1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "clang/CodeGen/SwiftCallingConv.h"
25 #include "llvm/ADT/SmallBitVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/IntrinsicsNVPTX.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm> // std::sort
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 // Helper for coercing an aggregate argument or return value into an integer
40 // array of the same size (including padding) and alignment.  This alternate
41 // coercion happens only for the RenderScript ABI and can be removed after
42 // runtimes that rely on it are no longer supported.
43 //
44 // RenderScript assumes that the size of the argument / return value in the IR
45 // is the same as the size of the corresponding qualified type. This helper
46 // coerces the aggregate type into an array of the same size (including
47 // padding).  This coercion is used in lieu of expansion of struct members or
48 // other canonical coercions that return a coerced-type of larger size.
49 //
50 // Ty          - The argument / return value type
51 // Context     - The associated ASTContext
52 // LLVMContext - The associated LLVMContext
53 static ABIArgInfo coerceToIntArray(QualType Ty,
54                                    ASTContext &Context,
55                                    llvm::LLVMContext &LLVMContext) {
56   // Alignment and Size are measured in bits.
57   const uint64_t Size = Context.getTypeSize(Ty);
58   const uint64_t Alignment = Context.getTypeAlign(Ty);
59   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
60   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
61   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
62 }
63 
64 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
65                                llvm::Value *Array,
66                                llvm::Value *Value,
67                                unsigned FirstIndex,
68                                unsigned LastIndex) {
69   // Alternatively, we could emit this as a loop in the source.
70   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
71     llvm::Value *Cell =
72         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
73     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
74   }
75 }
76 
77 static bool isAggregateTypeForABI(QualType T) {
78   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
79          T->isMemberFunctionPointerType();
80 }
81 
82 ABIArgInfo
83 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
84                                  llvm::Type *Padding) const {
85   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
86                                  ByRef, Realign, Padding);
87 }
88 
89 ABIArgInfo
90 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
91   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
92                                       /*ByRef*/ false, Realign);
93 }
94 
95 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
96                              QualType Ty) const {
97   return Address::invalid();
98 }
99 
100 ABIInfo::~ABIInfo() {}
101 
102 /// Does the given lowering require more than the given number of
103 /// registers when expanded?
104 ///
105 /// This is intended to be the basis of a reasonable basic implementation
106 /// of should{Pass,Return}IndirectlyForSwift.
107 ///
108 /// For most targets, a limit of four total registers is reasonable; this
109 /// limits the amount of code required in order to move around the value
110 /// in case it wasn't produced immediately prior to the call by the caller
111 /// (or wasn't produced in exactly the right registers) or isn't used
112 /// immediately within the callee.  But some targets may need to further
113 /// limit the register count due to an inability to support that many
114 /// return registers.
115 static bool occupiesMoreThan(CodeGenTypes &cgt,
116                              ArrayRef<llvm::Type*> scalarTypes,
117                              unsigned maxAllRegisters) {
118   unsigned intCount = 0, fpCount = 0;
119   for (llvm::Type *type : scalarTypes) {
120     if (type->isPointerTy()) {
121       intCount++;
122     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
123       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
124       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
125     } else {
126       assert(type->isVectorTy() || type->isFloatingPointTy());
127       fpCount++;
128     }
129   }
130 
131   return (intCount + fpCount > maxAllRegisters);
132 }
133 
134 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
135                                              llvm::Type *eltTy,
136                                              unsigned numElts) const {
137   // The default implementation of this assumes that the target guarantees
138   // 128-bit SIMD support but nothing more.
139   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
140 }
141 
142 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
143                                               CGCXXABI &CXXABI) {
144   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
145   if (!RD) {
146     if (!RT->getDecl()->canPassInRegisters())
147       return CGCXXABI::RAA_Indirect;
148     return CGCXXABI::RAA_Default;
149   }
150   return CXXABI.getRecordArgABI(RD);
151 }
152 
153 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
154                                               CGCXXABI &CXXABI) {
155   const RecordType *RT = T->getAs<RecordType>();
156   if (!RT)
157     return CGCXXABI::RAA_Default;
158   return getRecordArgABI(RT, CXXABI);
159 }
160 
161 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
162                                const ABIInfo &Info) {
163   QualType Ty = FI.getReturnType();
164 
165   if (const auto *RT = Ty->getAs<RecordType>())
166     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
167         !RT->getDecl()->canPassInRegisters()) {
168       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
169       return true;
170     }
171 
172   return CXXABI.classifyReturnType(FI);
173 }
174 
175 /// Pass transparent unions as if they were the type of the first element. Sema
176 /// should ensure that all elements of the union have the same "machine type".
177 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
178   if (const RecordType *UT = Ty->getAsUnionType()) {
179     const RecordDecl *UD = UT->getDecl();
180     if (UD->hasAttr<TransparentUnionAttr>()) {
181       assert(!UD->field_empty() && "sema created an empty transparent union");
182       return UD->field_begin()->getType();
183     }
184   }
185   return Ty;
186 }
187 
188 CGCXXABI &ABIInfo::getCXXABI() const {
189   return CGT.getCXXABI();
190 }
191 
192 ASTContext &ABIInfo::getContext() const {
193   return CGT.getContext();
194 }
195 
196 llvm::LLVMContext &ABIInfo::getVMContext() const {
197   return CGT.getLLVMContext();
198 }
199 
200 const llvm::DataLayout &ABIInfo::getDataLayout() const {
201   return CGT.getDataLayout();
202 }
203 
204 const TargetInfo &ABIInfo::getTarget() const {
205   return CGT.getTarget();
206 }
207 
208 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
209   return CGT.getCodeGenOpts();
210 }
211 
212 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
213 
214 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
215   return false;
216 }
217 
218 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
219                                                 uint64_t Members) const {
220   return false;
221 }
222 
223 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
224   raw_ostream &OS = llvm::errs();
225   OS << "(ABIArgInfo Kind=";
226   switch (TheKind) {
227   case Direct:
228     OS << "Direct Type=";
229     if (llvm::Type *Ty = getCoerceToType())
230       Ty->print(OS);
231     else
232       OS << "null";
233     break;
234   case Extend:
235     OS << "Extend";
236     break;
237   case Ignore:
238     OS << "Ignore";
239     break;
240   case InAlloca:
241     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
242     break;
243   case Indirect:
244     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
245        << " ByVal=" << getIndirectByVal()
246        << " Realign=" << getIndirectRealign();
247     break;
248   case Expand:
249     OS << "Expand";
250     break;
251   case CoerceAndExpand:
252     OS << "CoerceAndExpand Type=";
253     getCoerceAndExpandType()->print(OS);
254     break;
255   }
256   OS << ")\n";
257 }
258 
259 // Dynamically round a pointer up to a multiple of the given alignment.
260 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
261                                                   llvm::Value *Ptr,
262                                                   CharUnits Align) {
263   llvm::Value *PtrAsInt = Ptr;
264   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
265   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
266   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
267         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
268   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
269            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
270   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
271                                         Ptr->getType(),
272                                         Ptr->getName() + ".aligned");
273   return PtrAsInt;
274 }
275 
276 /// Emit va_arg for a platform using the common void* representation,
277 /// where arguments are simply emitted in an array of slots on the stack.
278 ///
279 /// This version implements the core direct-value passing rules.
280 ///
281 /// \param SlotSize - The size and alignment of a stack slot.
282 ///   Each argument will be allocated to a multiple of this number of
283 ///   slots, and all the slots will be aligned to this value.
284 /// \param AllowHigherAlign - The slot alignment is not a cap;
285 ///   an argument type with an alignment greater than the slot size
286 ///   will be emitted on a higher-alignment address, potentially
287 ///   leaving one or more empty slots behind as padding.  If this
288 ///   is false, the returned address might be less-aligned than
289 ///   DirectAlign.
290 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
291                                       Address VAListAddr,
292                                       llvm::Type *DirectTy,
293                                       CharUnits DirectSize,
294                                       CharUnits DirectAlign,
295                                       CharUnits SlotSize,
296                                       bool AllowHigherAlign) {
297   // Cast the element type to i8* if necessary.  Some platforms define
298   // va_list as a struct containing an i8* instead of just an i8*.
299   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
300     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
301 
302   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
303 
304   // If the CC aligns values higher than the slot size, do so if needed.
305   Address Addr = Address::invalid();
306   if (AllowHigherAlign && DirectAlign > SlotSize) {
307     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
308                                                  DirectAlign);
309   } else {
310     Addr = Address(Ptr, SlotSize);
311   }
312 
313   // Advance the pointer past the argument, then store that back.
314   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
315   Address NextPtr =
316       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
317   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
318 
319   // If the argument is smaller than a slot, and this is a big-endian
320   // target, the argument will be right-adjusted in its slot.
321   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
322       !DirectTy->isStructTy()) {
323     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
324   }
325 
326   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
327   return Addr;
328 }
329 
330 /// Emit va_arg for a platform using the common void* representation,
331 /// where arguments are simply emitted in an array of slots on the stack.
332 ///
333 /// \param IsIndirect - Values of this type are passed indirectly.
334 /// \param ValueInfo - The size and alignment of this type, generally
335 ///   computed with getContext().getTypeInfoInChars(ValueTy).
336 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
337 ///   Each argument will be allocated to a multiple of this number of
338 ///   slots, and all the slots will be aligned to this value.
339 /// \param AllowHigherAlign - The slot alignment is not a cap;
340 ///   an argument type with an alignment greater than the slot size
341 ///   will be emitted on a higher-alignment address, potentially
342 ///   leaving one or more empty slots behind as padding.
343 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
344                                 QualType ValueTy, bool IsIndirect,
345                                 std::pair<CharUnits, CharUnits> ValueInfo,
346                                 CharUnits SlotSizeAndAlign,
347                                 bool AllowHigherAlign) {
348   // The size and alignment of the value that was passed directly.
349   CharUnits DirectSize, DirectAlign;
350   if (IsIndirect) {
351     DirectSize = CGF.getPointerSize();
352     DirectAlign = CGF.getPointerAlign();
353   } else {
354     DirectSize = ValueInfo.first;
355     DirectAlign = ValueInfo.second;
356   }
357 
358   // Cast the address we've calculated to the right type.
359   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
360   if (IsIndirect)
361     DirectTy = DirectTy->getPointerTo(0);
362 
363   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
364                                         DirectSize, DirectAlign,
365                                         SlotSizeAndAlign,
366                                         AllowHigherAlign);
367 
368   if (IsIndirect) {
369     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
370   }
371 
372   return Addr;
373 
374 }
375 
376 static Address emitMergePHI(CodeGenFunction &CGF,
377                             Address Addr1, llvm::BasicBlock *Block1,
378                             Address Addr2, llvm::BasicBlock *Block2,
379                             const llvm::Twine &Name = "") {
380   assert(Addr1.getType() == Addr2.getType());
381   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
382   PHI->addIncoming(Addr1.getPointer(), Block1);
383   PHI->addIncoming(Addr2.getPointer(), Block2);
384   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
385   return Address(PHI, Align);
386 }
387 
388 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
389 
390 // If someone can figure out a general rule for this, that would be great.
391 // It's probably just doomed to be platform-dependent, though.
392 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
393   // Verified for:
394   //   x86-64     FreeBSD, Linux, Darwin
395   //   x86-32     FreeBSD, Linux, Darwin
396   //   PowerPC    Linux, Darwin
397   //   ARM        Darwin (*not* EABI)
398   //   AArch64    Linux
399   return 32;
400 }
401 
402 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
403                                      const FunctionNoProtoType *fnType) const {
404   // The following conventions are known to require this to be false:
405   //   x86_stdcall
406   //   MIPS
407   // For everything else, we just prefer false unless we opt out.
408   return false;
409 }
410 
411 void
412 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
413                                              llvm::SmallString<24> &Opt) const {
414   // This assumes the user is passing a library name like "rt" instead of a
415   // filename like "librt.a/so", and that they don't care whether it's static or
416   // dynamic.
417   Opt = "-l";
418   Opt += Lib;
419 }
420 
421 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
422   // OpenCL kernels are called via an explicit runtime API with arguments
423   // set with clSetKernelArg(), not as normal sub-functions.
424   // Return SPIR_KERNEL by default as the kernel calling convention to
425   // ensure the fingerprint is fixed such way that each OpenCL argument
426   // gets one matching argument in the produced kernel function argument
427   // list to enable feasible implementation of clSetKernelArg() with
428   // aggregates etc. In case we would use the default C calling conv here,
429   // clSetKernelArg() might break depending on the target-specific
430   // conventions; different targets might split structs passed as values
431   // to multiple function arguments etc.
432   return llvm::CallingConv::SPIR_KERNEL;
433 }
434 
435 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
436     llvm::PointerType *T, QualType QT) const {
437   return llvm::ConstantPointerNull::get(T);
438 }
439 
440 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
441                                                    const VarDecl *D) const {
442   assert(!CGM.getLangOpts().OpenCL &&
443          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
444          "Address space agnostic languages only");
445   return D ? D->getType().getAddressSpace() : LangAS::Default;
446 }
447 
448 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
449     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
450     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
451   // Since target may map different address spaces in AST to the same address
452   // space, an address space conversion may end up as a bitcast.
453   if (auto *C = dyn_cast<llvm::Constant>(Src))
454     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
455   // Try to preserve the source's name to make IR more readable.
456   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
457       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
458 }
459 
460 llvm::Constant *
461 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
462                                         LangAS SrcAddr, LangAS DestAddr,
463                                         llvm::Type *DestTy) const {
464   // Since target may map different address spaces in AST to the same address
465   // space, an address space conversion may end up as a bitcast.
466   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
467 }
468 
469 llvm::SyncScope::ID
470 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
471                                       SyncScope Scope,
472                                       llvm::AtomicOrdering Ordering,
473                                       llvm::LLVMContext &Ctx) const {
474   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
475 }
476 
477 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
478 
479 /// isEmptyField - Return true iff a the field is "empty", that is it
480 /// is an unnamed bit-field or an (array of) empty record(s).
481 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
482                          bool AllowArrays) {
483   if (FD->isUnnamedBitfield())
484     return true;
485 
486   QualType FT = FD->getType();
487 
488   // Constant arrays of empty records count as empty, strip them off.
489   // Constant arrays of zero length always count as empty.
490   if (AllowArrays)
491     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
492       if (AT->getSize() == 0)
493         return true;
494       FT = AT->getElementType();
495     }
496 
497   const RecordType *RT = FT->getAs<RecordType>();
498   if (!RT)
499     return false;
500 
501   // C++ record fields are never empty, at least in the Itanium ABI.
502   //
503   // FIXME: We should use a predicate for whether this behavior is true in the
504   // current ABI.
505   if (isa<CXXRecordDecl>(RT->getDecl()))
506     return false;
507 
508   return isEmptyRecord(Context, FT, AllowArrays);
509 }
510 
511 /// isEmptyRecord - Return true iff a structure contains only empty
512 /// fields. Note that a structure with a flexible array member is not
513 /// considered empty.
514 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
515   const RecordType *RT = T->getAs<RecordType>();
516   if (!RT)
517     return false;
518   const RecordDecl *RD = RT->getDecl();
519   if (RD->hasFlexibleArrayMember())
520     return false;
521 
522   // If this is a C++ record, check the bases first.
523   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
524     for (const auto &I : CXXRD->bases())
525       if (!isEmptyRecord(Context, I.getType(), true))
526         return false;
527 
528   for (const auto *I : RD->fields())
529     if (!isEmptyField(Context, I, AllowArrays))
530       return false;
531   return true;
532 }
533 
534 /// isSingleElementStruct - Determine if a structure is a "single
535 /// element struct", i.e. it has exactly one non-empty field or
536 /// exactly one field which is itself a single element
537 /// struct. Structures with flexible array members are never
538 /// considered single element structs.
539 ///
540 /// \return The field declaration for the single non-empty field, if
541 /// it exists.
542 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
543   const RecordType *RT = T->getAs<RecordType>();
544   if (!RT)
545     return nullptr;
546 
547   const RecordDecl *RD = RT->getDecl();
548   if (RD->hasFlexibleArrayMember())
549     return nullptr;
550 
551   const Type *Found = nullptr;
552 
553   // If this is a C++ record, check the bases first.
554   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
555     for (const auto &I : CXXRD->bases()) {
556       // Ignore empty records.
557       if (isEmptyRecord(Context, I.getType(), true))
558         continue;
559 
560       // If we already found an element then this isn't a single-element struct.
561       if (Found)
562         return nullptr;
563 
564       // If this is non-empty and not a single element struct, the composite
565       // cannot be a single element struct.
566       Found = isSingleElementStruct(I.getType(), Context);
567       if (!Found)
568         return nullptr;
569     }
570   }
571 
572   // Check for single element.
573   for (const auto *FD : RD->fields()) {
574     QualType FT = FD->getType();
575 
576     // Ignore empty fields.
577     if (isEmptyField(Context, FD, true))
578       continue;
579 
580     // If we already found an element then this isn't a single-element
581     // struct.
582     if (Found)
583       return nullptr;
584 
585     // Treat single element arrays as the element.
586     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
587       if (AT->getSize().getZExtValue() != 1)
588         break;
589       FT = AT->getElementType();
590     }
591 
592     if (!isAggregateTypeForABI(FT)) {
593       Found = FT.getTypePtr();
594     } else {
595       Found = isSingleElementStruct(FT, Context);
596       if (!Found)
597         return nullptr;
598     }
599   }
600 
601   // We don't consider a struct a single-element struct if it has
602   // padding beyond the element type.
603   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
604     return nullptr;
605 
606   return Found;
607 }
608 
609 namespace {
610 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
611                        const ABIArgInfo &AI) {
612   // This default implementation defers to the llvm backend's va_arg
613   // instruction. It can handle only passing arguments directly
614   // (typically only handled in the backend for primitive types), or
615   // aggregates passed indirectly by pointer (NOTE: if the "byval"
616   // flag has ABI impact in the callee, this implementation cannot
617   // work.)
618 
619   // Only a few cases are covered here at the moment -- those needed
620   // by the default abi.
621   llvm::Value *Val;
622 
623   if (AI.isIndirect()) {
624     assert(!AI.getPaddingType() &&
625            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
626     assert(
627         !AI.getIndirectRealign() &&
628         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
629 
630     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
631     CharUnits TyAlignForABI = TyInfo.second;
632 
633     llvm::Type *BaseTy =
634         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
635     llvm::Value *Addr =
636         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
637     return Address(Addr, TyAlignForABI);
638   } else {
639     assert((AI.isDirect() || AI.isExtend()) &&
640            "Unexpected ArgInfo Kind in generic VAArg emitter!");
641 
642     assert(!AI.getInReg() &&
643            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
644     assert(!AI.getPaddingType() &&
645            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
646     assert(!AI.getDirectOffset() &&
647            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
648     assert(!AI.getCoerceToType() &&
649            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
650 
651     Address Temp = CGF.CreateMemTemp(Ty, "varet");
652     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
653     CGF.Builder.CreateStore(Val, Temp);
654     return Temp;
655   }
656 }
657 
658 /// DefaultABIInfo - The default implementation for ABI specific
659 /// details. This implementation provides information which results in
660 /// self-consistent and sensible LLVM IR generation, but does not
661 /// conform to any particular ABI.
662 class DefaultABIInfo : public ABIInfo {
663 public:
664   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
665 
666   ABIArgInfo classifyReturnType(QualType RetTy) const;
667   ABIArgInfo classifyArgumentType(QualType RetTy) const;
668 
669   void computeInfo(CGFunctionInfo &FI) const override {
670     if (!getCXXABI().classifyReturnType(FI))
671       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
672     for (auto &I : FI.arguments())
673       I.info = classifyArgumentType(I.type);
674   }
675 
676   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
677                     QualType Ty) const override {
678     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
679   }
680 };
681 
682 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
683 public:
684   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
685     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
686 };
687 
688 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
689   Ty = useFirstFieldIfTransparentUnion(Ty);
690 
691   if (isAggregateTypeForABI(Ty)) {
692     // Records with non-trivial destructors/copy-constructors should not be
693     // passed by value.
694     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
695       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
696 
697     return getNaturalAlignIndirect(Ty);
698   }
699 
700   // Treat an enum type as its underlying type.
701   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
702     Ty = EnumTy->getDecl()->getIntegerType();
703 
704   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
705                                         : ABIArgInfo::getDirect());
706 }
707 
708 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
709   if (RetTy->isVoidType())
710     return ABIArgInfo::getIgnore();
711 
712   if (isAggregateTypeForABI(RetTy))
713     return getNaturalAlignIndirect(RetTy);
714 
715   // Treat an enum type as its underlying type.
716   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
717     RetTy = EnumTy->getDecl()->getIntegerType();
718 
719   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
720                                            : ABIArgInfo::getDirect());
721 }
722 
723 //===----------------------------------------------------------------------===//
724 // WebAssembly ABI Implementation
725 //
726 // This is a very simple ABI that relies a lot on DefaultABIInfo.
727 //===----------------------------------------------------------------------===//
728 
729 class WebAssemblyABIInfo final : public SwiftABIInfo {
730 public:
731   enum ABIKind {
732     MVP = 0,
733     ExperimentalMV = 1,
734   };
735 
736 private:
737   DefaultABIInfo defaultInfo;
738   ABIKind Kind;
739 
740 public:
741   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
742       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
743 
744 private:
745   ABIArgInfo classifyReturnType(QualType RetTy) const;
746   ABIArgInfo classifyArgumentType(QualType Ty) const;
747 
748   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
749   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
750   // overload them.
751   void computeInfo(CGFunctionInfo &FI) const override {
752     if (!getCXXABI().classifyReturnType(FI))
753       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
754     for (auto &Arg : FI.arguments())
755       Arg.info = classifyArgumentType(Arg.type);
756   }
757 
758   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
759                     QualType Ty) const override;
760 
761   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
762                                     bool asReturnValue) const override {
763     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
764   }
765 
766   bool isSwiftErrorInRegister() const override {
767     return false;
768   }
769 };
770 
771 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
772 public:
773   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
774                                         WebAssemblyABIInfo::ABIKind K)
775       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT, K)) {}
776 
777   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
778                            CodeGen::CodeGenModule &CGM) const override {
779     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
780     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
781       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
782         llvm::Function *Fn = cast<llvm::Function>(GV);
783         llvm::AttrBuilder B;
784         B.addAttribute("wasm-import-module", Attr->getImportModule());
785         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
786       }
787       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
788         llvm::Function *Fn = cast<llvm::Function>(GV);
789         llvm::AttrBuilder B;
790         B.addAttribute("wasm-import-name", Attr->getImportName());
791         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
792       }
793       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
794         llvm::Function *Fn = cast<llvm::Function>(GV);
795         llvm::AttrBuilder B;
796         B.addAttribute("wasm-export-name", Attr->getExportName());
797         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
798       }
799     }
800 
801     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
802       llvm::Function *Fn = cast<llvm::Function>(GV);
803       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
804         Fn->addFnAttr("no-prototype");
805     }
806   }
807 };
808 
809 /// Classify argument of given type \p Ty.
810 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
811   Ty = useFirstFieldIfTransparentUnion(Ty);
812 
813   if (isAggregateTypeForABI(Ty)) {
814     // Records with non-trivial destructors/copy-constructors should not be
815     // passed by value.
816     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
817       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
818     // Ignore empty structs/unions.
819     if (isEmptyRecord(getContext(), Ty, true))
820       return ABIArgInfo::getIgnore();
821     // Lower single-element structs to just pass a regular value. TODO: We
822     // could do reasonable-size multiple-element structs too, using getExpand(),
823     // though watch out for things like bitfields.
824     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
825       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
826     // For the experimental multivalue ABI, fully expand all other aggregates
827     if (Kind == ABIKind::ExperimentalMV) {
828       const RecordType *RT = Ty->getAs<RecordType>();
829       assert(RT);
830       bool HasBitField = false;
831       for (auto *Field : RT->getDecl()->fields()) {
832         if (Field->isBitField()) {
833           HasBitField = true;
834           break;
835         }
836       }
837       if (!HasBitField)
838         return ABIArgInfo::getExpand();
839     }
840   }
841 
842   // Otherwise just do the default thing.
843   return defaultInfo.classifyArgumentType(Ty);
844 }
845 
846 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
847   if (isAggregateTypeForABI(RetTy)) {
848     // Records with non-trivial destructors/copy-constructors should not be
849     // returned by value.
850     if (!getRecordArgABI(RetTy, getCXXABI())) {
851       // Ignore empty structs/unions.
852       if (isEmptyRecord(getContext(), RetTy, true))
853         return ABIArgInfo::getIgnore();
854       // Lower single-element structs to just return a regular value. TODO: We
855       // could do reasonable-size multiple-element structs too, using
856       // ABIArgInfo::getDirect().
857       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
858         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
859       // For the experimental multivalue ABI, return all other aggregates
860       if (Kind == ABIKind::ExperimentalMV)
861         return ABIArgInfo::getDirect();
862     }
863   }
864 
865   // Otherwise just do the default thing.
866   return defaultInfo.classifyReturnType(RetTy);
867 }
868 
869 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
870                                       QualType Ty) const {
871   bool IsIndirect = isAggregateTypeForABI(Ty) &&
872                     !isEmptyRecord(getContext(), Ty, true) &&
873                     !isSingleElementStruct(Ty, getContext());
874   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
875                           getContext().getTypeInfoInChars(Ty),
876                           CharUnits::fromQuantity(4),
877                           /*AllowHigherAlign=*/true);
878 }
879 
880 //===----------------------------------------------------------------------===//
881 // le32/PNaCl bitcode ABI Implementation
882 //
883 // This is a simplified version of the x86_32 ABI.  Arguments and return values
884 // are always passed on the stack.
885 //===----------------------------------------------------------------------===//
886 
887 class PNaClABIInfo : public ABIInfo {
888  public:
889   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
890 
891   ABIArgInfo classifyReturnType(QualType RetTy) const;
892   ABIArgInfo classifyArgumentType(QualType RetTy) const;
893 
894   void computeInfo(CGFunctionInfo &FI) const override;
895   Address EmitVAArg(CodeGenFunction &CGF,
896                     Address VAListAddr, QualType Ty) const override;
897 };
898 
899 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
900  public:
901   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
902     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
903 };
904 
905 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
906   if (!getCXXABI().classifyReturnType(FI))
907     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
908 
909   for (auto &I : FI.arguments())
910     I.info = classifyArgumentType(I.type);
911 }
912 
913 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
914                                 QualType Ty) const {
915   // The PNaCL ABI is a bit odd, in that varargs don't use normal
916   // function classification. Structs get passed directly for varargs
917   // functions, through a rewriting transform in
918   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
919   // this target to actually support a va_arg instructions with an
920   // aggregate type, unlike other targets.
921   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
922 }
923 
924 /// Classify argument of given type \p Ty.
925 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
926   if (isAggregateTypeForABI(Ty)) {
927     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
928       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
929     return getNaturalAlignIndirect(Ty);
930   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
931     // Treat an enum type as its underlying type.
932     Ty = EnumTy->getDecl()->getIntegerType();
933   } else if (Ty->isFloatingType()) {
934     // Floating-point types don't go inreg.
935     return ABIArgInfo::getDirect();
936   }
937 
938   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
939                                         : ABIArgInfo::getDirect());
940 }
941 
942 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
943   if (RetTy->isVoidType())
944     return ABIArgInfo::getIgnore();
945 
946   // In the PNaCl ABI we always return records/structures on the stack.
947   if (isAggregateTypeForABI(RetTy))
948     return getNaturalAlignIndirect(RetTy);
949 
950   // Treat an enum type as its underlying type.
951   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
952     RetTy = EnumTy->getDecl()->getIntegerType();
953 
954   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
955                                            : ABIArgInfo::getDirect());
956 }
957 
958 /// IsX86_MMXType - Return true if this is an MMX type.
959 bool IsX86_MMXType(llvm::Type *IRType) {
960   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
961   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
962     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
963     IRType->getScalarSizeInBits() != 64;
964 }
965 
966 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
967                                           StringRef Constraint,
968                                           llvm::Type* Ty) {
969   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
970                      .Cases("y", "&y", "^Ym", true)
971                      .Default(false);
972   if (IsMMXCons && Ty->isVectorTy()) {
973     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
974         64) {
975       // Invalid MMX constraint
976       return nullptr;
977     }
978 
979     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
980   }
981 
982   // No operation needed
983   return Ty;
984 }
985 
986 /// Returns true if this type can be passed in SSE registers with the
987 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
988 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
989   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
990     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
991       if (BT->getKind() == BuiltinType::LongDouble) {
992         if (&Context.getTargetInfo().getLongDoubleFormat() ==
993             &llvm::APFloat::x87DoubleExtended())
994           return false;
995       }
996       return true;
997     }
998   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
999     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1000     // registers specially.
1001     unsigned VecSize = Context.getTypeSize(VT);
1002     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1003       return true;
1004   }
1005   return false;
1006 }
1007 
1008 /// Returns true if this aggregate is small enough to be passed in SSE registers
1009 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1010 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1011   return NumMembers <= 4;
1012 }
1013 
1014 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1015 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1016   auto AI = ABIArgInfo::getDirect(T);
1017   AI.setInReg(true);
1018   AI.setCanBeFlattened(false);
1019   return AI;
1020 }
1021 
1022 //===----------------------------------------------------------------------===//
1023 // X86-32 ABI Implementation
1024 //===----------------------------------------------------------------------===//
1025 
1026 /// Similar to llvm::CCState, but for Clang.
1027 struct CCState {
1028   CCState(CGFunctionInfo &FI)
1029       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1030 
1031   llvm::SmallBitVector IsPreassigned;
1032   unsigned CC = CallingConv::CC_C;
1033   unsigned FreeRegs = 0;
1034   unsigned FreeSSERegs = 0;
1035 };
1036 
1037 enum {
1038   // Vectorcall only allows the first 6 parameters to be passed in registers.
1039   VectorcallMaxParamNumAsReg = 6
1040 };
1041 
1042 /// X86_32ABIInfo - The X86-32 ABI information.
1043 class X86_32ABIInfo : public SwiftABIInfo {
1044   enum Class {
1045     Integer,
1046     Float
1047   };
1048 
1049   static const unsigned MinABIStackAlignInBytes = 4;
1050 
1051   bool IsDarwinVectorABI;
1052   bool IsRetSmallStructInRegABI;
1053   bool IsWin32StructABI;
1054   bool IsSoftFloatABI;
1055   bool IsMCUABI;
1056   unsigned DefaultNumRegisterParameters;
1057 
1058   static bool isRegisterSize(unsigned Size) {
1059     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1060   }
1061 
1062   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1063     // FIXME: Assumes vectorcall is in use.
1064     return isX86VectorTypeForVectorCall(getContext(), Ty);
1065   }
1066 
1067   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1068                                          uint64_t NumMembers) const override {
1069     // FIXME: Assumes vectorcall is in use.
1070     return isX86VectorCallAggregateSmallEnough(NumMembers);
1071   }
1072 
1073   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1074 
1075   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1076   /// such that the argument will be passed in memory.
1077   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1078 
1079   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1080 
1081   /// Return the alignment to use for the given type on the stack.
1082   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1083 
1084   Class classify(QualType Ty) const;
1085   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1086   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1087 
1088   /// Updates the number of available free registers, returns
1089   /// true if any registers were allocated.
1090   bool updateFreeRegs(QualType Ty, CCState &State) const;
1091 
1092   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1093                                 bool &NeedsPadding) const;
1094   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1095 
1096   bool canExpandIndirectArgument(QualType Ty) const;
1097 
1098   /// Rewrite the function info so that all memory arguments use
1099   /// inalloca.
1100   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1101 
1102   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1103                            CharUnits &StackOffset, ABIArgInfo &Info,
1104                            QualType Type) const;
1105   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1106 
1107 public:
1108 
1109   void computeInfo(CGFunctionInfo &FI) const override;
1110   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1111                     QualType Ty) const override;
1112 
1113   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1114                 bool RetSmallStructInRegABI, bool Win32StructABI,
1115                 unsigned NumRegisterParameters, bool SoftFloatABI)
1116     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1117       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1118       IsWin32StructABI(Win32StructABI),
1119       IsSoftFloatABI(SoftFloatABI),
1120       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1121       DefaultNumRegisterParameters(NumRegisterParameters) {}
1122 
1123   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1124                                     bool asReturnValue) const override {
1125     // LLVM's x86-32 lowering currently only assigns up to three
1126     // integer registers and three fp registers.  Oddly, it'll use up to
1127     // four vector registers for vectors, but those can overlap with the
1128     // scalar registers.
1129     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1130   }
1131 
1132   bool isSwiftErrorInRegister() const override {
1133     // x86-32 lowering does not support passing swifterror in a register.
1134     return false;
1135   }
1136 };
1137 
1138 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1139 public:
1140   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1141                           bool RetSmallStructInRegABI, bool Win32StructABI,
1142                           unsigned NumRegisterParameters, bool SoftFloatABI)
1143       : TargetCodeGenInfo(new X86_32ABIInfo(
1144             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1145             NumRegisterParameters, SoftFloatABI)) {}
1146 
1147   static bool isStructReturnInRegABI(
1148       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1149 
1150   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1151                            CodeGen::CodeGenModule &CGM) const override;
1152 
1153   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1154     // Darwin uses different dwarf register numbers for EH.
1155     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1156     return 4;
1157   }
1158 
1159   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1160                                llvm::Value *Address) const override;
1161 
1162   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1163                                   StringRef Constraint,
1164                                   llvm::Type* Ty) const override {
1165     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1166   }
1167 
1168   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1169                                 std::string &Constraints,
1170                                 std::vector<llvm::Type *> &ResultRegTypes,
1171                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1172                                 std::vector<LValue> &ResultRegDests,
1173                                 std::string &AsmString,
1174                                 unsigned NumOutputs) const override;
1175 
1176   llvm::Constant *
1177   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1178     unsigned Sig = (0xeb << 0) |  // jmp rel8
1179                    (0x06 << 8) |  //           .+0x08
1180                    ('v' << 16) |
1181                    ('2' << 24);
1182     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1183   }
1184 
1185   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1186     return "movl\t%ebp, %ebp"
1187            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1188   }
1189 };
1190 
1191 }
1192 
1193 /// Rewrite input constraint references after adding some output constraints.
