1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/CodeGen/SwiftCallingConv.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>    // std::sort
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 // Helper for coercing an aggregate argument or return value into an integer
35 // array of the same size (including padding) and alignment.  This alternate
36 // coercion happens only for the RenderScript ABI and can be removed after
37 // runtimes that rely on it are no longer supported.
38 //
39 // RenderScript assumes that the size of the argument / return value in the IR
40 // is the same as the size of the corresponding qualified type. This helper
41 // coerces the aggregate type into an array of the same size (including
42 // padding).  This coercion is used in lieu of expansion of struct members or
43 // other canonical coercions that return a coerced-type of larger size.
44 //
45 // Ty          - The argument / return value type
46 // Context     - The associated ASTContext
47 // LLVMContext - The associated LLVMContext
48 static ABIArgInfo coerceToIntArray(QualType Ty,
49                                    ASTContext &Context,
50                                    llvm::LLVMContext &LLVMContext) {
51   // Alignment and Size are measured in bits.
52   const uint64_t Size = Context.getTypeSize(Ty);
53   const uint64_t Alignment = Context.getTypeAlign(Ty);
54   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
55   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
56   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
57 }
58 
59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
60                                llvm::Value *Array,
61                                llvm::Value *Value,
62                                unsigned FirstIndex,
63                                unsigned LastIndex) {
64   // Alternatively, we could emit this as a loop in the source.
65   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
66     llvm::Value *Cell =
67         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
68     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
69   }
70 }
71 
72 static bool isAggregateTypeForABI(QualType T) {
73   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
74          T->isMemberFunctionPointerType();
75 }
76 
77 ABIArgInfo
78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
79                                  llvm::Type *Padding) const {
80   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
81                                  ByRef, Realign, Padding);
82 }
83 
84 ABIArgInfo
85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
86   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
87                                       /*ByRef*/ false, Realign);
88 }
89 
90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
91                              QualType Ty) const {
92   return Address::invalid();
93 }
94 
95 ABIInfo::~ABIInfo() {}
96 
97 /// Does the given lowering require more than the given number of
98 /// registers when expanded?
99 ///
100 /// This is intended to be the basis of a reasonable basic implementation
101 /// of should{Pass,Return}IndirectlyForSwift.
102 ///
103 /// For most targets, a limit of four total registers is reasonable; this
104 /// limits the amount of code required in order to move around the value
105 /// in case it wasn't produced immediately prior to the call by the caller
106 /// (or wasn't produced in exactly the right registers) or isn't used
107 /// immediately within the callee.  But some targets may need to further
108 /// limit the register count due to an inability to support that many
109 /// return registers.
110 static bool occupiesMoreThan(CodeGenTypes &cgt,
111                              ArrayRef<llvm::Type*> scalarTypes,
112                              unsigned maxAllRegisters) {
113   unsigned intCount = 0, fpCount = 0;
114   for (llvm::Type *type : scalarTypes) {
115     if (type->isPointerTy()) {
116       intCount++;
117     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
118       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
119       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
120     } else {
121       assert(type->isVectorTy() || type->isFloatingPointTy());
122       fpCount++;
123     }
124   }
125 
126   return (intCount + fpCount > maxAllRegisters);
127 }
128 
129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
130                                              llvm::Type *eltTy,
131                                              unsigned numElts) const {
132   // The default implementation of this assumes that the target guarantees
133   // 128-bit SIMD support but nothing more.
134   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
135 }
136 
137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
138                                               CGCXXABI &CXXABI) {
139   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
140   if (!RD)
141     return CGCXXABI::RAA_Default;
142   return CXXABI.getRecordArgABI(RD);
143 }
144 
145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
146                                               CGCXXABI &CXXABI) {
147   const RecordType *RT = T->getAs<RecordType>();
148   if (!RT)
149     return CGCXXABI::RAA_Default;
150   return getRecordArgABI(RT, CXXABI);
151 }
152 
153 /// Pass transparent unions as if they were the type of the first element. Sema
154 /// should ensure that all elements of the union have the same "machine type".
155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
156   if (const RecordType *UT = Ty->getAsUnionType()) {
157     const RecordDecl *UD = UT->getDecl();
158     if (UD->hasAttr<TransparentUnionAttr>()) {
159       assert(!UD->field_empty() && "sema created an empty transparent union");
160       return UD->field_begin()->getType();
161     }
162   }
163   return Ty;
164 }
165 
166 CGCXXABI &ABIInfo::getCXXABI() const {
167   return CGT.getCXXABI();
168 }
169 
170 ASTContext &ABIInfo::getContext() const {
171   return CGT.getContext();
172 }
173 
174 llvm::LLVMContext &ABIInfo::getVMContext() const {
175   return CGT.getLLVMContext();
176 }
177 
178 const llvm::DataLayout &ABIInfo::getDataLayout() const {
179   return CGT.getDataLayout();
180 }
181 
182 const TargetInfo &ABIInfo::getTarget() const {
183   return CGT.getTarget();
184 }
185 
186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); }
187 
188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
189   return false;
190 }
191 
192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
193                                                 uint64_t Members) const {
194   return false;
195 }
196 
197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
198   return false;
199 }
200 
201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
202   raw_ostream &OS = llvm::errs();
203   OS << "(ABIArgInfo Kind=";
204   switch (TheKind) {
205   case Direct:
206     OS << "Direct Type=";
207     if (llvm::Type *Ty = getCoerceToType())
208       Ty->print(OS);
209     else
210       OS << "null";
211     break;
212   case Extend:
213     OS << "Extend";
214     break;
215   case Ignore:
216     OS << "Ignore";
217     break;
218   case InAlloca:
219     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
220     break;
221   case Indirect:
222     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
223        << " ByVal=" << getIndirectByVal()
224        << " Realign=" << getIndirectRealign();
225     break;
226   case Expand:
227     OS << "Expand";
228     break;
229   case CoerceAndExpand:
230     OS << "CoerceAndExpand Type=";
231     getCoerceAndExpandType()->print(OS);
232     break;
233   }
234   OS << ")\n";
235 }
236 
237 // Dynamically round a pointer up to a multiple of the given alignment.
238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
239                                                   llvm::Value *Ptr,
240                                                   CharUnits Align) {
241   llvm::Value *PtrAsInt = Ptr;
242   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
243   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
244   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
245         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
246   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
247            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
248   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
249                                         Ptr->getType(),
250                                         Ptr->getName() + ".aligned");
251   return PtrAsInt;
252 }
253 
254 /// Emit va_arg for a platform using the common void* representation,
255 /// where arguments are simply emitted in an array of slots on the stack.
256 ///
257 /// This version implements the core direct-value passing rules.
258 ///
259 /// \param SlotSize - The size and alignment of a stack slot.
260 ///   Each argument will be allocated to a multiple of this number of
261 ///   slots, and all the slots will be aligned to this value.
262 /// \param AllowHigherAlign - The slot alignment is not a cap;
263 ///   an argument type with an alignment greater than the slot size
264 ///   will be emitted on a higher-alignment address, potentially
265 ///   leaving one or more empty slots behind as padding.  If this
266 ///   is false, the returned address might be less-aligned than
267 ///   DirectAlign.
268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
269                                       Address VAListAddr,
270                                       llvm::Type *DirectTy,
271                                       CharUnits DirectSize,
272                                       CharUnits DirectAlign,
273                                       CharUnits SlotSize,
274                                       bool AllowHigherAlign) {
275   // Cast the element type to i8* if necessary.  Some platforms define
276   // va_list as a struct containing an i8* instead of just an i8*.
277   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
278     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
279 
280   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
281 
282   // If the CC aligns values higher than the slot size, do so if needed.
283   Address Addr = Address::invalid();
284   if (AllowHigherAlign && DirectAlign > SlotSize) {
285     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
286                                                  DirectAlign);
287   } else {
288     Addr = Address(Ptr, SlotSize);
289   }
290 
291   // Advance the pointer past the argument, then store that back.
292   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
293   llvm::Value *NextPtr =
294     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
295                                            "argp.next");
296   CGF.Builder.CreateStore(NextPtr, VAListAddr);
297 
298   // If the argument is smaller than a slot, and this is a big-endian
299   // target, the argument will be right-adjusted in its slot.
300   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
301       !DirectTy->isStructTy()) {
302     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
303   }
304 
305   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
306   return Addr;
307 }
308 
309 /// Emit va_arg for a platform using the common void* representation,
310 /// where arguments are simply emitted in an array of slots on the stack.
311 ///
312 /// \param IsIndirect - Values of this type are passed indirectly.
313 /// \param ValueInfo - The size and alignment of this type, generally
314 ///   computed with getContext().getTypeInfoInChars(ValueTy).
315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
316 ///   Each argument will be allocated to a multiple of this number of
317 ///   slots, and all the slots will be aligned to this value.
318 /// \param AllowHigherAlign - The slot alignment is not a cap;
319 ///   an argument type with an alignment greater than the slot size
320 ///   will be emitted on a higher-alignment address, potentially
321 ///   leaving one or more empty slots behind as padding.
322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
323                                 QualType ValueTy, bool IsIndirect,
324                                 std::pair<CharUnits, CharUnits> ValueInfo,
325                                 CharUnits SlotSizeAndAlign,
326                                 bool AllowHigherAlign) {
327   // The size and alignment of the value that was passed directly.
328   CharUnits DirectSize, DirectAlign;
329   if (IsIndirect) {
330     DirectSize = CGF.getPointerSize();
331     DirectAlign = CGF.getPointerAlign();
332   } else {
333     DirectSize = ValueInfo.first;
334     DirectAlign = ValueInfo.second;
335   }
336 
337   // Cast the address we've calculated to the right type.
338   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
339   if (IsIndirect)
340     DirectTy = DirectTy->getPointerTo(0);
341 
342   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
343                                         DirectSize, DirectAlign,
344                                         SlotSizeAndAlign,
345                                         AllowHigherAlign);
346 
347   if (IsIndirect) {
348     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
349   }
350 
351   return Addr;
352 
353 }
354 
355 static Address emitMergePHI(CodeGenFunction &CGF,
356                             Address Addr1, llvm::BasicBlock *Block1,
357                             Address Addr2, llvm::BasicBlock *Block2,
358                             const llvm::Twine &Name = "") {
359   assert(Addr1.getType() == Addr2.getType());
360   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
361   PHI->addIncoming(Addr1.getPointer(), Block1);
362   PHI->addIncoming(Addr2.getPointer(), Block2);
363   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
364   return Address(PHI, Align);
365 }
366 
367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
368 
369 // If someone can figure out a general rule for this, that would be great.
370 // It's probably just doomed to be platform-dependent, though.
371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
372   // Verified for:
373   //   x86-64     FreeBSD, Linux, Darwin
374   //   x86-32     FreeBSD, Linux, Darwin
375   //   PowerPC    Linux, Darwin
376   //   ARM        Darwin (*not* EABI)
377   //   AArch64    Linux
378   return 32;
379 }
380 
381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
382                                      const FunctionNoProtoType *fnType) const {
383   // The following conventions are known to require this to be false:
384   //   x86_stdcall
385   //   MIPS
386   // For everything else, we just prefer false unless we opt out.
387   return false;
388 }
389 
390 void
391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
392                                              llvm::SmallString<24> &Opt) const {
393   // This assumes the user is passing a library name like "rt" instead of a
394   // filename like "librt.a/so", and that they don't care whether it's static or
395   // dynamic.
396   Opt = "-l";
397   Opt += Lib;
398 }
399 
400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
401   // OpenCL kernels are called via an explicit runtime API with arguments
402   // set with clSetKernelArg(), not as normal sub-functions.
403   // Return SPIR_KERNEL by default as the kernel calling convention to
404   // ensure the fingerprint is fixed such way that each OpenCL argument
405   // gets one matching argument in the produced kernel function argument
406   // list to enable feasible implementation of clSetKernelArg() with
407   // aggregates etc. In case we would use the default C calling conv here,
408   // clSetKernelArg() might break depending on the target-specific
409   // conventions; different targets might split structs passed as values
410   // to multiple function arguments etc.
411   return llvm::CallingConv::SPIR_KERNEL;
412 }
413 
414 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
415     llvm::PointerType *T, QualType QT) const {
416   return llvm::ConstantPointerNull::get(T);
417 }
418 
419 unsigned TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
420                                                      const VarDecl *D) const {
421   assert(!CGM.getLangOpts().OpenCL &&
422          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
423          "Address space agnostic languages only");
424   return D ? D->getType().getAddressSpace()
425            : static_cast<unsigned>(LangAS::Default);
426 }
427 
428 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
429     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, unsigned SrcAddr,
430     unsigned DestAddr, llvm::Type *DestTy, bool isNonNull) const {
431   // Since target may map different address spaces in AST to the same address
432   // space, an address space conversion may end up as a bitcast.
433   if (auto *C = dyn_cast<llvm::Constant>(Src))
434     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
435   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
436 }
437 
438 llvm::Constant *
439 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
440                                         unsigned SrcAddr, unsigned DestAddr,
441                                         llvm::Type *DestTy) const {
442   // Since target may map different address spaces in AST to the same address
443   // space, an address space conversion may end up as a bitcast.
444   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
445 }
446 
447 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
448 
449 /// isEmptyField - Return true iff a the field is "empty", that is it
450 /// is an unnamed bit-field or an (array of) empty record(s).
451 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
452                          bool AllowArrays) {
453   if (FD->isUnnamedBitfield())
454     return true;
455 
456   QualType FT = FD->getType();
457 
458   // Constant arrays of empty records count as empty, strip them off.
459   // Constant arrays of zero length always count as empty.
460   if (AllowArrays)
461     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
462       if (AT->getSize() == 0)
463         return true;
464       FT = AT->getElementType();
465     }
466 
467   const RecordType *RT = FT->getAs<RecordType>();
468   if (!RT)
469     return false;
470 
471   // C++ record fields are never empty, at least in the Itanium ABI.
472   //
473   // FIXME: We should use a predicate for whether this behavior is true in the
474   // current ABI.
475   if (isa<CXXRecordDecl>(RT->getDecl()))
476     return false;
477 
478   return isEmptyRecord(Context, FT, AllowArrays);
479 }
480 
481 /// isEmptyRecord - Return true iff a structure contains only empty
482 /// fields. Note that a structure with a flexible array member is not
483 /// considered empty.
484 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
485   const RecordType *RT = T->getAs<RecordType>();
486   if (!RT)
487     return false;
488   const RecordDecl *RD = RT->getDecl();
489   if (RD->hasFlexibleArrayMember())
490     return false;
491 
492   // If this is a C++ record, check the bases first.
493   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
494     for (const auto &I : CXXRD->bases())
495       if (!isEmptyRecord(Context, I.getType(), true))
496         return false;
497 
498   for (const auto *I : RD->fields())
499     if (!isEmptyField(Context, I, AllowArrays))
500       return false;
501   return true;
502 }
503 
504 /// isSingleElementStruct - Determine if a structure is a "single
505 /// element struct", i.e. it has exactly one non-empty field or
506 /// exactly one field which is itself a single element
507 /// struct. Structures with flexible array members are never
508 /// considered single element structs.
509 ///
510 /// \return The field declaration for the single non-empty field, if
511 /// it exists.
512 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
513   const RecordType *RT = T->getAs<RecordType>();
514   if (!RT)
515     return nullptr;
516 
517   const RecordDecl *RD = RT->getDecl();
518   if (RD->hasFlexibleArrayMember())
519     return nullptr;
520 
521   const Type *Found = nullptr;
522 
523   // If this is a C++ record, check the bases first.
524   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
525     for (const auto &I : CXXRD->bases()) {
526       // Ignore empty records.
527       if (isEmptyRecord(Context, I.getType(), true))
528         continue;
529 
530       // If we already found an element then this isn't a single-element struct.
531       if (Found)
532         return nullptr;
533 
534       // If this is non-empty and not a single element struct, the composite
535       // cannot be a single element struct.
536       Found = isSingleElementStruct(I.getType(), Context);
537       if (!Found)
538         return nullptr;
539     }
540   }
541 
542   // Check for single element.
543   for (const auto *FD : RD->fields()) {
544     QualType FT = FD->getType();
545 
546     // Ignore empty fields.
547     if (isEmptyField(Context, FD, true))
548       continue;
549 
550     // If we already found an element then this isn't a single-element
551     // struct.
552     if (Found)
553       return nullptr;
554 
555     // Treat single element arrays as the element.
556     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
557       if (AT->getSize().getZExtValue() != 1)
558         break;
559       FT = AT->getElementType();
560     }
561 
562     if (!isAggregateTypeForABI(FT)) {
563       Found = FT.getTypePtr();
564     } else {
565       Found = isSingleElementStruct(FT, Context);
566       if (!Found)
567         return nullptr;
568     }
569   }
570 
571   // We don't consider a struct a single-element struct if it has
572   // padding beyond the element type.
573   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
574     return nullptr;
575 
576   return Found;
577 }
578 
579 namespace {
580 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
581                        const ABIArgInfo &AI) {
582   // This default implementation defers to the llvm backend's va_arg
583   // instruction. It can handle only passing arguments directly
584   // (typically only handled in the backend for primitive types), or
585   // aggregates passed indirectly by pointer (NOTE: if the "byval"
586   // flag has ABI impact in the callee, this implementation cannot
587   // work.)
588 
589   // Only a few cases are covered here at the moment -- those needed
590   // by the default abi.
591   llvm::Value *Val;
592 
593   if (AI.isIndirect()) {
594     assert(!AI.getPaddingType() &&
595            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
596     assert(
597         !AI.getIndirectRealign() &&
598         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
599 
600     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
601     CharUnits TyAlignForABI = TyInfo.second;
602 
603     llvm::Type *BaseTy =
604         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
605     llvm::Value *Addr =
606         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
607     return Address(Addr, TyAlignForABI);
608   } else {
609     assert((AI.isDirect() || AI.isExtend()) &&
610            "Unexpected ArgInfo Kind in generic VAArg emitter!");
611 
612     assert(!AI.getInReg() &&
613            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
614     assert(!AI.getPaddingType() &&
615            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
616     assert(!AI.getDirectOffset() &&
617            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
618     assert(!AI.getCoerceToType() &&
619            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
620 
621     Address Temp = CGF.CreateMemTemp(Ty, "varet");
622     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
623     CGF.Builder.CreateStore(Val, Temp);
624     return Temp;
625   }
626 }
627 
628 /// DefaultABIInfo - The default implementation for ABI specific
629 /// details. This implementation provides information which results in
630 /// self-consistent and sensible LLVM IR generation, but does not
631 /// conform to any particular ABI.
632 class DefaultABIInfo : public ABIInfo {
633 public:
634   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
635 
636   ABIArgInfo classifyReturnType(QualType RetTy) const;
637   ABIArgInfo classifyArgumentType(QualType RetTy) const;
638 
639   void computeInfo(CGFunctionInfo &FI) const override {
640     if (!getCXXABI().classifyReturnType(FI))
641       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
642     for (auto &I : FI.arguments())
643       I.info = classifyArgumentType(I.type);
644   }
645 
646   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
647                     QualType Ty) const override {
648     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
649   }
650 };
651 
652 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
653 public:
654   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
655     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
656 };
657 
658 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
659   Ty = useFirstFieldIfTransparentUnion(Ty);
660 
661   if (isAggregateTypeForABI(Ty)) {
662     // Records with non-trivial destructors/copy-constructors should not be
663     // passed by value.
664     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
665       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
666 
667     return getNaturalAlignIndirect(Ty);
668   }
669 
670   // Treat an enum type as its underlying type.
671   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
672     Ty = EnumTy->getDecl()->getIntegerType();
673 
674   return (Ty->isPromotableIntegerType() ?
675           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
676 }
677 
678 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
679   if (RetTy->isVoidType())
680     return ABIArgInfo::getIgnore();
681 
682   if (isAggregateTypeForABI(RetTy))
683     return getNaturalAlignIndirect(RetTy);
684 
685   // Treat an enum type as its underlying type.
686   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
687     RetTy = EnumTy->getDecl()->getIntegerType();
688 
689   return (RetTy->isPromotableIntegerType() ?
690           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
691 }
692 
693 //===----------------------------------------------------------------------===//
694 // WebAssembly ABI Implementation
695 //
696 // This is a very simple ABI that relies a lot on DefaultABIInfo.
697 //===----------------------------------------------------------------------===//
698 
699 class WebAssemblyABIInfo final : public DefaultABIInfo {
700 public:
701   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
702       : DefaultABIInfo(CGT) {}
703 
704 private:
705   ABIArgInfo classifyReturnType(QualType RetTy) const;
706   ABIArgInfo classifyArgumentType(QualType Ty) const;
707 
708   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
709   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
710   // overload them.
711   void computeInfo(CGFunctionInfo &FI) const override {
712     if (!getCXXABI().classifyReturnType(FI))
713       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
714     for (auto &Arg : FI.arguments())
715       Arg.info = classifyArgumentType(Arg.type);
716   }
717 
718   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
719                     QualType Ty) const override;
720 };
721 
722 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
723 public:
724   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
725       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
726 };
727 
728 /// \brief Classify argument of given type \p Ty.
729 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
730   Ty = useFirstFieldIfTransparentUnion(Ty);
731 
732   if (isAggregateTypeForABI(Ty)) {
733     // Records with non-trivial destructors/copy-constructors should not be
734     // passed by value.
735     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
736       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
737     // Ignore empty structs/unions.
738     if (isEmptyRecord(getContext(), Ty, true))
739       return ABIArgInfo::getIgnore();
740     // Lower single-element structs to just pass a regular value. TODO: We
741     // could do reasonable-size multiple-element structs too, using getExpand(),
742     // though watch out for things like bitfields.
743     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
744       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
745   }
746 
747   // Otherwise just do the default thing.
748   return DefaultABIInfo::classifyArgumentType(Ty);
749 }
750 
751 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
752   if (isAggregateTypeForABI(RetTy)) {
753     // Records with non-trivial destructors/copy-constructors should not be
754     // returned by value.
755     if (!getRecordArgABI(RetTy, getCXXABI())) {
756       // Ignore empty structs/unions.
757       if (isEmptyRecord(getContext(), RetTy, true))
758         return ABIArgInfo::getIgnore();
759       // Lower single-element structs to just return a regular value. TODO: We
760       // could do reasonable-size multiple-element structs too, using
761       // ABIArgInfo::getDirect().
762       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
763         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
764     }
765   }
766 
767   // Otherwise just do the default thing.
768   return DefaultABIInfo::classifyReturnType(RetTy);
769 }
770 
771 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
772                                       QualType Ty) const {
773   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
774                           getContext().getTypeInfoInChars(Ty),
775                           CharUnits::fromQuantity(4),
776                           /*AllowHigherAlign=*/ true);
777 }
778 
779 //===----------------------------------------------------------------------===//
780 // le32/PNaCl bitcode ABI Implementation
781 //
782 // This is a simplified version of the x86_32 ABI.  Arguments and return values
783 // are always passed on the stack.
784 //===----------------------------------------------------------------------===//
785 
786 class PNaClABIInfo : public ABIInfo {
787  public:
788   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
789 
790   ABIArgInfo classifyReturnType(QualType RetTy) const;
791   ABIArgInfo classifyArgumentType(QualType RetTy) const;
792 
793   void computeInfo(CGFunctionInfo &FI) const override;
794   Address EmitVAArg(CodeGenFunction &CGF,
795                     Address VAListAddr, QualType Ty) const override;
796 };
797 
798 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
799  public:
800   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
801     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
802 };
803 
804 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
805   if (!getCXXABI().classifyReturnType(FI))
806     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
807 
808   for (auto &I : FI.arguments())
809     I.info = classifyArgumentType(I.type);
810 }
811 
812 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
813                                 QualType Ty) const {
814   // The PNaCL ABI is a bit odd, in that varargs don't use normal
815   // function classification. Structs get passed directly for varargs
816   // functions, through a rewriting transform in
817   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
818   // this target to actually support a va_arg instructions with an
819   // aggregate type, unlike other targets.
820   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
821 }
822 
823 /// \brief Classify argument of given type \p Ty.
824 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
825   if (isAggregateTypeForABI(Ty)) {
826     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
827       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
828     return getNaturalAlignIndirect(Ty);
829   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
830     // Treat an enum type as its underlying type.
831     Ty = EnumTy->getDecl()->getIntegerType();
832   } else if (Ty->isFloatingType()) {
833     // Floating-point types don't go inreg.
834     return ABIArgInfo::getDirect();
835   }
836 
837   return (Ty->isPromotableIntegerType() ?
838           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
839 }
840 
841 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
842   if (RetTy->isVoidType())
843     return ABIArgInfo::getIgnore();
844 
845   // In the PNaCl ABI we always return records/structures on the stack.
846   if (isAggregateTypeForABI(RetTy))
847     return getNaturalAlignIndirect(RetTy);
848 
849   // Treat an enum type as its underlying type.
850   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
851     RetTy = EnumTy->getDecl()->getIntegerType();
852 
853   return (RetTy->isPromotableIntegerType() ?
854           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
855 }
856 
857 /// IsX86_MMXType - Return true if this is an MMX type.
858 bool IsX86_MMXType(llvm::Type *IRType) {
859   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
860   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
861     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
862     IRType->getScalarSizeInBits() != 64;
863 }
864 
865 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
866                                           StringRef Constraint,
867                                           llvm::Type* Ty) {
868   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
869     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
870       // Invalid MMX constraint
871       return nullptr;
872     }
873 
874     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
875   }
876 
877   // No operation needed
878   return Ty;
879 }
880 
881 /// Returns true if this type can be passed in SSE registers with the
882 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
883 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
884   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
885     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
886       if (BT->getKind() == BuiltinType::LongDouble) {
887         if (&Context.getTargetInfo().getLongDoubleFormat() ==
888             &llvm::APFloat::x87DoubleExtended())
889           return false;
890       }
891       return true;
892     }
893   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
894     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
895     // registers specially.
896     unsigned VecSize = Context.getTypeSize(VT);
897     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
898       return true;
899   }
900   return false;
901 }
902 
903 /// Returns true if this aggregate is small enough to be passed in SSE registers
904 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
905 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
906   return NumMembers <= 4;
907 }
908 
909 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
910 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
911   auto AI = ABIArgInfo::getDirect(T);
912   AI.setInReg(true);
913   AI.setCanBeFlattened(false);
914   return AI;
915 }
916 
917 //===----------------------------------------------------------------------===//
918 // X86-32 ABI Implementation
919 //===----------------------------------------------------------------------===//
920 
921 /// \brief Similar to llvm::CCState, but for Clang.
922 struct CCState {
923   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
924 
925   unsigned CC;
926   unsigned FreeRegs;
927   unsigned FreeSSERegs;
928 };
929 
930 enum {
931   // Vectorcall only allows the first 6 parameters to be passed in registers.
932   VectorcallMaxParamNumAsReg = 6
933 };
934 
935 /// X86_32ABIInfo - The X86-32 ABI information.
936 class X86_32ABIInfo : public SwiftABIInfo {
937   enum Class {
938     Integer,
939     Float
940   };
941 
942   static const unsigned MinABIStackAlignInBytes = 4;
943 
944   bool IsDarwinVectorABI;
945   bool IsRetSmallStructInRegABI;
946   bool IsWin32StructABI;
947   bool IsSoftFloatABI;
948   bool IsMCUABI;
949   unsigned DefaultNumRegisterParameters;
950 
951   static bool isRegisterSize(unsigned Size) {
952     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
953   }
954 
955   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
956     // FIXME: Assumes vectorcall is in use.
957     return isX86VectorTypeForVectorCall(getContext(), Ty);
958   }
959 
960   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
961                                          uint64_t NumMembers) const override {
962     // FIXME: Assumes vectorcall is in use.
963     return isX86VectorCallAggregateSmallEnough(NumMembers);
964   }
965 
966   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
967 
968   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
969   /// such that the argument will be passed in memory.
970   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
971 
972   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
973 
974   /// \brief Return the alignment to use for the given type on the stack.
975   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
976 
977   Class classify(QualType Ty) const;
978   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
979   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
980 
981   /// \brief Updates the number of available free registers, returns
982   /// true if any registers were allocated.
983   bool updateFreeRegs(QualType Ty, CCState &State) const;
984 
985   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
986                                 bool &NeedsPadding) const;
987   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
988 
989   bool canExpandIndirectArgument(QualType Ty) const;
990 
991   /// \brief Rewrite the function info so that all memory arguments use
992   /// inalloca.
993   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
994 
995   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
996                            CharUnits &StackOffset, ABIArgInfo &Info,
997                            QualType Type) const;
998   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
999                              bool &UsedInAlloca) const;
1000 
1001 public:
1002 
1003   void computeInfo(CGFunctionInfo &FI) const override;
1004   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1005                     QualType Ty) const override;
1006 
1007   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1008                 bool RetSmallStructInRegABI, bool Win32StructABI,
1009                 unsigned NumRegisterParameters, bool SoftFloatABI)
1010     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1011       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1012       IsWin32StructABI(Win32StructABI),
1013       IsSoftFloatABI(SoftFloatABI),
1014       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1015       DefaultNumRegisterParameters(NumRegisterParameters) {}
1016 
1017   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
1018                                     ArrayRef<llvm::Type*> scalars,
1019                                     bool asReturnValue) const override {
1020     // LLVM's x86-32 lowering currently only assigns up to three
1021     // integer registers and three fp registers.  Oddly, it'll use up to
1022     // four vector registers for vectors, but those can overlap with the
1023     // scalar registers.
1024     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1025   }
1026 
1027   bool isSwiftErrorInRegister() const override {
1028     // x86-32 lowering does not support passing swifterror in a register.
1029     return false;
1030   }
1031 };
1032 
1033 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1034 public:
1035   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1036                           bool RetSmallStructInRegABI, bool Win32StructABI,
1037                           unsigned NumRegisterParameters, bool SoftFloatABI)
1038       : TargetCodeGenInfo(new X86_32ABIInfo(
1039             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1040             NumRegisterParameters, SoftFloatABI)) {}
1041 
1042   static bool isStructReturnInRegABI(
1043       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1044 
1045   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1046                            CodeGen::CodeGenModule &CGM,
1047                            ForDefinition_t IsForDefinition) const override;
1048 
1049   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1050     // Darwin uses different dwarf register numbers for EH.
1051     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1052     return 4;
1053   }
1054 
1055   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1056                                llvm::Value *Address) const override;
1057 
1058   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1059                                   StringRef Constraint,
1060                                   llvm::Type* Ty) const override {
1061     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1062   }
1063 
1064   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1065                                 std::string &Constraints,
1066                                 std::vector<llvm::Type *> &ResultRegTypes,
1067                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1068                                 std::vector<LValue> &ResultRegDests,
1069                                 std::string &AsmString,
1070                                 unsigned NumOutputs) const override;
1071 
1072   llvm::Constant *
1073   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1074     unsigned Sig = (0xeb << 0) |  // jmp rel8
1075                    (0x06 << 8) |  //           .+0x08
1076                    ('F' << 16) |
1077                    ('T' << 24);
1078     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1079   }
1080 
1081   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1082     return "movl\t%ebp, %ebp"
1083            "\t\t## marker for objc_retainAutoreleaseReturnValue";
1084   }
1085 };
1086 
1087 }
1088 
1089 /// Rewrite input constraint references after adding some output constraints.
1090 /// In the case where there is one output and one input and we add one output,
1091 /// we need to replace all operand references greater than or equal to 1:
1092 ///     mov $0, $1
1093 ///     mov eax, $1
1094 /// The result will be:
1095 ///     mov $0, $2
1096 ///     mov eax, $2
1097 static void rewriteInputConstraintReferences(unsigned FirstIn,
1098                                              unsigned NumNewOuts,
1099                                              std::string &AsmString) {
1100   std::string Buf;
1101   llvm::raw_string_ostream OS(Buf);
1102   size_t Pos = 0;
1103   while (Pos < AsmString.size()) {
1104     size_t DollarStart = AsmString.find('$', Pos);
1105     if (DollarStart == std::string::npos)
1106       DollarStart = AsmString.size();
1107     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1108     if (DollarEnd == std::string::npos)
1109       DollarEnd = AsmString.size();
1110     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1111     Pos = DollarEnd;
1112     size_t NumDollars = DollarEnd - DollarStart;
1113     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1114       // We have an operand reference.
