303 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6304 uint64_t Members) const; 6305 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6306 bool isIllegalVectorType(QualType Ty) const; 6307 bool containsAnyFP16Vectors(QualType Ty) const; 6308 6309 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6310 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6311 uint64_t Members) const override; 6312 6313 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6314 6315 void computeInfo(CGFunctionInfo &FI) const override; 6316 6317 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6318 QualType Ty) const override; 6319 6320 llvm::CallingConv::ID getLLVMDefaultCC() const; 6321 llvm::CallingConv::ID getABIDefaultCC() const; 6322 void setCCs(); 6323 6324 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6325 bool asReturnValue) const override { 6326 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6327 } 6328 bool isSwiftErrorInRegister() const override { 6329 return true; 6330 } 6331 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6332 unsigned elts) const override; 6333 }; 6334 6335 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6336 public: 6337 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6338 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6339 6340 const ARMABIInfo &getABIInfo() const { 6341 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6342 } 6343 6344 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6345 return 13; 6346 } 6347 6348 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6349 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6350 } 6351 6352 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6353 llvm::Value *Address) const override { 6354 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6355 6356 // 0-15 are the 16 integer registers. 6357 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6358 return false; 6359 } 6360 6361 unsigned getSizeOfUnwindException() const override { 6362 if (getABIInfo().isEABI()) return 88; 6363 return TargetCodeGenInfo::getSizeOfUnwindException(); 6364 } 6365 6366 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6367 CodeGen::CodeGenModule &CGM) const override { 6368 if (GV->isDeclaration()) 6369 return; 6370 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6371 if (!FD) 6372 return; 6373 auto *Fn = cast<llvm::Function>(GV); 6374 6375 if (const auto *TA = FD->getAttr<TargetAttr>()) { 6376 ParsedTargetAttr Attr = TA->parse(); 6377 if (!Attr.BranchProtection.empty()) { 6378 TargetInfo::BranchProtectionInfo BPI; 6379 StringRef DiagMsg; 6380 StringRef Arch = Attr.Architecture.empty() 6381 ? CGM.getTarget().getTargetOpts().CPU 6382 : Attr.Architecture; 6383 if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 6384 Arch, BPI, DiagMsg)) { 6385 CGM.getDiags().Report( 6386 D->getLocation(), 6387 diag::warn_target_unsupported_branch_protection_attribute) 6388 << Arch; 6389 } else { 6390 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 6391 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 && 6392 "Unexpected SignReturnAddressScopeKind"); 6393 Fn->addFnAttr( 6394 "sign-return-address", 6395 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 6396 6397 Fn->addFnAttr("branch-target-enforcement", 6398 BPI.BranchTargetEnforcement ? "true" : "false"); 6399 } 6400 } else if (CGM.getLangOpts().BranchTargetEnforcement || 6401 CGM.getLangOpts().hasSignReturnAddress()) { 6402 // If the Branch Protection attribute is missing, validate the target 6403 // Architecture attribute against Branch Protection command line 6404 // settings. 6405 if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.Architecture)) 6406 CGM.getDiags().Report( 6407 D->getLocation(), 6408 diag::warn_target_unsupported_branch_protection_attribute) 6409 << Attr.Architecture; 6410 } 6411 } 6412 6413 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6414 if (!Attr) 6415 return; 6416 6417 const char *Kind; 6418 switch (Attr->getInterrupt()) { 6419 case ARMInterruptAttr::Generic: Kind = ""; break; 6420 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6421 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6422 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6423 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6424 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6425 } 6426 6427 Fn->addFnAttr("interrupt", Kind); 6428 6429 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6430 if (ABI == ARMABIInfo::APCS) 6431 return; 6432 6433 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6434 // however this is not necessarily true on taking any interrupt. Instruct 6435 // the backend to perform a realignment as part of the function prologue. 6436 llvm::AttrBuilder B(Fn->getContext()); 6437 B.addStackAlignmentAttr(8); 6438 Fn->addFnAttrs(B); 6439 } 6440 }; 6441 6442 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6443 public: 6444 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6445 : ARMTargetCodeGenInfo(CGT, K) {} 6446 6447 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6448 CodeGen::CodeGenModule &CGM) const override; 6449 6450 void getDependentLibraryOption(llvm::StringRef Lib, 6451 llvm::SmallString<24> &Opt) const override { 6452 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6453 } 6454 6455 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6456 llvm::SmallString<32> &Opt) const override { 6457 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6458 } 6459 }; 6460 6461 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6462 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6463 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6464 if (GV->isDeclaration()) 6465 return; 6466 addStackProbeTargetAttributes(D, GV, CGM); 6467 } 6468 } 6469 6470 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6471 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6472 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6473 FI.getCallingConvention()); 6474 6475 for (auto &I : FI.arguments()) 6476 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6477 FI.getCallingConvention()); 6478 6479 6480 // Always honor user-specified calling convention. 6481 if (FI.getCallingConvention() != llvm::CallingConv::C) 6482 return; 6483 6484 llvm::CallingConv::ID cc = getRuntimeCC(); 6485 if (cc != llvm::CallingConv::C) 6486 FI.setEffectiveCallingConvention(cc); 6487 } 6488 6489 /// Return the default calling convention that LLVM will use. 6490 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6491 // The default calling convention that LLVM will infer. 6492 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6493 return llvm::CallingConv::ARM_AAPCS_VFP; 6494 else if (isEABI()) 6495 return llvm::CallingConv::ARM_AAPCS; 6496 else 6497 return llvm::CallingConv::ARM_APCS; 6498 } 6499 6500 /// Return the calling convention that our ABI would like us to use 6501 /// as the C calling convention. 6502 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6503 switch (getABIKind()) { 6504 case APCS: return llvm::CallingConv::ARM_APCS; 6505 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6506 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6507 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6508 } 6509 llvm_unreachable("bad ABI kind"); 6510 } 6511 6512 void ARMABIInfo::setCCs() { 6513 assert(getRuntimeCC() == llvm::CallingConv::C); 6514 6515 // Don't muddy up the IR with a ton of explicit annotations if 6516 // they'd just match what LLVM will infer from the triple. 6517 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6518 if (abiCC != getLLVMDefaultCC()) 6519 RuntimeCC = abiCC; 6520 } 6521 6522 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6523 uint64_t Size = getContext().getTypeSize(Ty); 6524 if (Size <= 32) { 6525 llvm::Type *ResType = 6526 llvm::Type::getInt32Ty(getVMContext()); 6527 return ABIArgInfo::getDirect(ResType); 6528 } 6529 if (Size == 64 || Size == 128) { 6530 auto *ResType = llvm::FixedVectorType::get( 6531 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6532 return ABIArgInfo::getDirect(ResType); 6533 } 6534 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6535 } 6536 6537 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6538 const Type *Base, 6539 uint64_t Members) const { 6540 assert(Base && "Base class should be set for homogeneous aggregate"); 6541 // Base can be a floating-point or a vector. 6542 if (const VectorType *VT = Base->getAs<VectorType>()) { 6543 // FP16 vectors should be converted to integer vectors 6544 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6545 uint64_t Size = getContext().getTypeSize(VT); 6546 auto *NewVecTy = llvm::FixedVectorType::get( 6547 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6548 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6549 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6550 } 6551 } 6552 unsigned Align = 0; 6553 if (getABIKind() == ARMABIInfo::AAPCS || 6554 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6555 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6556 // default otherwise. 6557 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6558 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6559 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6560 } 6561 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6562 } 6563 6564 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6565 unsigned functionCallConv) const { 6566 // 6.1.2.1 The following argument types are VFP CPRCs: 6567 // A single-precision floating-point type (including promoted 6568 // half-precision types); A double-precision floating-point type; 6569 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6570 // with a Base Type of a single- or double-precision floating-point type, 6571 // 64-bit containerized vectors or 128-bit containerized vectors with one 6572 // to four Elements. 6573 // Variadic functions should always marshal to the base standard. 6574 bool IsAAPCS_VFP = 6575 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6576 6577 Ty = useFirstFieldIfTransparentUnion(Ty); 6578 6579 // Handle illegal vector types here. 6580 if (isIllegalVectorType(Ty)) 6581 return coerceIllegalVector(Ty); 6582 6583 if (!isAggregateTypeForABI(Ty)) { 6584 // Treat an enum type as its underlying type. 6585 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6586 Ty = EnumTy->getDecl()->getIntegerType(); 6587 } 6588 6589 if (const auto *EIT = Ty->getAs<BitIntType>()) 6590 if (EIT->getNumBits() > 64) 6591 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6592 6593 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6594 : ABIArgInfo::getDirect()); 6595 } 6596 6597 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6598 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6599 } 6600 6601 // Ignore empty records. 6602 if (isEmptyRecord(getContext(), Ty, true)) 6603 return ABIArgInfo::getIgnore(); 6604 6605 if (IsAAPCS_VFP) { 6606 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6607 // into VFP registers. 6608 const Type *Base = nullptr; 6609 uint64_t Members = 0; 6610 if (isHomogeneousAggregate(Ty, Base, Members)) 6611 return classifyHomogeneousAggregate(Ty, Base, Members); 6612 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6613 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6614 // this convention even for a variadic function: the backend will use GPRs 6615 // if needed. 6616 const Type *Base = nullptr; 6617 uint64_t Members = 0; 6618 if (isHomogeneousAggregate(Ty, Base, Members)) { 6619 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6620 llvm::Type *Ty = 6621 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6622 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6623 } 6624 } 6625 6626 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6627 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6628 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6629 // bigger than 128-bits, they get placed in space allocated by the caller, 6630 // and a pointer is passed. 6631 return ABIArgInfo::getIndirect( 6632 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6633 } 6634 6635 // Support byval for ARM. 6636 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6637 // most 8-byte. We realign the indirect argument if type alignment is bigger 6638 // than ABI alignment. 6639 uint64_t ABIAlign = 4; 6640 uint64_t TyAlign; 6641 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6642 getABIKind() == ARMABIInfo::AAPCS) { 6643 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6644 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6645 } else { 6646 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6647 } 6648 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6649 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6650 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6651 /*ByVal=*/true, 6652 /*Realign=*/TyAlign > ABIAlign); 6653 } 6654 6655 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6656 // same size and alignment. 6657 if (getTarget().isRenderScriptTarget()) { 6658 return coerceToIntArray(Ty, getContext(), getVMContext()); 6659 } 6660 6661 // Otherwise, pass by coercing to a structure of the appropriate size. 6662 llvm::Type* ElemTy; 6663 unsigned SizeRegs; 6664 // FIXME: Try to match the types of the arguments more accurately where 6665 // we can. 6666 if (TyAlign <= 4) { 6667 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6668 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6669 } else { 6670 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6671 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6672 } 6673 6674 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6675 } 6676 6677 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6678 llvm::LLVMContext &VMContext) { 6679 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6680 // is called integer-like if its size is less than or equal to one word, and 6681 // the offset of each of its addressable sub-fields is zero. 6682 6683 uint64_t Size = Context.getTypeSize(Ty); 6684 6685 // Check that the type fits in a word. 6686 if (Size > 32) 6687 return false; 6688 6689 // FIXME: Handle vector types! 6690 if (Ty->isVectorType()) 6691 return false; 6692 6693 // Float types are never treated as "integer like". 6694 if (Ty->isRealFloatingType()) 6695 return false; 6696 6697 // If this is a builtin or pointer type then it is ok. 6698 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6699 return true; 6700 6701 // Small complex integer types are "integer like". 6702 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6703 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6704 6705 // Single element and zero sized arrays should be allowed, by the definition 6706 // above, but they are not. 6707 6708 // Otherwise, it must be a record type. 6709 const RecordType *RT = Ty->getAs<RecordType>(); 6710 if (!RT) return false; 6711 6712 // Ignore records with flexible arrays. 6713 const RecordDecl *RD = RT->getDecl(); 6714 if (RD->hasFlexibleArrayMember()) 6715 return false; 6716 6717 // Check that all sub-fields are at offset 0, and are themselves "integer 6718 // like". 6719 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6720 6721 bool HadField = false; 6722 unsigned idx = 0; 6723 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6724 i != e; ++i, ++idx) { 6725 const FieldDecl *FD = *i; 6726 6727 // Bit-fields are not addressable, we only need to verify they are "integer 6728 // like". We still have to disallow a subsequent non-bitfield, for example: 6729 // struct { int : 0; int x } 6730 // is non-integer like according to gcc. 6731 if (FD->isBitField()) { 6732 if (!RD->isUnion()) 6733 HadField = true; 6734 6735 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6736 return false; 6737 6738 continue; 6739 } 6740 6741 // Check if this field is at offset 0. 6742 if (Layout.getFieldOffset(idx) != 0) 6743 return false; 6744 6745 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6746 return false; 6747 6748 // Only allow at most one field in a structure. This doesn't match the 6749 // wording above, but follows gcc in situations with a field following an 6750 // empty structure. 6751 if (!RD->isUnion()) { 6752 if (HadField) 6753 return false; 6754 6755 HadField = true; 6756 } 6757 } 6758 6759 return true; 6760 } 6761 6762 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6763 unsigned functionCallConv) const { 6764 6765 // Variadic functions should always marshal to the base standard. 6766 bool IsAAPCS_VFP = 6767 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6768 6769 if (RetTy->isVoidType()) 6770 return ABIArgInfo::getIgnore(); 6771 6772 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6773 // Large vector types should be returned via memory. 6774 if (getContext().getTypeSize(RetTy) > 128) 6775 return getNaturalAlignIndirect(RetTy); 6776 // TODO: FP16/BF16 vectors should be converted to integer vectors 6777 // This check is similar to isIllegalVectorType - refactor? 6778 if ((!getTarget().hasLegalHalfType() && 6779 (VT->getElementType()->isFloat16Type() || 6780 VT->getElementType()->isHalfType())) || 6781 (IsFloatABISoftFP && 6782 VT->getElementType()->isBFloat16Type())) 6783 return coerceIllegalVector(RetTy); 6784 } 6785 6786 if (!isAggregateTypeForABI(RetTy)) { 6787 // Treat an enum type as its underlying type. 6788 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6789 RetTy = EnumTy->getDecl()->getIntegerType(); 6790 6791 if (const auto *EIT = RetTy->getAs<BitIntType>()) 6792 if (EIT->getNumBits() > 64) 6793 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6794 6795 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6796 : ABIArgInfo::getDirect(); 6797 } 6798 6799 // Are we following APCS? 6800 if (getABIKind() == APCS) { 6801 if (isEmptyRecord(getContext(), RetTy, false)) 6802 return ABIArgInfo::getIgnore(); 6803 6804 // Complex types are all returned as packed integers. 6805 // 6806 // FIXME: Consider using 2 x vector types if the back end handles them 6807 // correctly. 6808 if (RetTy->isAnyComplexType()) 6809 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6810 getVMContext(), getContext().getTypeSize(RetTy))); 6811 6812 // Integer like structures are returned in r0. 6813 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6814 // Return in the smallest viable integer type. 6815 uint64_t Size = getContext().getTypeSize(RetTy); 6816 if (Size <= 8) 6817 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6818 if (Size <= 16) 6819 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6820 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6821 } 6822 6823 // Otherwise return in memory. 6824 return getNaturalAlignIndirect(RetTy); 6825 } 6826 6827 // Otherwise this is an AAPCS variant. 6828 6829 if (isEmptyRecord(getContext(), RetTy, true)) 6830 return ABIArgInfo::getIgnore(); 6831 6832 // Check for homogeneous aggregates with AAPCS-VFP. 6833 if (IsAAPCS_VFP) { 6834 const Type *Base = nullptr; 6835 uint64_t Members = 0; 6836 if (isHomogeneousAggregate(RetTy, Base, Members)) 6837 return classifyHomogeneousAggregate(RetTy, Base, Members); 6838 } 6839 6840 // Aggregates <= 4 bytes are returned in r0; other aggregates 6841 // are returned indirectly. 6842 uint64_t Size = getContext().getTypeSize(RetTy); 6843 if (Size <= 32) { 6844 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6845 // same size and alignment. 6846 if (getTarget().isRenderScriptTarget()) { 6847 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6848 } 6849 if (getDataLayout().isBigEndian()) 6850 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6851 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6852 6853 // Return in the smallest viable integer type. 6854 if (Size <= 8) 6855 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6856 if (Size <= 16) 6857 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6858 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6859 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6860 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6861 llvm::Type *CoerceTy = 6862 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6863 return ABIArgInfo::getDirect(CoerceTy); 6864 } 6865 6866 return getNaturalAlignIndirect(RetTy); 6867 } 6868 6869 /// isIllegalVector - check whether Ty is an illegal vector type. 6870 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6871 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6872 // On targets that don't support half, fp16 or bfloat, they are expanded 6873 // into float, and we don't want the ABI to depend on whether or not they 6874 // are supported in hardware. Thus return false to coerce vectors of these 6875 // types into integer vectors. 6876 // We do not depend on hasLegalHalfType for bfloat as it is a 6877 // separate IR type. 6878 if ((!getTarget().hasLegalHalfType() && 6879 (VT->getElementType()->isFloat16Type() || 6880 VT->getElementType()->isHalfType())) || 6881 (IsFloatABISoftFP && 6882 VT->getElementType()->isBFloat16Type())) 6883 return true; 6884 if (isAndroid()) { 6885 // Android shipped using Clang 3.1, which supported a slightly different 6886 // vector ABI. The primary differences were that 3-element vector types 6887 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6888 // accepts that legacy behavior for Android only. 6889 // Check whether VT is legal. 6890 unsigned NumElements = VT->getNumElements(); 6891 // NumElements should be power of 2 or equal to 3. 6892 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6893 return true; 6894 } else { 6895 // Check whether VT is legal. 6896 unsigned NumElements = VT->getNumElements(); 6897 uint64_t Size = getContext().getTypeSize(VT); 6898 // NumElements should be power of 2. 6899 if (!llvm::isPowerOf2_32(NumElements)) 6900 return true; 6901 // Size should be greater than 32 bits. 6902 return Size <= 32; 6903 } 6904 } 6905 return false; 6906 } 6907 6908 /// Return true if a type contains any 16-bit floating point vectors 6909 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6910 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6911 uint64_t NElements = AT->getSize().getZExtValue(); 6912 if (NElements == 0) 6913 return false; 6914 return containsAnyFP16Vectors(AT->getElementType()); 6915 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6916 const RecordDecl *RD = RT->getDecl(); 6917 6918 // If this is a C++ record, check the bases first. 6919 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6920 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6921 return containsAnyFP16Vectors(B.getType()); 6922 })) 6923 return true; 6924 6925 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6926 return FD && containsAnyFP16Vectors(FD->getType()); 6927 })) 6928 return true; 6929 6930 return false; 6931 } else { 6932 if (const VectorType *VT = Ty->getAs<VectorType>()) 6933 return (VT->getElementType()->isFloat16Type() || 6934 VT->getElementType()->isBFloat16Type() || 6935 VT->getElementType()->isHalfType()); 6936 return false; 6937 } 6938 } 6939 6940 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6941 llvm::Type *eltTy, 6942 unsigned numElts) const { 6943 if (!llvm::isPowerOf2_32(numElts)) 6944 return false; 6945 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6946 if (size > 64) 6947 return false; 6948 if (vectorSize.getQuantity() != 8 && 6949 (vectorSize.getQuantity() != 16 || numElts == 1)) 6950 return false; 6951 return true; 6952 } 6953 6954 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6955 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6956 // double, or 64-bit or 128-bit vectors. 