1194 /// In the case where there is one output and one input and we add one output,
1195 /// we need to replace all operand references greater than or equal to 1:
1196 ///     mov $0, $1
1197 ///     mov eax, $1
1198 /// The result will be:
1199 ///     mov $0, $2
1200 ///     mov eax, $2
1201 static void rewriteInputConstraintReferences(unsigned FirstIn,
1202                                              unsigned NumNewOuts,
1203                                              std::string &AsmString) {
1204   std::string Buf;
1205   llvm::raw_string_ostream OS(Buf);
1206   size_t Pos = 0;
1207   while (Pos < AsmString.size()) {
1208     size_t DollarStart = AsmString.find('$', Pos);
1209     if (DollarStart == std::string::npos)
1210       DollarStart = AsmString.size();
1211     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1212     if (DollarEnd == std::string::npos)
1213       DollarEnd = AsmString.size();
1214     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1215     Pos = DollarEnd;
1216     size_t NumDollars = DollarEnd - DollarStart;
1217     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1218       // We have an operand reference.
1219       size_t DigitStart = Pos;
1220       if (AsmString[DigitStart] == '{') {
1221         OS << '{';
1222         ++DigitStart;
1223       }
1224       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1225       if (DigitEnd == std::string::npos)
1226         DigitEnd = AsmString.size();
1227       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1228       unsigned OperandIndex;
1229       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1230         if (OperandIndex >= FirstIn)
1231           OperandIndex += NumNewOuts;
1232         OS << OperandIndex;
1233       } else {
1234         OS << OperandStr;
1235       }
1236       Pos = DigitEnd;
1237     }
1238   }
1239   AsmString = std::move(OS.str());
1240 }
1241 
1242 /// Add output constraints for EAX:EDX because they are return registers.
1243 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1244     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1245     std::vector<llvm::Type *> &ResultRegTypes,
1246     std::vector<llvm::Type *> &ResultTruncRegTypes,
1247     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1248     unsigned NumOutputs) const {
1249   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1250 
1251   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1252   // larger.
1253   if (!Constraints.empty())
1254     Constraints += ',';
1255   if (RetWidth <= 32) {
1256     Constraints += "={eax}";
1257     ResultRegTypes.push_back(CGF.Int32Ty);
1258   } else {
1259     // Use the 'A' constraint for EAX:EDX.
1260     Constraints += "=A";
1261     ResultRegTypes.push_back(CGF.Int64Ty);
1262   }
1263 
1264   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1265   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1266   ResultTruncRegTypes.push_back(CoerceTy);
1267 
1268   // Coerce the integer by bitcasting the return slot pointer.
1269   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1270                                                   CoerceTy->getPointerTo()));
1271   ResultRegDests.push_back(ReturnSlot);
1272 
1273   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1274 }
1275 
1276 /// shouldReturnTypeInRegister - Determine if the given type should be
1277 /// returned in a register (for the Darwin and MCU ABI).
1278 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1279                                                ASTContext &Context) const {
1280   uint64_t Size = Context.getTypeSize(Ty);
1281 
1282   // For i386, type must be register sized.
1283   // For the MCU ABI, it only needs to be <= 8-byte
1284   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1285    return false;
1286 
1287   if (Ty->isVectorType()) {
1288     // 64- and 128- bit vectors inside structures are not returned in
1289     // registers.
1290     if (Size == 64 || Size == 128)
1291       return false;
1292 
1293     return true;
1294   }
1295 
1296   // If this is a builtin, pointer, enum, complex type, member pointer, or
1297   // member function pointer it is ok.
1298   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1299       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1300       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1301     return true;
1302 
1303   // Arrays are treated like records.
1304   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1305     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1306 
1307   // Otherwise, it must be a record type.
1308   const RecordType *RT = Ty->getAs<RecordType>();
1309   if (!RT) return false;
1310 
1311   // FIXME: Traverse bases here too.
1312 
1313   // Structure types are passed in register if all fields would be
1314   // passed in a register.
1315   for (const auto *FD : RT->getDecl()->fields()) {
1316     // Empty fields are ignored.
1317     if (isEmptyField(Context, FD, true))
1318       continue;
1319 
1320     // Check fields recursively.
1321     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1322       return false;
1323   }
1324   return true;
1325 }
1326 
1327 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1328   // Treat complex types as the element type.
1329   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1330     Ty = CTy->getElementType();
1331 
1332   // Check for a type which we know has a simple scalar argument-passing
1333   // convention without any padding.  (We're specifically looking for 32
1334   // and 64-bit integer and integer-equivalents, float, and double.)
1335   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1336       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1337     return false;
1338 
1339   uint64_t Size = Context.getTypeSize(Ty);
1340   return Size == 32 || Size == 64;
1341 }
1342 
1343 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1344                           uint64_t &Size) {
1345   for (const auto *FD : RD->fields()) {
1346     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1347     // argument is smaller than 32-bits, expanding the struct will create
1348     // alignment padding.
1349     if (!is32Or64BitBasicType(FD->getType(), Context))
1350       return false;
1351 
1352     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1353     // how to expand them yet, and the predicate for telling if a bitfield still
1354     // counts as "basic" is more complicated than what we were doing previously.
1355     if (FD->isBitField())
1356       return false;
1357 
1358     Size += Context.getTypeSize(FD->getType());
1359   }
1360   return true;
1361 }
1362 
1363 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1364                                  uint64_t &Size) {
1365   // Don't do this if there are any non-empty bases.
1366   for (const CXXBaseSpecifier &Base : RD->bases()) {
1367     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1368                               Size))
1369       return false;
1370   }
1371   if (!addFieldSizes(Context, RD, Size))
1372     return false;
1373   return true;
1374 }
1375 
1376 /// Test whether an argument type which is to be passed indirectly (on the
1377 /// stack) would have the equivalent layout if it was expanded into separate
1378 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1379 /// optimizations.
1380 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1381   // We can only expand structure types.
1382   const RecordType *RT = Ty->getAs<RecordType>();
1383   if (!RT)
1384     return false;
1385   const RecordDecl *RD = RT->getDecl();
1386   uint64_t Size = 0;
1387   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1388     if (!IsWin32StructABI) {
1389       // On non-Windows, we have to conservatively match our old bitcode
1390       // prototypes in order to be ABI-compatible at the bitcode level.
1391       if (!CXXRD->isCLike())
1392         return false;
1393     } else {
1394       // Don't do this for dynamic classes.
1395       if (CXXRD->isDynamicClass())
1396         return false;
1397     }
1398     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1399       return false;
1400   } else {
1401     if (!addFieldSizes(getContext(), RD, Size))
1402       return false;
1403   }
1404 
1405   // We can do this if there was no alignment padding.
1406   return Size == getContext().getTypeSize(Ty);
1407 }
1408 
1409 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1410   // If the return value is indirect, then the hidden argument is consuming one
1411   // integer register.
1412   if (State.FreeRegs) {
1413     --State.FreeRegs;
1414     if (!IsMCUABI)
1415       return getNaturalAlignIndirectInReg(RetTy);
1416   }
1417   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1418 }
1419 
1420 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1421                                              CCState &State) const {
1422   if (RetTy->isVoidType())
1423     return ABIArgInfo::getIgnore();
1424 
1425   const Type *Base = nullptr;
1426   uint64_t NumElts = 0;
1427   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1428        State.CC == llvm::CallingConv::X86_RegCall) &&
1429       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1430     // The LLVM struct type for such an aggregate should lower properly.
1431     return ABIArgInfo::getDirect();
1432   }
1433 
1434   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1435     // On Darwin, some vectors are returned in registers.
1436     if (IsDarwinVectorABI) {
1437       uint64_t Size = getContext().getTypeSize(RetTy);
1438 
1439       // 128-bit vectors are a special case; they are returned in
1440       // registers and we need to make sure to pick a type the LLVM
1441       // backend will like.
1442       if (Size == 128)
1443         return ABIArgInfo::getDirect(llvm::VectorType::get(
1444                   llvm::Type::getInt64Ty(getVMContext()), 2));
1445 
1446       // Always return in register if it fits in a general purpose
1447       // register, or if it is 64 bits and has a single element.
1448       if ((Size == 8 || Size == 16 || Size == 32) ||
1449           (Size == 64 && VT->getNumElements() == 1))
1450         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1451                                                             Size));
1452 
1453       return getIndirectReturnResult(RetTy, State);
1454     }
1455 
1456     return ABIArgInfo::getDirect();
1457   }
1458 
1459   if (isAggregateTypeForABI(RetTy)) {
1460     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1461       // Structures with flexible arrays are always indirect.
1462       if (RT->getDecl()->hasFlexibleArrayMember())
1463         return getIndirectReturnResult(RetTy, State);
1464     }
1465 
1466     // If specified, structs and unions are always indirect.
1467     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1468       return getIndirectReturnResult(RetTy, State);
1469 
1470     // Ignore empty structs/unions.
1471     if (isEmptyRecord(getContext(), RetTy, true))
1472       return ABIArgInfo::getIgnore();
1473 
1474     // Small structures which are register sized are generally returned
1475     // in a register.
1476     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1477       uint64_t Size = getContext().getTypeSize(RetTy);
1478 
1479       // As a special-case, if the struct is a "single-element" struct, and
1480       // the field is of type "float" or "double", return it in a
1481       // floating-point register. (MSVC does not apply this special case.)
1482       // We apply a similar transformation for pointer types to improve the
1483       // quality of the generated IR.
1484       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1485         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1486             || SeltTy->hasPointerRepresentation())
1487           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1488 
1489       // FIXME: We should be able to narrow this integer in cases with dead
1490       // padding.
1491       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1492     }
1493 
1494     return getIndirectReturnResult(RetTy, State);
1495   }
1496 
1497   // Treat an enum type as its underlying type.
1498   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1499     RetTy = EnumTy->getDecl()->getIntegerType();
1500 
1501   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1502                                            : ABIArgInfo::getDirect());
1503 }
1504 
1505 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1506   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1507 }
1508 
1509 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1510   const RecordType *RT = Ty->getAs<RecordType>();
1511   if (!RT)
1512     return 0;
1513   const RecordDecl *RD = RT->getDecl();
1514 
1515   // If this is a C++ record, check the bases first.
1516   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1517     for (const auto &I : CXXRD->bases())
1518       if (!isRecordWithSSEVectorType(Context, I.getType()))
1519         return false;
1520 
1521   for (const auto *i : RD->fields()) {
1522     QualType FT = i->getType();
1523 
1524     if (isSSEVectorType(Context, FT))
1525       return true;
1526 
1527     if (isRecordWithSSEVectorType(Context, FT))
1528       return true;
1529   }
1530 
1531   return false;
1532 }
1533 
1534 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1535                                                  unsigned Align) const {
1536   // Otherwise, if the alignment is less than or equal to the minimum ABI
1537   // alignment, just use the default; the backend will handle this.
1538   if (Align <= MinABIStackAlignInBytes)
1539     return 0; // Use default alignment.
1540 
1541   // On non-Darwin, the stack type alignment is always 4.
1542   if (!IsDarwinVectorABI) {
1543     // Set explicit alignment, since we may need to realign the top.
1544     return MinABIStackAlignInBytes;
1545   }
1546 
1547   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1548   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1549                       isRecordWithSSEVectorType(getContext(), Ty)))
1550     return 16;
1551 
1552   return MinABIStackAlignInBytes;
1553 }
1554 
1555 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1556                                             CCState &State) const {
1557   if (!ByVal) {
1558     if (State.FreeRegs) {
1559       --State.FreeRegs; // Non-byval indirects just use one pointer.
1560       if (!IsMCUABI)
1561         return getNaturalAlignIndirectInReg(Ty);
1562     }
1563     return getNaturalAlignIndirect(Ty, false);
1564   }
1565 
1566   // Compute the byval alignment.
1567   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1568   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1569   if (StackAlign == 0)
1570     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1571 
1572   // If the stack alignment is less than the type alignment, realign the
1573   // argument.
1574   bool Realign = TypeAlign > StackAlign;
1575   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1576                                  /*ByVal=*/true, Realign);
1577 }
1578 
1579 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1580   const Type *T = isSingleElementStruct(Ty, getContext());
1581   if (!T)
1582     T = Ty.getTypePtr();
1583 
1584   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1585     BuiltinType::Kind K = BT->getKind();
1586     if (K == BuiltinType::Float || K == BuiltinType::Double)
1587       return Float;
1588   }
1589   return Integer;
1590 }
1591 
1592 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1593   if (!IsSoftFloatABI) {
1594     Class C = classify(Ty);
1595     if (C == Float)
1596       return false;
1597   }
1598 
1599   unsigned Size = getContext().getTypeSize(Ty);
1600   unsigned SizeInRegs = (Size + 31) / 32;
1601 
1602   if (SizeInRegs == 0)
1603     return false;
1604 
1605   if (!IsMCUABI) {
1606     if (SizeInRegs > State.FreeRegs) {
1607       State.FreeRegs = 0;
1608       return false;
1609     }
1610   } else {
1611     // The MCU psABI allows passing parameters in-reg even if there are
1612     // earlier parameters that are passed on the stack. Also,
1613     // it does not allow passing >8-byte structs in-register,
1614     // even if there are 3 free registers available.
1615     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1616       return false;
1617   }
1618 
1619   State.FreeRegs -= SizeInRegs;
1620   return true;
1621 }
1622 
1623 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1624                                              bool &InReg,
1625                                              bool &NeedsPadding) const {
1626   // On Windows, aggregates other than HFAs are never passed in registers, and
1627   // they do not consume register slots. Homogenous floating-point aggregates
1628   // (HFAs) have already been dealt with at this point.
1629   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1630     return false;
1631 
1632   NeedsPadding = false;
1633   InReg = !IsMCUABI;
1634 
1635   if (!updateFreeRegs(Ty, State))
1636     return false;
1637 
1638   if (IsMCUABI)
1639     return true;
1640 
1641   if (State.CC == llvm::CallingConv::X86_FastCall ||
1642       State.CC == llvm::CallingConv::X86_VectorCall ||
1643       State.CC == llvm::CallingConv::X86_RegCall) {
1644     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1645       NeedsPadding = true;
1646 
1647     return false;
1648   }
1649 
1650   return true;
1651 }
1652 
1653 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1654   if (!updateFreeRegs(Ty, State))
1655     return false;
1656 
1657   if (IsMCUABI)
1658     return false;
1659 
1660   if (State.CC == llvm::CallingConv::X86_FastCall ||
1661       State.CC == llvm::CallingConv::X86_VectorCall ||
1662       State.CC == llvm::CallingConv::X86_RegCall) {
1663     if (getContext().getTypeSize(Ty) > 32)
1664       return false;
1665 
1666     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1667         Ty->isReferenceType());
1668   }
1669 
1670   return true;
1671 }
1672 
1673 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1674   // Vectorcall x86 works subtly different than in x64, so the format is
1675   // a bit different than the x64 version.  First, all vector types (not HVAs)
1676   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1677   // This differs from the x64 implementation, where the first 6 by INDEX get
1678   // registers.
1679   // In the second pass over the arguments, HVAs are passed in the remaining
1680   // vector registers if possible, or indirectly by address. The address will be
1681   // passed in ECX/EDX if available. Any other arguments are passed according to
1682   // the usual fastcall rules.
1683   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1684   for (int I = 0, E = Args.size(); I < E; ++I) {
1685     const Type *Base = nullptr;
1686     uint64_t NumElts = 0;
1687     const QualType &Ty = Args[I].type;
1688     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1689         isHomogeneousAggregate(Ty, Base, NumElts)) {
1690       if (State.FreeSSERegs >= NumElts) {
1691         State.FreeSSERegs -= NumElts;
1692         Args[I].info = ABIArgInfo::getDirectInReg();
1693         State.IsPreassigned.set(I);
1694       }
1695     }
1696   }
1697 }
1698 
1699 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1700                                                CCState &State) const {
1701   // FIXME: Set alignment on indirect arguments.
1702   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1703   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1704   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1705 
1706   Ty = useFirstFieldIfTransparentUnion(Ty);
1707   TypeInfo TI = getContext().getTypeInfo(Ty);
1708 
1709   // Check with the C++ ABI first.
1710   const RecordType *RT = Ty->getAs<RecordType>();
1711   if (RT) {
1712     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1713     if (RAA == CGCXXABI::RAA_Indirect) {
1714       return getIndirectResult(Ty, false, State);
1715     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1716       // The field index doesn't matter, we'll fix it up later.
1717       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1718     }
1719   }
1720 
1721   // Regcall uses the concept of a homogenous vector aggregate, similar
1722   // to other targets.
1723   const Type *Base = nullptr;
1724   uint64_t NumElts = 0;
1725   if ((IsRegCall || IsVectorCall) &&
1726       isHomogeneousAggregate(Ty, Base, NumElts)) {
1727     if (State.FreeSSERegs >= NumElts) {
1728       State.FreeSSERegs -= NumElts;
1729 
1730       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1731       // does.
1732       if (IsVectorCall)
1733         return getDirectX86Hva();
1734 
1735       if (Ty->isBuiltinType() || Ty->isVectorType())
1736         return ABIArgInfo::getDirect();
1737       return ABIArgInfo::getExpand();
1738     }
1739     return getIndirectResult(Ty, /*ByVal=*/false, State);
1740   }
1741 
1742   if (isAggregateTypeForABI(Ty)) {
1743     // Structures with flexible arrays are always indirect.
1744     // FIXME: This should not be byval!
1745     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1746       return getIndirectResult(Ty, true, State);
1747 
1748     // Ignore empty structs/unions on non-Windows.
1749     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1750       return ABIArgInfo::getIgnore();
1751 
1752     llvm::LLVMContext &LLVMContext = getVMContext();
1753     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1754     bool NeedsPadding = false;
1755     bool InReg;
1756     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1757       unsigned SizeInRegs = (TI.Width + 31) / 32;
1758       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1759       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1760       if (InReg)
1761         return ABIArgInfo::getDirectInReg(Result);
1762       else
1763         return ABIArgInfo::getDirect(Result);
1764     }
1765     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1766 
1767     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1768     // added in MSVC 2015.
1769     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1770       return getIndirectResult(Ty, /*ByVal=*/false, State);
1771 
1772     // Expand small (<= 128-bit) record types when we know that the stack layout
1773     // of those arguments will match the struct. This is important because the
1774     // LLVM backend isn't smart enough to remove byval, which inhibits many
1775     // optimizations.
1776     // Don't do this for the MCU if there are still free integer registers
1777     // (see X86_64 ABI for full explanation).
1778     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1779         canExpandIndirectArgument(Ty))
1780       return ABIArgInfo::getExpandWithPadding(
1781           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1782 
1783     return getIndirectResult(Ty, true, State);
1784   }
1785 
1786   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1787     // On Windows, vectors are passed directly if registers are available, or
1788     // indirectly if not. This avoids the need to align argument memory. Pass
1789     // user-defined vector types larger than 512 bits indirectly for simplicity.
1790     if (IsWin32StructABI) {
1791       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1792         --State.FreeSSERegs;
1793         return ABIArgInfo::getDirectInReg();
1794       }
1795       return getIndirectResult(Ty, /*ByVal=*/false, State);
1796     }
1797 
1798     // On Darwin, some vectors are passed in memory, we handle this by passing
1799     // it as an i8/i16/i32/i64.
1800     if (IsDarwinVectorABI) {
1801       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1802           (TI.Width == 64 && VT->getNumElements() == 1))
1803         return ABIArgInfo::getDirect(
1804             llvm::IntegerType::get(getVMContext(), TI.Width));
1805     }
1806 
1807     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1808       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1809 
1810     return ABIArgInfo::getDirect();
1811   }
1812 
1813 
1814   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1815     Ty = EnumTy->getDecl()->getIntegerType();
1816 
1817   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1818 
1819   if (Ty->isPromotableIntegerType()) {
1820     if (InReg)
1821       return ABIArgInfo::getExtendInReg(Ty);
1822     return ABIArgInfo::getExtend(Ty);
1823   }
1824 
1825   if (InReg)
1826     return ABIArgInfo::getDirectInReg();
1827   return ABIArgInfo::getDirect();
1828 }
1829 
1830 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1831   CCState State(FI);
1832   if (IsMCUABI)
1833     State.FreeRegs = 3;
1834   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1835     State.FreeRegs = 2;
1836     State.FreeSSERegs = 3;
1837   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1838     State.FreeRegs = 2;
1839     State.FreeSSERegs = 6;
1840   } else if (FI.getHasRegParm())
1841     State.FreeRegs = FI.getRegParm();
1842   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1843     State.FreeRegs = 5;
1844     State.FreeSSERegs = 8;
1845   } else if (IsWin32StructABI) {
1846     // Since MSVC 2015, the first three SSE vectors have been passed in
1847     // registers. The rest are passed indirectly.
1848     State.FreeRegs = DefaultNumRegisterParameters;
1849     State.FreeSSERegs = 3;
1850   } else
1851     State.FreeRegs = DefaultNumRegisterParameters;
1852 
1853   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1854     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1855   } else if (FI.getReturnInfo().isIndirect()) {
1856     // The C++ ABI is not aware of register usage, so we have to check if the
1857     // return value was sret and put it in a register ourselves if appropriate.
1858     if (State.FreeRegs) {
1859       --State.FreeRegs;  // The sret parameter consumes a register.
1860       if (!IsMCUABI)
1861         FI.getReturnInfo().setInReg(true);
1862     }
1863   }
1864 
1865   // The chain argument effectively gives us another free register.
1866   if (FI.isChainCall())
1867     ++State.FreeRegs;
1868 
1869   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1870   // arguments to XMM registers as available.
1871   if (State.CC == llvm::CallingConv::X86_VectorCall)
1872     runVectorCallFirstPass(FI, State);
1873 
1874   bool UsedInAlloca = false;
1875   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1876   for (int I = 0, E = Args.size(); I < E; ++I) {
1877     // Skip arguments that have already been assigned.
1878     if (State.IsPreassigned.test(I))
1879       continue;
1880 
1881     Args[I].info = classifyArgumentType(Args[I].type, State);
1882     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1883   }
1884 
1885   // If we needed to use inalloca for any argument, do a second pass and rewrite
1886   // all the memory arguments to use inalloca.
1887   if (UsedInAlloca)
1888     rewriteWithInAlloca(FI);
1889 }
1890 
1891 void
1892 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1893                                    CharUnits &StackOffset, ABIArgInfo &Info,
1894                                    QualType Type) const {
1895   // Arguments are always 4-byte-aligned.
1896   CharUnits WordSize = CharUnits::fromQuantity(4);
1897   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1898 
1899   // sret pointers and indirect things will require an extra pointer
1900   // indirection, unless they are byval. Most things are byval, and will not
1901   // require this indirection.
1902   bool IsIndirect = false;
1903   if (Info.isIndirect() && !Info.getIndirectByVal())
1904     IsIndirect = true;
1905   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1906   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1907   if (IsIndirect)
1908     LLTy = LLTy->getPointerTo(0);
1909   FrameFields.push_back(LLTy);
1910   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1911 
1912   // Insert padding bytes to respect alignment.
1913   CharUnits FieldEnd = StackOffset;
1914   StackOffset = FieldEnd.alignTo(WordSize);
1915   if (StackOffset != FieldEnd) {
1916     CharUnits NumBytes = StackOffset - FieldEnd;
1917     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1918     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1919     FrameFields.push_back(Ty);
1920   }
1921 }
1922 
1923 static bool isArgInAlloca(const ABIArgInfo &Info) {
1924   // Leave ignored and inreg arguments alone.
1925   switch (Info.getKind()) {
1926   case ABIArgInfo::InAlloca:
1927     return true;
1928   case ABIArgInfo::Ignore:
1929     return false;
1930   case ABIArgInfo::Indirect:
1931   case ABIArgInfo::Direct:
1932   case ABIArgInfo::Extend:
1933     return !Info.getInReg();
1934   case ABIArgInfo::Expand:
1935   case ABIArgInfo::CoerceAndExpand:
1936     // These are aggregate types which are never passed in registers when
1937     // inalloca is involved.
1938     return true;
1939   }
1940   llvm_unreachable("invalid enum");
1941 }
1942 
1943 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1944   assert(IsWin32StructABI && "inalloca only supported on win32");
1945 
1946   // Build a packed struct type for all of the arguments in memory.
1947   SmallVector<llvm::Type *, 6> FrameFields;
1948 
1949   // The stack alignment is always 4.
1950   CharUnits StackAlign = CharUnits::fromQuantity(4);
1951 
1952   CharUnits StackOffset;
1953   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1954 
1955   // Put 'this' into the struct before 'sret', if necessary.
1956   bool IsThisCall =
1957       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1958   ABIArgInfo &Ret = FI.getReturnInfo();
1959   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1960       isArgInAlloca(I->info)) {
1961     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1962     ++I;
1963   }
1964 
1965   // Put the sret parameter into the inalloca struct if it's in memory.
1966   if (Ret.isIndirect() && !Ret.getInReg()) {
1967     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
1968     // On Windows, the hidden sret parameter is always returned in eax.
1969     Ret.setInAllocaSRet(IsWin32StructABI);
1970   }
1971 
1972   // Skip the 'this' parameter in ecx.
1973   if (IsThisCall)
1974     ++I;
1975 
1976   // Put arguments passed in memory into the struct.
1977   for (; I != E; ++I) {
1978     if (isArgInAlloca(I->info))
1979       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1980   }
1981 
1982   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1983                                         /*isPacked=*/true),
1984                   StackAlign);
1985 }
1986 
1987 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1988                                  Address VAListAddr, QualType Ty) const {
1989 
1990   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1991 
1992   // x86-32 changes the alignment of certain arguments on the stack.
1993   //
1994   // Just messing with TypeInfo like this works because we never pass
1995   // anything indirectly.
1996   TypeInfo.second = CharUnits::fromQuantity(
1997                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1998 
1999   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2000                           TypeInfo, CharUnits::fromQuantity(4),
2001                           /*AllowHigherAlign*/ true);
2002 }
2003 
2004 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2005     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2006   assert(Triple.getArch() == llvm::Triple::x86);
2007 
2008   switch (Opts.getStructReturnConvention()) {
2009   case CodeGenOptions::SRCK_Default:
2010     break;
2011   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2012     return false;
2013   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2014     return true;
2015   }
2016 
2017   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2018     return true;
2019 
2020   switch (Triple.getOS()) {
2021   case llvm::Triple::DragonFly:
2022   case llvm::Triple::FreeBSD:
2023   case llvm::Triple::OpenBSD:
2024   case llvm::Triple::Win32:
2025     return true;
2026   default:
2027     return false;
2028   }
2029 }
2030 
2031 void X86_32TargetCodeGenInfo::setTargetAttributes(
2032     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2033   if (GV->isDeclaration())
2034     return;
2035   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2036     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2037       llvm::Function *Fn = cast<llvm::Function>(GV);
2038       Fn->addFnAttr("stackrealign");
2039     }
2040     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2041       llvm::Function *Fn = cast<llvm::Function>(GV);
2042       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2043     }
2044   }
2045 }
2046 
2047 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2048                                                CodeGen::CodeGenFunction &CGF,
2049                                                llvm::Value *Address) const {
2050   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2051 
2052   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2053 
2054   // 0-7 are the eight integer registers;  the order is different
2055   //   on Darwin (for EH), but the range is the same.
2056   // 8 is %eip.
2057   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2058 
2059   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2060     // 12-16 are st(0..4).  Not sure why we stop at 4.
2061     // These have size 16, which is sizeof(long double) on
2062     // platforms with 8-byte alignment for that type.
2063     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2064     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2065 
2066   } else {
2067     // 9 is %eflags, which doesn't get a size on Darwin for some
2068     // reason.
2069     Builder.CreateAlignedStore(
2070         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2071                                CharUnits::One());
2072 
2073     // 11-16 are st(0..5).  Not sure why we stop at 5.
2074     // These have size 12, which is sizeof(long double) on
2075     // platforms with 4-byte alignment for that type.
2076     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2077     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2078   }
2079 
2080   return false;
2081 }
2082 
2083 //===----------------------------------------------------------------------===//
2084 // X86-64 ABI Implementation
2085 //===----------------------------------------------------------------------===//
2086 
2087 
2088 namespace {
2089 /// The AVX ABI level for X86 targets.
2090 enum class X86AVXABILevel {
2091   None,
2092   AVX,
2093   AVX512
2094 };
2095 
2096 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2097 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2098   switch (AVXLevel) {
2099   case X86AVXABILevel::AVX512:
2100     return 512;
2101   case X86AVXABILevel::AVX:
2102     return 256;
2103   case X86AVXABILevel::None:
2104     return 128;
2105   }
2106   llvm_unreachable("Unknown AVXLevel");
2107 }
2108 
2109 /// X86_64ABIInfo - The X86_64 ABI information.
2110 class X86_64ABIInfo : public SwiftABIInfo {
2111   enum Class {
2112     Integer = 0,
2113     SSE,
2114     SSEUp,
2115     X87,
2116     X87Up,
2117     ComplexX87,
2118     NoClass,
2119     Memory
2120   };
2121 
2122   /// merge - Implement the X86_64 ABI merging algorithm.
2123   ///
2124   /// Merge an accumulating classification \arg Accum with a field
2125   /// classification \arg Field.
2126   ///
2127   /// \param Accum - The accumulating classification. This should
2128   /// always be either NoClass or the result of a previous merge
2129   /// call. In addition, this should never be Memory (the caller
2130   /// should just return Memory for the aggregate).
2131   static Class merge(Class Accum, Class Field);
2132 
2133   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2134   ///
2135   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2136   /// final MEMORY or SSE classes when necessary.
2137   ///
2138   /// \param AggregateSize - The size of the current aggregate in
2139   /// the classification process.
2140   ///
2141   /// \param Lo - The classification for the parts of the type
2142   /// residing in the low word of the containing object.
2143   ///
2144   /// \param Hi - The classification for the parts of the type
2145   /// residing in the higher words of the containing object.
2146   ///
2147   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2148 
2149   /// classify - Determine the x86_64 register classes in which the
2150   /// given type T should be passed.
2151   ///
2152   /// \param Lo - The classification for the parts of the type
2153   /// residing in the low word of the containing object.
2154   ///
2155   /// \param Hi - The classification for the parts of the type
2156   /// residing in the high word of the containing object.
2157   ///
2158   /// \param OffsetBase - The bit offset of this type in the
2159   /// containing object.  Some parameters are classified different
2160   /// depending on whether they straddle an eightbyte boundary.
2161   ///
2162   /// \param isNamedArg - Whether the argument in question is a "named"
2163   /// argument, as used in AMD64-ABI 3.5.7.
2164   ///
2165   /// If a word is unused its result will be NoClass; if a type should
2166   /// be passed in Memory then at least the classification of \arg Lo
2167   /// will be Memory.
2168   ///
2169   /// The \arg Lo class will be NoClass iff the argument is ignored.
2170   ///
2171   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2172   /// also be ComplexX87.
2173   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2174                 bool isNamedArg) const;
2175 
2176   llvm::Type *GetByteVectorType(QualType Ty) const;
2177   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2178                                  unsigned IROffset, QualType SourceTy,
2179                                  unsigned SourceOffset) const;
2180   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2181                                      unsigned IROffset, QualType SourceTy,
2182                                      unsigned SourceOffset) const;
2183 
2184   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2185   /// such that the argument will be returned in memory.
2186   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2187 
2188   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2189   /// such that the argument will be passed in memory.
2190   ///
2191   /// \param freeIntRegs - The number of free integer registers remaining
2192   /// available.
2193   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2194 
2195   ABIArgInfo classifyReturnType(QualType RetTy) const;
2196 
2197   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2198                                   unsigned &neededInt, unsigned &neededSSE,
2199                                   bool isNamedArg) const;
2200 
2201   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2202                                        unsigned &NeededSSE) const;
2203 
2204   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2205                                            unsigned &NeededSSE) const;
2206 
2207   bool IsIllegalVectorType(QualType Ty) const;
2208 
2209   /// The 0.98 ABI revision clarified a lot of ambiguities,
2210   /// unfortunately in ways that were not always consistent with
2211   /// certain previous compilers.  In particular, platforms which
2212   /// required strict binary compatibility with older versions of GCC
2213   /// may need to exempt themselves.
2214   bool honorsRevision0_98() const {
2215     return !getTarget().getTriple().isOSDarwin();
2216   }
2217 
2218   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2219   /// classify it as INTEGER (for compatibility with older clang compilers).
2220   bool classifyIntegerMMXAsSSE() const {
2221     // Clang <= 3.8 did not do this.
2222     if (getContext().getLangOpts().getClangABICompat() <=
2223         LangOptions::ClangABI::Ver3_8)
2224       return false;
2225 
2226     const llvm::Triple &Triple = getTarget().getTriple();
2227     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2228       return false;
2229     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2230       return false;
2231     return true;
2232   }
2233 
2234   // GCC classifies vectors of __int128 as memory.
2235   bool passInt128VectorsInMem() const {
2236     // Clang <= 9.0 did not do this.
2237     if (getContext().getLangOpts().getClangABICompat() <=
2238         LangOptions::ClangABI::Ver9)
2239       return false;
2240 
2241     const llvm::Triple &T = getTarget().getTriple();
2242     return T.isOSLinux() || T.isOSNetBSD();
2243   }
2244 
2245   X86AVXABILevel AVXLevel;
2246   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2247   // 64-bit hardware.
2248   bool Has64BitPointers;
2249 
2250 public:
2251   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2252       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2253       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2254   }
2255 
2256   bool isPassedUsingAVXType(QualType type) const {
2257     unsigned neededInt, neededSSE;
2258     // The freeIntRegs argument doesn't matter here.