1115       size_t DigitStart = Pos;
1116       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1117       if (DigitEnd == std::string::npos)
1118         DigitEnd = AsmString.size();
1119       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1120       unsigned OperandIndex;
1121       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1122         if (OperandIndex >= FirstIn)
1123           OperandIndex += NumNewOuts;
1124         OS << OperandIndex;
1125       } else {
1126         OS << OperandStr;
1127       }
1128       Pos = DigitEnd;
1129     }
1130   }
1131   AsmString = std::move(OS.str());
1132 }
1133 
1134 /// Add output constraints for EAX:EDX because they are return registers.
1135 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1136     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1137     std::vector<llvm::Type *> &ResultRegTypes,
1138     std::vector<llvm::Type *> &ResultTruncRegTypes,
1139     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1140     unsigned NumOutputs) const {
1141   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1142 
1143   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1144   // larger.
1145   if (!Constraints.empty())
1146     Constraints += ',';
1147   if (RetWidth <= 32) {
1148     Constraints += "={eax}";
1149     ResultRegTypes.push_back(CGF.Int32Ty);
1150   } else {
1151     // Use the 'A' constraint for EAX:EDX.
1152     Constraints += "=A";
1153     ResultRegTypes.push_back(CGF.Int64Ty);
1154   }
1155 
1156   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1157   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1158   ResultTruncRegTypes.push_back(CoerceTy);
1159 
1160   // Coerce the integer by bitcasting the return slot pointer.
1161   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1162                                                   CoerceTy->getPointerTo()));
1163   ResultRegDests.push_back(ReturnSlot);
1164 
1165   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1166 }
1167 
1168 /// shouldReturnTypeInRegister - Determine if the given type should be
1169 /// returned in a register (for the Darwin and MCU ABI).
1170 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1171                                                ASTContext &Context) const {
1172   uint64_t Size = Context.getTypeSize(Ty);
1173 
1174   // For i386, type must be register sized.
1175   // For the MCU ABI, it only needs to be <= 8-byte
1176   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1177    return false;
1178 
1179   if (Ty->isVectorType()) {
1180     // 64- and 128- bit vectors inside structures are not returned in
1181     // registers.
1182     if (Size == 64 || Size == 128)
1183       return false;
1184 
1185     return true;
1186   }
1187 
1188   // If this is a builtin, pointer, enum, complex type, member pointer, or
1189   // member function pointer it is ok.
1190   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1191       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1192       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1193     return true;
1194 
1195   // Arrays are treated like records.
1196   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1197     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1198 
1199   // Otherwise, it must be a record type.
1200   const RecordType *RT = Ty->getAs<RecordType>();
1201   if (!RT) return false;
1202 
1203   // FIXME: Traverse bases here too.
1204 
1205   // Structure types are passed in register if all fields would be
1206   // passed in a register.
1207   for (const auto *FD : RT->getDecl()->fields()) {
1208     // Empty fields are ignored.
1209     if (isEmptyField(Context, FD, true))
1210       continue;
1211 
1212     // Check fields recursively.
1213     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1214       return false;
1215   }
1216   return true;
1217 }
1218 
1219 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1220   // Treat complex types as the element type.
1221   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1222     Ty = CTy->getElementType();
1223 
1224   // Check for a type which we know has a simple scalar argument-passing
1225   // convention without any padding.  (We're specifically looking for 32
1226   // and 64-bit integer and integer-equivalents, float, and double.)
1227   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1228       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1229     return false;
1230 
1231   uint64_t Size = Context.getTypeSize(Ty);
1232   return Size == 32 || Size == 64;
1233 }
1234 
1235 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1236                           uint64_t &Size) {
1237   for (const auto *FD : RD->fields()) {
1238     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1239     // argument is smaller than 32-bits, expanding the struct will create
1240     // alignment padding.
1241     if (!is32Or64BitBasicType(FD->getType(), Context))
1242       return false;
1243 
1244     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1245     // how to expand them yet, and the predicate for telling if a bitfield still
1246     // counts as "basic" is more complicated than what we were doing previously.
1247     if (FD->isBitField())
1248       return false;
1249 
1250     Size += Context.getTypeSize(FD->getType());
1251   }
1252   return true;
1253 }
1254 
1255 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1256                                  uint64_t &Size) {
1257   // Don't do this if there are any non-empty bases.
1258   for (const CXXBaseSpecifier &Base : RD->bases()) {
1259     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1260                               Size))
1261       return false;
1262   }
1263   if (!addFieldSizes(Context, RD, Size))
1264     return false;
1265   return true;
1266 }
1267 
1268 /// Test whether an argument type which is to be passed indirectly (on the
1269 /// stack) would have the equivalent layout if it was expanded into separate
1270 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1271 /// optimizations.
1272 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1273   // We can only expand structure types.
1274   const RecordType *RT = Ty->getAs<RecordType>();
1275   if (!RT)
1276     return false;
1277   const RecordDecl *RD = RT->getDecl();
1278   uint64_t Size = 0;
1279   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1280     if (!IsWin32StructABI) {
1281       // On non-Windows, we have to conservatively match our old bitcode
1282       // prototypes in order to be ABI-compatible at the bitcode level.
1283       if (!CXXRD->isCLike())
1284         return false;
1285     } else {
1286       // Don't do this for dynamic classes.
1287       if (CXXRD->isDynamicClass())
1288         return false;
1289     }
1290     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1291       return false;
1292   } else {
1293     if (!addFieldSizes(getContext(), RD, Size))
1294       return false;
1295   }
1296 
1297   // We can do this if there was no alignment padding.
1298   return Size == getContext().getTypeSize(Ty);
1299 }
1300 
1301 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1302   // If the return value is indirect, then the hidden argument is consuming one
1303   // integer register.
1304   if (State.FreeRegs) {
1305     --State.FreeRegs;
1306     if (!IsMCUABI)
1307       return getNaturalAlignIndirectInReg(RetTy);
1308   }
1309   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1310 }
1311 
1312 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1313                                              CCState &State) const {
1314   if (RetTy->isVoidType())
1315     return ABIArgInfo::getIgnore();
1316 
1317   const Type *Base = nullptr;
1318   uint64_t NumElts = 0;
1319   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1320        State.CC == llvm::CallingConv::X86_RegCall) &&
1321       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1322     // The LLVM struct type for such an aggregate should lower properly.
1323     return ABIArgInfo::getDirect();
1324   }
1325 
1326   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1327     // On Darwin, some vectors are returned in registers.
1328     if (IsDarwinVectorABI) {
1329       uint64_t Size = getContext().getTypeSize(RetTy);
1330 
1331       // 128-bit vectors are a special case; they are returned in
1332       // registers and we need to make sure to pick a type the LLVM
1333       // backend will like.
1334       if (Size == 128)
1335         return ABIArgInfo::getDirect(llvm::VectorType::get(
1336                   llvm::Type::getInt64Ty(getVMContext()), 2));
1337 
1338       // Always return in register if it fits in a general purpose
1339       // register, or if it is 64 bits and has a single element.
1340       if ((Size == 8 || Size == 16 || Size == 32) ||
1341           (Size == 64 && VT->getNumElements() == 1))
1342         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1343                                                             Size));
1344 
1345       return getIndirectReturnResult(RetTy, State);
1346     }
1347 
1348     return ABIArgInfo::getDirect();
1349   }
1350 
1351   if (isAggregateTypeForABI(RetTy)) {
1352     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1353       // Structures with flexible arrays are always indirect.
1354       if (RT->getDecl()->hasFlexibleArrayMember())
1355         return getIndirectReturnResult(RetTy, State);
1356     }
1357 
1358     // If specified, structs and unions are always indirect.
1359     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1360       return getIndirectReturnResult(RetTy, State);
1361 
1362     // Ignore empty structs/unions.
1363     if (isEmptyRecord(getContext(), RetTy, true))
1364       return ABIArgInfo::getIgnore();
1365 
1366     // Small structures which are register sized are generally returned
1367     // in a register.
1368     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1369       uint64_t Size = getContext().getTypeSize(RetTy);
1370 
1371       // As a special-case, if the struct is a "single-element" struct, and
1372       // the field is of type "float" or "double", return it in a
1373       // floating-point register. (MSVC does not apply this special case.)
1374       // We apply a similar transformation for pointer types to improve the
1375       // quality of the generated IR.
1376       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1377         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1378             || SeltTy->hasPointerRepresentation())
1379           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1380 
1381       // FIXME: We should be able to narrow this integer in cases with dead
1382       // padding.
1383       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1384     }
1385 
1386     return getIndirectReturnResult(RetTy, State);
1387   }
1388 
1389   // Treat an enum type as its underlying type.
1390   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1391     RetTy = EnumTy->getDecl()->getIntegerType();
1392 
1393   return (RetTy->isPromotableIntegerType() ?
1394           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1395 }
1396 
1397 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1398   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1399 }
1400 
1401 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1402   const RecordType *RT = Ty->getAs<RecordType>();
1403   if (!RT)
1404     return 0;
1405   const RecordDecl *RD = RT->getDecl();
1406 
1407   // If this is a C++ record, check the bases first.
1408   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1409     for (const auto &I : CXXRD->bases())
1410       if (!isRecordWithSSEVectorType(Context, I.getType()))
1411         return false;
1412 
1413   for (const auto *i : RD->fields()) {
1414     QualType FT = i->getType();
1415 
1416     if (isSSEVectorType(Context, FT))
1417       return true;
1418 
1419     if (isRecordWithSSEVectorType(Context, FT))
1420       return true;
1421   }
1422 
1423   return false;
1424 }
1425 
1426 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1427                                                  unsigned Align) const {
1428   // Otherwise, if the alignment is less than or equal to the minimum ABI
1429   // alignment, just use the default; the backend will handle this.
1430   if (Align <= MinABIStackAlignInBytes)
1431     return 0; // Use default alignment.
1432 
1433   // On non-Darwin, the stack type alignment is always 4.
1434   if (!IsDarwinVectorABI) {
1435     // Set explicit alignment, since we may need to realign the top.
1436     return MinABIStackAlignInBytes;
1437   }
1438 
1439   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1440   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1441                       isRecordWithSSEVectorType(getContext(), Ty)))
1442     return 16;
1443 
1444   return MinABIStackAlignInBytes;
1445 }
1446 
1447 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1448                                             CCState &State) const {
1449   if (!ByVal) {
1450     if (State.FreeRegs) {
1451       --State.FreeRegs; // Non-byval indirects just use one pointer.
1452       if (!IsMCUABI)
1453         return getNaturalAlignIndirectInReg(Ty);
1454     }
1455     return getNaturalAlignIndirect(Ty, false);
1456   }
1457 
1458   // Compute the byval alignment.
1459   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1460   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1461   if (StackAlign == 0)
1462     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1463 
1464   // If the stack alignment is less than the type alignment, realign the
1465   // argument.
1466   bool Realign = TypeAlign > StackAlign;
1467   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1468                                  /*ByVal=*/true, Realign);
1469 }
1470 
1471 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1472   const Type *T = isSingleElementStruct(Ty, getContext());
1473   if (!T)
1474     T = Ty.getTypePtr();
1475 
1476   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1477     BuiltinType::Kind K = BT->getKind();
1478     if (K == BuiltinType::Float || K == BuiltinType::Double)
1479       return Float;
1480   }
1481   return Integer;
1482 }
1483 
1484 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1485   if (!IsSoftFloatABI) {
1486     Class C = classify(Ty);
1487     if (C == Float)
1488       return false;
1489   }
1490 
1491   unsigned Size = getContext().getTypeSize(Ty);
1492   unsigned SizeInRegs = (Size + 31) / 32;
1493 
1494   if (SizeInRegs == 0)
1495     return false;
1496 
1497   if (!IsMCUABI) {
1498     if (SizeInRegs > State.FreeRegs) {
1499       State.FreeRegs = 0;
1500       return false;
1501     }
1502   } else {
1503     // The MCU psABI allows passing parameters in-reg even if there are
1504     // earlier parameters that are passed on the stack. Also,
1505     // it does not allow passing >8-byte structs in-register,
1506     // even if there are 3 free registers available.
1507     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1508       return false;
1509   }
1510 
1511   State.FreeRegs -= SizeInRegs;
1512   return true;
1513 }
1514 
1515 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1516                                              bool &InReg,
1517                                              bool &NeedsPadding) const {
1518   // On Windows, aggregates other than HFAs are never passed in registers, and
1519   // they do not consume register slots. Homogenous floating-point aggregates
1520   // (HFAs) have already been dealt with at this point.
1521   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1522     return false;
1523 
1524   NeedsPadding = false;
1525   InReg = !IsMCUABI;
1526 
1527   if (!updateFreeRegs(Ty, State))
1528     return false;
1529 
1530   if (IsMCUABI)
1531     return true;
1532 
1533   if (State.CC == llvm::CallingConv::X86_FastCall ||
1534       State.CC == llvm::CallingConv::X86_VectorCall ||
1535       State.CC == llvm::CallingConv::X86_RegCall) {
1536     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1537       NeedsPadding = true;
1538 
1539     return false;
1540   }
1541 
1542   return true;
1543 }
1544 
1545 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1546   if (!updateFreeRegs(Ty, State))
1547     return false;
1548 
1549   if (IsMCUABI)
1550     return false;
1551 
1552   if (State.CC == llvm::CallingConv::X86_FastCall ||
1553       State.CC == llvm::CallingConv::X86_VectorCall ||
1554       State.CC == llvm::CallingConv::X86_RegCall) {
1555     if (getContext().getTypeSize(Ty) > 32)
1556       return false;
1557 
1558     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1559         Ty->isReferenceType());
1560   }
1561 
1562   return true;
1563 }
1564 
1565 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1566                                                CCState &State) const {
1567   // FIXME: Set alignment on indirect arguments.
1568 
1569   Ty = useFirstFieldIfTransparentUnion(Ty);
1570 
1571   // Check with the C++ ABI first.
1572   const RecordType *RT = Ty->getAs<RecordType>();
1573   if (RT) {
1574     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1575     if (RAA == CGCXXABI::RAA_Indirect) {
1576       return getIndirectResult(Ty, false, State);
1577     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1578       // The field index doesn't matter, we'll fix it up later.
1579       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1580     }
1581   }
1582 
1583   // Regcall uses the concept of a homogenous vector aggregate, similar
1584   // to other targets.
1585   const Type *Base = nullptr;
1586   uint64_t NumElts = 0;
1587   if (State.CC == llvm::CallingConv::X86_RegCall &&
1588       isHomogeneousAggregate(Ty, Base, NumElts)) {
1589 
1590     if (State.FreeSSERegs >= NumElts) {
1591       State.FreeSSERegs -= NumElts;
1592       if (Ty->isBuiltinType() || Ty->isVectorType())
1593         return ABIArgInfo::getDirect();
1594       return ABIArgInfo::getExpand();
1595     }
1596     return getIndirectResult(Ty, /*ByVal=*/false, State);
1597   }
1598 
1599   if (isAggregateTypeForABI(Ty)) {
1600     // Structures with flexible arrays are always indirect.
1601     // FIXME: This should not be byval!
1602     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1603       return getIndirectResult(Ty, true, State);
1604 
1605     // Ignore empty structs/unions on non-Windows.
1606     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1607       return ABIArgInfo::getIgnore();
1608 
1609     llvm::LLVMContext &LLVMContext = getVMContext();
1610     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1611     bool NeedsPadding = false;
1612     bool InReg;
1613     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1614       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1615       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1616       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1617       if (InReg)
1618         return ABIArgInfo::getDirectInReg(Result);
1619       else
1620         return ABIArgInfo::getDirect(Result);
1621     }
1622     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1623 
1624     // Expand small (<= 128-bit) record types when we know that the stack layout
1625     // of those arguments will match the struct. This is important because the
1626     // LLVM backend isn't smart enough to remove byval, which inhibits many
1627     // optimizations.
1628     // Don't do this for the MCU if there are still free integer registers
1629     // (see X86_64 ABI for full explanation).
1630     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1631         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1632       return ABIArgInfo::getExpandWithPadding(
1633           State.CC == llvm::CallingConv::X86_FastCall ||
1634               State.CC == llvm::CallingConv::X86_VectorCall ||
1635               State.CC == llvm::CallingConv::X86_RegCall,
1636           PaddingType);
1637 
1638     return getIndirectResult(Ty, true, State);
1639   }
1640 
1641   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1642     // On Darwin, some vectors are passed in memory, we handle this by passing
1643     // it as an i8/i16/i32/i64.
1644     if (IsDarwinVectorABI) {
1645       uint64_t Size = getContext().getTypeSize(Ty);
1646       if ((Size == 8 || Size == 16 || Size == 32) ||
1647           (Size == 64 && VT->getNumElements() == 1))
1648         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1649                                                             Size));
1650     }
1651 
1652     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1653       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1654 
1655     return ABIArgInfo::getDirect();
1656   }
1657 
1658 
1659   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1660     Ty = EnumTy->getDecl()->getIntegerType();
1661 
1662   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1663 
1664   if (Ty->isPromotableIntegerType()) {
1665     if (InReg)
1666       return ABIArgInfo::getExtendInReg();
1667     return ABIArgInfo::getExtend();
1668   }
1669 
1670   if (InReg)
1671     return ABIArgInfo::getDirectInReg();
1672   return ABIArgInfo::getDirect();
1673 }
1674 
1675 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1676                                           bool &UsedInAlloca) const {
1677   // Vectorcall x86 works subtly different than in x64, so the format is
1678   // a bit different than the x64 version.  First, all vector types (not HVAs)
1679   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1680   // This differs from the x64 implementation, where the first 6 by INDEX get
1681   // registers.
1682   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1683   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1684   // first take up the remaining YMM/XMM registers. If insufficient registers
1685   // remain but an integer register (ECX/EDX) is available, it will be passed
1686   // in that, else, on the stack.
1687   for (auto &I : FI.arguments()) {
1688     // First pass do all the vector types.
1689     const Type *Base = nullptr;
1690     uint64_t NumElts = 0;
1691     const QualType& Ty = I.type;
1692     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1693         isHomogeneousAggregate(Ty, Base, NumElts)) {
1694       if (State.FreeSSERegs >= NumElts) {
1695         State.FreeSSERegs -= NumElts;
1696         I.info = ABIArgInfo::getDirect();
1697       } else {
1698         I.info = classifyArgumentType(Ty, State);
1699       }
1700       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1701     }
1702   }
1703 
1704   for (auto &I : FI.arguments()) {
1705     // Second pass, do the rest!
1706     const Type *Base = nullptr;
1707     uint64_t NumElts = 0;
1708     const QualType& Ty = I.type;
1709     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1710 
1711     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1712       // Assign true HVAs (non vector/native FP types).
1713       if (State.FreeSSERegs >= NumElts) {
1714         State.FreeSSERegs -= NumElts;
1715         I.info = getDirectX86Hva();
1716       } else {
1717         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1718       }
1719     } else if (!IsHva) {
1720       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1721       I.info = classifyArgumentType(Ty, State);
1722       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1723     }
1724   }
1725 }
1726 
1727 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1728   CCState State(FI.getCallingConvention());
1729   if (IsMCUABI)
1730     State.FreeRegs = 3;
1731   else if (State.CC == llvm::CallingConv::X86_FastCall)
1732     State.FreeRegs = 2;
1733   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1734     State.FreeRegs = 2;
1735     State.FreeSSERegs = 6;
1736   } else if (FI.getHasRegParm())
1737     State.FreeRegs = FI.getRegParm();
1738   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1739     State.FreeRegs = 5;
1740     State.FreeSSERegs = 8;
1741   } else
1742     State.FreeRegs = DefaultNumRegisterParameters;
1743 
1744   if (!getCXXABI().classifyReturnType(FI)) {
1745     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1746   } else if (FI.getReturnInfo().isIndirect()) {
1747     // The C++ ABI is not aware of register usage, so we have to check if the
1748     // return value was sret and put it in a register ourselves if appropriate.
1749     if (State.FreeRegs) {
1750       --State.FreeRegs;  // The sret parameter consumes a register.
1751       if (!IsMCUABI)
1752         FI.getReturnInfo().setInReg(true);
1753     }
1754   }
1755 
1756   // The chain argument effectively gives us another free register.
1757   if (FI.isChainCall())
1758     ++State.FreeRegs;
1759 
1760   bool UsedInAlloca = false;
1761   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1762     computeVectorCallArgs(FI, State, UsedInAlloca);
1763   } else {
1764     // If not vectorcall, revert to normal behavior.
1765     for (auto &I : FI.arguments()) {
1766       I.info = classifyArgumentType(I.type, State);
1767       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1768     }
1769   }
1770 
1771   // If we needed to use inalloca for any argument, do a second pass and rewrite
1772   // all the memory arguments to use inalloca.
1773   if (UsedInAlloca)
1774     rewriteWithInAlloca(FI);
1775 }
1776 
1777 void
1778 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1779                                    CharUnits &StackOffset, ABIArgInfo &Info,
1780                                    QualType Type) const {
1781   // Arguments are always 4-byte-aligned.
1782   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1783 
1784   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1785   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1786   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1787   StackOffset += getContext().getTypeSizeInChars(Type);
1788 
1789   // Insert padding bytes to respect alignment.
1790   CharUnits FieldEnd = StackOffset;
1791   StackOffset = FieldEnd.alignTo(FieldAlign);
1792   if (StackOffset != FieldEnd) {
1793     CharUnits NumBytes = StackOffset - FieldEnd;
1794     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1795     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1796     FrameFields.push_back(Ty);
1797   }
1798 }
1799 
1800 static bool isArgInAlloca(const ABIArgInfo &Info) {
1801   // Leave ignored and inreg arguments alone.
1802   switch (Info.getKind()) {
1803   case ABIArgInfo::InAlloca:
1804     return true;
1805   case ABIArgInfo::Indirect:
1806     assert(Info.getIndirectByVal());
1807     return true;
1808   case ABIArgInfo::Ignore:
1809     return false;
1810   case ABIArgInfo::Direct:
1811   case ABIArgInfo::Extend:
1812     if (Info.getInReg())
1813       return false;
1814     return true;
1815   case ABIArgInfo::Expand:
1816   case ABIArgInfo::CoerceAndExpand:
1817     // These are aggregate types which are never passed in registers when
1818     // inalloca is involved.
1819     return true;
1820   }
1821   llvm_unreachable("invalid enum");
1822 }
1823 
1824 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1825   assert(IsWin32StructABI && "inalloca only supported on win32");
1826 
1827   // Build a packed struct type for all of the arguments in memory.
1828   SmallVector<llvm::Type *, 6> FrameFields;
1829 
1830   // The stack alignment is always 4.
1831   CharUnits StackAlign = CharUnits::fromQuantity(4);
1832 
1833   CharUnits StackOffset;
1834   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1835 
1836   // Put 'this' into the struct before 'sret', if necessary.
1837   bool IsThisCall =
1838       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1839   ABIArgInfo &Ret = FI.getReturnInfo();
1840   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1841       isArgInAlloca(I->info)) {
1842     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1843     ++I;
1844   }
1845 
1846   // Put the sret parameter into the inalloca struct if it's in memory.
1847   if (Ret.isIndirect() && !Ret.getInReg()) {
1848     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1849     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1850     // On Windows, the hidden sret parameter is always returned in eax.
1851     Ret.setInAllocaSRet(IsWin32StructABI);
1852   }
1853 
1854   // Skip the 'this' parameter in ecx.
1855   if (IsThisCall)
1856     ++I;
1857 
1858   // Put arguments passed in memory into the struct.
1859   for (; I != E; ++I) {
1860     if (isArgInAlloca(I->info))
1861       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1862   }
1863 
1864   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1865                                         /*isPacked=*/true),
1866                   StackAlign);
1867 }
1868 
1869 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1870                                  Address VAListAddr, QualType Ty) const {
1871 
1872   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1873 
1874   // x86-32 changes the alignment of certain arguments on the stack.
1875   //
1876   // Just messing with TypeInfo like this works because we never pass
1877   // anything indirectly.
1878   TypeInfo.second = CharUnits::fromQuantity(
1879                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1880 
1881   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1882                           TypeInfo, CharUnits::fromQuantity(4),
1883                           /*AllowHigherAlign*/ true);
1884 }
1885 
1886 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1887     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1888   assert(Triple.getArch() == llvm::Triple::x86);
1889 
1890   switch (Opts.getStructReturnConvention()) {
1891   case CodeGenOptions::SRCK_Default:
1892     break;
1893   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1894     return false;
1895   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1896     return true;
1897   }
1898 
1899   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1900     return true;
1901 
1902   switch (Triple.getOS()) {
1903   case llvm::Triple::DragonFly:
1904   case llvm::Triple::FreeBSD:
1905   case llvm::Triple::OpenBSD:
1906   case llvm::Triple::Win32:
1907     return true;
1908   default:
1909     return false;
1910   }
1911 }
1912 
1913 void X86_32TargetCodeGenInfo::setTargetAttributes(
1914     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
1915     ForDefinition_t IsForDefinition) const {
1916   if (!IsForDefinition)
1917     return;
1918   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1919     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1920       // Get the LLVM function.
1921       llvm::Function *Fn = cast<llvm::Function>(GV);
1922 
1923       // Now add the 'alignstack' attribute with a value of 16.
1924       llvm::AttrBuilder B;
1925       B.addStackAlignmentAttr(16);
1926       Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
1927     }
1928     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1929       llvm::Function *Fn = cast<llvm::Function>(GV);
1930       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1931     }
1932   }
1933 }
1934 
1935 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1936                                                CodeGen::CodeGenFunction &CGF,
1937                                                llvm::Value *Address) const {
1938   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1939 
1940   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1941 
1942   // 0-7 are the eight integer registers;  the order is different
1943   //   on Darwin (for EH), but the range is the same.
1944   // 8 is %eip.
1945   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1946 
1947   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1948     // 12-16 are st(0..4).  Not sure why we stop at 4.
1949     // These have size 16, which is sizeof(long double) on
1950     // platforms with 8-byte alignment for that type.
1951     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1952     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1953 
1954   } else {
1955     // 9 is %eflags, which doesn't get a size on Darwin for some
1956     // reason.
1957     Builder.CreateAlignedStore(
1958         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1959                                CharUnits::One());
1960 
1961     // 11-16 are st(0..5).  Not sure why we stop at 5.
1962     // These have size 12, which is sizeof(long double) on
1963     // platforms with 4-byte alignment for that type.
1964     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1965     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1966   }
1967 
1968   return false;
1969 }
1970 
1971 //===----------------------------------------------------------------------===//
1972 // X86-64 ABI Implementation
1973 //===----------------------------------------------------------------------===//
1974 
1975 
1976 namespace {
1977 /// The AVX ABI level for X86 targets.
1978 enum class X86AVXABILevel {
1979   None,
1980   AVX,
1981   AVX512
1982 };
1983 
1984 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1985 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1986   switch (AVXLevel) {
1987   case X86AVXABILevel::AVX512:
1988     return 512;
1989   case X86AVXABILevel::AVX:
1990     return 256;
1991   case X86AVXABILevel::None:
1992     return 128;
1993   }
1994   llvm_unreachable("Unknown AVXLevel");
1995 }
1996 
1997 /// X86_64ABIInfo - The X86_64 ABI information.
1998 class X86_64ABIInfo : public SwiftABIInfo {
1999   enum Class {
2000     Integer = 0,
2001     SSE,
2002     SSEUp,
2003     X87,
2004     X87Up,
2005     ComplexX87,
2006     NoClass,
2007     Memory
2008   };
2009 
2010   /// merge - Implement the X86_64 ABI merging algorithm.
2011   ///
2012   /// Merge an accumulating classification \arg Accum with a field
2013   /// classification \arg Field.
2014   ///
2015   /// \param Accum - The accumulating classification. This should
2016   /// always be either NoClass or the result of a previous merge
2017   /// call. In addition, this should never be Memory (the caller
2018   /// should just return Memory for the aggregate).
2019   static Class merge(Class Accum, Class Field);
2020 
2021   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2022   ///
2023   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2024   /// final MEMORY or SSE classes when necessary.
2025   ///
2026   /// \param AggregateSize - The size of the current aggregate in
2027   /// the classification process.
2028   ///
2029   /// \param Lo - The classification for the parts of the type
2030   /// residing in the low word of the containing object.
2031   ///
2032   /// \param Hi - The classification for the parts of the type
2033   /// residing in the higher words of the containing object.
2034   ///
2035   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2036 
2037   /// classify - Determine the x86_64 register classes in which the
2038   /// given type T should be passed.
2039   ///
2040   /// \param Lo - The classification for the parts of the type
2041   /// residing in the low word of the containing object.
2042   ///
2043   /// \param Hi - The classification for the parts of the type
2044   /// residing in the high word of the containing object.
2045   ///
2046   /// \param OffsetBase - The bit offset of this type in the
2047   /// containing object.  Some parameters are classified different
2048   /// depending on whether they straddle an eightbyte boundary.
2049   ///
2050   /// \param isNamedArg - Whether the argument in question is a "named"
2051   /// argument, as used in AMD64-ABI 3.5.7.
2052   ///
2053   /// If a word is unused its result will be NoClass; if a type should
2054   /// be passed in Memory then at least the classification of \arg Lo
2055   /// will be Memory.
2056   ///
2057   /// The \arg Lo class will be NoClass iff the argument is ignored.
2058   ///
2059   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2060   /// also be ComplexX87.
2061   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2062                 bool isNamedArg) const;
2063 
2064   llvm::Type *GetByteVectorType(QualType Ty) const;
2065   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2066                                  unsigned IROffset, QualType SourceTy,
2067                                  unsigned SourceOffset) const;
2068   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2069                                      unsigned IROffset, QualType SourceTy,
2070                                      unsigned SourceOffset) const;
2071 
2072   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2073   /// such that the argument will be returned in memory.
2074   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2075 
2076   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2077   /// such that the argument will be passed in memory.
2078   ///
2079   /// \param freeIntRegs - The number of free integer registers remaining
2080   /// available.
2081   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2082 
2083   ABIArgInfo classifyReturnType(QualType RetTy) const;
2084 
2085   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2086                                   unsigned &neededInt, unsigned &neededSSE,
2087                                   bool isNamedArg) const;
2088 
2089   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2090                                        unsigned &NeededSSE) const;
2091 
2092   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2093                                            unsigned &NeededSSE) const;
2094 
2095   bool IsIllegalVectorType(QualType Ty) const;
2096 
2097   /// The 0.98 ABI revision clarified a lot of ambiguities,
2098   /// unfortunately in ways that were not always consistent with
2099   /// certain previous compilers.  In particular, platforms which
2100   /// required strict binary compatibility with older versions of GCC
2101   /// may need to exempt themselves.
2102   bool honorsRevision0_98() const {
2103     return !getTarget().getTriple().isOSDarwin();
2104   }
2105 
2106   /// GCC classifies <1 x long long> as SSE but compatibility with older clang
2107   // compilers require us to classify it as INTEGER.
2108   bool classifyIntegerMMXAsSSE() const {
2109     const llvm::Triple &Triple = getTarget().getTriple();
2110     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2111       return false;
2112     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2113       return false;
2114     return true;
2115   }
2116 
2117   X86AVXABILevel AVXLevel;
2118   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2119   // 64-bit hardware.
2120   bool Has64BitPointers;
2121 
2122 public:
2123   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2124       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2125       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2126   }
2127 
2128   bool isPassedUsingAVXType(QualType type) const {
2129     unsigned neededInt, neededSSE;
2130     // The freeIntRegs argument doesn't matter here.