6957 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6958 if (BT->getKind() == BuiltinType::Float || 6959 BT->getKind() == BuiltinType::Double || 6960 BT->getKind() == BuiltinType::LongDouble) 6961 return true; 6962 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6963 unsigned VecSize = getContext().getTypeSize(VT); 6964 if (VecSize == 64 || VecSize == 128) 6965 return true; 6966 } 6967 return false; 6968 } 6969 6970 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6971 uint64_t Members) const { 6972 return Members <= 4; 6973 } 6974 6975 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6976 bool acceptHalf) const { 6977 // Give precedence to user-specified calling conventions. 6978 if (callConvention != llvm::CallingConv::C) 6979 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6980 else 6981 return (getABIKind() == AAPCS_VFP) || 6982 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6983 } 6984 6985 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6986 QualType Ty) const { 6987 CharUnits SlotSize = CharUnits::fromQuantity(4); 6988 6989 // Empty records are ignored for parameter passing purposes. 6990 if (isEmptyRecord(getContext(), Ty, true)) { 6991 Address Addr = 6992 Address::deprecated(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6993 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6994 return Addr; 6995 } 6996 6997 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6998 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6999 7000 // Use indirect if size of the illegal vector is bigger than 16 bytes. 7001 bool IsIndirect = false; 7002 const Type *Base = nullptr; 7003 uint64_t Members = 0; 7004 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 7005 IsIndirect = true; 7006 7007 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 7008 // allocated by the caller. 7009 } else if (TySize > CharUnits::fromQuantity(16) && 7010 getABIKind() == ARMABIInfo::AAPCS16_VFP && 7011 !isHomogeneousAggregate(Ty, Base, Members)) { 7012 IsIndirect = true; 7013 7014 // Otherwise, bound the type's ABI alignment. 7015 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 7016 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 7017 // Our callers should be prepared to handle an under-aligned address. 7018 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 7019 getABIKind() == ARMABIInfo::AAPCS) { 7020 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7021 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 7022 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 7023 // ARMv7k allows type alignment up to 16 bytes. 7024 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7025 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 7026 } else { 7027 TyAlignForABI = CharUnits::fromQuantity(4); 7028 } 7029 7030 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 7031 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 7032 SlotSize, /*AllowHigherAlign*/ true); 7033 } 7034 7035 //===----------------------------------------------------------------------===// 7036 // NVPTX ABI Implementation 7037 //===----------------------------------------------------------------------===// 7038 7039 namespace { 7040 7041 class NVPTXTargetCodeGenInfo; 7042 7043 class NVPTXABIInfo : public ABIInfo { 7044 NVPTXTargetCodeGenInfo &CGInfo; 7045 7046 public: 7047 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7048 : ABIInfo(CGT), CGInfo(Info) {} 7049 7050 ABIArgInfo classifyReturnType(QualType RetTy) const; 7051 ABIArgInfo classifyArgumentType(QualType Ty) const; 7052 7053 void computeInfo(CGFunctionInfo &FI) const override; 7054 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7055 QualType Ty) const override; 7056 bool isUnsupportedType(QualType T) const; 7057 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7058 }; 7059 7060 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7061 public: 7062 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7063 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7064 7065 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7066 CodeGen::CodeGenModule &M) const override; 7067 bool shouldEmitStaticExternCAliases() const override; 7068 7069 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7070 // On the device side, surface reference is represented as an object handle 7071 // in 64-bit integer. 7072 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7073 } 7074 7075 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7076 // On the device side, texture reference is represented as an object handle 7077 // in 64-bit integer. 7078 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7079 } 7080 7081 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7082 LValue Src) const override { 7083 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7084 return true; 7085 } 7086 7087 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7088 LValue Src) const override { 7089 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7090 return true; 7091 } 7092 7093 private: 7094 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7095 // resulting MDNode to the nvvm.annotations MDNode. 7096 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7097 int Operand); 7098 7099 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7100 LValue Src) { 7101 llvm::Value *Handle = nullptr; 7102 llvm::Constant *C = 7103 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7104 // Lookup `addrspacecast` through the constant pointer if any. 7105 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7106 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7107 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7108 // Load the handle from the specific global variable using 7109 // `nvvm.texsurf.handle.internal` intrinsic. 7110 Handle = CGF.EmitRuntimeCall( 7111 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7112 {GV->getType()}), 7113 {GV}, "texsurf_handle"); 7114 } else 7115 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7116 CGF.EmitStoreOfScalar(Handle, Dst); 7117 } 7118 }; 7119 7120 /// Checks if the type is unsupported directly by the current target. 7121 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7122 ASTContext &Context = getContext(); 7123 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7124 return true; 7125 if (!Context.getTargetInfo().hasFloat128Type() && 7126 (T->isFloat128Type() || 7127 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7128 return true; 7129 if (const auto *EIT = T->getAs<BitIntType>()) 7130 return EIT->getNumBits() > 7131 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7132 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7133 Context.getTypeSize(T) > 64U) 7134 return true; 7135 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7136 return isUnsupportedType(AT->getElementType()); 7137 const auto *RT = T->getAs<RecordType>(); 7138 if (!RT) 7139 return false; 7140 const RecordDecl *RD = RT->getDecl(); 7141 7142 // If this is a C++ record, check the bases first. 7143 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7144 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7145 if (isUnsupportedType(I.getType())) 7146 return true; 7147 7148 for (const FieldDecl *I : RD->fields()) 7149 if (isUnsupportedType(I->getType())) 7150 return true; 7151 return false; 7152 } 7153 7154 /// Coerce the given type into an array with maximum allowed size of elements. 7155 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7156 unsigned MaxSize) const { 7157 // Alignment and Size are measured in bits. 7158 const uint64_t Size = getContext().getTypeSize(Ty); 7159 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7160 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7161 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7162 const uint64_t NumElements = (Size + Div - 1) / Div; 7163 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7164 } 7165 7166 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7167 if (RetTy->isVoidType()) 7168 return ABIArgInfo::getIgnore(); 7169 7170 if (getContext().getLangOpts().OpenMP && 7171 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7172 return coerceToIntArrayWithLimit(RetTy, 64); 7173 7174 // note: this is different from default ABI 7175 if (!RetTy->isScalarType()) 7176 return ABIArgInfo::getDirect(); 7177 7178 // Treat an enum type as its underlying type. 7179 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7180 RetTy = EnumTy->getDecl()->getIntegerType(); 7181 7182 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7183 : ABIArgInfo::getDirect()); 7184 } 7185 7186 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7187 // Treat an enum type as its underlying type. 7188 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7189 Ty = EnumTy->getDecl()->getIntegerType(); 7190 7191 // Return aggregates type as indirect by value 7192 if (isAggregateTypeForABI(Ty)) { 7193 // Under CUDA device compilation, tex/surf builtin types are replaced with 7194 // object types and passed directly. 7195 if (getContext().getLangOpts().CUDAIsDevice) { 7196 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7197 return ABIArgInfo::getDirect( 7198 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7199 if (Ty->isCUDADeviceBuiltinTextureType()) 7200 return ABIArgInfo::getDirect( 7201 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7202 } 7203 return getNaturalAlignIndirect(Ty, /* byval */ true); 7204 } 7205 7206 if (const auto *EIT = Ty->getAs<BitIntType>()) { 7207 if ((EIT->getNumBits() > 128) || 7208 (!getContext().getTargetInfo().hasInt128Type() && 7209 EIT->getNumBits() > 64)) 7210 return getNaturalAlignIndirect(Ty, /* byval */ true); 7211 } 7212 7213 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7214 : ABIArgInfo::getDirect()); 7215 } 7216 7217 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7218 if (!getCXXABI().classifyReturnType(FI)) 7219 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7220 for (auto &I : FI.arguments()) 7221 I.info = classifyArgumentType(I.type); 7222 7223 // Always honor user-specified calling convention. 7224 if (FI.getCallingConvention() != llvm::CallingConv::C) 7225 return; 7226 7227 FI.setEffectiveCallingConvention(getRuntimeCC()); 7228 } 7229 7230 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7231 QualType Ty) const { 7232 llvm_unreachable("NVPTX does not support varargs"); 7233 } 7234 7235 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7236 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7237 if (GV->isDeclaration()) 7238 return; 7239 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7240 if (VD) { 7241 if (M.getLangOpts().CUDA) { 7242 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7243 addNVVMMetadata(GV, "surface", 1); 7244 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7245 addNVVMMetadata(GV, "texture", 1); 7246 return; 7247 } 7248 } 7249 7250 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7251 if (!FD) return; 7252 7253 llvm::Function *F = cast<llvm::Function>(GV); 7254 7255 // Perform special handling in OpenCL mode 7256 if (M.getLangOpts().OpenCL) { 7257 // Use OpenCL function attributes to check for kernel functions 7258 // By default, all functions are device functions 7259 if (FD->hasAttr<OpenCLKernelAttr>()) { 7260 // OpenCL __kernel functions get kernel metadata 7261 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7262 addNVVMMetadata(F, "kernel", 1); 7263 // And kernel functions are not subject to inlining 7264 F->addFnAttr(llvm::Attribute::NoInline); 7265 } 7266 } 7267 7268 // Perform special handling in CUDA mode. 7269 if (M.getLangOpts().CUDA) { 7270 // CUDA __global__ functions get a kernel metadata entry. Since 7271 // __global__ functions cannot be called from the device, we do not 7272 // need to set the noinline attribute. 7273 if (FD->hasAttr<CUDAGlobalAttr>()) { 7274 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7275 addNVVMMetadata(F, "kernel", 1); 7276 } 7277 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7278 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7279 llvm::APSInt MaxThreads(32); 7280 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7281 if (MaxThreads > 0) 7282 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7283 7284 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7285 // not specified in __launch_bounds__ or if the user specified a 0 value, 7286 // we don't have to add a PTX directive. 7287 if (Attr->getMinBlocks()) { 7288 llvm::APSInt MinBlocks(32); 7289 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7290 if (MinBlocks > 0) 7291 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7292 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7293 } 7294 } 7295 } 7296 } 7297 7298 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7299 StringRef Name, int Operand) { 7300 llvm::Module *M = GV->getParent(); 7301 llvm::LLVMContext &Ctx = M->getContext(); 7302 7303 // Get "nvvm.annotations" metadata node 7304 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7305 7306 llvm::Metadata *MDVals[] = { 7307 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7308 llvm::ConstantAsMetadata::get( 7309 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7310 // Append metadata to nvvm.annotations 7311 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7312 } 7313 7314 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7315 return false; 7316 } 7317 } 7318 7319 //===----------------------------------------------------------------------===// 7320 // SystemZ ABI Implementation 7321 //===----------------------------------------------------------------------===// 7322 7323 namespace { 7324 7325 class SystemZABIInfo : public SwiftABIInfo { 7326 bool HasVector; 7327 bool IsSoftFloatABI; 7328 7329 public: 7330 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7331 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7332 7333 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7334 bool isCompoundType(QualType Ty) const; 7335 bool isVectorArgumentType(QualType Ty) const; 7336 bool isFPArgumentType(QualType Ty) const; 7337 QualType GetSingleElementType(QualType Ty) const; 7338 7339 ABIArgInfo classifyReturnType(QualType RetTy) const; 7340 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7341 7342 void computeInfo(CGFunctionInfo &FI) const override { 7343 if (!getCXXABI().classifyReturnType(FI)) 7344 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7345 for (auto &I : FI.arguments()) 7346 I.info = classifyArgumentType(I.type); 7347 } 7348 7349 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7350 QualType Ty) const override; 7351 7352 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7353 bool asReturnValue) const override { 7354 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7355 } 7356 bool isSwiftErrorInRegister() const override { 7357 return false; 7358 } 7359 }; 7360 7361 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7362 public: 7363 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7364 : TargetCodeGenInfo( 7365 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7366 7367 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7368 CGBuilderTy &Builder, 7369 CodeGenModule &CGM) const override { 7370 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7371 // Only use TDC in constrained FP mode. 7372 if (!Builder.getIsFPConstrained()) 7373 return nullptr; 7374 7375 llvm::Type *Ty = V->getType(); 7376 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7377 llvm::Module &M = CGM.getModule(); 7378 auto &Ctx = M.getContext(); 7379 llvm::Function *TDCFunc = 7380 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7381 unsigned TDCBits = 0; 7382 switch (BuiltinID) { 7383 case Builtin::BI__builtin_isnan: 7384 TDCBits = 0xf; 7385 break; 7386 case Builtin::BIfinite: 7387 case Builtin::BI__finite: 7388 case Builtin::BIfinitef: 7389 case Builtin::BI__finitef: 7390 case Builtin::BIfinitel: 7391 case Builtin::BI__finitel: 7392 case Builtin::BI__builtin_isfinite: 7393 TDCBits = 0xfc0; 7394 break; 7395 case Builtin::BI__builtin_isinf: 7396 TDCBits = 0x30; 7397 break; 7398 default: 7399 break; 7400 } 7401 if (TDCBits) 7402 return Builder.CreateCall( 7403 TDCFunc, 7404 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7405 } 7406 return nullptr; 7407 } 7408 }; 7409 } 7410 7411 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7412 // Treat an enum type as its underlying type. 7413 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7414 Ty = EnumTy->getDecl()->getIntegerType(); 7415 7416 // Promotable integer types are required to be promoted by the ABI. 7417 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7418 return true; 7419 7420 if (const auto *EIT = Ty->getAs<BitIntType>()) 7421 if (EIT->getNumBits() < 64) 7422 return true; 7423 7424 // 32-bit values must also be promoted. 7425 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7426 switch (BT->getKind()) { 7427 case BuiltinType::Int: 7428 case BuiltinType::UInt: 7429 return true; 7430 default: 7431 return false; 7432 } 7433 return false; 7434 } 7435 7436 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7437 return (Ty->isAnyComplexType() || 7438 Ty->isVectorType() || 7439 isAggregateTypeForABI(Ty)); 7440 } 7441 7442 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7443 return (HasVector && 7444 Ty->isVectorType() && 7445 getContext().getTypeSize(Ty) <= 128); 7446 } 7447 7448 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7449 if (IsSoftFloatABI) 7450 return false; 7451 7452 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7453 switch (BT->getKind()) { 7454 case BuiltinType::Float: 7455 case BuiltinType::Double: 7456 return true; 7457 default: 7458 return false; 7459 } 7460 7461 return false; 7462 } 7463 7464 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7465 const RecordType *RT = Ty->getAs<RecordType>(); 7466 7467 if (RT && RT->isStructureOrClassType()) { 7468 const RecordDecl *RD = RT->getDecl(); 7469 QualType Found; 7470 7471 // If this is a C++ record, check the bases first. 7472 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7473 for (const auto &I : CXXRD->bases()) { 7474 QualType Base = I.getType(); 7475 7476 // Empty bases don't affect things either way. 7477 if (isEmptyRecord(getContext(), Base, true)) 7478 continue; 7479 7480 if (!Found.isNull()) 7481 return Ty; 7482 Found = GetSingleElementType(Base); 7483 } 7484 7485 // Check the fields. 7486 for (const auto *FD : RD->fields()) { 7487 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7488 // Unlike isSingleElementStruct(), empty structure and array fields 7489 // do count. So do anonymous bitfields that aren't zero-sized. 7490 if (getContext().getLangOpts().CPlusPlus && 7491 FD->isZeroLengthBitField(getContext())) 7492 continue; 7493 // Like isSingleElementStruct(), ignore C++20 empty data members. 7494 if (FD->hasAttr<NoUniqueAddressAttr>() && 7495 isEmptyRecord(getContext(), FD->getType(), true)) 7496 continue; 7497 7498 // Unlike isSingleElementStruct(), arrays do not count. 7499 // Nested structures still do though. 7500 if (!Found.isNull()) 7501 return Ty; 7502 Found = GetSingleElementType(FD->getType()); 7503 } 7504 7505 // Unlike isSingleElementStruct(), trailing padding is allowed. 7506 // An 8-byte aligned struct s { float f; } is passed as a double. 7507 if (!Found.isNull()) 7508 return Found; 7509 } 7510 7511 return Ty; 7512 } 7513 7514 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7515 QualType Ty) const { 7516 // Assume that va_list type is correct; should be pointer to LLVM type: 7517 // struct { 7518 // i64 __gpr; 7519 // i64 __fpr; 7520 // i8 *__overflow_arg_area; 7521 // i8 *__reg_save_area; 7522 // }; 7523 7524 // Every non-vector argument occupies 8 bytes and is passed by preference 7525 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7526 // always passed on the stack. 7527 Ty = getContext().getCanonicalType(Ty); 7528 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7529 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7530 llvm::Type *DirectTy = ArgTy; 7531 ABIArgInfo AI = classifyArgumentType(Ty); 7532 bool IsIndirect = AI.isIndirect(); 7533 bool InFPRs = false; 7534 bool IsVector = false; 7535 CharUnits UnpaddedSize; 7536 CharUnits DirectAlign; 7537 if (IsIndirect) { 7538 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7539 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7540 } else { 7541 if (AI.getCoerceToType()) 7542 ArgTy = AI.getCoerceToType(); 7543 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7544 IsVector = ArgTy->isVectorTy(); 7545 UnpaddedSize = TyInfo.Width; 7546 DirectAlign = TyInfo.Align; 7547 } 7548 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7549 if (IsVector && UnpaddedSize > PaddedSize) 7550 PaddedSize = CharUnits::fromQuantity(16); 7551 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7552 7553 CharUnits Padding = (PaddedSize - UnpaddedSize); 7554 7555 llvm::Type *IndexTy = CGF.Int64Ty; 7556 llvm::Value *PaddedSizeV = 7557 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7558 7559 if (IsVector) { 7560 // Work out the address of a vector argument on the stack. 7561 // Vector arguments are always passed in the high bits of a 7562 // single (8 byte) or double (16 byte) stack slot. 7563 Address OverflowArgAreaPtr = 7564 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7565 Address OverflowArgArea = Address::deprecated( 7566 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7567 TyInfo.Align); 7568 Address MemAddr = 7569 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7570 7571 // Update overflow_arg_area_ptr pointer 7572 llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP( 7573 OverflowArgArea.getElementType(), OverflowArgArea.getPointer(), 7574 PaddedSizeV, "overflow_arg_area"); 7575 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7576 7577 return MemAddr; 7578 } 7579 7580 assert(PaddedSize.getQuantity() == 8); 7581 7582 unsigned MaxRegs, RegCountField, RegSaveIndex; 7583 CharUnits RegPadding; 7584 if (InFPRs) { 7585 MaxRegs = 4; // Maximum of 4 FPR arguments 7586 RegCountField = 1; // __fpr 7587 RegSaveIndex = 16; // save offset for f0 7588 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7589 } else { 7590 MaxRegs = 5; // Maximum of 5 GPR arguments 7591 RegCountField = 0; // __gpr 7592 RegSaveIndex = 2; // save offset for r2 7593 RegPadding = Padding; // values are passed in the low bits of a GPR 7594 } 7595 7596 Address RegCountPtr = 7597 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7598 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7599 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7600 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7601 "fits_in_regs"); 7602 7603 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7604 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7605 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7606 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7607 7608 // Emit code to load the value if it was passed in registers. 7609 CGF.EmitBlock(InRegBlock); 7610 7611 // Work out the address of an argument register. 