2259     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2260                                            /*isNamedArg*/true);
2261     if (info.isDirect()) {
2262       llvm::Type *ty = info.getCoerceToType();
2263       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2264         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2265     }
2266     return false;
2267   }
2268 
2269   void computeInfo(CGFunctionInfo &FI) const override;
2270 
2271   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2272                     QualType Ty) const override;
2273   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2274                       QualType Ty) const override;
2275 
2276   bool has64BitPointers() const {
2277     return Has64BitPointers;
2278   }
2279 
2280   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2281                                     bool asReturnValue) const override {
2282     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2283   }
2284   bool isSwiftErrorInRegister() const override {
2285     return true;
2286   }
2287 };
2288 
2289 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2290 class WinX86_64ABIInfo : public SwiftABIInfo {
2291 public:
2292   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2293       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2294         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2295 
2296   void computeInfo(CGFunctionInfo &FI) const override;
2297 
2298   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2299                     QualType Ty) const override;
2300 
2301   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2302     // FIXME: Assumes vectorcall is in use.
2303     return isX86VectorTypeForVectorCall(getContext(), Ty);
2304   }
2305 
2306   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2307                                          uint64_t NumMembers) const override {
2308     // FIXME: Assumes vectorcall is in use.
2309     return isX86VectorCallAggregateSmallEnough(NumMembers);
2310   }
2311 
2312   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2313                                     bool asReturnValue) const override {
2314     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2315   }
2316 
2317   bool isSwiftErrorInRegister() const override {
2318     return true;
2319   }
2320 
2321 private:
2322   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2323                       bool IsVectorCall, bool IsRegCall) const;
2324   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2325                                       const ABIArgInfo &current) const;
2326   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2327                              bool IsVectorCall, bool IsRegCall) const;
2328 
2329   X86AVXABILevel AVXLevel;
2330 
2331   bool IsMingw64;
2332 };
2333 
2334 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2335 public:
2336   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2337       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2338 
2339   const X86_64ABIInfo &getABIInfo() const {
2340     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2341   }
2342 
2343   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2344   /// the autoreleaseRV/retainRV optimization.
2345   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2346     return true;
2347   }
2348 
2349   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2350     return 7;
2351   }
2352 
2353   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2354                                llvm::Value *Address) const override {
2355     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2356 
2357     // 0-15 are the 16 integer registers.
2358     // 16 is %rip.
2359     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2360     return false;
2361   }
2362 
2363   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2364                                   StringRef Constraint,
2365                                   llvm::Type* Ty) const override {
2366     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2367   }
2368 
2369   bool isNoProtoCallVariadic(const CallArgList &args,
2370                              const FunctionNoProtoType *fnType) const override {
2371     // The default CC on x86-64 sets %al to the number of SSA
2372     // registers used, and GCC sets this when calling an unprototyped
2373     // function, so we override the default behavior.  However, don't do
2374     // that when AVX types are involved: the ABI explicitly states it is
2375     // undefined, and it doesn't work in practice because of how the ABI
2376     // defines varargs anyway.
2377     if (fnType->getCallConv() == CC_C) {
2378       bool HasAVXType = false;
2379       for (CallArgList::const_iterator
2380              it = args.begin(), ie = args.end(); it != ie; ++it) {
2381         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2382           HasAVXType = true;
2383           break;
2384         }
2385       }
2386 
2387       if (!HasAVXType)
2388         return true;
2389     }
2390 
2391     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2392   }
2393 
2394   llvm::Constant *
2395   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2396     unsigned Sig = (0xeb << 0) | // jmp rel8
2397                    (0x06 << 8) | //           .+0x08
2398                    ('v' << 16) |
2399                    ('2' << 24);
2400     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2401   }
2402 
2403   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2404                            CodeGen::CodeGenModule &CGM) const override {
2405     if (GV->isDeclaration())
2406       return;
2407     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2408       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2409         llvm::Function *Fn = cast<llvm::Function>(GV);
2410         Fn->addFnAttr("stackrealign");
2411       }
2412       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2413         llvm::Function *Fn = cast<llvm::Function>(GV);
2414         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2415       }
2416     }
2417   }
2418 };
2419 
2420 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2421   // If the argument does not end in .lib, automatically add the suffix.
2422   // If the argument contains a space, enclose it in quotes.
2423   // This matches the behavior of MSVC.
2424   bool Quote = (Lib.find(" ") != StringRef::npos);
2425   std::string ArgStr = Quote ? "\"" : "";
2426   ArgStr += Lib;
2427   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2428     ArgStr += ".lib";
2429   ArgStr += Quote ? "\"" : "";
2430   return ArgStr;
2431 }
2432 
2433 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2434 public:
2435   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2436         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2437         unsigned NumRegisterParameters)
2438     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2439         Win32StructABI, NumRegisterParameters, false) {}
2440 
2441   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2442                            CodeGen::CodeGenModule &CGM) const override;
2443 
2444   void getDependentLibraryOption(llvm::StringRef Lib,
2445                                  llvm::SmallString<24> &Opt) const override {
2446     Opt = "/DEFAULTLIB:";
2447     Opt += qualifyWindowsLibrary(Lib);
2448   }
2449 
2450   void getDetectMismatchOption(llvm::StringRef Name,
2451                                llvm::StringRef Value,
2452                                llvm::SmallString<32> &Opt) const override {
2453     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2454   }
2455 };
2456 
2457 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2458                                           CodeGen::CodeGenModule &CGM) {
2459   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2460 
2461     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2462       Fn->addFnAttr("stack-probe-size",
2463                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2464     if (CGM.getCodeGenOpts().NoStackArgProbe)
2465       Fn->addFnAttr("no-stack-arg-probe");
2466   }
2467 }
2468 
2469 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2470     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2471   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2472   if (GV->isDeclaration())
2473     return;
2474   addStackProbeTargetAttributes(D, GV, CGM);
2475 }
2476 
2477 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2478 public:
2479   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2480                              X86AVXABILevel AVXLevel)
2481       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {}
2482 
2483   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2484                            CodeGen::CodeGenModule &CGM) const override;
2485 
2486   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2487     return 7;
2488   }
2489 
2490   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2491                                llvm::Value *Address) const override {
2492     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2493 
2494     // 0-15 are the 16 integer registers.
2495     // 16 is %rip.
2496     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2497     return false;
2498   }
2499 
2500   void getDependentLibraryOption(llvm::StringRef Lib,
2501                                  llvm::SmallString<24> &Opt) const override {
2502     Opt = "/DEFAULTLIB:";
2503     Opt += qualifyWindowsLibrary(Lib);
2504   }
2505 
2506   void getDetectMismatchOption(llvm::StringRef Name,
2507                                llvm::StringRef Value,
2508                                llvm::SmallString<32> &Opt) const override {
2509     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2510   }
2511 };
2512 
2513 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2514     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2515   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2516   if (GV->isDeclaration())
2517     return;
2518   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2519     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2520       llvm::Function *Fn = cast<llvm::Function>(GV);
2521       Fn->addFnAttr("stackrealign");
2522     }
2523     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2524       llvm::Function *Fn = cast<llvm::Function>(GV);
2525       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2526     }
2527   }
2528 
2529   addStackProbeTargetAttributes(D, GV, CGM);
2530 }
2531 }
2532 
2533 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2534                               Class &Hi) const {
2535   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2536   //
2537   // (a) If one of the classes is Memory, the whole argument is passed in
2538   //     memory.
2539   //
2540   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2541   //     memory.
2542   //
2543   // (c) If the size of the aggregate exceeds two eightbytes and the first
2544   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2545   //     argument is passed in memory. NOTE: This is necessary to keep the
2546   //     ABI working for processors that don't support the __m256 type.
2547   //
2548   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2549   //
2550   // Some of these are enforced by the merging logic.  Others can arise
2551   // only with unions; for example:
2552   //   union { _Complex double; unsigned; }
2553   //
2554   // Note that clauses (b) and (c) were added in 0.98.
2555   //
2556   if (Hi == Memory)
2557     Lo = Memory;
2558   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2559     Lo = Memory;
2560   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2561     Lo = Memory;
2562   if (Hi == SSEUp && Lo != SSE)
2563     Hi = SSE;
2564 }
2565 
2566 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2567   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2568   // classified recursively so that always two fields are
2569   // considered. The resulting class is calculated according to
2570   // the classes of the fields in the eightbyte:
2571   //
2572   // (a) If both classes are equal, this is the resulting class.
2573   //
2574   // (b) If one of the classes is NO_CLASS, the resulting class is
2575   // the other class.
2576   //
2577   // (c) If one of the classes is MEMORY, the result is the MEMORY
2578   // class.
2579   //
2580   // (d) If one of the classes is INTEGER, the result is the
2581   // INTEGER.
2582   //
2583   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2584   // MEMORY is used as class.
2585   //
2586   // (f) Otherwise class SSE is used.
2587 
2588   // Accum should never be memory (we should have returned) or
2589   // ComplexX87 (because this cannot be passed in a structure).
2590   assert((Accum != Memory && Accum != ComplexX87) &&
2591          "Invalid accumulated classification during merge.");
2592   if (Accum == Field || Field == NoClass)
2593     return Accum;
2594   if (Field == Memory)
2595     return Memory;
2596   if (Accum == NoClass)
2597     return Field;
2598   if (Accum == Integer || Field == Integer)
2599     return Integer;
2600   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2601       Accum == X87 || Accum == X87Up)
2602     return Memory;
2603   return SSE;
2604 }
2605 
2606 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2607                              Class &Lo, Class &Hi, bool isNamedArg) const {
2608   // FIXME: This code can be simplified by introducing a simple value class for
2609   // Class pairs with appropriate constructor methods for the various
2610   // situations.
2611 
2612   // FIXME: Some of the split computations are wrong; unaligned vectors
2613   // shouldn't be passed in registers for example, so there is no chance they
2614   // can straddle an eightbyte. Verify & simplify.
2615 
2616   Lo = Hi = NoClass;
2617 
2618   Class &Current = OffsetBase < 64 ? Lo : Hi;
2619   Current = Memory;
2620 
2621   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2622     BuiltinType::Kind k = BT->getKind();
2623 
2624     if (k == BuiltinType::Void) {
2625       Current = NoClass;
2626     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2627       Lo = Integer;
2628       Hi = Integer;
2629     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2630       Current = Integer;
2631     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2632       Current = SSE;
2633     } else if (k == BuiltinType::LongDouble) {
2634       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2635       if (LDF == &llvm::APFloat::IEEEquad()) {
2636         Lo = SSE;
2637         Hi = SSEUp;
2638       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2639         Lo = X87;
2640         Hi = X87Up;
2641       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2642         Current = SSE;
2643       } else
2644         llvm_unreachable("unexpected long double representation!");
2645     }
2646     // FIXME: _Decimal32 and _Decimal64 are SSE.
2647     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2648     return;
2649   }
2650 
2651   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2652     // Classify the underlying integer type.
2653     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2654     return;
2655   }
2656 
2657   if (Ty->hasPointerRepresentation()) {
2658     Current = Integer;
2659     return;
2660   }
2661 
2662   if (Ty->isMemberPointerType()) {
2663     if (Ty->isMemberFunctionPointerType()) {
2664       if (Has64BitPointers) {
2665         // If Has64BitPointers, this is an {i64, i64}, so classify both
2666         // Lo and Hi now.
2667         Lo = Hi = Integer;
2668       } else {
2669         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2670         // straddles an eightbyte boundary, Hi should be classified as well.
2671         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2672         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2673         if (EB_FuncPtr != EB_ThisAdj) {
2674           Lo = Hi = Integer;
2675         } else {
2676           Current = Integer;
2677         }
2678       }
2679     } else {
2680       Current = Integer;
2681     }
2682     return;
2683   }
2684 
2685   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2686     uint64_t Size = getContext().getTypeSize(VT);
2687     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2688       // gcc passes the following as integer:
2689       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2690       // 2 bytes - <2 x char>, <1 x short>
2691       // 1 byte  - <1 x char>
2692       Current = Integer;
2693 
2694       // If this type crosses an eightbyte boundary, it should be
2695       // split.
2696       uint64_t EB_Lo = (OffsetBase) / 64;
2697       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2698       if (EB_Lo != EB_Hi)
2699         Hi = Lo;
2700     } else if (Size == 64) {
2701       QualType ElementType = VT->getElementType();
2702 
2703       // gcc passes <1 x double> in memory. :(
2704       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2705         return;
2706 
2707       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2708       // pass them as integer.  For platforms where clang is the de facto
2709       // platform compiler, we must continue to use integer.
2710       if (!classifyIntegerMMXAsSSE() &&
2711           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2712            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2713            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2714            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2715         Current = Integer;
2716       else
2717         Current = SSE;
2718 
2719       // If this type crosses an eightbyte boundary, it should be
2720       // split.
2721       if (OffsetBase && OffsetBase != 64)
2722         Hi = Lo;
2723     } else if (Size == 128 ||
2724                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2725       QualType ElementType = VT->getElementType();
2726 
2727       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2728       if (passInt128VectorsInMem() && Size != 128 &&
2729           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2730            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2731         return;
2732 
2733       // Arguments of 256-bits are split into four eightbyte chunks. The
2734       // least significant one belongs to class SSE and all the others to class
2735       // SSEUP. The original Lo and Hi design considers that types can't be
2736       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2737       // This design isn't correct for 256-bits, but since there're no cases
2738       // where the upper parts would need to be inspected, avoid adding
2739       // complexity and just consider Hi to match the 64-256 part.
2740       //
2741       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2742       // registers if they are "named", i.e. not part of the "..." of a
2743       // variadic function.
2744       //
2745       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2746       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2747       Lo = SSE;
2748       Hi = SSEUp;
2749     }
2750     return;
2751   }
2752 
2753   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2754     QualType ET = getContext().getCanonicalType(CT->getElementType());
2755 
2756     uint64_t Size = getContext().getTypeSize(Ty);
2757     if (ET->isIntegralOrEnumerationType()) {
2758       if (Size <= 64)
2759         Current = Integer;
2760       else if (Size <= 128)
2761         Lo = Hi = Integer;
2762     } else if (ET == getContext().FloatTy) {
2763       Current = SSE;
2764     } else if (ET == getContext().DoubleTy) {
2765       Lo = Hi = SSE;
2766     } else if (ET == getContext().LongDoubleTy) {
2767       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2768       if (LDF == &llvm::APFloat::IEEEquad())
2769         Current = Memory;
2770       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2771         Current = ComplexX87;
2772       else if (LDF == &llvm::APFloat::IEEEdouble())
2773         Lo = Hi = SSE;
2774       else
2775         llvm_unreachable("unexpected long double representation!");
2776     }
2777 
2778     // If this complex type crosses an eightbyte boundary then it
2779     // should be split.
2780     uint64_t EB_Real = (OffsetBase) / 64;
2781     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2782     if (Hi == NoClass && EB_Real != EB_Imag)
2783       Hi = Lo;
2784 
2785     return;
2786   }
2787 
2788   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2789     // Arrays are treated like structures.
2790 
2791     uint64_t Size = getContext().getTypeSize(Ty);
2792 
2793     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2794     // than eight eightbytes, ..., it has class MEMORY.
2795     if (Size > 512)
2796       return;
2797 
2798     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2799     // fields, it has class MEMORY.
2800     //
2801     // Only need to check alignment of array base.
2802     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2803       return;
2804 
2805     // Otherwise implement simplified merge. We could be smarter about
2806     // this, but it isn't worth it and would be harder to verify.
2807     Current = NoClass;
2808     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2809     uint64_t ArraySize = AT->getSize().getZExtValue();
2810 
2811     // The only case a 256-bit wide vector could be used is when the array
2812     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2813     // to work for sizes wider than 128, early check and fallback to memory.
2814     //
2815     if (Size > 128 &&
2816         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2817       return;
2818 
2819     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2820       Class FieldLo, FieldHi;
2821       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2822       Lo = merge(Lo, FieldLo);
2823       Hi = merge(Hi, FieldHi);
2824       if (Lo == Memory || Hi == Memory)
2825         break;
2826     }
2827 
2828     postMerge(Size, Lo, Hi);
2829     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2830     return;
2831   }
2832 
2833   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2834     uint64_t Size = getContext().getTypeSize(Ty);
2835 
2836     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2837     // than eight eightbytes, ..., it has class MEMORY.
2838     if (Size > 512)
2839       return;
2840 
2841     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2842     // copy constructor or a non-trivial destructor, it is passed by invisible
2843     // reference.
2844     if (getRecordArgABI(RT, getCXXABI()))
2845       return;
2846 
2847     const RecordDecl *RD = RT->getDecl();
2848 
2849     // Assume variable sized types are passed in memory.
2850     if (RD->hasFlexibleArrayMember())
2851       return;
2852 
2853     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2854 
2855     // Reset Lo class, this will be recomputed.
2856     Current = NoClass;
2857 
2858     // If this is a C++ record, classify the bases first.
2859     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2860       for (const auto &I : CXXRD->bases()) {
2861         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2862                "Unexpected base class!");
2863         const auto *Base =
2864             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2865 
2866         // Classify this field.
2867         //
2868         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2869         // single eightbyte, each is classified separately. Each eightbyte gets
2870         // initialized to class NO_CLASS.
2871         Class FieldLo, FieldHi;
2872         uint64_t Offset =
2873           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2874         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2875         Lo = merge(Lo, FieldLo);
2876         Hi = merge(Hi, FieldHi);
2877         if (Lo == Memory || Hi == Memory) {
2878           postMerge(Size, Lo, Hi);
2879           return;
2880         }
2881       }
2882     }
2883 
2884     // Classify the fields one at a time, merging the results.
2885     unsigned idx = 0;
2886     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2887            i != e; ++i, ++idx) {
2888       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2889       bool BitField = i->isBitField();
2890 
2891       // Ignore padding bit-fields.
2892       if (BitField && i->isUnnamedBitfield())
2893         continue;
2894 
2895       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2896       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2897       //
2898       // The only case a 256-bit wide vector could be used is when the struct
2899       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2900       // to work for sizes wider than 128, early check and fallback to memory.
2901       //
2902       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2903                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2904         Lo = Memory;
2905         postMerge(Size, Lo, Hi);
2906         return;
2907       }
2908       // Note, skip this test for bit-fields, see below.
2909       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2910         Lo = Memory;
2911         postMerge(Size, Lo, Hi);
2912         return;
2913       }
2914 
2915       // Classify this field.
2916       //
2917       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2918       // exceeds a single eightbyte, each is classified
2919       // separately. Each eightbyte gets initialized to class
2920       // NO_CLASS.
2921       Class FieldLo, FieldHi;
2922 
2923       // Bit-fields require special handling, they do not force the
2924       // structure to be passed in memory even if unaligned, and
2925       // therefore they can straddle an eightbyte.
2926       if (BitField) {
2927         assert(!i->isUnnamedBitfield());
2928         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2929         uint64_t Size = i->getBitWidthValue(getContext());
2930 
2931         uint64_t EB_Lo = Offset / 64;
2932         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2933 
2934         if (EB_Lo) {
2935           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2936           FieldLo = NoClass;
2937           FieldHi = Integer;
2938         } else {
2939           FieldLo = Integer;
2940           FieldHi = EB_Hi ? Integer : NoClass;
2941         }
2942       } else
2943         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2944       Lo = merge(Lo, FieldLo);
2945       Hi = merge(Hi, FieldHi);
2946       if (Lo == Memory || Hi == Memory)
2947         break;
2948     }
2949 
2950     postMerge(Size, Lo, Hi);
2951   }
2952 }
2953 
2954 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2955   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2956   // place naturally.
2957   if (!isAggregateTypeForABI(Ty)) {
2958     // Treat an enum type as its underlying type.
2959     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2960       Ty = EnumTy->getDecl()->getIntegerType();
2961 
2962     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2963                                           : ABIArgInfo::getDirect());
2964   }
2965 
2966   return getNaturalAlignIndirect(Ty);
2967 }
2968 
2969 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2970   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2971     uint64_t Size = getContext().getTypeSize(VecTy);
2972     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2973     if (Size <= 64 || Size > LargestVector)
2974       return true;
2975     QualType EltTy = VecTy->getElementType();
2976     if (passInt128VectorsInMem() &&
2977         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2978          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2979       return true;
2980   }
2981 
2982   return false;
2983 }
2984 
2985 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2986                                             unsigned freeIntRegs) const {
2987   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2988   // place naturally.
2989   //
2990   // This assumption is optimistic, as there could be free registers available
2991   // when we need to pass this argument in memory, and LLVM could try to pass
2992   // the argument in the free register. This does not seem to happen currently,
2993   // but this code would be much safer if we could mark the argument with
2994   // 'onstack'. See PR12193.
2995   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2996     // Treat an enum type as its underlying type.
2997     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2998       Ty = EnumTy->getDecl()->getIntegerType();
2999 
3000     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
3001                                           : ABIArgInfo::getDirect());
3002   }
3003 
3004   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3005     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3006 
3007   // Compute the byval alignment. We specify the alignment of the byval in all
3008   // cases so that the mid-level optimizer knows the alignment of the byval.
3009   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3010 
3011   // Attempt to avoid passing indirect results using byval when possible. This
3012   // is important for good codegen.
3013   //
3014   // We do this by coercing the value into a scalar type which the backend can
3015   // handle naturally (i.e., without using byval).
3016   //
3017   // For simplicity, we currently only do this when we have exhausted all of the
3018   // free integer registers. Doing this when there are free integer registers
3019   // would require more care, as we would have to ensure that the coerced value
3020   // did not claim the unused register. That would require either reording the
3021   // arguments to the function (so that any subsequent inreg values came first),
3022   // or only doing this optimization when there were no following arguments that
3023   // might be inreg.
3024   //
3025   // We currently expect it to be rare (particularly in well written code) for
3026   // arguments to be passed on the stack when there are still free integer
3027   // registers available (this would typically imply large structs being passed
3028   // by value), so this seems like a fair tradeoff for now.
3029   //
3030   // We can revisit this if the backend grows support for 'onstack' parameter
3031   // attributes. See PR12193.
3032   if (freeIntRegs == 0) {
3033     uint64_t Size = getContext().getTypeSize(Ty);
3034 
3035     // If this type fits in an eightbyte, coerce it into the matching integral
3036     // type, which will end up on the stack (with alignment 8).
3037     if (Align == 8 && Size <= 64)
3038       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3039                                                           Size));
3040   }
3041 
3042   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3043 }
3044 
3045 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3046 /// register. Pick an LLVM IR type that will be passed as a vector register.
3047 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3048   // Wrapper structs/arrays that only contain vectors are passed just like
3049   // vectors; strip them off if present.
3050   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3051     Ty = QualType(InnerTy, 0);
3052 
3053   llvm::Type *IRType = CGT.ConvertType(Ty);
3054   if (isa<llvm::VectorType>(IRType)) {
3055     // Don't pass vXi128 vectors in their native type, the backend can't
3056     // legalize them.
3057     if (passInt128VectorsInMem() &&
3058         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3059       // Use a vXi64 vector.
3060       uint64_t Size = getContext().getTypeSize(Ty);
3061       return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3062                                    Size / 64);
3063     }
3064 
3065     return IRType;
3066   }
3067 
3068   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3069     return IRType;
3070 
3071   // We couldn't find the preferred IR vector type for 'Ty'.
3072   uint64_t Size = getContext().getTypeSize(Ty);
3073   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3074 
3075 
3076   // Return a LLVM IR vector type based on the size of 'Ty'.
3077   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3078                                Size / 64);
3079 }
3080 
3081 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3082 /// is known to either be off the end of the specified type or being in
3083 /// alignment padding.  The user type specified is known to be at most 128 bits
3084 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3085 /// classification that put one of the two halves in the INTEGER class.
3086 ///
3087 /// It is conservatively correct to return false.
3088 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3089                                   unsigned EndBit, ASTContext &Context) {
3090   // If the bytes being queried are off the end of the type, there is no user
3091   // data hiding here.  This handles analysis of builtins, vectors and other
3092   // types that don't contain interesting padding.
3093   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3094   if (TySize <= StartBit)
3095     return true;
3096 
3097   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3098     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3099     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3100 
3101     // Check each element to see if the element overlaps with the queried range.
3102     for (unsigned i = 0; i != NumElts; ++i) {
3103       // If the element is after the span we care about, then we're done..
3104       unsigned EltOffset = i*EltSize;
3105       if (EltOffset >= EndBit) break;
3106 
3107       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3108       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3109                                  EndBit-EltOffset, Context))
3110         return false;
3111     }
3112     // If it overlaps no elements, then it is safe to process as padding.
3113     return true;
3114   }
3115 
3116   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3117     const RecordDecl *RD = RT->getDecl();
3118     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3119 
3120     // If this is a C++ record, check the bases first.
3121     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3122       for (const auto &I : CXXRD->bases()) {
3123         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3124                "Unexpected base class!");
3125         const auto *Base =
3126             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3127 
3128         // If the base is after the span we care about, ignore it.
3129         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3130         if (BaseOffset >= EndBit) continue;
3131 
3132         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3133         if (!BitsContainNoUserData(I.getType(), BaseStart,
3134                                    EndBit-BaseOffset, Context))
3135           return false;
3136       }
3137     }
3138 
3139     // Verify that no field has data that overlaps the region of interest.  Yes
3140     // this could be sped up a lot by being smarter about queried fields,
3141     // however we're only looking at structs up to 16 bytes, so we don't care
3142     // much.
3143     unsigned idx = 0;
3144     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3145          i != e; ++i, ++idx) {
3146       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3147 
3148       // If we found a field after the region we care about, then we're done.
3149       if (FieldOffset >= EndBit) break;
3150 
3151       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3152       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3153                                  Context))
3154         return false;
3155     }
3156 
3157     // If nothing in this record overlapped the area of interest, then we're
3158     // clean.
3159     return true;
3160   }
3161 
3162   return false;
3163 }
3164 
3165 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3166 /// float member at the specified offset.  For example, {int,{float}} has a
3167 /// float at offset 4.  It is conservatively correct for this routine to return
3168 /// false.
3169 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3170                                   const llvm::DataLayout &TD) {
3171   // Base case if we find a float.
3172   if (IROffset == 0 && IRType->isFloatTy())
3173     return true;
3174 
3175   // If this is a struct, recurse into the field at the specified offset.
3176   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3177     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3178     unsigned Elt = SL->getElementContainingOffset(IROffset);
3179     IROffset -= SL->getElementOffset(Elt);
3180     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3181   }
3182 
3183   // If this is an array, recurse into the field at the specified offset.
3184   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3185     llvm::Type *EltTy = ATy->getElementType();
3186     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3187     IROffset -= IROffset/EltSize*EltSize;
3188     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3189   }
3190 
3191   return false;
3192 }
3193 
3194 
3195 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3196 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3197 llvm::Type *X86_64ABIInfo::
3198 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3199                    QualType SourceTy, unsigned SourceOffset) const {
3200   // The only three choices we have are either double, <2 x float>, or float. We
3201   // pass as float if the last 4 bytes is just padding.  This happens for
3202   // structs that contain 3 floats.
3203   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3204                             SourceOffset*8+64, getContext()))
3205     return llvm::Type::getFloatTy(getVMContext());
3206 
3207   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3208   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3209   // case.
3210   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3211       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3212     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3213 
3214   return llvm::Type::getDoubleTy(getVMContext());
3215 }
3216 
3217 
3218 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3219 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3220 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3221 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3222 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3223 /// etc).
3224 ///
3225 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3226 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3227 /// the 8-byte value references.  PrefType may be null.
3228 ///
3229 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3230 /// an offset into this that we're processing (which is always either 0 or 8).
3231 ///
3232 llvm::Type *X86_64ABIInfo::
3233 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3234                        QualType SourceTy, unsigned SourceOffset) const {
3235   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3236   // returning an 8-byte unit starting with it.  See if we can safely use it.
3237   if (IROffset == 0) {
3238     // Pointers and int64's always fill the 8-byte unit.
3239     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3240         IRType->isIntegerTy(64))
3241       return IRType;
3242 
3243     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3244     // goodness in the source type is just tail padding.  This is allowed to
3245     // kick in for struct {double,int} on the int, but not on
3246     // struct{double,int,int} because we wouldn't return the second int.  We
3247     // have to do this analysis on the source type because we can't depend on
3248     // unions being lowered a specific way etc.
3249     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3250         IRType->isIntegerTy(32) ||
3251         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3252       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3253           cast<llvm::IntegerType>(IRType)->getBitWidth();
3254 
3255       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3256                                 SourceOffset*8+64, getContext()))
3257         return IRType;
3258     }
3259   }
3260 
3261   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3262     // If this is a struct, recurse into the field at the specified offset.
3263     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3264     if (IROffset < SL->getSizeInBytes()) {
3265       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3266       IROffset -= SL->getElementOffset(FieldIdx);
3267 
3268       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3269                                     SourceTy, SourceOffset);
3270     }
3271   }
3272 
3273   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3274     llvm::Type *EltTy = ATy->getElementType();
3275     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3276     unsigned EltOffset = IROffset/EltSize*EltSize;
3277     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3278                                   SourceOffset);
3279   }
3280 
3281   // Okay, we don't have any better idea of what to pass, so we pass this in an
3282   // integer register that isn't too big to fit the rest of the struct.
3283   unsigned TySizeInBytes =
3284     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3285 
3286   assert(TySizeInBytes != SourceOffset && "Empty field?");
3287 
3288   // It is always safe to classify this as an integer type up to i64 that
3289   // isn't larger than the structure.
3290   return llvm::IntegerType::get(getVMContext(),
3291                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3292 }
3293 
3294 
3295 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3296 /// be used as elements of a two register pair to pass or return, return a
3297 /// first class aggregate to represent them.  For example, if the low part of
3298 /// a by-value argument should be passed as i32* and the high part as float,
3299 /// return {i32*, float}.
3300 static llvm::Type *
3301 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3302                            const llvm::DataLayout &TD) {
3303   // In order to correctly satisfy the ABI, we need to the high part to start
3304   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3305   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3306   // the second element at offset 8.  Check for this:
3307   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3308   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3309   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3310   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3311 
3312   // To handle this, we have to increase the size of the low part so that the
3313   // second element will start at an 8 byte offset.  We can't increase the size
3314   // of the second element because it might make us access off the end of the
3315   // struct.
3316   if (HiStart != 8) {
3317     // There are usually two sorts of types the ABI generation code can produce
3318     // for the low part of a pair that aren't 8 bytes in size: float or
3319     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3320     // NaCl).
3321     // Promote these to a larger type.
3322     if (Lo->isFloatTy())
3323       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3324     else {
3325       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3326              && "Invalid/unknown lo type");
3327       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3328     }
3329   }
3330 
3331   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3332 
3333   // Verify that the second element is at an 8-byte offset.
3334   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3335          "Invalid x86-64 argument pair!");
3336   return Result;
3337 }
3338 
3339 ABIArgInfo X86_64ABIInfo::
3340 classifyReturnType(QualType RetTy) const {
3341   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3342   // classification algorithm.
3343   X86_64ABIInfo::Class Lo, Hi;
3344   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3345 
3346   // Check some invariants.
3347   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3348   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3349 
3350   llvm::Type *ResType = nullptr;
3351   switch (Lo) {
3352   case NoClass:
3353     if (Hi == NoClass)
3354       return ABIArgInfo::getIgnore();
3355     // If the low part is just padding, it takes no register, leave ResType
3356     // null.
3357     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3358            "Unknown missing lo part");
3359     break;
3360 
3361   case SSEUp:
3362   case X87Up:
3363     llvm_unreachable("Invalid classification for lo word.");
3364 
3365     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3366     // hidden argument.
3367   case Memory:
3368     return getIndirectReturnResult(RetTy);
3369 
3370     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3371     // available register of the sequence %rax, %rdx is used.
3372   case Integer:
3373     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3374 
3375     // If we have a sign or zero extended integer, make sure to return Extend
3376     // so that the parameter gets the right LLVM IR attributes.
3377     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3378       // Treat an enum type as its underlying type.
3379       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3380         RetTy = EnumTy->getDecl()->getIntegerType();
3381 
3382       if (RetTy->isIntegralOrEnumerationType() &&
3383           RetTy->isPromotableIntegerType())
3384         return ABIArgInfo::getExtend(RetTy);
3385     }
3386     break;
3387 
3388     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3389     // available SSE register of the sequence %xmm0, %xmm1 is used.
3390   case SSE:
3391     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3392     break;
3393 
3394     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3395     // returned on the X87 stack in %st0 as 80-bit x87 number.
3396   case X87:
3397     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3398     break;
3399 
3400     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3401     // part of the value is returned in %st0 and the imaginary part in
3402     // %st1.
3403   case ComplexX87:
3404     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3405     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3406                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3407     break;
3408   }
3409 
3410   llvm::Type *HighPart = nullptr;
3411   switch (Hi) {
3412     // Memory was handled previously and X87 should
3413     // never occur as a hi class.
3414   case Memory:
3415   case X87:
3416     llvm_unreachable("Invalid classification for hi word.");
3417 
3418   case ComplexX87: // Previously handled.
3419   case NoClass:
3420     break;
3421 
3422   case Integer:
3423     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3424     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3425       return ABIArgInfo::getDirect(HighPart, 8);
3426     break;
3427   case SSE:
3428     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3429     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3430       return ABIArgInfo::getDirect(HighPart, 8);
3431     break;
3432 
3433     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3434     // is passed in the next available eightbyte chunk if the last used
3435     // vector register.
3436     //
3437     // SSEUP should always be preceded by SSE, just widen.
3438   case SSEUp:
3439     assert(Lo == SSE && "Unexpected SSEUp classification.");
3440     ResType = GetByteVectorType(RetTy);
3441     break;
3442 
3443     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3444     // returned together with the previous X87 value in %st0.
3445   case X87Up:
3446     // If X87Up is preceded by X87, we don't need to do
3447     // anything. However, in some cases with unions it may not be
3448     // preceded by X87. In such situations we follow gcc and pass the
3449     // extra bits in an SSE reg.