2131     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2132                                            /*isNamedArg*/true);
2133     if (info.isDirect()) {
2134       llvm::Type *ty = info.getCoerceToType();
2135       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2136         return (vectorTy->getBitWidth() > 128);
2137     }
2138     return false;
2139   }
2140 
2141   void computeInfo(CGFunctionInfo &FI) const override;
2142 
2143   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2144                     QualType Ty) const override;
2145   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2146                       QualType Ty) const override;
2147 
2148   bool has64BitPointers() const {
2149     return Has64BitPointers;
2150   }
2151 
2152   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
2153                                     ArrayRef<llvm::Type*> scalars,
2154                                     bool asReturnValue) const override {
2155     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2156   }
2157   bool isSwiftErrorInRegister() const override {
2158     return true;
2159   }
2160 };
2161 
2162 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2163 class WinX86_64ABIInfo : public SwiftABIInfo {
2164 public:
2165   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2166       : SwiftABIInfo(CGT),
2167         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2168 
2169   void computeInfo(CGFunctionInfo &FI) const override;
2170 
2171   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2172                     QualType Ty) const override;
2173 
2174   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2175     // FIXME: Assumes vectorcall is in use.
2176     return isX86VectorTypeForVectorCall(getContext(), Ty);
2177   }
2178 
2179   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2180                                          uint64_t NumMembers) const override {
2181     // FIXME: Assumes vectorcall is in use.
2182     return isX86VectorCallAggregateSmallEnough(NumMembers);
2183   }
2184 
2185   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
2186                                     ArrayRef<llvm::Type *> scalars,
2187                                     bool asReturnValue) const override {
2188     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2189   }
2190 
2191   bool isSwiftErrorInRegister() const override {
2192     return true;
2193   }
2194 
2195 private:
2196   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2197                       bool IsVectorCall, bool IsRegCall) const;
2198   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2199                                       const ABIArgInfo &current) const;
2200   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2201                              bool IsVectorCall, bool IsRegCall) const;
2202 
2203     bool IsMingw64;
2204 };
2205 
2206 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2207 public:
2208   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2209       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2210 
2211   const X86_64ABIInfo &getABIInfo() const {
2212     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2213   }
2214 
2215   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2216     return 7;
2217   }
2218 
2219   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2220                                llvm::Value *Address) const override {
2221     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2222 
2223     // 0-15 are the 16 integer registers.
2224     // 16 is %rip.
2225     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2226     return false;
2227   }
2228 
2229   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2230                                   StringRef Constraint,
2231                                   llvm::Type* Ty) const override {
2232     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2233   }
2234 
2235   bool isNoProtoCallVariadic(const CallArgList &args,
2236                              const FunctionNoProtoType *fnType) const override {
2237     // The default CC on x86-64 sets %al to the number of SSA
2238     // registers used, and GCC sets this when calling an unprototyped
2239     // function, so we override the default behavior.  However, don't do
2240     // that when AVX types are involved: the ABI explicitly states it is
2241     // undefined, and it doesn't work in practice because of how the ABI
2242     // defines varargs anyway.
2243     if (fnType->getCallConv() == CC_C) {
2244       bool HasAVXType = false;
2245       for (CallArgList::const_iterator
2246              it = args.begin(), ie = args.end(); it != ie; ++it) {
2247         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2248           HasAVXType = true;
2249           break;
2250         }
2251       }
2252 
2253       if (!HasAVXType)
2254         return true;
2255     }
2256 
2257     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2258   }
2259 
2260   llvm::Constant *
2261   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2262     unsigned Sig;
2263     if (getABIInfo().has64BitPointers())
2264       Sig = (0xeb << 0) |  // jmp rel8
2265             (0x0a << 8) |  //           .+0x0c
2266             ('F' << 16) |
2267             ('T' << 24);
2268     else
2269       Sig = (0xeb << 0) |  // jmp rel8
2270             (0x06 << 8) |  //           .+0x08
2271             ('F' << 16) |
2272             ('T' << 24);
2273     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2274   }
2275 
2276   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2277                            CodeGen::CodeGenModule &CGM,
2278                            ForDefinition_t IsForDefinition) const override {
2279     if (!IsForDefinition)
2280       return;
2281     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2282       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2283         llvm::Function *Fn = cast<llvm::Function>(GV);
2284         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2285       }
2286     }
2287   }
2288 };
2289 
2290 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2291 public:
2292   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2293     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2294 
2295   void getDependentLibraryOption(llvm::StringRef Lib,
2296                                  llvm::SmallString<24> &Opt) const override {
2297     Opt = "\01";
2298     // If the argument contains a space, enclose it in quotes.
2299     if (Lib.find(" ") != StringRef::npos)
2300       Opt += "\"" + Lib.str() + "\"";
2301     else
2302       Opt += Lib;
2303   }
2304 };
2305 
2306 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2307   // If the argument does not end in .lib, automatically add the suffix.
2308   // If the argument contains a space, enclose it in quotes.
2309   // This matches the behavior of MSVC.
2310   bool Quote = (Lib.find(" ") != StringRef::npos);
2311   std::string ArgStr = Quote ? "\"" : "";
2312   ArgStr += Lib;
2313   if (!Lib.endswith_lower(".lib"))
2314     ArgStr += ".lib";
2315   ArgStr += Quote ? "\"" : "";
2316   return ArgStr;
2317 }
2318 
2319 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2320 public:
2321   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2322         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2323         unsigned NumRegisterParameters)
2324     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2325         Win32StructABI, NumRegisterParameters, false) {}
2326 
2327   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2328                            CodeGen::CodeGenModule &CGM,
2329                            ForDefinition_t IsForDefinition) const override;
2330 
2331   void getDependentLibraryOption(llvm::StringRef Lib,
2332                                  llvm::SmallString<24> &Opt) const override {
2333     Opt = "/DEFAULTLIB:";
2334     Opt += qualifyWindowsLibrary(Lib);
2335   }
2336 
2337   void getDetectMismatchOption(llvm::StringRef Name,
2338                                llvm::StringRef Value,
2339                                llvm::SmallString<32> &Opt) const override {
2340     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2341   }
2342 };
2343 
2344 static void addStackProbeSizeTargetAttribute(const Decl *D,
2345                                              llvm::GlobalValue *GV,
2346                                              CodeGen::CodeGenModule &CGM) {
2347   if (D && isa<FunctionDecl>(D)) {
2348     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2349       llvm::Function *Fn = cast<llvm::Function>(GV);
2350 
2351       Fn->addFnAttr("stack-probe-size",
2352                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2353     }
2354   }
2355 }
2356 
2357 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2358     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
2359     ForDefinition_t IsForDefinition) const {
2360   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
2361   if (!IsForDefinition)
2362     return;
2363   addStackProbeSizeTargetAttribute(D, GV, CGM);
2364 }
2365 
2366 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2367 public:
2368   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2369                              X86AVXABILevel AVXLevel)
2370       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2371 
2372   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2373                            CodeGen::CodeGenModule &CGM,
2374                            ForDefinition_t IsForDefinition) const override;
2375 
2376   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2377     return 7;
2378   }
2379 
2380   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2381                                llvm::Value *Address) const override {
2382     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2383 
2384     // 0-15 are the 16 integer registers.
2385     // 16 is %rip.
2386     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2387     return false;
2388   }
2389 
2390   void getDependentLibraryOption(llvm::StringRef Lib,
2391                                  llvm::SmallString<24> &Opt) const override {
2392     Opt = "/DEFAULTLIB:";
2393     Opt += qualifyWindowsLibrary(Lib);
2394   }
2395 
2396   void getDetectMismatchOption(llvm::StringRef Name,
2397                                llvm::StringRef Value,
2398                                llvm::SmallString<32> &Opt) const override {
2399     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2400   }
2401 };
2402 
2403 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2404     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
2405     ForDefinition_t IsForDefinition) const {
2406   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
2407   if (!IsForDefinition)
2408     return;
2409   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2410     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2411       llvm::Function *Fn = cast<llvm::Function>(GV);
2412       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2413     }
2414   }
2415 
2416   addStackProbeSizeTargetAttribute(D, GV, CGM);
2417 }
2418 }
2419 
2420 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2421                               Class &Hi) const {
2422   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2423   //
2424   // (a) If one of the classes is Memory, the whole argument is passed in
2425   //     memory.
2426   //
2427   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2428   //     memory.
2429   //
2430   // (c) If the size of the aggregate exceeds two eightbytes and the first
2431   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2432   //     argument is passed in memory. NOTE: This is necessary to keep the
2433   //     ABI working for processors that don't support the __m256 type.
2434   //
2435   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2436   //
2437   // Some of these are enforced by the merging logic.  Others can arise
2438   // only with unions; for example:
2439   //   union { _Complex double; unsigned; }
2440   //
2441   // Note that clauses (b) and (c) were added in 0.98.
2442   //
2443   if (Hi == Memory)
2444     Lo = Memory;
2445   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2446     Lo = Memory;
2447   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2448     Lo = Memory;
2449   if (Hi == SSEUp && Lo != SSE)
2450     Hi = SSE;
2451 }
2452 
2453 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2454   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2455   // classified recursively so that always two fields are
2456   // considered. The resulting class is calculated according to
2457   // the classes of the fields in the eightbyte:
2458   //
2459   // (a) If both classes are equal, this is the resulting class.
2460   //
2461   // (b) If one of the classes is NO_CLASS, the resulting class is
2462   // the other class.
2463   //
2464   // (c) If one of the classes is MEMORY, the result is the MEMORY
2465   // class.
2466   //
2467   // (d) If one of the classes is INTEGER, the result is the
2468   // INTEGER.
2469   //
2470   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2471   // MEMORY is used as class.
2472   //
2473   // (f) Otherwise class SSE is used.
2474 
2475   // Accum should never be memory (we should have returned) or
2476   // ComplexX87 (because this cannot be passed in a structure).
2477   assert((Accum != Memory && Accum != ComplexX87) &&
2478          "Invalid accumulated classification during merge.");
2479   if (Accum == Field || Field == NoClass)
2480     return Accum;
2481   if (Field == Memory)
2482     return Memory;
2483   if (Accum == NoClass)
2484     return Field;
2485   if (Accum == Integer || Field == Integer)
2486     return Integer;
2487   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2488       Accum == X87 || Accum == X87Up)
2489     return Memory;
2490   return SSE;
2491 }
2492 
2493 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2494                              Class &Lo, Class &Hi, bool isNamedArg) const {
2495   // FIXME: This code can be simplified by introducing a simple value class for
2496   // Class pairs with appropriate constructor methods for the various
2497   // situations.
2498 
2499   // FIXME: Some of the split computations are wrong; unaligned vectors
2500   // shouldn't be passed in registers for example, so there is no chance they
2501   // can straddle an eightbyte. Verify & simplify.
2502 
2503   Lo = Hi = NoClass;
2504 
2505   Class &Current = OffsetBase < 64 ? Lo : Hi;
2506   Current = Memory;
2507 
2508   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2509     BuiltinType::Kind k = BT->getKind();
2510 
2511     if (k == BuiltinType::Void) {
2512       Current = NoClass;
2513     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2514       Lo = Integer;
2515       Hi = Integer;
2516     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2517       Current = Integer;
2518     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2519       Current = SSE;
2520     } else if (k == BuiltinType::LongDouble) {
2521       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2522       if (LDF == &llvm::APFloat::IEEEquad()) {
2523         Lo = SSE;
2524         Hi = SSEUp;
2525       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2526         Lo = X87;
2527         Hi = X87Up;
2528       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2529         Current = SSE;
2530       } else
2531         llvm_unreachable("unexpected long double representation!");
2532     }
2533     // FIXME: _Decimal32 and _Decimal64 are SSE.
2534     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2535     return;
2536   }
2537 
2538   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2539     // Classify the underlying integer type.
2540     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2541     return;
2542   }
2543 
2544   if (Ty->hasPointerRepresentation()) {
2545     Current = Integer;
2546     return;
2547   }
2548 
2549   if (Ty->isMemberPointerType()) {
2550     if (Ty->isMemberFunctionPointerType()) {
2551       if (Has64BitPointers) {
2552         // If Has64BitPointers, this is an {i64, i64}, so classify both
2553         // Lo and Hi now.
2554         Lo = Hi = Integer;
2555       } else {
2556         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2557         // straddles an eightbyte boundary, Hi should be classified as well.
2558         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2559         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2560         if (EB_FuncPtr != EB_ThisAdj) {
2561           Lo = Hi = Integer;
2562         } else {
2563           Current = Integer;
2564         }
2565       }
2566     } else {
2567       Current = Integer;
2568     }
2569     return;
2570   }
2571 
2572   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2573     uint64_t Size = getContext().getTypeSize(VT);
2574     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2575       // gcc passes the following as integer:
2576       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2577       // 2 bytes - <2 x char>, <1 x short>
2578       // 1 byte  - <1 x char>
2579       Current = Integer;
2580 
2581       // If this type crosses an eightbyte boundary, it should be
2582       // split.
2583       uint64_t EB_Lo = (OffsetBase) / 64;
2584       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2585       if (EB_Lo != EB_Hi)
2586         Hi = Lo;
2587     } else if (Size == 64) {
2588       QualType ElementType = VT->getElementType();
2589 
2590       // gcc passes <1 x double> in memory. :(
2591       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2592         return;
2593 
2594       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2595       // pass them as integer.  For platforms where clang is the de facto
2596       // platform compiler, we must continue to use integer.
2597       if (!classifyIntegerMMXAsSSE() &&
2598           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2599            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2600            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2601            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2602         Current = Integer;
2603       else
2604         Current = SSE;
2605 
2606       // If this type crosses an eightbyte boundary, it should be
2607       // split.
2608       if (OffsetBase && OffsetBase != 64)
2609         Hi = Lo;
2610     } else if (Size == 128 ||
2611                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2612       // Arguments of 256-bits are split into four eightbyte chunks. The
2613       // least significant one belongs to class SSE and all the others to class
2614       // SSEUP. The original Lo and Hi design considers that types can't be
2615       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2616       // This design isn't correct for 256-bits, but since there're no cases
2617       // where the upper parts would need to be inspected, avoid adding
2618       // complexity and just consider Hi to match the 64-256 part.
2619       //
2620       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2621       // registers if they are "named", i.e. not part of the "..." of a
2622       // variadic function.
2623       //
2624       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2625       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2626       Lo = SSE;
2627       Hi = SSEUp;
2628     }
2629     return;
2630   }
2631 
2632   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2633     QualType ET = getContext().getCanonicalType(CT->getElementType());
2634 
2635     uint64_t Size = getContext().getTypeSize(Ty);
2636     if (ET->isIntegralOrEnumerationType()) {
2637       if (Size <= 64)
2638         Current = Integer;
2639       else if (Size <= 128)
2640         Lo = Hi = Integer;
2641     } else if (ET == getContext().FloatTy) {
2642       Current = SSE;
2643     } else if (ET == getContext().DoubleTy) {
2644       Lo = Hi = SSE;
2645     } else if (ET == getContext().LongDoubleTy) {
2646       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2647       if (LDF == &llvm::APFloat::IEEEquad())
2648         Current = Memory;
2649       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2650         Current = ComplexX87;
2651       else if (LDF == &llvm::APFloat::IEEEdouble())
2652         Lo = Hi = SSE;
2653       else
2654         llvm_unreachable("unexpected long double representation!");
2655     }
2656 
2657     // If this complex type crosses an eightbyte boundary then it
2658     // should be split.
2659     uint64_t EB_Real = (OffsetBase) / 64;
2660     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2661     if (Hi == NoClass && EB_Real != EB_Imag)
2662       Hi = Lo;
2663 
2664     return;
2665   }
2666 
2667   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2668     // Arrays are treated like structures.
2669 
2670     uint64_t Size = getContext().getTypeSize(Ty);
2671 
2672     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2673     // than eight eightbytes, ..., it has class MEMORY.
2674     if (Size > 512)
2675       return;
2676 
2677     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2678     // fields, it has class MEMORY.
2679     //
2680     // Only need to check alignment of array base.
2681     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2682       return;
2683 
2684     // Otherwise implement simplified merge. We could be smarter about
2685     // this, but it isn't worth it and would be harder to verify.
2686     Current = NoClass;
2687     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2688     uint64_t ArraySize = AT->getSize().getZExtValue();
2689 
2690     // The only case a 256-bit wide vector could be used is when the array
2691     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2692     // to work for sizes wider than 128, early check and fallback to memory.
2693     //
2694     if (Size > 128 &&
2695         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2696       return;
2697 
2698     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2699       Class FieldLo, FieldHi;
2700       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2701       Lo = merge(Lo, FieldLo);
2702       Hi = merge(Hi, FieldHi);
2703       if (Lo == Memory || Hi == Memory)
2704         break;
2705     }
2706 
2707     postMerge(Size, Lo, Hi);
2708     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2709     return;
2710   }
2711 
2712   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2713     uint64_t Size = getContext().getTypeSize(Ty);
2714 
2715     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2716     // than eight eightbytes, ..., it has class MEMORY.
2717     if (Size > 512)
2718       return;
2719 
2720     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2721     // copy constructor or a non-trivial destructor, it is passed by invisible
2722     // reference.
2723     if (getRecordArgABI(RT, getCXXABI()))
2724       return;
2725 
2726     const RecordDecl *RD = RT->getDecl();
2727 
2728     // Assume variable sized types are passed in memory.
2729     if (RD->hasFlexibleArrayMember())
2730       return;
2731 
2732     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2733 
2734     // Reset Lo class, this will be recomputed.
2735     Current = NoClass;
2736 
2737     // If this is a C++ record, classify the bases first.
2738     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2739       for (const auto &I : CXXRD->bases()) {
2740         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2741                "Unexpected base class!");
2742         const CXXRecordDecl *Base =
2743           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2744 
2745         // Classify this field.
2746         //
2747         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2748         // single eightbyte, each is classified separately. Each eightbyte gets
2749         // initialized to class NO_CLASS.
2750         Class FieldLo, FieldHi;
2751         uint64_t Offset =
2752           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2753         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2754         Lo = merge(Lo, FieldLo);
2755         Hi = merge(Hi, FieldHi);
2756         if (Lo == Memory || Hi == Memory) {
2757           postMerge(Size, Lo, Hi);
2758           return;
2759         }
2760       }
2761     }
2762 
2763     // Classify the fields one at a time, merging the results.
2764     unsigned idx = 0;
2765     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2766            i != e; ++i, ++idx) {
2767       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2768       bool BitField = i->isBitField();
2769 
2770       // Ignore padding bit-fields.
2771       if (BitField && i->isUnnamedBitfield())
2772         continue;
2773 
2774       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2775       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2776       //
2777       // The only case a 256-bit wide vector could be used is when the struct
2778       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2779       // to work for sizes wider than 128, early check and fallback to memory.
2780       //
2781       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2782                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2783         Lo = Memory;
2784         postMerge(Size, Lo, Hi);
2785         return;
2786       }
2787       // Note, skip this test for bit-fields, see below.
2788       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2789         Lo = Memory;
2790         postMerge(Size, Lo, Hi);
2791         return;
2792       }
2793 
2794       // Classify this field.
2795       //
2796       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2797       // exceeds a single eightbyte, each is classified
2798       // separately. Each eightbyte gets initialized to class
2799       // NO_CLASS.
2800       Class FieldLo, FieldHi;
2801 
2802       // Bit-fields require special handling, they do not force the
2803       // structure to be passed in memory even if unaligned, and
2804       // therefore they can straddle an eightbyte.
2805       if (BitField) {
2806         assert(!i->isUnnamedBitfield());
2807         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2808         uint64_t Size = i->getBitWidthValue(getContext());
2809 
2810         uint64_t EB_Lo = Offset / 64;
2811         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2812 
2813         if (EB_Lo) {
2814           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2815           FieldLo = NoClass;
2816           FieldHi = Integer;
2817         } else {
2818           FieldLo = Integer;
2819           FieldHi = EB_Hi ? Integer : NoClass;
2820         }
2821       } else
2822         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2823       Lo = merge(Lo, FieldLo);
2824       Hi = merge(Hi, FieldHi);
2825       if (Lo == Memory || Hi == Memory)
2826         break;
2827     }
2828 
2829     postMerge(Size, Lo, Hi);
2830   }
2831 }
2832 
2833 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2834   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2835   // place naturally.
2836   if (!isAggregateTypeForABI(Ty)) {
2837     // Treat an enum type as its underlying type.
2838     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2839       Ty = EnumTy->getDecl()->getIntegerType();
2840 
2841     return (Ty->isPromotableIntegerType() ?
2842             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2843   }
2844 
2845   return getNaturalAlignIndirect(Ty);
2846 }
2847 
2848 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2849   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2850     uint64_t Size = getContext().getTypeSize(VecTy);
2851     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2852     if (Size <= 64 || Size > LargestVector)
2853       return true;
2854   }
2855 
2856   return false;
2857 }
2858 
2859 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2860                                             unsigned freeIntRegs) const {
2861   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2862   // place naturally.
2863   //
2864   // This assumption is optimistic, as there could be free registers available
2865   // when we need to pass this argument in memory, and LLVM could try to pass
2866   // the argument in the free register. This does not seem to happen currently,
2867   // but this code would be much safer if we could mark the argument with
2868   // 'onstack'. See PR12193.
2869   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2870     // Treat an enum type as its underlying type.
2871     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2872       Ty = EnumTy->getDecl()->getIntegerType();
2873 
2874     return (Ty->isPromotableIntegerType() ?
2875             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2876   }
2877 
2878   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2879     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2880 
2881   // Compute the byval alignment. We specify the alignment of the byval in all
2882   // cases so that the mid-level optimizer knows the alignment of the byval.
2883   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2884 
2885   // Attempt to avoid passing indirect results using byval when possible. This
2886   // is important for good codegen.
2887   //
2888   // We do this by coercing the value into a scalar type which the backend can
2889   // handle naturally (i.e., without using byval).
2890   //
2891   // For simplicity, we currently only do this when we have exhausted all of the
2892   // free integer registers. Doing this when there are free integer registers
2893   // would require more care, as we would have to ensure that the coerced value
2894   // did not claim the unused register. That would require either reording the
2895   // arguments to the function (so that any subsequent inreg values came first),
2896   // or only doing this optimization when there were no following arguments that
2897   // might be inreg.
2898   //
2899   // We currently expect it to be rare (particularly in well written code) for
2900   // arguments to be passed on the stack when there are still free integer
2901   // registers available (this would typically imply large structs being passed
2902   // by value), so this seems like a fair tradeoff for now.
2903   //
2904   // We can revisit this if the backend grows support for 'onstack' parameter
2905   // attributes. See PR12193.
2906   if (freeIntRegs == 0) {
2907     uint64_t Size = getContext().getTypeSize(Ty);
2908 
2909     // If this type fits in an eightbyte, coerce it into the matching integral
2910     // type, which will end up on the stack (with alignment 8).
2911     if (Align == 8 && Size <= 64)
2912       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2913                                                           Size));
2914   }
2915 
2916   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2917 }
2918 
2919 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2920 /// register. Pick an LLVM IR type that will be passed as a vector register.
2921 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2922   // Wrapper structs/arrays that only contain vectors are passed just like
2923   // vectors; strip them off if present.
2924   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2925     Ty = QualType(InnerTy, 0);
2926 
2927   llvm::Type *IRType = CGT.ConvertType(Ty);
2928   if (isa<llvm::VectorType>(IRType) ||
2929       IRType->getTypeID() == llvm::Type::FP128TyID)
2930     return IRType;
2931 
2932   // We couldn't find the preferred IR vector type for 'Ty'.
2933   uint64_t Size = getContext().getTypeSize(Ty);
2934   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2935 
2936   // Return a LLVM IR vector type based on the size of 'Ty'.
2937   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2938                                Size / 64);
2939 }
2940 
2941 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2942 /// is known to either be off the end of the specified type or being in
2943 /// alignment padding.  The user type specified is known to be at most 128 bits
2944 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2945 /// classification that put one of the two halves in the INTEGER class.
2946 ///
2947 /// It is conservatively correct to return false.
2948 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2949                                   unsigned EndBit, ASTContext &Context) {
2950   // If the bytes being queried are off the end of the type, there is no user
2951   // data hiding here.  This handles analysis of builtins, vectors and other
2952   // types that don't contain interesting padding.
2953   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2954   if (TySize <= StartBit)
2955     return true;
2956 
2957   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2958     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2959     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2960 
2961     // Check each element to see if the element overlaps with the queried range.
2962     for (unsigned i = 0; i != NumElts; ++i) {
2963       // If the element is after the span we care about, then we're done..
2964       unsigned EltOffset = i*EltSize;
2965       if (EltOffset >= EndBit) break;
2966 
2967       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2968       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2969                                  EndBit-EltOffset, Context))
2970         return false;
2971     }
2972     // If it overlaps no elements, then it is safe to process as padding.
2973     return true;
2974   }
2975 
2976   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2977     const RecordDecl *RD = RT->getDecl();
2978     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2979 
2980     // If this is a C++ record, check the bases first.
2981     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2982       for (const auto &I : CXXRD->bases()) {
2983         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2984                "Unexpected base class!");
2985         const CXXRecordDecl *Base =
2986           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2987 
2988         // If the base is after the span we care about, ignore it.
2989         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2990         if (BaseOffset >= EndBit) continue;
2991 
2992         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2993         if (!BitsContainNoUserData(I.getType(), BaseStart,
2994                                    EndBit-BaseOffset, Context))
2995           return false;
2996       }
2997     }
2998 
2999     // Verify that no field has data that overlaps the region of interest.  Yes
3000     // this could be sped up a lot by being smarter about queried fields,
3001     // however we're only looking at structs up to 16 bytes, so we don't care
3002     // much.
3003     unsigned idx = 0;
3004     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3005          i != e; ++i, ++idx) {
3006       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3007 
3008       // If we found a field after the region we care about, then we're done.
3009       if (FieldOffset >= EndBit) break;
3010 
3011       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3012       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3013                                  Context))
3014         return false;
3015     }
3016 
3017     // If nothing in this record overlapped the area of interest, then we're
3018     // clean.
3019     return true;
3020   }
3021 
3022   return false;
3023 }
3024 
3025 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3026 /// float member at the specified offset.  For example, {int,{float}} has a
3027 /// float at offset 4.  It is conservatively correct for this routine to return
3028 /// false.
3029 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3030                                   const llvm::DataLayout &TD) {
3031   // Base case if we find a float.
3032   if (IROffset == 0 && IRType->isFloatTy())
3033     return true;
3034 
3035   // If this is a struct, recurse into the field at the specified offset.
3036   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3037     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3038     unsigned Elt = SL->getElementContainingOffset(IROffset);
3039     IROffset -= SL->getElementOffset(Elt);
3040     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3041   }
3042 
3043   // If this is an array, recurse into the field at the specified offset.
3044   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3045     llvm::Type *EltTy = ATy->getElementType();
3046     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3047     IROffset -= IROffset/EltSize*EltSize;
3048     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3049   }
3050 
3051   return false;
3052 }
3053 
3054 
3055 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3056 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3057 llvm::Type *X86_64ABIInfo::
3058 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3059                    QualType SourceTy, unsigned SourceOffset) const {
3060   // The only three choices we have are either double, <2 x float>, or float. We
3061   // pass as float if the last 4 bytes is just padding.  This happens for
3062   // structs that contain 3 floats.
3063   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3064                             SourceOffset*8+64, getContext()))
3065     return llvm::Type::getFloatTy(getVMContext());
3066 
3067   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3068   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3069   // case.
3070   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3071       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3072     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3073 
3074   return llvm::Type::getDoubleTy(getVMContext());
3075 }
3076 
3077 
3078 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3079 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3080 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3081 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3082 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3083 /// etc).
3084 ///
3085 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3086 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3087 /// the 8-byte value references.  PrefType may be null.
3088 ///
3089 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3090 /// an offset into this that we're processing (which is always either 0 or 8).
3091 ///
3092 llvm::Type *X86_64ABIInfo::
3093 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3094                        QualType SourceTy, unsigned SourceOffset) const {
3095   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3096   // returning an 8-byte unit starting with it.  See if we can safely use it.
3097   if (IROffset == 0) {
3098     // Pointers and int64's always fill the 8-byte unit.
3099     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3100         IRType->isIntegerTy(64))
3101       return IRType;
3102 
3103     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3104     // goodness in the source type is just tail padding.  This is allowed to
3105     // kick in for struct {double,int} on the int, but not on
3106     // struct{double,int,int} because we wouldn't return the second int.  We
3107     // have to do this analysis on the source type because we can't depend on
3108     // unions being lowered a specific way etc.
3109     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3110         IRType->isIntegerTy(32) ||
3111         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3112       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3113           cast<llvm::IntegerType>(IRType)->getBitWidth();
3114 
3115       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3116                                 SourceOffset*8+64, getContext()))
3117         return IRType;
3118     }
3119   }
3120 
3121   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3122     // If this is a struct, recurse into the field at the specified offset.
3123     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3124     if (IROffset < SL->getSizeInBytes()) {
3125       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3126       IROffset -= SL->getElementOffset(FieldIdx);
3127 
3128       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3129                                     SourceTy, SourceOffset);
3130     }
3131   }
3132 
3133   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3134     llvm::Type *EltTy = ATy->getElementType();
3135     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3136     unsigned EltOffset = IROffset/EltSize*EltSize;
3137     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3138                                   SourceOffset);
3139   }
3140 
3141   // Okay, we don't have any better idea of what to pass, so we pass this in an
3142   // integer register that isn't too big to fit the rest of the struct.
3143   unsigned TySizeInBytes =
3144     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3145 
3146   assert(TySizeInBytes != SourceOffset && "Empty field?");
3147 
3148   // It is always safe to classify this as an integer type up to i64 that
3149   // isn't larger than the structure.
3150   return llvm::IntegerType::get(getVMContext(),
3151                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3152 }
3153 
3154 
3155 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3156 /// be used as elements of a two register pair to pass or return, return a
3157 /// first class aggregate to represent them.  For example, if the low part of
3158 /// a by-value argument should be passed as i32* and the high part as float,
3159 /// return {i32*, float}.
3160 static llvm::Type *
3161 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3162                            const llvm::DataLayout &TD) {
3163   // In order to correctly satisfy the ABI, we need to the high part to start
3164   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3165   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3166   // the second element at offset 8.  Check for this:
3167   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3168   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3169   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3170   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3171 
3172   // To handle this, we have to increase the size of the low part so that the
3173   // second element will start at an 8 byte offset.  We can't increase the size
3174   // of the second element because it might make us access off the end of the
3175   // struct.
3176   if (HiStart != 8) {
3177     // There are usually two sorts of types the ABI generation code can produce
3178     // for the low part of a pair that aren't 8 bytes in size: float or
3179     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3180     // NaCl).
3181     // Promote these to a larger type.
3182     if (Lo->isFloatTy())
3183       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3184     else {
3185       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3186              && "Invalid/unknown lo type");
3187       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3188     }
3189   }
3190 
3191   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3192 
3193   // Verify that the second element is at an 8-byte offset.
3194   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3195          "Invalid x86-64 argument pair!");
3196   return Result;
3197 }
3198 
3199 ABIArgInfo X86_64ABIInfo::
3200 classifyReturnType(QualType RetTy) const {
3201   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3202   // classification algorithm.
3203   X86_64ABIInfo::Class Lo, Hi;
3204   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3205 
3206   // Check some invariants.
3207   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3208   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3209 
3210   llvm::Type *ResType = nullptr;
3211   switch (Lo) {
3212   case NoClass:
3213     if (Hi == NoClass)
3214       return ABIArgInfo::getIgnore();
3215     // If the low part is just padding, it takes no register, leave ResType
3216     // null.
3217     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3218            "Unknown missing lo part");
3219     break;
3220 
3221   case SSEUp:
3222   case X87Up:
3223     llvm_unreachable("Invalid classification for lo word.");
3224 
3225     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3226     // hidden argument.