7612 llvm::Value *ScaledRegCount = 7613 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7614 llvm::Value *RegBase = 7615 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7616 + RegPadding.getQuantity()); 7617 llvm::Value *RegOffset = 7618 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7619 Address RegSaveAreaPtr = 7620 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7621 llvm::Value *RegSaveArea = 7622 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7623 Address RawRegAddr( 7624 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"), 7625 CGF.Int8Ty, PaddedSize); 7626 Address RegAddr = 7627 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7628 7629 // Update the register count 7630 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7631 llvm::Value *NewRegCount = 7632 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7633 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7634 CGF.EmitBranch(ContBlock); 7635 7636 // Emit code to load the value if it was passed in memory. 7637 CGF.EmitBlock(InMemBlock); 7638 7639 // Work out the address of a stack argument. 7640 Address OverflowArgAreaPtr = 7641 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7642 Address OverflowArgArea = Address::deprecated( 7643 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7644 PaddedSize); 7645 Address RawMemAddr = 7646 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7647 Address MemAddr = 7648 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7649 7650 // Update overflow_arg_area_ptr pointer 7651 llvm::Value *NewOverflowArgArea = 7652 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7653 OverflowArgArea.getPointer(), PaddedSizeV, 7654 "overflow_arg_area"); 7655 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7656 CGF.EmitBranch(ContBlock); 7657 7658 // Return the appropriate result. 7659 CGF.EmitBlock(ContBlock); 7660 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 7661 "va_arg.addr"); 7662 7663 if (IsIndirect) 7664 ResAddr = Address::deprecated( 7665 CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), TyInfo.Align); 7666 7667 return ResAddr; 7668 } 7669 7670 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7671 if (RetTy->isVoidType()) 7672 return ABIArgInfo::getIgnore(); 7673 if (isVectorArgumentType(RetTy)) 7674 return ABIArgInfo::getDirect(); 7675 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7676 return getNaturalAlignIndirect(RetTy); 7677 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7678 : ABIArgInfo::getDirect()); 7679 } 7680 7681 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7682 // Handle the generic C++ ABI. 7683 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7684 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7685 7686 // Integers and enums are extended to full register width. 7687 if (isPromotableIntegerTypeForABI(Ty)) 7688 return ABIArgInfo::getExtend(Ty); 7689 7690 // Handle vector types and vector-like structure types. Note that 7691 // as opposed to float-like structure types, we do not allow any 7692 // padding for vector-like structures, so verify the sizes match. 7693 uint64_t Size = getContext().getTypeSize(Ty); 7694 QualType SingleElementTy = GetSingleElementType(Ty); 7695 if (isVectorArgumentType(SingleElementTy) && 7696 getContext().getTypeSize(SingleElementTy) == Size) 7697 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7698 7699 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7700 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7701 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7702 7703 // Handle small structures. 7704 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7705 // Structures with flexible arrays have variable length, so really 7706 // fail the size test above. 7707 const RecordDecl *RD = RT->getDecl(); 7708 if (RD->hasFlexibleArrayMember()) 7709 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7710 7711 // The structure is passed as an unextended integer, a float, or a double. 7712 llvm::Type *PassTy; 7713 if (isFPArgumentType(SingleElementTy)) { 7714 assert(Size == 32 || Size == 64); 7715 if (Size == 32) 7716 PassTy = llvm::Type::getFloatTy(getVMContext()); 7717 else 7718 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7719 } else 7720 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7721 return ABIArgInfo::getDirect(PassTy); 7722 } 7723 7724 // Non-structure compounds are passed indirectly. 7725 if (isCompoundType(Ty)) 7726 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7727 7728 return ABIArgInfo::getDirect(nullptr); 7729 } 7730 7731 //===----------------------------------------------------------------------===// 7732 // MSP430 ABI Implementation 7733 //===----------------------------------------------------------------------===// 7734 7735 namespace { 7736 7737 class MSP430ABIInfo : public DefaultABIInfo { 7738 static ABIArgInfo complexArgInfo() { 7739 ABIArgInfo Info = ABIArgInfo::getDirect(); 7740 Info.setCanBeFlattened(false); 7741 return Info; 7742 } 7743 7744 public: 7745 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7746 7747 ABIArgInfo classifyReturnType(QualType RetTy) const { 7748 if (RetTy->isAnyComplexType()) 7749 return complexArgInfo(); 7750 7751 return DefaultABIInfo::classifyReturnType(RetTy); 7752 } 7753 7754 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7755 if (RetTy->isAnyComplexType()) 7756 return complexArgInfo(); 7757 7758 return DefaultABIInfo::classifyArgumentType(RetTy); 7759 } 7760 7761 // Just copy the original implementations because 7762 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7763 void computeInfo(CGFunctionInfo &FI) const override { 7764 if (!getCXXABI().classifyReturnType(FI)) 7765 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7766 for (auto &I : FI.arguments()) 7767 I.info = classifyArgumentType(I.type); 7768 } 7769 7770 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7771 QualType Ty) const override { 7772 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7773 } 7774 }; 7775 7776 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7777 public: 7778 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7779 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7780 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7781 CodeGen::CodeGenModule &M) const override; 7782 }; 7783 7784 } 7785 7786 void MSP430TargetCodeGenInfo::setTargetAttributes( 7787 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7788 if (GV->isDeclaration()) 7789 return; 7790 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7791 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7792 if (!InterruptAttr) 7793 return; 7794 7795 // Handle 'interrupt' attribute: 7796 llvm::Function *F = cast<llvm::Function>(GV); 7797 7798 // Step 1: Set ISR calling convention. 7799 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7800 7801 // Step 2: Add attributes goodness. 7802 F->addFnAttr(llvm::Attribute::NoInline); 7803 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7804 } 7805 } 7806 7807 //===----------------------------------------------------------------------===// 7808 // MIPS ABI Implementation. This works for both little-endian and 7809 // big-endian variants. 7810 //===----------------------------------------------------------------------===// 7811 7812 namespace { 7813 class MipsABIInfo : public ABIInfo { 7814 bool IsO32; 7815 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7816 void CoerceToIntArgs(uint64_t TySize, 7817 SmallVectorImpl<llvm::Type *> &ArgList) const; 7818 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7819 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7820 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7821 public: 7822 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7823 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7824 StackAlignInBytes(IsO32 ? 8 : 16) {} 7825 7826 ABIArgInfo classifyReturnType(QualType RetTy) const; 7827 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7828 void computeInfo(CGFunctionInfo &FI) const override; 7829 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7830 QualType Ty) const override; 7831 ABIArgInfo extendType(QualType Ty) const; 7832 }; 7833 7834 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7835 unsigned SizeOfUnwindException; 7836 public: 7837 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7838 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7839 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7840 7841 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7842 return 29; 7843 } 7844 7845 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7846 CodeGen::CodeGenModule &CGM) const override { 7847 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7848 if (!FD) return; 7849 llvm::Function *Fn = cast<llvm::Function>(GV); 7850 7851 if (FD->hasAttr<MipsLongCallAttr>()) 7852 Fn->addFnAttr("long-call"); 7853 else if (FD->hasAttr<MipsShortCallAttr>()) 7854 Fn->addFnAttr("short-call"); 7855 7856 // Other attributes do not have a meaning for declarations. 7857 if (GV->isDeclaration()) 7858 return; 7859 7860 if (FD->hasAttr<Mips16Attr>()) { 7861 Fn->addFnAttr("mips16"); 7862 } 7863 else if (FD->hasAttr<NoMips16Attr>()) { 7864 Fn->addFnAttr("nomips16"); 7865 } 7866 7867 if (FD->hasAttr<MicroMipsAttr>()) 7868 Fn->addFnAttr("micromips"); 7869 else if (FD->hasAttr<NoMicroMipsAttr>()) 7870 Fn->addFnAttr("nomicromips"); 7871 7872 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7873 if (!Attr) 7874 return; 7875 7876 const char *Kind; 7877 switch (Attr->getInterrupt()) { 7878 case MipsInterruptAttr::eic: Kind = "eic"; break; 7879 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7880 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7881 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7882 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7883 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7884 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7885 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7886 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7887 } 7888 7889 Fn->addFnAttr("interrupt", Kind); 7890 7891 } 7892 7893 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7894 llvm::Value *Address) const override; 7895 7896 unsigned getSizeOfUnwindException() const override { 7897 return SizeOfUnwindException; 7898 } 7899 }; 7900 } 7901 7902 void MipsABIInfo::CoerceToIntArgs( 7903 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7904 llvm::IntegerType *IntTy = 7905 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7906 7907 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7908 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7909 ArgList.push_back(IntTy); 7910 7911 // If necessary, add one more integer type to ArgList. 7912 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7913 7914 if (R) 7915 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7916 } 7917 7918 // In N32/64, an aligned double precision floating point field is passed in 7919 // a register. 7920 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7921 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7922 7923 if (IsO32) { 7924 CoerceToIntArgs(TySize, ArgList); 7925 return llvm::StructType::get(getVMContext(), ArgList); 7926 } 7927 7928 if (Ty->isComplexType()) 7929 return CGT.ConvertType(Ty); 7930 7931 const RecordType *RT = Ty->getAs<RecordType>(); 7932 7933 // Unions/vectors are passed in integer registers. 7934 if (!RT || !RT->isStructureOrClassType()) { 7935 CoerceToIntArgs(TySize, ArgList); 7936 return llvm::StructType::get(getVMContext(), ArgList); 7937 } 7938 7939 const RecordDecl *RD = RT->getDecl(); 7940 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7941 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7942 7943 uint64_t LastOffset = 0; 7944 unsigned idx = 0; 7945 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7946 7947 // Iterate over fields in the struct/class and check if there are any aligned 7948 // double fields. 7949 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7950 i != e; ++i, ++idx) { 7951 const QualType Ty = i->getType(); 7952 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7953 7954 if (!BT || BT->getKind() != BuiltinType::Double) 7955 continue; 7956 7957 uint64_t Offset = Layout.getFieldOffset(idx); 7958 if (Offset % 64) // Ignore doubles that are not aligned. 7959 continue; 7960 7961 // Add ((Offset - LastOffset) / 64) args of type i64. 7962 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7963 ArgList.push_back(I64); 7964 7965 // Add double type. 7966 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7967 LastOffset = Offset + 64; 7968 } 7969 7970 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7971 ArgList.append(IntArgList.begin(), IntArgList.end()); 7972 7973 return llvm::StructType::get(getVMContext(), ArgList); 7974 } 7975 7976 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7977 uint64_t Offset) const { 7978 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7979 return nullptr; 7980 7981 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7982 } 7983 7984 ABIArgInfo 7985 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7986 Ty = useFirstFieldIfTransparentUnion(Ty); 7987 7988 uint64_t OrigOffset = Offset; 7989 uint64_t TySize = getContext().getTypeSize(Ty); 7990 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7991 7992 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7993 (uint64_t)StackAlignInBytes); 7994 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7995 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7996 7997 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7998 // Ignore empty aggregates. 7999 if (TySize == 0) 8000 return ABIArgInfo::getIgnore(); 8001 8002 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8003 Offset = OrigOffset + MinABIStackAlignInBytes; 8004 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8005 } 8006 8007 // If we have reached here, aggregates are passed directly by coercing to 8008 // another structure type. Padding is inserted if the offset of the 8009 // aggregate is unaligned. 8010 ABIArgInfo ArgInfo = 8011 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 8012 getPaddingType(OrigOffset, CurrOffset)); 8013 ArgInfo.setInReg(true); 8014 return ArgInfo; 8015 } 8016 8017 // Treat an enum type as its underlying type. 8018 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8019 Ty = EnumTy->getDecl()->getIntegerType(); 8020 8021 // Make sure we pass indirectly things that are too large. 8022 if (const auto *EIT = Ty->getAs<BitIntType>()) 8023 if (EIT->getNumBits() > 128 || 8024 (EIT->getNumBits() > 64 && 8025 !getContext().getTargetInfo().hasInt128Type())) 8026 return getNaturalAlignIndirect(Ty); 8027 8028 // All integral types are promoted to the GPR width. 8029 if (Ty->isIntegralOrEnumerationType()) 8030 return extendType(Ty); 8031 8032 return ABIArgInfo::getDirect( 8033 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 8034 } 8035 8036 llvm::Type* 8037 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 8038 const RecordType *RT = RetTy->getAs<RecordType>(); 8039 SmallVector<llvm::Type*, 8> RTList; 8040 8041 if (RT && RT->isStructureOrClassType()) { 8042 const RecordDecl *RD = RT->getDecl(); 8043 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8044 unsigned FieldCnt = Layout.getFieldCount(); 8045 8046 // N32/64 returns struct/classes in floating point registers if the 8047 // following conditions are met: 8048 // 1. The size of the struct/class is no larger than 128-bit. 8049 // 2. The struct/class has one or two fields all of which are floating 8050 // point types. 8051 // 3. The offset of the first field is zero (this follows what gcc does). 8052 // 8053 // Any other composite results are returned in integer registers. 8054 // 8055 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8056 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8057 for (; b != e; ++b) { 8058 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8059 8060 if (!BT || !BT->isFloatingPoint()) 8061 break; 8062 8063 RTList.push_back(CGT.ConvertType(b->getType())); 8064 } 8065 8066 if (b == e) 8067 return llvm::StructType::get(getVMContext(), RTList, 8068 RD->hasAttr<PackedAttr>()); 8069 8070 RTList.clear(); 8071 } 8072 } 8073 8074 CoerceToIntArgs(Size, RTList); 8075 return llvm::StructType::get(getVMContext(), RTList); 8076 } 8077 8078 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8079 uint64_t Size = getContext().getTypeSize(RetTy); 8080 8081 if (RetTy->isVoidType()) 8082 return ABIArgInfo::getIgnore(); 8083 8084 // O32 doesn't treat zero-sized structs differently from other structs. 8085 // However, N32/N64 ignores zero sized return values. 8086 if (!IsO32 && Size == 0) 8087 return ABIArgInfo::getIgnore(); 8088 8089 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8090 if (Size <= 128) { 8091 if (RetTy->isAnyComplexType()) 8092 return ABIArgInfo::getDirect(); 8093 8094 // O32 returns integer vectors in registers and N32/N64 returns all small 8095 // aggregates in registers. 8096 if (!IsO32 || 8097 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8098 ABIArgInfo ArgInfo = 8099 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8100 ArgInfo.setInReg(true); 8101 return ArgInfo; 8102 } 8103 } 8104 8105 return getNaturalAlignIndirect(RetTy); 8106 } 8107 8108 // Treat an enum type as its underlying type. 8109 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8110 RetTy = EnumTy->getDecl()->getIntegerType(); 8111 8112 // Make sure we pass indirectly things that are too large. 8113 if (const auto *EIT = RetTy->getAs<BitIntType>()) 8114 if (EIT->getNumBits() > 128 || 8115 (EIT->getNumBits() > 64 && 8116 !getContext().getTargetInfo().hasInt128Type())) 8117 return getNaturalAlignIndirect(RetTy); 8118 8119 if (isPromotableIntegerTypeForABI(RetTy)) 8120 return ABIArgInfo::getExtend(RetTy); 8121 8122 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8123 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8124 return ABIArgInfo::getSignExtend(RetTy); 8125 8126 return ABIArgInfo::getDirect(); 8127 } 8128 8129 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8130 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8131 if (!getCXXABI().classifyReturnType(FI)) 8132 RetInfo = classifyReturnType(FI.getReturnType()); 8133 8134 // Check if a pointer to an aggregate is passed as a hidden argument. 8135 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8136 8137 for (auto &I : FI.arguments()) 8138 I.info = classifyArgumentType(I.type, Offset); 8139 } 8140 8141 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8142 QualType OrigTy) const { 8143 QualType Ty = OrigTy; 8144 8145 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8146 // Pointers are also promoted in the same way but this only matters for N32. 8147 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8148 unsigned PtrWidth = getTarget().getPointerWidth(0); 8149 bool DidPromote = false; 8150 if ((Ty->isIntegerType() && 8151 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8152 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8153 DidPromote = true; 8154 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8155 Ty->isSignedIntegerType()); 8156 } 8157 8158 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8159 8160 // The alignment of things in the argument area is never larger than 8161 // StackAlignInBytes. 8162 TyInfo.Align = 8163 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8164 8165 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8166 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8167 8168 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8169 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8170 8171 8172 // If there was a promotion, "unpromote" into a temporary. 8173 // TODO: can we just use a pointer into a subset of the original slot? 8174 if (DidPromote) { 8175 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8176 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8177 8178 // Truncate down to the right width. 8179 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8180 : CGF.IntPtrTy); 8181 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8182 if (OrigTy->isPointerType()) 8183 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8184 8185 CGF.Builder.CreateStore(V, Temp); 8186 Addr = Temp; 8187 } 8188 8189 return Addr; 8190 } 8191 8192 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8193 int TySize = getContext().getTypeSize(Ty); 8194 8195 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8196 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8197 return ABIArgInfo::getSignExtend(Ty); 8198 8199 return ABIArgInfo::getExtend(Ty); 8200 } 8201 8202 bool 8203 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8204 llvm::Value *Address) const { 8205 // This information comes from gcc's implementation, which seems to 8206 // as canonical as it gets. 8207 8208 // Everything on MIPS is 4 bytes. Double-precision FP registers 8209 // are aliased to pairs of single-precision FP registers. 8210 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8211 8212 // 0-31 are the general purpose registers, $0 - $31. 8213 // 32-63 are the floating-point registers, $f0 - $f31. 8214 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8215 // 66 is the (notional, I think) register for signal-handler return. 8216 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8217 8218 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8219 // They are one bit wide and ignored here. 8220 8221 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8222 // (coprocessor 1 is the FP unit) 8223 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8224 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8225 // 176-181 are the DSP accumulator registers. 8226 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8227 return false; 8228 } 8229 8230 //===----------------------------------------------------------------------===// 8231 // M68k ABI Implementation 8232 //===----------------------------------------------------------------------===// 8233 8234 namespace { 8235 8236 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8237 public: 8238 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8239 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8240 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8241 CodeGen::CodeGenModule &M) const override; 8242 }; 8243 8244 } // namespace 8245 8246 void M68kTargetCodeGenInfo::setTargetAttributes( 8247 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8248 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8249 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8250 // Handle 'interrupt' attribute: 8251 llvm::Function *F = cast<llvm::Function>(GV); 8252 8253 // Step 1: Set ISR calling convention. 8254 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8255 8256 // Step 2: Add attributes goodness. 8257 F->addFnAttr(llvm::Attribute::NoInline); 8258 8259 // Step 3: Emit ISR vector alias. 8260 unsigned Num = attr->getNumber() / 2; 8261 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8262 "__isr_" + Twine(Num), F); 8263 } 8264 } 8265 } 8266 8267 //===----------------------------------------------------------------------===// 8268 // AVR ABI Implementation. Documented at 8269 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8270 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8271 //===----------------------------------------------------------------------===// 8272 8273 namespace { 8274 class AVRABIInfo : public DefaultABIInfo { 8275 public: 8276 AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8277 8278 ABIArgInfo classifyReturnType(QualType Ty) const { 8279 // A return struct with size less than or equal to 8 bytes is returned 8280 // directly via registers R18-R25. 