3450     if (Lo != X87) {
3451       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3452       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3453         return ABIArgInfo::getDirect(HighPart, 8);
3454     }
3455     break;
3456   }
3457 
3458   // If a high part was specified, merge it together with the low part.  It is
3459   // known to pass in the high eightbyte of the result.  We do this by forming a
3460   // first class struct aggregate with the high and low part: {low, high}
3461   if (HighPart)
3462     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3463 
3464   return ABIArgInfo::getDirect(ResType);
3465 }
3466 
3467 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3468   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3469   bool isNamedArg)
3470   const
3471 {
3472   Ty = useFirstFieldIfTransparentUnion(Ty);
3473 
3474   X86_64ABIInfo::Class Lo, Hi;
3475   classify(Ty, 0, Lo, Hi, isNamedArg);
3476 
3477   // Check some invariants.
3478   // FIXME: Enforce these by construction.
3479   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3480   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3481 
3482   neededInt = 0;
3483   neededSSE = 0;
3484   llvm::Type *ResType = nullptr;
3485   switch (Lo) {
3486   case NoClass:
3487     if (Hi == NoClass)
3488       return ABIArgInfo::getIgnore();
3489     // If the low part is just padding, it takes no register, leave ResType
3490     // null.
3491     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3492            "Unknown missing lo part");
3493     break;
3494 
3495     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3496     // on the stack.
3497   case Memory:
3498 
3499     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3500     // COMPLEX_X87, it is passed in memory.
3501   case X87:
3502   case ComplexX87:
3503     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3504       ++neededInt;
3505     return getIndirectResult(Ty, freeIntRegs);
3506 
3507   case SSEUp:
3508   case X87Up:
3509     llvm_unreachable("Invalid classification for lo word.");
3510 
3511     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3512     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3513     // and %r9 is used.
3514   case Integer:
3515     ++neededInt;
3516 
3517     // Pick an 8-byte type based on the preferred type.
3518     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3519 
3520     // If we have a sign or zero extended integer, make sure to return Extend
3521     // so that the parameter gets the right LLVM IR attributes.
3522     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3523       // Treat an enum type as its underlying type.
3524       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3525         Ty = EnumTy->getDecl()->getIntegerType();
3526 
3527       if (Ty->isIntegralOrEnumerationType() &&
3528           Ty->isPromotableIntegerType())
3529         return ABIArgInfo::getExtend(Ty);
3530     }
3531 
3532     break;
3533 
3534     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3535     // available SSE register is used, the registers are taken in the
3536     // order from %xmm0 to %xmm7.
3537   case SSE: {
3538     llvm::Type *IRType = CGT.ConvertType(Ty);
3539     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3540     ++neededSSE;
3541     break;
3542   }
3543   }
3544 
3545   llvm::Type *HighPart = nullptr;
3546   switch (Hi) {
3547     // Memory was handled previously, ComplexX87 and X87 should
3548     // never occur as hi classes, and X87Up must be preceded by X87,
3549     // which is passed in memory.
3550   case Memory:
3551   case X87:
3552   case ComplexX87:
3553     llvm_unreachable("Invalid classification for hi word.");
3554 
3555   case NoClass: break;
3556 
3557   case Integer:
3558     ++neededInt;
3559     // Pick an 8-byte type based on the preferred type.
3560     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3561 
3562     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3563       return ABIArgInfo::getDirect(HighPart, 8);
3564     break;
3565 
3566     // X87Up generally doesn't occur here (long double is passed in
3567     // memory), except in situations involving unions.
3568   case X87Up:
3569   case SSE:
3570     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3571 
3572     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3573       return ABIArgInfo::getDirect(HighPart, 8);
3574 
3575     ++neededSSE;
3576     break;
3577 
3578     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3579     // eightbyte is passed in the upper half of the last used SSE
3580     // register.  This only happens when 128-bit vectors are passed.
3581   case SSEUp:
3582     assert(Lo == SSE && "Unexpected SSEUp classification");
3583     ResType = GetByteVectorType(Ty);
3584     break;
3585   }
3586 
3587   // If a high part was specified, merge it together with the low part.  It is
3588   // known to pass in the high eightbyte of the result.  We do this by forming a
3589   // first class struct aggregate with the high and low part: {low, high}
3590   if (HighPart)
3591     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3592 
3593   return ABIArgInfo::getDirect(ResType);
3594 }
3595 
3596 ABIArgInfo
3597 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3598                                              unsigned &NeededSSE) const {
3599   auto RT = Ty->getAs<RecordType>();
3600   assert(RT && "classifyRegCallStructType only valid with struct types");
3601 
3602   if (RT->getDecl()->hasFlexibleArrayMember())
3603     return getIndirectReturnResult(Ty);
3604 
3605   // Sum up bases
3606   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3607     if (CXXRD->isDynamicClass()) {
3608       NeededInt = NeededSSE = 0;
3609       return getIndirectReturnResult(Ty);
3610     }
3611 
3612     for (const auto &I : CXXRD->bases())
3613       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3614               .isIndirect()) {
3615         NeededInt = NeededSSE = 0;
3616         return getIndirectReturnResult(Ty);
3617       }
3618   }
3619 
3620   // Sum up members
3621   for (const auto *FD : RT->getDecl()->fields()) {
3622     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3623       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3624               .isIndirect()) {
3625         NeededInt = NeededSSE = 0;
3626         return getIndirectReturnResult(Ty);
3627       }
3628     } else {
3629       unsigned LocalNeededInt, LocalNeededSSE;
3630       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3631                                LocalNeededSSE, true)
3632               .isIndirect()) {
3633         NeededInt = NeededSSE = 0;
3634         return getIndirectReturnResult(Ty);
3635       }
3636       NeededInt += LocalNeededInt;
3637       NeededSSE += LocalNeededSSE;
3638     }
3639   }
3640 
3641   return ABIArgInfo::getDirect();
3642 }
3643 
3644 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3645                                                     unsigned &NeededInt,
3646                                                     unsigned &NeededSSE) const {
3647 
3648   NeededInt = 0;
3649   NeededSSE = 0;
3650 
3651   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3652 }
3653 
3654 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3655 
3656   const unsigned CallingConv = FI.getCallingConvention();
3657   // It is possible to force Win64 calling convention on any x86_64 target by
3658   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3659   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3660   if (CallingConv == llvm::CallingConv::Win64) {
3661     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3662     Win64ABIInfo.computeInfo(FI);
3663     return;
3664   }
3665 
3666   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3667 
3668   // Keep track of the number of assigned registers.
3669   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3670   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3671   unsigned NeededInt, NeededSSE;
3672 
3673   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3674     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3675         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3676       FI.getReturnInfo() =
3677           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3678       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3679         FreeIntRegs -= NeededInt;
3680         FreeSSERegs -= NeededSSE;
3681       } else {
3682         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3683       }
3684     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3685       // Complex Long Double Type is passed in Memory when Regcall
3686       // calling convention is used.
3687       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3688       if (getContext().getCanonicalType(CT->getElementType()) ==
3689           getContext().LongDoubleTy)
3690         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3691     } else
3692       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3693   }
3694 
3695   // If the return value is indirect, then the hidden argument is consuming one
3696   // integer register.
3697   if (FI.getReturnInfo().isIndirect())
3698     --FreeIntRegs;
3699 
3700   // The chain argument effectively gives us another free register.
3701   if (FI.isChainCall())
3702     ++FreeIntRegs;
3703 
3704   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3705   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3706   // get assigned (in left-to-right order) for passing as follows...
3707   unsigned ArgNo = 0;
3708   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3709        it != ie; ++it, ++ArgNo) {
3710     bool IsNamedArg = ArgNo < NumRequiredArgs;
3711 
3712     if (IsRegCall && it->type->isStructureOrClassType())
3713       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3714     else
3715       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3716                                       NeededSSE, IsNamedArg);
3717 
3718     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3719     // eightbyte of an argument, the whole argument is passed on the
3720     // stack. If registers have already been assigned for some
3721     // eightbytes of such an argument, the assignments get reverted.
3722     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3723       FreeIntRegs -= NeededInt;
3724       FreeSSERegs -= NeededSSE;
3725     } else {
3726       it->info = getIndirectResult(it->type, FreeIntRegs);
3727     }
3728   }
3729 }
3730 
3731 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3732                                          Address VAListAddr, QualType Ty) {
3733   Address overflow_arg_area_p =
3734       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3735   llvm::Value *overflow_arg_area =
3736     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3737 
3738   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3739   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3740   // It isn't stated explicitly in the standard, but in practice we use
3741   // alignment greater than 16 where necessary.
3742   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3743   if (Align > CharUnits::fromQuantity(8)) {
3744     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3745                                                       Align);
3746   }
3747 
3748   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3749   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3750   llvm::Value *Res =
3751     CGF.Builder.CreateBitCast(overflow_arg_area,
3752                               llvm::PointerType::getUnqual(LTy));
3753 
3754   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3755   // l->overflow_arg_area + sizeof(type).
3756   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3757   // an 8 byte boundary.
3758 
3759   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3760   llvm::Value *Offset =
3761       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3762   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3763                                             "overflow_arg_area.next");
3764   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3765 
3766   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3767   return Address(Res, Align);
3768 }
3769 
3770 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3771                                  QualType Ty) const {
3772   // Assume that va_list type is correct; should be pointer to LLVM type:
3773   // struct {
3774   //   i32 gp_offset;
3775   //   i32 fp_offset;
3776   //   i8* overflow_arg_area;
3777   //   i8* reg_save_area;
3778   // };
3779   unsigned neededInt, neededSSE;
3780 
3781   Ty = getContext().getCanonicalType(Ty);
3782   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3783                                        /*isNamedArg*/false);
3784 
3785   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3786   // in the registers. If not go to step 7.
3787   if (!neededInt && !neededSSE)
3788     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3789 
3790   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3791   // general purpose registers needed to pass type and num_fp to hold
3792   // the number of floating point registers needed.
3793 
3794   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3795   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3796   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3797   //
3798   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3799   // register save space).
3800 
3801   llvm::Value *InRegs = nullptr;
3802   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3803   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3804   if (neededInt) {
3805     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3806     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3807     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3808     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3809   }
3810 
3811   if (neededSSE) {
3812     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3813     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3814     llvm::Value *FitsInFP =
3815       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3816     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3817     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3818   }
3819 
3820   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3821   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3822   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3823   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3824 
3825   // Emit code to load the value if it was passed in registers.
3826 
3827   CGF.EmitBlock(InRegBlock);
3828 
3829   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3830   // an offset of l->gp_offset and/or l->fp_offset. This may require
3831   // copying to a temporary location in case the parameter is passed
3832   // in different register classes or requires an alignment greater
3833   // than 8 for general purpose registers and 16 for XMM registers.
3834   //
3835   // FIXME: This really results in shameful code when we end up needing to
3836   // collect arguments from different places; often what should result in a
3837   // simple assembling of a structure from scattered addresses has many more
3838   // loads than necessary. Can we clean this up?
3839   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3840   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3841       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3842 
3843   Address RegAddr = Address::invalid();
3844   if (neededInt && neededSSE) {
3845     // FIXME: Cleanup.
3846     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3847     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3848     Address Tmp = CGF.CreateMemTemp(Ty);
3849     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3850     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3851     llvm::Type *TyLo = ST->getElementType(0);
3852     llvm::Type *TyHi = ST->getElementType(1);
3853     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3854            "Unexpected ABI info for mixed regs");
3855     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3856     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3857     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3858     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3859     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3860     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3861 
3862     // Copy the first element.
3863     // FIXME: Our choice of alignment here and below is probably pessimistic.
3864     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3865         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3866         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3867     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3868 
3869     // Copy the second element.
3870     V = CGF.Builder.CreateAlignedLoad(
3871         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3872         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3873     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3874 
3875     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3876   } else if (neededInt) {
3877     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3878                       CharUnits::fromQuantity(8));
3879     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3880 
3881     // Copy to a temporary if necessary to ensure the appropriate alignment.
3882     std::pair<CharUnits, CharUnits> SizeAlign =
3883         getContext().getTypeInfoInChars(Ty);
3884     uint64_t TySize = SizeAlign.first.getQuantity();
3885     CharUnits TyAlign = SizeAlign.second;
3886 
3887     // Copy into a temporary if the type is more aligned than the
3888     // register save area.
3889     if (TyAlign.getQuantity() > 8) {
3890       Address Tmp = CGF.CreateMemTemp(Ty);
3891       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3892       RegAddr = Tmp;
3893     }
3894 
3895   } else if (neededSSE == 1) {
3896     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3897                       CharUnits::fromQuantity(16));
3898     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3899   } else {
3900     assert(neededSSE == 2 && "Invalid number of needed registers!");
3901     // SSE registers are spaced 16 bytes apart in the register save
3902     // area, we need to collect the two eightbytes together.
3903     // The ABI isn't explicit about this, but it seems reasonable
3904     // to assume that the slots are 16-byte aligned, since the stack is
3905     // naturally 16-byte aligned and the prologue is expected to store
3906     // all the SSE registers to the RSA.
3907     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3908                                 CharUnits::fromQuantity(16));
3909     Address RegAddrHi =
3910       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3911                                              CharUnits::fromQuantity(16));
3912     llvm::Type *ST = AI.canHaveCoerceToType()
3913                          ? AI.getCoerceToType()
3914                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3915     llvm::Value *V;
3916     Address Tmp = CGF.CreateMemTemp(Ty);
3917     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3918     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3919         RegAddrLo, ST->getStructElementType(0)));
3920     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3921     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3922         RegAddrHi, ST->getStructElementType(1)));
3923     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3924 
3925     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3926   }
3927 
3928   // AMD64-ABI 3.5.7p5: Step 5. Set:
3929   // l->gp_offset = l->gp_offset + num_gp * 8
3930   // l->fp_offset = l->fp_offset + num_fp * 16.
3931   if (neededInt) {
3932     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3933     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3934                             gp_offset_p);
3935   }
3936   if (neededSSE) {
3937     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3938     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3939                             fp_offset_p);
3940   }
3941   CGF.EmitBranch(ContBlock);
3942 
3943   // Emit code to load the value if it was passed in memory.
3944 
3945   CGF.EmitBlock(InMemBlock);
3946   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3947 
3948   // Return the appropriate result.
3949 
3950   CGF.EmitBlock(ContBlock);
3951   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3952                                  "vaarg.addr");
3953   return ResAddr;
3954 }
3955 
3956 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3957                                    QualType Ty) const {
3958   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3959                           CGF.getContext().getTypeInfoInChars(Ty),
3960                           CharUnits::fromQuantity(8),
3961                           /*allowHigherAlign*/ false);
3962 }
3963 
3964 ABIArgInfo
3965 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3966                                     const ABIArgInfo &current) const {
3967   // Assumes vectorCall calling convention.
3968   const Type *Base = nullptr;
3969   uint64_t NumElts = 0;
3970 
3971   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3972       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3973     FreeSSERegs -= NumElts;
3974     return getDirectX86Hva();
3975   }
3976   return current;
3977 }
3978 
3979 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3980                                       bool IsReturnType, bool IsVectorCall,
3981                                       bool IsRegCall) const {
3982 
3983   if (Ty->isVoidType())
3984     return ABIArgInfo::getIgnore();
3985 
3986   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3987     Ty = EnumTy->getDecl()->getIntegerType();
3988 
3989   TypeInfo Info = getContext().getTypeInfo(Ty);
3990   uint64_t Width = Info.Width;
3991   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3992 
3993   const RecordType *RT = Ty->getAs<RecordType>();
3994   if (RT) {
3995     if (!IsReturnType) {
3996       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3997         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3998     }
3999 
4000     if (RT->getDecl()->hasFlexibleArrayMember())
4001       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4002 
4003   }
4004 
4005   const Type *Base = nullptr;
4006   uint64_t NumElts = 0;
4007   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4008   // other targets.
4009   if ((IsVectorCall || IsRegCall) &&
4010       isHomogeneousAggregate(Ty, Base, NumElts)) {
4011     if (IsRegCall) {
4012       if (FreeSSERegs >= NumElts) {
4013         FreeSSERegs -= NumElts;
4014         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4015           return ABIArgInfo::getDirect();
4016         return ABIArgInfo::getExpand();
4017       }
4018       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4019     } else if (IsVectorCall) {
4020       if (FreeSSERegs >= NumElts &&
4021           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4022         FreeSSERegs -= NumElts;
4023         return ABIArgInfo::getDirect();
4024       } else if (IsReturnType) {
4025         return ABIArgInfo::getExpand();
4026       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4027         // HVAs are delayed and reclassified in the 2nd step.
4028         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4029       }
4030     }
4031   }
4032 
4033   if (Ty->isMemberPointerType()) {
4034     // If the member pointer is represented by an LLVM int or ptr, pass it
4035     // directly.
4036     llvm::Type *LLTy = CGT.ConvertType(Ty);
4037     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4038       return ABIArgInfo::getDirect();
4039   }
4040 
4041   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4042     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4043     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4044     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4045       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4046 
4047     // Otherwise, coerce it to a small integer.
4048     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4049   }
4050 
4051   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4052     switch (BT->getKind()) {
4053     case BuiltinType::Bool:
4054       // Bool type is always extended to the ABI, other builtin types are not
4055       // extended.
4056       return ABIArgInfo::getExtend(Ty);
4057 
4058     case BuiltinType::LongDouble:
4059       // Mingw64 GCC uses the old 80 bit extended precision floating point
4060       // unit. It passes them indirectly through memory.
4061       if (IsMingw64) {
4062         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4063         if (LDF == &llvm::APFloat::x87DoubleExtended())
4064           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4065       }
4066       break;
4067 
4068     case BuiltinType::Int128:
4069     case BuiltinType::UInt128:
4070       // If it's a parameter type, the normal ABI rule is that arguments larger
4071       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4072       // even though it isn't particularly efficient.
4073       if (!IsReturnType)
4074         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4075 
4076       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4077       // Clang matches them for compatibility.
4078       return ABIArgInfo::getDirect(
4079           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
4080 
4081     default:
4082       break;
4083     }
4084   }
4085 
4086   return ABIArgInfo::getDirect();
4087 }
4088 
4089 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4090                                              unsigned FreeSSERegs,
4091                                              bool IsVectorCall,
4092                                              bool IsRegCall) const {
4093   unsigned Count = 0;
4094   for (auto &I : FI.arguments()) {
4095     // Vectorcall in x64 only permits the first 6 arguments to be passed
4096     // as XMM/YMM registers.
4097     if (Count < VectorcallMaxParamNumAsReg)
4098       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4099     else {
4100       // Since these cannot be passed in registers, pretend no registers
4101       // are left.
4102       unsigned ZeroSSERegsAvail = 0;
4103       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4104                         IsVectorCall, IsRegCall);
4105     }
4106     ++Count;
4107   }
4108 
4109   for (auto &I : FI.arguments()) {
4110     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4111   }
4112 }
4113 
4114 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4115   const unsigned CC = FI.getCallingConvention();
4116   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4117   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4118 
4119   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4120   // classification rules.
4121   if (CC == llvm::CallingConv::X86_64_SysV) {
4122     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4123     SysVABIInfo.computeInfo(FI);
4124     return;
4125   }
4126 
4127   unsigned FreeSSERegs = 0;
4128   if (IsVectorCall) {
4129     // We can use up to 4 SSE return registers with vectorcall.
4130     FreeSSERegs = 4;
4131   } else if (IsRegCall) {
4132     // RegCall gives us 16 SSE registers.
4133     FreeSSERegs = 16;
4134   }
4135 
4136   if (!getCXXABI().classifyReturnType(FI))
4137     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4138                                   IsVectorCall, IsRegCall);
4139 
4140   if (IsVectorCall) {
4141     // We can use up to 6 SSE register parameters with vectorcall.
4142     FreeSSERegs = 6;
4143   } else if (IsRegCall) {
4144     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4145     FreeSSERegs = 16;
4146   }
4147 
4148   if (IsVectorCall) {
4149     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4150   } else {
4151     for (auto &I : FI.arguments())
4152       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4153   }
4154 
4155 }
4156 
4157 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4158                                     QualType Ty) const {
4159 
4160   bool IsIndirect = false;
4161 
4162   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4163   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4164   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4165     uint64_t Width = getContext().getTypeSize(Ty);
4166     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4167   }
4168 
4169   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4170                           CGF.getContext().getTypeInfoInChars(Ty),
4171                           CharUnits::fromQuantity(8),
4172                           /*allowHigherAlign*/ false);
4173 }
4174 
4175 // PowerPC-32
4176 namespace {
4177 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4178 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4179   bool IsSoftFloatABI;
4180   bool IsRetSmallStructInRegABI;
4181 
4182   CharUnits getParamTypeAlignment(QualType Ty) const;
4183 
4184 public:
4185   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4186                      bool RetSmallStructInRegABI)
4187       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4188         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4189 
4190   ABIArgInfo classifyReturnType(QualType RetTy) const;
4191 
4192   void computeInfo(CGFunctionInfo &FI) const override {
4193     if (!getCXXABI().classifyReturnType(FI))
4194       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4195     for (auto &I : FI.arguments())
4196       I.info = classifyArgumentType(I.type);
4197   }
4198 
4199   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4200                     QualType Ty) const override;
4201 };
4202 
4203 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4204 public:
4205   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4206                          bool RetSmallStructInRegABI)
4207       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI,
4208                                                  RetSmallStructInRegABI)) {}
4209 
4210   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4211                                      const CodeGenOptions &Opts);
4212 
4213   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4214     // This is recovered from gcc output.
4215     return 1; // r1 is the dedicated stack pointer
4216   }
4217 
4218   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4219                                llvm::Value *Address) const override;
4220 };
4221 }
4222 
4223 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4224   // Complex types are passed just like their elements
4225   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4226     Ty = CTy->getElementType();
4227 
4228   if (Ty->isVectorType())
4229     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4230                                                                        : 4);
4231 
4232   // For single-element float/vector structs, we consider the whole type
4233   // to have the same alignment requirements as its single element.
4234   const Type *AlignTy = nullptr;
4235   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4236     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4237     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4238         (BT && BT->isFloatingPoint()))
4239       AlignTy = EltType;
4240   }
4241 
4242   if (AlignTy)
4243     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4244   return CharUnits::fromQuantity(4);
4245 }
4246 
4247 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4248   uint64_t Size;
4249 
4250   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4251   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4252       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4253     // System V ABI (1995), page 3-22, specified:
4254     // > A structure or union whose size is less than or equal to 8 bytes
4255     // > shall be returned in r3 and r4, as if it were first stored in the
4256     // > 8-byte aligned memory area and then the low addressed word were
4257     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4258     // > the last member of the structure or union are not defined.
4259     //
4260     // GCC for big-endian PPC32 inserts the pad before the first member,
4261     // not "beyond the last member" of the struct.  To stay compatible
4262     // with GCC, we coerce the struct to an integer of the same size.
4263     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4264     if (Size == 0)
4265       return ABIArgInfo::getIgnore();
4266     else {
4267       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4268       return ABIArgInfo::getDirect(CoerceTy);
4269     }
4270   }
4271 
4272   return DefaultABIInfo::classifyReturnType(RetTy);
4273 }
4274 
4275 // TODO: this implementation is now likely redundant with
4276 // DefaultABIInfo::EmitVAArg.
4277 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4278                                       QualType Ty) const {
4279   if (getTarget().getTriple().isOSDarwin()) {
4280     auto TI = getContext().getTypeInfoInChars(Ty);
4281     TI.second = getParamTypeAlignment(Ty);
4282 
4283     CharUnits SlotSize = CharUnits::fromQuantity(4);
4284     return emitVoidPtrVAArg(CGF, VAList, Ty,
4285                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4286                             /*AllowHigherAlign=*/true);
4287   }
4288 
4289   const unsigned OverflowLimit = 8;
4290   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4291     // TODO: Implement this. For now ignore.
4292     (void)CTy;
4293     return Address::invalid(); // FIXME?
4294   }
4295 
4296   // struct __va_list_tag {
4297   //   unsigned char gpr;
4298   //   unsigned char fpr;
4299   //   unsigned short reserved;
4300   //   void *overflow_arg_area;
4301   //   void *reg_save_area;
4302   // };
4303 
4304   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4305   bool isInt =
4306       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4307   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4308 
4309   // All aggregates are passed indirectly?  That doesn't seem consistent
4310   // with the argument-lowering code.
4311   bool isIndirect = Ty->isAggregateType();
4312 
4313   CGBuilderTy &Builder = CGF.Builder;
4314 
4315   // The calling convention either uses 1-2 GPRs or 1 FPR.
4316   Address NumRegsAddr = Address::invalid();
4317   if (isInt || IsSoftFloatABI) {
4318     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4319   } else {
4320     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4321   }
4322 
4323   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4324 
4325   // "Align" the register count when TY is i64.
4326   if (isI64 || (isF64 && IsSoftFloatABI)) {
4327     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4328     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4329   }
4330 
4331   llvm::Value *CC =
4332       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4333 
4334   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4335   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4336   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4337 
4338   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4339 
4340   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4341   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4342 
4343   // Case 1: consume registers.
4344   Address RegAddr = Address::invalid();
4345   {
4346     CGF.EmitBlock(UsingRegs);
4347 
4348     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4349     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4350                       CharUnits::fromQuantity(8));
4351     assert(RegAddr.getElementType() == CGF.Int8Ty);
4352 
4353     // Floating-point registers start after the general-purpose registers.
4354     if (!(isInt || IsSoftFloatABI)) {
4355       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4356                                                    CharUnits::fromQuantity(32));
4357     }
4358 
4359     // Get the address of the saved value by scaling the number of
4360     // registers we've used by the number of
4361     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4362     llvm::Value *RegOffset =
4363       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4364     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4365                                             RegAddr.getPointer(), RegOffset),
4366                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4367     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4368 
4369     // Increase the used-register count.
4370     NumRegs =
4371       Builder.CreateAdd(NumRegs,
4372                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4373     Builder.CreateStore(NumRegs, NumRegsAddr);
4374 
4375     CGF.EmitBranch(Cont);
4376   }
4377 
4378   // Case 2: consume space in the overflow area.
4379   Address MemAddr = Address::invalid();
4380   {
4381     CGF.EmitBlock(UsingOverflow);
4382 
4383     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4384 
4385     // Everything in the overflow area is rounded up to a size of at least 4.
4386     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4387 
4388     CharUnits Size;
4389     if (!isIndirect) {
4390       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4391       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4392     } else {
4393       Size = CGF.getPointerSize();
4394     }
4395 
4396     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4397     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4398                          OverflowAreaAlign);
4399     // Round up address of argument to alignment
4400     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4401     if (Align > OverflowAreaAlign) {
4402       llvm::Value *Ptr = OverflowArea.getPointer();
4403       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4404                                                            Align);
4405     }
4406 
4407     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4408 
4409     // Increase the overflow area.
4410     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4411     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4412     CGF.EmitBranch(Cont);
4413   }
4414 
4415   CGF.EmitBlock(Cont);
4416 
4417   // Merge the cases with a phi.
4418   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4419                                 "vaarg.addr");
4420 
4421   // Load the pointer if the argument was passed indirectly.
4422   if (isIndirect) {
4423     Result = Address(Builder.CreateLoad(Result, "aggr"),
4424                      getContext().getTypeAlignInChars(Ty));
4425   }
4426 
4427   return Result;
4428 }
4429 
4430 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4431     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4432   assert(Triple.getArch() == llvm::Triple::ppc);
4433 
4434   switch (Opts.getStructReturnConvention()) {
4435   case CodeGenOptions::SRCK_Default:
4436     break;
4437   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4438     return false;
4439   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4440     return true;
4441   }
4442 
4443   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4444     return true;
4445 
4446   return false;
4447 }
4448 
4449 bool
4450 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4451                                                 llvm::Value *Address) const {
4452   // This is calculated from the LLVM and GCC tables and verified
4453   // against gcc output.  AFAIK all ABIs use the same encoding.
4454 
4455   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4456 
4457   llvm::IntegerType *i8 = CGF.Int8Ty;
4458   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4459   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4460   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4461 
4462   // 0-31: r0-31, the 4-byte general-purpose registers
4463   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4464 
4465   // 32-63: fp0-31, the 8-byte floating-point registers
4466   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4467 
4468   // 64-76 are various 4-byte special-purpose registers:
4469   // 64: mq
4470   // 65: lr
4471   // 66: ctr
4472   // 67: ap
4473   // 68-75 cr0-7
4474   // 76: xer
4475   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4476 
4477   // 77-108: v0-31, the 16-byte vector registers
4478   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4479 
4480   // 109: vrsave
4481   // 110: vscr
4482   // 111: spe_acc
4483   // 112: spefscr
4484   // 113: sfp
4485   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4486 
4487   return false;
4488 }
4489 
4490 // PowerPC-64
4491 
4492 namespace {
4493 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4494 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4495 public:
4496   enum ABIKind {
4497     ELFv1 = 0,
4498     ELFv2
4499   };
4500 
4501 private:
4502   static const unsigned GPRBits = 64;
4503   ABIKind Kind;
4504   bool HasQPX;
4505   bool IsSoftFloatABI;
4506 
4507   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4508   // will be passed in a QPX register.
4509   bool IsQPXVectorTy(const Type *Ty) const {
4510     if (!HasQPX)
4511       return false;
4512 
4513     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4514       unsigned NumElements = VT->getNumElements();
4515       if (NumElements == 1)
4516         return false;
4517 
4518       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4519         if (getContext().getTypeSize(Ty) <= 256)
4520           return true;
4521       } else if (VT->getElementType()->
4522                    isSpecificBuiltinType(BuiltinType::Float)) {
4523         if (getContext().getTypeSize(Ty) <= 128)
4524           return true;
4525       }
4526     }
4527 
4528     return false;
4529   }
4530 
4531   bool IsQPXVectorTy(QualType Ty) const {
4532     return IsQPXVectorTy(Ty.getTypePtr());
4533   }
4534 
4535 public:
4536   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4537                      bool SoftFloatABI)
4538       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4539         IsSoftFloatABI(SoftFloatABI) {}
4540 
4541   bool isPromotableTypeForABI(QualType Ty) const;
4542   CharUnits getParamTypeAlignment(QualType Ty) const;
4543 
4544   ABIArgInfo classifyReturnType(QualType RetTy) const;
4545   ABIArgInfo classifyArgumentType(QualType Ty) const;
4546 
4547   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4548   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4549                                          uint64_t Members) const override;
4550 
4551   // TODO: We can add more logic to computeInfo to improve performance.
4552   // Example: For aggregate arguments that fit in a register, we could
4553   // use getDirectInReg (as is done below for structs containing a single
4554   // floating-point value) to avoid pushing them to memory on function
4555   // entry.  This would require changing the logic in PPCISelLowering
4556   // when lowering the parameters in the caller and args in the callee.
4557   void computeInfo(CGFunctionInfo &FI) const override {
4558     if (!getCXXABI().classifyReturnType(FI))
4559       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4560     for (auto &I : FI.arguments()) {
4561       // We rely on the default argument classification for the most part.
4562       // One exception:  An aggregate containing a single floating-point
4563       // or vector item must be passed in a register if one is available.
4564       const Type *T = isSingleElementStruct(I.type, getContext());
4565       if (T) {
4566         const BuiltinType *BT = T->getAs<BuiltinType>();
4567         if (IsQPXVectorTy(T) ||
4568             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4569             (BT && BT->isFloatingPoint())) {
4570           QualType QT(T, 0);
4571           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4572           continue;
4573         }
4574       }
4575       I.info = classifyArgumentType(I.type);
4576     }
4577   }
4578 
4579   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4580                     QualType Ty) const override;
4581 
4582   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4583                                     bool asReturnValue) const override {
4584     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4585   }
4586 
4587   bool isSwiftErrorInRegister() const override {
4588     return false;
4589   }
4590 };
4591 
4592 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4593 
4594 public:
4595   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4596                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4597                                bool SoftFloatABI)
4598       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4599                                                  SoftFloatABI)) {}
4600 
4601   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4602     // This is recovered from gcc output.
4603     return 1; // r1 is the dedicated stack pointer
4604   }
4605 
4606   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4607                                llvm::Value *Address) const override;
4608 };
4609 
4610 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4611 public:
4612   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4613 
4614   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4615     // This is recovered from gcc output.
4616     return 1; // r1 is the dedicated stack pointer
4617   }
4618 
4619   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4620                                llvm::Value *Address) const override;
4621 };
4622 
4623 }
4624 
4625 // Return true if the ABI requires Ty to be passed sign- or zero-
4626 // extended to 64 bits.
4627 bool
4628 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4629   // Treat an enum type as its underlying type.
4630   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4631     Ty = EnumTy->getDecl()->getIntegerType();
4632 
4633   // Promotable integer types are required to be promoted by the ABI.
4634   if (Ty->isPromotableIntegerType())
4635     return true;
4636 
4637   // In addition to the usual promotable integer types, we also need to
4638   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4639   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4640     switch (BT->getKind()) {
4641     case BuiltinType::Int:
4642     case BuiltinType::UInt:
4643       return true;
4644     default:
4645       break;
4646     }
4647 
4648   return false;
4649 }
4650 
4651 /// isAlignedParamType - Determine whether a type requires 16-byte or
4652 /// higher alignment in the parameter area.  Always returns at least 8.
4653 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4654   // Complex types are passed just like their elements.
4655   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4656     Ty = CTy->getElementType();
4657 
4658   // Only vector types of size 16 bytes need alignment (larger types are
4659   // passed via reference, smaller types are not aligned).
4660   if (IsQPXVectorTy(Ty)) {
4661     if (getContext().getTypeSize(Ty) > 128)
4662       return CharUnits::fromQuantity(32);
4663 
4664     return CharUnits::fromQuantity(16);
4665   } else if (Ty->isVectorType()) {
4666     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4667   }
4668 
4669   // For single-element float/vector structs, we consider the whole type
4670   // to have the same alignment requirements as its single element.
4671   const Type *AlignAsType = nullptr;
4672   const Type *EltType = isSingleElementStruct(Ty, getContext());
4673   if (EltType) {
4674     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4675     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4676          getContext().getTypeSize(EltType) == 128) ||
4677         (BT && BT->isFloatingPoint()))
4678       AlignAsType = EltType;
4679   }
4680 
4681   // Likewise for ELFv2 homogeneous aggregates.