3227   case Memory:
3228     return getIndirectReturnResult(RetTy);
3229 
3230     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3231     // available register of the sequence %rax, %rdx is used.
3232   case Integer:
3233     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3234 
3235     // If we have a sign or zero extended integer, make sure to return Extend
3236     // so that the parameter gets the right LLVM IR attributes.
3237     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3238       // Treat an enum type as its underlying type.
3239       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3240         RetTy = EnumTy->getDecl()->getIntegerType();
3241 
3242       if (RetTy->isIntegralOrEnumerationType() &&
3243           RetTy->isPromotableIntegerType())
3244         return ABIArgInfo::getExtend();
3245     }
3246     break;
3247 
3248     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3249     // available SSE register of the sequence %xmm0, %xmm1 is used.
3250   case SSE:
3251     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3252     break;
3253 
3254     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3255     // returned on the X87 stack in %st0 as 80-bit x87 number.
3256   case X87:
3257     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3258     break;
3259 
3260     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3261     // part of the value is returned in %st0 and the imaginary part in
3262     // %st1.
3263   case ComplexX87:
3264     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3265     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3266                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3267     break;
3268   }
3269 
3270   llvm::Type *HighPart = nullptr;
3271   switch (Hi) {
3272     // Memory was handled previously and X87 should
3273     // never occur as a hi class.
3274   case Memory:
3275   case X87:
3276     llvm_unreachable("Invalid classification for hi word.");
3277 
3278   case ComplexX87: // Previously handled.
3279   case NoClass:
3280     break;
3281 
3282   case Integer:
3283     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3284     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3285       return ABIArgInfo::getDirect(HighPart, 8);
3286     break;
3287   case SSE:
3288     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3289     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3290       return ABIArgInfo::getDirect(HighPart, 8);
3291     break;
3292 
3293     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3294     // is passed in the next available eightbyte chunk if the last used
3295     // vector register.
3296     //
3297     // SSEUP should always be preceded by SSE, just widen.
3298   case SSEUp:
3299     assert(Lo == SSE && "Unexpected SSEUp classification.");
3300     ResType = GetByteVectorType(RetTy);
3301     break;
3302 
3303     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3304     // returned together with the previous X87 value in %st0.
3305   case X87Up:
3306     // If X87Up is preceded by X87, we don't need to do
3307     // anything. However, in some cases with unions it may not be
3308     // preceded by X87. In such situations we follow gcc and pass the
3309     // extra bits in an SSE reg.
3310     if (Lo != X87) {
3311       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3312       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3313         return ABIArgInfo::getDirect(HighPart, 8);
3314     }
3315     break;
3316   }
3317 
3318   // If a high part was specified, merge it together with the low part.  It is
3319   // known to pass in the high eightbyte of the result.  We do this by forming a
3320   // first class struct aggregate with the high and low part: {low, high}
3321   if (HighPart)
3322     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3323 
3324   return ABIArgInfo::getDirect(ResType);
3325 }
3326 
3327 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3328   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3329   bool isNamedArg)
3330   const
3331 {
3332   Ty = useFirstFieldIfTransparentUnion(Ty);
3333 
3334   X86_64ABIInfo::Class Lo, Hi;
3335   classify(Ty, 0, Lo, Hi, isNamedArg);
3336 
3337   // Check some invariants.
3338   // FIXME: Enforce these by construction.
3339   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3340   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3341 
3342   neededInt = 0;
3343   neededSSE = 0;
3344   llvm::Type *ResType = nullptr;
3345   switch (Lo) {
3346   case NoClass:
3347     if (Hi == NoClass)
3348       return ABIArgInfo::getIgnore();
3349     // If the low part is just padding, it takes no register, leave ResType
3350     // null.
3351     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3352            "Unknown missing lo part");
3353     break;
3354 
3355     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3356     // on the stack.
3357   case Memory:
3358 
3359     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3360     // COMPLEX_X87, it is passed in memory.
3361   case X87:
3362   case ComplexX87:
3363     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3364       ++neededInt;
3365     return getIndirectResult(Ty, freeIntRegs);
3366 
3367   case SSEUp:
3368   case X87Up:
3369     llvm_unreachable("Invalid classification for lo word.");
3370 
3371     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3372     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3373     // and %r9 is used.
3374   case Integer:
3375     ++neededInt;
3376 
3377     // Pick an 8-byte type based on the preferred type.
3378     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3379 
3380     // If we have a sign or zero extended integer, make sure to return Extend
3381     // so that the parameter gets the right LLVM IR attributes.
3382     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3383       // Treat an enum type as its underlying type.
3384       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3385         Ty = EnumTy->getDecl()->getIntegerType();
3386 
3387       if (Ty->isIntegralOrEnumerationType() &&
3388           Ty->isPromotableIntegerType())
3389         return ABIArgInfo::getExtend();
3390     }
3391 
3392     break;
3393 
3394     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3395     // available SSE register is used, the registers are taken in the
3396     // order from %xmm0 to %xmm7.
3397   case SSE: {
3398     llvm::Type *IRType = CGT.ConvertType(Ty);
3399     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3400     ++neededSSE;
3401     break;
3402   }
3403   }
3404 
3405   llvm::Type *HighPart = nullptr;
3406   switch (Hi) {
3407     // Memory was handled previously, ComplexX87 and X87 should
3408     // never occur as hi classes, and X87Up must be preceded by X87,
3409     // which is passed in memory.
3410   case Memory:
3411   case X87:
3412   case ComplexX87:
3413     llvm_unreachable("Invalid classification for hi word.");
3414 
3415   case NoClass: break;
3416 
3417   case Integer:
3418     ++neededInt;
3419     // Pick an 8-byte type based on the preferred type.
3420     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3421 
3422     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3423       return ABIArgInfo::getDirect(HighPart, 8);
3424     break;
3425 
3426     // X87Up generally doesn't occur here (long double is passed in
3427     // memory), except in situations involving unions.
3428   case X87Up:
3429   case SSE:
3430     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3431 
3432     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3433       return ABIArgInfo::getDirect(HighPart, 8);
3434 
3435     ++neededSSE;
3436     break;
3437 
3438     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3439     // eightbyte is passed in the upper half of the last used SSE
3440     // register.  This only happens when 128-bit vectors are passed.
3441   case SSEUp:
3442     assert(Lo == SSE && "Unexpected SSEUp classification");
3443     ResType = GetByteVectorType(Ty);
3444     break;
3445   }
3446 
3447   // If a high part was specified, merge it together with the low part.  It is
3448   // known to pass in the high eightbyte of the result.  We do this by forming a
3449   // first class struct aggregate with the high and low part: {low, high}
3450   if (HighPart)
3451     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3452 
3453   return ABIArgInfo::getDirect(ResType);
3454 }
3455 
3456 ABIArgInfo
3457 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3458                                              unsigned &NeededSSE) const {
3459   auto RT = Ty->getAs<RecordType>();
3460   assert(RT && "classifyRegCallStructType only valid with struct types");
3461 
3462   if (RT->getDecl()->hasFlexibleArrayMember())
3463     return getIndirectReturnResult(Ty);
3464 
3465   // Sum up bases
3466   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3467     if (CXXRD->isDynamicClass()) {
3468       NeededInt = NeededSSE = 0;
3469       return getIndirectReturnResult(Ty);
3470     }
3471 
3472     for (const auto &I : CXXRD->bases())
3473       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3474               .isIndirect()) {
3475         NeededInt = NeededSSE = 0;
3476         return getIndirectReturnResult(Ty);
3477       }
3478   }
3479 
3480   // Sum up members
3481   for (const auto *FD : RT->getDecl()->fields()) {
3482     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3483       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3484               .isIndirect()) {
3485         NeededInt = NeededSSE = 0;
3486         return getIndirectReturnResult(Ty);
3487       }
3488     } else {
3489       unsigned LocalNeededInt, LocalNeededSSE;
3490       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3491                                LocalNeededSSE, true)
3492               .isIndirect()) {
3493         NeededInt = NeededSSE = 0;
3494         return getIndirectReturnResult(Ty);
3495       }
3496       NeededInt += LocalNeededInt;
3497       NeededSSE += LocalNeededSSE;
3498     }
3499   }
3500 
3501   return ABIArgInfo::getDirect();
3502 }
3503 
3504 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3505                                                     unsigned &NeededInt,
3506                                                     unsigned &NeededSSE) const {
3507 
3508   NeededInt = 0;
3509   NeededSSE = 0;
3510 
3511   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3512 }
3513 
3514 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3515 
3516   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3517 
3518   // Keep track of the number of assigned registers.
3519   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3520   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3521   unsigned NeededInt, NeededSSE;
3522 
3523   if (!getCXXABI().classifyReturnType(FI)) {
3524     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3525         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3526       FI.getReturnInfo() =
3527           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3528       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3529         FreeIntRegs -= NeededInt;
3530         FreeSSERegs -= NeededSSE;
3531       } else {
3532         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3533       }
3534     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3535       // Complex Long Double Type is passed in Memory when Regcall
3536       // calling convention is used.
3537       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3538       if (getContext().getCanonicalType(CT->getElementType()) ==
3539           getContext().LongDoubleTy)
3540         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3541     } else
3542       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3543   }
3544 
3545   // If the return value is indirect, then the hidden argument is consuming one
3546   // integer register.
3547   if (FI.getReturnInfo().isIndirect())
3548     --FreeIntRegs;
3549 
3550   // The chain argument effectively gives us another free register.
3551   if (FI.isChainCall())
3552     ++FreeIntRegs;
3553 
3554   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3555   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3556   // get assigned (in left-to-right order) for passing as follows...
3557   unsigned ArgNo = 0;
3558   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3559        it != ie; ++it, ++ArgNo) {
3560     bool IsNamedArg = ArgNo < NumRequiredArgs;
3561 
3562     if (IsRegCall && it->type->isStructureOrClassType())
3563       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3564     else
3565       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3566                                       NeededSSE, IsNamedArg);
3567 
3568     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3569     // eightbyte of an argument, the whole argument is passed on the
3570     // stack. If registers have already been assigned for some
3571     // eightbytes of such an argument, the assignments get reverted.
3572     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3573       FreeIntRegs -= NeededInt;
3574       FreeSSERegs -= NeededSSE;
3575     } else {
3576       it->info = getIndirectResult(it->type, FreeIntRegs);
3577     }
3578   }
3579 }
3580 
3581 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3582                                          Address VAListAddr, QualType Ty) {
3583   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3584       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3585   llvm::Value *overflow_arg_area =
3586     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3587 
3588   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3589   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3590   // It isn't stated explicitly in the standard, but in practice we use
3591   // alignment greater than 16 where necessary.
3592   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3593   if (Align > CharUnits::fromQuantity(8)) {
3594     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3595                                                       Align);
3596   }
3597 
3598   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3599   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3600   llvm::Value *Res =
3601     CGF.Builder.CreateBitCast(overflow_arg_area,
3602                               llvm::PointerType::getUnqual(LTy));
3603 
3604   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3605   // l->overflow_arg_area + sizeof(type).
3606   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3607   // an 8 byte boundary.
3608 
3609   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3610   llvm::Value *Offset =
3611       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3612   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3613                                             "overflow_arg_area.next");
3614   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3615 
3616   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3617   return Address(Res, Align);
3618 }
3619 
3620 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3621                                  QualType Ty) const {
3622   // Assume that va_list type is correct; should be pointer to LLVM type:
3623   // struct {
3624   //   i32 gp_offset;
3625   //   i32 fp_offset;
3626   //   i8* overflow_arg_area;
3627   //   i8* reg_save_area;
3628   // };
3629   unsigned neededInt, neededSSE;
3630 
3631   Ty = getContext().getCanonicalType(Ty);
3632   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3633                                        /*isNamedArg*/false);
3634 
3635   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3636   // in the registers. If not go to step 7.
3637   if (!neededInt && !neededSSE)
3638     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3639 
3640   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3641   // general purpose registers needed to pass type and num_fp to hold
3642   // the number of floating point registers needed.
3643 
3644   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3645   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3646   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3647   //
3648   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3649   // register save space).
3650 
3651   llvm::Value *InRegs = nullptr;
3652   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3653   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3654   if (neededInt) {
3655     gp_offset_p =
3656         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3657                                     "gp_offset_p");
3658     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3659     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3660     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3661   }
3662 
3663   if (neededSSE) {
3664     fp_offset_p =
3665         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3666                                     "fp_offset_p");
3667     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3668     llvm::Value *FitsInFP =
3669       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3670     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3671     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3672   }
3673 
3674   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3675   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3676   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3677   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3678 
3679   // Emit code to load the value if it was passed in registers.
3680 
3681   CGF.EmitBlock(InRegBlock);
3682 
3683   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3684   // an offset of l->gp_offset and/or l->fp_offset. This may require
3685   // copying to a temporary location in case the parameter is passed
3686   // in different register classes or requires an alignment greater
3687   // than 8 for general purpose registers and 16 for XMM registers.
3688   //
3689   // FIXME: This really results in shameful code when we end up needing to
3690   // collect arguments from different places; often what should result in a
3691   // simple assembling of a structure from scattered addresses has many more
3692   // loads than necessary. Can we clean this up?
3693   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3694   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3695       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3696                                   "reg_save_area");
3697 
3698   Address RegAddr = Address::invalid();
3699   if (neededInt && neededSSE) {
3700     // FIXME: Cleanup.
3701     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3702     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3703     Address Tmp = CGF.CreateMemTemp(Ty);
3704     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3705     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3706     llvm::Type *TyLo = ST->getElementType(0);
3707     llvm::Type *TyHi = ST->getElementType(1);
3708     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3709            "Unexpected ABI info for mixed regs");
3710     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3711     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3712     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3713     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3714     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3715     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3716 
3717     // Copy the first element.
3718     // FIXME: Our choice of alignment here and below is probably pessimistic.
3719     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3720         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3721         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3722     CGF.Builder.CreateStore(V,
3723                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3724 
3725     // Copy the second element.
3726     V = CGF.Builder.CreateAlignedLoad(
3727         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3728         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3729     CharUnits Offset = CharUnits::fromQuantity(
3730                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3731     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3732 
3733     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3734   } else if (neededInt) {
3735     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3736                       CharUnits::fromQuantity(8));
3737     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3738 
3739     // Copy to a temporary if necessary to ensure the appropriate alignment.
3740     std::pair<CharUnits, CharUnits> SizeAlign =
3741         getContext().getTypeInfoInChars(Ty);
3742     uint64_t TySize = SizeAlign.first.getQuantity();
3743     CharUnits TyAlign = SizeAlign.second;
3744 
3745     // Copy into a temporary if the type is more aligned than the
3746     // register save area.
3747     if (TyAlign.getQuantity() > 8) {
3748       Address Tmp = CGF.CreateMemTemp(Ty);
3749       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3750       RegAddr = Tmp;
3751     }
3752 
3753   } else if (neededSSE == 1) {
3754     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3755                       CharUnits::fromQuantity(16));
3756     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3757   } else {
3758     assert(neededSSE == 2 && "Invalid number of needed registers!");
3759     // SSE registers are spaced 16 bytes apart in the register save
3760     // area, we need to collect the two eightbytes together.
3761     // The ABI isn't explicit about this, but it seems reasonable
3762     // to assume that the slots are 16-byte aligned, since the stack is
3763     // naturally 16-byte aligned and the prologue is expected to store
3764     // all the SSE registers to the RSA.
3765     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3766                                 CharUnits::fromQuantity(16));
3767     Address RegAddrHi =
3768       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3769                                              CharUnits::fromQuantity(16));
3770     llvm::Type *DoubleTy = CGF.DoubleTy;
3771     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy);
3772     llvm::Value *V;
3773     Address Tmp = CGF.CreateMemTemp(Ty);
3774     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3775     V = CGF.Builder.CreateLoad(
3776                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3777     CGF.Builder.CreateStore(V,
3778                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3779     V = CGF.Builder.CreateLoad(
3780                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3781     CGF.Builder.CreateStore(V,
3782           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3783 
3784     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3785   }
3786 
3787   // AMD64-ABI 3.5.7p5: Step 5. Set:
3788   // l->gp_offset = l->gp_offset + num_gp * 8
3789   // l->fp_offset = l->fp_offset + num_fp * 16.
3790   if (neededInt) {
3791     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3792     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3793                             gp_offset_p);
3794   }
3795   if (neededSSE) {
3796     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3797     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3798                             fp_offset_p);
3799   }
3800   CGF.EmitBranch(ContBlock);
3801 
3802   // Emit code to load the value if it was passed in memory.
3803 
3804   CGF.EmitBlock(InMemBlock);
3805   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3806 
3807   // Return the appropriate result.
3808 
3809   CGF.EmitBlock(ContBlock);
3810   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3811                                  "vaarg.addr");
3812   return ResAddr;
3813 }
3814 
3815 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3816                                    QualType Ty) const {
3817   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3818                           CGF.getContext().getTypeInfoInChars(Ty),
3819                           CharUnits::fromQuantity(8),
3820                           /*allowHigherAlign*/ false);
3821 }
3822 
3823 ABIArgInfo
3824 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3825                                     const ABIArgInfo &current) const {
3826   // Assumes vectorCall calling convention.
3827   const Type *Base = nullptr;
3828   uint64_t NumElts = 0;
3829 
3830   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3831       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3832     FreeSSERegs -= NumElts;
3833     return getDirectX86Hva();
3834   }
3835   return current;
3836 }
3837 
3838 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3839                                       bool IsReturnType, bool IsVectorCall,
3840                                       bool IsRegCall) const {
3841 
3842   if (Ty->isVoidType())
3843     return ABIArgInfo::getIgnore();
3844 
3845   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3846     Ty = EnumTy->getDecl()->getIntegerType();
3847 
3848   TypeInfo Info = getContext().getTypeInfo(Ty);
3849   uint64_t Width = Info.Width;
3850   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3851 
3852   const RecordType *RT = Ty->getAs<RecordType>();
3853   if (RT) {
3854     if (!IsReturnType) {
3855       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3856         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3857     }
3858 
3859     if (RT->getDecl()->hasFlexibleArrayMember())
3860       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3861 
3862   }
3863 
3864   const Type *Base = nullptr;
3865   uint64_t NumElts = 0;
3866   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3867   // other targets.
3868   if ((IsVectorCall || IsRegCall) &&
3869       isHomogeneousAggregate(Ty, Base, NumElts)) {
3870     if (IsRegCall) {
3871       if (FreeSSERegs >= NumElts) {
3872         FreeSSERegs -= NumElts;
3873         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3874           return ABIArgInfo::getDirect();
3875         return ABIArgInfo::getExpand();
3876       }
3877       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3878     } else if (IsVectorCall) {
3879       if (FreeSSERegs >= NumElts &&
3880           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3881         FreeSSERegs -= NumElts;
3882         return ABIArgInfo::getDirect();
3883       } else if (IsReturnType) {
3884         return ABIArgInfo::getExpand();
3885       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3886         // HVAs are delayed and reclassified in the 2nd step.
3887         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3888       }
3889     }
3890   }
3891 
3892   if (Ty->isMemberPointerType()) {
3893     // If the member pointer is represented by an LLVM int or ptr, pass it
3894     // directly.
3895     llvm::Type *LLTy = CGT.ConvertType(Ty);
3896     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3897       return ABIArgInfo::getDirect();
3898   }
3899 
3900   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3901     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3902     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3903     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3904       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3905 
3906     // Otherwise, coerce it to a small integer.
3907     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3908   }
3909 
3910   // Bool type is always extended to the ABI, other builtin types are not
3911   // extended.
3912   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3913   if (BT && BT->getKind() == BuiltinType::Bool)
3914     return ABIArgInfo::getExtend();
3915 
3916   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3917   // passes them indirectly through memory.
3918   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3919     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3920     if (LDF == &llvm::APFloat::x87DoubleExtended())
3921       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3922   }
3923 
3924   return ABIArgInfo::getDirect();
3925 }
3926 
3927 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3928                                              unsigned FreeSSERegs,
3929                                              bool IsVectorCall,
3930                                              bool IsRegCall) const {
3931   unsigned Count = 0;
3932   for (auto &I : FI.arguments()) {
3933     // Vectorcall in x64 only permits the first 6 arguments to be passed
3934     // as XMM/YMM registers.
3935     if (Count < VectorcallMaxParamNumAsReg)
3936       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3937     else {
3938       // Since these cannot be passed in registers, pretend no registers
3939       // are left.
3940       unsigned ZeroSSERegsAvail = 0;
3941       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
3942                         IsVectorCall, IsRegCall);
3943     }
3944     ++Count;
3945   }
3946 
3947   for (auto &I : FI.arguments()) {
3948     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
3949   }
3950 }
3951 
3952 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3953   bool IsVectorCall =
3954       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3955   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3956 
3957   unsigned FreeSSERegs = 0;
3958   if (IsVectorCall) {
3959     // We can use up to 4 SSE return registers with vectorcall.
3960     FreeSSERegs = 4;
3961   } else if (IsRegCall) {
3962     // RegCall gives us 16 SSE registers.
3963     FreeSSERegs = 16;
3964   }
3965 
3966   if (!getCXXABI().classifyReturnType(FI))
3967     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3968                                   IsVectorCall, IsRegCall);
3969 
3970   if (IsVectorCall) {
3971     // We can use up to 6 SSE register parameters with vectorcall.
3972     FreeSSERegs = 6;
3973   } else if (IsRegCall) {
3974     // RegCall gives us 16 SSE registers, we can reuse the return registers.
3975     FreeSSERegs = 16;
3976   }
3977 
3978   if (IsVectorCall) {
3979     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
3980   } else {
3981     for (auto &I : FI.arguments())
3982       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3983   }
3984 
3985 }
3986 
3987 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3988                                     QualType Ty) const {
3989 
3990   bool IsIndirect = false;
3991 
3992   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3993   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3994   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
3995     uint64_t Width = getContext().getTypeSize(Ty);
3996     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3997   }
3998 
3999   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4000                           CGF.getContext().getTypeInfoInChars(Ty),
4001                           CharUnits::fromQuantity(8),
4002                           /*allowHigherAlign*/ false);
4003 }
4004 
4005 // PowerPC-32
4006 namespace {
4007 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4008 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4009 bool IsSoftFloatABI;
4010 public:
4011   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4012       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4013 
4014   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4015                     QualType Ty) const override;
4016 };
4017 
4018 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4019 public:
4020   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4021       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4022 
4023   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4024     // This is recovered from gcc output.
4025     return 1; // r1 is the dedicated stack pointer
4026   }
4027 
4028   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4029                                llvm::Value *Address) const override;
4030 };
4031 
4032 }
4033 
4034 // TODO: this implementation is now likely redundant with
4035 // DefaultABIInfo::EmitVAArg.
4036 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4037                                       QualType Ty) const {
4038   const unsigned OverflowLimit = 8;
4039   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4040     // TODO: Implement this. For now ignore.
4041     (void)CTy;
4042     return Address::invalid(); // FIXME?
4043   }
4044 
4045   // struct __va_list_tag {
4046   //   unsigned char gpr;
4047   //   unsigned char fpr;
4048   //   unsigned short reserved;
4049   //   void *overflow_arg_area;
4050   //   void *reg_save_area;
4051   // };
4052 
4053   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4054   bool isInt =
4055       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4056   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4057 
4058   // All aggregates are passed indirectly?  That doesn't seem consistent
4059   // with the argument-lowering code.
4060   bool isIndirect = Ty->isAggregateType();
4061 
4062   CGBuilderTy &Builder = CGF.Builder;
4063 
4064   // The calling convention either uses 1-2 GPRs or 1 FPR.
4065   Address NumRegsAddr = Address::invalid();
4066   if (isInt || IsSoftFloatABI) {
4067     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4068   } else {
4069     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4070   }
4071 
4072   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4073 
4074   // "Align" the register count when TY is i64.
4075   if (isI64 || (isF64 && IsSoftFloatABI)) {
4076     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4077     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4078   }
4079 
4080   llvm::Value *CC =
4081       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4082 
4083   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4084   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4085   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4086 
4087   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4088 
4089   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4090   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4091 
4092   // Case 1: consume registers.
4093   Address RegAddr = Address::invalid();
4094   {
4095     CGF.EmitBlock(UsingRegs);
4096 
4097     Address RegSaveAreaPtr =
4098       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4099     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4100                       CharUnits::fromQuantity(8));
4101     assert(RegAddr.getElementType() == CGF.Int8Ty);
4102 
4103     // Floating-point registers start after the general-purpose registers.
4104     if (!(isInt || IsSoftFloatABI)) {
4105       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4106                                                    CharUnits::fromQuantity(32));
4107     }
4108 
4109     // Get the address of the saved value by scaling the number of
4110     // registers we've used by the number of
4111     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4112     llvm::Value *RegOffset =
4113       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4114     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4115                                             RegAddr.getPointer(), RegOffset),
4116                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4117     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4118 
4119     // Increase the used-register count.
4120     NumRegs =
4121       Builder.CreateAdd(NumRegs,
4122                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4123     Builder.CreateStore(NumRegs, NumRegsAddr);
4124 
4125     CGF.EmitBranch(Cont);
4126   }
4127 
4128   // Case 2: consume space in the overflow area.
4129   Address MemAddr = Address::invalid();
4130   {
4131     CGF.EmitBlock(UsingOverflow);
4132 
4133     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4134 
4135     // Everything in the overflow area is rounded up to a size of at least 4.
4136     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4137 
4138     CharUnits Size;
4139     if (!isIndirect) {
4140       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4141       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4142     } else {
4143       Size = CGF.getPointerSize();
4144     }
4145 
4146     Address OverflowAreaAddr =
4147       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4148     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4149                          OverflowAreaAlign);
4150     // Round up address of argument to alignment
4151     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4152     if (Align > OverflowAreaAlign) {
4153       llvm::Value *Ptr = OverflowArea.getPointer();
4154       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4155                                                            Align);
4156     }
4157 
4158     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4159 
4160     // Increase the overflow area.
4161     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4162     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4163     CGF.EmitBranch(Cont);
4164   }
4165 
4166   CGF.EmitBlock(Cont);
4167 
4168   // Merge the cases with a phi.
4169   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4170                                 "vaarg.addr");
4171 
4172   // Load the pointer if the argument was passed indirectly.
4173   if (isIndirect) {
4174     Result = Address(Builder.CreateLoad(Result, "aggr"),
4175                      getContext().getTypeAlignInChars(Ty));
4176   }
4177 
4178   return Result;
4179 }
4180 
4181 bool
4182 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4183                                                 llvm::Value *Address) const {
4184   // This is calculated from the LLVM and GCC tables and verified
4185   // against gcc output.  AFAIK all ABIs use the same encoding.
4186 
4187   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4188 
4189   llvm::IntegerType *i8 = CGF.Int8Ty;
4190   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4191   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4192   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4193 
4194   // 0-31: r0-31, the 4-byte general-purpose registers
4195   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4196 
4197   // 32-63: fp0-31, the 8-byte floating-point registers
4198   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4199 
4200   // 64-76 are various 4-byte special-purpose registers:
4201   // 64: mq
4202   // 65: lr
4203   // 66: ctr
4204   // 67: ap
4205   // 68-75 cr0-7
4206   // 76: xer
4207   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4208 
4209   // 77-108: v0-31, the 16-byte vector registers
4210   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4211 
4212   // 109: vrsave
4213   // 110: vscr
4214   // 111: spe_acc
4215   // 112: spefscr
4216   // 113: sfp
4217   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4218 
4219   return false;
4220 }
4221 
4222 // PowerPC-64
4223 
4224 namespace {
4225 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4226 class PPC64_SVR4_ABIInfo : public ABIInfo {
4227 public:
4228   enum ABIKind {
4229     ELFv1 = 0,
4230     ELFv2
4231   };
4232 
4233 private:
4234   static const unsigned GPRBits = 64;
4235   ABIKind Kind;
4236   bool HasQPX;
4237   bool IsSoftFloatABI;
4238 
4239   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4240   // will be passed in a QPX register.
4241   bool IsQPXVectorTy(const Type *Ty) const {
4242     if (!HasQPX)
4243       return false;
4244 
4245     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4246       unsigned NumElements = VT->getNumElements();
4247       if (NumElements == 1)
4248         return false;
4249 
4250       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4251         if (getContext().getTypeSize(Ty) <= 256)
4252           return true;
4253       } else if (VT->getElementType()->
4254                    isSpecificBuiltinType(BuiltinType::Float)) {
4255         if (getContext().getTypeSize(Ty) <= 128)
4256           return true;
4257       }
4258     }
4259 
4260     return false;
4261   }
4262 
4263   bool IsQPXVectorTy(QualType Ty) const {
4264     return IsQPXVectorTy(Ty.getTypePtr());
4265   }
4266 
4267 public:
4268   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4269                      bool SoftFloatABI)
4270       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4271         IsSoftFloatABI(SoftFloatABI) {}
4272 
4273   bool isPromotableTypeForABI(QualType Ty) const;
4274   CharUnits getParamTypeAlignment(QualType Ty) const;
4275 
4276   ABIArgInfo classifyReturnType(QualType RetTy) const;
4277   ABIArgInfo classifyArgumentType(QualType Ty) const;
4278 
4279   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4280   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4281                                          uint64_t Members) const override;
4282 
4283   // TODO: We can add more logic to computeInfo to improve performance.
4284   // Example: For aggregate arguments that fit in a register, we could
4285   // use getDirectInReg (as is done below for structs containing a single
4286   // floating-point value) to avoid pushing them to memory on function
4287   // entry.  This would require changing the logic in PPCISelLowering
4288   // when lowering the parameters in the caller and args in the callee.
4289   void computeInfo(CGFunctionInfo &FI) const override {
4290     if (!getCXXABI().classifyReturnType(FI))
4291       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4292     for (auto &I : FI.arguments()) {
4293       // We rely on the default argument classification for the most part.
4294       // One exception:  An aggregate containing a single floating-point
4295       // or vector item must be passed in a register if one is available.
4296       const Type *T = isSingleElementStruct(I.type, getContext());
4297       if (T) {
4298         const BuiltinType *BT = T->getAs<BuiltinType>();
4299         if (IsQPXVectorTy(T) ||
4300             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4301             (BT && BT->isFloatingPoint())) {
4302           QualType QT(T, 0);
4303           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4304           continue;
4305         }
4306       }
4307       I.info = classifyArgumentType(I.type);
4308     }
4309   }
4310 
4311   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4312                     QualType Ty) const override;
4313 };
4314 
4315 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4316 
4317 public:
4318   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4319                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4320                                bool SoftFloatABI)
4321       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4322                                                  SoftFloatABI)) {}
4323 
4324   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4325     // This is recovered from gcc output.
4326     return 1; // r1 is the dedicated stack pointer
4327   }
4328 
4329   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4330                                llvm::Value *Address) const override;
4331 };
4332 
4333 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4334 public:
4335   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4336 
4337   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4338     // This is recovered from gcc output.
4339     return 1; // r1 is the dedicated stack pointer
4340   }
4341 
4342   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4343                                llvm::Value *Address) const override;
4344 };
4345 
4346 }
4347 
4348 // Return true if the ABI requires Ty to be passed sign- or zero-
4349 // extended to 64 bits.
4350 bool
4351 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4352   // Treat an enum type as its underlying type.
4353   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4354     Ty = EnumTy->getDecl()->getIntegerType();
4355 
4356   // Promotable integer types are required to be promoted by the ABI.
4357   if (Ty->isPromotableIntegerType())
4358     return true;
4359 
4360   // In addition to the usual promotable integer types, we also need to
4361   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4362   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4363     switch (BT->getKind()) {
4364     case BuiltinType::Int:
4365     case BuiltinType::UInt:
4366       return true;
4367     default:
4368       break;
4369     }
4370 
4371   return false;
4372 }
4373 
4374 /// isAlignedParamType - Determine whether a type requires 16-byte or
4375 /// higher alignment in the parameter area.  Always returns at least 8.
4376 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4377   // Complex types are passed just like their elements.