8281 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64) 8282 return ABIArgInfo::getDirect(); 8283 else 8284 return DefaultABIInfo::classifyReturnType(Ty); 8285 } 8286 8287 // Just copy the original implementation of DefaultABIInfo::computeInfo(), 8288 // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual. 8289 void computeInfo(CGFunctionInfo &FI) const override { 8290 if (!getCXXABI().classifyReturnType(FI)) 8291 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8292 for (auto &I : FI.arguments()) 8293 I.info = classifyArgumentType(I.type); 8294 } 8295 }; 8296 8297 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8298 public: 8299 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8300 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {} 8301 8302 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8303 const VarDecl *D) const override { 8304 // Check if global/static variable is defined in address space 8305 // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5) 8306 // but not constant. 8307 if (D) { 8308 LangAS AS = D->getType().getAddressSpace(); 8309 if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) && 8310 toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified()) 8311 CGM.getDiags().Report(D->getLocation(), 8312 diag::err_verify_nonconst_addrspace) 8313 << "__flash*"; 8314 } 8315 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8316 } 8317 8318 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8319 CodeGen::CodeGenModule &CGM) const override { 8320 if (GV->isDeclaration()) 8321 return; 8322 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8323 if (!FD) return; 8324 auto *Fn = cast<llvm::Function>(GV); 8325 8326 if (FD->getAttr<AVRInterruptAttr>()) 8327 Fn->addFnAttr("interrupt"); 8328 8329 if (FD->getAttr<AVRSignalAttr>()) 8330 Fn->addFnAttr("signal"); 8331 } 8332 }; 8333 } 8334 8335 //===----------------------------------------------------------------------===// 8336 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8337 // Currently subclassed only to implement custom OpenCL C function attribute 8338 // handling. 8339 //===----------------------------------------------------------------------===// 8340 8341 namespace { 8342 8343 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8344 public: 8345 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8346 : DefaultTargetCodeGenInfo(CGT) {} 8347 8348 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8349 CodeGen::CodeGenModule &M) const override; 8350 }; 8351 8352 void TCETargetCodeGenInfo::setTargetAttributes( 8353 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8354 if (GV->isDeclaration()) 8355 return; 8356 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8357 if (!FD) return; 8358 8359 llvm::Function *F = cast<llvm::Function>(GV); 8360 8361 if (M.getLangOpts().OpenCL) { 8362 if (FD->hasAttr<OpenCLKernelAttr>()) { 8363 // OpenCL C Kernel functions are not subject to inlining 8364 F->addFnAttr(llvm::Attribute::NoInline); 8365 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8366 if (Attr) { 8367 // Convert the reqd_work_group_size() attributes to metadata. 8368 llvm::LLVMContext &Context = F->getContext(); 8369 llvm::NamedMDNode *OpenCLMetadata = 8370 M.getModule().getOrInsertNamedMetadata( 8371 "opencl.kernel_wg_size_info"); 8372 8373 SmallVector<llvm::Metadata *, 5> Operands; 8374 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8375 8376 Operands.push_back( 8377 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8378 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8379 Operands.push_back( 8380 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8381 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8382 Operands.push_back( 8383 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8384 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8385 8386 // Add a boolean constant operand for "required" (true) or "hint" 8387 // (false) for implementing the work_group_size_hint attr later. 8388 // Currently always true as the hint is not yet implemented. 8389 Operands.push_back( 8390 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8391 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8392 } 8393 } 8394 } 8395 } 8396 8397 } 8398 8399 //===----------------------------------------------------------------------===// 8400 // Hexagon ABI Implementation 8401 //===----------------------------------------------------------------------===// 8402 8403 namespace { 8404 8405 class HexagonABIInfo : public DefaultABIInfo { 8406 public: 8407 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8408 8409 private: 8410 ABIArgInfo classifyReturnType(QualType RetTy) const; 8411 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8412 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8413 8414 void computeInfo(CGFunctionInfo &FI) const override; 8415 8416 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8417 QualType Ty) const override; 8418 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8419 QualType Ty) const; 8420 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8421 QualType Ty) const; 8422 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8423 QualType Ty) const; 8424 }; 8425 8426 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8427 public: 8428 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8429 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8430 8431 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8432 return 29; 8433 } 8434 8435 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8436 CodeGen::CodeGenModule &GCM) const override { 8437 if (GV->isDeclaration()) 8438 return; 8439 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8440 if (!FD) 8441 return; 8442 } 8443 }; 8444 8445 } // namespace 8446 8447 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8448 unsigned RegsLeft = 6; 8449 if (!getCXXABI().classifyReturnType(FI)) 8450 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8451 for (auto &I : FI.arguments()) 8452 I.info = classifyArgumentType(I.type, &RegsLeft); 8453 } 8454 8455 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8456 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8457 " through registers"); 8458 8459 if (*RegsLeft == 0) 8460 return false; 8461 8462 if (Size <= 32) { 8463 (*RegsLeft)--; 8464 return true; 8465 } 8466 8467 if (2 <= (*RegsLeft & (~1U))) { 8468 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8469 return true; 8470 } 8471 8472 // Next available register was r5 but candidate was greater than 32-bits so it 8473 // has to go on the stack. However we still consume r5 8474 if (*RegsLeft == 1) 8475 *RegsLeft = 0; 8476 8477 return false; 8478 } 8479 8480 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8481 unsigned *RegsLeft) const { 8482 if (!isAggregateTypeForABI(Ty)) { 8483 // Treat an enum type as its underlying type. 8484 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8485 Ty = EnumTy->getDecl()->getIntegerType(); 8486 8487 uint64_t Size = getContext().getTypeSize(Ty); 8488 if (Size <= 64) 8489 HexagonAdjustRegsLeft(Size, RegsLeft); 8490 8491 if (Size > 64 && Ty->isBitIntType()) 8492 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8493 8494 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8495 : ABIArgInfo::getDirect(); 8496 } 8497 8498 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8499 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8500 8501 // Ignore empty records. 8502 if (isEmptyRecord(getContext(), Ty, true)) 8503 return ABIArgInfo::getIgnore(); 8504 8505 uint64_t Size = getContext().getTypeSize(Ty); 8506 unsigned Align = getContext().getTypeAlign(Ty); 8507 8508 if (Size > 64) 8509 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8510 8511 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8512 Align = Size <= 32 ? 32 : 64; 8513 if (Size <= Align) { 8514 // Pass in the smallest viable integer type. 8515 if (!llvm::isPowerOf2_64(Size)) 8516 Size = llvm::NextPowerOf2(Size); 8517 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8518 } 8519 return DefaultABIInfo::classifyArgumentType(Ty); 8520 } 8521 8522 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8523 if (RetTy->isVoidType()) 8524 return ABIArgInfo::getIgnore(); 8525 8526 const TargetInfo &T = CGT.getTarget(); 8527 uint64_t Size = getContext().getTypeSize(RetTy); 8528 8529 if (RetTy->getAs<VectorType>()) { 8530 // HVX vectors are returned in vector registers or register pairs. 8531 if (T.hasFeature("hvx")) { 8532 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8533 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8534 if (Size == VecSize || Size == 2*VecSize) 8535 return ABIArgInfo::getDirectInReg(); 8536 } 8537 // Large vector types should be returned via memory. 8538 if (Size > 64) 8539 return getNaturalAlignIndirect(RetTy); 8540 } 8541 8542 if (!isAggregateTypeForABI(RetTy)) { 8543 // Treat an enum type as its underlying type. 8544 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8545 RetTy = EnumTy->getDecl()->getIntegerType(); 8546 8547 if (Size > 64 && RetTy->isBitIntType()) 8548 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8549 8550 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8551 : ABIArgInfo::getDirect(); 8552 } 8553 8554 if (isEmptyRecord(getContext(), RetTy, true)) 8555 return ABIArgInfo::getIgnore(); 8556 8557 // Aggregates <= 8 bytes are returned in registers, other aggregates 8558 // are returned indirectly. 8559 if (Size <= 64) { 8560 // Return in the smallest viable integer type. 8561 if (!llvm::isPowerOf2_64(Size)) 8562 Size = llvm::NextPowerOf2(Size); 8563 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8564 } 8565 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8566 } 8567 8568 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8569 Address VAListAddr, 8570 QualType Ty) const { 8571 // Load the overflow area pointer. 8572 Address __overflow_area_pointer_p = 8573 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8574 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8575 __overflow_area_pointer_p, "__overflow_area_pointer"); 8576 8577 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8578 if (Align > 4) { 8579 // Alignment should be a power of 2. 8580 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8581 8582 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8583 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8584 8585 // Add offset to the current pointer to access the argument. 8586 __overflow_area_pointer = 8587 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8588 llvm::Value *AsInt = 8589 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8590 8591 // Create a mask which should be "AND"ed 8592 // with (overflow_arg_area + align - 1) 8593 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8594 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8595 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8596 "__overflow_area_pointer.align"); 8597 } 8598 8599 // Get the type of the argument from memory and bitcast 8600 // overflow area pointer to the argument type. 8601 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8602 Address AddrTyped = CGF.Builder.CreateElementBitCast( 8603 Address::deprecated(__overflow_area_pointer, 8604 CharUnits::fromQuantity(Align)), 8605 PTy); 8606 8607 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8608 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8609 8610 __overflow_area_pointer = CGF.Builder.CreateGEP( 8611 CGF.Int8Ty, __overflow_area_pointer, 8612 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8613 "__overflow_area_pointer.next"); 8614 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8615 8616 return AddrTyped; 8617 } 8618 8619 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8620 Address VAListAddr, 8621 QualType Ty) const { 8622 // FIXME: Need to handle alignment 8623 llvm::Type *BP = CGF.Int8PtrTy; 8624 CGBuilderTy &Builder = CGF.Builder; 8625 Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap"); 8626 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8627 // Handle address alignment for type alignment > 32 bits 8628 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8629 if (TyAlign > 4) { 8630 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8631 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8632 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8633 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8634 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8635 } 8636 Address AddrTyped = Builder.CreateElementBitCast( 8637 Address::deprecated(Addr, CharUnits::fromQuantity(TyAlign)), 8638 CGF.ConvertType(Ty)); 8639 8640 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8641 llvm::Value *NextAddr = Builder.CreateGEP( 8642 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8643 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8644 8645 return AddrTyped; 8646 } 8647 8648 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8649 Address VAListAddr, 8650 QualType Ty) const { 8651 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8652 8653 if (ArgSize > 8) 8654 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8655 8656 // Here we have check if the argument is in register area or 8657 // in overflow area. 8658 // If the saved register area pointer + argsize rounded up to alignment > 8659 // saved register area end pointer, argument is in overflow area. 8660 unsigned RegsLeft = 6; 8661 Ty = CGF.getContext().getCanonicalType(Ty); 8662 (void)classifyArgumentType(Ty, &RegsLeft); 8663 8664 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8665 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8666 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8667 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8668 8669 // Get rounded size of the argument.GCC does not allow vararg of 8670 // size < 4 bytes. We follow the same logic here. 8671 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8672 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8673 8674 // Argument may be in saved register area 8675 CGF.EmitBlock(MaybeRegBlock); 8676 8677 // Load the current saved register area pointer. 8678 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8679 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8680 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8681 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8682 8683 // Load the saved register area end pointer. 8684 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8685 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8686 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8687 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8688 8689 // If the size of argument is > 4 bytes, check if the stack 8690 // location is aligned to 8 bytes 8691 if (ArgAlign > 4) { 8692 8693 llvm::Value *__current_saved_reg_area_pointer_int = 8694 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8695 CGF.Int32Ty); 8696 8697 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8698 __current_saved_reg_area_pointer_int, 8699 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8700 "align_current_saved_reg_area_pointer"); 8701 8702 __current_saved_reg_area_pointer_int = 8703 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8704 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8705 "align_current_saved_reg_area_pointer"); 8706 8707 __current_saved_reg_area_pointer = 8708 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8709 __current_saved_reg_area_pointer->getType(), 8710 "align_current_saved_reg_area_pointer"); 8711 } 8712 8713 llvm::Value *__new_saved_reg_area_pointer = 8714 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8715 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8716 "__new_saved_reg_area_pointer"); 8717 8718 llvm::Value *UsingStack = nullptr; 8719 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8720 __saved_reg_area_end_pointer); 8721 8722 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8723 8724 // Argument in saved register area 8725 // Implement the block where argument is in register saved area 8726 CGF.EmitBlock(InRegBlock); 8727 8728 llvm::Type *PTy = CGF.ConvertType(Ty); 8729 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8730 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8731 8732 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8733 __current_saved_reg_area_pointer_p); 8734 8735 CGF.EmitBranch(ContBlock); 8736 8737 // Argument in overflow area 8738 // Implement the block where the argument is in overflow area. 8739 CGF.EmitBlock(OnStackBlock); 8740 8741 // Load the overflow area pointer 8742 Address __overflow_area_pointer_p = 8743 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8744 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8745 __overflow_area_pointer_p, "__overflow_area_pointer"); 8746 8747 // Align the overflow area pointer according to the alignment of the argument 8748 if (ArgAlign > 4) { 8749 llvm::Value *__overflow_area_pointer_int = 8750 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8751 8752 __overflow_area_pointer_int = 8753 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8754 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8755 "align_overflow_area_pointer"); 8756 8757 __overflow_area_pointer_int = 8758 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8759 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8760 "align_overflow_area_pointer"); 8761 8762 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8763 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8764 "align_overflow_area_pointer"); 8765 } 8766 8767 // Get the pointer for next argument in overflow area and store it 8768 // to overflow area pointer. 8769 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8770 CGF.Int8Ty, __overflow_area_pointer, 8771 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8772 "__overflow_area_pointer.next"); 8773 8774 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8775 __overflow_area_pointer_p); 8776 8777 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8778 __current_saved_reg_area_pointer_p); 8779 8780 // Bitcast the overflow area pointer to the type of argument. 8781 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8782 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8783 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8784 8785 CGF.EmitBranch(ContBlock); 8786 8787 // Get the correct pointer to load the variable argument 8788 // Implement the ContBlock 8789 CGF.EmitBlock(ContBlock); 8790 8791 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 8792 llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy); 8793 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8794 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8795 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8796 8797 return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign)); 8798 } 8799 8800 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8801 QualType Ty) const { 8802 8803 if (getTarget().getTriple().isMusl()) 8804 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8805 8806 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8807 } 8808 8809 //===----------------------------------------------------------------------===// 8810 // Lanai ABI Implementation 8811 //===----------------------------------------------------------------------===// 8812 8813 namespace { 8814 class LanaiABIInfo : public DefaultABIInfo { 8815 public: 8816 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8817 8818 bool shouldUseInReg(QualType Ty, CCState &State) const; 8819 8820 void computeInfo(CGFunctionInfo &FI) const override { 8821 CCState State(FI); 8822 // Lanai uses 4 registers to pass arguments unless the function has the 8823 // regparm attribute set. 8824 if (FI.getHasRegParm()) { 8825 State.FreeRegs = FI.getRegParm(); 8826 } else { 8827 State.FreeRegs = 4; 8828 } 8829 8830 if (!getCXXABI().classifyReturnType(FI)) 8831 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8832 for (auto &I : FI.arguments()) 8833 I.info = classifyArgumentType(I.type, State); 8834 } 8835 8836 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8837 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8838 }; 8839 } // end anonymous namespace 8840 8841 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8842 unsigned Size = getContext().getTypeSize(Ty); 8843 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8844 8845 if (SizeInRegs == 0) 8846 return false; 8847 8848 if (SizeInRegs > State.FreeRegs) { 8849 State.FreeRegs = 0; 8850 return false; 8851 } 8852 8853 State.FreeRegs -= SizeInRegs; 8854 8855 return true; 8856 } 8857 8858 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8859 CCState &State) const { 8860 if (!ByVal) { 8861 if (State.FreeRegs) { 8862 --State.FreeRegs; // Non-byval indirects just use one pointer. 8863 return getNaturalAlignIndirectInReg(Ty); 8864 } 8865 return getNaturalAlignIndirect(Ty, false); 8866 } 8867 8868 // Compute the byval alignment. 8869 const unsigned MinABIStackAlignInBytes = 4; 8870 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8871 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8872 /*Realign=*/TypeAlign > 8873 MinABIStackAlignInBytes); 8874 } 8875 8876 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8877 CCState &State) const { 8878 // Check with the C++ ABI first. 8879 const RecordType *RT = Ty->getAs<RecordType>(); 8880 if (RT) { 8881 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8882 if (RAA == CGCXXABI::RAA_Indirect) { 8883 return getIndirectResult(Ty, /*ByVal=*/false, State); 8884 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8885 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8886 } 8887 } 8888 8889 if (isAggregateTypeForABI(Ty)) { 8890 // Structures with flexible arrays are always indirect. 8891 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8892 return getIndirectResult(Ty, /*ByVal=*/true, State); 8893 8894 // Ignore empty structs/unions. 8895 if (isEmptyRecord(getContext(), Ty, true)) 8896 return ABIArgInfo::getIgnore(); 8897 8898 llvm::LLVMContext &LLVMContext = getVMContext(); 8899 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8900 if (SizeInRegs <= State.FreeRegs) { 8901 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8902 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8903 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8904 State.FreeRegs -= SizeInRegs; 8905 return ABIArgInfo::getDirectInReg(Result); 8906 } else { 8907 State.FreeRegs = 0; 8908 } 8909 return getIndirectResult(Ty, true, State); 8910 } 8911 8912 // Treat an enum type as its underlying type. 8913 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8914 Ty = EnumTy->getDecl()->getIntegerType(); 8915 8916 bool InReg = shouldUseInReg(Ty, State); 8917 8918 // Don't pass >64 bit integers in registers. 8919 if (const auto *EIT = Ty->getAs<BitIntType>()) 8920 if (EIT->getNumBits() > 64) 8921 return getIndirectResult(Ty, /*ByVal=*/true, State); 8922 8923 if (isPromotableIntegerTypeForABI(Ty)) { 8924 if (InReg) 8925 return ABIArgInfo::getDirectInReg(); 8926 return ABIArgInfo::getExtend(Ty); 8927 } 8928 if (InReg) 8929 return ABIArgInfo::getDirectInReg(); 8930 return ABIArgInfo::getDirect(); 8931 } 8932 8933 namespace { 8934 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8935 public: 8936 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8937 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8938 }; 8939 } 8940 8941 //===----------------------------------------------------------------------===// 8942 // AMDGPU ABI Implementation 8943 //===----------------------------------------------------------------------===// 8944 8945 namespace { 8946 8947 class AMDGPUABIInfo final : public DefaultABIInfo { 8948 private: 8949 static const unsigned MaxNumRegsForArgsRet = 16; 8950 8951 unsigned numRegsForType(QualType Ty) const; 8952 8953 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8954 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8955 uint64_t Members) const override; 8956 8957 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8958 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8959 unsigned ToAS) const { 8960 // Single value types. 