4682   const Type *Base = nullptr;
4683   uint64_t Members = 0;
4684   if (!AlignAsType && Kind == ELFv2 &&
4685       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4686     AlignAsType = Base;
4687 
4688   // With special case aggregates, only vector base types need alignment.
4689   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4690     if (getContext().getTypeSize(AlignAsType) > 128)
4691       return CharUnits::fromQuantity(32);
4692 
4693     return CharUnits::fromQuantity(16);
4694   } else if (AlignAsType) {
4695     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4696   }
4697 
4698   // Otherwise, we only need alignment for any aggregate type that
4699   // has an alignment requirement of >= 16 bytes.
4700   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4701     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4702       return CharUnits::fromQuantity(32);
4703     return CharUnits::fromQuantity(16);
4704   }
4705 
4706   return CharUnits::fromQuantity(8);
4707 }
4708 
4709 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4710 /// aggregate.  Base is set to the base element type, and Members is set
4711 /// to the number of base elements.
4712 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4713                                      uint64_t &Members) const {
4714   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4715     uint64_t NElements = AT->getSize().getZExtValue();
4716     if (NElements == 0)
4717       return false;
4718     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4719       return false;
4720     Members *= NElements;
4721   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4722     const RecordDecl *RD = RT->getDecl();
4723     if (RD->hasFlexibleArrayMember())
4724       return false;
4725 
4726     Members = 0;
4727 
4728     // If this is a C++ record, check the bases first.
4729     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4730       for (const auto &I : CXXRD->bases()) {
4731         // Ignore empty records.
4732         if (isEmptyRecord(getContext(), I.getType(), true))
4733           continue;
4734 
4735         uint64_t FldMembers;
4736         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4737           return false;
4738 
4739         Members += FldMembers;
4740       }
4741     }
4742 
4743     for (const auto *FD : RD->fields()) {
4744       // Ignore (non-zero arrays of) empty records.
4745       QualType FT = FD->getType();
4746       while (const ConstantArrayType *AT =
4747              getContext().getAsConstantArrayType(FT)) {
4748         if (AT->getSize().getZExtValue() == 0)
4749           return false;
4750         FT = AT->getElementType();
4751       }
4752       if (isEmptyRecord(getContext(), FT, true))
4753         continue;
4754 
4755       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4756       if (getContext().getLangOpts().CPlusPlus &&
4757           FD->isZeroLengthBitField(getContext()))
4758         continue;
4759 
4760       uint64_t FldMembers;
4761       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4762         return false;
4763 
4764       Members = (RD->isUnion() ?
4765                  std::max(Members, FldMembers) : Members + FldMembers);
4766     }
4767 
4768     if (!Base)
4769       return false;
4770 
4771     // Ensure there is no padding.
4772     if (getContext().getTypeSize(Base) * Members !=
4773         getContext().getTypeSize(Ty))
4774       return false;
4775   } else {
4776     Members = 1;
4777     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4778       Members = 2;
4779       Ty = CT->getElementType();
4780     }
4781 
4782     // Most ABIs only support float, double, and some vector type widths.
4783     if (!isHomogeneousAggregateBaseType(Ty))
4784       return false;
4785 
4786     // The base type must be the same for all members.  Types that
4787     // agree in both total size and mode (float vs. vector) are
4788     // treated as being equivalent here.
4789     const Type *TyPtr = Ty.getTypePtr();
4790     if (!Base) {
4791       Base = TyPtr;
4792       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4793       // so make sure to widen it explicitly.
4794       if (const VectorType *VT = Base->getAs<VectorType>()) {
4795         QualType EltTy = VT->getElementType();
4796         unsigned NumElements =
4797             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4798         Base = getContext()
4799                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4800                    .getTypePtr();
4801       }
4802     }
4803 
4804     if (Base->isVectorType() != TyPtr->isVectorType() ||
4805         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4806       return false;
4807   }
4808   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4809 }
4810 
4811 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4812   // Homogeneous aggregates for ELFv2 must have base types of float,
4813   // double, long double, or 128-bit vectors.
4814   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4815     if (BT->getKind() == BuiltinType::Float ||
4816         BT->getKind() == BuiltinType::Double ||
4817         BT->getKind() == BuiltinType::LongDouble ||
4818         (getContext().getTargetInfo().hasFloat128Type() &&
4819           (BT->getKind() == BuiltinType::Float128))) {
4820       if (IsSoftFloatABI)
4821         return false;
4822       return true;
4823     }
4824   }
4825   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4826     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4827       return true;
4828   }
4829   return false;
4830 }
4831 
4832 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4833     const Type *Base, uint64_t Members) const {
4834   // Vector and fp128 types require one register, other floating point types
4835   // require one or two registers depending on their size.
4836   uint32_t NumRegs =
4837       ((getContext().getTargetInfo().hasFloat128Type() &&
4838           Base->isFloat128Type()) ||
4839         Base->isVectorType()) ? 1
4840                               : (getContext().getTypeSize(Base) + 63) / 64;
4841 
4842   // Homogeneous Aggregates may occupy at most 8 registers.
4843   return Members * NumRegs <= 8;
4844 }
4845 
4846 ABIArgInfo
4847 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4848   Ty = useFirstFieldIfTransparentUnion(Ty);
4849 
4850   if (Ty->isAnyComplexType())
4851     return ABIArgInfo::getDirect();
4852 
4853   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4854   // or via reference (larger than 16 bytes).
4855   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4856     uint64_t Size = getContext().getTypeSize(Ty);
4857     if (Size > 128)
4858       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4859     else if (Size < 128) {
4860       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4861       return ABIArgInfo::getDirect(CoerceTy);
4862     }
4863   }
4864 
4865   if (isAggregateTypeForABI(Ty)) {
4866     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4867       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4868 
4869     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4870     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4871 
4872     // ELFv2 homogeneous aggregates are passed as array types.
4873     const Type *Base = nullptr;
4874     uint64_t Members = 0;
4875     if (Kind == ELFv2 &&
4876         isHomogeneousAggregate(Ty, Base, Members)) {
4877       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4878       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4879       return ABIArgInfo::getDirect(CoerceTy);
4880     }
4881 
4882     // If an aggregate may end up fully in registers, we do not
4883     // use the ByVal method, but pass the aggregate as array.
4884     // This is usually beneficial since we avoid forcing the
4885     // back-end to store the argument to memory.
4886     uint64_t Bits = getContext().getTypeSize(Ty);
4887     if (Bits > 0 && Bits <= 8 * GPRBits) {
4888       llvm::Type *CoerceTy;
4889 
4890       // Types up to 8 bytes are passed as integer type (which will be
4891       // properly aligned in the argument save area doubleword).
4892       if (Bits <= GPRBits)
4893         CoerceTy =
4894             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4895       // Larger types are passed as arrays, with the base type selected
4896       // according to the required alignment in the save area.
4897       else {
4898         uint64_t RegBits = ABIAlign * 8;
4899         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4900         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4901         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4902       }
4903 
4904       return ABIArgInfo::getDirect(CoerceTy);
4905     }
4906 
4907     // All other aggregates are passed ByVal.
4908     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4909                                    /*ByVal=*/true,
4910                                    /*Realign=*/TyAlign > ABIAlign);
4911   }
4912 
4913   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4914                                      : ABIArgInfo::getDirect());
4915 }
4916 
4917 ABIArgInfo
4918 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4919   if (RetTy->isVoidType())
4920     return ABIArgInfo::getIgnore();
4921 
4922   if (RetTy->isAnyComplexType())
4923     return ABIArgInfo::getDirect();
4924 
4925   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4926   // or via reference (larger than 16 bytes).
4927   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4928     uint64_t Size = getContext().getTypeSize(RetTy);
4929     if (Size > 128)
4930       return getNaturalAlignIndirect(RetTy);
4931     else if (Size < 128) {
4932       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4933       return ABIArgInfo::getDirect(CoerceTy);
4934     }
4935   }
4936 
4937   if (isAggregateTypeForABI(RetTy)) {
4938     // ELFv2 homogeneous aggregates are returned as array types.
4939     const Type *Base = nullptr;
4940     uint64_t Members = 0;
4941     if (Kind == ELFv2 &&
4942         isHomogeneousAggregate(RetTy, Base, Members)) {
4943       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4944       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4945       return ABIArgInfo::getDirect(CoerceTy);
4946     }
4947 
4948     // ELFv2 small aggregates are returned in up to two registers.
4949     uint64_t Bits = getContext().getTypeSize(RetTy);
4950     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4951       if (Bits == 0)
4952         return ABIArgInfo::getIgnore();
4953 
4954       llvm::Type *CoerceTy;
4955       if (Bits > GPRBits) {
4956         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4957         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4958       } else
4959         CoerceTy =
4960             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4961       return ABIArgInfo::getDirect(CoerceTy);
4962     }
4963 
4964     // All other aggregates are returned indirectly.
4965     return getNaturalAlignIndirect(RetTy);
4966   }
4967 
4968   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4969                                         : ABIArgInfo::getDirect());
4970 }
4971 
4972 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4973 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4974                                       QualType Ty) const {
4975   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4976   TypeInfo.second = getParamTypeAlignment(Ty);
4977 
4978   CharUnits SlotSize = CharUnits::fromQuantity(8);
4979 
4980   // If we have a complex type and the base type is smaller than 8 bytes,
4981   // the ABI calls for the real and imaginary parts to be right-adjusted
4982   // in separate doublewords.  However, Clang expects us to produce a
4983   // pointer to a structure with the two parts packed tightly.  So generate
4984   // loads of the real and imaginary parts relative to the va_list pointer,
4985   // and store them to a temporary structure.
4986   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4987     CharUnits EltSize = TypeInfo.first / 2;
4988     if (EltSize < SlotSize) {
4989       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4990                                             SlotSize * 2, SlotSize,
4991                                             SlotSize, /*AllowHigher*/ true);
4992 
4993       Address RealAddr = Addr;
4994       Address ImagAddr = RealAddr;
4995       if (CGF.CGM.getDataLayout().isBigEndian()) {
4996         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4997                                                           SlotSize - EltSize);
4998         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4999                                                       2 * SlotSize - EltSize);
5000       } else {
5001         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5002       }
5003 
5004       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5005       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5006       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5007       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5008       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5009 
5010       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5011       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5012                              /*init*/ true);
5013       return Temp;
5014     }
5015   }
5016 
5017   // Otherwise, just use the general rule.
5018   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5019                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5020 }
5021 
5022 static bool
5023 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5024                               llvm::Value *Address) {
5025   // This is calculated from the LLVM and GCC tables and verified
5026   // against gcc output.  AFAIK all ABIs use the same encoding.
5027 
5028   CodeGen::CGBuilderTy &Builder = CGF.Builder;
5029 
5030   llvm::IntegerType *i8 = CGF.Int8Ty;
5031   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
5032   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
5033   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
5034 
5035   // 0-31: r0-31, the 8-byte general-purpose registers
5036   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
5037 
5038   // 32-63: fp0-31, the 8-byte floating-point registers
5039   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
5040 
5041   // 64-67 are various 8-byte special-purpose registers:
5042   // 64: mq
5043   // 65: lr
5044   // 66: ctr
5045   // 67: ap
5046   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
5047 
5048   // 68-76 are various 4-byte special-purpose registers:
5049   // 68-75 cr0-7
5050   // 76: xer
5051   AssignToArrayRange(Builder, Address, Four8, 68, 76);
5052 
5053   // 77-108: v0-31, the 16-byte vector registers
5054   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
5055 
5056   // 109: vrsave
5057   // 110: vscr
5058   // 111: spe_acc
5059   // 112: spefscr
5060   // 113: sfp
5061   // 114: tfhar
5062   // 115: tfiar
5063   // 116: texasr
5064   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
5065 
5066   return false;
5067 }
5068 
5069 bool
5070 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5071   CodeGen::CodeGenFunction &CGF,
5072   llvm::Value *Address) const {
5073 
5074   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
5075 }
5076 
5077 bool
5078 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5079                                                 llvm::Value *Address) const {
5080 
5081   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
5082 }
5083 
5084 //===----------------------------------------------------------------------===//
5085 // AArch64 ABI Implementation
5086 //===----------------------------------------------------------------------===//
5087 
5088 namespace {
5089 
5090 class AArch64ABIInfo : public SwiftABIInfo {
5091 public:
5092   enum ABIKind {
5093     AAPCS = 0,
5094     DarwinPCS,
5095     Win64
5096   };
5097 
5098 private:
5099   ABIKind Kind;
5100 
5101 public:
5102   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5103     : SwiftABIInfo(CGT), Kind(Kind) {}
5104 
5105 private:
5106   ABIKind getABIKind() const { return Kind; }
5107   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5108 
5109   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5110   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5111   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5112   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5113                                          uint64_t Members) const override;
5114 
5115   bool isIllegalVectorType(QualType Ty) const;
5116 
5117   void computeInfo(CGFunctionInfo &FI) const override {
5118     if (!::classifyReturnType(getCXXABI(), FI, *this))
5119       FI.getReturnInfo() =
5120           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5121 
5122     for (auto &it : FI.arguments())
5123       it.info = classifyArgumentType(it.type);
5124   }
5125 
5126   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5127                           CodeGenFunction &CGF) const;
5128 
5129   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5130                          CodeGenFunction &CGF) const;
5131 
5132   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5133                     QualType Ty) const override {
5134     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5135                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5136                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5137   }
5138 
5139   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5140                       QualType Ty) const override;
5141 
5142   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5143                                     bool asReturnValue) const override {
5144     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5145   }
5146   bool isSwiftErrorInRegister() const override {
5147     return true;
5148   }
5149 
5150   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5151                                  unsigned elts) const override;
5152 };
5153 
5154 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5155 public:
5156   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5157       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5158 
5159   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5160     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5161   }
5162 
5163   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5164     return 31;
5165   }
5166 
5167   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5168 
5169   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5170                            CodeGen::CodeGenModule &CGM) const override {
5171     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5172     if (!FD)
5173       return;
5174 
5175     LangOptions::SignReturnAddressScopeKind Scope =
5176         CGM.getLangOpts().getSignReturnAddressScope();
5177     LangOptions::SignReturnAddressKeyKind Key =
5178         CGM.getLangOpts().getSignReturnAddressKey();
5179     bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement;
5180     if (const auto *TA = FD->getAttr<TargetAttr>()) {
5181       ParsedTargetAttr Attr = TA->parse();
5182       if (!Attr.BranchProtection.empty()) {
5183         TargetInfo::BranchProtectionInfo BPI;
5184         StringRef Error;
5185         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5186                                                        BPI, Error);
5187         assert(Error.empty());
5188         Scope = BPI.SignReturnAddr;
5189         Key = BPI.SignKey;
5190         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
5191       }
5192     }
5193 
5194     auto *Fn = cast<llvm::Function>(GV);
5195     if (Scope != LangOptions::SignReturnAddressScopeKind::None) {
5196       Fn->addFnAttr("sign-return-address",
5197                     Scope == LangOptions::SignReturnAddressScopeKind::All
5198                         ? "all"
5199                         : "non-leaf");
5200 
5201       Fn->addFnAttr("sign-return-address-key",
5202                     Key == LangOptions::SignReturnAddressKeyKind::AKey
5203                         ? "a_key"
5204                         : "b_key");
5205     }
5206 
5207     if (BranchTargetEnforcement)
5208       Fn->addFnAttr("branch-target-enforcement");
5209   }
5210 };
5211 
5212 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5213 public:
5214   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5215       : AArch64TargetCodeGenInfo(CGT, K) {}
5216 
5217   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5218                            CodeGen::CodeGenModule &CGM) const override;
5219 
5220   void getDependentLibraryOption(llvm::StringRef Lib,
5221                                  llvm::SmallString<24> &Opt) const override {
5222     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5223   }
5224 
5225   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5226                                llvm::SmallString<32> &Opt) const override {
5227     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5228   }
5229 };
5230 
5231 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5232     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5233   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5234   if (GV->isDeclaration())
5235     return;
5236   addStackProbeTargetAttributes(D, GV, CGM);
5237 }
5238 }
5239 
5240 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5241   Ty = useFirstFieldIfTransparentUnion(Ty);
5242 
5243   // Handle illegal vector types here.
5244   if (isIllegalVectorType(Ty)) {
5245     uint64_t Size = getContext().getTypeSize(Ty);
5246     // Android promotes <2 x i8> to i16, not i32
5247     if (isAndroid() && (Size <= 16)) {
5248       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5249       return ABIArgInfo::getDirect(ResType);
5250     }
5251     if (Size <= 32) {
5252       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5253       return ABIArgInfo::getDirect(ResType);
5254     }
5255     if (Size == 64) {
5256       llvm::Type *ResType =
5257           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5258       return ABIArgInfo::getDirect(ResType);
5259     }
5260     if (Size == 128) {
5261       llvm::Type *ResType =
5262           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5263       return ABIArgInfo::getDirect(ResType);
5264     }
5265     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5266   }
5267 
5268   if (!isAggregateTypeForABI(Ty)) {
5269     // Treat an enum type as its underlying type.
5270     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5271       Ty = EnumTy->getDecl()->getIntegerType();
5272 
5273     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5274                 ? ABIArgInfo::getExtend(Ty)
5275                 : ABIArgInfo::getDirect());
5276   }
5277 
5278   // Structures with either a non-trivial destructor or a non-trivial
5279   // copy constructor are always indirect.
5280   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5281     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5282                                      CGCXXABI::RAA_DirectInMemory);
5283   }
5284 
5285   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5286   // elsewhere for GNU compatibility.
5287   uint64_t Size = getContext().getTypeSize(Ty);
5288   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5289   if (IsEmpty || Size == 0) {
5290     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5291       return ABIArgInfo::getIgnore();
5292 
5293     // GNU C mode. The only argument that gets ignored is an empty one with size
5294     // 0.
5295     if (IsEmpty && Size == 0)
5296       return ABIArgInfo::getIgnore();
5297     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5298   }
5299 
5300   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5301   const Type *Base = nullptr;
5302   uint64_t Members = 0;
5303   if (isHomogeneousAggregate(Ty, Base, Members)) {
5304     return ABIArgInfo::getDirect(
5305         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5306   }
5307 
5308   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5309   if (Size <= 128) {
5310     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5311     // same size and alignment.
5312     if (getTarget().isRenderScriptTarget()) {
5313       return coerceToIntArray(Ty, getContext(), getVMContext());
5314     }
5315     unsigned Alignment;
5316     if (Kind == AArch64ABIInfo::AAPCS) {
5317       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5318       Alignment = Alignment < 128 ? 64 : 128;
5319     } else {
5320       Alignment = std::max(getContext().getTypeAlign(Ty),
5321                            (unsigned)getTarget().getPointerWidth(0));
5322     }
5323     Size = llvm::alignTo(Size, Alignment);
5324 
5325     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5326     // For aggregates with 16-byte alignment, we use i128.
5327     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5328     return ABIArgInfo::getDirect(
5329         Size == Alignment ? BaseTy
5330                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5331   }
5332 
5333   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5334 }
5335 
5336 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5337                                               bool IsVariadic) const {
5338   if (RetTy->isVoidType())
5339     return ABIArgInfo::getIgnore();
5340 
5341   // Large vector types should be returned via memory.
5342   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5343     return getNaturalAlignIndirect(RetTy);
5344 
5345   if (!isAggregateTypeForABI(RetTy)) {
5346     // Treat an enum type as its underlying type.
5347     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5348       RetTy = EnumTy->getDecl()->getIntegerType();
5349 
5350     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5351                 ? ABIArgInfo::getExtend(RetTy)
5352                 : ABIArgInfo::getDirect());
5353   }
5354 
5355   uint64_t Size = getContext().getTypeSize(RetTy);
5356   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5357     return ABIArgInfo::getIgnore();
5358 
5359   const Type *Base = nullptr;
5360   uint64_t Members = 0;
5361   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5362       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5363         IsVariadic))
5364     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5365     return ABIArgInfo::getDirect();
5366 
5367   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5368   if (Size <= 128) {
5369     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5370     // same size and alignment.
5371     if (getTarget().isRenderScriptTarget()) {
5372       return coerceToIntArray(RetTy, getContext(), getVMContext());
5373     }
5374     unsigned Alignment = getContext().getTypeAlign(RetTy);
5375     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5376 
5377     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5378     // For aggregates with 16-byte alignment, we use i128.
5379     if (Alignment < 128 && Size == 128) {
5380       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5381       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5382     }
5383     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5384   }
5385 
5386   return getNaturalAlignIndirect(RetTy);
5387 }
5388 
5389 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5390 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5391   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5392     // Check whether VT is legal.
5393     unsigned NumElements = VT->getNumElements();
5394     uint64_t Size = getContext().getTypeSize(VT);
5395     // NumElements should be power of 2.
5396     if (!llvm::isPowerOf2_32(NumElements))
5397       return true;
5398 
5399     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5400     // vectors for some reason.
5401     llvm::Triple Triple = getTarget().getTriple();
5402     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5403         Triple.isOSBinFormatMachO())
5404       return Size <= 32;
5405 
5406     return Size != 64 && (Size != 128 || NumElements == 1);
5407   }
5408   return false;
5409 }
5410 
5411 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5412                                                llvm::Type *eltTy,
5413                                                unsigned elts) const {
5414   if (!llvm::isPowerOf2_32(elts))
5415     return false;
5416   if (totalSize.getQuantity() != 8 &&
5417       (totalSize.getQuantity() != 16 || elts == 1))
5418     return false;
5419   return true;
5420 }
5421 
5422 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5423   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5424   // point type or a short-vector type. This is the same as the 32-bit ABI,
5425   // but with the difference that any floating-point type is allowed,
5426   // including __fp16.
5427   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5428     if (BT->isFloatingPoint())
5429       return true;
5430   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5431     unsigned VecSize = getContext().getTypeSize(VT);
5432     if (VecSize == 64 || VecSize == 128)
5433       return true;
5434   }
5435   return false;
5436 }
5437 
5438 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5439                                                        uint64_t Members) const {
5440   return Members <= 4;
5441 }
5442 
5443 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5444                                             QualType Ty,
5445                                             CodeGenFunction &CGF) const {
5446   ABIArgInfo AI = classifyArgumentType(Ty);
5447   bool IsIndirect = AI.isIndirect();
5448 
5449   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5450   if (IsIndirect)
5451     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5452   else if (AI.getCoerceToType())
5453     BaseTy = AI.getCoerceToType();
5454 
5455   unsigned NumRegs = 1;
5456   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5457     BaseTy = ArrTy->getElementType();
5458     NumRegs = ArrTy->getNumElements();
5459   }
5460   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5461 
5462   // The AArch64 va_list type and handling is specified in the Procedure Call
5463   // Standard, section B.4:
5464   //
5465   // struct {
5466   //   void *__stack;
5467   //   void *__gr_top;
5468   //   void *__vr_top;
5469   //   int __gr_offs;
5470   //   int __vr_offs;
5471   // };
5472 
5473   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5474   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5475   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5476   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5477 
5478   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5479   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5480 
5481   Address reg_offs_p = Address::invalid();
5482   llvm::Value *reg_offs = nullptr;
5483   int reg_top_index;
5484   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5485   if (!IsFPR) {
5486     // 3 is the field number of __gr_offs
5487     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5488     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5489     reg_top_index = 1; // field number for __gr_top
5490     RegSize = llvm::alignTo(RegSize, 8);
5491   } else {
5492     // 4 is the field number of __vr_offs.
5493     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5494     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5495     reg_top_index = 2; // field number for __vr_top
5496     RegSize = 16 * NumRegs;
5497   }
5498 
5499   //=======================================
5500   // Find out where argument was passed
5501   //=======================================
5502 
5503   // If reg_offs >= 0 we're already using the stack for this type of
5504   // argument. We don't want to keep updating reg_offs (in case it overflows,
5505   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5506   // whatever they get).
5507   llvm::Value *UsingStack = nullptr;
5508   UsingStack = CGF.Builder.CreateICmpSGE(
5509       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5510 
5511   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5512 
5513   // Otherwise, at least some kind of argument could go in these registers, the
5514   // question is whether this particular type is too big.
5515   CGF.EmitBlock(MaybeRegBlock);
5516 
5517   // Integer arguments may need to correct register alignment (for example a
5518   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5519   // align __gr_offs to calculate the potential address.
5520   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5521     int Align = TyAlign.getQuantity();
5522 
5523     reg_offs = CGF.Builder.CreateAdd(
5524         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5525         "align_regoffs");
5526     reg_offs = CGF.Builder.CreateAnd(
5527         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5528         "aligned_regoffs");
5529   }
5530 
5531   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5532   // The fact that this is done unconditionally reflects the fact that
5533   // allocating an argument to the stack also uses up all the remaining
5534   // registers of the appropriate kind.
5535   llvm::Value *NewOffset = nullptr;
5536   NewOffset = CGF.Builder.CreateAdd(
5537       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5538   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5539 
5540   // Now we're in a position to decide whether this argument really was in
5541   // registers or not.
5542   llvm::Value *InRegs = nullptr;
5543   InRegs = CGF.Builder.CreateICmpSLE(
5544       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5545 
5546   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5547 
5548   //=======================================
5549   // Argument was in registers
5550   //=======================================
5551 
5552   // Now we emit the code for if the argument was originally passed in
5553   // registers. First start the appropriate block:
5554   CGF.EmitBlock(InRegBlock);
5555 
5556   llvm::Value *reg_top = nullptr;
5557   Address reg_top_p =
5558       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5559   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5560   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5561                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5562   Address RegAddr = Address::invalid();
5563   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5564 
5565   if (IsIndirect) {
5566     // If it's been passed indirectly (actually a struct), whatever we find from
5567     // stored registers or on the stack will actually be a struct **.
5568     MemTy = llvm::PointerType::getUnqual(MemTy);
5569   }
5570 
5571   const Type *Base = nullptr;
5572   uint64_t NumMembers = 0;
5573   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5574   if (IsHFA && NumMembers > 1) {
5575     // Homogeneous aggregates passed in registers will have their elements split
5576     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5577     // qN+1, ...). We reload and store into a temporary local variable
5578     // contiguously.
5579     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5580     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5581     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5582     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5583     Address Tmp = CGF.CreateTempAlloca(HFATy,
5584                                        std::max(TyAlign, BaseTyInfo.second));
5585 
5586     // On big-endian platforms, the value will be right-aligned in its slot.
5587     int Offset = 0;
5588     if (CGF.CGM.getDataLayout().isBigEndian() &&
5589         BaseTyInfo.first.getQuantity() < 16)
5590       Offset = 16 - BaseTyInfo.first.getQuantity();
5591 
5592     for (unsigned i = 0; i < NumMembers; ++i) {
5593       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5594       Address LoadAddr =
5595         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5596       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5597 
5598       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5599 
5600       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5601       CGF.Builder.CreateStore(Elem, StoreAddr);
5602     }
5603 
5604     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5605   } else {
5606     // Otherwise the object is contiguous in memory.
5607 
5608     // It might be right-aligned in its slot.
5609     CharUnits SlotSize = BaseAddr.getAlignment();
5610     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5611         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5612         TySize < SlotSize) {
5613       CharUnits Offset = SlotSize - TySize;
5614       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5615     }
5616 
5617     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5618   }
5619 
5620   CGF.EmitBranch(ContBlock);
5621 
5622   //=======================================
5623   // Argument was on the stack
5624   //=======================================
5625   CGF.EmitBlock(OnStackBlock);
5626 
5627   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5628   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5629 
5630   // Again, stack arguments may need realignment. In this case both integer and
5631   // floating-point ones might be affected.
5632   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5633     int Align = TyAlign.getQuantity();
5634 
5635     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5636 
5637     OnStackPtr = CGF.Builder.CreateAdd(
5638         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5639         "align_stack");
5640     OnStackPtr = CGF.Builder.CreateAnd(
5641         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5642         "align_stack");
5643 
5644     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5645   }
5646   Address OnStackAddr(OnStackPtr,
5647                       std::max(CharUnits::fromQuantity(8), TyAlign));
5648 
5649   // All stack slots are multiples of 8 bytes.
5650   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5651   CharUnits StackSize;
5652   if (IsIndirect)
5653     StackSize = StackSlotSize;
5654   else
5655     StackSize = TySize.alignTo(StackSlotSize);
5656 
5657   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5658   llvm::Value *NewStack =
5659       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5660 
5661   // Write the new value of __stack for the next call to va_arg
5662   CGF.Builder.CreateStore(NewStack, stack_p);
5663 
5664   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5665       TySize < StackSlotSize) {
5666     CharUnits Offset = StackSlotSize - TySize;
5667     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5668   }
5669 
5670   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5671 
5672   CGF.EmitBranch(ContBlock);
5673 
5674   //=======================================
5675   // Tidy up
5676   //=======================================
5677   CGF.EmitBlock(ContBlock);
5678 
5679   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5680                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5681 
5682   if (IsIndirect)
5683     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5684                    TyAlign);
5685 
5686   return ResAddr;
5687 }
5688 
5689 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5690                                         CodeGenFunction &CGF) const {
5691   // The backend's lowering doesn't support va_arg for aggregates or
5692   // illegal vector types.  Lower VAArg here for these cases and use
5693   // the LLVM va_arg instruction for everything else.
5694   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5695     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5696 
5697   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
5698   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
5699 
5700   // Empty records are ignored for parameter passing purposes.
5701   if (isEmptyRecord(getContext(), Ty, true)) {
5702     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5703     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5704     return Addr;
5705   }
5706 
5707   // The size of the actual thing passed, which might end up just
5708   // being a pointer for indirect types.
5709   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5710 
5711   // Arguments bigger than 16 bytes which aren't homogeneous
5712   // aggregates should be passed indirectly.
5713   bool IsIndirect = false;
5714   if (TyInfo.first.getQuantity() > 16) {
5715     const Type *Base = nullptr;
5716     uint64_t Members = 0;
5717     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5718   }
5719 
5720   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5721                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5722 }
5723 
5724 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5725                                     QualType Ty) const {
5726   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5727                           CGF.getContext().getTypeInfoInChars(Ty),
5728                           CharUnits::fromQuantity(8),
5729                           /*allowHigherAlign*/ false);
5730 }
5731 
5732 //===----------------------------------------------------------------------===//
5733 // ARM ABI Implementation
5734 //===----------------------------------------------------------------------===//
5735 
5736 namespace {
5737 
5738 class ARMABIInfo : public SwiftABIInfo {
5739 public:
5740   enum ABIKind {
5741     APCS = 0,
5742     AAPCS = 1,
5743     AAPCS_VFP = 2,
5744     AAPCS16_VFP = 3,
5745   };
5746 
5747 private:
5748   ABIKind Kind;
5749 
5750 public:
5751   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5752       : SwiftABIInfo(CGT), Kind(_Kind) {
5753     setCCs();
5754   }
5755 
5756   bool isEABI() const {
5757     switch (getTarget().getTriple().getEnvironment()) {
5758     case llvm::Triple::Android:
5759     case llvm::Triple::EABI:
5760     case llvm::Triple::EABIHF:
5761     case llvm::Triple::GNUEABI:
5762     case llvm::Triple::GNUEABIHF:
5763     case llvm::Triple::MuslEABI:
5764     case llvm::Triple::MuslEABIHF:
5765       return true;
5766     default:
5767       return false;
5768     }
5769   }
5770 
5771   bool isEABIHF() const {
5772     switch (getTarget().getTriple().getEnvironment()) {
5773     case llvm::Triple::EABIHF:
5774     case llvm::Triple::GNUEABIHF:
5775     case llvm::Triple::MuslEABIHF:
5776       return true;
5777     default:
5778       return false;
5779     }
5780   }
5781 
5782   ABIKind getABIKind() const { return Kind; }
5783 
5784 private:
5785   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5786                                 unsigned functionCallConv) const;
5787   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5788                                   unsigned functionCallConv) const;
5789   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5790                                           uint64_t Members) const;
5791   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5792   bool isIllegalVectorType(QualType Ty) const;
5793   bool containsAnyFP16Vectors(QualType Ty) const;
5794 
5795   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5796   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5797                                          uint64_t Members) const override;
5798 
5799   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5800 
5801   void computeInfo(CGFunctionInfo &FI) const override;
5802 
5803   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5804                     QualType Ty) const override;
5805 
5806   llvm::CallingConv::ID getLLVMDefaultCC() const;
5807   llvm::CallingConv::ID getABIDefaultCC() const;
5808   void setCCs();
5809 
5810   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5811                                     bool asReturnValue) const override {
5812     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5813   }
5814   bool isSwiftErrorInRegister() const override {
5815     return true;
5816   }
5817   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5818                                  unsigned elts) const override;
5819 };
5820 
5821 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5822 public:
5823   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5824     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5825 
5826   const ARMABIInfo &getABIInfo() const {
5827     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5828   }
5829 
5830   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5831     return 13;
5832   }
5833 
5834   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5835     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5836   }
5837 
5838   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5839                                llvm::Value *Address) const override {
5840     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5841 
5842     // 0-15 are the 16 integer registers.
5843     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5844     return false;
5845   }
5846 
5847   unsigned getSizeOfUnwindException() const override {
5848     if (getABIInfo().isEABI()) return 88;
5849     return TargetCodeGenInfo::getSizeOfUnwindException();
5850   }
5851 
5852   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5853                            CodeGen::CodeGenModule &CGM) const override {
5854     if (GV->isDeclaration())
5855       return;
5856     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5857     if (!FD)
5858       return;
5859 
5860     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5861     if (!Attr)
5862       return;
5863 
5864     const char *Kind;
5865     switch (Attr->getInterrupt()) {
5866     case ARMInterruptAttr::Generic: Kind = ""; break;
5867     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5868     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5869     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5870     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5871     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5872     }
5873 
5874     llvm::Function *Fn = cast<llvm::Function>(GV);
5875 
5876     Fn->addFnAttr("interrupt", Kind);
5877 
5878     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5879     if (ABI == ARMABIInfo::APCS)
5880       return;
5881 
5882     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5883     // however this is not necessarily true on taking any interrupt. Instruct
5884     // the backend to perform a realignment as part of the function prologue.