4378   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4379     Ty = CTy->getElementType();
4380 
4381   // Only vector types of size 16 bytes need alignment (larger types are
4382   // passed via reference, smaller types are not aligned).
4383   if (IsQPXVectorTy(Ty)) {
4384     if (getContext().getTypeSize(Ty) > 128)
4385       return CharUnits::fromQuantity(32);
4386 
4387     return CharUnits::fromQuantity(16);
4388   } else if (Ty->isVectorType()) {
4389     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4390   }
4391 
4392   // For single-element float/vector structs, we consider the whole type
4393   // to have the same alignment requirements as its single element.
4394   const Type *AlignAsType = nullptr;
4395   const Type *EltType = isSingleElementStruct(Ty, getContext());
4396   if (EltType) {
4397     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4398     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4399          getContext().getTypeSize(EltType) == 128) ||
4400         (BT && BT->isFloatingPoint()))
4401       AlignAsType = EltType;
4402   }
4403 
4404   // Likewise for ELFv2 homogeneous aggregates.
4405   const Type *Base = nullptr;
4406   uint64_t Members = 0;
4407   if (!AlignAsType && Kind == ELFv2 &&
4408       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4409     AlignAsType = Base;
4410 
4411   // With special case aggregates, only vector base types need alignment.
4412   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4413     if (getContext().getTypeSize(AlignAsType) > 128)
4414       return CharUnits::fromQuantity(32);
4415 
4416     return CharUnits::fromQuantity(16);
4417   } else if (AlignAsType) {
4418     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4419   }
4420 
4421   // Otherwise, we only need alignment for any aggregate type that
4422   // has an alignment requirement of >= 16 bytes.
4423   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4424     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4425       return CharUnits::fromQuantity(32);
4426     return CharUnits::fromQuantity(16);
4427   }
4428 
4429   return CharUnits::fromQuantity(8);
4430 }
4431 
4432 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4433 /// aggregate.  Base is set to the base element type, and Members is set
4434 /// to the number of base elements.
4435 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4436                                      uint64_t &Members) const {
4437   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4438     uint64_t NElements = AT->getSize().getZExtValue();
4439     if (NElements == 0)
4440       return false;
4441     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4442       return false;
4443     Members *= NElements;
4444   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4445     const RecordDecl *RD = RT->getDecl();
4446     if (RD->hasFlexibleArrayMember())
4447       return false;
4448 
4449     Members = 0;
4450 
4451     // If this is a C++ record, check the bases first.
4452     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4453       for (const auto &I : CXXRD->bases()) {
4454         // Ignore empty records.
4455         if (isEmptyRecord(getContext(), I.getType(), true))
4456           continue;
4457 
4458         uint64_t FldMembers;
4459         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4460           return false;
4461 
4462         Members += FldMembers;
4463       }
4464     }
4465 
4466     for (const auto *FD : RD->fields()) {
4467       // Ignore (non-zero arrays of) empty records.
4468       QualType FT = FD->getType();
4469       while (const ConstantArrayType *AT =
4470              getContext().getAsConstantArrayType(FT)) {
4471         if (AT->getSize().getZExtValue() == 0)
4472           return false;
4473         FT = AT->getElementType();
4474       }
4475       if (isEmptyRecord(getContext(), FT, true))
4476         continue;
4477 
4478       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4479       if (getContext().getLangOpts().CPlusPlus &&
4480           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4481         continue;
4482 
4483       uint64_t FldMembers;
4484       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4485         return false;
4486 
4487       Members = (RD->isUnion() ?
4488                  std::max(Members, FldMembers) : Members + FldMembers);
4489     }
4490 
4491     if (!Base)
4492       return false;
4493 
4494     // Ensure there is no padding.
4495     if (getContext().getTypeSize(Base) * Members !=
4496         getContext().getTypeSize(Ty))
4497       return false;
4498   } else {
4499     Members = 1;
4500     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4501       Members = 2;
4502       Ty = CT->getElementType();
4503     }
4504 
4505     // Most ABIs only support float, double, and some vector type widths.
4506     if (!isHomogeneousAggregateBaseType(Ty))
4507       return false;
4508 
4509     // The base type must be the same for all members.  Types that
4510     // agree in both total size and mode (float vs. vector) are
4511     // treated as being equivalent here.
4512     const Type *TyPtr = Ty.getTypePtr();
4513     if (!Base) {
4514       Base = TyPtr;
4515       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4516       // so make sure to widen it explicitly.
4517       if (const VectorType *VT = Base->getAs<VectorType>()) {
4518         QualType EltTy = VT->getElementType();
4519         unsigned NumElements =
4520             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4521         Base = getContext()
4522                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4523                    .getTypePtr();
4524       }
4525     }
4526 
4527     if (Base->isVectorType() != TyPtr->isVectorType() ||
4528         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4529       return false;
4530   }
4531   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4532 }
4533 
4534 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4535   // Homogeneous aggregates for ELFv2 must have base types of float,
4536   // double, long double, or 128-bit vectors.
4537   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4538     if (BT->getKind() == BuiltinType::Float ||
4539         BT->getKind() == BuiltinType::Double ||
4540         BT->getKind() == BuiltinType::LongDouble) {
4541       if (IsSoftFloatABI)
4542         return false;
4543       return true;
4544     }
4545   }
4546   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4547     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4548       return true;
4549   }
4550   return false;
4551 }
4552 
4553 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4554     const Type *Base, uint64_t Members) const {
4555   // Vector types require one register, floating point types require one
4556   // or two registers depending on their size.
4557   uint32_t NumRegs =
4558       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4559 
4560   // Homogeneous Aggregates may occupy at most 8 registers.
4561   return Members * NumRegs <= 8;
4562 }
4563 
4564 ABIArgInfo
4565 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4566   Ty = useFirstFieldIfTransparentUnion(Ty);
4567 
4568   if (Ty->isAnyComplexType())
4569     return ABIArgInfo::getDirect();
4570 
4571   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4572   // or via reference (larger than 16 bytes).
4573   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4574     uint64_t Size = getContext().getTypeSize(Ty);
4575     if (Size > 128)
4576       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4577     else if (Size < 128) {
4578       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4579       return ABIArgInfo::getDirect(CoerceTy);
4580     }
4581   }
4582 
4583   if (isAggregateTypeForABI(Ty)) {
4584     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4585       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4586 
4587     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4588     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4589 
4590     // ELFv2 homogeneous aggregates are passed as array types.
4591     const Type *Base = nullptr;
4592     uint64_t Members = 0;
4593     if (Kind == ELFv2 &&
4594         isHomogeneousAggregate(Ty, Base, Members)) {
4595       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4596       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4597       return ABIArgInfo::getDirect(CoerceTy);
4598     }
4599 
4600     // If an aggregate may end up fully in registers, we do not
4601     // use the ByVal method, but pass the aggregate as array.
4602     // This is usually beneficial since we avoid forcing the
4603     // back-end to store the argument to memory.
4604     uint64_t Bits = getContext().getTypeSize(Ty);
4605     if (Bits > 0 && Bits <= 8 * GPRBits) {
4606       llvm::Type *CoerceTy;
4607 
4608       // Types up to 8 bytes are passed as integer type (which will be
4609       // properly aligned in the argument save area doubleword).
4610       if (Bits <= GPRBits)
4611         CoerceTy =
4612             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4613       // Larger types are passed as arrays, with the base type selected
4614       // according to the required alignment in the save area.
4615       else {
4616         uint64_t RegBits = ABIAlign * 8;
4617         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4618         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4619         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4620       }
4621 
4622       return ABIArgInfo::getDirect(CoerceTy);
4623     }
4624 
4625     // All other aggregates are passed ByVal.
4626     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4627                                    /*ByVal=*/true,
4628                                    /*Realign=*/TyAlign > ABIAlign);
4629   }
4630 
4631   return (isPromotableTypeForABI(Ty) ?
4632           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4633 }
4634 
4635 ABIArgInfo
4636 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4637   if (RetTy->isVoidType())
4638     return ABIArgInfo::getIgnore();
4639 
4640   if (RetTy->isAnyComplexType())
4641     return ABIArgInfo::getDirect();
4642 
4643   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4644   // or via reference (larger than 16 bytes).
4645   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4646     uint64_t Size = getContext().getTypeSize(RetTy);
4647     if (Size > 128)
4648       return getNaturalAlignIndirect(RetTy);
4649     else if (Size < 128) {
4650       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4651       return ABIArgInfo::getDirect(CoerceTy);
4652     }
4653   }
4654 
4655   if (isAggregateTypeForABI(RetTy)) {
4656     // ELFv2 homogeneous aggregates are returned as array types.
4657     const Type *Base = nullptr;
4658     uint64_t Members = 0;
4659     if (Kind == ELFv2 &&
4660         isHomogeneousAggregate(RetTy, Base, Members)) {
4661       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4662       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4663       return ABIArgInfo::getDirect(CoerceTy);
4664     }
4665 
4666     // ELFv2 small aggregates are returned in up to two registers.
4667     uint64_t Bits = getContext().getTypeSize(RetTy);
4668     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4669       if (Bits == 0)
4670         return ABIArgInfo::getIgnore();
4671 
4672       llvm::Type *CoerceTy;
4673       if (Bits > GPRBits) {
4674         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4675         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4676       } else
4677         CoerceTy =
4678             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4679       return ABIArgInfo::getDirect(CoerceTy);
4680     }
4681 
4682     // All other aggregates are returned indirectly.
4683     return getNaturalAlignIndirect(RetTy);
4684   }
4685 
4686   return (isPromotableTypeForABI(RetTy) ?
4687           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4688 }
4689 
4690 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4691 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4692                                       QualType Ty) const {
4693   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4694   TypeInfo.second = getParamTypeAlignment(Ty);
4695 
4696   CharUnits SlotSize = CharUnits::fromQuantity(8);
4697 
4698   // If we have a complex type and the base type is smaller than 8 bytes,
4699   // the ABI calls for the real and imaginary parts to be right-adjusted
4700   // in separate doublewords.  However, Clang expects us to produce a
4701   // pointer to a structure with the two parts packed tightly.  So generate
4702   // loads of the real and imaginary parts relative to the va_list pointer,
4703   // and store them to a temporary structure.
4704   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4705     CharUnits EltSize = TypeInfo.first / 2;
4706     if (EltSize < SlotSize) {
4707       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4708                                             SlotSize * 2, SlotSize,
4709                                             SlotSize, /*AllowHigher*/ true);
4710 
4711       Address RealAddr = Addr;
4712       Address ImagAddr = RealAddr;
4713       if (CGF.CGM.getDataLayout().isBigEndian()) {
4714         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4715                                                           SlotSize - EltSize);
4716         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4717                                                       2 * SlotSize - EltSize);
4718       } else {
4719         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4720       }
4721 
4722       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4723       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4724       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4725       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4726       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4727 
4728       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4729       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4730                              /*init*/ true);
4731       return Temp;
4732     }
4733   }
4734 
4735   // Otherwise, just use the general rule.
4736   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4737                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4738 }
4739 
4740 static bool
4741 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4742                               llvm::Value *Address) {
4743   // This is calculated from the LLVM and GCC tables and verified
4744   // against gcc output.  AFAIK all ABIs use the same encoding.
4745 
4746   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4747 
4748   llvm::IntegerType *i8 = CGF.Int8Ty;
4749   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4750   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4751   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4752 
4753   // 0-31: r0-31, the 8-byte general-purpose registers
4754   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4755 
4756   // 32-63: fp0-31, the 8-byte floating-point registers
4757   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4758 
4759   // 64-67 are various 8-byte special-purpose registers:
4760   // 64: mq
4761   // 65: lr
4762   // 66: ctr
4763   // 67: ap
4764   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4765 
4766   // 68-76 are various 4-byte special-purpose registers:
4767   // 68-75 cr0-7
4768   // 76: xer
4769   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4770 
4771   // 77-108: v0-31, the 16-byte vector registers
4772   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4773 
4774   // 109: vrsave
4775   // 110: vscr
4776   // 111: spe_acc
4777   // 112: spefscr
4778   // 113: sfp
4779   // 114: tfhar
4780   // 115: tfiar
4781   // 116: texasr
4782   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4783 
4784   return false;
4785 }
4786 
4787 bool
4788 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4789   CodeGen::CodeGenFunction &CGF,
4790   llvm::Value *Address) const {
4791 
4792   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4793 }
4794 
4795 bool
4796 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4797                                                 llvm::Value *Address) const {
4798 
4799   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4800 }
4801 
4802 //===----------------------------------------------------------------------===//
4803 // AArch64 ABI Implementation
4804 //===----------------------------------------------------------------------===//
4805 
4806 namespace {
4807 
4808 class AArch64ABIInfo : public SwiftABIInfo {
4809 public:
4810   enum ABIKind {
4811     AAPCS = 0,
4812     DarwinPCS,
4813     Win64
4814   };
4815 
4816 private:
4817   ABIKind Kind;
4818 
4819 public:
4820   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4821     : SwiftABIInfo(CGT), Kind(Kind) {}
4822 
4823 private:
4824   ABIKind getABIKind() const { return Kind; }
4825   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4826 
4827   ABIArgInfo classifyReturnType(QualType RetTy) const;
4828   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4829   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4830   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4831                                          uint64_t Members) const override;
4832 
4833   bool isIllegalVectorType(QualType Ty) const;
4834 
4835   void computeInfo(CGFunctionInfo &FI) const override {
4836     if (!getCXXABI().classifyReturnType(FI))
4837       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4838 
4839     for (auto &it : FI.arguments())
4840       it.info = classifyArgumentType(it.type);
4841   }
4842 
4843   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4844                           CodeGenFunction &CGF) const;
4845 
4846   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4847                          CodeGenFunction &CGF) const;
4848 
4849   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4850                     QualType Ty) const override {
4851     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4852                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4853                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4854   }
4855 
4856   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4857                       QualType Ty) const override;
4858 
4859   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
4860                                     ArrayRef<llvm::Type*> scalars,
4861                                     bool asReturnValue) const override {
4862     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4863   }
4864   bool isSwiftErrorInRegister() const override {
4865     return true;
4866   }
4867 
4868   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4869                                  unsigned elts) const override;
4870 };
4871 
4872 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4873 public:
4874   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4875       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4876 
4877   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4878     return "mov\tfp, fp\t\t# marker for objc_retainAutoreleaseReturnValue";
4879   }
4880 
4881   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4882     return 31;
4883   }
4884 
4885   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4886 };
4887 
4888 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
4889 public:
4890   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
4891       : AArch64TargetCodeGenInfo(CGT, K) {}
4892 
4893   void getDependentLibraryOption(llvm::StringRef Lib,
4894                                  llvm::SmallString<24> &Opt) const override {
4895     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
4896   }
4897 
4898   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
4899                                llvm::SmallString<32> &Opt) const override {
4900     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
4901   }
4902 };
4903 }
4904 
4905 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4906   Ty = useFirstFieldIfTransparentUnion(Ty);
4907 
4908   // Handle illegal vector types here.
4909   if (isIllegalVectorType(Ty)) {
4910     uint64_t Size = getContext().getTypeSize(Ty);
4911     // Android promotes <2 x i8> to i16, not i32
4912     if (isAndroid() && (Size <= 16)) {
4913       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4914       return ABIArgInfo::getDirect(ResType);
4915     }
4916     if (Size <= 32) {
4917       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4918       return ABIArgInfo::getDirect(ResType);
4919     }
4920     if (Size == 64) {
4921       llvm::Type *ResType =
4922           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4923       return ABIArgInfo::getDirect(ResType);
4924     }
4925     if (Size == 128) {
4926       llvm::Type *ResType =
4927           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4928       return ABIArgInfo::getDirect(ResType);
4929     }
4930     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4931   }
4932 
4933   if (!isAggregateTypeForABI(Ty)) {
4934     // Treat an enum type as its underlying type.
4935     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4936       Ty = EnumTy->getDecl()->getIntegerType();
4937 
4938     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4939                 ? ABIArgInfo::getExtend()
4940                 : ABIArgInfo::getDirect());
4941   }
4942 
4943   // Structures with either a non-trivial destructor or a non-trivial
4944   // copy constructor are always indirect.
4945   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4946     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4947                                      CGCXXABI::RAA_DirectInMemory);
4948   }
4949 
4950   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4951   // elsewhere for GNU compatibility.
4952   uint64_t Size = getContext().getTypeSize(Ty);
4953   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
4954   if (IsEmpty || Size == 0) {
4955     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4956       return ABIArgInfo::getIgnore();
4957 
4958     // GNU C mode. The only argument that gets ignored is an empty one with size
4959     // 0.
4960     if (IsEmpty && Size == 0)
4961       return ABIArgInfo::getIgnore();
4962     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4963   }
4964 
4965   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4966   const Type *Base = nullptr;
4967   uint64_t Members = 0;
4968   if (isHomogeneousAggregate(Ty, Base, Members)) {
4969     return ABIArgInfo::getDirect(
4970         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4971   }
4972 
4973   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4974   if (Size <= 128) {
4975     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4976     // same size and alignment.
4977     if (getTarget().isRenderScriptTarget()) {
4978       return coerceToIntArray(Ty, getContext(), getVMContext());
4979     }
4980     unsigned Alignment = getContext().getTypeAlign(Ty);
4981     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
4982 
4983     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4984     // For aggregates with 16-byte alignment, we use i128.
4985     if (Alignment < 128 && Size == 128) {
4986       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4987       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4988     }
4989     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4990   }
4991 
4992   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4993 }
4994 
4995 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4996   if (RetTy->isVoidType())
4997     return ABIArgInfo::getIgnore();
4998 
4999   // Large vector types should be returned via memory.
5000   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5001     return getNaturalAlignIndirect(RetTy);
5002 
5003   if (!isAggregateTypeForABI(RetTy)) {
5004     // Treat an enum type as its underlying type.
5005     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5006       RetTy = EnumTy->getDecl()->getIntegerType();
5007 
5008     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5009                 ? ABIArgInfo::getExtend()
5010                 : ABIArgInfo::getDirect());
5011   }
5012 
5013   uint64_t Size = getContext().getTypeSize(RetTy);
5014   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5015     return ABIArgInfo::getIgnore();
5016 
5017   const Type *Base = nullptr;
5018   uint64_t Members = 0;
5019   if (isHomogeneousAggregate(RetTy, Base, Members))
5020     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5021     return ABIArgInfo::getDirect();
5022 
5023   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5024   if (Size <= 128) {
5025     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5026     // same size and alignment.
5027     if (getTarget().isRenderScriptTarget()) {
5028       return coerceToIntArray(RetTy, getContext(), getVMContext());
5029     }
5030     unsigned Alignment = getContext().getTypeAlign(RetTy);
5031     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5032 
5033     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5034     // For aggregates with 16-byte alignment, we use i128.
5035     if (Alignment < 128 && Size == 128) {
5036       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5037       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5038     }
5039     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5040   }
5041 
5042   return getNaturalAlignIndirect(RetTy);
5043 }
5044 
5045 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5046 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5047   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5048     // Check whether VT is legal.
5049     unsigned NumElements = VT->getNumElements();
5050     uint64_t Size = getContext().getTypeSize(VT);
5051     // NumElements should be power of 2.
5052     if (!llvm::isPowerOf2_32(NumElements))
5053       return true;
5054     return Size != 64 && (Size != 128 || NumElements == 1);
5055   }
5056   return false;
5057 }
5058 
5059 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5060                                                llvm::Type *eltTy,
5061                                                unsigned elts) const {
5062   if (!llvm::isPowerOf2_32(elts))
5063     return false;
5064   if (totalSize.getQuantity() != 8 &&
5065       (totalSize.getQuantity() != 16 || elts == 1))
5066     return false;
5067   return true;
5068 }
5069 
5070 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5071   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5072   // point type or a short-vector type. This is the same as the 32-bit ABI,
5073   // but with the difference that any floating-point type is allowed,
5074   // including __fp16.
5075   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5076     if (BT->isFloatingPoint())
5077       return true;
5078   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5079     unsigned VecSize = getContext().getTypeSize(VT);
5080     if (VecSize == 64 || VecSize == 128)
5081       return true;
5082   }
5083   return false;
5084 }
5085 
5086 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5087                                                        uint64_t Members) const {
5088   return Members <= 4;
5089 }
5090 
5091 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5092                                             QualType Ty,
5093                                             CodeGenFunction &CGF) const {
5094   ABIArgInfo AI = classifyArgumentType(Ty);
5095   bool IsIndirect = AI.isIndirect();
5096 
5097   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5098   if (IsIndirect)
5099     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5100   else if (AI.getCoerceToType())
5101     BaseTy = AI.getCoerceToType();
5102 
5103   unsigned NumRegs = 1;
5104   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5105     BaseTy = ArrTy->getElementType();
5106     NumRegs = ArrTy->getNumElements();
5107   }
5108   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5109 
5110   // The AArch64 va_list type and handling is specified in the Procedure Call
5111   // Standard, section B.4:
5112   //
5113   // struct {
5114   //   void *__stack;
5115   //   void *__gr_top;
5116   //   void *__vr_top;
5117   //   int __gr_offs;
5118   //   int __vr_offs;
5119   // };
5120 
5121   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5122   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5123   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5124   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5125 
5126   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5127   CharUnits TyAlign = TyInfo.second;
5128 
5129   Address reg_offs_p = Address::invalid();
5130   llvm::Value *reg_offs = nullptr;
5131   int reg_top_index;
5132   CharUnits reg_top_offset;
5133   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5134   if (!IsFPR) {
5135     // 3 is the field number of __gr_offs
5136     reg_offs_p =
5137         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5138                                     "gr_offs_p");
5139     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5140     reg_top_index = 1; // field number for __gr_top
5141     reg_top_offset = CharUnits::fromQuantity(8);
5142     RegSize = llvm::alignTo(RegSize, 8);
5143   } else {
5144     // 4 is the field number of __vr_offs.
5145     reg_offs_p =
5146         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5147                                     "vr_offs_p");
5148     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5149     reg_top_index = 2; // field number for __vr_top
5150     reg_top_offset = CharUnits::fromQuantity(16);
5151     RegSize = 16 * NumRegs;
5152   }
5153 
5154   //=======================================
5155   // Find out where argument was passed
5156   //=======================================
5157 
5158   // If reg_offs >= 0 we're already using the stack for this type of
5159   // argument. We don't want to keep updating reg_offs (in case it overflows,
5160   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5161   // whatever they get).
5162   llvm::Value *UsingStack = nullptr;
5163   UsingStack = CGF.Builder.CreateICmpSGE(
5164       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5165 
5166   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5167 
5168   // Otherwise, at least some kind of argument could go in these registers, the
5169   // question is whether this particular type is too big.
5170   CGF.EmitBlock(MaybeRegBlock);
5171 
5172   // Integer arguments may need to correct register alignment (for example a
5173   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5174   // align __gr_offs to calculate the potential address.
5175   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5176     int Align = TyAlign.getQuantity();
5177 
5178     reg_offs = CGF.Builder.CreateAdd(
5179         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5180         "align_regoffs");
5181     reg_offs = CGF.Builder.CreateAnd(
5182         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5183         "aligned_regoffs");
5184   }
5185 
5186   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5187   // The fact that this is done unconditionally reflects the fact that
5188   // allocating an argument to the stack also uses up all the remaining
5189   // registers of the appropriate kind.
5190   llvm::Value *NewOffset = nullptr;
5191   NewOffset = CGF.Builder.CreateAdd(
5192       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5193   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5194 
5195   // Now we're in a position to decide whether this argument really was in
5196   // registers or not.
5197   llvm::Value *InRegs = nullptr;
5198   InRegs = CGF.Builder.CreateICmpSLE(
5199       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5200 
5201   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5202 
5203   //=======================================
5204   // Argument was in registers
5205   //=======================================
5206 
5207   // Now we emit the code for if the argument was originally passed in
5208   // registers. First start the appropriate block:
5209   CGF.EmitBlock(InRegBlock);
5210 
5211   llvm::Value *reg_top = nullptr;
5212   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5213                                                   reg_top_offset, "reg_top_p");
5214   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5215   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5216                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5217   Address RegAddr = Address::invalid();
5218   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5219 
5220   if (IsIndirect) {
5221     // If it's been passed indirectly (actually a struct), whatever we find from
5222     // stored registers or on the stack will actually be a struct **.
5223     MemTy = llvm::PointerType::getUnqual(MemTy);
5224   }
5225 
5226   const Type *Base = nullptr;
5227   uint64_t NumMembers = 0;
5228   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5229   if (IsHFA && NumMembers > 1) {
5230     // Homogeneous aggregates passed in registers will have their elements split
5231     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5232     // qN+1, ...). We reload and store into a temporary local variable
5233     // contiguously.
5234     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5235     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5236     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5237     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5238     Address Tmp = CGF.CreateTempAlloca(HFATy,
5239                                        std::max(TyAlign, BaseTyInfo.second));
5240 
5241     // On big-endian platforms, the value will be right-aligned in its slot.
5242     int Offset = 0;
5243     if (CGF.CGM.getDataLayout().isBigEndian() &&
5244         BaseTyInfo.first.getQuantity() < 16)
5245       Offset = 16 - BaseTyInfo.first.getQuantity();
5246 
5247     for (unsigned i = 0; i < NumMembers; ++i) {
5248       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5249       Address LoadAddr =
5250         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5251       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5252 
5253       Address StoreAddr =
5254         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5255 
5256       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5257       CGF.Builder.CreateStore(Elem, StoreAddr);
5258     }
5259 
5260     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5261   } else {
5262     // Otherwise the object is contiguous in memory.
5263 
5264     // It might be right-aligned in its slot.
5265     CharUnits SlotSize = BaseAddr.getAlignment();
5266     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5267         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5268         TyInfo.first < SlotSize) {
5269       CharUnits Offset = SlotSize - TyInfo.first;
5270       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5271     }
5272 
5273     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5274   }
5275 
5276   CGF.EmitBranch(ContBlock);
5277 
5278   //=======================================
5279   // Argument was on the stack
5280   //=======================================
5281   CGF.EmitBlock(OnStackBlock);
5282 
5283   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5284                                                 CharUnits::Zero(), "stack_p");
5285   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5286 
5287   // Again, stack arguments may need realignment. In this case both integer and
5288   // floating-point ones might be affected.
5289   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5290     int Align = TyAlign.getQuantity();
5291 
5292     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5293 
5294     OnStackPtr = CGF.Builder.CreateAdd(
5295         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5296         "align_stack");
5297     OnStackPtr = CGF.Builder.CreateAnd(
5298         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5299         "align_stack");
5300 
5301     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5302   }
5303   Address OnStackAddr(OnStackPtr,
5304                       std::max(CharUnits::fromQuantity(8), TyAlign));
5305 
5306   // All stack slots are multiples of 8 bytes.
5307   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5308   CharUnits StackSize;
5309   if (IsIndirect)
5310     StackSize = StackSlotSize;
5311   else
5312     StackSize = TyInfo.first.alignTo(StackSlotSize);
5313 
5314   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5315   llvm::Value *NewStack =
5316       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5317 
5318   // Write the new value of __stack for the next call to va_arg
5319   CGF.Builder.CreateStore(NewStack, stack_p);
5320 
5321   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5322       TyInfo.first < StackSlotSize) {
5323     CharUnits Offset = StackSlotSize - TyInfo.first;
5324     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5325   }
5326 
5327   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5328 
5329   CGF.EmitBranch(ContBlock);
5330 
5331   //=======================================
5332   // Tidy up
5333   //=======================================
5334   CGF.EmitBlock(ContBlock);
5335 
5336   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5337                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5338 
5339   if (IsIndirect)
5340     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5341                    TyInfo.second);
5342 
5343   return ResAddr;
5344 }
5345 
5346 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5347                                         CodeGenFunction &CGF) const {
5348   // The backend's lowering doesn't support va_arg for aggregates or
5349   // illegal vector types.  Lower VAArg here for these cases and use
5350   // the LLVM va_arg instruction for everything else.
5351   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5352     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5353 
5354   CharUnits SlotSize = CharUnits::fromQuantity(8);
5355 
5356   // Empty records are ignored for parameter passing purposes.
5357   if (isEmptyRecord(getContext(), Ty, true)) {
5358     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5359     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5360     return Addr;
5361   }
5362 
5363   // The size of the actual thing passed, which might end up just
5364   // being a pointer for indirect types.
5365   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5366 
5367   // Arguments bigger than 16 bytes which aren't homogeneous
5368   // aggregates should be passed indirectly.
5369   bool IsIndirect = false;
5370   if (TyInfo.first.getQuantity() > 16) {
5371     const Type *Base = nullptr;
5372     uint64_t Members = 0;
5373     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5374   }
5375 
5376   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5377                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5378 }
5379 
5380 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5381                                     QualType Ty) const {
5382   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5383                           CGF.getContext().getTypeInfoInChars(Ty),
5384                           CharUnits::fromQuantity(8),
5385                           /*allowHigherAlign*/ false);
5386 }
5387 
5388 //===----------------------------------------------------------------------===//
5389 // ARM ABI Implementation
5390 //===----------------------------------------------------------------------===//
5391 
5392 namespace {
5393 
5394 class ARMABIInfo : public SwiftABIInfo {
5395 public:
5396   enum ABIKind {
5397     APCS = 0,
5398     AAPCS = 1,
5399     AAPCS_VFP = 2,
5400     AAPCS16_VFP = 3,
5401   };
5402 
5403 private:
5404   ABIKind Kind;
5405 
5406 public:
5407   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5408       : SwiftABIInfo(CGT), Kind(_Kind) {
5409     setCCs();
5410   }
5411 
5412   bool isEABI() const {
5413     switch (getTarget().getTriple().getEnvironment()) {
5414     case llvm::Triple::Android:
5415     case llvm::Triple::EABI:
5416     case llvm::Triple::EABIHF:
5417     case llvm::Triple::GNUEABI:
5418     case llvm::Triple::GNUEABIHF:
5419     case llvm::Triple::MuslEABI:
5420     case llvm::Triple::MuslEABIHF:
5421       return true;
5422     default:
5423       return false;
5424     }
5425   }
5426 
5427   bool isEABIHF() const {
5428     switch (getTarget().getTriple().getEnvironment()) {
5429     case llvm::Triple::EABIHF:
5430     case llvm::Triple::GNUEABIHF:
5431     case llvm::Triple::MuslEABIHF:
5432       return true;
5433     default:
5434       return false;
5435     }
5436   }
5437 
5438   ABIKind getABIKind() const { return Kind; }
5439 
5440 private:
5441   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5442   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5443   bool isIllegalVectorType(QualType Ty) const;
5444 
5445   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5446   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5447                                          uint64_t Members) const override;
5448 
5449   void computeInfo(CGFunctionInfo &FI) const override;
5450 
5451   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5452                     QualType Ty) const override;
5453 
5454   llvm::CallingConv::ID getLLVMDefaultCC() const;
5455   llvm::CallingConv::ID getABIDefaultCC() const;
5456   void setCCs();
5457 
5458   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5459                                     ArrayRef<llvm::Type*> scalars,
5460                                     bool asReturnValue) const override {
5461     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5462   }
5463   bool isSwiftErrorInRegister() const override {
5464     return true;
5465   }
5466   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5467                                  unsigned elts) const override;
5468 };
5469 
5470 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5471 public:
5472   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5473     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5474 
5475   const ARMABIInfo &getABIInfo() const {
5476     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5477   }
5478 
5479   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5480     return 13;
5481   }
5482 
5483   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5484     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
5485   }
5486 
5487   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5488                                llvm::Value *Address) const override {
5489     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5490 
5491     // 0-15 are the 16 integer registers.