8961 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty); 8962 if (PtrTy && PtrTy->getAddressSpace() == FromAS) 8963 return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS); 8964 return Ty; 8965 } 8966 8967 public: 8968 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8969 DefaultABIInfo(CGT) {} 8970 8971 ABIArgInfo classifyReturnType(QualType RetTy) const; 8972 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8973 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8974 8975 void computeInfo(CGFunctionInfo &FI) const override; 8976 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8977 QualType Ty) const override; 8978 }; 8979 8980 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8981 return true; 8982 } 8983 8984 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8985 const Type *Base, uint64_t Members) const { 8986 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8987 8988 // Homogeneous Aggregates may occupy at most 16 registers. 8989 return Members * NumRegs <= MaxNumRegsForArgsRet; 8990 } 8991 8992 /// Estimate number of registers the type will use when passed in registers. 8993 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8994 unsigned NumRegs = 0; 8995 8996 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8997 // Compute from the number of elements. The reported size is based on the 8998 // in-memory size, which includes the padding 4th element for 3-vectors. 8999 QualType EltTy = VT->getElementType(); 9000 unsigned EltSize = getContext().getTypeSize(EltTy); 9001 9002 // 16-bit element vectors should be passed as packed. 9003 if (EltSize == 16) 9004 return (VT->getNumElements() + 1) / 2; 9005 9006 unsigned EltNumRegs = (EltSize + 31) / 32; 9007 return EltNumRegs * VT->getNumElements(); 9008 } 9009 9010 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9011 const RecordDecl *RD = RT->getDecl(); 9012 assert(!RD->hasFlexibleArrayMember()); 9013 9014 for (const FieldDecl *Field : RD->fields()) { 9015 QualType FieldTy = Field->getType(); 9016 NumRegs += numRegsForType(FieldTy); 9017 } 9018 9019 return NumRegs; 9020 } 9021 9022 return (getContext().getTypeSize(Ty) + 31) / 32; 9023 } 9024 9025 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 9026 llvm::CallingConv::ID CC = FI.getCallingConvention(); 9027 9028 if (!getCXXABI().classifyReturnType(FI)) 9029 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9030 9031 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 9032 for (auto &Arg : FI.arguments()) { 9033 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 9034 Arg.info = classifyKernelArgumentType(Arg.type); 9035 } else { 9036 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 9037 } 9038 } 9039 } 9040 9041 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9042 QualType Ty) const { 9043 llvm_unreachable("AMDGPU does not support varargs"); 9044 } 9045 9046 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9047 if (isAggregateTypeForABI(RetTy)) { 9048 // Records with non-trivial destructors/copy-constructors should not be 9049 // returned by value. 9050 if (!getRecordArgABI(RetTy, getCXXABI())) { 9051 // Ignore empty structs/unions. 9052 if (isEmptyRecord(getContext(), RetTy, true)) 9053 return ABIArgInfo::getIgnore(); 9054 9055 // Lower single-element structs to just return a regular value. 9056 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9057 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9058 9059 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9060 const RecordDecl *RD = RT->getDecl(); 9061 if (RD->hasFlexibleArrayMember()) 9062 return DefaultABIInfo::classifyReturnType(RetTy); 9063 } 9064 9065 // Pack aggregates <= 4 bytes into single VGPR or pair. 9066 uint64_t Size = getContext().getTypeSize(RetTy); 9067 if (Size <= 16) 9068 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9069 9070 if (Size <= 32) 9071 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9072 9073 if (Size <= 64) { 9074 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9075 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9076 } 9077 9078 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9079 return ABIArgInfo::getDirect(); 9080 } 9081 } 9082 9083 // Otherwise just do the default thing. 9084 return DefaultABIInfo::classifyReturnType(RetTy); 9085 } 9086 9087 /// For kernels all parameters are really passed in a special buffer. It doesn't 9088 /// make sense to pass anything byval, so everything must be direct. 9089 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9090 Ty = useFirstFieldIfTransparentUnion(Ty); 9091 9092 // TODO: Can we omit empty structs? 9093 9094 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9095 Ty = QualType(SeltTy, 0); 9096 9097 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9098 llvm::Type *LTy = OrigLTy; 9099 if (getContext().getLangOpts().HIP) { 9100 LTy = coerceKernelArgumentType( 9101 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9102 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9103 } 9104 9105 // FIXME: Should also use this for OpenCL, but it requires addressing the 9106 // problem of kernels being called. 9107 // 9108 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9109 // to global address space when using byref. This would require implementing a 9110 // new kind of coercion of the in-memory type when for indirect arguments. 9111 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9112 isAggregateTypeForABI(Ty)) { 9113 return ABIArgInfo::getIndirectAliased( 9114 getContext().getTypeAlignInChars(Ty), 9115 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9116 false /*Realign*/, nullptr /*Padding*/); 9117 } 9118 9119 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9120 // individual elements, which confuses the Clover OpenCL backend; therefore we 9121 // have to set it to false here. Other args of getDirect() are just defaults. 9122 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9123 } 9124 9125 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9126 unsigned &NumRegsLeft) const { 9127 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9128 9129 Ty = useFirstFieldIfTransparentUnion(Ty); 9130 9131 if (isAggregateTypeForABI(Ty)) { 9132 // Records with non-trivial destructors/copy-constructors should not be 9133 // passed by value. 9134 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9135 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9136 9137 // Ignore empty structs/unions. 9138 if (isEmptyRecord(getContext(), Ty, true)) 9139 return ABIArgInfo::getIgnore(); 9140 9141 // Lower single-element structs to just pass a regular value. TODO: We 9142 // could do reasonable-size multiple-element structs too, using getExpand(), 9143 // though watch out for things like bitfields. 9144 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9145 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9146 9147 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9148 const RecordDecl *RD = RT->getDecl(); 9149 if (RD->hasFlexibleArrayMember()) 9150 return DefaultABIInfo::classifyArgumentType(Ty); 9151 } 9152 9153 // Pack aggregates <= 8 bytes into single VGPR or pair. 9154 uint64_t Size = getContext().getTypeSize(Ty); 9155 if (Size <= 64) { 9156 unsigned NumRegs = (Size + 31) / 32; 9157 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9158 9159 if (Size <= 16) 9160 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9161 9162 if (Size <= 32) 9163 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9164 9165 // XXX: Should this be i64 instead, and should the limit increase? 9166 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9167 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9168 } 9169 9170 if (NumRegsLeft > 0) { 9171 unsigned NumRegs = numRegsForType(Ty); 9172 if (NumRegsLeft >= NumRegs) { 9173 NumRegsLeft -= NumRegs; 9174 return ABIArgInfo::getDirect(); 9175 } 9176 } 9177 } 9178 9179 // Otherwise just do the default thing. 9180 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9181 if (!ArgInfo.isIndirect()) { 9182 unsigned NumRegs = numRegsForType(Ty); 9183 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9184 } 9185 9186 return ArgInfo; 9187 } 9188 9189 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9190 public: 9191 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9192 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9193 9194 void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F, 9195 CodeGenModule &CGM) const; 9196 9197 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9198 CodeGen::CodeGenModule &M) const override; 9199 unsigned getOpenCLKernelCallingConv() const override; 9200 9201 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9202 llvm::PointerType *T, QualType QT) const override; 9203 9204 LangAS getASTAllocaAddressSpace() const override { 9205 return getLangASFromTargetAS( 9206 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9207 } 9208 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9209 const VarDecl *D) const override; 9210 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9211 SyncScope Scope, 9212 llvm::AtomicOrdering Ordering, 9213 llvm::LLVMContext &Ctx) const override; 9214 llvm::Function * 9215 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9216 llvm::Function *BlockInvokeFunc, 9217 llvm::Value *BlockLiteral) const override; 9218 bool shouldEmitStaticExternCAliases() const override; 9219 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9220 }; 9221 } 9222 9223 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9224 llvm::GlobalValue *GV) { 9225 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9226 return false; 9227 9228 return D->hasAttr<OpenCLKernelAttr>() || 9229 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9230 (isa<VarDecl>(D) && 9231 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9232 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9233 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9234 } 9235 9236 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes( 9237 const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const { 9238 const auto *ReqdWGS = 9239 M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9240 const bool IsOpenCLKernel = 9241 M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>(); 9242 const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>(); 9243 9244 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9245 if (ReqdWGS || FlatWGS) { 9246 unsigned Min = 0; 9247 unsigned Max = 0; 9248 if (FlatWGS) { 9249 Min = FlatWGS->getMin() 9250 ->EvaluateKnownConstInt(M.getContext()) 9251 .getExtValue(); 9252 Max = FlatWGS->getMax() 9253 ->EvaluateKnownConstInt(M.getContext()) 9254 .getExtValue(); 9255 } 9256 if (ReqdWGS && Min == 0 && Max == 0) 9257 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9258 9259 if (Min != 0) { 9260 assert(Min <= Max && "Min must be less than or equal Max"); 9261 9262 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9263 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9264 } else 9265 assert(Max == 0 && "Max must be zero"); 9266 } else if (IsOpenCLKernel || IsHIPKernel) { 9267 // By default, restrict the maximum size to a value specified by 9268 // --gpu-max-threads-per-block=n or its default value for HIP. 9269 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9270 const unsigned DefaultMaxWorkGroupSize = 9271 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9272 : M.getLangOpts().GPUMaxThreadsPerBlock; 9273 std::string AttrVal = 9274 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9275 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9276 } 9277 9278 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9279 unsigned Min = 9280 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9281 unsigned Max = Attr->getMax() ? Attr->getMax() 9282 ->EvaluateKnownConstInt(M.getContext()) 9283 .getExtValue() 9284 : 0; 9285 9286 if (Min != 0) { 9287 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9288 9289 std::string AttrVal = llvm::utostr(Min); 9290 if (Max != 0) 9291 AttrVal = AttrVal + "," + llvm::utostr(Max); 9292 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9293 } else 9294 assert(Max == 0 && "Max must be zero"); 9295 } 9296 9297 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9298 unsigned NumSGPR = Attr->getNumSGPR(); 9299 9300 if (NumSGPR != 0) 9301 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9302 } 9303 9304 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9305 uint32_t NumVGPR = Attr->getNumVGPR(); 9306 9307 if (NumVGPR != 0) 9308 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9309 } 9310 } 9311 9312 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9313 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9314 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9315 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9316 GV->setDSOLocal(true); 9317 } 9318 9319 if (GV->isDeclaration()) 9320 return; 9321 9322 llvm::Function *F = dyn_cast<llvm::Function>(GV); 9323 if (!F) 9324 return; 9325 9326 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9327 if (FD) 9328 setFunctionDeclAttributes(FD, F, M); 9329 9330 const bool IsHIPKernel = 9331 M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>(); 9332 9333 if (IsHIPKernel) 9334 F->addFnAttr("uniform-work-group-size", "true"); 9335 9336 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9337 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9338 9339 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9340 F->addFnAttr("amdgpu-ieee", "false"); 9341 } 9342 9343 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9344 return llvm::CallingConv::AMDGPU_KERNEL; 9345 } 9346 9347 // Currently LLVM assumes null pointers always have value 0, 9348 // which results in incorrectly transformed IR. Therefore, instead of 9349 // emitting null pointers in private and local address spaces, a null 9350 // pointer in generic address space is emitted which is casted to a 9351 // pointer in local or private address space. 9352 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9353 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9354 QualType QT) const { 9355 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9356 return llvm::ConstantPointerNull::get(PT); 9357 9358 auto &Ctx = CGM.getContext(); 9359 auto NPT = llvm::PointerType::getWithSamePointeeType( 9360 PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9361 return llvm::ConstantExpr::getAddrSpaceCast( 9362 llvm::ConstantPointerNull::get(NPT), PT); 9363 } 9364 9365 LangAS 9366 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9367 const VarDecl *D) const { 9368 assert(!CGM.getLangOpts().OpenCL && 9369 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9370 "Address space agnostic languages only"); 9371 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9372 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9373 if (!D) 9374 return DefaultGlobalAS; 9375 9376 LangAS AddrSpace = D->getType().getAddressSpace(); 9377 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9378 if (AddrSpace != LangAS::Default) 9379 return AddrSpace; 9380 9381 // Only promote to address space 4 if VarDecl has constant initialization. 9382 if (CGM.isTypeConstant(D->getType(), false) && 9383 D->hasConstantInitialization()) { 9384 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9385 return ConstAS.getValue(); 9386 } 9387 return DefaultGlobalAS; 9388 } 9389 9390 llvm::SyncScope::ID 9391 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9392 SyncScope Scope, 9393 llvm::AtomicOrdering Ordering, 9394 llvm::LLVMContext &Ctx) const { 9395 std::string Name; 9396 switch (Scope) { 9397 case SyncScope::HIPSingleThread: 9398 Name = "singlethread"; 9399 break; 9400 case SyncScope::HIPWavefront: 9401 case SyncScope::OpenCLSubGroup: 9402 Name = "wavefront"; 9403 break; 9404 case SyncScope::HIPWorkgroup: 9405 case SyncScope::OpenCLWorkGroup: 9406 Name = "workgroup"; 9407 break; 9408 case SyncScope::HIPAgent: 9409 case SyncScope::OpenCLDevice: 9410 Name = "agent"; 9411 break; 9412 case SyncScope::HIPSystem: 9413 case SyncScope::OpenCLAllSVMDevices: 9414 Name = ""; 9415 break; 9416 } 9417 9418 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9419 if (!Name.empty()) 9420 Name = Twine(Twine(Name) + Twine("-")).str(); 9421 9422 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9423 } 9424 9425 return Ctx.getOrInsertSyncScopeID(Name); 9426 } 9427 9428 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9429 return false; 9430 } 9431 9432 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9433 const FunctionType *&FT) const { 9434 FT = getABIInfo().getContext().adjustFunctionType( 9435 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9436 } 9437 9438 //===----------------------------------------------------------------------===// 9439 // SPARC v8 ABI Implementation. 9440 // Based on the SPARC Compliance Definition version 2.4.1. 9441 // 9442 // Ensures that complex values are passed in registers. 9443 // 9444 namespace { 9445 class SparcV8ABIInfo : public DefaultABIInfo { 9446 public: 9447 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9448 9449 private: 9450 ABIArgInfo classifyReturnType(QualType RetTy) const; 9451 void computeInfo(CGFunctionInfo &FI) const override; 9452 }; 9453 } // end anonymous namespace 9454 9455 9456 ABIArgInfo 9457 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9458 if (Ty->isAnyComplexType()) { 9459 return ABIArgInfo::getDirect(); 9460 } 9461 else { 9462 return DefaultABIInfo::classifyReturnType(Ty); 9463 } 9464 } 9465 9466 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9467 9468 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9469 for (auto &Arg : FI.arguments()) 9470 Arg.info = classifyArgumentType(Arg.type); 9471 } 9472 9473 namespace { 9474 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9475 public: 9476 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9477 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9478 9479 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9480 llvm::Value *Address) const override { 9481 int Offset; 9482 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9483 Offset = 12; 9484 else 9485 Offset = 8; 9486 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9487 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9488 } 9489 9490 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9491 llvm::Value *Address) const override { 9492 int Offset; 9493 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9494 Offset = -12; 9495 else 9496 Offset = -8; 9497 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9498 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9499 } 9500 }; 9501 } // end anonymous namespace 9502 9503 //===----------------------------------------------------------------------===// 9504 // SPARC v9 ABI Implementation. 9505 // Based on the SPARC Compliance Definition version 2.4.1. 9506 // 9507 // Function arguments a mapped to a nominal "parameter array" and promoted to 9508 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9509 // the array, structs larger than 16 bytes are passed indirectly. 9510 // 9511 // One case requires special care: 9512 // 9513 // struct mixed { 9514 // int i; 9515 // float f; 9516 // }; 9517 // 9518 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9519 // parameter array, but the int is passed in an integer register, and the float 9520 // is passed in a floating point register. This is represented as two arguments 9521 // with the LLVM IR inreg attribute: 9522 // 9523 // declare void f(i32 inreg %i, float inreg %f) 9524 // 9525 // The code generator will only allocate 4 bytes from the parameter array for 9526 // the inreg arguments. All other arguments are allocated a multiple of 8 9527 // bytes. 9528 // 9529 namespace { 9530 class SparcV9ABIInfo : public ABIInfo { 9531 public: 9532 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9533 9534 private: 9535 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9536 void computeInfo(CGFunctionInfo &FI) const override; 9537 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9538 QualType Ty) const override; 9539 9540 // Coercion type builder for structs passed in registers. The coercion type 9541 // serves two purposes: 9542 // 9543 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9544 // in registers. 9545 // 2. Expose aligned floating point elements as first-level elements, so the 9546 // code generator knows to pass them in floating point registers. 9547 // 9548 // We also compute the InReg flag which indicates that the struct contains 9549 // aligned 32-bit floats. 9550 // 9551 struct CoerceBuilder { 9552 llvm::LLVMContext &Context; 9553 const llvm::DataLayout &DL; 9554 SmallVector<llvm::Type*, 8> Elems; 9555 uint64_t Size; 9556 bool InReg; 9557 9558 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9559 : Context(c), DL(dl), Size(0), InReg(false) {} 9560 9561 // Pad Elems with integers until Size is ToSize. 9562 void pad(uint64_t ToSize) { 9563 assert(ToSize >= Size && "Cannot remove elements"); 9564 if (ToSize == Size) 9565 return; 9566 9567 // Finish the current 64-bit word. 9568 uint64_t Aligned = llvm::alignTo(Size, 64); 9569 if (Aligned > Size && Aligned <= ToSize) { 9570 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9571 Size = Aligned; 9572 } 9573 9574 // Add whole 64-bit words. 9575 while (Size + 64 <= ToSize) { 9576 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9577 Size += 64; 9578 } 9579 9580 // Final in-word padding. 9581 if (Size < ToSize) { 9582 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9583 Size = ToSize; 9584 } 9585 } 9586 9587 // Add a floating point element at Offset. 9588 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9589 // Unaligned floats are treated as integers. 9590 if (Offset % Bits) 9591 return; 9592 // The InReg flag is only required if there are any floats < 64 bits. 9593 if (Bits < 64) 9594 InReg = true; 9595 pad(Offset); 9596 Elems.push_back(Ty); 9597 Size = Offset + Bits; 9598 } 9599 9600 // Add a struct type to the coercion type, starting at Offset (in bits). 9601 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9602 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9603 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9604 llvm::Type *ElemTy = StrTy->getElementType(i); 9605 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9606 switch (ElemTy->getTypeID()) { 9607 case llvm::Type::StructTyID: 9608 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9609 break; 9610 case llvm::Type::FloatTyID: 9611 addFloat(ElemOffset, ElemTy, 32); 9612 break; 9613 case llvm::Type::DoubleTyID: 9614 addFloat(ElemOffset, ElemTy, 64); 9615 break; 9616 case llvm::Type::FP128TyID: 9617 addFloat(ElemOffset, ElemTy, 128); 9618 break; 9619 case llvm::Type::PointerTyID: 9620 if (ElemOffset % 64 == 0) { 9621 pad(ElemOffset); 9622 Elems.push_back(ElemTy); 9623 Size += 64; 9624 } 9625 break; 9626 default: 9627 break; 9628 } 9629 } 9630 } 9631 9632 // Check if Ty is a usable substitute for the coercion type. 9633 bool isUsableType(llvm::StructType *Ty) const { 9634 return llvm::makeArrayRef(Elems) == Ty->elements(); 9635 } 9636 9637 // Get the coercion type as a literal struct type. 9638 llvm::Type *getType() const { 9639 if (Elems.size() == 1) 9640 return Elems.front(); 9641 else 9642 return llvm::StructType::get(Context, Elems); 9643 } 9644 }; 9645 }; 9646 } // end anonymous namespace 9647 9648 ABIArgInfo 9649 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9650 if (Ty->isVoidType()) 9651 return ABIArgInfo::getIgnore(); 9652 9653 uint64_t Size = getContext().getTypeSize(Ty); 9654 9655 // Anything too big to fit in registers is passed with an explicit indirect 9656 // pointer / sret pointer. 