5885     llvm::AttrBuilder B;
5886     B.addStackAlignmentAttr(8);
5887     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5888   }
5889 };
5890 
5891 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5892 public:
5893   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5894       : ARMTargetCodeGenInfo(CGT, K) {}
5895 
5896   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5897                            CodeGen::CodeGenModule &CGM) const override;
5898 
5899   void getDependentLibraryOption(llvm::StringRef Lib,
5900                                  llvm::SmallString<24> &Opt) const override {
5901     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5902   }
5903 
5904   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5905                                llvm::SmallString<32> &Opt) const override {
5906     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5907   }
5908 };
5909 
5910 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5911     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5912   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5913   if (GV->isDeclaration())
5914     return;
5915   addStackProbeTargetAttributes(D, GV, CGM);
5916 }
5917 }
5918 
5919 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5920   if (!::classifyReturnType(getCXXABI(), FI, *this))
5921     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5922                                             FI.getCallingConvention());
5923 
5924   for (auto &I : FI.arguments())
5925     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5926                                   FI.getCallingConvention());
5927 
5928 
5929   // Always honor user-specified calling convention.
5930   if (FI.getCallingConvention() != llvm::CallingConv::C)
5931     return;
5932 
5933   llvm::CallingConv::ID cc = getRuntimeCC();
5934   if (cc != llvm::CallingConv::C)
5935     FI.setEffectiveCallingConvention(cc);
5936 }
5937 
5938 /// Return the default calling convention that LLVM will use.
5939 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5940   // The default calling convention that LLVM will infer.
5941   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5942     return llvm::CallingConv::ARM_AAPCS_VFP;
5943   else if (isEABI())
5944     return llvm::CallingConv::ARM_AAPCS;
5945   else
5946     return llvm::CallingConv::ARM_APCS;
5947 }
5948 
5949 /// Return the calling convention that our ABI would like us to use
5950 /// as the C calling convention.
5951 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5952   switch (getABIKind()) {
5953   case APCS: return llvm::CallingConv::ARM_APCS;
5954   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5955   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5956   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5957   }
5958   llvm_unreachable("bad ABI kind");
5959 }
5960 
5961 void ARMABIInfo::setCCs() {
5962   assert(getRuntimeCC() == llvm::CallingConv::C);
5963 
5964   // Don't muddy up the IR with a ton of explicit annotations if
5965   // they'd just match what LLVM will infer from the triple.
5966   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5967   if (abiCC != getLLVMDefaultCC())
5968     RuntimeCC = abiCC;
5969 }
5970 
5971 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5972   uint64_t Size = getContext().getTypeSize(Ty);
5973   if (Size <= 32) {
5974     llvm::Type *ResType =
5975         llvm::Type::getInt32Ty(getVMContext());
5976     return ABIArgInfo::getDirect(ResType);
5977   }
5978   if (Size == 64 || Size == 128) {
5979     llvm::Type *ResType = llvm::VectorType::get(
5980         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5981     return ABIArgInfo::getDirect(ResType);
5982   }
5983   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5984 }
5985 
5986 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5987                                                     const Type *Base,
5988                                                     uint64_t Members) const {
5989   assert(Base && "Base class should be set for homogeneous aggregate");
5990   // Base can be a floating-point or a vector.
5991   if (const VectorType *VT = Base->getAs<VectorType>()) {
5992     // FP16 vectors should be converted to integer vectors
5993     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
5994       uint64_t Size = getContext().getTypeSize(VT);
5995       llvm::Type *NewVecTy = llvm::VectorType::get(
5996           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5997       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5998       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5999     }
6000   }
6001   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6002 }
6003 
6004 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6005                                             unsigned functionCallConv) const {
6006   // 6.1.2.1 The following argument types are VFP CPRCs:
6007   //   A single-precision floating-point type (including promoted
6008   //   half-precision types); A double-precision floating-point type;
6009   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6010   //   with a Base Type of a single- or double-precision floating-point type,
6011   //   64-bit containerized vectors or 128-bit containerized vectors with one
6012   //   to four Elements.
6013   // Variadic functions should always marshal to the base standard.
6014   bool IsAAPCS_VFP =
6015       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6016 
6017   Ty = useFirstFieldIfTransparentUnion(Ty);
6018 
6019   // Handle illegal vector types here.
6020   if (isIllegalVectorType(Ty))
6021     return coerceIllegalVector(Ty);
6022 
6023   // _Float16 and __fp16 get passed as if it were an int or float, but with
6024   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6025   // half type natively, and does not need to interwork with AAPCS code.
6026   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
6027       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6028     llvm::Type *ResType = IsAAPCS_VFP ?
6029       llvm::Type::getFloatTy(getVMContext()) :
6030       llvm::Type::getInt32Ty(getVMContext());
6031     return ABIArgInfo::getDirect(ResType);
6032   }
6033 
6034   if (!isAggregateTypeForABI(Ty)) {
6035     // Treat an enum type as its underlying type.
6036     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6037       Ty = EnumTy->getDecl()->getIntegerType();
6038     }
6039 
6040     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6041                                           : ABIArgInfo::getDirect());
6042   }
6043 
6044   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6045     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6046   }
6047 
6048   // Ignore empty records.
6049   if (isEmptyRecord(getContext(), Ty, true))
6050     return ABIArgInfo::getIgnore();
6051 
6052   if (IsAAPCS_VFP) {
6053     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6054     // into VFP registers.
6055     const Type *Base = nullptr;
6056     uint64_t Members = 0;
6057     if (isHomogeneousAggregate(Ty, Base, Members))
6058       return classifyHomogeneousAggregate(Ty, Base, Members);
6059   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6060     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6061     // this convention even for a variadic function: the backend will use GPRs
6062     // if needed.
6063     const Type *Base = nullptr;
6064     uint64_t Members = 0;
6065     if (isHomogeneousAggregate(Ty, Base, Members)) {
6066       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6067       llvm::Type *Ty =
6068         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6069       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6070     }
6071   }
6072 
6073   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6074       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6075     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6076     // bigger than 128-bits, they get placed in space allocated by the caller,
6077     // and a pointer is passed.
6078     return ABIArgInfo::getIndirect(
6079         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6080   }
6081 
6082   // Support byval for ARM.
6083   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6084   // most 8-byte. We realign the indirect argument if type alignment is bigger
6085   // than ABI alignment.
6086   uint64_t ABIAlign = 4;
6087   uint64_t TyAlign;
6088   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6089       getABIKind() == ARMABIInfo::AAPCS) {
6090     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6091     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6092   } else {
6093     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6094   }
6095   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6096     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6097     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6098                                    /*ByVal=*/true,
6099                                    /*Realign=*/TyAlign > ABIAlign);
6100   }
6101 
6102   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6103   // same size and alignment.
6104   if (getTarget().isRenderScriptTarget()) {
6105     return coerceToIntArray(Ty, getContext(), getVMContext());
6106   }
6107 
6108   // Otherwise, pass by coercing to a structure of the appropriate size.
6109   llvm::Type* ElemTy;
6110   unsigned SizeRegs;
6111   // FIXME: Try to match the types of the arguments more accurately where
6112   // we can.
6113   if (TyAlign <= 4) {
6114     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6115     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6116   } else {
6117     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6118     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6119   }
6120 
6121   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6122 }
6123 
6124 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6125                               llvm::LLVMContext &VMContext) {
6126   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6127   // is called integer-like if its size is less than or equal to one word, and
6128   // the offset of each of its addressable sub-fields is zero.
6129 
6130   uint64_t Size = Context.getTypeSize(Ty);
6131 
6132   // Check that the type fits in a word.
6133   if (Size > 32)
6134     return false;
6135 
6136   // FIXME: Handle vector types!
6137   if (Ty->isVectorType())
6138     return false;
6139 
6140   // Float types are never treated as "integer like".
6141   if (Ty->isRealFloatingType())
6142     return false;
6143 
6144   // If this is a builtin or pointer type then it is ok.
6145   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6146     return true;
6147 
6148   // Small complex integer types are "integer like".
6149   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6150     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6151 
6152   // Single element and zero sized arrays should be allowed, by the definition
6153   // above, but they are not.
6154 
6155   // Otherwise, it must be a record type.
6156   const RecordType *RT = Ty->getAs<RecordType>();
6157   if (!RT) return false;
6158 
6159   // Ignore records with flexible arrays.
6160   const RecordDecl *RD = RT->getDecl();
6161   if (RD->hasFlexibleArrayMember())
6162     return false;
6163 
6164   // Check that all sub-fields are at offset 0, and are themselves "integer
6165   // like".
6166   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6167 
6168   bool HadField = false;
6169   unsigned idx = 0;
6170   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6171        i != e; ++i, ++idx) {
6172     const FieldDecl *FD = *i;
6173 
6174     // Bit-fields are not addressable, we only need to verify they are "integer
6175     // like". We still have to disallow a subsequent non-bitfield, for example:
6176     //   struct { int : 0; int x }
6177     // is non-integer like according to gcc.
6178     if (FD->isBitField()) {
6179       if (!RD->isUnion())
6180         HadField = true;
6181 
6182       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6183         return false;
6184 
6185       continue;
6186     }
6187 
6188     // Check if this field is at offset 0.
6189     if (Layout.getFieldOffset(idx) != 0)
6190       return false;
6191 
6192     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6193       return false;
6194 
6195     // Only allow at most one field in a structure. This doesn't match the
6196     // wording above, but follows gcc in situations with a field following an
6197     // empty structure.
6198     if (!RD->isUnion()) {
6199       if (HadField)
6200         return false;
6201 
6202       HadField = true;
6203     }
6204   }
6205 
6206   return true;
6207 }
6208 
6209 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6210                                           unsigned functionCallConv) const {
6211 
6212   // Variadic functions should always marshal to the base standard.
6213   bool IsAAPCS_VFP =
6214       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6215 
6216   if (RetTy->isVoidType())
6217     return ABIArgInfo::getIgnore();
6218 
6219   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6220     // Large vector types should be returned via memory.
6221     if (getContext().getTypeSize(RetTy) > 128)
6222       return getNaturalAlignIndirect(RetTy);
6223     // FP16 vectors should be converted to integer vectors
6224     if (!getTarget().hasLegalHalfType() &&
6225         (VT->getElementType()->isFloat16Type() ||
6226          VT->getElementType()->isHalfType()))
6227       return coerceIllegalVector(RetTy);
6228   }
6229 
6230   // _Float16 and __fp16 get returned as if it were an int or float, but with
6231   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6232   // half type natively, and does not need to interwork with AAPCS code.
6233   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6234       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6235     llvm::Type *ResType = IsAAPCS_VFP ?
6236       llvm::Type::getFloatTy(getVMContext()) :
6237       llvm::Type::getInt32Ty(getVMContext());
6238     return ABIArgInfo::getDirect(ResType);
6239   }
6240 
6241   if (!isAggregateTypeForABI(RetTy)) {
6242     // Treat an enum type as its underlying type.
6243     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6244       RetTy = EnumTy->getDecl()->getIntegerType();
6245 
6246     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6247                                             : ABIArgInfo::getDirect();
6248   }
6249 
6250   // Are we following APCS?
6251   if (getABIKind() == APCS) {
6252     if (isEmptyRecord(getContext(), RetTy, false))
6253       return ABIArgInfo::getIgnore();
6254 
6255     // Complex types are all returned as packed integers.
6256     //
6257     // FIXME: Consider using 2 x vector types if the back end handles them
6258     // correctly.
6259     if (RetTy->isAnyComplexType())
6260       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6261           getVMContext(), getContext().getTypeSize(RetTy)));
6262 
6263     // Integer like structures are returned in r0.
6264     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6265       // Return in the smallest viable integer type.
6266       uint64_t Size = getContext().getTypeSize(RetTy);
6267       if (Size <= 8)
6268         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6269       if (Size <= 16)
6270         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6271       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6272     }
6273 
6274     // Otherwise return in memory.
6275     return getNaturalAlignIndirect(RetTy);
6276   }
6277 
6278   // Otherwise this is an AAPCS variant.
6279 
6280   if (isEmptyRecord(getContext(), RetTy, true))
6281     return ABIArgInfo::getIgnore();
6282 
6283   // Check for homogeneous aggregates with AAPCS-VFP.
6284   if (IsAAPCS_VFP) {
6285     const Type *Base = nullptr;
6286     uint64_t Members = 0;
6287     if (isHomogeneousAggregate(RetTy, Base, Members))
6288       return classifyHomogeneousAggregate(RetTy, Base, Members);
6289   }
6290 
6291   // Aggregates <= 4 bytes are returned in r0; other aggregates
6292   // are returned indirectly.
6293   uint64_t Size = getContext().getTypeSize(RetTy);
6294   if (Size <= 32) {
6295     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6296     // same size and alignment.
6297     if (getTarget().isRenderScriptTarget()) {
6298       return coerceToIntArray(RetTy, getContext(), getVMContext());
6299     }
6300     if (getDataLayout().isBigEndian())
6301       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6302       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6303 
6304     // Return in the smallest viable integer type.
6305     if (Size <= 8)
6306       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6307     if (Size <= 16)
6308       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6309     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6310   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6311     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6312     llvm::Type *CoerceTy =
6313         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6314     return ABIArgInfo::getDirect(CoerceTy);
6315   }
6316 
6317   return getNaturalAlignIndirect(RetTy);
6318 }
6319 
6320 /// isIllegalVector - check whether Ty is an illegal vector type.
6321 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6322   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6323     // On targets that don't support FP16, FP16 is expanded into float, and we
6324     // don't want the ABI to depend on whether or not FP16 is supported in
6325     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6326     if (!getTarget().hasLegalHalfType() &&
6327         (VT->getElementType()->isFloat16Type() ||
6328          VT->getElementType()->isHalfType()))
6329       return true;
6330     if (isAndroid()) {
6331       // Android shipped using Clang 3.1, which supported a slightly different
6332       // vector ABI. The primary differences were that 3-element vector types
6333       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6334       // accepts that legacy behavior for Android only.
6335       // Check whether VT is legal.
6336       unsigned NumElements = VT->getNumElements();
6337       // NumElements should be power of 2 or equal to 3.
6338       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6339         return true;
6340     } else {
6341       // Check whether VT is legal.
6342       unsigned NumElements = VT->getNumElements();
6343       uint64_t Size = getContext().getTypeSize(VT);
6344       // NumElements should be power of 2.
6345       if (!llvm::isPowerOf2_32(NumElements))
6346         return true;
6347       // Size should be greater than 32 bits.
6348       return Size <= 32;
6349     }
6350   }
6351   return false;
6352 }
6353 
6354 /// Return true if a type contains any 16-bit floating point vectors
6355 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6356   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6357     uint64_t NElements = AT->getSize().getZExtValue();
6358     if (NElements == 0)
6359       return false;
6360     return containsAnyFP16Vectors(AT->getElementType());
6361   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6362     const RecordDecl *RD = RT->getDecl();
6363 
6364     // If this is a C++ record, check the bases first.
6365     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6366       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6367             return containsAnyFP16Vectors(B.getType());
6368           }))
6369         return true;
6370 
6371     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6372           return FD && containsAnyFP16Vectors(FD->getType());
6373         }))
6374       return true;
6375 
6376     return false;
6377   } else {
6378     if (const VectorType *VT = Ty->getAs<VectorType>())
6379       return (VT->getElementType()->isFloat16Type() ||
6380               VT->getElementType()->isHalfType());
6381     return false;
6382   }
6383 }
6384 
6385 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6386                                            llvm::Type *eltTy,
6387                                            unsigned numElts) const {
6388   if (!llvm::isPowerOf2_32(numElts))
6389     return false;
6390   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6391   if (size > 64)
6392     return false;
6393   if (vectorSize.getQuantity() != 8 &&
6394       (vectorSize.getQuantity() != 16 || numElts == 1))
6395     return false;
6396   return true;
6397 }
6398 
6399 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6400   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6401   // double, or 64-bit or 128-bit vectors.
6402   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6403     if (BT->getKind() == BuiltinType::Float ||
6404         BT->getKind() == BuiltinType::Double ||
6405         BT->getKind() == BuiltinType::LongDouble)
6406       return true;
6407   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6408     unsigned VecSize = getContext().getTypeSize(VT);
6409     if (VecSize == 64 || VecSize == 128)
6410       return true;
6411   }
6412   return false;
6413 }
6414 
6415 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6416                                                    uint64_t Members) const {
6417   return Members <= 4;
6418 }
6419 
6420 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6421                                         bool acceptHalf) const {
6422   // Give precedence to user-specified calling conventions.
6423   if (callConvention != llvm::CallingConv::C)
6424     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6425   else
6426     return (getABIKind() == AAPCS_VFP) ||
6427            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6428 }
6429 
6430 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6431                               QualType Ty) const {
6432   CharUnits SlotSize = CharUnits::fromQuantity(4);
6433 
6434   // Empty records are ignored for parameter passing purposes.
6435   if (isEmptyRecord(getContext(), Ty, true)) {
6436     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6437     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6438     return Addr;
6439   }
6440 
6441   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6442   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6443 
6444   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6445   bool IsIndirect = false;
6446   const Type *Base = nullptr;
6447   uint64_t Members = 0;
6448   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6449     IsIndirect = true;
6450 
6451   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6452   // allocated by the caller.
6453   } else if (TySize > CharUnits::fromQuantity(16) &&
6454              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6455              !isHomogeneousAggregate(Ty, Base, Members)) {
6456     IsIndirect = true;
6457 
6458   // Otherwise, bound the type's ABI alignment.
6459   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6460   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6461   // Our callers should be prepared to handle an under-aligned address.
6462   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6463              getABIKind() == ARMABIInfo::AAPCS) {
6464     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6465     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6466   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6467     // ARMv7k allows type alignment up to 16 bytes.
6468     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6469     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6470   } else {
6471     TyAlignForABI = CharUnits::fromQuantity(4);
6472   }
6473 
6474   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6475   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6476                           SlotSize, /*AllowHigherAlign*/ true);
6477 }
6478 
6479 //===----------------------------------------------------------------------===//
6480 // NVPTX ABI Implementation
6481 //===----------------------------------------------------------------------===//
6482 
6483 namespace {
6484 
6485 class NVPTXTargetCodeGenInfo;
6486 
6487 class NVPTXABIInfo : public ABIInfo {
6488   NVPTXTargetCodeGenInfo &CGInfo;
6489 
6490 public:
6491   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6492       : ABIInfo(CGT), CGInfo(Info) {}
6493 
6494   ABIArgInfo classifyReturnType(QualType RetTy) const;
6495   ABIArgInfo classifyArgumentType(QualType Ty) const;
6496 
6497   void computeInfo(CGFunctionInfo &FI) const override;
6498   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6499                     QualType Ty) const override;
6500 };
6501 
6502 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6503 public:
6504   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6505       : TargetCodeGenInfo(new NVPTXABIInfo(CGT, *this)) {}
6506 
6507   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6508                            CodeGen::CodeGenModule &M) const override;
6509   bool shouldEmitStaticExternCAliases() const override;
6510 
6511   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6512     // On the device side, surface reference is represented as an object handle
6513     // in 64-bit integer.
6514     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6515   }
6516 
6517   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6518     // On the device side, texture reference is represented as an object handle
6519     // in 64-bit integer.
6520     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6521   }
6522 
6523   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6524                                               LValue Src) const override {
6525     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6526     return true;
6527   }
6528 
6529   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6530                                               LValue Src) const override {
6531     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6532     return true;
6533   }
6534 
6535 private:
6536   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6537   // resulting MDNode to the nvvm.annotations MDNode.
6538   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6539                               int Operand);
6540 
6541   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6542                                            LValue Src) {
6543     llvm::Value *Handle = nullptr;
6544     llvm::Constant *C =
6545         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6546     // Lookup `addrspacecast` through the constant pointer if any.
6547     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6548       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6549     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6550       // Load the handle from the specific global variable using
6551       // `nvvm.texsurf.handle.internal` intrinsic.
6552       Handle = CGF.EmitRuntimeCall(
6553           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6554                                {GV->getType()}),
6555           {GV}, "texsurf_handle");
6556     } else
6557       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6558     CGF.EmitStoreOfScalar(Handle, Dst);
6559   }
6560 };
6561 
6562 /// Checks if the type is unsupported directly by the current target.
6563 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6564   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6565     return true;
6566   if (!Context.getTargetInfo().hasFloat128Type() &&
6567       (T->isFloat128Type() ||
6568        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6569     return true;
6570   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6571       Context.getTypeSize(T) > 64)
6572     return true;
6573   if (const auto *AT = T->getAsArrayTypeUnsafe())
6574     return isUnsupportedType(Context, AT->getElementType());
6575   const auto *RT = T->getAs<RecordType>();
6576   if (!RT)
6577     return false;
6578   const RecordDecl *RD = RT->getDecl();
6579 
6580   // If this is a C++ record, check the bases first.
6581   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6582     for (const CXXBaseSpecifier &I : CXXRD->bases())
6583       if (isUnsupportedType(Context, I.getType()))
6584         return true;
6585 
6586   for (const FieldDecl *I : RD->fields())
6587     if (isUnsupportedType(Context, I->getType()))
6588       return true;
6589   return false;
6590 }
6591 
6592 /// Coerce the given type into an array with maximum allowed size of elements.
6593 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6594                                             llvm::LLVMContext &LLVMContext,
6595                                             unsigned MaxSize) {
6596   // Alignment and Size are measured in bits.
6597   const uint64_t Size = Context.getTypeSize(Ty);
6598   const uint64_t Alignment = Context.getTypeAlign(Ty);
6599   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6600   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6601   const uint64_t NumElements = (Size + Div - 1) / Div;
6602   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6603 }
6604 
6605 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6606   if (RetTy->isVoidType())
6607     return ABIArgInfo::getIgnore();
6608 
6609   if (getContext().getLangOpts().OpenMP &&
6610       getContext().getLangOpts().OpenMPIsDevice &&
6611       isUnsupportedType(getContext(), RetTy))
6612     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6613 
6614   // note: this is different from default ABI
6615   if (!RetTy->isScalarType())
6616     return ABIArgInfo::getDirect();
6617 
6618   // Treat an enum type as its underlying type.
6619   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6620     RetTy = EnumTy->getDecl()->getIntegerType();
6621 
6622   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6623                                            : ABIArgInfo::getDirect());
6624 }
6625 
6626 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6627   // Treat an enum type as its underlying type.
6628   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6629     Ty = EnumTy->getDecl()->getIntegerType();
6630 
6631   // Return aggregates type as indirect by value
6632   if (isAggregateTypeForABI(Ty)) {
6633     // Under CUDA device compilation, tex/surf builtin types are replaced with
6634     // object types and passed directly.
6635     if (getContext().getLangOpts().CUDAIsDevice) {
6636       if (Ty->isCUDADeviceBuiltinSurfaceType())
6637         return ABIArgInfo::getDirect(
6638             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
6639       if (Ty->isCUDADeviceBuiltinTextureType())
6640         return ABIArgInfo::getDirect(
6641             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
6642     }
6643     return getNaturalAlignIndirect(Ty, /* byval */ true);
6644   }
6645 
6646   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6647                                         : ABIArgInfo::getDirect());
6648 }
6649 
6650 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6651   if (!getCXXABI().classifyReturnType(FI))
6652     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6653   for (auto &I : FI.arguments())
6654     I.info = classifyArgumentType(I.type);
6655 
6656   // Always honor user-specified calling convention.
6657   if (FI.getCallingConvention() != llvm::CallingConv::C)
6658     return;
6659 
6660   FI.setEffectiveCallingConvention(getRuntimeCC());
6661 }
6662 
6663 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6664                                 QualType Ty) const {
6665   llvm_unreachable("NVPTX does not support varargs");
6666 }
6667 
6668 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6669     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6670   if (GV->isDeclaration())
6671     return;
6672   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
6673   if (VD) {
6674     if (M.getLangOpts().CUDA) {
6675       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
6676         addNVVMMetadata(GV, "surface", 1);
6677       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
6678         addNVVMMetadata(GV, "texture", 1);
6679       return;
6680     }
6681   }
6682 
6683   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6684   if (!FD) return;
6685 
6686   llvm::Function *F = cast<llvm::Function>(GV);
6687 
6688   // Perform special handling in OpenCL mode
6689   if (M.getLangOpts().OpenCL) {
6690     // Use OpenCL function attributes to check for kernel functions
6691     // By default, all functions are device functions
6692     if (FD->hasAttr<OpenCLKernelAttr>()) {
6693       // OpenCL __kernel functions get kernel metadata
6694       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6695       addNVVMMetadata(F, "kernel", 1);
6696       // And kernel functions are not subject to inlining
6697       F->addFnAttr(llvm::Attribute::NoInline);
6698     }
6699   }
6700 
6701   // Perform special handling in CUDA mode.
6702   if (M.getLangOpts().CUDA) {
6703     // CUDA __global__ functions get a kernel metadata entry.  Since
6704     // __global__ functions cannot be called from the device, we do not
6705     // need to set the noinline attribute.
6706     if (FD->hasAttr<CUDAGlobalAttr>()) {
6707       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6708       addNVVMMetadata(F, "kernel", 1);
6709     }
6710     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6711       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6712       llvm::APSInt MaxThreads(32);
6713       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6714       if (MaxThreads > 0)
6715         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6716 
6717       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6718       // not specified in __launch_bounds__ or if the user specified a 0 value,
6719       // we don't have to add a PTX directive.
6720       if (Attr->getMinBlocks()) {
6721         llvm::APSInt MinBlocks(32);
6722         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6723         if (MinBlocks > 0)
6724           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6725           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6726       }
6727     }
6728   }
6729 }
6730 
6731 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
6732                                              StringRef Name, int Operand) {
6733   llvm::Module *M = GV->getParent();
6734   llvm::LLVMContext &Ctx = M->getContext();
6735 
6736   // Get "nvvm.annotations" metadata node
6737   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6738 
6739   llvm::Metadata *MDVals[] = {
6740       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
6741       llvm::ConstantAsMetadata::get(
6742           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6743   // Append metadata to nvvm.annotations
6744   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6745 }
6746 
6747 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6748   return false;
6749 }
6750 }
6751 
6752 //===----------------------------------------------------------------------===//
6753 // SystemZ ABI Implementation
6754 //===----------------------------------------------------------------------===//
6755 
6756 namespace {
6757 
6758 class SystemZABIInfo : public SwiftABIInfo {
6759   bool HasVector;
6760   bool IsSoftFloatABI;
6761 
6762 public:
6763   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
6764     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
6765 
6766   bool isPromotableIntegerType(QualType Ty) const;
6767   bool isCompoundType(QualType Ty) const;
6768   bool isVectorArgumentType(QualType Ty) const;
6769   bool isFPArgumentType(QualType Ty) const;
6770   QualType GetSingleElementType(QualType Ty) const;
6771 
6772   ABIArgInfo classifyReturnType(QualType RetTy) const;
6773   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6774 
6775   void computeInfo(CGFunctionInfo &FI) const override {
6776     if (!getCXXABI().classifyReturnType(FI))
6777       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6778     for (auto &I : FI.arguments())
6779       I.info = classifyArgumentType(I.type);
6780   }
6781 
6782   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6783                     QualType Ty) const override;
6784 
6785   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6786                                     bool asReturnValue) const override {
6787     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6788   }
6789   bool isSwiftErrorInRegister() const override {
6790     return false;
6791   }
6792 };
6793 
6794 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6795 public:
6796   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
6797     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector, SoftFloatABI)) {}
6798 };
6799 
6800 }
6801 
6802 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6803   // Treat an enum type as its underlying type.
6804   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6805     Ty = EnumTy->getDecl()->getIntegerType();
6806 
6807   // Promotable integer types are required to be promoted by the ABI.
6808   if (Ty->isPromotableIntegerType())
6809     return true;
6810 
6811   // 32-bit values must also be promoted.
6812   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6813     switch (BT->getKind()) {
6814     case BuiltinType::Int:
6815     case BuiltinType::UInt:
6816       return true;
6817     default:
6818       return false;
6819     }
6820   return false;
6821 }
6822 
6823 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6824   return (Ty->isAnyComplexType() ||
6825           Ty->isVectorType() ||
6826           isAggregateTypeForABI(Ty));
6827 }
6828 
6829 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6830   return (HasVector &&
6831           Ty->isVectorType() &&
6832           getContext().getTypeSize(Ty) <= 128);
6833 }
6834 
6835 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6836   if (IsSoftFloatABI)
6837     return false;
6838 
6839   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6840     switch (BT->getKind()) {
6841     case BuiltinType::Float:
6842     case BuiltinType::Double:
6843       return true;
6844     default:
6845       return false;
6846     }
6847 
6848   return false;
6849 }
6850 
6851 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6852   if (const RecordType *RT = Ty->getAsStructureType()) {
6853     const RecordDecl *RD = RT->getDecl();
6854     QualType Found;
6855 
6856     // If this is a C++ record, check the bases first.
6857     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6858       for (const auto &I : CXXRD->bases()) {
6859         QualType Base = I.getType();
6860 
6861         // Empty bases don't affect things either way.
6862         if (isEmptyRecord(getContext(), Base, true))
6863           continue;
6864 
6865         if (!Found.isNull())
6866           return Ty;
6867         Found = GetSingleElementType(Base);
6868       }
6869 
6870     // Check the fields.
6871     for (const auto *FD : RD->fields()) {
6872       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6873       // Unlike isSingleElementStruct(), empty structure and array fields
6874       // do count.  So do anonymous bitfields that aren't zero-sized.
6875       if (getContext().getLangOpts().CPlusPlus &&
6876           FD->isZeroLengthBitField(getContext()))
6877         continue;
6878 
6879       // Unlike isSingleElementStruct(), arrays do not count.
6880       // Nested structures still do though.
6881       if (!Found.isNull())
6882         return Ty;
6883       Found = GetSingleElementType(FD->getType());
6884     }
6885 
6886     // Unlike isSingleElementStruct(), trailing padding is allowed.
6887     // An 8-byte aligned struct s { float f; } is passed as a double.
6888     if (!Found.isNull())
6889       return Found;
6890   }
6891 
6892   return Ty;
6893 }
6894 
6895 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6896                                   QualType Ty) const {
6897   // Assume that va_list type is correct; should be pointer to LLVM type:
6898   // struct {
6899   //   i64 __gpr;
6900   //   i64 __fpr;
6901   //   i8 *__overflow_arg_area;
6902   //   i8 *__reg_save_area;
6903   // };
6904 
6905   // Every non-vector argument occupies 8 bytes and is passed by preference
6906   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6907   // always passed on the stack.
6908   Ty = getContext().getCanonicalType(Ty);
6909   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6910   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6911   llvm::Type *DirectTy = ArgTy;
6912   ABIArgInfo AI = classifyArgumentType(Ty);
6913   bool IsIndirect = AI.isIndirect();
6914   bool InFPRs = false;
6915   bool IsVector = false;
6916   CharUnits UnpaddedSize;
6917   CharUnits DirectAlign;
6918   if (IsIndirect) {
6919     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6920     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6921   } else {
6922     if (AI.getCoerceToType())
6923       ArgTy = AI.getCoerceToType();
6924     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
6925     IsVector = ArgTy->isVectorTy();
6926     UnpaddedSize = TyInfo.first;
6927     DirectAlign = TyInfo.second;
6928   }
6929   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6930   if (IsVector && UnpaddedSize > PaddedSize)
6931     PaddedSize = CharUnits::fromQuantity(16);
6932   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6933 
6934   CharUnits Padding = (PaddedSize - UnpaddedSize);
6935 
6936   llvm::Type *IndexTy = CGF.Int64Ty;
6937   llvm::Value *PaddedSizeV =
6938     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6939 
6940   if (IsVector) {
6941     // Work out the address of a vector argument on the stack.
6942     // Vector arguments are always passed in the high bits of a
6943     // single (8 byte) or double (16 byte) stack slot.
6944     Address OverflowArgAreaPtr =
6945         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6946     Address OverflowArgArea =
6947       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6948               TyInfo.second);
6949     Address MemAddr =
6950       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6951 
6952     // Update overflow_arg_area_ptr pointer
6953     llvm::Value *NewOverflowArgArea =
6954       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6955                             "overflow_arg_area");
6956     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6957 
6958     return MemAddr;
6959   }
6960 
6961   assert(PaddedSize.getQuantity() == 8);
6962 
6963   unsigned MaxRegs, RegCountField, RegSaveIndex;
6964   CharUnits RegPadding;
6965   if (InFPRs) {
6966     MaxRegs = 4; // Maximum of 4 FPR arguments
6967     RegCountField = 1; // __fpr
6968     RegSaveIndex = 16; // save offset for f0
6969     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6970   } else {
6971     MaxRegs = 5; // Maximum of 5 GPR arguments
6972     RegCountField = 0; // __gpr
6973     RegSaveIndex = 2; // save offset for r2
6974     RegPadding = Padding; // values are passed in the low bits of a GPR
6975   }
6976 
6977   Address RegCountPtr =
6978       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6979   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6980   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6981   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6982                                                  "fits_in_regs");
6983 
6984   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6985   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6986   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6987   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6988 
6989   // Emit code to load the value if it was passed in registers.
6990   CGF.EmitBlock(InRegBlock);
6991 
6992   // Work out the address of an argument register.
6993   llvm::Value *ScaledRegCount =
6994     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6995   llvm::Value *RegBase =
6996     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6997                                       + RegPadding.getQuantity());
6998   llvm::Value *RegOffset =
6999     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7000   Address RegSaveAreaPtr =
7001       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7002   llvm::Value *RegSaveArea =
7003     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7004   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7005                                            "raw_reg_addr"),
7006                      PaddedSize);
7007   Address RegAddr =
7008     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7009 
7010   // Update the register count
7011   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7012   llvm::Value *NewRegCount =
7013     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7014   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7015   CGF.EmitBranch(ContBlock);
7016 
7017   // Emit code to load the value if it was passed in memory.