5492     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5493     return false;
5494   }
5495 
5496   unsigned getSizeOfUnwindException() const override {
5497     if (getABIInfo().isEABI()) return 88;
5498     return TargetCodeGenInfo::getSizeOfUnwindException();
5499   }
5500 
5501   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5502                            CodeGen::CodeGenModule &CGM,
5503                            ForDefinition_t IsForDefinition) const override {
5504     if (!IsForDefinition)
5505       return;
5506     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5507     if (!FD)
5508       return;
5509 
5510     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5511     if (!Attr)
5512       return;
5513 
5514     const char *Kind;
5515     switch (Attr->getInterrupt()) {
5516     case ARMInterruptAttr::Generic: Kind = ""; break;
5517     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5518     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5519     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5520     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5521     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5522     }
5523 
5524     llvm::Function *Fn = cast<llvm::Function>(GV);
5525 
5526     Fn->addFnAttr("interrupt", Kind);
5527 
5528     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5529     if (ABI == ARMABIInfo::APCS)
5530       return;
5531 
5532     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5533     // however this is not necessarily true on taking any interrupt. Instruct
5534     // the backend to perform a realignment as part of the function prologue.
5535     llvm::AttrBuilder B;
5536     B.addStackAlignmentAttr(8);
5537     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5538   }
5539 };
5540 
5541 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5542 public:
5543   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5544       : ARMTargetCodeGenInfo(CGT, K) {}
5545 
5546   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5547                            CodeGen::CodeGenModule &CGM,
5548                            ForDefinition_t IsForDefinition) const override;
5549 
5550   void getDependentLibraryOption(llvm::StringRef Lib,
5551                                  llvm::SmallString<24> &Opt) const override {
5552     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5553   }
5554 
5555   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5556                                llvm::SmallString<32> &Opt) const override {
5557     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5558   }
5559 };
5560 
5561 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5562     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
5563     ForDefinition_t IsForDefinition) const {
5564   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
5565   if (!IsForDefinition)
5566     return;
5567   addStackProbeSizeTargetAttribute(D, GV, CGM);
5568 }
5569 }
5570 
5571 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5572   if (!getCXXABI().classifyReturnType(FI))
5573     FI.getReturnInfo() =
5574         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5575 
5576   for (auto &I : FI.arguments())
5577     I.info = classifyArgumentType(I.type, FI.isVariadic());
5578 
5579   // Always honor user-specified calling convention.
5580   if (FI.getCallingConvention() != llvm::CallingConv::C)
5581     return;
5582 
5583   llvm::CallingConv::ID cc = getRuntimeCC();
5584   if (cc != llvm::CallingConv::C)
5585     FI.setEffectiveCallingConvention(cc);
5586 }
5587 
5588 /// Return the default calling convention that LLVM will use.
5589 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5590   // The default calling convention that LLVM will infer.
5591   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5592     return llvm::CallingConv::ARM_AAPCS_VFP;
5593   else if (isEABI())
5594     return llvm::CallingConv::ARM_AAPCS;
5595   else
5596     return llvm::CallingConv::ARM_APCS;
5597 }
5598 
5599 /// Return the calling convention that our ABI would like us to use
5600 /// as the C calling convention.
5601 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5602   switch (getABIKind()) {
5603   case APCS: return llvm::CallingConv::ARM_APCS;
5604   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5605   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5606   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5607   }
5608   llvm_unreachable("bad ABI kind");
5609 }
5610 
5611 void ARMABIInfo::setCCs() {
5612   assert(getRuntimeCC() == llvm::CallingConv::C);
5613 
5614   // Don't muddy up the IR with a ton of explicit annotations if
5615   // they'd just match what LLVM will infer from the triple.
5616   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5617   if (abiCC != getLLVMDefaultCC())
5618     RuntimeCC = abiCC;
5619 
5620   // AAPCS apparently requires runtime support functions to be soft-float, but
5621   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5622   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5623 
5624   // The Run-time ABI for the ARM Architecture section 4.1.2 requires
5625   // AEABI-complying FP helper functions to use the base AAPCS.
5626   // These AEABI functions are expanded in the ARM llvm backend, all the builtin
5627   // support functions emitted by clang such as the _Complex helpers follow the
5628   // abiCC.
5629   if (abiCC != getLLVMDefaultCC())
5630       BuiltinCC = abiCC;
5631 }
5632 
5633 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5634                                             bool isVariadic) const {
5635   // 6.1.2.1 The following argument types are VFP CPRCs:
5636   //   A single-precision floating-point type (including promoted
5637   //   half-precision types); A double-precision floating-point type;
5638   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5639   //   with a Base Type of a single- or double-precision floating-point type,
5640   //   64-bit containerized vectors or 128-bit containerized vectors with one
5641   //   to four Elements.
5642   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5643 
5644   Ty = useFirstFieldIfTransparentUnion(Ty);
5645 
5646   // Handle illegal vector types here.
5647   if (isIllegalVectorType(Ty)) {
5648     uint64_t Size = getContext().getTypeSize(Ty);
5649     if (Size <= 32) {
5650       llvm::Type *ResType =
5651           llvm::Type::getInt32Ty(getVMContext());
5652       return ABIArgInfo::getDirect(ResType);
5653     }
5654     if (Size == 64) {
5655       llvm::Type *ResType = llvm::VectorType::get(
5656           llvm::Type::getInt32Ty(getVMContext()), 2);
5657       return ABIArgInfo::getDirect(ResType);
5658     }
5659     if (Size == 128) {
5660       llvm::Type *ResType = llvm::VectorType::get(
5661           llvm::Type::getInt32Ty(getVMContext()), 4);
5662       return ABIArgInfo::getDirect(ResType);
5663     }
5664     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5665   }
5666 
5667   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5668   // unspecified. This is not done for OpenCL as it handles the half type
5669   // natively, and does not need to interwork with AAPCS code.
5670   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5671     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5672       llvm::Type::getFloatTy(getVMContext()) :
5673       llvm::Type::getInt32Ty(getVMContext());
5674     return ABIArgInfo::getDirect(ResType);
5675   }
5676 
5677   if (!isAggregateTypeForABI(Ty)) {
5678     // Treat an enum type as its underlying type.
5679     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5680       Ty = EnumTy->getDecl()->getIntegerType();
5681     }
5682 
5683     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5684                                           : ABIArgInfo::getDirect());
5685   }
5686 
5687   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5688     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5689   }
5690 
5691   // Ignore empty records.
5692   if (isEmptyRecord(getContext(), Ty, true))
5693     return ABIArgInfo::getIgnore();
5694 
5695   if (IsEffectivelyAAPCS_VFP) {
5696     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5697     // into VFP registers.
5698     const Type *Base = nullptr;
5699     uint64_t Members = 0;
5700     if (isHomogeneousAggregate(Ty, Base, Members)) {
5701       assert(Base && "Base class should be set for homogeneous aggregate");
5702       // Base can be a floating-point or a vector.
5703       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5704     }
5705   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5706     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5707     // this convention even for a variadic function: the backend will use GPRs
5708     // if needed.
5709     const Type *Base = nullptr;
5710     uint64_t Members = 0;
5711     if (isHomogeneousAggregate(Ty, Base, Members)) {
5712       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5713       llvm::Type *Ty =
5714         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5715       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5716     }
5717   }
5718 
5719   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5720       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5721     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5722     // bigger than 128-bits, they get placed in space allocated by the caller,
5723     // and a pointer is passed.
5724     return ABIArgInfo::getIndirect(
5725         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5726   }
5727 
5728   // Support byval for ARM.
5729   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5730   // most 8-byte. We realign the indirect argument if type alignment is bigger
5731   // than ABI alignment.
5732   uint64_t ABIAlign = 4;
5733   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5734   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5735        getABIKind() == ARMABIInfo::AAPCS)
5736     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5737 
5738   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5739     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5740     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5741                                    /*ByVal=*/true,
5742                                    /*Realign=*/TyAlign > ABIAlign);
5743   }
5744 
5745   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5746   // same size and alignment.
5747   if (getTarget().isRenderScriptTarget()) {
5748     return coerceToIntArray(Ty, getContext(), getVMContext());
5749   }
5750 
5751   // Otherwise, pass by coercing to a structure of the appropriate size.
5752   llvm::Type* ElemTy;
5753   unsigned SizeRegs;
5754   // FIXME: Try to match the types of the arguments more accurately where
5755   // we can.
5756   if (getContext().getTypeAlign(Ty) <= 32) {
5757     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5758     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5759   } else {
5760     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5761     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5762   }
5763 
5764   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5765 }
5766 
5767 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5768                               llvm::LLVMContext &VMContext) {
5769   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5770   // is called integer-like if its size is less than or equal to one word, and
5771   // the offset of each of its addressable sub-fields is zero.
5772 
5773   uint64_t Size = Context.getTypeSize(Ty);
5774 
5775   // Check that the type fits in a word.
5776   if (Size > 32)
5777     return false;
5778 
5779   // FIXME: Handle vector types!
5780   if (Ty->isVectorType())
5781     return false;
5782 
5783   // Float types are never treated as "integer like".
5784   if (Ty->isRealFloatingType())
5785     return false;
5786 
5787   // If this is a builtin or pointer type then it is ok.
5788   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5789     return true;
5790 
5791   // Small complex integer types are "integer like".
5792   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5793     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5794 
5795   // Single element and zero sized arrays should be allowed, by the definition
5796   // above, but they are not.
5797 
5798   // Otherwise, it must be a record type.
5799   const RecordType *RT = Ty->getAs<RecordType>();
5800   if (!RT) return false;
5801 
5802   // Ignore records with flexible arrays.
5803   const RecordDecl *RD = RT->getDecl();
5804   if (RD->hasFlexibleArrayMember())
5805     return false;
5806 
5807   // Check that all sub-fields are at offset 0, and are themselves "integer
5808   // like".
5809   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5810 
5811   bool HadField = false;
5812   unsigned idx = 0;
5813   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5814        i != e; ++i, ++idx) {
5815     const FieldDecl *FD = *i;
5816 
5817     // Bit-fields are not addressable, we only need to verify they are "integer
5818     // like". We still have to disallow a subsequent non-bitfield, for example:
5819     //   struct { int : 0; int x }
5820     // is non-integer like according to gcc.
5821     if (FD->isBitField()) {
5822       if (!RD->isUnion())
5823         HadField = true;
5824 
5825       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5826         return false;
5827 
5828       continue;
5829     }
5830 
5831     // Check if this field is at offset 0.
5832     if (Layout.getFieldOffset(idx) != 0)
5833       return false;
5834 
5835     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5836       return false;
5837 
5838     // Only allow at most one field in a structure. This doesn't match the
5839     // wording above, but follows gcc in situations with a field following an
5840     // empty structure.
5841     if (!RD->isUnion()) {
5842       if (HadField)
5843         return false;
5844 
5845       HadField = true;
5846     }
5847   }
5848 
5849   return true;
5850 }
5851 
5852 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5853                                           bool isVariadic) const {
5854   bool IsEffectivelyAAPCS_VFP =
5855       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5856 
5857   if (RetTy->isVoidType())
5858     return ABIArgInfo::getIgnore();
5859 
5860   // Large vector types should be returned via memory.
5861   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5862     return getNaturalAlignIndirect(RetTy);
5863   }
5864 
5865   // __fp16 gets returned as if it were an int or float, but with the top 16
5866   // bits unspecified. This is not done for OpenCL as it handles the half type
5867   // natively, and does not need to interwork with AAPCS code.
5868   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5869     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5870       llvm::Type::getFloatTy(getVMContext()) :
5871       llvm::Type::getInt32Ty(getVMContext());
5872     return ABIArgInfo::getDirect(ResType);
5873   }
5874 
5875   if (!isAggregateTypeForABI(RetTy)) {
5876     // Treat an enum type as its underlying type.
5877     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5878       RetTy = EnumTy->getDecl()->getIntegerType();
5879 
5880     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5881                                             : ABIArgInfo::getDirect();
5882   }
5883 
5884   // Are we following APCS?
5885   if (getABIKind() == APCS) {
5886     if (isEmptyRecord(getContext(), RetTy, false))
5887       return ABIArgInfo::getIgnore();
5888 
5889     // Complex types are all returned as packed integers.
5890     //
5891     // FIXME: Consider using 2 x vector types if the back end handles them
5892     // correctly.
5893     if (RetTy->isAnyComplexType())
5894       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5895           getVMContext(), getContext().getTypeSize(RetTy)));
5896 
5897     // Integer like structures are returned in r0.
5898     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5899       // Return in the smallest viable integer type.
5900       uint64_t Size = getContext().getTypeSize(RetTy);
5901       if (Size <= 8)
5902         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5903       if (Size <= 16)
5904         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5905       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5906     }
5907 
5908     // Otherwise return in memory.
5909     return getNaturalAlignIndirect(RetTy);
5910   }
5911 
5912   // Otherwise this is an AAPCS variant.
5913 
5914   if (isEmptyRecord(getContext(), RetTy, true))
5915     return ABIArgInfo::getIgnore();
5916 
5917   // Check for homogeneous aggregates with AAPCS-VFP.
5918   if (IsEffectivelyAAPCS_VFP) {
5919     const Type *Base = nullptr;
5920     uint64_t Members = 0;
5921     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5922       assert(Base && "Base class should be set for homogeneous aggregate");
5923       // Homogeneous Aggregates are returned directly.
5924       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5925     }
5926   }
5927 
5928   // Aggregates <= 4 bytes are returned in r0; other aggregates
5929   // are returned indirectly.
5930   uint64_t Size = getContext().getTypeSize(RetTy);
5931   if (Size <= 32) {
5932     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5933     // same size and alignment.
5934     if (getTarget().isRenderScriptTarget()) {
5935       return coerceToIntArray(RetTy, getContext(), getVMContext());
5936     }
5937     if (getDataLayout().isBigEndian())
5938       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5939       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5940 
5941     // Return in the smallest viable integer type.
5942     if (Size <= 8)
5943       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5944     if (Size <= 16)
5945       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5946     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5947   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5948     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5949     llvm::Type *CoerceTy =
5950         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5951     return ABIArgInfo::getDirect(CoerceTy);
5952   }
5953 
5954   return getNaturalAlignIndirect(RetTy);
5955 }
5956 
5957 /// isIllegalVector - check whether Ty is an illegal vector type.
5958 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5959   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5960     if (isAndroid()) {
5961       // Android shipped using Clang 3.1, which supported a slightly different
5962       // vector ABI. The primary differences were that 3-element vector types
5963       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5964       // accepts that legacy behavior for Android only.
5965       // Check whether VT is legal.
5966       unsigned NumElements = VT->getNumElements();
5967       // NumElements should be power of 2 or equal to 3.
5968       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5969         return true;
5970     } else {
5971       // Check whether VT is legal.
5972       unsigned NumElements = VT->getNumElements();
5973       uint64_t Size = getContext().getTypeSize(VT);
5974       // NumElements should be power of 2.
5975       if (!llvm::isPowerOf2_32(NumElements))
5976         return true;
5977       // Size should be greater than 32 bits.
5978       return Size <= 32;
5979     }
5980   }
5981   return false;
5982 }
5983 
5984 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
5985                                            llvm::Type *eltTy,
5986                                            unsigned numElts) const {
5987   if (!llvm::isPowerOf2_32(numElts))
5988     return false;
5989   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
5990   if (size > 64)
5991     return false;
5992   if (vectorSize.getQuantity() != 8 &&
5993       (vectorSize.getQuantity() != 16 || numElts == 1))
5994     return false;
5995   return true;
5996 }
5997 
5998 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5999   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6000   // double, or 64-bit or 128-bit vectors.
6001   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6002     if (BT->getKind() == BuiltinType::Float ||
6003         BT->getKind() == BuiltinType::Double ||
6004         BT->getKind() == BuiltinType::LongDouble)
6005       return true;
6006   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6007     unsigned VecSize = getContext().getTypeSize(VT);
6008     if (VecSize == 64 || VecSize == 128)
6009       return true;
6010   }
6011   return false;
6012 }
6013 
6014 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6015                                                    uint64_t Members) const {
6016   return Members <= 4;
6017 }
6018 
6019 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6020                               QualType Ty) const {
6021   CharUnits SlotSize = CharUnits::fromQuantity(4);
6022 
6023   // Empty records are ignored for parameter passing purposes.
6024   if (isEmptyRecord(getContext(), Ty, true)) {
6025     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6026     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6027     return Addr;
6028   }
6029 
6030   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6031   CharUnits TyAlignForABI = TyInfo.second;
6032 
6033   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6034   bool IsIndirect = false;
6035   const Type *Base = nullptr;
6036   uint64_t Members = 0;
6037   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6038     IsIndirect = true;
6039 
6040   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6041   // allocated by the caller.
6042   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6043              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6044              !isHomogeneousAggregate(Ty, Base, Members)) {
6045     IsIndirect = true;
6046 
6047   // Otherwise, bound the type's ABI alignment.
6048   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6049   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6050   // Our callers should be prepared to handle an under-aligned address.
6051   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6052              getABIKind() == ARMABIInfo::AAPCS) {
6053     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6054     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6055   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6056     // ARMv7k allows type alignment up to 16 bytes.
6057     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6058     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6059   } else {
6060     TyAlignForABI = CharUnits::fromQuantity(4);
6061   }
6062   TyInfo.second = TyAlignForABI;
6063 
6064   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6065                           SlotSize, /*AllowHigherAlign*/ true);
6066 }
6067 
6068 //===----------------------------------------------------------------------===//
6069 // NVPTX ABI Implementation
6070 //===----------------------------------------------------------------------===//
6071 
6072 namespace {
6073 
6074 class NVPTXABIInfo : public ABIInfo {
6075 public:
6076   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6077 
6078   ABIArgInfo classifyReturnType(QualType RetTy) const;
6079   ABIArgInfo classifyArgumentType(QualType Ty) const;
6080 
6081   void computeInfo(CGFunctionInfo &FI) const override;
6082   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6083                     QualType Ty) const override;
6084 };
6085 
6086 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6087 public:
6088   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6089     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6090 
6091   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6092                            CodeGen::CodeGenModule &M,
6093                            ForDefinition_t IsForDefinition) const override;
6094 
6095 private:
6096   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6097   // resulting MDNode to the nvvm.annotations MDNode.
6098   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6099 };
6100 
6101 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6102   if (RetTy->isVoidType())
6103     return ABIArgInfo::getIgnore();
6104 
6105   // note: this is different from default ABI
6106   if (!RetTy->isScalarType())
6107     return ABIArgInfo::getDirect();
6108 
6109   // Treat an enum type as its underlying type.
6110   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6111     RetTy = EnumTy->getDecl()->getIntegerType();
6112 
6113   return (RetTy->isPromotableIntegerType() ?
6114           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6115 }
6116 
6117 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6118   // Treat an enum type as its underlying type.
6119   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6120     Ty = EnumTy->getDecl()->getIntegerType();
6121 
6122   // Return aggregates type as indirect by value
6123   if (isAggregateTypeForABI(Ty))
6124     return getNaturalAlignIndirect(Ty, /* byval */ true);
6125 
6126   return (Ty->isPromotableIntegerType() ?
6127           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6128 }
6129 
6130 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6131   if (!getCXXABI().classifyReturnType(FI))
6132     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6133   for (auto &I : FI.arguments())
6134     I.info = classifyArgumentType(I.type);
6135 
6136   // Always honor user-specified calling convention.
6137   if (FI.getCallingConvention() != llvm::CallingConv::C)
6138     return;
6139 
6140   FI.setEffectiveCallingConvention(getRuntimeCC());
6141 }
6142 
6143 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6144                                 QualType Ty) const {
6145   llvm_unreachable("NVPTX does not support varargs");
6146 }
6147 
6148 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6149     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
6150     ForDefinition_t IsForDefinition) const {
6151   if (!IsForDefinition)
6152     return;
6153   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6154   if (!FD) return;
6155 
6156   llvm::Function *F = cast<llvm::Function>(GV);
6157 
6158   // Perform special handling in OpenCL mode
6159   if (M.getLangOpts().OpenCL) {
6160     // Use OpenCL function attributes to check for kernel functions
6161     // By default, all functions are device functions
6162     if (FD->hasAttr<OpenCLKernelAttr>()) {
6163       // OpenCL __kernel functions get kernel metadata
6164       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6165       addNVVMMetadata(F, "kernel", 1);
6166       // And kernel functions are not subject to inlining
6167       F->addFnAttr(llvm::Attribute::NoInline);
6168     }
6169   }
6170 
6171   // Perform special handling in CUDA mode.
6172   if (M.getLangOpts().CUDA) {
6173     // CUDA __global__ functions get a kernel metadata entry.  Since
6174     // __global__ functions cannot be called from the device, we do not
6175     // need to set the noinline attribute.
6176     if (FD->hasAttr<CUDAGlobalAttr>()) {
6177       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6178       addNVVMMetadata(F, "kernel", 1);
6179     }
6180     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6181       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6182       llvm::APSInt MaxThreads(32);
6183       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6184       if (MaxThreads > 0)
6185         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6186 
6187       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6188       // not specified in __launch_bounds__ or if the user specified a 0 value,
6189       // we don't have to add a PTX directive.
6190       if (Attr->getMinBlocks()) {
6191         llvm::APSInt MinBlocks(32);
6192         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6193         if (MinBlocks > 0)
6194           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6195           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6196       }
6197     }
6198   }
6199 }
6200 
6201 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6202                                              int Operand) {
6203   llvm::Module *M = F->getParent();
6204   llvm::LLVMContext &Ctx = M->getContext();
6205 
6206   // Get "nvvm.annotations" metadata node
6207   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6208 
6209   llvm::Metadata *MDVals[] = {
6210       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6211       llvm::ConstantAsMetadata::get(
6212           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6213   // Append metadata to nvvm.annotations
6214   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6215 }
6216 }
6217 
6218 //===----------------------------------------------------------------------===//
6219 // SystemZ ABI Implementation
6220 //===----------------------------------------------------------------------===//
6221 
6222 namespace {
6223 
6224 class SystemZABIInfo : public SwiftABIInfo {
6225   bool HasVector;
6226 
6227 public:
6228   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6229     : SwiftABIInfo(CGT), HasVector(HV) {}
6230 
6231   bool isPromotableIntegerType(QualType Ty) const;
6232   bool isCompoundType(QualType Ty) const;
6233   bool isVectorArgumentType(QualType Ty) const;
6234   bool isFPArgumentType(QualType Ty) const;
6235   QualType GetSingleElementType(QualType Ty) const;
6236 
6237   ABIArgInfo classifyReturnType(QualType RetTy) const;
6238   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6239 
6240   void computeInfo(CGFunctionInfo &FI) const override {
6241     if (!getCXXABI().classifyReturnType(FI))
6242       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6243     for (auto &I : FI.arguments())
6244       I.info = classifyArgumentType(I.type);
6245   }
6246 
6247   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6248                     QualType Ty) const override;
6249 
6250   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
6251                                     ArrayRef<llvm::Type*> scalars,
6252                                     bool asReturnValue) const override {
6253     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6254   }
6255   bool isSwiftErrorInRegister() const override {
6256     return true;
6257   }
6258 };
6259 
6260 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6261 public:
6262   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6263     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6264 };
6265 
6266 }
6267 
6268 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6269   // Treat an enum type as its underlying type.
6270   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6271     Ty = EnumTy->getDecl()->getIntegerType();
6272 
6273   // Promotable integer types are required to be promoted by the ABI.
6274   if (Ty->isPromotableIntegerType())
6275     return true;
6276 
6277   // 32-bit values must also be promoted.
6278   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6279     switch (BT->getKind()) {
6280     case BuiltinType::Int:
6281     case BuiltinType::UInt:
6282       return true;
6283     default:
6284       return false;
6285     }
6286   return false;
6287 }
6288 
6289 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6290   return (Ty->isAnyComplexType() ||
6291           Ty->isVectorType() ||
6292           isAggregateTypeForABI(Ty));
6293 }
6294 
6295 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6296   return (HasVector &&
6297           Ty->isVectorType() &&
6298           getContext().getTypeSize(Ty) <= 128);
6299 }
6300 
6301 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6302   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6303     switch (BT->getKind()) {
6304     case BuiltinType::Float:
6305     case BuiltinType::Double:
6306       return true;
6307     default:
6308       return false;
6309     }
6310 
6311   return false;
6312 }
6313 
6314 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6315   if (const RecordType *RT = Ty->getAsStructureType()) {
6316     const RecordDecl *RD = RT->getDecl();
6317     QualType Found;
6318 
6319     // If this is a C++ record, check the bases first.
6320     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6321       for (const auto &I : CXXRD->bases()) {
6322         QualType Base = I.getType();
6323 
6324         // Empty bases don't affect things either way.
6325         if (isEmptyRecord(getContext(), Base, true))
6326           continue;
6327 
6328         if (!Found.isNull())
6329           return Ty;
6330         Found = GetSingleElementType(Base);
6331       }
6332 
6333     // Check the fields.
6334     for (const auto *FD : RD->fields()) {
6335       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6336       // Unlike isSingleElementStruct(), empty structure and array fields
6337       // do count.  So do anonymous bitfields that aren't zero-sized.
6338       if (getContext().getLangOpts().CPlusPlus &&
6339           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
6340         continue;
6341 
6342       // Unlike isSingleElementStruct(), arrays do not count.
6343       // Nested structures still do though.
6344       if (!Found.isNull())
6345         return Ty;
6346       Found = GetSingleElementType(FD->getType());
6347     }
6348 
6349     // Unlike isSingleElementStruct(), trailing padding is allowed.
6350     // An 8-byte aligned struct s { float f; } is passed as a double.
6351     if (!Found.isNull())
6352       return Found;
6353   }
6354 
6355   return Ty;
6356 }
6357 
6358 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6359                                   QualType Ty) const {
6360   // Assume that va_list type is correct; should be pointer to LLVM type:
6361   // struct {
6362   //   i64 __gpr;
6363   //   i64 __fpr;
6364   //   i8 *__overflow_arg_area;
6365   //   i8 *__reg_save_area;
6366   // };
6367 
6368   // Every non-vector argument occupies 8 bytes and is passed by preference
6369   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6370   // always passed on the stack.
6371   Ty = getContext().getCanonicalType(Ty);
6372   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6373   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6374   llvm::Type *DirectTy = ArgTy;
6375   ABIArgInfo AI = classifyArgumentType(Ty);
6376   bool IsIndirect = AI.isIndirect();
6377   bool InFPRs = false;
6378   bool IsVector = false;
6379   CharUnits UnpaddedSize;
6380   CharUnits DirectAlign;
6381   if (IsIndirect) {
6382     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6383     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6384   } else {
6385     if (AI.getCoerceToType())
6386       ArgTy = AI.getCoerceToType();
6387     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6388     IsVector = ArgTy->isVectorTy();
6389     UnpaddedSize = TyInfo.first;
6390     DirectAlign = TyInfo.second;
6391   }
6392   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6393   if (IsVector && UnpaddedSize > PaddedSize)
6394     PaddedSize = CharUnits::fromQuantity(16);
6395   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6396 
6397   CharUnits Padding = (PaddedSize - UnpaddedSize);
6398 
6399   llvm::Type *IndexTy = CGF.Int64Ty;
6400   llvm::Value *PaddedSizeV =
6401     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6402 
6403   if (IsVector) {
6404     // Work out the address of a vector argument on the stack.
6405     // Vector arguments are always passed in the high bits of a
6406     // single (8 byte) or double (16 byte) stack slot.
6407     Address OverflowArgAreaPtr =
6408       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6409                                   "overflow_arg_area_ptr");
6410     Address OverflowArgArea =
6411       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6412               TyInfo.second);
6413     Address MemAddr =
6414       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6415 
6416     // Update overflow_arg_area_ptr pointer
6417     llvm::Value *NewOverflowArgArea =
6418       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6419                             "overflow_arg_area");
6420     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6421 
6422     return MemAddr;
6423   }
6424 
6425   assert(PaddedSize.getQuantity() == 8);
6426 
6427   unsigned MaxRegs, RegCountField, RegSaveIndex;
6428   CharUnits RegPadding;
6429   if (InFPRs) {
6430     MaxRegs = 4; // Maximum of 4 FPR arguments
6431     RegCountField = 1; // __fpr
6432     RegSaveIndex = 16; // save offset for f0
6433     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6434   } else {
6435     MaxRegs = 5; // Maximum of 5 GPR arguments
6436     RegCountField = 0; // __gpr
6437     RegSaveIndex = 2; // save offset for r2
6438     RegPadding = Padding; // values are passed in the low bits of a GPR
6439   }
6440 
6441   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6442       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6443       "reg_count_ptr");
6444   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6445   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6446   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6447                                                  "fits_in_regs");
6448 
6449   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6450   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6451   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6452   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6453 
6454   // Emit code to load the value if it was passed in registers.
6455   CGF.EmitBlock(InRegBlock);
6456 
6457   // Work out the address of an argument register.
6458   llvm::Value *ScaledRegCount =
6459     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6460   llvm::Value *RegBase =
6461     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6462                                       + RegPadding.getQuantity());
6463   llvm::Value *RegOffset =
6464     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6465   Address RegSaveAreaPtr =
6466       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6467                                   "reg_save_area_ptr");
6468   llvm::Value *RegSaveArea =
6469     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6470   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6471                                            "raw_reg_addr"),
6472                      PaddedSize);
6473   Address RegAddr =
6474     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6475 
6476   // Update the register count
6477   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6478   llvm::Value *NewRegCount =
6479     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6480   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6481   CGF.EmitBranch(ContBlock);
6482 
6483   // Emit code to load the value if it was passed in memory.
6484   CGF.EmitBlock(InMemBlock);
6485 
6486   // Work out the address of a stack argument.
6487   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6488       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6489   Address OverflowArgArea =
6490     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6491             PaddedSize);
6492   Address RawMemAddr =
6493     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6494   Address MemAddr =
6495     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6496 
6497   // Update overflow_arg_area_ptr pointer
6498   llvm::Value *NewOverflowArgArea =
6499     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6500                           "overflow_arg_area");
6501   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6502   CGF.EmitBranch(ContBlock);
6503 
6504   // Return the appropriate result.
6505   CGF.EmitBlock(ContBlock);
6506   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6507                                  MemAddr, InMemBlock, "va_arg.addr");
6508 
6509   if (IsIndirect)
6510     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6511                       TyInfo.second);
6512 
6513   return ResAddr;
6514 }
6515 
6516 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6517   if (RetTy->isVoidType())
6518     return ABIArgInfo::getIgnore();
6519   if (isVectorArgumentType(RetTy))
6520     return ABIArgInfo::getDirect();
6521   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6522     return getNaturalAlignIndirect(RetTy);
6523   return (isPromotableIntegerType(RetTy) ?
6524           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6525 }
6526 
6527 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6528   // Handle the generic C++ ABI.
6529   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6530     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6531 
6532   // Integers and enums are extended to full register width.
6533   if (isPromotableIntegerType(Ty))
6534     return ABIArgInfo::getExtend();
6535 
6536   // Handle vector types and vector-like structure types.  Note that
6537   // as opposed to float-like structure types, we do not allow any
6538   // padding for vector-like structures, so verify the sizes match.
6539   uint64_t Size = getContext().getTypeSize(Ty);
6540   QualType SingleElementTy = GetSingleElementType(Ty);
6541   if (isVectorArgumentType(SingleElementTy) &&
6542       getContext().getTypeSize(SingleElementTy) == Size)
6543     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6544 
6545   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6546   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6547     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6548 
6549   // Handle small structures.
6550   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6551     // Structures with flexible arrays have variable length, so really
6552     // fail the size test above.
6553     const RecordDecl *RD = RT->getDecl();
6554     if (RD->hasFlexibleArrayMember())
6555       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6556 
6557     // The structure is passed as an unextended integer, a float, or a double.
6558     llvm::Type *PassTy;
6559     if (isFPArgumentType(SingleElementTy)) {
6560       assert(Size == 32 || Size == 64);
6561       if (Size == 32)
6562         PassTy = llvm::Type::getFloatTy(getVMContext());
6563       else
6564         PassTy = llvm::Type::getDoubleTy(getVMContext());
6565     } else
6566       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6567     return ABIArgInfo::getDirect(PassTy);
6568   }
6569 
6570   // Non-structure compounds are passed indirectly.