9657 if (Size > SizeLimit) 9658 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9659 9660 // Treat an enum type as its underlying type. 9661 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9662 Ty = EnumTy->getDecl()->getIntegerType(); 9663 9664 // Integer types smaller than a register are extended. 9665 if (Size < 64 && Ty->isIntegerType()) 9666 return ABIArgInfo::getExtend(Ty); 9667 9668 if (const auto *EIT = Ty->getAs<BitIntType>()) 9669 if (EIT->getNumBits() < 64) 9670 return ABIArgInfo::getExtend(Ty); 9671 9672 // Other non-aggregates go in registers. 9673 if (!isAggregateTypeForABI(Ty)) 9674 return ABIArgInfo::getDirect(); 9675 9676 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9677 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9678 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9679 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9680 9681 // This is a small aggregate type that should be passed in registers. 9682 // Build a coercion type from the LLVM struct type. 9683 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9684 if (!StrTy) 9685 return ABIArgInfo::getDirect(); 9686 9687 CoerceBuilder CB(getVMContext(), getDataLayout()); 9688 CB.addStruct(0, StrTy); 9689 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9690 9691 // Try to use the original type for coercion. 9692 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9693 9694 if (CB.InReg) 9695 return ABIArgInfo::getDirectInReg(CoerceTy); 9696 else 9697 return ABIArgInfo::getDirect(CoerceTy); 9698 } 9699 9700 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9701 QualType Ty) const { 9702 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9703 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9704 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9705 AI.setCoerceToType(ArgTy); 9706 9707 CharUnits SlotSize = CharUnits::fromQuantity(8); 9708 9709 CGBuilderTy &Builder = CGF.Builder; 9710 Address Addr = 9711 Address::deprecated(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9712 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9713 9714 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9715 9716 Address ArgAddr = Address::invalid(); 9717 CharUnits Stride; 9718 switch (AI.getKind()) { 9719 case ABIArgInfo::Expand: 9720 case ABIArgInfo::CoerceAndExpand: 9721 case ABIArgInfo::InAlloca: 9722 llvm_unreachable("Unsupported ABI kind for va_arg"); 9723 9724 case ABIArgInfo::Extend: { 9725 Stride = SlotSize; 9726 CharUnits Offset = SlotSize - TypeInfo.Width; 9727 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9728 break; 9729 } 9730 9731 case ABIArgInfo::Direct: { 9732 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9733 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9734 ArgAddr = Addr; 9735 break; 9736 } 9737 9738 case ABIArgInfo::Indirect: 9739 case ABIArgInfo::IndirectAliased: 9740 Stride = SlotSize; 9741 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9742 ArgAddr = Address::deprecated(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9743 TypeInfo.Align); 9744 break; 9745 9746 case ABIArgInfo::Ignore: 9747 return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align); 9748 } 9749 9750 // Update VAList. 9751 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9752 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9753 9754 return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr"); 9755 } 9756 9757 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9758 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9759 for (auto &I : FI.arguments()) 9760 I.info = classifyType(I.type, 16 * 8); 9761 } 9762 9763 namespace { 9764 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9765 public: 9766 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9767 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9768 9769 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9770 return 14; 9771 } 9772 9773 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9774 llvm::Value *Address) const override; 9775 9776 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9777 llvm::Value *Address) const override { 9778 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9779 llvm::ConstantInt::get(CGF.Int32Ty, 8)); 9780 } 9781 9782 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9783 llvm::Value *Address) const override { 9784 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9785 llvm::ConstantInt::get(CGF.Int32Ty, -8)); 9786 } 9787 }; 9788 } // end anonymous namespace 9789 9790 bool 9791 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9792 llvm::Value *Address) const { 9793 // This is calculated from the LLVM and GCC tables and verified 9794 // against gcc output. AFAIK all ABIs use the same encoding. 9795 9796 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9797 9798 llvm::IntegerType *i8 = CGF.Int8Ty; 9799 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9800 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9801 9802 // 0-31: the 8-byte general-purpose registers 9803 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9804 9805 // 32-63: f0-31, the 4-byte floating-point registers 9806 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9807 9808 // Y = 64 9809 // PSR = 65 9810 // WIM = 66 9811 // TBR = 67 9812 // PC = 68 9813 // NPC = 69 9814 // FSR = 70 9815 // CSR = 71 9816 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9817 9818 // 72-87: d0-15, the 8-byte floating-point registers 9819 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9820 9821 return false; 9822 } 9823 9824 // ARC ABI implementation. 9825 namespace { 9826 9827 class ARCABIInfo : public DefaultABIInfo { 9828 public: 9829 using DefaultABIInfo::DefaultABIInfo; 9830 9831 private: 9832 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9833 QualType Ty) const override; 9834 9835 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9836 if (!State.FreeRegs) 9837 return; 9838 if (Info.isIndirect() && Info.getInReg()) 9839 State.FreeRegs--; 9840 else if (Info.isDirect() && Info.getInReg()) { 9841 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9842 if (sz < State.FreeRegs) 9843 State.FreeRegs -= sz; 9844 else 9845 State.FreeRegs = 0; 9846 } 9847 } 9848 9849 void computeInfo(CGFunctionInfo &FI) const override { 9850 CCState State(FI); 9851 // ARC uses 8 registers to pass arguments. 9852 State.FreeRegs = 8; 9853 9854 if (!getCXXABI().classifyReturnType(FI)) 9855 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9856 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9857 for (auto &I : FI.arguments()) { 9858 I.info = classifyArgumentType(I.type, State.FreeRegs); 9859 updateState(I.info, I.type, State); 9860 } 9861 } 9862 9863 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9864 ABIArgInfo getIndirectByValue(QualType Ty) const; 9865 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9866 ABIArgInfo classifyReturnType(QualType RetTy) const; 9867 }; 9868 9869 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9870 public: 9871 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9872 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9873 }; 9874 9875 9876 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9877 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9878 getNaturalAlignIndirect(Ty, false); 9879 } 9880 9881 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9882 // Compute the byval alignment. 9883 const unsigned MinABIStackAlignInBytes = 4; 9884 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9885 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9886 TypeAlign > MinABIStackAlignInBytes); 9887 } 9888 9889 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9890 QualType Ty) const { 9891 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9892 getContext().getTypeInfoInChars(Ty), 9893 CharUnits::fromQuantity(4), true); 9894 } 9895 9896 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9897 uint8_t FreeRegs) const { 9898 // Handle the generic C++ ABI. 9899 const RecordType *RT = Ty->getAs<RecordType>(); 9900 if (RT) { 9901 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9902 if (RAA == CGCXXABI::RAA_Indirect) 9903 return getIndirectByRef(Ty, FreeRegs > 0); 9904 9905 if (RAA == CGCXXABI::RAA_DirectInMemory) 9906 return getIndirectByValue(Ty); 9907 } 9908 9909 // Treat an enum type as its underlying type. 9910 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9911 Ty = EnumTy->getDecl()->getIntegerType(); 9912 9913 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9914 9915 if (isAggregateTypeForABI(Ty)) { 9916 // Structures with flexible arrays are always indirect. 9917 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9918 return getIndirectByValue(Ty); 9919 9920 // Ignore empty structs/unions. 9921 if (isEmptyRecord(getContext(), Ty, true)) 9922 return ABIArgInfo::getIgnore(); 9923 9924 llvm::LLVMContext &LLVMContext = getVMContext(); 9925 9926 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9927 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9928 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9929 9930 return FreeRegs >= SizeInRegs ? 9931 ABIArgInfo::getDirectInReg(Result) : 9932 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9933 } 9934 9935 if (const auto *EIT = Ty->getAs<BitIntType>()) 9936 if (EIT->getNumBits() > 64) 9937 return getIndirectByValue(Ty); 9938 9939 return isPromotableIntegerTypeForABI(Ty) 9940 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9941 : ABIArgInfo::getExtend(Ty)) 9942 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9943 : ABIArgInfo::getDirect()); 9944 } 9945 9946 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9947 if (RetTy->isAnyComplexType()) 9948 return ABIArgInfo::getDirectInReg(); 9949 9950 // Arguments of size > 4 registers are indirect. 9951 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9952 if (RetSize > 4) 9953 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9954 9955 return DefaultABIInfo::classifyReturnType(RetTy); 9956 } 9957 9958 } // End anonymous namespace. 9959 9960 //===----------------------------------------------------------------------===// 9961 // XCore ABI Implementation 9962 //===----------------------------------------------------------------------===// 9963 9964 namespace { 9965 9966 /// A SmallStringEnc instance is used to build up the TypeString by passing 9967 /// it by reference between functions that append to it. 9968 typedef llvm::SmallString<128> SmallStringEnc; 9969 9970 /// TypeStringCache caches the meta encodings of Types. 9971 /// 9972 /// The reason for caching TypeStrings is two fold: 9973 /// 1. To cache a type's encoding for later uses; 9974 /// 2. As a means to break recursive member type inclusion. 9975 /// 9976 /// A cache Entry can have a Status of: 9977 /// NonRecursive: The type encoding is not recursive; 9978 /// Recursive: The type encoding is recursive; 9979 /// Incomplete: An incomplete TypeString; 9980 /// IncompleteUsed: An incomplete TypeString that has been used in a 9981 /// Recursive type encoding. 9982 /// 9983 /// A NonRecursive entry will have all of its sub-members expanded as fully 9984 /// as possible. Whilst it may contain types which are recursive, the type 9985 /// itself is not recursive and thus its encoding may be safely used whenever 9986 /// the type is encountered. 9987 /// 9988 /// A Recursive entry will have all of its sub-members expanded as fully as 9989 /// possible. The type itself is recursive and it may contain other types which 9990 /// are recursive. The Recursive encoding must not be used during the expansion 9991 /// of a recursive type's recursive branch. For simplicity the code uses 9992 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9993 /// 9994 /// An Incomplete entry is always a RecordType and only encodes its 9995 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9996 /// are placed into the cache during type expansion as a means to identify and 9997 /// handle recursive inclusion of types as sub-members. If there is recursion 9998 /// the entry becomes IncompleteUsed. 9999 /// 10000 /// During the expansion of a RecordType's members: 10001 /// 10002 /// If the cache contains a NonRecursive encoding for the member type, the 10003 /// cached encoding is used; 10004 /// 10005 /// If the cache contains a Recursive encoding for the member type, the 10006 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 10007 /// 10008 /// If the member is a RecordType, an Incomplete encoding is placed into the 10009 /// cache to break potential recursive inclusion of itself as a sub-member; 10010 /// 10011 /// Once a member RecordType has been expanded, its temporary incomplete 10012 /// entry is removed from the cache. If a Recursive encoding was swapped out 10013 /// it is swapped back in; 10014 /// 10015 /// If an incomplete entry is used to expand a sub-member, the incomplete 10016 /// entry is marked as IncompleteUsed. The cache keeps count of how many 10017 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 10018 /// 10019 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 10020 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 10021 /// Else the member is part of a recursive type and thus the recursion has 10022 /// been exited too soon for the encoding to be correct for the member. 10023 /// 10024 class TypeStringCache { 10025 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 10026 struct Entry { 10027 std::string Str; // The encoded TypeString for the type. 10028 enum Status State; // Information about the encoding in 'Str'. 10029 std::string Swapped; // A temporary place holder for a Recursive encoding 10030 // during the expansion of RecordType's members. 10031 }; 10032 std::map<const IdentifierInfo *, struct Entry> Map; 10033 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 10034 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 10035 public: 10036 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 10037 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 10038 bool removeIncomplete(const IdentifierInfo *ID); 10039 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 10040 bool IsRecursive); 10041 StringRef lookupStr(const IdentifierInfo *ID); 10042 }; 10043 10044 /// TypeString encodings for enum & union fields must be order. 10045 /// FieldEncoding is a helper for this ordering process. 10046 class FieldEncoding { 10047 bool HasName; 10048 std::string Enc; 10049 public: 10050 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 10051 StringRef str() { return Enc; } 10052 bool operator<(const FieldEncoding &rhs) const { 10053 if (HasName != rhs.HasName) return HasName; 10054 return Enc < rhs.Enc; 10055 } 10056 }; 10057 10058 class XCoreABIInfo : public DefaultABIInfo { 10059 public: 10060 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10061 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10062 QualType Ty) const override; 10063 }; 10064 10065 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 10066 mutable TypeStringCache TSC; 10067 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 10068 const CodeGen::CodeGenModule &M) const; 10069 10070 public: 10071 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 10072 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 10073 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 10074 const llvm::MapVector<GlobalDecl, StringRef> 10075 &MangledDeclNames) const override; 10076 }; 10077 10078 } // End anonymous namespace. 10079 10080 // TODO: this implementation is likely now redundant with the default 10081 // EmitVAArg. 10082 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10083 QualType Ty) const { 10084 CGBuilderTy &Builder = CGF.Builder; 10085 10086 // Get the VAList. 10087 CharUnits SlotSize = CharUnits::fromQuantity(4); 10088 Address AP = Address::deprecated(Builder.CreateLoad(VAListAddr), SlotSize); 10089 10090 // Handle the argument. 10091 ABIArgInfo AI = classifyArgumentType(Ty); 10092 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 10093 llvm::Type *ArgTy = CGT.ConvertType(Ty); 10094 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 10095 AI.setCoerceToType(ArgTy); 10096 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 10097 10098 Address Val = Address::invalid(); 10099 CharUnits ArgSize = CharUnits::Zero(); 10100 switch (AI.getKind()) { 10101 case ABIArgInfo::Expand: 10102 case ABIArgInfo::CoerceAndExpand: 10103 case ABIArgInfo::InAlloca: 10104 llvm_unreachable("Unsupported ABI kind for va_arg"); 10105 case ABIArgInfo::Ignore: 10106 Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign); 10107 ArgSize = CharUnits::Zero(); 10108 break; 10109 case ABIArgInfo::Extend: 10110 case ABIArgInfo::Direct: 10111 Val = Builder.CreateElementBitCast(AP, ArgTy); 10112 ArgSize = CharUnits::fromQuantity( 10113 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10114 ArgSize = ArgSize.alignTo(SlotSize); 10115 break; 10116 case ABIArgInfo::Indirect: 10117 case ABIArgInfo::IndirectAliased: 10118 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10119 Val = Address::deprecated(Builder.CreateLoad(Val), TypeAlign); 10120 ArgSize = SlotSize; 10121 break; 10122 } 10123 10124 // Increment the VAList. 10125 if (!ArgSize.isZero()) { 10126 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10127 Builder.CreateStore(APN.getPointer(), VAListAddr); 10128 } 10129 10130 return Val; 10131 } 10132 10133 /// During the expansion of a RecordType, an incomplete TypeString is placed 10134 /// into the cache as a means to identify and break recursion. 10135 /// If there is a Recursive encoding in the cache, it is swapped out and will 10136 /// be reinserted by removeIncomplete(). 10137 /// All other types of encoding should have been used rather than arriving here. 10138 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10139 std::string StubEnc) { 10140 if (!ID) 10141 return; 10142 Entry &E = Map[ID]; 10143 assert( (E.Str.empty() || E.State == Recursive) && 10144 "Incorrectly use of addIncomplete"); 10145 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10146 E.Swapped.swap(E.Str); // swap out the Recursive 10147 E.Str.swap(StubEnc); 10148 E.State = Incomplete; 10149 ++IncompleteCount; 10150 } 10151 10152 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10153 /// must be removed from the cache. 10154 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10155 /// Returns true if the RecordType was defined recursively. 10156 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10157 if (!ID) 10158 return false; 10159 auto I = Map.find(ID); 10160 assert(I != Map.end() && "Entry not present"); 10161 Entry &E = I->second; 10162 assert( (E.State == Incomplete || 10163 E.State == IncompleteUsed) && 10164 "Entry must be an incomplete type"); 10165 bool IsRecursive = false; 10166 if (E.State == IncompleteUsed) { 10167 // We made use of our Incomplete encoding, thus we are recursive. 10168 IsRecursive = true; 10169 --IncompleteUsedCount; 10170 } 10171 if (E.Swapped.empty()) 10172 Map.erase(I); 10173 else { 10174 // Swap the Recursive back. 10175 E.Swapped.swap(E.Str); 10176 E.Swapped.clear(); 10177 E.State = Recursive; 10178 } 10179 --IncompleteCount; 10180 return IsRecursive; 10181 } 10182 10183 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10184 /// Recursive (viz: all sub-members were expanded as fully as possible). 10185 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10186 bool IsRecursive) { 10187 if (!ID || IncompleteUsedCount) 10188 return; // No key or it is is an incomplete sub-type so don't add. 10189 Entry &E = Map[ID]; 10190 if (IsRecursive && !E.Str.empty()) { 10191 assert(E.State==Recursive && E.Str.size() == Str.size() && 10192 "This is not the same Recursive entry"); 10193 // The parent container was not recursive after all, so we could have used 10194 // this Recursive sub-member entry after all, but we assumed the worse when 10195 // we started viz: IncompleteCount!=0. 10196 return; 10197 } 10198 assert(E.Str.empty() && "Entry already present"); 10199 E.Str = Str.str(); 10200 E.State = IsRecursive? Recursive : NonRecursive; 10201 } 10202 10203 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10204 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10205 /// encoding is Recursive, return an empty StringRef. 10206 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10207 if (!ID) 10208 return StringRef(); // We have no key. 10209 auto I = Map.find(ID); 10210 if (I == Map.end()) 10211 return StringRef(); // We have no encoding. 10212 Entry &E = I->second; 10213 if (E.State == Recursive && IncompleteCount) 10214 return StringRef(); // We don't use Recursive encodings for member types. 10215 10216 if (E.State == Incomplete) { 10217 // The incomplete type is being used to break out of recursion. 10218 E.State = IncompleteUsed; 10219 ++IncompleteUsedCount; 10220 } 10221 return E.Str; 10222 } 10223 10224 /// The XCore ABI includes a type information section that communicates symbol 10225 /// type information to the linker. The linker uses this information to verify 10226 /// safety/correctness of things such as array bound and pointers et al. 10227 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10228 /// This type information (TypeString) is emitted into meta data for all global 10229 /// symbols: definitions, declarations, functions & variables. 10230 /// 10231 /// The TypeString carries type, qualifier, name, size & value details. 10232 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10233 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10234 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10235 /// 10236 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10237 const CodeGen::CodeGenModule &CGM, 10238 TypeStringCache &TSC); 10239 10240 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10241 void XCoreTargetCodeGenInfo::emitTargetMD( 10242 const Decl *D, llvm::GlobalValue *GV, 10243 const CodeGen::CodeGenModule &CGM) const { 10244 SmallStringEnc Enc; 10245 if (getTypeString(Enc, D, CGM, TSC)) { 10246 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10247 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10248 llvm::MDString::get(Ctx, Enc.str())}; 10249 llvm::NamedMDNode *MD = 10250 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10251 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10252 } 10253 } 10254 10255 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10256 CodeGen::CodeGenModule &CGM, 10257 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10258 // Warning, new MangledDeclNames may be appended within this loop. 10259 // We rely on MapVector insertions adding new elements to the end 10260 // of the container. 