7018   CGF.EmitBlock(InMemBlock);
7019 
7020   // Work out the address of a stack argument.
7021   Address OverflowArgAreaPtr =
7022       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7023   Address OverflowArgArea =
7024     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7025             PaddedSize);
7026   Address RawMemAddr =
7027     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7028   Address MemAddr =
7029     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7030 
7031   // Update overflow_arg_area_ptr pointer
7032   llvm::Value *NewOverflowArgArea =
7033     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7034                           "overflow_arg_area");
7035   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7036   CGF.EmitBranch(ContBlock);
7037 
7038   // Return the appropriate result.
7039   CGF.EmitBlock(ContBlock);
7040   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7041                                  MemAddr, InMemBlock, "va_arg.addr");
7042 
7043   if (IsIndirect)
7044     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7045                       TyInfo.second);
7046 
7047   return ResAddr;
7048 }
7049 
7050 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7051   if (RetTy->isVoidType())
7052     return ABIArgInfo::getIgnore();
7053   if (isVectorArgumentType(RetTy))
7054     return ABIArgInfo::getDirect();
7055   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7056     return getNaturalAlignIndirect(RetTy);
7057   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
7058                                          : ABIArgInfo::getDirect());
7059 }
7060 
7061 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7062   // Handle the generic C++ ABI.
7063   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7064     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7065 
7066   // Integers and enums are extended to full register width.
7067   if (isPromotableIntegerType(Ty))
7068     return ABIArgInfo::getExtend(Ty);
7069 
7070   // Handle vector types and vector-like structure types.  Note that
7071   // as opposed to float-like structure types, we do not allow any
7072   // padding for vector-like structures, so verify the sizes match.
7073   uint64_t Size = getContext().getTypeSize(Ty);
7074   QualType SingleElementTy = GetSingleElementType(Ty);
7075   if (isVectorArgumentType(SingleElementTy) &&
7076       getContext().getTypeSize(SingleElementTy) == Size)
7077     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7078 
7079   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7080   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7081     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7082 
7083   // Handle small structures.
7084   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7085     // Structures with flexible arrays have variable length, so really
7086     // fail the size test above.
7087     const RecordDecl *RD = RT->getDecl();
7088     if (RD->hasFlexibleArrayMember())
7089       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7090 
7091     // The structure is passed as an unextended integer, a float, or a double.
7092     llvm::Type *PassTy;
7093     if (isFPArgumentType(SingleElementTy)) {
7094       assert(Size == 32 || Size == 64);
7095       if (Size == 32)
7096         PassTy = llvm::Type::getFloatTy(getVMContext());
7097       else
7098         PassTy = llvm::Type::getDoubleTy(getVMContext());
7099     } else
7100       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7101     return ABIArgInfo::getDirect(PassTy);
7102   }
7103 
7104   // Non-structure compounds are passed indirectly.
7105   if (isCompoundType(Ty))
7106     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7107 
7108   return ABIArgInfo::getDirect(nullptr);
7109 }
7110 
7111 //===----------------------------------------------------------------------===//
7112 // MSP430 ABI Implementation
7113 //===----------------------------------------------------------------------===//
7114 
7115 namespace {
7116 
7117 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7118 public:
7119   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7120     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
7121   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7122                            CodeGen::CodeGenModule &M) const override;
7123 };
7124 
7125 }
7126 
7127 void MSP430TargetCodeGenInfo::setTargetAttributes(
7128     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7129   if (GV->isDeclaration())
7130     return;
7131   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7132     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7133     if (!InterruptAttr)
7134       return;
7135 
7136     // Handle 'interrupt' attribute:
7137     llvm::Function *F = cast<llvm::Function>(GV);
7138 
7139     // Step 1: Set ISR calling convention.
7140     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7141 
7142     // Step 2: Add attributes goodness.
7143     F->addFnAttr(llvm::Attribute::NoInline);
7144     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7145   }
7146 }
7147 
7148 //===----------------------------------------------------------------------===//
7149 // MIPS ABI Implementation.  This works for both little-endian and
7150 // big-endian variants.
7151 //===----------------------------------------------------------------------===//
7152 
7153 namespace {
7154 class MipsABIInfo : public ABIInfo {
7155   bool IsO32;
7156   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7157   void CoerceToIntArgs(uint64_t TySize,
7158                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7159   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7160   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7161   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7162 public:
7163   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7164     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7165     StackAlignInBytes(IsO32 ? 8 : 16) {}
7166 
7167   ABIArgInfo classifyReturnType(QualType RetTy) const;
7168   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7169   void computeInfo(CGFunctionInfo &FI) const override;
7170   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7171                     QualType Ty) const override;
7172   ABIArgInfo extendType(QualType Ty) const;
7173 };
7174 
7175 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7176   unsigned SizeOfUnwindException;
7177 public:
7178   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7179     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
7180       SizeOfUnwindException(IsO32 ? 24 : 32) {}
7181 
7182   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7183     return 29;
7184   }
7185 
7186   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7187                            CodeGen::CodeGenModule &CGM) const override {
7188     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7189     if (!FD) return;
7190     llvm::Function *Fn = cast<llvm::Function>(GV);
7191 
7192     if (FD->hasAttr<MipsLongCallAttr>())
7193       Fn->addFnAttr("long-call");
7194     else if (FD->hasAttr<MipsShortCallAttr>())
7195       Fn->addFnAttr("short-call");
7196 
7197     // Other attributes do not have a meaning for declarations.
7198     if (GV->isDeclaration())
7199       return;
7200 
7201     if (FD->hasAttr<Mips16Attr>()) {
7202       Fn->addFnAttr("mips16");
7203     }
7204     else if (FD->hasAttr<NoMips16Attr>()) {
7205       Fn->addFnAttr("nomips16");
7206     }
7207 
7208     if (FD->hasAttr<MicroMipsAttr>())
7209       Fn->addFnAttr("micromips");
7210     else if (FD->hasAttr<NoMicroMipsAttr>())
7211       Fn->addFnAttr("nomicromips");
7212 
7213     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7214     if (!Attr)
7215       return;
7216 
7217     const char *Kind;
7218     switch (Attr->getInterrupt()) {
7219     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7220     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7221     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7222     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7223     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7224     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7225     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7226     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7227     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7228     }
7229 
7230     Fn->addFnAttr("interrupt", Kind);
7231 
7232   }
7233 
7234   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7235                                llvm::Value *Address) const override;
7236 
7237   unsigned getSizeOfUnwindException() const override {
7238     return SizeOfUnwindException;
7239   }
7240 };
7241 }
7242 
7243 void MipsABIInfo::CoerceToIntArgs(
7244     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7245   llvm::IntegerType *IntTy =
7246     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7247 
7248   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7249   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7250     ArgList.push_back(IntTy);
7251 
7252   // If necessary, add one more integer type to ArgList.
7253   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7254 
7255   if (R)
7256     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7257 }
7258 
7259 // In N32/64, an aligned double precision floating point field is passed in
7260 // a register.
7261 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7262   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7263 
7264   if (IsO32) {
7265     CoerceToIntArgs(TySize, ArgList);
7266     return llvm::StructType::get(getVMContext(), ArgList);
7267   }
7268 
7269   if (Ty->isComplexType())
7270     return CGT.ConvertType(Ty);
7271 
7272   const RecordType *RT = Ty->getAs<RecordType>();
7273 
7274   // Unions/vectors are passed in integer registers.
7275   if (!RT || !RT->isStructureOrClassType()) {
7276     CoerceToIntArgs(TySize, ArgList);
7277     return llvm::StructType::get(getVMContext(), ArgList);
7278   }
7279 
7280   const RecordDecl *RD = RT->getDecl();
7281   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7282   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7283 
7284   uint64_t LastOffset = 0;
7285   unsigned idx = 0;
7286   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7287 
7288   // Iterate over fields in the struct/class and check if there are any aligned
7289   // double fields.
7290   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7291        i != e; ++i, ++idx) {
7292     const QualType Ty = i->getType();
7293     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7294 
7295     if (!BT || BT->getKind() != BuiltinType::Double)
7296       continue;
7297 
7298     uint64_t Offset = Layout.getFieldOffset(idx);
7299     if (Offset % 64) // Ignore doubles that are not aligned.
7300       continue;
7301 
7302     // Add ((Offset - LastOffset) / 64) args of type i64.
7303     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7304       ArgList.push_back(I64);
7305 
7306     // Add double type.
7307     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7308     LastOffset = Offset + 64;
7309   }
7310 
7311   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7312   ArgList.append(IntArgList.begin(), IntArgList.end());
7313 
7314   return llvm::StructType::get(getVMContext(), ArgList);
7315 }
7316 
7317 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7318                                         uint64_t Offset) const {
7319   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7320     return nullptr;
7321 
7322   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7323 }
7324 
7325 ABIArgInfo
7326 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7327   Ty = useFirstFieldIfTransparentUnion(Ty);
7328 
7329   uint64_t OrigOffset = Offset;
7330   uint64_t TySize = getContext().getTypeSize(Ty);
7331   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7332 
7333   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7334                    (uint64_t)StackAlignInBytes);
7335   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7336   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7337 
7338   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7339     // Ignore empty aggregates.
7340     if (TySize == 0)
7341       return ABIArgInfo::getIgnore();
7342 
7343     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7344       Offset = OrigOffset + MinABIStackAlignInBytes;
7345       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7346     }
7347 
7348     // If we have reached here, aggregates are passed directly by coercing to
7349     // another structure type. Padding is inserted if the offset of the
7350     // aggregate is unaligned.
7351     ABIArgInfo ArgInfo =
7352         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7353                               getPaddingType(OrigOffset, CurrOffset));
7354     ArgInfo.setInReg(true);
7355     return ArgInfo;
7356   }
7357 
7358   // Treat an enum type as its underlying type.
7359   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7360     Ty = EnumTy->getDecl()->getIntegerType();
7361 
7362   // All integral types are promoted to the GPR width.
7363   if (Ty->isIntegralOrEnumerationType())
7364     return extendType(Ty);
7365 
7366   return ABIArgInfo::getDirect(
7367       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7368 }
7369 
7370 llvm::Type*
7371 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7372   const RecordType *RT = RetTy->getAs<RecordType>();
7373   SmallVector<llvm::Type*, 8> RTList;
7374 
7375   if (RT && RT->isStructureOrClassType()) {
7376     const RecordDecl *RD = RT->getDecl();
7377     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7378     unsigned FieldCnt = Layout.getFieldCount();
7379 
7380     // N32/64 returns struct/classes in floating point registers if the
7381     // following conditions are met:
7382     // 1. The size of the struct/class is no larger than 128-bit.
7383     // 2. The struct/class has one or two fields all of which are floating
7384     //    point types.
7385     // 3. The offset of the first field is zero (this follows what gcc does).
7386     //
7387     // Any other composite results are returned in integer registers.
7388     //
7389     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7390       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7391       for (; b != e; ++b) {
7392         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7393 
7394         if (!BT || !BT->isFloatingPoint())
7395           break;
7396 
7397         RTList.push_back(CGT.ConvertType(b->getType()));
7398       }
7399 
7400       if (b == e)
7401         return llvm::StructType::get(getVMContext(), RTList,
7402                                      RD->hasAttr<PackedAttr>());
7403 
7404       RTList.clear();
7405     }
7406   }
7407 
7408   CoerceToIntArgs(Size, RTList);
7409   return llvm::StructType::get(getVMContext(), RTList);
7410 }
7411 
7412 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7413   uint64_t Size = getContext().getTypeSize(RetTy);
7414 
7415   if (RetTy->isVoidType())
7416     return ABIArgInfo::getIgnore();
7417 
7418   // O32 doesn't treat zero-sized structs differently from other structs.
7419   // However, N32/N64 ignores zero sized return values.
7420   if (!IsO32 && Size == 0)
7421     return ABIArgInfo::getIgnore();
7422 
7423   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7424     if (Size <= 128) {
7425       if (RetTy->isAnyComplexType())
7426         return ABIArgInfo::getDirect();
7427 
7428       // O32 returns integer vectors in registers and N32/N64 returns all small
7429       // aggregates in registers.
7430       if (!IsO32 ||
7431           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7432         ABIArgInfo ArgInfo =
7433             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7434         ArgInfo.setInReg(true);
7435         return ArgInfo;
7436       }
7437     }
7438 
7439     return getNaturalAlignIndirect(RetTy);
7440   }
7441 
7442   // Treat an enum type as its underlying type.
7443   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7444     RetTy = EnumTy->getDecl()->getIntegerType();
7445 
7446   if (RetTy->isPromotableIntegerType())
7447     return ABIArgInfo::getExtend(RetTy);
7448 
7449   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7450       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7451     return ABIArgInfo::getSignExtend(RetTy);
7452 
7453   return ABIArgInfo::getDirect();
7454 }
7455 
7456 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7457   ABIArgInfo &RetInfo = FI.getReturnInfo();
7458   if (!getCXXABI().classifyReturnType(FI))
7459     RetInfo = classifyReturnType(FI.getReturnType());
7460 
7461   // Check if a pointer to an aggregate is passed as a hidden argument.
7462   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7463 
7464   for (auto &I : FI.arguments())
7465     I.info = classifyArgumentType(I.type, Offset);
7466 }
7467 
7468 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7469                                QualType OrigTy) const {
7470   QualType Ty = OrigTy;
7471 
7472   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7473   // Pointers are also promoted in the same way but this only matters for N32.
7474   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7475   unsigned PtrWidth = getTarget().getPointerWidth(0);
7476   bool DidPromote = false;
7477   if ((Ty->isIntegerType() &&
7478           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7479       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7480     DidPromote = true;
7481     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7482                                             Ty->isSignedIntegerType());
7483   }
7484 
7485   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7486 
7487   // The alignment of things in the argument area is never larger than
7488   // StackAlignInBytes.
7489   TyInfo.second =
7490     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7491 
7492   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7493   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7494 
7495   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7496                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7497 
7498 
7499   // If there was a promotion, "unpromote" into a temporary.
7500   // TODO: can we just use a pointer into a subset of the original slot?
7501   if (DidPromote) {
7502     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7503     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7504 
7505     // Truncate down to the right width.
7506     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7507                                                  : CGF.IntPtrTy);
7508     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7509     if (OrigTy->isPointerType())
7510       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7511 
7512     CGF.Builder.CreateStore(V, Temp);
7513     Addr = Temp;
7514   }
7515 
7516   return Addr;
7517 }
7518 
7519 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7520   int TySize = getContext().getTypeSize(Ty);
7521 
7522   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7523   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7524     return ABIArgInfo::getSignExtend(Ty);
7525 
7526   return ABIArgInfo::getExtend(Ty);
7527 }
7528 
7529 bool
7530 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7531                                                llvm::Value *Address) const {
7532   // This information comes from gcc's implementation, which seems to
7533   // as canonical as it gets.
7534 
7535   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7536   // are aliased to pairs of single-precision FP registers.
7537   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7538 
7539   // 0-31 are the general purpose registers, $0 - $31.
7540   // 32-63 are the floating-point registers, $f0 - $f31.
7541   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7542   // 66 is the (notional, I think) register for signal-handler return.
7543   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7544 
7545   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7546   // They are one bit wide and ignored here.
7547 
7548   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7549   // (coprocessor 1 is the FP unit)
7550   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7551   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7552   // 176-181 are the DSP accumulator registers.
7553   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7554   return false;
7555 }
7556 
7557 //===----------------------------------------------------------------------===//
7558 // AVR ABI Implementation.
7559 //===----------------------------------------------------------------------===//
7560 
7561 namespace {
7562 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7563 public:
7564   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7565     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7566 
7567   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7568                            CodeGen::CodeGenModule &CGM) const override {
7569     if (GV->isDeclaration())
7570       return;
7571     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7572     if (!FD) return;
7573     auto *Fn = cast<llvm::Function>(GV);
7574 
7575     if (FD->getAttr<AVRInterruptAttr>())
7576       Fn->addFnAttr("interrupt");
7577 
7578     if (FD->getAttr<AVRSignalAttr>())
7579       Fn->addFnAttr("signal");
7580   }
7581 };
7582 }
7583 
7584 //===----------------------------------------------------------------------===//
7585 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7586 // Currently subclassed only to implement custom OpenCL C function attribute
7587 // handling.
7588 //===----------------------------------------------------------------------===//
7589 
7590 namespace {
7591 
7592 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7593 public:
7594   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7595     : DefaultTargetCodeGenInfo(CGT) {}
7596 
7597   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7598                            CodeGen::CodeGenModule &M) const override;
7599 };
7600 
7601 void TCETargetCodeGenInfo::setTargetAttributes(
7602     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7603   if (GV->isDeclaration())
7604     return;
7605   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7606   if (!FD) return;
7607 
7608   llvm::Function *F = cast<llvm::Function>(GV);
7609 
7610   if (M.getLangOpts().OpenCL) {
7611     if (FD->hasAttr<OpenCLKernelAttr>()) {
7612       // OpenCL C Kernel functions are not subject to inlining
7613       F->addFnAttr(llvm::Attribute::NoInline);
7614       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7615       if (Attr) {
7616         // Convert the reqd_work_group_size() attributes to metadata.
7617         llvm::LLVMContext &Context = F->getContext();
7618         llvm::NamedMDNode *OpenCLMetadata =
7619             M.getModule().getOrInsertNamedMetadata(
7620                 "opencl.kernel_wg_size_info");
7621 
7622         SmallVector<llvm::Metadata *, 5> Operands;
7623         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7624 
7625         Operands.push_back(
7626             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7627                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7628         Operands.push_back(
7629             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7630                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7631         Operands.push_back(
7632             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7633                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7634 
7635         // Add a boolean constant operand for "required" (true) or "hint"
7636         // (false) for implementing the work_group_size_hint attr later.
7637         // Currently always true as the hint is not yet implemented.
7638         Operands.push_back(
7639             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7640         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7641       }
7642     }
7643   }
7644 }
7645 
7646 }
7647 
7648 //===----------------------------------------------------------------------===//
7649 // Hexagon ABI Implementation
7650 //===----------------------------------------------------------------------===//
7651 
7652 namespace {
7653 
7654 class HexagonABIInfo : public DefaultABIInfo {
7655 public:
7656   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7657 
7658 private:
7659   ABIArgInfo classifyReturnType(QualType RetTy) const;
7660   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7661   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
7662 
7663   void computeInfo(CGFunctionInfo &FI) const override;
7664 
7665   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7666                     QualType Ty) const override;
7667   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
7668                               QualType Ty) const;
7669   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
7670                               QualType Ty) const;
7671   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
7672                                    QualType Ty) const;
7673 };
7674 
7675 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7676 public:
7677   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7678     : TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7679 
7680   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7681     return 29;
7682   }
7683 
7684   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7685                            CodeGen::CodeGenModule &GCM) const override {
7686     if (GV->isDeclaration())
7687       return;
7688     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7689     if (!FD)
7690       return;
7691   }
7692 };
7693 
7694 } // namespace
7695 
7696 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7697   unsigned RegsLeft = 6;
7698   if (!getCXXABI().classifyReturnType(FI))
7699     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7700   for (auto &I : FI.arguments())
7701     I.info = classifyArgumentType(I.type, &RegsLeft);
7702 }
7703 
7704 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
7705   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
7706                        " through registers");
7707 
7708   if (*RegsLeft == 0)
7709     return false;
7710 
7711   if (Size <= 32) {
7712     (*RegsLeft)--;
7713     return true;
7714   }
7715 
7716   if (2 <= (*RegsLeft & (~1U))) {
7717     *RegsLeft = (*RegsLeft & (~1U)) - 2;
7718     return true;
7719   }
7720 
7721   // Next available register was r5 but candidate was greater than 32-bits so it
7722   // has to go on the stack. However we still consume r5
7723   if (*RegsLeft == 1)
7724     *RegsLeft = 0;
7725 
7726   return false;
7727 }
7728 
7729 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
7730                                                 unsigned *RegsLeft) const {
7731   if (!isAggregateTypeForABI(Ty)) {
7732     // Treat an enum type as its underlying type.
7733     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7734       Ty = EnumTy->getDecl()->getIntegerType();
7735 
7736     uint64_t Size = getContext().getTypeSize(Ty);
7737     if (Size <= 64)
7738       HexagonAdjustRegsLeft(Size, RegsLeft);
7739 
7740     return Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7741                                          : ABIArgInfo::getDirect();
7742   }
7743 
7744   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7745     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7746 
7747   // Ignore empty records.
7748   if (isEmptyRecord(getContext(), Ty, true))
7749     return ABIArgInfo::getIgnore();
7750 
7751   uint64_t Size = getContext().getTypeSize(Ty);
7752   unsigned Align = getContext().getTypeAlign(Ty);
7753 
7754   if (Size > 64)
7755     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7756 
7757   if (HexagonAdjustRegsLeft(Size, RegsLeft))
7758     Align = Size <= 32 ? 32 : 64;
7759   if (Size <= Align) {
7760     // Pass in the smallest viable integer type.
7761     if (!llvm::isPowerOf2_64(Size))
7762       Size = llvm::NextPowerOf2(Size);
7763     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
7764   }
7765   return DefaultABIInfo::classifyArgumentType(Ty);
7766 }
7767 
7768 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7769   if (RetTy->isVoidType())
7770     return ABIArgInfo::getIgnore();
7771 
7772   const TargetInfo &T = CGT.getTarget();
7773   uint64_t Size = getContext().getTypeSize(RetTy);
7774 
7775   if (RetTy->getAs<VectorType>()) {
7776     // HVX vectors are returned in vector registers or register pairs.
7777     if (T.hasFeature("hvx")) {
7778       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
7779       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
7780       if (Size == VecSize || Size == 2*VecSize)
7781         return ABIArgInfo::getDirectInReg();
7782     }
7783     // Large vector types should be returned via memory.
7784     if (Size > 64)
7785       return getNaturalAlignIndirect(RetTy);
7786   }
7787 
7788   if (!isAggregateTypeForABI(RetTy)) {
7789     // Treat an enum type as its underlying type.
7790     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7791       RetTy = EnumTy->getDecl()->getIntegerType();
7792 
7793     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7794                                             : ABIArgInfo::getDirect();
7795   }
7796 
7797   if (isEmptyRecord(getContext(), RetTy, true))
7798     return ABIArgInfo::getIgnore();
7799 
7800   // Aggregates <= 8 bytes are returned in registers, other aggregates
7801   // are returned indirectly.
7802   if (Size <= 64) {
7803     // Return in the smallest viable integer type.
7804     if (!llvm::isPowerOf2_64(Size))
7805       Size = llvm::NextPowerOf2(Size);
7806     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
7807   }
7808   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7809 }
7810 
7811 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
7812                                             Address VAListAddr,
7813                                             QualType Ty) const {
7814   // Load the overflow area pointer.
7815   Address __overflow_area_pointer_p =
7816       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
7817   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
7818       __overflow_area_pointer_p, "__overflow_area_pointer");
7819 
7820   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
7821   if (Align > 4) {
7822     // Alignment should be a power of 2.
7823     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
7824 
7825     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
7826     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
7827 
7828     // Add offset to the current pointer to access the argument.
7829     __overflow_area_pointer =
7830         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
7831     llvm::Value *AsInt =
7832         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
7833 
7834     // Create a mask which should be "AND"ed
7835     // with (overflow_arg_area + align - 1)
7836     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
7837     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
7838         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
7839         "__overflow_area_pointer.align");
7840   }
7841 
7842   // Get the type of the argument from memory and bitcast
7843   // overflow area pointer to the argument type.
7844   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
7845   Address AddrTyped = CGF.Builder.CreateBitCast(
7846       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
7847       llvm::PointerType::getUnqual(PTy));
7848 
7849   // Round up to the minimum stack alignment for varargs which is 4 bytes.
7850   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
7851 
7852   __overflow_area_pointer = CGF.Builder.CreateGEP(
7853       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
7854       "__overflow_area_pointer.next");
7855   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
7856 
7857   return AddrTyped;
7858 }
7859 
7860 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
7861                                             Address VAListAddr,
7862                                             QualType Ty) const {
7863   // FIXME: Need to handle alignment
7864   llvm::Type *BP = CGF.Int8PtrTy;
7865   llvm::Type *BPP = CGF.Int8PtrPtrTy;
7866   CGBuilderTy &Builder = CGF.Builder;
7867   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
7868   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
7869   // Handle address alignment for type alignment > 32 bits
7870   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
7871   if (TyAlign > 4) {
7872     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
7873     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
7874     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
7875     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
7876     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
7877   }
7878   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
7879   Address AddrTyped = Builder.CreateBitCast(
7880       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
7881 
7882   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
7883   llvm::Value *NextAddr = Builder.CreateGEP(
7884       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
7885   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
7886 
7887   return AddrTyped;
7888 }
7889 
7890 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
7891                                                  Address VAListAddr,
7892                                                  QualType Ty) const {
7893   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
7894 
7895   if (ArgSize > 8)
7896     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
7897 
7898   // Here we have check if the argument is in register area or
7899   // in overflow area.
7900   // If the saved register area pointer + argsize rounded up to alignment >
7901   // saved register area end pointer, argument is in overflow area.
7902   unsigned RegsLeft = 6;
7903   Ty = CGF.getContext().getCanonicalType(Ty);
7904   (void)classifyArgumentType(Ty, &RegsLeft);
7905 
7906   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
7907   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7908   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
7909   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7910 
7911   // Get rounded size of the argument.GCC does not allow vararg of
7912   // size < 4 bytes. We follow the same logic here.
7913   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
7914   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
7915 
7916   // Argument may be in saved register area
7917   CGF.EmitBlock(MaybeRegBlock);
7918 
7919   // Load the current saved register area pointer.
7920   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
7921       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
7922   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
7923       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
7924 
7925   // Load the saved register area end pointer.
7926   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
7927       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
7928   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
7929       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
7930 
7931   // If the size of argument is > 4 bytes, check if the stack
7932   // location is aligned to 8 bytes
7933   if (ArgAlign > 4) {
7934 
7935     llvm::Value *__current_saved_reg_area_pointer_int =
7936         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
7937                                    CGF.Int32Ty);
7938 
7939     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
7940         __current_saved_reg_area_pointer_int,
7941         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
7942         "align_current_saved_reg_area_pointer");
7943 
7944     __current_saved_reg_area_pointer_int =
7945         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
7946                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
7947                               "align_current_saved_reg_area_pointer");
7948 
7949     __current_saved_reg_area_pointer =
7950         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
7951                                    __current_saved_reg_area_pointer->getType(),
7952                                    "align_current_saved_reg_area_pointer");
7953   }
7954 
7955   llvm::Value *__new_saved_reg_area_pointer =
7956       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
7957                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
7958                             "__new_saved_reg_area_pointer");
7959 
7960   llvm::Value *UsingStack = 0;
7961   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
7962                                          __saved_reg_area_end_pointer);
7963 
7964   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
7965 
7966   // Argument in saved register area
7967   // Implement the block where argument is in register saved area
7968   CGF.EmitBlock(InRegBlock);
7969 
7970   llvm::Type *PTy = CGF.ConvertType(Ty);
7971   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
7972       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
7973 
7974   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
7975                           __current_saved_reg_area_pointer_p);
7976 
7977   CGF.EmitBranch(ContBlock);
7978 
7979   // Argument in overflow area
7980   // Implement the block where the argument is in overflow area.
7981   CGF.EmitBlock(OnStackBlock);
7982 
7983   // Load the overflow area pointer
7984   Address __overflow_area_pointer_p =
7985       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
7986   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
7987       __overflow_area_pointer_p, "__overflow_area_pointer");
7988 
7989   // Align the overflow area pointer according to the alignment of the argument
7990   if (ArgAlign > 4) {
7991     llvm::Value *__overflow_area_pointer_int =
7992         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
7993 
7994     __overflow_area_pointer_int =
7995         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
7996                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
7997                               "align_overflow_area_pointer");
7998 
7999     __overflow_area_pointer_int =
8000         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8001                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8002                               "align_overflow_area_pointer");
8003 
8004     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8005         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8006         "align_overflow_area_pointer");
8007   }
8008 
8009   // Get the pointer for next argument in overflow area and store it
8010   // to overflow area pointer.
8011   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8012       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8013       "__overflow_area_pointer.next");
8014 
8015   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8016                           __overflow_area_pointer_p);
8017 
8018   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8019                           __current_saved_reg_area_pointer_p);
8020 
8021   // Bitcast the overflow area pointer to the type of argument.
8022   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8023   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8024       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8025 
8026   CGF.EmitBranch(ContBlock);
8027 
8028   // Get the correct pointer to load the variable argument
8029   // Implement the ContBlock
8030   CGF.EmitBlock(ContBlock);
8031 
8032   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8033   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8034   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8035   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8036 
8037   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8038 }
8039 
8040 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8041                                   QualType Ty) const {
8042 
8043   if (getTarget().getTriple().isMusl())
8044     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8045 
8046   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8047 }
8048 
8049 //===----------------------------------------------------------------------===//
8050 // Lanai ABI Implementation
8051 //===----------------------------------------------------------------------===//
8052 
8053 namespace {
8054 class LanaiABIInfo : public DefaultABIInfo {
8055 public:
8056   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8057 
8058   bool shouldUseInReg(QualType Ty, CCState &State) const;
8059 
8060   void computeInfo(CGFunctionInfo &FI) const override {
8061     CCState State(FI);
8062     // Lanai uses 4 registers to pass arguments unless the function has the
8063     // regparm attribute set.
8064     if (FI.getHasRegParm()) {
8065       State.FreeRegs = FI.getRegParm();
8066     } else {
8067       State.FreeRegs = 4;
8068     }
8069 
8070     if (!getCXXABI().classifyReturnType(FI))
8071       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8072     for (auto &I : FI.arguments())
8073       I.info = classifyArgumentType(I.type, State);
8074   }
8075 
8076   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8077   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8078 };
8079 } // end anonymous namespace
8080 
8081 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8082   unsigned Size = getContext().getTypeSize(Ty);
8083   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8084 
8085   if (SizeInRegs == 0)
8086     return false;
8087 
8088   if (SizeInRegs > State.FreeRegs) {
8089     State.FreeRegs = 0;
8090     return false;
8091   }
8092 
8093   State.FreeRegs -= SizeInRegs;
8094 
8095   return true;
8096 }
8097 
8098 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8099                                            CCState &State) const {
8100   if (!ByVal) {
8101     if (State.FreeRegs) {
8102       --State.FreeRegs; // Non-byval indirects just use one pointer.
8103       return getNaturalAlignIndirectInReg(Ty);
8104     }
8105     return getNaturalAlignIndirect(Ty, false);
8106   }
8107 
8108   // Compute the byval alignment.
8109   const unsigned MinABIStackAlignInBytes = 4;
8110   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8111   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8112                                  /*Realign=*/TypeAlign >
8113                                      MinABIStackAlignInBytes);
8114 }
8115 
8116 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8117                                               CCState &State) const {
8118   // Check with the C++ ABI first.
8119   const RecordType *RT = Ty->getAs<RecordType>();
8120   if (RT) {
8121     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8122     if (RAA == CGCXXABI::RAA_Indirect) {
8123       return getIndirectResult(Ty, /*ByVal=*/false, State);
8124     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8125       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
8126     }
8127   }
8128 
8129   if (isAggregateTypeForABI(Ty)) {
8130     // Structures with flexible arrays are always indirect.
8131     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8132       return getIndirectResult(Ty, /*ByVal=*/true, State);
8133 
8134     // Ignore empty structs/unions.
8135     if (isEmptyRecord(getContext(), Ty, true))
8136       return ABIArgInfo::getIgnore();
8137 
8138     llvm::LLVMContext &LLVMContext = getVMContext();
8139     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8140     if (SizeInRegs <= State.FreeRegs) {
8141       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8142       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8143       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8144       State.FreeRegs -= SizeInRegs;
8145       return ABIArgInfo::getDirectInReg(Result);
8146     } else {
8147       State.FreeRegs = 0;
8148     }
8149     return getIndirectResult(Ty, true, State);
8150   }
8151 
8152   // Treat an enum type as its underlying type.
8153   if (const auto *EnumTy = Ty->getAs<EnumType>())
8154     Ty = EnumTy->getDecl()->getIntegerType();
8155 
8156   bool InReg = shouldUseInReg(Ty, State);
8157   if (Ty->isPromotableIntegerType()) {
8158     if (InReg)
8159       return ABIArgInfo::getDirectInReg();
8160     return ABIArgInfo::getExtend(Ty);
8161   }
8162   if (InReg)
8163     return ABIArgInfo::getDirectInReg();
8164   return ABIArgInfo::getDirect();
8165 }
8166 
8167 namespace {
8168 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8169 public:
8170   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8171       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
8172 };
8173 }
8174 
8175 //===----------------------------------------------------------------------===//
8176 // AMDGPU ABI Implementation
8177 //===----------------------------------------------------------------------===//
8178 
8179 namespace {
8180 
8181 class AMDGPUABIInfo final : public DefaultABIInfo {
8182 private:
8183   static const unsigned MaxNumRegsForArgsRet = 16;
8184 
8185   unsigned numRegsForType(QualType Ty) const;
8186 
8187   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8188   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8189                                          uint64_t Members) const override;
8190 
8191   // Coerce HIP pointer arguments from generic pointers to global ones.
8192   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8193                                        unsigned ToAS) const {
8194     // Structure types.
8195     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
8196       SmallVector<llvm::Type *, 8> EltTys;
8197       bool Changed = false;
8198       for (auto T : STy->elements()) {
8199         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8200         EltTys.push_back(NT);
8201         Changed |= (NT != T);
8202       }
8203       // Skip if there is no change in element types.
8204       if (!Changed)
8205         return STy;
8206       if (STy->hasName())
8207         return llvm::StructType::create(
8208             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
8209       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
8210     }
8211     // Arrary types.
8212     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
8213       auto T = ATy->getElementType();
8214       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8215       // Skip if there is no change in that element type.
8216       if (NT == T)
8217         return ATy;
8218       return llvm::ArrayType::get(NT, ATy->getNumElements());
8219     }
8220     // Single value types.