6571   if (isCompoundType(Ty))
6572     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6573 
6574   return ABIArgInfo::getDirect(nullptr);
6575 }
6576 
6577 //===----------------------------------------------------------------------===//
6578 // MSP430 ABI Implementation
6579 //===----------------------------------------------------------------------===//
6580 
6581 namespace {
6582 
6583 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6584 public:
6585   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6586     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6587   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6588                            CodeGen::CodeGenModule &M,
6589                            ForDefinition_t IsForDefinition) const override;
6590 };
6591 
6592 }
6593 
6594 void MSP430TargetCodeGenInfo::setTargetAttributes(
6595     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
6596     ForDefinition_t IsForDefinition) const {
6597   if (!IsForDefinition)
6598     return;
6599   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6600     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6601       // Handle 'interrupt' attribute:
6602       llvm::Function *F = cast<llvm::Function>(GV);
6603 
6604       // Step 1: Set ISR calling convention.
6605       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6606 
6607       // Step 2: Add attributes goodness.
6608       F->addFnAttr(llvm::Attribute::NoInline);
6609 
6610       // Step 3: Emit ISR vector alias.
6611       unsigned Num = attr->getNumber() / 2;
6612       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6613                                 "__isr_" + Twine(Num), F);
6614     }
6615   }
6616 }
6617 
6618 //===----------------------------------------------------------------------===//
6619 // MIPS ABI Implementation.  This works for both little-endian and
6620 // big-endian variants.
6621 //===----------------------------------------------------------------------===//
6622 
6623 namespace {
6624 class MipsABIInfo : public ABIInfo {
6625   bool IsO32;
6626   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6627   void CoerceToIntArgs(uint64_t TySize,
6628                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6629   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6630   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6631   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6632 public:
6633   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6634     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6635     StackAlignInBytes(IsO32 ? 8 : 16) {}
6636 
6637   ABIArgInfo classifyReturnType(QualType RetTy) const;
6638   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6639   void computeInfo(CGFunctionInfo &FI) const override;
6640   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6641                     QualType Ty) const override;
6642   bool shouldSignExtUnsignedType(QualType Ty) const override;
6643 };
6644 
6645 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6646   unsigned SizeOfUnwindException;
6647 public:
6648   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6649     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6650       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6651 
6652   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6653     return 29;
6654   }
6655 
6656   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6657                            CodeGen::CodeGenModule &CGM,
6658                            ForDefinition_t IsForDefinition) const override {
6659     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6660     if (!FD) return;
6661     llvm::Function *Fn = cast<llvm::Function>(GV);
6662 
6663     if (FD->hasAttr<MipsLongCallAttr>())
6664       Fn->addFnAttr("long-call");
6665     else if (FD->hasAttr<MipsShortCallAttr>())
6666       Fn->addFnAttr("short-call");
6667 
6668     // Other attributes do not have a meaning for declarations.
6669     if (!IsForDefinition)
6670       return;
6671 
6672     if (FD->hasAttr<Mips16Attr>()) {
6673       Fn->addFnAttr("mips16");
6674     }
6675     else if (FD->hasAttr<NoMips16Attr>()) {
6676       Fn->addFnAttr("nomips16");
6677     }
6678 
6679     if (FD->hasAttr<MicroMipsAttr>())
6680       Fn->addFnAttr("micromips");
6681     else if (FD->hasAttr<NoMicroMipsAttr>())
6682       Fn->addFnAttr("nomicromips");
6683 
6684     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6685     if (!Attr)
6686       return;
6687 
6688     const char *Kind;
6689     switch (Attr->getInterrupt()) {
6690     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6691     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6692     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6693     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6694     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6695     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6696     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6697     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6698     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6699     }
6700 
6701     Fn->addFnAttr("interrupt", Kind);
6702 
6703   }
6704 
6705   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6706                                llvm::Value *Address) const override;
6707 
6708   unsigned getSizeOfUnwindException() const override {
6709     return SizeOfUnwindException;
6710   }
6711 };
6712 }
6713 
6714 void MipsABIInfo::CoerceToIntArgs(
6715     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6716   llvm::IntegerType *IntTy =
6717     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6718 
6719   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6720   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6721     ArgList.push_back(IntTy);
6722 
6723   // If necessary, add one more integer type to ArgList.
6724   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6725 
6726   if (R)
6727     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6728 }
6729 
6730 // In N32/64, an aligned double precision floating point field is passed in
6731 // a register.
6732 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6733   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6734 
6735   if (IsO32) {
6736     CoerceToIntArgs(TySize, ArgList);
6737     return llvm::StructType::get(getVMContext(), ArgList);
6738   }
6739 
6740   if (Ty->isComplexType())
6741     return CGT.ConvertType(Ty);
6742 
6743   const RecordType *RT = Ty->getAs<RecordType>();
6744 
6745   // Unions/vectors are passed in integer registers.
6746   if (!RT || !RT->isStructureOrClassType()) {
6747     CoerceToIntArgs(TySize, ArgList);
6748     return llvm::StructType::get(getVMContext(), ArgList);
6749   }
6750 
6751   const RecordDecl *RD = RT->getDecl();
6752   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6753   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6754 
6755   uint64_t LastOffset = 0;
6756   unsigned idx = 0;
6757   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6758 
6759   // Iterate over fields in the struct/class and check if there are any aligned
6760   // double fields.
6761   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6762        i != e; ++i, ++idx) {
6763     const QualType Ty = i->getType();
6764     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6765 
6766     if (!BT || BT->getKind() != BuiltinType::Double)
6767       continue;
6768 
6769     uint64_t Offset = Layout.getFieldOffset(idx);
6770     if (Offset % 64) // Ignore doubles that are not aligned.
6771       continue;
6772 
6773     // Add ((Offset - LastOffset) / 64) args of type i64.
6774     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6775       ArgList.push_back(I64);
6776 
6777     // Add double type.
6778     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6779     LastOffset = Offset + 64;
6780   }
6781 
6782   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6783   ArgList.append(IntArgList.begin(), IntArgList.end());
6784 
6785   return llvm::StructType::get(getVMContext(), ArgList);
6786 }
6787 
6788 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6789                                         uint64_t Offset) const {
6790   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6791     return nullptr;
6792 
6793   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6794 }
6795 
6796 ABIArgInfo
6797 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6798   Ty = useFirstFieldIfTransparentUnion(Ty);
6799 
6800   uint64_t OrigOffset = Offset;
6801   uint64_t TySize = getContext().getTypeSize(Ty);
6802   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6803 
6804   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6805                    (uint64_t)StackAlignInBytes);
6806   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6807   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6808 
6809   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6810     // Ignore empty aggregates.
6811     if (TySize == 0)
6812       return ABIArgInfo::getIgnore();
6813 
6814     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6815       Offset = OrigOffset + MinABIStackAlignInBytes;
6816       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6817     }
6818 
6819     // Use indirect if the aggregate cannot fit into registers for
6820     // passing arguments according to the ABI
6821     unsigned Threshold = IsO32 ? 16 : 64;
6822 
6823     if(getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(Threshold))
6824       return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align), true,
6825                                      getContext().getTypeAlign(Ty) / 8 > Align);
6826 
6827     // If we have reached here, aggregates are passed directly by coercing to
6828     // another structure type. Padding is inserted if the offset of the
6829     // aggregate is unaligned.
6830     ABIArgInfo ArgInfo =
6831         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6832                               getPaddingType(OrigOffset, CurrOffset));
6833     ArgInfo.setInReg(true);
6834     return ArgInfo;
6835   }
6836 
6837   // Treat an enum type as its underlying type.
6838   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6839     Ty = EnumTy->getDecl()->getIntegerType();
6840 
6841   // All integral types are promoted to the GPR width.
6842   if (Ty->isIntegralOrEnumerationType())
6843     return ABIArgInfo::getExtend();
6844 
6845   return ABIArgInfo::getDirect(
6846       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6847 }
6848 
6849 llvm::Type*
6850 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6851   const RecordType *RT = RetTy->getAs<RecordType>();
6852   SmallVector<llvm::Type*, 8> RTList;
6853 
6854   if (RT && RT->isStructureOrClassType()) {
6855     const RecordDecl *RD = RT->getDecl();
6856     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6857     unsigned FieldCnt = Layout.getFieldCount();
6858 
6859     // N32/64 returns struct/classes in floating point registers if the
6860     // following conditions are met:
6861     // 1. The size of the struct/class is no larger than 128-bit.
6862     // 2. The struct/class has one or two fields all of which are floating
6863     //    point types.
6864     // 3. The offset of the first field is zero (this follows what gcc does).
6865     //
6866     // Any other composite results are returned in integer registers.
6867     //
6868     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6869       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6870       for (; b != e; ++b) {
6871         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6872 
6873         if (!BT || !BT->isFloatingPoint())
6874           break;
6875 
6876         RTList.push_back(CGT.ConvertType(b->getType()));
6877       }
6878 
6879       if (b == e)
6880         return llvm::StructType::get(getVMContext(), RTList,
6881                                      RD->hasAttr<PackedAttr>());
6882 
6883       RTList.clear();
6884     }
6885   }
6886 
6887   CoerceToIntArgs(Size, RTList);
6888   return llvm::StructType::get(getVMContext(), RTList);
6889 }
6890 
6891 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6892   uint64_t Size = getContext().getTypeSize(RetTy);
6893 
6894   if (RetTy->isVoidType())
6895     return ABIArgInfo::getIgnore();
6896 
6897   // O32 doesn't treat zero-sized structs differently from other structs.
6898   // However, N32/N64 ignores zero sized return values.
6899   if (!IsO32 && Size == 0)
6900     return ABIArgInfo::getIgnore();
6901 
6902   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6903     if (Size <= 128) {
6904       if (RetTy->isAnyComplexType())
6905         return ABIArgInfo::getDirect();
6906 
6907       // O32 returns integer vectors in registers and N32/N64 returns all small
6908       // aggregates in registers.
6909       if (!IsO32 ||
6910           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6911         ABIArgInfo ArgInfo =
6912             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6913         ArgInfo.setInReg(true);
6914         return ArgInfo;
6915       }
6916     }
6917 
6918     return getNaturalAlignIndirect(RetTy);
6919   }
6920 
6921   // Treat an enum type as its underlying type.
6922   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6923     RetTy = EnumTy->getDecl()->getIntegerType();
6924 
6925   return (RetTy->isPromotableIntegerType() ?
6926           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6927 }
6928 
6929 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6930   ABIArgInfo &RetInfo = FI.getReturnInfo();
6931   if (!getCXXABI().classifyReturnType(FI))
6932     RetInfo = classifyReturnType(FI.getReturnType());
6933 
6934   // Check if a pointer to an aggregate is passed as a hidden argument.
6935   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6936 
6937   for (auto &I : FI.arguments())
6938     I.info = classifyArgumentType(I.type, Offset);
6939 }
6940 
6941 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6942                                QualType OrigTy) const {
6943   QualType Ty = OrigTy;
6944 
6945   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6946   // Pointers are also promoted in the same way but this only matters for N32.
6947   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6948   unsigned PtrWidth = getTarget().getPointerWidth(0);
6949   bool DidPromote = false;
6950   if ((Ty->isIntegerType() &&
6951           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6952       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6953     DidPromote = true;
6954     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6955                                             Ty->isSignedIntegerType());
6956   }
6957 
6958   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6959 
6960   // The alignment of things in the argument area is never larger than
6961   // StackAlignInBytes.
6962   TyInfo.second =
6963     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6964 
6965   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6966   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6967 
6968   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6969                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6970 
6971 
6972   // If there was a promotion, "unpromote" into a temporary.
6973   // TODO: can we just use a pointer into a subset of the original slot?
6974   if (DidPromote) {
6975     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6976     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6977 
6978     // Truncate down to the right width.
6979     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6980                                                  : CGF.IntPtrTy);
6981     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6982     if (OrigTy->isPointerType())
6983       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6984 
6985     CGF.Builder.CreateStore(V, Temp);
6986     Addr = Temp;
6987   }
6988 
6989   return Addr;
6990 }
6991 
6992 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6993   int TySize = getContext().getTypeSize(Ty);
6994 
6995   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6996   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6997     return true;
6998 
6999   return false;
7000 }
7001 
7002 bool
7003 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7004                                                llvm::Value *Address) const {
7005   // This information comes from gcc's implementation, which seems to
7006   // as canonical as it gets.
7007 
7008   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7009   // are aliased to pairs of single-precision FP registers.
7010   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7011 
7012   // 0-31 are the general purpose registers, $0 - $31.
7013   // 32-63 are the floating-point registers, $f0 - $f31.
7014   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7015   // 66 is the (notional, I think) register for signal-handler return.
7016   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7017 
7018   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7019   // They are one bit wide and ignored here.
7020 
7021   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7022   // (coprocessor 1 is the FP unit)
7023   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7024   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7025   // 176-181 are the DSP accumulator registers.
7026   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7027   return false;
7028 }
7029 
7030 //===----------------------------------------------------------------------===//
7031 // AVR ABI Implementation.
7032 //===----------------------------------------------------------------------===//
7033 
7034 namespace {
7035 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7036 public:
7037   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7038     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7039 
7040   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7041                            CodeGen::CodeGenModule &CGM,
7042                            ForDefinition_t IsForDefinition) const override {
7043     if (!IsForDefinition)
7044       return;
7045     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7046     if (!FD) return;
7047     auto *Fn = cast<llvm::Function>(GV);
7048 
7049     if (FD->getAttr<AVRInterruptAttr>())
7050       Fn->addFnAttr("interrupt");
7051 
7052     if (FD->getAttr<AVRSignalAttr>())
7053       Fn->addFnAttr("signal");
7054   }
7055 };
7056 }
7057 
7058 //===----------------------------------------------------------------------===//
7059 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7060 // Currently subclassed only to implement custom OpenCL C function attribute
7061 // handling.
7062 //===----------------------------------------------------------------------===//
7063 
7064 namespace {
7065 
7066 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7067 public:
7068   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7069     : DefaultTargetCodeGenInfo(CGT) {}
7070 
7071   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7072                            CodeGen::CodeGenModule &M,
7073                            ForDefinition_t IsForDefinition) const override;
7074 };
7075 
7076 void TCETargetCodeGenInfo::setTargetAttributes(
7077     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
7078     ForDefinition_t IsForDefinition) const {
7079   if (!IsForDefinition)
7080     return;
7081   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7082   if (!FD) return;
7083 
7084   llvm::Function *F = cast<llvm::Function>(GV);
7085 
7086   if (M.getLangOpts().OpenCL) {
7087     if (FD->hasAttr<OpenCLKernelAttr>()) {
7088       // OpenCL C Kernel functions are not subject to inlining
7089       F->addFnAttr(llvm::Attribute::NoInline);
7090       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7091       if (Attr) {
7092         // Convert the reqd_work_group_size() attributes to metadata.
7093         llvm::LLVMContext &Context = F->getContext();
7094         llvm::NamedMDNode *OpenCLMetadata =
7095             M.getModule().getOrInsertNamedMetadata(
7096                 "opencl.kernel_wg_size_info");
7097 
7098         SmallVector<llvm::Metadata *, 5> Operands;
7099         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7100 
7101         Operands.push_back(
7102             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7103                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7104         Operands.push_back(
7105             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7106                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7107         Operands.push_back(
7108             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7109                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7110 
7111         // Add a boolean constant operand for "required" (true) or "hint"
7112         // (false) for implementing the work_group_size_hint attr later.
7113         // Currently always true as the hint is not yet implemented.
7114         Operands.push_back(
7115             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7116         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7117       }
7118     }
7119   }
7120 }
7121 
7122 }
7123 
7124 //===----------------------------------------------------------------------===//
7125 // Hexagon ABI Implementation
7126 //===----------------------------------------------------------------------===//
7127 
7128 namespace {
7129 
7130 class HexagonABIInfo : public ABIInfo {
7131 
7132 
7133 public:
7134   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7135 
7136 private:
7137 
7138   ABIArgInfo classifyReturnType(QualType RetTy) const;
7139   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7140 
7141   void computeInfo(CGFunctionInfo &FI) const override;
7142 
7143   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7144                     QualType Ty) const override;
7145 };
7146 
7147 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7148 public:
7149   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7150     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7151 
7152   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7153     return 29;
7154   }
7155 };
7156 
7157 }
7158 
7159 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7160   if (!getCXXABI().classifyReturnType(FI))
7161     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7162   for (auto &I : FI.arguments())
7163     I.info = classifyArgumentType(I.type);
7164 }
7165 
7166 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7167   if (!isAggregateTypeForABI(Ty)) {
7168     // Treat an enum type as its underlying type.
7169     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7170       Ty = EnumTy->getDecl()->getIntegerType();
7171 
7172     return (Ty->isPromotableIntegerType() ?
7173             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
7174   }
7175 
7176   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7177     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7178 
7179   // Ignore empty records.
7180   if (isEmptyRecord(getContext(), Ty, true))
7181     return ABIArgInfo::getIgnore();
7182 
7183   uint64_t Size = getContext().getTypeSize(Ty);
7184   if (Size > 64)
7185     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7186     // Pass in the smallest viable integer type.
7187   else if (Size > 32)
7188       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7189   else if (Size > 16)
7190       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7191   else if (Size > 8)
7192       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7193   else
7194       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7195 }
7196 
7197 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7198   if (RetTy->isVoidType())
7199     return ABIArgInfo::getIgnore();
7200 
7201   // Large vector types should be returned via memory.
7202   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7203     return getNaturalAlignIndirect(RetTy);
7204 
7205   if (!isAggregateTypeForABI(RetTy)) {
7206     // Treat an enum type as its underlying type.
7207     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7208       RetTy = EnumTy->getDecl()->getIntegerType();
7209 
7210     return (RetTy->isPromotableIntegerType() ?
7211             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
7212   }
7213 
7214   if (isEmptyRecord(getContext(), RetTy, true))
7215     return ABIArgInfo::getIgnore();
7216 
7217   // Aggregates <= 8 bytes are returned in r0; other aggregates
7218   // are returned indirectly.
7219   uint64_t Size = getContext().getTypeSize(RetTy);
7220   if (Size <= 64) {
7221     // Return in the smallest viable integer type.
7222     if (Size <= 8)
7223       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7224     if (Size <= 16)
7225       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7226     if (Size <= 32)
7227       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7228     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7229   }
7230 
7231   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7232 }
7233 
7234 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7235                                   QualType Ty) const {
7236   // FIXME: Someone needs to audit that this handle alignment correctly.
7237   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7238                           getContext().getTypeInfoInChars(Ty),
7239                           CharUnits::fromQuantity(4),
7240                           /*AllowHigherAlign*/ true);
7241 }
7242 
7243 //===----------------------------------------------------------------------===//
7244 // Lanai ABI Implementation
7245 //===----------------------------------------------------------------------===//
7246 
7247 namespace {
7248 class LanaiABIInfo : public DefaultABIInfo {
7249 public:
7250   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7251 
7252   bool shouldUseInReg(QualType Ty, CCState &State) const;
7253 
7254   void computeInfo(CGFunctionInfo &FI) const override {
7255     CCState State(FI.getCallingConvention());
7256     // Lanai uses 4 registers to pass arguments unless the function has the
7257     // regparm attribute set.
7258     if (FI.getHasRegParm()) {
7259       State.FreeRegs = FI.getRegParm();
7260     } else {
7261       State.FreeRegs = 4;
7262     }
7263 
7264     if (!getCXXABI().classifyReturnType(FI))
7265       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7266     for (auto &I : FI.arguments())
7267       I.info = classifyArgumentType(I.type, State);
7268   }
7269 
7270   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7271   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7272 };
7273 } // end anonymous namespace
7274 
7275 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7276   unsigned Size = getContext().getTypeSize(Ty);
7277   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7278 
7279   if (SizeInRegs == 0)
7280     return false;
7281 
7282   if (SizeInRegs > State.FreeRegs) {
7283     State.FreeRegs = 0;
7284     return false;
7285   }
7286 
7287   State.FreeRegs -= SizeInRegs;
7288 
7289   return true;
7290 }
7291 
7292 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7293                                            CCState &State) const {
7294   if (!ByVal) {
7295     if (State.FreeRegs) {
7296       --State.FreeRegs; // Non-byval indirects just use one pointer.
7297       return getNaturalAlignIndirectInReg(Ty);
7298     }
7299     return getNaturalAlignIndirect(Ty, false);
7300   }
7301 
7302   // Compute the byval alignment.
7303   const unsigned MinABIStackAlignInBytes = 4;
7304   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7305   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7306                                  /*Realign=*/TypeAlign >
7307                                      MinABIStackAlignInBytes);
7308 }
7309 
7310 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7311                                               CCState &State) const {
7312   // Check with the C++ ABI first.
7313   const RecordType *RT = Ty->getAs<RecordType>();
7314   if (RT) {
7315     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7316     if (RAA == CGCXXABI::RAA_Indirect) {
7317       return getIndirectResult(Ty, /*ByVal=*/false, State);
7318     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7319       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7320     }
7321   }
7322 
7323   if (isAggregateTypeForABI(Ty)) {
7324     // Structures with flexible arrays are always indirect.
7325     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7326       return getIndirectResult(Ty, /*ByVal=*/true, State);
7327 
7328     // Ignore empty structs/unions.
7329     if (isEmptyRecord(getContext(), Ty, true))
7330       return ABIArgInfo::getIgnore();
7331 
7332     llvm::LLVMContext &LLVMContext = getVMContext();
7333     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7334     if (SizeInRegs <= State.FreeRegs) {
7335       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7336       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7337       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7338       State.FreeRegs -= SizeInRegs;
7339       return ABIArgInfo::getDirectInReg(Result);
7340     } else {
7341       State.FreeRegs = 0;
7342     }
7343     return getIndirectResult(Ty, true, State);
7344   }
7345 
7346   // Treat an enum type as its underlying type.
7347   if (const auto *EnumTy = Ty->getAs<EnumType>())
7348     Ty = EnumTy->getDecl()->getIntegerType();
7349 
7350   bool InReg = shouldUseInReg(Ty, State);
7351   if (Ty->isPromotableIntegerType()) {
7352     if (InReg)
7353       return ABIArgInfo::getDirectInReg();
7354     return ABIArgInfo::getExtend();
7355   }
7356   if (InReg)
7357     return ABIArgInfo::getDirectInReg();
7358   return ABIArgInfo::getDirect();
7359 }
7360 
7361 namespace {
7362 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7363 public:
7364   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7365       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7366 };
7367 }
7368 
7369 //===----------------------------------------------------------------------===//
7370 // AMDGPU ABI Implementation
7371 //===----------------------------------------------------------------------===//
7372 
7373 namespace {
7374 
7375 class AMDGPUABIInfo final : public DefaultABIInfo {
7376 public:
7377   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7378 
7379 private:
7380   ABIArgInfo classifyArgumentType(QualType Ty) const;
7381 
7382   void computeInfo(CGFunctionInfo &FI) const override;
7383 };
7384 
7385 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7386   if (!getCXXABI().classifyReturnType(FI))
7387     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7388 
7389   unsigned CC = FI.getCallingConvention();
7390   for (auto &Arg : FI.arguments())
7391     if (CC == llvm::CallingConv::AMDGPU_KERNEL)
7392       Arg.info = classifyArgumentType(Arg.type);
7393     else
7394       Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type);
7395 }
7396 
7397 /// \brief Classify argument of given type \p Ty.
7398 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const {
7399   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7400   if (!StrTy) {
7401     return DefaultABIInfo::classifyArgumentType(Ty);
7402   }
7403 
7404   // Coerce single element structs to its element.
7405   if (StrTy->getNumElements() == 1) {
7406     return ABIArgInfo::getDirect();
7407   }
7408 
7409   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7410   // individual elements, which confuses the Clover OpenCL backend; therefore we
7411   // have to set it to false here. Other args of getDirect() are just defaults.
7412   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7413 }
7414 
7415 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7416 public:
7417   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7418     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7419   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7420                            CodeGen::CodeGenModule &M,
7421                            ForDefinition_t IsForDefinition) const override;
7422   unsigned getOpenCLKernelCallingConv() const override;
7423 
7424   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7425       llvm::PointerType *T, QualType QT) const override;
7426 
7427   unsigned getASTAllocaAddressSpace() const override {
7428     return LangAS::FirstTargetAddressSpace +
7429            getABIInfo().getDataLayout().getAllocaAddrSpace();
7430   }
7431   unsigned getGlobalVarAddressSpace(CodeGenModule &CGM,
7432                                     const VarDecl *D) const override;
7433 };
7434 }
7435 
7436 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7437     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
7438     ForDefinition_t IsForDefinition) const {
7439   if (!IsForDefinition)
7440     return;
7441   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7442   if (!FD)
7443     return;
7444 
7445   llvm::Function *F = cast<llvm::Function>(GV);
7446 
7447   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7448     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7449   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7450   if (ReqdWGS || FlatWGS) {
7451     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7452     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7453     if (ReqdWGS && Min == 0 && Max == 0)
7454       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7455 
7456     if (Min != 0) {
7457       assert(Min <= Max && "Min must be less than or equal Max");
7458 
7459       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7460       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7461     } else
7462       assert(Max == 0 && "Max must be zero");
7463   }
7464 
7465   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7466     unsigned Min = Attr->getMin();
7467     unsigned Max = Attr->getMax();
7468 
7469     if (Min != 0) {
7470       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7471 
7472       std::string AttrVal = llvm::utostr(Min);
7473       if (Max != 0)
7474         AttrVal = AttrVal + "," + llvm::utostr(Max);
7475       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7476     } else
7477       assert(Max == 0 && "Max must be zero");
7478   }
7479 
7480   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7481     unsigned NumSGPR = Attr->getNumSGPR();
7482 
7483     if (NumSGPR != 0)
7484       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7485   }
7486 
7487   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7488     uint32_t NumVGPR = Attr->getNumVGPR();
7489 
7490     if (NumVGPR != 0)
7491       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7492   }
7493 }
7494 
7495 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7496   return llvm::CallingConv::AMDGPU_KERNEL;
7497 }
7498 
7499 // Currently LLVM assumes null pointers always have value 0,
7500 // which results in incorrectly transformed IR. Therefore, instead of
7501 // emitting null pointers in private and local address spaces, a null
7502 // pointer in generic address space is emitted which is casted to a
7503 // pointer in local or private address space.
7504 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7505     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7506     QualType QT) const {
7507   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7508     return llvm::ConstantPointerNull::get(PT);
7509 
7510   auto &Ctx = CGM.getContext();
7511   auto NPT = llvm::PointerType::get(PT->getElementType(),
7512       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7513   return llvm::ConstantExpr::getAddrSpaceCast(
7514       llvm::ConstantPointerNull::get(NPT), PT);
7515 }
7516 
7517 unsigned
7518 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7519                                                   const VarDecl *D) const {
7520   assert(!CGM.getLangOpts().OpenCL &&
7521          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7522          "Address space agnostic languages only");
7523   unsigned DefaultGlobalAS =
7524       LangAS::FirstTargetAddressSpace +
7525       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
7526   if (!D)
7527     return DefaultGlobalAS;
7528 
7529   unsigned AddrSpace = D->getType().getAddressSpace();
7530   assert(AddrSpace == LangAS::Default ||
7531          AddrSpace >= LangAS::FirstTargetAddressSpace);
7532   if (AddrSpace != LangAS::Default)
7533     return AddrSpace;
7534 
7535   if (CGM.isTypeConstant(D->getType(), false)) {
7536     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7537       return ConstAS.getValue();
7538   }
7539   return DefaultGlobalAS;
7540 }
7541 
7542 //===----------------------------------------------------------------------===//
7543 // SPARC v8 ABI Implementation.
7544 // Based on the SPARC Compliance Definition version 2.4.1.
7545 //
7546 // Ensures that complex values are passed in registers.
7547 //
7548 namespace {
7549 class SparcV8ABIInfo : public DefaultABIInfo {
7550 public:
7551   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7552 
7553 private:
7554   ABIArgInfo classifyReturnType(QualType RetTy) const;
7555   void computeInfo(CGFunctionInfo &FI) const override;
7556 };
7557 } // end anonymous namespace
7558 
7559 
7560 ABIArgInfo
7561 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7562   if (Ty->isAnyComplexType()) {
7563     return ABIArgInfo::getDirect();
7564   }
7565   else {
7566     return DefaultABIInfo::classifyReturnType(Ty);
7567   }
7568 }
7569 
7570 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7571 
7572   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7573   for (auto &Arg : FI.arguments())
7574     Arg.info = classifyArgumentType(Arg.type);
7575 }
7576 
7577 namespace {
7578 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7579 public:
7580   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7581     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7582 };
7583 } // end anonymous namespace
7584 
7585 //===----------------------------------------------------------------------===//
7586 // SPARC v9 ABI Implementation.
7587 // Based on the SPARC Compliance Definition version 2.4.1.
7588 //
7589 // Function arguments a mapped to a nominal "parameter array" and promoted to
7590 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7591 // the array, structs larger than 16 bytes are passed indirectly.
7592 //
7593 // One case requires special care:
7594 //
7595 //   struct mixed {
7596 //     int i;
7597 //     float f;
7598 //   };
7599 //
7600 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7601 // parameter array, but the int is passed in an integer register, and the float
7602 // is passed in a floating point register. This is represented as two arguments
7603 // with the LLVM IR inreg attribute:
7604 //
7605 //   declare void f(i32 inreg %i, float inreg %f)
7606 //
7607 // The code generator will only allocate 4 bytes from the parameter array for
7608 // the inreg arguments. All other arguments are allocated a multiple of 8
7609 // bytes.
7610 //
7611 namespace {
7612 class SparcV9ABIInfo : public ABIInfo {
7613 public:
7614   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7615 
7616 private:
7617   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7618   void computeInfo(CGFunctionInfo &FI) const override;
7619   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7620                     QualType Ty) const override;
7621 
7622   // Coercion type builder for structs passed in registers. The coercion type
7623   // serves two purposes:
7624   //
7625   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7626   //    in registers.
7627   // 2. Expose aligned floating point elements as first-level elements, so the
7628   //    code generator knows to pass them in floating point registers.
7629   //
7630   // We also compute the InReg flag which indicates that the struct contains
7631   // aligned 32-bit floats.
7632   //
7633   struct CoerceBuilder {
7634     llvm::LLVMContext &Context;
7635     const llvm::DataLayout &DL;
7636     SmallVector<llvm::Type*, 8> Elems;
7637     uint64_t Size;
7638     bool InReg;
7639 
7640     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7641       : Context(c), DL(dl), Size(0), InReg(false) {}
7642 
7643     // Pad Elems with integers until Size is ToSize.
7644     void pad(uint64_t ToSize) {
7645       assert(ToSize >= Size && "Cannot remove elements");
7646       if (ToSize == Size)
7647         return;
7648 
7649       // Finish the current 64-bit word.
7650       uint64_t Aligned = llvm::alignTo(Size, 64);
7651       if (Aligned > Size && Aligned <= ToSize) {
7652         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7653         Size = Aligned;
7654       }
7655 
7656       // Add whole 64-bit words.
7657       while (Size + 64 <= ToSize) {
7658         Elems.push_back(llvm::Type::getInt64Ty(Context));
7659         Size += 64;
7660       }
7661 
7662       // Final in-word padding.
7663       if (Size < ToSize) {
7664         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7665         Size = ToSize;
7666       }
7667     }
7668 
7669     // Add a floating point element at Offset.
7670     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7671       // Unaligned floats are treated as integers.
7672       if (Offset % Bits)
7673         return;
7674       // The InReg flag is only required if there are any floats < 64 bits.
7675       if (Bits < 64)
7676         InReg = true;
7677       pad(Offset);
7678       Elems.push_back(Ty);
7679       Size = Offset + Bits;
7680     }
7681 
7682     // Add a struct type to the coercion type, starting at Offset (in bits).