10261 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10262 auto Val = *(MangledDeclNames.begin() + I); 10263 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10264 if (GV) { 10265 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10266 emitTargetMD(D, GV, CGM); 10267 } 10268 } 10269 } 10270 10271 //===----------------------------------------------------------------------===// 10272 // Base ABI and target codegen info implementation common between SPIR and 10273 // SPIR-V. 10274 //===----------------------------------------------------------------------===// 10275 10276 namespace { 10277 class CommonSPIRABIInfo : public DefaultABIInfo { 10278 public: 10279 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10280 10281 private: 10282 void setCCs(); 10283 }; 10284 10285 class SPIRVABIInfo : public CommonSPIRABIInfo { 10286 public: 10287 SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {} 10288 void computeInfo(CGFunctionInfo &FI) const override; 10289 10290 private: 10291 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 10292 }; 10293 } // end anonymous namespace 10294 namespace { 10295 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10296 public: 10297 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10298 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10299 CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo) 10300 : TargetCodeGenInfo(std::move(ABIInfo)) {} 10301 10302 LangAS getASTAllocaAddressSpace() const override { 10303 return getLangASFromTargetAS( 10304 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10305 } 10306 10307 unsigned getOpenCLKernelCallingConv() const override; 10308 }; 10309 class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo { 10310 public: 10311 SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10312 : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {} 10313 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 10314 }; 10315 } // End anonymous namespace. 10316 10317 void CommonSPIRABIInfo::setCCs() { 10318 assert(getRuntimeCC() == llvm::CallingConv::C); 10319 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10320 } 10321 10322 ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const { 10323 if (getContext().getLangOpts().CUDAIsDevice) { 10324 // Coerce pointer arguments with default address space to CrossWorkGroup 10325 // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the 10326 // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space. 10327 llvm::Type *LTy = CGT.ConvertType(Ty); 10328 auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default); 10329 auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device); 10330 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy); 10331 if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) { 10332 LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS); 10333 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 10334 } 10335 } 10336 return classifyArgumentType(Ty); 10337 } 10338 10339 void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10340 // The logic is same as in DefaultABIInfo with an exception on the kernel 10341 // arguments handling. 10342 llvm::CallingConv::ID CC = FI.getCallingConvention(); 10343 10344 if (!getCXXABI().classifyReturnType(FI)) 10345 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10346 10347 for (auto &I : FI.arguments()) { 10348 if (CC == llvm::CallingConv::SPIR_KERNEL) { 10349 I.info = classifyKernelArgumentType(I.type); 10350 } else { 10351 I.info = classifyArgumentType(I.type); 10352 } 10353 } 10354 } 10355 10356 namespace clang { 10357 namespace CodeGen { 10358 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10359 if (CGM.getTarget().getTriple().isSPIRV()) 10360 SPIRVABIInfo(CGM.getTypes()).computeInfo(FI); 10361 else 10362 CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI); 10363 } 10364 } 10365 } 10366 10367 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10368 return llvm::CallingConv::SPIR_KERNEL; 10369 } 10370 10371 void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention( 10372 const FunctionType *&FT) const { 10373 // Convert HIP kernels to SPIR-V kernels. 10374 if (getABIInfo().getContext().getLangOpts().HIP) { 10375 FT = getABIInfo().getContext().adjustFunctionType( 10376 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 10377 return; 10378 } 10379 } 10380 10381 static bool appendType(SmallStringEnc &Enc, QualType QType, 10382 const CodeGen::CodeGenModule &CGM, 10383 TypeStringCache &TSC); 10384 10385 /// Helper function for appendRecordType(). 10386 /// Builds a SmallVector containing the encoded field types in declaration 10387 /// order. 10388 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10389 const RecordDecl *RD, 10390 const CodeGen::CodeGenModule &CGM, 10391 TypeStringCache &TSC) { 10392 for (const auto *Field : RD->fields()) { 10393 SmallStringEnc Enc; 10394 Enc += "m("; 10395 Enc += Field->getName(); 10396 Enc += "){"; 10397 if (Field->isBitField()) { 10398 Enc += "b("; 10399 llvm::raw_svector_ostream OS(Enc); 10400 OS << Field->getBitWidthValue(CGM.getContext()); 10401 Enc += ':'; 10402 } 10403 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10404 return false; 10405 if (Field->isBitField()) 10406 Enc += ')'; 10407 Enc += '}'; 10408 FE.emplace_back(!Field->getName().empty(), Enc); 10409 } 10410 return true; 10411 } 10412 10413 /// Appends structure and union types to Enc and adds encoding to cache. 10414 /// Recursively calls appendType (via extractFieldType) for each field. 10415 /// Union types have their fields ordered according to the ABI. 10416 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10417 const CodeGen::CodeGenModule &CGM, 10418 TypeStringCache &TSC, const IdentifierInfo *ID) { 10419 // Append the cached TypeString if we have one. 10420 StringRef TypeString = TSC.lookupStr(ID); 10421 if (!TypeString.empty()) { 10422 Enc += TypeString; 10423 return true; 10424 } 10425 10426 // Start to emit an incomplete TypeString. 10427 size_t Start = Enc.size(); 10428 Enc += (RT->isUnionType()? 'u' : 's'); 10429 Enc += '('; 10430 if (ID) 10431 Enc += ID->getName(); 10432 Enc += "){"; 10433 10434 // We collect all encoded fields and order as necessary. 10435 bool IsRecursive = false; 10436 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10437 if (RD && !RD->field_empty()) { 10438 // An incomplete TypeString stub is placed in the cache for this RecordType 10439 // so that recursive calls to this RecordType will use it whilst building a 10440 // complete TypeString for this RecordType. 10441 SmallVector<FieldEncoding, 16> FE; 10442 std::string StubEnc(Enc.substr(Start).str()); 10443 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10444 TSC.addIncomplete(ID, std::move(StubEnc)); 10445 if (!extractFieldType(FE, RD, CGM, TSC)) { 10446 (void) TSC.removeIncomplete(ID); 10447 return false; 10448 } 10449 IsRecursive = TSC.removeIncomplete(ID); 10450 // The ABI requires unions to be sorted but not structures. 10451 // See FieldEncoding::operator< for sort algorithm. 10452 if (RT->isUnionType()) 10453 llvm::sort(FE); 10454 // We can now complete the TypeString. 10455 unsigned E = FE.size(); 10456 for (unsigned I = 0; I != E; ++I) { 10457 if (I) 10458 Enc += ','; 10459 Enc += FE[I].str(); 10460 } 10461 } 10462 Enc += '}'; 10463 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10464 return true; 10465 } 10466 10467 /// Appends enum types to Enc and adds the encoding to the cache. 10468 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10469 TypeStringCache &TSC, 10470 const IdentifierInfo *ID) { 10471 // Append the cached TypeString if we have one. 10472 StringRef TypeString = TSC.lookupStr(ID); 10473 if (!TypeString.empty()) { 10474 Enc += TypeString; 10475 return true; 10476 } 10477 10478 size_t Start = Enc.size(); 10479 Enc += "e("; 10480 if (ID) 10481 Enc += ID->getName(); 10482 Enc += "){"; 10483 10484 // We collect all encoded enumerations and order them alphanumerically. 10485 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10486 SmallVector<FieldEncoding, 16> FE; 10487 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10488 ++I) { 10489 SmallStringEnc EnumEnc; 10490 EnumEnc += "m("; 10491 EnumEnc += I->getName(); 10492 EnumEnc += "){"; 10493 I->getInitVal().toString(EnumEnc); 10494 EnumEnc += '}'; 10495 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10496 } 10497 llvm::sort(FE); 10498 unsigned E = FE.size(); 10499 for (unsigned I = 0; I != E; ++I) { 10500 if (I) 10501 Enc += ','; 10502 Enc += FE[I].str(); 10503 } 10504 } 10505 Enc += '}'; 10506 TSC.addIfComplete(ID, Enc.substr(Start), false); 10507 return true; 10508 } 10509 10510 /// Appends type's qualifier to Enc. 10511 /// This is done prior to appending the type's encoding. 10512 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10513 // Qualifiers are emitted in alphabetical order. 10514 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10515 int Lookup = 0; 10516 if (QT.isConstQualified()) 10517 Lookup += 1<<0; 10518 if (QT.isRestrictQualified()) 10519 Lookup += 1<<1; 10520 if (QT.isVolatileQualified()) 10521 Lookup += 1<<2; 10522 Enc += Table[Lookup]; 10523 } 10524 10525 /// Appends built-in types to Enc. 10526 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10527 const char *EncType; 10528 switch (BT->getKind()) { 10529 case BuiltinType::Void: 10530 EncType = "0"; 10531 break; 10532 case BuiltinType::Bool: 10533 EncType = "b"; 10534 break; 10535 case BuiltinType::Char_U: 10536 EncType = "uc"; 10537 break; 10538 case BuiltinType::UChar: 10539 EncType = "uc"; 10540 break; 10541 case BuiltinType::SChar: 10542 EncType = "sc"; 10543 break; 10544 case BuiltinType::UShort: 10545 EncType = "us"; 10546 break; 10547 case BuiltinType::Short: 10548 EncType = "ss"; 10549 break; 10550 case BuiltinType::UInt: 10551 EncType = "ui"; 10552 break; 10553 case BuiltinType::Int: 10554 EncType = "si"; 10555 break; 10556 case BuiltinType::ULong: 10557 EncType = "ul"; 10558 break; 10559 case BuiltinType::Long: 10560 EncType = "sl"; 10561 break; 10562 case BuiltinType::ULongLong: 10563 EncType = "ull"; 10564 break; 10565 case BuiltinType::LongLong: 10566 EncType = "sll"; 10567 break; 10568 case BuiltinType::Float: 10569 EncType = "ft"; 10570 break; 10571 case BuiltinType::Double: 10572 EncType = "d"; 10573 break; 10574 case BuiltinType::LongDouble: 10575 EncType = "ld"; 10576 break; 10577 default: 10578 return false; 10579 } 10580 Enc += EncType; 10581 return true; 10582 } 10583 10584 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10585 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10586 const CodeGen::CodeGenModule &CGM, 10587 TypeStringCache &TSC) { 10588 Enc += "p("; 10589 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10590 return false; 10591 Enc += ')'; 10592 return true; 10593 } 10594 10595 /// Appends array encoding to Enc before calling appendType for the element. 10596 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10597 const ArrayType *AT, 10598 const CodeGen::CodeGenModule &CGM, 10599 TypeStringCache &TSC, StringRef NoSizeEnc) { 10600 if (AT->getSizeModifier() != ArrayType::Normal) 10601 return false; 10602 Enc += "a("; 10603 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10604 CAT->getSize().toStringUnsigned(Enc); 10605 else 10606 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10607 Enc += ':'; 10608 // The Qualifiers should be attached to the type rather than the array. 10609 appendQualifier(Enc, QT); 10610 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10611 return false; 10612 Enc += ')'; 10613 return true; 10614 } 10615 10616 /// Appends a function encoding to Enc, calling appendType for the return type 10617 /// and the arguments. 10618 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10619 const CodeGen::CodeGenModule &CGM, 10620 TypeStringCache &TSC) { 10621 Enc += "f{"; 10622 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10623 return false; 10624 Enc += "}("; 10625 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10626 // N.B. we are only interested in the adjusted param types. 10627 auto I = FPT->param_type_begin(); 10628 auto E = FPT->param_type_end(); 10629 if (I != E) { 10630 do { 10631 if (!appendType(Enc, *I, CGM, TSC)) 10632 return false; 10633 ++I; 10634 if (I != E) 10635 Enc += ','; 10636 } while (I != E); 10637 if (FPT->isVariadic()) 10638 Enc += ",va"; 10639 } else { 10640 if (FPT->isVariadic()) 10641 Enc += "va"; 10642 else 10643 Enc += '0'; 10644 } 10645 } 10646 Enc += ')'; 10647 return true; 10648 } 10649 10650 /// Handles the type's qualifier before dispatching a call to handle specific 10651 /// type encodings. 10652 static bool appendType(SmallStringEnc &Enc, QualType QType, 10653 const CodeGen::CodeGenModule &CGM, 10654 TypeStringCache &TSC) { 10655 10656 QualType QT = QType.getCanonicalType(); 10657 10658 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10659 // The Qualifiers should be attached to the type rather than the array. 10660 // Thus we don't call appendQualifier() here. 10661 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10662 10663 appendQualifier(Enc, QT); 10664 10665 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10666 return appendBuiltinType(Enc, BT); 10667 10668 if (const PointerType *PT = QT->getAs<PointerType>()) 10669 return appendPointerType(Enc, PT, CGM, TSC); 10670 10671 if (const EnumType *ET = QT->getAs<EnumType>()) 10672 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10673 10674 if (const RecordType *RT = QT->getAsStructureType()) 10675 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10676 10677 if (const RecordType *RT = QT->getAsUnionType()) 10678 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10679 10680 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10681 return appendFunctionType(Enc, FT, CGM, TSC); 10682 10683 return false; 10684 } 10685 10686 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10687 const CodeGen::CodeGenModule &CGM, 10688 TypeStringCache &TSC) { 10689 if (!D) 10690 return false; 10691 10692 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10693 if (FD->getLanguageLinkage() != CLanguageLinkage) 10694 return false; 10695 return appendType(Enc, FD->getType(), CGM, TSC); 10696 } 10697 10698 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10699 if (VD->getLanguageLinkage() != CLanguageLinkage) 10700 return false; 10701 QualType QT = VD->getType().getCanonicalType(); 10702 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10703 // Global ArrayTypes are given a size of '*' if the size is unknown. 10704 // The Qualifiers should be attached to the type rather than the array. 10705 // Thus we don't call appendQualifier() here. 10706 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10707 } 10708 return appendType(Enc, QT, CGM, TSC); 10709 } 10710 return false; 10711 } 10712 10713 //===----------------------------------------------------------------------===// 10714 // RISCV ABI Implementation 10715 //===----------------------------------------------------------------------===// 10716 10717 namespace { 10718 class RISCVABIInfo : public DefaultABIInfo { 10719 private: 10720 // Size of the integer ('x') registers in bits. 10721 unsigned XLen; 10722 // Size of the floating point ('f') registers in bits. Note that the target 10723 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10724 // with soft float ABI has FLen==0). 10725 unsigned FLen; 10726 static const int NumArgGPRs = 8; 10727 static const int NumArgFPRs = 8; 10728 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10729 llvm::Type *&Field1Ty, 10730 CharUnits &Field1Off, 10731 llvm::Type *&Field2Ty, 10732 CharUnits &Field2Off) const; 10733 10734 public: 10735 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10736 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10737 10738 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10739 // non-virtual, but computeInfo is virtual, so we overload it. 10740 void computeInfo(CGFunctionInfo &FI) const override; 10741 10742 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10743 int &ArgFPRsLeft) const; 10744 ABIArgInfo classifyReturnType(QualType RetTy) const; 10745 10746 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10747 QualType Ty) const override; 10748 10749 ABIArgInfo extendType(QualType Ty) const; 10750 10751 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10752 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10753 CharUnits &Field2Off, int &NeededArgGPRs, 10754 int &NeededArgFPRs) const; 10755 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10756 CharUnits Field1Off, 10757 llvm::Type *Field2Ty, 10758 CharUnits Field2Off) const; 10759 }; 10760 } // end anonymous namespace 10761 10762 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10763 QualType RetTy = FI.getReturnType(); 10764 if (!getCXXABI().classifyReturnType(FI)) 10765 FI.getReturnInfo() = classifyReturnType(RetTy); 10766 10767 // IsRetIndirect is true if classifyArgumentType indicated the value should 10768 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10769 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10770 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10771 // list and pass indirectly on RV32. 10772 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10773 if (!IsRetIndirect && RetTy->isScalarType() && 10774 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10775 if (RetTy->isComplexType() && FLen) { 10776 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10777 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10778 } else { 10779 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10780 IsRetIndirect = true; 10781 } 10782 } 10783 10784 // We must track the number of GPRs used in order to conform to the RISC-V 10785 // ABI, as integer scalars passed in registers should have signext/zeroext 10786 // when promoted, but are anyext if passed on the stack. As GPR usage is 10787 // different for variadic arguments, we must also track whether we are 10788 // examining a vararg or not. 10789 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10790 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10791 int NumFixedArgs = FI.getNumRequiredArgs(); 10792 10793 int ArgNum = 0; 10794 for (auto &ArgInfo : FI.arguments()) { 10795 bool IsFixed = ArgNum < NumFixedArgs; 10796 ArgInfo.info = 10797 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10798 ArgNum++; 10799 } 10800 } 10801 10802 // Returns true if the struct is a potential candidate for the floating point 10803 // calling convention. If this function returns true, the caller is 10804 // responsible for checking that if there is only a single field then that 10805 // field is a float. 10806 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10807 llvm::Type *&Field1Ty, 10808 CharUnits &Field1Off, 10809 llvm::Type *&Field2Ty, 10810 CharUnits &Field2Off) const { 10811 bool IsInt = Ty->isIntegralOrEnumerationType(); 10812 bool IsFloat = Ty->isRealFloatingType(); 10813 10814 if (IsInt || IsFloat) { 10815 uint64_t Size = getContext().getTypeSize(Ty); 10816 if (IsInt && Size > XLen) 10817 return false; 10818 // Can't be eligible if larger than the FP registers. Half precision isn't 10819 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10820 // default to the integer ABI in that case. 10821 if (IsFloat && (Size > FLen || Size < 32)) 10822 return false; 10823 // Can't be eligible if an integer type was already found (int+int pairs 10824 // are not eligible). 10825 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10826 return false; 10827 if (!Field1Ty) { 10828 Field1Ty = CGT.ConvertType(Ty); 10829 Field1Off = CurOff; 10830 return true; 10831 } 10832 if (!Field2Ty) { 10833 Field2Ty = CGT.ConvertType(Ty); 10834 Field2Off = CurOff; 10835 return true; 10836 } 10837 return false; 10838 } 10839 10840 if (auto CTy = Ty->getAs<ComplexType>()) { 10841 if (Field1Ty) 10842 return false; 10843 QualType EltTy = CTy->getElementType(); 10844 if (getContext().getTypeSize(EltTy) > FLen) 10845 return false; 10846 Field1Ty = CGT.ConvertType(EltTy); 10847 Field1Off = CurOff; 10848 Field2Ty = Field1Ty; 10849 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10850 return true; 10851 } 10852 10853 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10854 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10855 QualType EltTy = ATy->getElementType(); 10856 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10857 for (uint64_t i = 0; i < ArraySize; ++i) { 10858 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10859 Field1Off, Field2Ty, Field2Off); 10860 if (!Ret) 10861 return false; 10862 CurOff += EltSize; 10863 } 10864 return true; 10865 } 10866 10867 if (const auto *RTy = Ty->getAs<RecordType>()) { 10868 // Structures with either a non-trivial destructor or a non-trivial 10869 // copy constructor are not eligible for the FP calling convention. 10870 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10871 return false; 10872 if (isEmptyRecord(getContext(), Ty, true)) 10873 return true; 10874 const RecordDecl *RD = RTy->getDecl(); 10875 // Unions aren't eligible unless they're empty (which is caught above). 10876 if (RD->isUnion()) 10877 return false; 10878 int ZeroWidthBitFieldCount = 0; 10879 for (const FieldDecl *FD : RD->fields()) { 10880 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10881 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10882 QualType QTy = FD->getType(); 10883 if (FD->isBitField()) { 10884 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10885 // Allow a bitfield with a type greater than XLen as long as the 10886 // bitwidth is XLen or less. 10887 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10888 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10889 if (BitWidth == 0) { 10890 ZeroWidthBitFieldCount++; 10891 continue; 10892 } 10893 } 10894 10895 bool Ret = detectFPCCEligibleStructHelper( 10896 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10897 Field1Ty, Field1Off, Field2Ty, Field2Off); 10898 if (!Ret) 10899 return false; 10900 10901 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10902 // or int+fp structs, but are ignored for a struct with an fp field and 10903 // any number of zero-width bitfields. 10904 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10905 return false; 10906 } 10907 return Field1Ty != nullptr; 10908 } 10909 10910 return false; 10911 } 10912 10913 // Determine if a struct is eligible for passing according to the floating 10914 // point calling convention (i.e., when flattened it contains a single fp 10915 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10916 // NeededArgGPRs are incremented appropriately. 10917 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10918 CharUnits &Field1Off, 10919 llvm::Type *&Field2Ty, 10920 CharUnits &Field2Off, 10921 int &NeededArgGPRs, 10922 int &NeededArgFPRs) const { 10923 Field1Ty = nullptr; 10924 Field2Ty = nullptr; 10925 NeededArgGPRs = 0; 10926 NeededArgFPRs = 0; 10927 bool IsCandidate = detectFPCCEligibleStructHelper( 10928 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10929 // Not really a candidate if we have a single int but no float. 10930 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10931 return false; 10932 if (!IsCandidate) 10933 return false; 10934 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10935 NeededArgFPRs++; 10936 else if (Field1Ty) 10937 NeededArgGPRs++; 10938 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10939 NeededArgFPRs++; 10940 else if (Field2Ty) 10941 NeededArgGPRs++; 10942 return true; 10943 } 10944 10945 // Call getCoerceAndExpand for the two-element flattened struct described by 10946 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10947 // appropriate coerceToType and unpaddedCoerceToType. 