7683     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7684       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7685       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7686         llvm::Type *ElemTy = StrTy->getElementType(i);
7687         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7688         switch (ElemTy->getTypeID()) {
7689         case llvm::Type::StructTyID:
7690           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7691           break;
7692         case llvm::Type::FloatTyID:
7693           addFloat(ElemOffset, ElemTy, 32);
7694           break;
7695         case llvm::Type::DoubleTyID:
7696           addFloat(ElemOffset, ElemTy, 64);
7697           break;
7698         case llvm::Type::FP128TyID:
7699           addFloat(ElemOffset, ElemTy, 128);
7700           break;
7701         case llvm::Type::PointerTyID:
7702           if (ElemOffset % 64 == 0) {
7703             pad(ElemOffset);
7704             Elems.push_back(ElemTy);
7705             Size += 64;
7706           }
7707           break;
7708         default:
7709           break;
7710         }
7711       }
7712     }
7713 
7714     // Check if Ty is a usable substitute for the coercion type.
7715     bool isUsableType(llvm::StructType *Ty) const {
7716       return llvm::makeArrayRef(Elems) == Ty->elements();
7717     }
7718 
7719     // Get the coercion type as a literal struct type.
7720     llvm::Type *getType() const {
7721       if (Elems.size() == 1)
7722         return Elems.front();
7723       else
7724         return llvm::StructType::get(Context, Elems);
7725     }
7726   };
7727 };
7728 } // end anonymous namespace
7729 
7730 ABIArgInfo
7731 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7732   if (Ty->isVoidType())
7733     return ABIArgInfo::getIgnore();
7734 
7735   uint64_t Size = getContext().getTypeSize(Ty);
7736 
7737   // Anything too big to fit in registers is passed with an explicit indirect
7738   // pointer / sret pointer.
7739   if (Size > SizeLimit)
7740     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7741 
7742   // Treat an enum type as its underlying type.
7743   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7744     Ty = EnumTy->getDecl()->getIntegerType();
7745 
7746   // Integer types smaller than a register are extended.
7747   if (Size < 64 && Ty->isIntegerType())
7748     return ABIArgInfo::getExtend();
7749 
7750   // Other non-aggregates go in registers.
7751   if (!isAggregateTypeForABI(Ty))
7752     return ABIArgInfo::getDirect();
7753 
7754   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7755   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7756   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7757     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7758 
7759   // This is a small aggregate type that should be passed in registers.
7760   // Build a coercion type from the LLVM struct type.
7761   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7762   if (!StrTy)
7763     return ABIArgInfo::getDirect();
7764 
7765   CoerceBuilder CB(getVMContext(), getDataLayout());
7766   CB.addStruct(0, StrTy);
7767   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7768 
7769   // Try to use the original type for coercion.
7770   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
7771 
7772   if (CB.InReg)
7773     return ABIArgInfo::getDirectInReg(CoerceTy);
7774   else
7775     return ABIArgInfo::getDirect(CoerceTy);
7776 }
7777 
7778 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7779                                   QualType Ty) const {
7780   ABIArgInfo AI = classifyType(Ty, 16 * 8);
7781   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7782   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7783     AI.setCoerceToType(ArgTy);
7784 
7785   CharUnits SlotSize = CharUnits::fromQuantity(8);
7786 
7787   CGBuilderTy &Builder = CGF.Builder;
7788   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
7789   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7790 
7791   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
7792 
7793   Address ArgAddr = Address::invalid();
7794   CharUnits Stride;
7795   switch (AI.getKind()) {
7796   case ABIArgInfo::Expand:
7797   case ABIArgInfo::CoerceAndExpand:
7798   case ABIArgInfo::InAlloca:
7799     llvm_unreachable("Unsupported ABI kind for va_arg");
7800 
7801   case ABIArgInfo::Extend: {
7802     Stride = SlotSize;
7803     CharUnits Offset = SlotSize - TypeInfo.first;
7804     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
7805     break;
7806   }
7807 
7808   case ABIArgInfo::Direct: {
7809     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
7810     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
7811     ArgAddr = Addr;
7812     break;
7813   }
7814 
7815   case ABIArgInfo::Indirect:
7816     Stride = SlotSize;
7817     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
7818     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
7819                       TypeInfo.second);
7820     break;
7821 
7822   case ABIArgInfo::Ignore:
7823     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
7824   }
7825 
7826   // Update VAList.
7827   llvm::Value *NextPtr =
7828     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
7829   Builder.CreateStore(NextPtr, VAListAddr);
7830 
7831   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
7832 }
7833 
7834 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7835   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
7836   for (auto &I : FI.arguments())
7837     I.info = classifyType(I.type, 16 * 8);
7838 }
7839 
7840 namespace {
7841 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
7842 public:
7843   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
7844     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
7845 
7846   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7847     return 14;
7848   }
7849 
7850   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7851                                llvm::Value *Address) const override;
7852 };
7853 } // end anonymous namespace
7854 
7855 bool
7856 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7857                                                 llvm::Value *Address) const {
7858   // This is calculated from the LLVM and GCC tables and verified
7859   // against gcc output.  AFAIK all ABIs use the same encoding.
7860 
7861   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7862 
7863   llvm::IntegerType *i8 = CGF.Int8Ty;
7864   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
7865   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
7866 
7867   // 0-31: the 8-byte general-purpose registers
7868   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
7869 
7870   // 32-63: f0-31, the 4-byte floating-point registers
7871   AssignToArrayRange(Builder, Address, Four8, 32, 63);
7872 
7873   //   Y   = 64
7874   //   PSR = 65
7875   //   WIM = 66
7876   //   TBR = 67
7877   //   PC  = 68
7878   //   NPC = 69
7879   //   FSR = 70
7880   //   CSR = 71
7881   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
7882 
7883   // 72-87: d0-15, the 8-byte floating-point registers
7884   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
7885 
7886   return false;
7887 }
7888 
7889 
7890 //===----------------------------------------------------------------------===//
7891 // XCore ABI Implementation
7892 //===----------------------------------------------------------------------===//
7893 
7894 namespace {
7895 
7896 /// A SmallStringEnc instance is used to build up the TypeString by passing
7897 /// it by reference between functions that append to it.
7898 typedef llvm::SmallString<128> SmallStringEnc;
7899 
7900 /// TypeStringCache caches the meta encodings of Types.
7901 ///
7902 /// The reason for caching TypeStrings is two fold:
7903 ///   1. To cache a type's encoding for later uses;
7904 ///   2. As a means to break recursive member type inclusion.
7905 ///
7906 /// A cache Entry can have a Status of:
7907 ///   NonRecursive:   The type encoding is not recursive;
7908 ///   Recursive:      The type encoding is recursive;
7909 ///   Incomplete:     An incomplete TypeString;
7910 ///   IncompleteUsed: An incomplete TypeString that has been used in a
7911 ///                   Recursive type encoding.
7912 ///
7913 /// A NonRecursive entry will have all of its sub-members expanded as fully
7914 /// as possible. Whilst it may contain types which are recursive, the type
7915 /// itself is not recursive and thus its encoding may be safely used whenever
7916 /// the type is encountered.
7917 ///
7918 /// A Recursive entry will have all of its sub-members expanded as fully as
7919 /// possible. The type itself is recursive and it may contain other types which
7920 /// are recursive. The Recursive encoding must not be used during the expansion
7921 /// of a recursive type's recursive branch. For simplicity the code uses
7922 /// IncompleteCount to reject all usage of Recursive encodings for member types.
7923 ///
7924 /// An Incomplete entry is always a RecordType and only encodes its
7925 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
7926 /// are placed into the cache during type expansion as a means to identify and
7927 /// handle recursive inclusion of types as sub-members. If there is recursion
7928 /// the entry becomes IncompleteUsed.
7929 ///
7930 /// During the expansion of a RecordType's members:
7931 ///
7932 ///   If the cache contains a NonRecursive encoding for the member type, the
7933 ///   cached encoding is used;
7934 ///
7935 ///   If the cache contains a Recursive encoding for the member type, the
7936 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
7937 ///
7938 ///   If the member is a RecordType, an Incomplete encoding is placed into the
7939 ///   cache to break potential recursive inclusion of itself as a sub-member;
7940 ///
7941 ///   Once a member RecordType has been expanded, its temporary incomplete
7942 ///   entry is removed from the cache. If a Recursive encoding was swapped out
7943 ///   it is swapped back in;
7944 ///
7945 ///   If an incomplete entry is used to expand a sub-member, the incomplete
7946 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
7947 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
7948 ///
7949 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
7950 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
7951 ///   Else the member is part of a recursive type and thus the recursion has
7952 ///   been exited too soon for the encoding to be correct for the member.
7953 ///
7954 class TypeStringCache {
7955   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
7956   struct Entry {
7957     std::string Str;     // The encoded TypeString for the type.
7958     enum Status State;   // Information about the encoding in 'Str'.
7959     std::string Swapped; // A temporary place holder for a Recursive encoding
7960                          // during the expansion of RecordType's members.
7961   };
7962   std::map<const IdentifierInfo *, struct Entry> Map;
7963   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
7964   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
7965 public:
7966   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
7967   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
7968   bool removeIncomplete(const IdentifierInfo *ID);
7969   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
7970                      bool IsRecursive);
7971   StringRef lookupStr(const IdentifierInfo *ID);
7972 };
7973 
7974 /// TypeString encodings for enum & union fields must be order.
7975 /// FieldEncoding is a helper for this ordering process.
7976 class FieldEncoding {
7977   bool HasName;
7978   std::string Enc;
7979 public:
7980   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
7981   StringRef str() { return Enc; }
7982   bool operator<(const FieldEncoding &rhs) const {
7983     if (HasName != rhs.HasName) return HasName;
7984     return Enc < rhs.Enc;
7985   }
7986 };
7987 
7988 class XCoreABIInfo : public DefaultABIInfo {
7989 public:
7990   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7991   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7992                     QualType Ty) const override;
7993 };
7994 
7995 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
7996   mutable TypeStringCache TSC;
7997 public:
7998   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
7999     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8000   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8001                     CodeGen::CodeGenModule &M) const override;
8002 };
8003 
8004 } // End anonymous namespace.
8005 
8006 // TODO: this implementation is likely now redundant with the default
8007 // EmitVAArg.
8008 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8009                                 QualType Ty) const {
8010   CGBuilderTy &Builder = CGF.Builder;
8011 
8012   // Get the VAList.
8013   CharUnits SlotSize = CharUnits::fromQuantity(4);
8014   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8015 
8016   // Handle the argument.
8017   ABIArgInfo AI = classifyArgumentType(Ty);
8018   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8019   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8020   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8021     AI.setCoerceToType(ArgTy);
8022   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8023 
8024   Address Val = Address::invalid();
8025   CharUnits ArgSize = CharUnits::Zero();
8026   switch (AI.getKind()) {
8027   case ABIArgInfo::Expand:
8028   case ABIArgInfo::CoerceAndExpand:
8029   case ABIArgInfo::InAlloca:
8030     llvm_unreachable("Unsupported ABI kind for va_arg");
8031   case ABIArgInfo::Ignore:
8032     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8033     ArgSize = CharUnits::Zero();
8034     break;
8035   case ABIArgInfo::Extend:
8036   case ABIArgInfo::Direct:
8037     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8038     ArgSize = CharUnits::fromQuantity(
8039                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8040     ArgSize = ArgSize.alignTo(SlotSize);
8041     break;
8042   case ABIArgInfo::Indirect:
8043     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8044     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8045     ArgSize = SlotSize;
8046     break;
8047   }
8048 
8049   // Increment the VAList.
8050   if (!ArgSize.isZero()) {
8051     llvm::Value *APN =
8052       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8053     Builder.CreateStore(APN, VAListAddr);
8054   }
8055 
8056   return Val;
8057 }
8058 
8059 /// During the expansion of a RecordType, an incomplete TypeString is placed
8060 /// into the cache as a means to identify and break recursion.
8061 /// If there is a Recursive encoding in the cache, it is swapped out and will
8062 /// be reinserted by removeIncomplete().
8063 /// All other types of encoding should have been used rather than arriving here.
8064 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8065                                     std::string StubEnc) {
8066   if (!ID)
8067     return;
8068   Entry &E = Map[ID];
8069   assert( (E.Str.empty() || E.State == Recursive) &&
8070          "Incorrectly use of addIncomplete");
8071   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8072   E.Swapped.swap(E.Str); // swap out the Recursive
8073   E.Str.swap(StubEnc);
8074   E.State = Incomplete;
8075   ++IncompleteCount;
8076 }
8077 
8078 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8079 /// must be removed from the cache.
8080 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8081 /// Returns true if the RecordType was defined recursively.
8082 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8083   if (!ID)
8084     return false;
8085   auto I = Map.find(ID);
8086   assert(I != Map.end() && "Entry not present");
8087   Entry &E = I->second;
8088   assert( (E.State == Incomplete ||
8089            E.State == IncompleteUsed) &&
8090          "Entry must be an incomplete type");
8091   bool IsRecursive = false;
8092   if (E.State == IncompleteUsed) {
8093     // We made use of our Incomplete encoding, thus we are recursive.
8094     IsRecursive = true;
8095     --IncompleteUsedCount;
8096   }
8097   if (E.Swapped.empty())
8098     Map.erase(I);
8099   else {
8100     // Swap the Recursive back.
8101     E.Swapped.swap(E.Str);
8102     E.Swapped.clear();
8103     E.State = Recursive;
8104   }
8105   --IncompleteCount;
8106   return IsRecursive;
8107 }
8108 
8109 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8110 /// Recursive (viz: all sub-members were expanded as fully as possible).
8111 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8112                                     bool IsRecursive) {
8113   if (!ID || IncompleteUsedCount)
8114     return; // No key or it is is an incomplete sub-type so don't add.
8115   Entry &E = Map[ID];
8116   if (IsRecursive && !E.Str.empty()) {
8117     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8118            "This is not the same Recursive entry");
8119     // The parent container was not recursive after all, so we could have used
8120     // this Recursive sub-member entry after all, but we assumed the worse when
8121     // we started viz: IncompleteCount!=0.
8122     return;
8123   }
8124   assert(E.Str.empty() && "Entry already present");
8125   E.Str = Str.str();
8126   E.State = IsRecursive? Recursive : NonRecursive;
8127 }
8128 
8129 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8130 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8131 /// encoding is Recursive, return an empty StringRef.
8132 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8133   if (!ID)
8134     return StringRef();   // We have no key.
8135   auto I = Map.find(ID);
8136   if (I == Map.end())
8137     return StringRef();   // We have no encoding.
8138   Entry &E = I->second;
8139   if (E.State == Recursive && IncompleteCount)
8140     return StringRef();   // We don't use Recursive encodings for member types.
8141 
8142   if (E.State == Incomplete) {
8143     // The incomplete type is being used to break out of recursion.
8144     E.State = IncompleteUsed;
8145     ++IncompleteUsedCount;
8146   }
8147   return E.Str;
8148 }
8149 
8150 /// The XCore ABI includes a type information section that communicates symbol
8151 /// type information to the linker. The linker uses this information to verify
8152 /// safety/correctness of things such as array bound and pointers et al.
8153 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8154 /// This type information (TypeString) is emitted into meta data for all global
8155 /// symbols: definitions, declarations, functions & variables.
8156 ///
8157 /// The TypeString carries type, qualifier, name, size & value details.
8158 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8159 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8160 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8161 ///
8162 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8163                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8164 
8165 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8166 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8167                                           CodeGen::CodeGenModule &CGM) const {
8168   SmallStringEnc Enc;
8169   if (getTypeString(Enc, D, CGM, TSC)) {
8170     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8171     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8172                                 llvm::MDString::get(Ctx, Enc.str())};
8173     llvm::NamedMDNode *MD =
8174       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8175     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8176   }
8177 }
8178 
8179 //===----------------------------------------------------------------------===//
8180 // SPIR ABI Implementation
8181 //===----------------------------------------------------------------------===//
8182 
8183 namespace {
8184 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8185 public:
8186   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8187     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8188   unsigned getOpenCLKernelCallingConv() const override;
8189 };
8190 
8191 } // End anonymous namespace.
8192 
8193 namespace clang {
8194 namespace CodeGen {
8195 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8196   DefaultABIInfo SPIRABI(CGM.getTypes());
8197   SPIRABI.computeInfo(FI);
8198 }
8199 }
8200 }
8201 
8202 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8203   return llvm::CallingConv::SPIR_KERNEL;
8204 }
8205 
8206 static bool appendType(SmallStringEnc &Enc, QualType QType,
8207                        const CodeGen::CodeGenModule &CGM,
8208                        TypeStringCache &TSC);
8209 
8210 /// Helper function for appendRecordType().
8211 /// Builds a SmallVector containing the encoded field types in declaration
8212 /// order.
8213 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8214                              const RecordDecl *RD,
8215                              const CodeGen::CodeGenModule &CGM,
8216                              TypeStringCache &TSC) {
8217   for (const auto *Field : RD->fields()) {
8218     SmallStringEnc Enc;
8219     Enc += "m(";
8220     Enc += Field->getName();
8221     Enc += "){";
8222     if (Field->isBitField()) {
8223       Enc += "b(";
8224       llvm::raw_svector_ostream OS(Enc);
8225       OS << Field->getBitWidthValue(CGM.getContext());
8226       Enc += ':';
8227     }
8228     if (!appendType(Enc, Field->getType(), CGM, TSC))
8229       return false;
8230     if (Field->isBitField())
8231       Enc += ')';
8232     Enc += '}';
8233     FE.emplace_back(!Field->getName().empty(), Enc);
8234   }
8235   return true;
8236 }
8237 
8238 /// Appends structure and union types to Enc and adds encoding to cache.
8239 /// Recursively calls appendType (via extractFieldType) for each field.
8240 /// Union types have their fields ordered according to the ABI.
8241 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8242                              const CodeGen::CodeGenModule &CGM,
8243                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8244   // Append the cached TypeString if we have one.
8245   StringRef TypeString = TSC.lookupStr(ID);
8246   if (!TypeString.empty()) {
8247     Enc += TypeString;
8248     return true;
8249   }
8250 
8251   // Start to emit an incomplete TypeString.
8252   size_t Start = Enc.size();
8253   Enc += (RT->isUnionType()? 'u' : 's');
8254   Enc += '(';
8255   if (ID)
8256     Enc += ID->getName();
8257   Enc += "){";
8258 
8259   // We collect all encoded fields and order as necessary.
8260   bool IsRecursive = false;
8261   const RecordDecl *RD = RT->getDecl()->getDefinition();
8262   if (RD && !RD->field_empty()) {
8263     // An incomplete TypeString stub is placed in the cache for this RecordType
8264     // so that recursive calls to this RecordType will use it whilst building a
8265     // complete TypeString for this RecordType.
8266     SmallVector<FieldEncoding, 16> FE;
8267     std::string StubEnc(Enc.substr(Start).str());
8268     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8269     TSC.addIncomplete(ID, std::move(StubEnc));
8270     if (!extractFieldType(FE, RD, CGM, TSC)) {
8271       (void) TSC.removeIncomplete(ID);
8272       return false;
8273     }
8274     IsRecursive = TSC.removeIncomplete(ID);
8275     // The ABI requires unions to be sorted but not structures.
8276     // See FieldEncoding::operator< for sort algorithm.
8277     if (RT->isUnionType())
8278       std::sort(FE.begin(), FE.end());
8279     // We can now complete the TypeString.
8280     unsigned E = FE.size();
8281     for (unsigned I = 0; I != E; ++I) {
8282       if (I)
8283         Enc += ',';
8284       Enc += FE[I].str();
8285     }
8286   }
8287   Enc += '}';
8288   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8289   return true;
8290 }
8291 
8292 /// Appends enum types to Enc and adds the encoding to the cache.
8293 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8294                            TypeStringCache &TSC,
8295                            const IdentifierInfo *ID) {
8296   // Append the cached TypeString if we have one.
8297   StringRef TypeString = TSC.lookupStr(ID);
8298   if (!TypeString.empty()) {
8299     Enc += TypeString;
8300     return true;
8301   }
8302 
8303   size_t Start = Enc.size();
8304   Enc += "e(";
8305   if (ID)
8306     Enc += ID->getName();
8307   Enc += "){";
8308 
8309   // We collect all encoded enumerations and order them alphanumerically.
8310   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8311     SmallVector<FieldEncoding, 16> FE;
8312     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8313          ++I) {
8314       SmallStringEnc EnumEnc;
8315       EnumEnc += "m(";
8316       EnumEnc += I->getName();
8317       EnumEnc += "){";
8318       I->getInitVal().toString(EnumEnc);
8319       EnumEnc += '}';
8320       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8321     }
8322     std::sort(FE.begin(), FE.end());
8323     unsigned E = FE.size();
8324     for (unsigned I = 0; I != E; ++I) {
8325       if (I)
8326         Enc += ',';
8327       Enc += FE[I].str();
8328     }
8329   }
8330   Enc += '}';
8331   TSC.addIfComplete(ID, Enc.substr(Start), false);
8332   return true;
8333 }
8334 
8335 /// Appends type's qualifier to Enc.
8336 /// This is done prior to appending the type's encoding.
8337 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8338   // Qualifiers are emitted in alphabetical order.
8339   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8340   int Lookup = 0;
8341   if (QT.isConstQualified())
8342     Lookup += 1<<0;
8343   if (QT.isRestrictQualified())
8344     Lookup += 1<<1;
8345   if (QT.isVolatileQualified())
8346     Lookup += 1<<2;
8347   Enc += Table[Lookup];
8348 }
8349 
8350 /// Appends built-in types to Enc.
8351 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8352   const char *EncType;
8353   switch (BT->getKind()) {
8354     case BuiltinType::Void:
8355       EncType = "0";
8356       break;
8357     case BuiltinType::Bool:
8358       EncType = "b";
8359       break;
8360     case BuiltinType::Char_U:
8361       EncType = "uc";
8362       break;
8363     case BuiltinType::UChar:
8364       EncType = "uc";
8365       break;
8366     case BuiltinType::SChar:
8367       EncType = "sc";
8368       break;
8369     case BuiltinType::UShort:
8370       EncType = "us";
8371       break;
8372     case BuiltinType::Short:
8373       EncType = "ss";
8374       break;
8375     case BuiltinType::UInt:
8376       EncType = "ui";
8377       break;
8378     case BuiltinType::Int:
8379       EncType = "si";
8380       break;
8381     case BuiltinType::ULong:
8382       EncType = "ul";
8383       break;
8384     case BuiltinType::Long:
8385       EncType = "sl";
8386       break;
8387     case BuiltinType::ULongLong:
8388       EncType = "ull";
8389       break;
8390     case BuiltinType::LongLong:
8391       EncType = "sll";
8392       break;
8393     case BuiltinType::Float:
8394       EncType = "ft";
8395       break;
8396     case BuiltinType::Double:
8397       EncType = "d";
8398       break;
8399     case BuiltinType::LongDouble:
8400       EncType = "ld";
8401       break;
8402     default:
8403       return false;
8404   }
8405   Enc += EncType;
8406   return true;
8407 }
8408 
8409 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8410 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8411                               const CodeGen::CodeGenModule &CGM,
8412                               TypeStringCache &TSC) {
8413   Enc += "p(";
8414   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8415     return false;
8416   Enc += ')';
8417   return true;
8418 }
8419 
8420 /// Appends array encoding to Enc before calling appendType for the element.
8421 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8422                             const ArrayType *AT,
8423                             const CodeGen::CodeGenModule &CGM,
8424                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8425   if (AT->getSizeModifier() != ArrayType::Normal)
8426     return false;
8427   Enc += "a(";
8428   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8429     CAT->getSize().toStringUnsigned(Enc);
8430   else
8431     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8432   Enc += ':';
8433   // The Qualifiers should be attached to the type rather than the array.
8434   appendQualifier(Enc, QT);
8435   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8436     return false;
8437   Enc += ')';
8438   return true;
8439 }
8440 
8441 /// Appends a function encoding to Enc, calling appendType for the return type
8442 /// and the arguments.
8443 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8444                              const CodeGen::CodeGenModule &CGM,
8445                              TypeStringCache &TSC) {
8446   Enc += "f{";
8447   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8448     return false;
8449   Enc += "}(";
8450   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8451     // N.B. we are only interested in the adjusted param types.
8452     auto I = FPT->param_type_begin();
8453     auto E = FPT->param_type_end();
8454     if (I != E) {
8455       do {
8456         if (!appendType(Enc, *I, CGM, TSC))
8457           return false;
8458         ++I;
8459         if (I != E)
8460           Enc += ',';
8461       } while (I != E);
8462       if (FPT->isVariadic())
8463         Enc += ",va";
8464     } else {
8465       if (FPT->isVariadic())
8466         Enc += "va";
8467       else
8468         Enc += '0';
8469     }
8470   }
8471   Enc += ')';
8472   return true;
8473 }
8474 
8475 /// Handles the type's qualifier before dispatching a call to handle specific
8476 /// type encodings.
8477 static bool appendType(SmallStringEnc &Enc, QualType QType,
8478                        const CodeGen::CodeGenModule &CGM,
8479                        TypeStringCache &TSC) {
8480 
8481   QualType QT = QType.getCanonicalType();
8482 
8483   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8484     // The Qualifiers should be attached to the type rather than the array.
8485     // Thus we don't call appendQualifier() here.
8486     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8487 
8488   appendQualifier(Enc, QT);
8489 
8490   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8491     return appendBuiltinType(Enc, BT);
8492 
8493   if (const PointerType *PT = QT->getAs<PointerType>())
8494     return appendPointerType(Enc, PT, CGM, TSC);
8495 
8496   if (const EnumType *ET = QT->getAs<EnumType>())
8497     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
8498 
8499   if (const RecordType *RT = QT->getAsStructureType())
8500     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8501 
8502   if (const RecordType *RT = QT->getAsUnionType())
8503     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8504 
8505   if (const FunctionType *FT = QT->getAs<FunctionType>())
8506     return appendFunctionType(Enc, FT, CGM, TSC);
8507 
8508   return false;
8509 }
8510 
8511 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8512                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
8513   if (!D)
8514     return false;
8515 
8516   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8517     if (FD->getLanguageLinkage() != CLanguageLinkage)
8518       return false;
8519     return appendType(Enc, FD->getType(), CGM, TSC);
8520   }
8521 
8522   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8523     if (VD->getLanguageLinkage() != CLanguageLinkage)
8524       return false;
8525     QualType QT = VD->getType().getCanonicalType();
8526     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
8527       // Global ArrayTypes are given a size of '*' if the size is unknown.
8528       // The Qualifiers should be attached to the type rather than the array.
8529       // Thus we don't call appendQualifier() here.
8530       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
8531     }
8532     return appendType(Enc, QT, CGM, TSC);
8533   }
8534   return false;
8535 }
8536 
8537 
8538 //===----------------------------------------------------------------------===//
8539 // Driver code
8540 //===----------------------------------------------------------------------===//
8541 
8542 bool CodeGenModule::supportsCOMDAT() const {
8543   return getTriple().supportsCOMDAT();
8544 }
8545 
8546 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
8547   if (TheTargetCodeGenInfo)
8548     return *TheTargetCodeGenInfo;
8549 
8550   // Helper to set the unique_ptr while still keeping the return value.
8551   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8552     this->TheTargetCodeGenInfo.reset(P);
8553     return *P;
8554   };
8555 
8556   const llvm::Triple &Triple = getTarget().getTriple();
8557   switch (Triple.getArch()) {
8558   default:
8559     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8560 
8561   case llvm::Triple::le32:
8562     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8563   case llvm::Triple::mips:
8564   case llvm::Triple::mipsel:
8565     if (Triple.getOS() == llvm::Triple::NaCl)
8566       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8567     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
8568 
8569   case llvm::Triple::mips64:
8570   case llvm::Triple::mips64el:
8571     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
8572 
8573   case llvm::Triple::avr:
8574     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
8575 
8576   case llvm::Triple::aarch64:
8577   case llvm::Triple::aarch64_be: {
8578     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
8579     if (getTarget().getABI() == "darwinpcs")
8580       Kind = AArch64ABIInfo::DarwinPCS;
8581     else if (Triple.isOSWindows())
8582       return SetCGInfo(
8583           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
8584 
8585     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
8586   }
8587 
8588   case llvm::Triple::wasm32:
8589   case llvm::Triple::wasm64:
8590     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
8591 
8592   case llvm::Triple::arm:
8593   case llvm::Triple::armeb:
8594   case llvm::Triple::thumb:
8595   case llvm::Triple::thumbeb: {
8596     if (Triple.getOS() == llvm::Triple::Win32) {
8597       return SetCGInfo(
8598           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
8599     }
8600 
8601     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
8602     StringRef ABIStr = getTarget().getABI();
8603     if (ABIStr == "apcs-gnu")
8604       Kind = ARMABIInfo::APCS;
8605     else if (ABIStr == "aapcs16")
8606       Kind = ARMABIInfo::AAPCS16_VFP;
8607     else if (CodeGenOpts.FloatABI == "hard" ||
8608              (CodeGenOpts.FloatABI != "soft" &&
8609               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
8610                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
8611                Triple.getEnvironment() == llvm::Triple::EABIHF)))
8612       Kind = ARMABIInfo::AAPCS_VFP;
8613 
8614     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
8615   }
8616 
8617   case llvm::Triple::ppc:
8618     return SetCGInfo(
8619         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
8620   case llvm::Triple::ppc64:
8621     if (Triple.isOSBinFormatELF()) {
8622       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
8623       if (getTarget().getABI() == "elfv2")
8624         Kind = PPC64_SVR4_ABIInfo::ELFv2;
8625       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8626       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8627 
8628       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8629                                                         IsSoftFloat));
8630     } else
8631       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
8632   case llvm::Triple::ppc64le: {
8633     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
8634     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
8635     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
8636       Kind = PPC64_SVR4_ABIInfo::ELFv1;
8637     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8638     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8639 
8640     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8641                                                       IsSoftFloat));
8642   }
8643 
8644   case llvm::Triple::nvptx:
8645   case llvm::Triple::nvptx64:
8646     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
8647 
8648   case llvm::Triple::msp430:
8649     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
8650 
8651   case llvm::Triple::systemz: {
8652     bool HasVector = getTarget().getABI() == "vector";
8653     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
8654   }
8655 
8656   case llvm::Triple::tce:
8657   case llvm::Triple::tcele:
8658     return SetCGInfo(new TCETargetCodeGenInfo(Types));
8659 
8660   case llvm::Triple::x86: {
8661     bool IsDarwinVectorABI = Triple.isOSDarwin();
8662     bool RetSmallStructInRegABI =
8663         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
8664     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
8665 
8666     if (Triple.getOS() == llvm::Triple::Win32) {
8667       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
8668           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8669           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
8670     } else {
8671       return SetCGInfo(new X86_32TargetCodeGenInfo(
8672           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8673           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
8674           CodeGenOpts.FloatABI == "soft"));
8675     }
8676   }
8677 
8678   case llvm::Triple::x86_64: {
8679     StringRef ABI = getTarget().getABI();
8680     X86AVXABILevel AVXLevel =
8681         (ABI == "avx512"
8682              ? X86AVXABILevel::AVX512
8683              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
8684 
8685     switch (Triple.getOS()) {
8686     case llvm::Triple::Win32:
8687       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
8688     case llvm::Triple::PS4:
8689       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
8690     default:
8691       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
8692     }
8693   }
8694   case llvm::Triple::hexagon:
8695     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
8696   case llvm::Triple::lanai:
8697     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
8698   case llvm::Triple::r600:
8699     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8700   case llvm::Triple::amdgcn:
8701     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8702   case llvm::Triple::sparc:
8703     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
8704   case llvm::Triple::sparcv9:
8705     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
8706   case llvm::Triple::xcore:
8707     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
8708   case llvm::Triple::spir:
8709   case llvm::Triple::spir64:
8710     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
8711   }
8712 }
8713