10948 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10949 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10950 CharUnits Field2Off) const { 10951 SmallVector<llvm::Type *, 3> CoerceElts; 10952 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10953 if (!Field1Off.isZero()) 10954 CoerceElts.push_back(llvm::ArrayType::get( 10955 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10956 10957 CoerceElts.push_back(Field1Ty); 10958 UnpaddedCoerceElts.push_back(Field1Ty); 10959 10960 if (!Field2Ty) { 10961 return ABIArgInfo::getCoerceAndExpand( 10962 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10963 UnpaddedCoerceElts[0]); 10964 } 10965 10966 CharUnits Field2Align = 10967 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10968 CharUnits Field1End = Field1Off + 10969 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10970 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10971 10972 CharUnits Padding = CharUnits::Zero(); 10973 if (Field2Off > Field2OffNoPadNoPack) 10974 Padding = Field2Off - Field2OffNoPadNoPack; 10975 else if (Field2Off != Field2Align && Field2Off > Field1End) 10976 Padding = Field2Off - Field1End; 10977 10978 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10979 10980 if (!Padding.isZero()) 10981 CoerceElts.push_back(llvm::ArrayType::get( 10982 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10983 10984 CoerceElts.push_back(Field2Ty); 10985 UnpaddedCoerceElts.push_back(Field2Ty); 10986 10987 auto CoerceToType = 10988 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10989 auto UnpaddedCoerceToType = 10990 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10991 10992 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10993 } 10994 10995 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10996 int &ArgGPRsLeft, 10997 int &ArgFPRsLeft) const { 10998 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10999 Ty = useFirstFieldIfTransparentUnion(Ty); 11000 11001 // Structures with either a non-trivial destructor or a non-trivial 11002 // copy constructor are always passed indirectly. 11003 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 11004 if (ArgGPRsLeft) 11005 ArgGPRsLeft -= 1; 11006 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 11007 CGCXXABI::RAA_DirectInMemory); 11008 } 11009 11010 // Ignore empty structs/unions. 11011 if (isEmptyRecord(getContext(), Ty, true)) 11012 return ABIArgInfo::getIgnore(); 11013 11014 uint64_t Size = getContext().getTypeSize(Ty); 11015 11016 // Pass floating point values via FPRs if possible. 11017 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 11018 FLen >= Size && ArgFPRsLeft) { 11019 ArgFPRsLeft--; 11020 return ABIArgInfo::getDirect(); 11021 } 11022 11023 // Complex types for the hard float ABI must be passed direct rather than 11024 // using CoerceAndExpand. 11025 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 11026 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 11027 if (getContext().getTypeSize(EltTy) <= FLen) { 11028 ArgFPRsLeft -= 2; 11029 return ABIArgInfo::getDirect(); 11030 } 11031 } 11032 11033 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 11034 llvm::Type *Field1Ty = nullptr; 11035 llvm::Type *Field2Ty = nullptr; 11036 CharUnits Field1Off = CharUnits::Zero(); 11037 CharUnits Field2Off = CharUnits::Zero(); 11038 int NeededArgGPRs = 0; 11039 int NeededArgFPRs = 0; 11040 bool IsCandidate = 11041 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 11042 NeededArgGPRs, NeededArgFPRs); 11043 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 11044 NeededArgFPRs <= ArgFPRsLeft) { 11045 ArgGPRsLeft -= NeededArgGPRs; 11046 ArgFPRsLeft -= NeededArgFPRs; 11047 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 11048 Field2Off); 11049 } 11050 } 11051 11052 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 11053 bool MustUseStack = false; 11054 // Determine the number of GPRs needed to pass the current argument 11055 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 11056 // register pairs, so may consume 3 registers. 11057 int NeededArgGPRs = 1; 11058 if (!IsFixed && NeededAlign == 2 * XLen) 11059 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 11060 else if (Size > XLen && Size <= 2 * XLen) 11061 NeededArgGPRs = 2; 11062 11063 if (NeededArgGPRs > ArgGPRsLeft) { 11064 MustUseStack = true; 11065 NeededArgGPRs = ArgGPRsLeft; 11066 } 11067 11068 ArgGPRsLeft -= NeededArgGPRs; 11069 11070 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 11071 // Treat an enum type as its underlying type. 11072 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11073 Ty = EnumTy->getDecl()->getIntegerType(); 11074 11075 // All integral types are promoted to XLen width, unless passed on the 11076 // stack. 11077 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 11078 return extendType(Ty); 11079 } 11080 11081 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11082 if (EIT->getNumBits() < XLen && !MustUseStack) 11083 return extendType(Ty); 11084 if (EIT->getNumBits() > 128 || 11085 (!getContext().getTargetInfo().hasInt128Type() && 11086 EIT->getNumBits() > 64)) 11087 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11088 } 11089 11090 return ABIArgInfo::getDirect(); 11091 } 11092 11093 // Aggregates which are <= 2*XLen will be passed in registers if possible, 11094 // so coerce to integers. 11095 if (Size <= 2 * XLen) { 11096 unsigned Alignment = getContext().getTypeAlign(Ty); 11097 11098 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 11099 // required, and a 2-element XLen array if only XLen alignment is required. 11100 if (Size <= XLen) { 11101 return ABIArgInfo::getDirect( 11102 llvm::IntegerType::get(getVMContext(), XLen)); 11103 } else if (Alignment == 2 * XLen) { 11104 return ABIArgInfo::getDirect( 11105 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 11106 } else { 11107 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11108 llvm::IntegerType::get(getVMContext(), XLen), 2)); 11109 } 11110 } 11111 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11112 } 11113 11114 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 11115 if (RetTy->isVoidType()) 11116 return ABIArgInfo::getIgnore(); 11117 11118 int ArgGPRsLeft = 2; 11119 int ArgFPRsLeft = FLen ? 2 : 0; 11120 11121 // The rules for return and argument types are the same, so defer to 11122 // classifyArgumentType. 11123 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 11124 ArgFPRsLeft); 11125 } 11126 11127 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11128 QualType Ty) const { 11129 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11130 11131 // Empty records are ignored for parameter passing purposes. 11132 if (isEmptyRecord(getContext(), Ty, true)) { 11133 Address Addr = 11134 Address::deprecated(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 11135 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11136 return Addr; 11137 } 11138 11139 auto TInfo = getContext().getTypeInfoInChars(Ty); 11140 11141 // Arguments bigger than 2*Xlen bytes are passed indirectly. 11142 bool IsIndirect = TInfo.Width > 2 * SlotSize; 11143 11144 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 11145 SlotSize, /*AllowHigherAlign=*/true); 11146 } 11147 11148 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 11149 int TySize = getContext().getTypeSize(Ty); 11150 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 11151 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 11152 return ABIArgInfo::getSignExtend(Ty); 11153 return ABIArgInfo::getExtend(Ty); 11154 } 11155 11156 namespace { 11157 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 11158 public: 11159 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 11160 unsigned FLen) 11161 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11162 11163 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11164 CodeGen::CodeGenModule &CGM) const override { 11165 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11166 if (!FD) return; 11167 11168 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11169 if (!Attr) 11170 return; 11171 11172 const char *Kind; 11173 switch (Attr->getInterrupt()) { 11174 case RISCVInterruptAttr::user: Kind = "user"; break; 11175 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11176 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11177 } 11178 11179 auto *Fn = cast<llvm::Function>(GV); 11180 11181 Fn->addFnAttr("interrupt", Kind); 11182 } 11183 }; 11184 } // namespace 11185 11186 //===----------------------------------------------------------------------===// 11187 // VE ABI Implementation. 11188 // 11189 namespace { 11190 class VEABIInfo : public DefaultABIInfo { 11191 public: 11192 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11193 11194 private: 11195 ABIArgInfo classifyReturnType(QualType RetTy) const; 11196 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11197 void computeInfo(CGFunctionInfo &FI) const override; 11198 }; 11199 } // end anonymous namespace 11200 11201 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11202 if (Ty->isAnyComplexType()) 11203 return ABIArgInfo::getDirect(); 11204 uint64_t Size = getContext().getTypeSize(Ty); 11205 if (Size < 64 && Ty->isIntegerType()) 11206 return ABIArgInfo::getExtend(Ty); 11207 return DefaultABIInfo::classifyReturnType(Ty); 11208 } 11209 11210 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11211 if (Ty->isAnyComplexType()) 11212 return ABIArgInfo::getDirect(); 11213 uint64_t Size = getContext().getTypeSize(Ty); 11214 if (Size < 64 && Ty->isIntegerType()) 11215 return ABIArgInfo::getExtend(Ty); 11216 return DefaultABIInfo::classifyArgumentType(Ty); 11217 } 11218 11219 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11220 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11221 for (auto &Arg : FI.arguments()) 11222 Arg.info = classifyArgumentType(Arg.type); 11223 } 11224 11225 namespace { 11226 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11227 public: 11228 VETargetCodeGenInfo(CodeGenTypes &CGT) 11229 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11230 // VE ABI requires the arguments of variadic and prototype-less functions 11231 // are passed in both registers and memory. 11232 bool isNoProtoCallVariadic(const CallArgList &args, 11233 const FunctionNoProtoType *fnType) const override { 11234 return true; 11235 } 11236 }; 11237 } // end anonymous namespace 11238 11239 //===----------------------------------------------------------------------===// 11240 // Driver code 11241 //===----------------------------------------------------------------------===// 11242 11243 bool CodeGenModule::supportsCOMDAT() const { 11244 return getTriple().supportsCOMDAT(); 11245 } 11246 11247 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11248 if (TheTargetCodeGenInfo) 11249 return *TheTargetCodeGenInfo; 11250 11251 // Helper to set the unique_ptr while still keeping the return value. 11252 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11253 this->TheTargetCodeGenInfo.reset(P); 11254 return *P; 11255 }; 11256 11257 const llvm::Triple &Triple = getTarget().getTriple(); 11258 switch (Triple.getArch()) { 11259 default: 11260 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11261 11262 case llvm::Triple::le32: 11263 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11264 case llvm::Triple::m68k: 11265 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11266 case llvm::Triple::mips: 11267 case llvm::Triple::mipsel: 11268 if (Triple.getOS() == llvm::Triple::NaCl) 11269 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11270 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11271 11272 case llvm::Triple::mips64: 11273 case llvm::Triple::mips64el: 11274 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11275 11276 case llvm::Triple::avr: 11277 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11278 11279 case llvm::Triple::aarch64: 11280 case llvm::Triple::aarch64_32: 11281 case llvm::Triple::aarch64_be: { 11282 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11283 if (getTarget().getABI() == "darwinpcs") 11284 Kind = AArch64ABIInfo::DarwinPCS; 11285 else if (Triple.isOSWindows()) 11286 return SetCGInfo( 11287 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11288 11289 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11290 } 11291 11292 case llvm::Triple::wasm32: 11293 case llvm::Triple::wasm64: { 11294 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11295 if (getTarget().getABI() == "experimental-mv") 11296 Kind = WebAssemblyABIInfo::ExperimentalMV; 11297 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11298 } 11299 11300 case llvm::Triple::arm: 11301 case llvm::Triple::armeb: 11302 case llvm::Triple::thumb: 11303 case llvm::Triple::thumbeb: { 11304 if (Triple.getOS() == llvm::Triple::Win32) { 11305 return SetCGInfo( 11306 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11307 } 11308 11309 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11310 StringRef ABIStr = getTarget().getABI(); 11311 if (ABIStr == "apcs-gnu") 11312 Kind = ARMABIInfo::APCS; 11313 else if (ABIStr == "aapcs16") 11314 Kind = ARMABIInfo::AAPCS16_VFP; 11315 else if (CodeGenOpts.FloatABI == "hard" || 11316 (CodeGenOpts.FloatABI != "soft" && 11317 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11318 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11319 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11320 Kind = ARMABIInfo::AAPCS_VFP; 11321 11322 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11323 } 11324 11325 case llvm::Triple::ppc: { 11326 if (Triple.isOSAIX()) 11327 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11328 11329 bool IsSoftFloat = 11330 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11331 bool RetSmallStructInRegABI = 11332 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11333 return SetCGInfo( 11334 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11335 } 11336 case llvm::Triple::ppcle: { 11337 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11338 bool RetSmallStructInRegABI = 11339 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11340 return SetCGInfo( 11341 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11342 } 11343 case llvm::Triple::ppc64: 11344 if (Triple.isOSAIX()) 11345 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11346 11347 if (Triple.isOSBinFormatELF()) { 11348 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11349 if (getTarget().getABI() == "elfv2") 11350 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11351 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11352 11353 return SetCGInfo( 11354 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11355 } 11356 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11357 case llvm::Triple::ppc64le: { 11358 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11359 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11360 if (getTarget().getABI() == "elfv1") 11361 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11362 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11363 11364 return SetCGInfo( 11365 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11366 } 11367 11368 case llvm::Triple::nvptx: 11369 case llvm::Triple::nvptx64: 11370 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11371 11372 case llvm::Triple::msp430: 11373 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11374 11375 case llvm::Triple::riscv32: 11376 case llvm::Triple::riscv64: { 11377 StringRef ABIStr = getTarget().getABI(); 11378 unsigned XLen = getTarget().getPointerWidth(0); 11379 unsigned ABIFLen = 0; 11380 if (ABIStr.endswith("f")) 11381 ABIFLen = 32; 11382 else if (ABIStr.endswith("d")) 11383 ABIFLen = 64; 11384 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11385 } 11386 11387 case llvm::Triple::systemz: { 11388 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11389 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11390 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11391 } 11392 11393 case llvm::Triple::tce: 11394 case llvm::Triple::tcele: 11395 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11396 11397 case llvm::Triple::x86: { 11398 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11399 bool RetSmallStructInRegABI = 11400 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11401 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11402 11403 if (Triple.getOS() == llvm::Triple::Win32) { 11404 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11405 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11406 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11407 } else { 11408 return SetCGInfo(new X86_32TargetCodeGenInfo( 11409 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11410 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11411 CodeGenOpts.FloatABI == "soft")); 11412 } 11413 } 11414 11415 case llvm::Triple::x86_64: { 11416 StringRef ABI = getTarget().getABI(); 11417 X86AVXABILevel AVXLevel = 11418 (ABI == "avx512" 11419 ? X86AVXABILevel::AVX512 11420 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11421 11422 switch (Triple.getOS()) { 11423 case llvm::Triple::Win32: 11424 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11425 default: 11426 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11427 } 11428 } 11429 case llvm::Triple::hexagon: 11430 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11431 case llvm::Triple::lanai: 11432 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11433 case llvm::Triple::r600: 11434 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11435 case llvm::Triple::amdgcn: 11436 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11437 case llvm::Triple::sparc: 11438 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11439 case llvm::Triple::sparcv9: 11440 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11441 case llvm::Triple::xcore: 11442 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11443 case llvm::Triple::arc: 11444 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11445 case llvm::Triple::spir: 11446 case llvm::Triple::spir64: 11447 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 11448 case llvm::Triple::spirv32: 11449 case llvm::Triple::spirv64: 11450 return SetCGInfo(new SPIRVTargetCodeGenInfo(Types)); 11451 case llvm::Triple::ve: 11452 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11453 } 11454 } 11455 11456 /// Create an OpenCL kernel for an enqueued block. 11457 /// 11458 /// The kernel has the same function type as the block invoke function. Its 11459 /// name is the name of the block invoke function postfixed with "_kernel". 11460 /// It simply calls the block invoke function then returns. 11461 llvm::Function * 11462 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11463 llvm::Function *Invoke, 11464 llvm::Value *BlockLiteral) const { 11465 auto *InvokeFT = Invoke->getFunctionType(); 11466 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11467 for (auto &P : InvokeFT->params()) 11468 ArgTys.push_back(P); 11469 auto &C = CGF.getLLVMContext(); 11470 std::string Name = Invoke->getName().str() + "_kernel"; 11471 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11472 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name, 11473 &CGF.CGM.getModule()); 11474 auto IP = CGF.Builder.saveIP(); 11475 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11476 auto &Builder = CGF.Builder; 11477 Builder.SetInsertPoint(BB); 11478 llvm::SmallVector<llvm::Value *, 2> Args; 11479 for (auto &A : F->args()) 11480 Args.push_back(&A); 11481 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11482 call->setCallingConv(Invoke->getCallingConv()); 11483 Builder.CreateRetVoid(); 11484 Builder.restoreIP(IP); 11485 return F; 11486 } 11487 11488 /// Create an OpenCL kernel for an enqueued block. 11489 /// 11490 /// The type of the first argument (the block literal) is the struct type 11491 /// of the block literal instead of a pointer type. The first argument 11492 /// (block literal) is passed directly by value to the kernel. The kernel 11493 /// allocates the same type of struct on stack and stores the block literal 11494 /// to it and passes its pointer to the block invoke function. The kernel 11495 /// has "enqueued-block" function attribute and kernel argument metadata. 11496 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11497 CodeGenFunction &CGF, llvm::Function *Invoke, 11498 llvm::Value *BlockLiteral) const { 11499 auto &Builder = CGF.Builder; 11500 auto &C = CGF.getLLVMContext(); 11501 11502 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11503 auto *InvokeFT = Invoke->getFunctionType(); 11504 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11505 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11506 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11507 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11508 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11509 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11510 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11511 11512 ArgTys.push_back(BlockTy); 11513 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11514 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11515 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11516 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11517 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11518 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11519 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11520 ArgTys.push_back(InvokeFT->getParamType(I)); 11521 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11522 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11523 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11524 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11525 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11526 ArgNames.push_back( 11527 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11528 } 11529 std::string Name = Invoke->getName().str() + "_kernel"; 11530 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11531 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11532 &CGF.CGM.getModule()); 11533 F->addFnAttr("enqueued-block"); 11534 auto IP = CGF.Builder.saveIP(); 11535 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11536 Builder.SetInsertPoint(BB); 11537 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11538 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11539 BlockPtr->setAlignment(BlockAlign); 11540 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11541 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11542 llvm::SmallVector<llvm::Value *, 2> Args; 11543 Args.push_back(Cast); 11544 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11545 Args.push_back(I); 11546 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11547 call->setCallingConv(Invoke->getCallingConv()); 11548 Builder.CreateRetVoid(); 11549 Builder.restoreIP(IP); 11550 11551 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11552 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11553 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11554 F->setMetadata("kernel_arg_base_type", 11555 llvm::MDNode::get(C, ArgBaseTypeNames)); 11556 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11557 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11558 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11559 11560 return F; 11561 } 11562