8221     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8222       return llvm::PointerType::get(
8223           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8224     return Ty;
8225   }
8226 
8227 public:
8228   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8229     DefaultABIInfo(CGT) {}
8230 
8231   ABIArgInfo classifyReturnType(QualType RetTy) const;
8232   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8233   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8234 
8235   void computeInfo(CGFunctionInfo &FI) const override;
8236   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8237                     QualType Ty) const override;
8238 };
8239 
8240 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8241   return true;
8242 }
8243 
8244 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8245   const Type *Base, uint64_t Members) const {
8246   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8247 
8248   // Homogeneous Aggregates may occupy at most 16 registers.
8249   return Members * NumRegs <= MaxNumRegsForArgsRet;
8250 }
8251 
8252 /// Estimate number of registers the type will use when passed in registers.
8253 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8254   unsigned NumRegs = 0;
8255 
8256   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8257     // Compute from the number of elements. The reported size is based on the
8258     // in-memory size, which includes the padding 4th element for 3-vectors.
8259     QualType EltTy = VT->getElementType();
8260     unsigned EltSize = getContext().getTypeSize(EltTy);
8261 
8262     // 16-bit element vectors should be passed as packed.
8263     if (EltSize == 16)
8264       return (VT->getNumElements() + 1) / 2;
8265 
8266     unsigned EltNumRegs = (EltSize + 31) / 32;
8267     return EltNumRegs * VT->getNumElements();
8268   }
8269 
8270   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8271     const RecordDecl *RD = RT->getDecl();
8272     assert(!RD->hasFlexibleArrayMember());
8273 
8274     for (const FieldDecl *Field : RD->fields()) {
8275       QualType FieldTy = Field->getType();
8276       NumRegs += numRegsForType(FieldTy);
8277     }
8278 
8279     return NumRegs;
8280   }
8281 
8282   return (getContext().getTypeSize(Ty) + 31) / 32;
8283 }
8284 
8285 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8286   llvm::CallingConv::ID CC = FI.getCallingConvention();
8287 
8288   if (!getCXXABI().classifyReturnType(FI))
8289     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8290 
8291   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8292   for (auto &Arg : FI.arguments()) {
8293     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8294       Arg.info = classifyKernelArgumentType(Arg.type);
8295     } else {
8296       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8297     }
8298   }
8299 }
8300 
8301 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8302                                  QualType Ty) const {
8303   llvm_unreachable("AMDGPU does not support varargs");
8304 }
8305 
8306 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8307   if (isAggregateTypeForABI(RetTy)) {
8308     // Records with non-trivial destructors/copy-constructors should not be
8309     // returned by value.
8310     if (!getRecordArgABI(RetTy, getCXXABI())) {
8311       // Ignore empty structs/unions.
8312       if (isEmptyRecord(getContext(), RetTy, true))
8313         return ABIArgInfo::getIgnore();
8314 
8315       // Lower single-element structs to just return a regular value.
8316       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8317         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8318 
8319       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8320         const RecordDecl *RD = RT->getDecl();
8321         if (RD->hasFlexibleArrayMember())
8322           return DefaultABIInfo::classifyReturnType(RetTy);
8323       }
8324 
8325       // Pack aggregates <= 4 bytes into single VGPR or pair.
8326       uint64_t Size = getContext().getTypeSize(RetTy);
8327       if (Size <= 16)
8328         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8329 
8330       if (Size <= 32)
8331         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8332 
8333       if (Size <= 64) {
8334         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8335         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8336       }
8337 
8338       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8339         return ABIArgInfo::getDirect();
8340     }
8341   }
8342 
8343   // Otherwise just do the default thing.
8344   return DefaultABIInfo::classifyReturnType(RetTy);
8345 }
8346 
8347 /// For kernels all parameters are really passed in a special buffer. It doesn't
8348 /// make sense to pass anything byval, so everything must be direct.
8349 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8350   Ty = useFirstFieldIfTransparentUnion(Ty);
8351 
8352   // TODO: Can we omit empty structs?
8353 
8354   llvm::Type *LTy = nullptr;
8355   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8356     LTy = CGT.ConvertType(QualType(SeltTy, 0));
8357 
8358   if (getContext().getLangOpts().HIP) {
8359     if (!LTy)
8360       LTy = CGT.ConvertType(Ty);
8361     LTy = coerceKernelArgumentType(
8362         LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8363         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8364   }
8365 
8366   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8367   // individual elements, which confuses the Clover OpenCL backend; therefore we
8368   // have to set it to false here. Other args of getDirect() are just defaults.
8369   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8370 }
8371 
8372 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8373                                                unsigned &NumRegsLeft) const {
8374   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8375 
8376   Ty = useFirstFieldIfTransparentUnion(Ty);
8377 
8378   if (isAggregateTypeForABI(Ty)) {
8379     // Records with non-trivial destructors/copy-constructors should not be
8380     // passed by value.
8381     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8382       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8383 
8384     // Ignore empty structs/unions.
8385     if (isEmptyRecord(getContext(), Ty, true))
8386       return ABIArgInfo::getIgnore();
8387 
8388     // Lower single-element structs to just pass a regular value. TODO: We
8389     // could do reasonable-size multiple-element structs too, using getExpand(),
8390     // though watch out for things like bitfields.
8391     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8392       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8393 
8394     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8395       const RecordDecl *RD = RT->getDecl();
8396       if (RD->hasFlexibleArrayMember())
8397         return DefaultABIInfo::classifyArgumentType(Ty);
8398     }
8399 
8400     // Pack aggregates <= 8 bytes into single VGPR or pair.
8401     uint64_t Size = getContext().getTypeSize(Ty);
8402     if (Size <= 64) {
8403       unsigned NumRegs = (Size + 31) / 32;
8404       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8405 
8406       if (Size <= 16)
8407         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8408 
8409       if (Size <= 32)
8410         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8411 
8412       // XXX: Should this be i64 instead, and should the limit increase?
8413       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8414       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8415     }
8416 
8417     if (NumRegsLeft > 0) {
8418       unsigned NumRegs = numRegsForType(Ty);
8419       if (NumRegsLeft >= NumRegs) {
8420         NumRegsLeft -= NumRegs;
8421         return ABIArgInfo::getDirect();
8422       }
8423     }
8424   }
8425 
8426   // Otherwise just do the default thing.
8427   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8428   if (!ArgInfo.isIndirect()) {
8429     unsigned NumRegs = numRegsForType(Ty);
8430     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8431   }
8432 
8433   return ArgInfo;
8434 }
8435 
8436 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8437 public:
8438   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8439     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
8440   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8441                            CodeGen::CodeGenModule &M) const override;
8442   unsigned getOpenCLKernelCallingConv() const override;
8443 
8444   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8445       llvm::PointerType *T, QualType QT) const override;
8446 
8447   LangAS getASTAllocaAddressSpace() const override {
8448     return getLangASFromTargetAS(
8449         getABIInfo().getDataLayout().getAllocaAddrSpace());
8450   }
8451   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8452                                   const VarDecl *D) const override;
8453   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8454                                          SyncScope Scope,
8455                                          llvm::AtomicOrdering Ordering,
8456                                          llvm::LLVMContext &Ctx) const override;
8457   llvm::Function *
8458   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8459                             llvm::Function *BlockInvokeFunc,
8460                             llvm::Value *BlockLiteral) const override;
8461   bool shouldEmitStaticExternCAliases() const override;
8462   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8463 };
8464 }
8465 
8466 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8467                                               llvm::GlobalValue *GV) {
8468   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8469     return false;
8470 
8471   return D->hasAttr<OpenCLKernelAttr>() ||
8472          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8473          (isa<VarDecl>(D) &&
8474           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8475            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
8476            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
8477 }
8478 
8479 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8480     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8481   if (requiresAMDGPUProtectedVisibility(D, GV)) {
8482     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8483     GV->setDSOLocal(true);
8484   }
8485 
8486   if (GV->isDeclaration())
8487     return;
8488   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8489   if (!FD)
8490     return;
8491 
8492   llvm::Function *F = cast<llvm::Function>(GV);
8493 
8494   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8495     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8496 
8497 
8498   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8499                               FD->hasAttr<OpenCLKernelAttr>();
8500   const bool IsHIPKernel = M.getLangOpts().HIP &&
8501                            FD->hasAttr<CUDAGlobalAttr>();
8502   if ((IsOpenCLKernel || IsHIPKernel) &&
8503       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8504     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8505 
8506   if (IsHIPKernel)
8507     F->addFnAttr("uniform-work-group-size", "true");
8508 
8509 
8510   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8511   if (ReqdWGS || FlatWGS) {
8512     unsigned Min = 0;
8513     unsigned Max = 0;
8514     if (FlatWGS) {
8515       Min = FlatWGS->getMin()
8516                 ->EvaluateKnownConstInt(M.getContext())
8517                 .getExtValue();
8518       Max = FlatWGS->getMax()
8519                 ->EvaluateKnownConstInt(M.getContext())
8520                 .getExtValue();
8521     }
8522     if (ReqdWGS && Min == 0 && Max == 0)
8523       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8524 
8525     if (Min != 0) {
8526       assert(Min <= Max && "Min must be less than or equal Max");
8527 
8528       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
8529       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8530     } else
8531       assert(Max == 0 && "Max must be zero");
8532   } else if (IsOpenCLKernel || IsHIPKernel) {
8533     // By default, restrict the maximum size to a value specified by
8534     // --gpu-max-threads-per-block=n or its default value.
8535     std::string AttrVal =
8536         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
8537     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8538   }
8539 
8540   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
8541     unsigned Min =
8542         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
8543     unsigned Max = Attr->getMax() ? Attr->getMax()
8544                                         ->EvaluateKnownConstInt(M.getContext())
8545                                         .getExtValue()
8546                                   : 0;
8547 
8548     if (Min != 0) {
8549       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
8550 
8551       std::string AttrVal = llvm::utostr(Min);
8552       if (Max != 0)
8553         AttrVal = AttrVal + "," + llvm::utostr(Max);
8554       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
8555     } else
8556       assert(Max == 0 && "Max must be zero");
8557   }
8558 
8559   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
8560     unsigned NumSGPR = Attr->getNumSGPR();
8561 
8562     if (NumSGPR != 0)
8563       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
8564   }
8565 
8566   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
8567     uint32_t NumVGPR = Attr->getNumVGPR();
8568 
8569     if (NumVGPR != 0)
8570       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
8571   }
8572 }
8573 
8574 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8575   return llvm::CallingConv::AMDGPU_KERNEL;
8576 }
8577 
8578 // Currently LLVM assumes null pointers always have value 0,
8579 // which results in incorrectly transformed IR. Therefore, instead of
8580 // emitting null pointers in private and local address spaces, a null
8581 // pointer in generic address space is emitted which is casted to a
8582 // pointer in local or private address space.
8583 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
8584     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
8585     QualType QT) const {
8586   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
8587     return llvm::ConstantPointerNull::get(PT);
8588 
8589   auto &Ctx = CGM.getContext();
8590   auto NPT = llvm::PointerType::get(PT->getElementType(),
8591       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
8592   return llvm::ConstantExpr::getAddrSpaceCast(
8593       llvm::ConstantPointerNull::get(NPT), PT);
8594 }
8595 
8596 LangAS
8597 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
8598                                                   const VarDecl *D) const {
8599   assert(!CGM.getLangOpts().OpenCL &&
8600          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
8601          "Address space agnostic languages only");
8602   LangAS DefaultGlobalAS = getLangASFromTargetAS(
8603       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
8604   if (!D)
8605     return DefaultGlobalAS;
8606 
8607   LangAS AddrSpace = D->getType().getAddressSpace();
8608   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
8609   if (AddrSpace != LangAS::Default)
8610     return AddrSpace;
8611 
8612   if (CGM.isTypeConstant(D->getType(), false)) {
8613     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
8614       return ConstAS.getValue();
8615   }
8616   return DefaultGlobalAS;
8617 }
8618 
8619 llvm::SyncScope::ID
8620 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
8621                                             SyncScope Scope,
8622                                             llvm::AtomicOrdering Ordering,
8623                                             llvm::LLVMContext &Ctx) const {
8624   std::string Name;
8625   switch (Scope) {
8626   case SyncScope::OpenCLWorkGroup:
8627     Name = "workgroup";
8628     break;
8629   case SyncScope::OpenCLDevice:
8630     Name = "agent";
8631     break;
8632   case SyncScope::OpenCLAllSVMDevices:
8633     Name = "";
8634     break;
8635   case SyncScope::OpenCLSubGroup:
8636     Name = "wavefront";
8637   }
8638 
8639   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
8640     if (!Name.empty())
8641       Name = Twine(Twine(Name) + Twine("-")).str();
8642 
8643     Name = Twine(Twine(Name) + Twine("one-as")).str();
8644   }
8645 
8646   return Ctx.getOrInsertSyncScopeID(Name);
8647 }
8648 
8649 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8650   return false;
8651 }
8652 
8653 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8654     const FunctionType *&FT) const {
8655   FT = getABIInfo().getContext().adjustFunctionType(
8656       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8657 }
8658 
8659 //===----------------------------------------------------------------------===//
8660 // SPARC v8 ABI Implementation.
8661 // Based on the SPARC Compliance Definition version 2.4.1.
8662 //
8663 // Ensures that complex values are passed in registers.
8664 //
8665 namespace {
8666 class SparcV8ABIInfo : public DefaultABIInfo {
8667 public:
8668   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8669 
8670 private:
8671   ABIArgInfo classifyReturnType(QualType RetTy) const;
8672   void computeInfo(CGFunctionInfo &FI) const override;
8673 };
8674 } // end anonymous namespace
8675 
8676 
8677 ABIArgInfo
8678 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8679   if (Ty->isAnyComplexType()) {
8680     return ABIArgInfo::getDirect();
8681   }
8682   else {
8683     return DefaultABIInfo::classifyReturnType(Ty);
8684   }
8685 }
8686 
8687 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8688 
8689   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8690   for (auto &Arg : FI.arguments())
8691     Arg.info = classifyArgumentType(Arg.type);
8692 }
8693 
8694 namespace {
8695 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8696 public:
8697   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8698     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8699 };
8700 } // end anonymous namespace
8701 
8702 //===----------------------------------------------------------------------===//
8703 // SPARC v9 ABI Implementation.
8704 // Based on the SPARC Compliance Definition version 2.4.1.
8705 //
8706 // Function arguments a mapped to a nominal "parameter array" and promoted to
8707 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8708 // the array, structs larger than 16 bytes are passed indirectly.
8709 //
8710 // One case requires special care:
8711 //
8712 //   struct mixed {
8713 //     int i;
8714 //     float f;
8715 //   };
8716 //
8717 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8718 // parameter array, but the int is passed in an integer register, and the float
8719 // is passed in a floating point register. This is represented as two arguments
8720 // with the LLVM IR inreg attribute:
8721 //
8722 //   declare void f(i32 inreg %i, float inreg %f)
8723 //
8724 // The code generator will only allocate 4 bytes from the parameter array for
8725 // the inreg arguments. All other arguments are allocated a multiple of 8
8726 // bytes.
8727 //
8728 namespace {
8729 class SparcV9ABIInfo : public ABIInfo {
8730 public:
8731   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8732 
8733 private:
8734   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8735   void computeInfo(CGFunctionInfo &FI) const override;
8736   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8737                     QualType Ty) const override;
8738 
8739   // Coercion type builder for structs passed in registers. The coercion type
8740   // serves two purposes:
8741   //
8742   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8743   //    in registers.
8744   // 2. Expose aligned floating point elements as first-level elements, so the
8745   //    code generator knows to pass them in floating point registers.
8746   //
8747   // We also compute the InReg flag which indicates that the struct contains
8748   // aligned 32-bit floats.
8749   //
8750   struct CoerceBuilder {
8751     llvm::LLVMContext &Context;
8752     const llvm::DataLayout &DL;
8753     SmallVector<llvm::Type*, 8> Elems;
8754     uint64_t Size;
8755     bool InReg;
8756 
8757     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8758       : Context(c), DL(dl), Size(0), InReg(false) {}
8759 
8760     // Pad Elems with integers until Size is ToSize.
8761     void pad(uint64_t ToSize) {
8762       assert(ToSize >= Size && "Cannot remove elements");
8763       if (ToSize == Size)
8764         return;
8765 
8766       // Finish the current 64-bit word.
8767       uint64_t Aligned = llvm::alignTo(Size, 64);
8768       if (Aligned > Size && Aligned <= ToSize) {
8769         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8770         Size = Aligned;
8771       }
8772 
8773       // Add whole 64-bit words.
8774       while (Size + 64 <= ToSize) {
8775         Elems.push_back(llvm::Type::getInt64Ty(Context));
8776         Size += 64;
8777       }
8778 
8779       // Final in-word padding.
8780       if (Size < ToSize) {
8781         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8782         Size = ToSize;
8783       }
8784     }
8785 
8786     // Add a floating point element at Offset.
8787     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8788       // Unaligned floats are treated as integers.
8789       if (Offset % Bits)
8790         return;
8791       // The InReg flag is only required if there are any floats < 64 bits.
8792       if (Bits < 64)
8793         InReg = true;
8794       pad(Offset);
8795       Elems.push_back(Ty);
8796       Size = Offset + Bits;
8797     }
8798 
8799     // Add a struct type to the coercion type, starting at Offset (in bits).
8800     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8801       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8802       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8803         llvm::Type *ElemTy = StrTy->getElementType(i);
8804         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8805         switch (ElemTy->getTypeID()) {
8806         case llvm::Type::StructTyID:
8807           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8808           break;
8809         case llvm::Type::FloatTyID:
8810           addFloat(ElemOffset, ElemTy, 32);
8811           break;
8812         case llvm::Type::DoubleTyID:
8813           addFloat(ElemOffset, ElemTy, 64);
8814           break;
8815         case llvm::Type::FP128TyID:
8816           addFloat(ElemOffset, ElemTy, 128);
8817           break;
8818         case llvm::Type::PointerTyID:
8819           if (ElemOffset % 64 == 0) {
8820             pad(ElemOffset);
8821             Elems.push_back(ElemTy);
8822             Size += 64;
8823           }
8824           break;
8825         default:
8826           break;
8827         }
8828       }
8829     }
8830 
8831     // Check if Ty is a usable substitute for the coercion type.
8832     bool isUsableType(llvm::StructType *Ty) const {
8833       return llvm::makeArrayRef(Elems) == Ty->elements();
8834     }
8835 
8836     // Get the coercion type as a literal struct type.
8837     llvm::Type *getType() const {
8838       if (Elems.size() == 1)
8839         return Elems.front();
8840       else
8841         return llvm::StructType::get(Context, Elems);
8842     }
8843   };
8844 };
8845 } // end anonymous namespace
8846 
8847 ABIArgInfo
8848 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8849   if (Ty->isVoidType())
8850     return ABIArgInfo::getIgnore();
8851 
8852   uint64_t Size = getContext().getTypeSize(Ty);
8853 
8854   // Anything too big to fit in registers is passed with an explicit indirect
8855   // pointer / sret pointer.
8856   if (Size > SizeLimit)
8857     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8858 
8859   // Treat an enum type as its underlying type.
8860   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8861     Ty = EnumTy->getDecl()->getIntegerType();
8862 
8863   // Integer types smaller than a register are extended.
8864   if (Size < 64 && Ty->isIntegerType())
8865     return ABIArgInfo::getExtend(Ty);
8866 
8867   // Other non-aggregates go in registers.
8868   if (!isAggregateTypeForABI(Ty))
8869     return ABIArgInfo::getDirect();
8870 
8871   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8872   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8873   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8874     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8875 
8876   // This is a small aggregate type that should be passed in registers.
8877   // Build a coercion type from the LLVM struct type.
8878   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8879   if (!StrTy)
8880     return ABIArgInfo::getDirect();
8881 
8882   CoerceBuilder CB(getVMContext(), getDataLayout());
8883   CB.addStruct(0, StrTy);
8884   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8885 
8886   // Try to use the original type for coercion.
8887   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8888 
8889   if (CB.InReg)
8890     return ABIArgInfo::getDirectInReg(CoerceTy);
8891   else
8892     return ABIArgInfo::getDirect(CoerceTy);
8893 }
8894 
8895 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8896                                   QualType Ty) const {
8897   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8898   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8899   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8900     AI.setCoerceToType(ArgTy);
8901 
8902   CharUnits SlotSize = CharUnits::fromQuantity(8);
8903 
8904   CGBuilderTy &Builder = CGF.Builder;
8905   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8906   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8907 
8908   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8909 
8910   Address ArgAddr = Address::invalid();
8911   CharUnits Stride;
8912   switch (AI.getKind()) {
8913   case ABIArgInfo::Expand:
8914   case ABIArgInfo::CoerceAndExpand:
8915   case ABIArgInfo::InAlloca:
8916     llvm_unreachable("Unsupported ABI kind for va_arg");
8917 
8918   case ABIArgInfo::Extend: {
8919     Stride = SlotSize;
8920     CharUnits Offset = SlotSize - TypeInfo.first;
8921     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8922     break;
8923   }
8924 
8925   case ABIArgInfo::Direct: {
8926     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8927     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8928     ArgAddr = Addr;
8929     break;
8930   }
8931 
8932   case ABIArgInfo::Indirect:
8933     Stride = SlotSize;
8934     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8935     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8936                       TypeInfo.second);
8937     break;
8938 
8939   case ABIArgInfo::Ignore:
8940     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8941   }
8942 
8943   // Update VAList.
8944   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8945   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8946 
8947   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8948 }
8949 
8950 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8951   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8952   for (auto &I : FI.arguments())
8953     I.info = classifyType(I.type, 16 * 8);
8954 }
8955 
8956 namespace {
8957 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8958 public:
8959   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8960     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8961 
8962   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8963     return 14;
8964   }
8965 
8966   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8967                                llvm::Value *Address) const override;
8968 };
8969 } // end anonymous namespace
8970 
8971 bool
8972 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8973                                                 llvm::Value *Address) const {
8974   // This is calculated from the LLVM and GCC tables and verified
8975   // against gcc output.  AFAIK all ABIs use the same encoding.
8976 
8977   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8978 
8979   llvm::IntegerType *i8 = CGF.Int8Ty;
8980   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8981   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8982 
8983   // 0-31: the 8-byte general-purpose registers
8984   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8985 
8986   // 32-63: f0-31, the 4-byte floating-point registers
8987   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8988 
8989   //   Y   = 64
8990   //   PSR = 65
8991   //   WIM = 66
8992   //   TBR = 67
8993   //   PC  = 68
8994   //   NPC = 69
8995   //   FSR = 70
8996   //   CSR = 71
8997   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8998 
8999   // 72-87: d0-15, the 8-byte floating-point registers
9000   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9001 
9002   return false;
9003 }
9004 
9005 // ARC ABI implementation.
9006 namespace {
9007 
9008 class ARCABIInfo : public DefaultABIInfo {
9009 public:
9010   using DefaultABIInfo::DefaultABIInfo;
9011 
9012 private:
9013   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9014                     QualType Ty) const override;
9015 
9016   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9017     if (!State.FreeRegs)
9018       return;
9019     if (Info.isIndirect() && Info.getInReg())
9020       State.FreeRegs--;
9021     else if (Info.isDirect() && Info.getInReg()) {
9022       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9023       if (sz < State.FreeRegs)
9024         State.FreeRegs -= sz;
9025       else
9026         State.FreeRegs = 0;
9027     }
9028   }
9029 
9030   void computeInfo(CGFunctionInfo &FI) const override {
9031     CCState State(FI);
9032     // ARC uses 8 registers to pass arguments.
9033     State.FreeRegs = 8;
9034 
9035     if (!getCXXABI().classifyReturnType(FI))
9036       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9037     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9038     for (auto &I : FI.arguments()) {
9039       I.info = classifyArgumentType(I.type, State.FreeRegs);
9040       updateState(I.info, I.type, State);
9041     }
9042   }
9043 
9044   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9045   ABIArgInfo getIndirectByValue(QualType Ty) const;
9046   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9047   ABIArgInfo classifyReturnType(QualType RetTy) const;
9048 };
9049 
9050 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9051 public:
9052   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9053       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
9054 };
9055 
9056 
9057 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9058   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9059                        getNaturalAlignIndirect(Ty, false);
9060 }
9061 
9062 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9063   // Compute the byval alignment.
9064   const unsigned MinABIStackAlignInBytes = 4;
9065   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9066   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9067                                  TypeAlign > MinABIStackAlignInBytes);
9068 }
9069 
9070 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9071                               QualType Ty) const {
9072   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9073                           getContext().getTypeInfoInChars(Ty),
9074                           CharUnits::fromQuantity(4), true);
9075 }
9076 
9077 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9078                                             uint8_t FreeRegs) const {
9079   // Handle the generic C++ ABI.
9080   const RecordType *RT = Ty->getAs<RecordType>();
9081   if (RT) {
9082     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9083     if (RAA == CGCXXABI::RAA_Indirect)
9084       return getIndirectByRef(Ty, FreeRegs > 0);
9085 
9086     if (RAA == CGCXXABI::RAA_DirectInMemory)
9087       return getIndirectByValue(Ty);
9088   }
9089 
9090   // Treat an enum type as its underlying type.
9091   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9092     Ty = EnumTy->getDecl()->getIntegerType();
9093 
9094   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9095 
9096   if (isAggregateTypeForABI(Ty)) {
9097     // Structures with flexible arrays are always indirect.
9098     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9099       return getIndirectByValue(Ty);
9100 
9101     // Ignore empty structs/unions.
9102     if (isEmptyRecord(getContext(), Ty, true))
9103       return ABIArgInfo::getIgnore();
9104 
9105     llvm::LLVMContext &LLVMContext = getVMContext();
9106 
9107     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9108     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9109     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9110 
9111     return FreeRegs >= SizeInRegs ?
9112         ABIArgInfo::getDirectInReg(Result) :
9113         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9114   }
9115 
9116   return Ty->isPromotableIntegerType() ?
9117       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
9118                                 ABIArgInfo::getExtend(Ty)) :
9119       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
9120                                 ABIArgInfo::getDirect());
9121 }
9122 
9123 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9124   if (RetTy->isAnyComplexType())
9125     return ABIArgInfo::getDirectInReg();
9126 
9127   // Arguments of size > 4 registers are indirect.
9128   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9129   if (RetSize > 4)
9130     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9131 
9132   return DefaultABIInfo::classifyReturnType(RetTy);
9133 }
9134 
9135 } // End anonymous namespace.
9136 
9137 //===----------------------------------------------------------------------===//
9138 // XCore ABI Implementation
9139 //===----------------------------------------------------------------------===//
9140 
9141 namespace {
9142 
9143 /// A SmallStringEnc instance is used to build up the TypeString by passing
9144 /// it by reference between functions that append to it.
9145 typedef llvm::SmallString<128> SmallStringEnc;
9146 
9147 /// TypeStringCache caches the meta encodings of Types.
9148 ///
9149 /// The reason for caching TypeStrings is two fold:
9150 ///   1. To cache a type's encoding for later uses;
9151 ///   2. As a means to break recursive member type inclusion.
9152 ///
9153 /// A cache Entry can have a Status of:
9154 ///   NonRecursive:   The type encoding is not recursive;
9155 ///   Recursive:      The type encoding is recursive;
9156 ///   Incomplete:     An incomplete TypeString;
9157 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9158 ///                   Recursive type encoding.
9159 ///
9160 /// A NonRecursive entry will have all of its sub-members expanded as fully
9161 /// as possible. Whilst it may contain types which are recursive, the type
9162 /// itself is not recursive and thus its encoding may be safely used whenever
9163 /// the type is encountered.
9164 ///
9165 /// A Recursive entry will have all of its sub-members expanded as fully as
9166 /// possible. The type itself is recursive and it may contain other types which
9167 /// are recursive. The Recursive encoding must not be used during the expansion
9168 /// of a recursive type's recursive branch. For simplicity the code uses
9169 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9170 ///
9171 /// An Incomplete entry is always a RecordType and only encodes its
9172 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9173 /// are placed into the cache during type expansion as a means to identify and
9174 /// handle recursive inclusion of types as sub-members. If there is recursion
9175 /// the entry becomes IncompleteUsed.
9176 ///
9177 /// During the expansion of a RecordType's members:
9178 ///
9179 ///   If the cache contains a NonRecursive encoding for the member type, the
9180 ///   cached encoding is used;
9181 ///
9182 ///   If the cache contains a Recursive encoding for the member type, the
9183 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9184 ///
9185 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9186 ///   cache to break potential recursive inclusion of itself as a sub-member;
9187 ///
9188 ///   Once a member RecordType has been expanded, its temporary incomplete
9189 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9190 ///   it is swapped back in;
9191 ///
9192 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9193 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9194 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9195 ///
9196 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9197 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9198 ///   Else the member is part of a recursive type and thus the recursion has
9199 ///   been exited too soon for the encoding to be correct for the member.
9200 ///
9201 class TypeStringCache {
9202   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9203   struct Entry {
9204     std::string Str;     // The encoded TypeString for the type.
9205     enum Status State;   // Information about the encoding in 'Str'.
9206     std::string Swapped; // A temporary place holder for a Recursive encoding
9207                          // during the expansion of RecordType's members.
9208   };
9209   std::map<const IdentifierInfo *, struct Entry> Map;
9210   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9211   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9212 public:
9213   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9214   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9215   bool removeIncomplete(const IdentifierInfo *ID);
9216   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9217                      bool IsRecursive);
9218   StringRef lookupStr(const IdentifierInfo *ID);
9219 };
9220 
9221 /// TypeString encodings for enum & union fields must be order.
9222 /// FieldEncoding is a helper for this ordering process.
9223 class FieldEncoding {
9224   bool HasName;
9225   std::string Enc;
9226 public:
9227   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9228   StringRef str() { return Enc; }
9229   bool operator<(const FieldEncoding &rhs) const {
9230     if (HasName != rhs.HasName) return HasName;
9231     return Enc < rhs.Enc;
9232   }
9233 };
9234 
9235 class XCoreABIInfo : public DefaultABIInfo {
9236 public:
9237   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9238   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9239                     QualType Ty) const override;
9240 };
9241 
9242 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9243   mutable TypeStringCache TSC;
9244 public:
9245   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9246     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
9247   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9248                     CodeGen::CodeGenModule &M) const override;
9249 };
9250 
9251 } // End anonymous namespace.
9252 
9253 // TODO: this implementation is likely now redundant with the default
9254 // EmitVAArg.
9255 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9256                                 QualType Ty) const {
9257   CGBuilderTy &Builder = CGF.Builder;
9258 
9259   // Get the VAList.
9260   CharUnits SlotSize = CharUnits::fromQuantity(4);
9261   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9262 
9263   // Handle the argument.
9264   ABIArgInfo AI = classifyArgumentType(Ty);
9265   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9266   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9267   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9268     AI.setCoerceToType(ArgTy);
9269   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9270 
9271   Address Val = Address::invalid();
9272   CharUnits ArgSize = CharUnits::Zero();
9273   switch (AI.getKind()) {
9274   case ABIArgInfo::Expand:
9275   case ABIArgInfo::CoerceAndExpand:
9276   case ABIArgInfo::InAlloca:
9277     llvm_unreachable("Unsupported ABI kind for va_arg");
9278   case ABIArgInfo::Ignore:
9279     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9280     ArgSize = CharUnits::Zero();
9281     break;
9282   case ABIArgInfo::Extend:
9283   case ABIArgInfo::Direct:
9284     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9285     ArgSize = CharUnits::fromQuantity(
9286                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9287     ArgSize = ArgSize.alignTo(SlotSize);
9288     break;
9289   case ABIArgInfo::Indirect:
9290     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9291     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9292     ArgSize = SlotSize;
9293     break;
9294   }
9295 
9296   // Increment the VAList.
9297   if (!ArgSize.isZero()) {
9298     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9299     Builder.CreateStore(APN.getPointer(), VAListAddr);
9300   }
9301 
9302   return Val;
9303 }
9304 
9305 /// During the expansion of a RecordType, an incomplete TypeString is placed
9306 /// into the cache as a means to identify and break recursion.
9307 /// If there is a Recursive encoding in the cache, it is swapped out and will
9308 /// be reinserted by removeIncomplete().
9309 /// All other types of encoding should have been used rather than arriving here.
9310 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9311                                     std::string StubEnc) {
9312   if (!ID)
9313     return;
9314   Entry &E = Map[ID];
9315   assert( (E.Str.empty() || E.State == Recursive) &&
9316          "Incorrectly use of addIncomplete");
9317   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9318   E.Swapped.swap(E.Str); // swap out the Recursive
9319   E.Str.swap(StubEnc);
9320   E.State = Incomplete;
9321   ++IncompleteCount;
9322 }
9323 
9324 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9325 /// must be removed from the cache.
9326 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9327 /// Returns true if the RecordType was defined recursively.
9328 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9329   if (!ID)
9330     return false;
9331   auto I = Map.find(ID);
9332   assert(I != Map.end() && "Entry not present");
9333   Entry &E = I->second;
9334   assert( (E.State == Incomplete ||
9335            E.State == IncompleteUsed) &&
9336          "Entry must be an incomplete type");
9337   bool IsRecursive = false;
9338   if (E.State == IncompleteUsed) {
9339     // We made use of our Incomplete encoding, thus we are recursive.
9340     IsRecursive = true;
9341     --IncompleteUsedCount;
9342   }
9343   if (E.Swapped.empty())
9344     Map.erase(I);
9345   else {
9346     // Swap the Recursive back.
9347     E.Swapped.swap(E.Str);
9348     E.Swapped.clear();
9349     E.State = Recursive;
9350   }
9351   --IncompleteCount;
9352   return IsRecursive;
9353 }
9354 
9355 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9356 /// Recursive (viz: all sub-members were expanded as fully as possible).
9357 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9358                                     bool IsRecursive) {
9359   if (!ID || IncompleteUsedCount)
9360     return; // No key or it is is an incomplete sub-type so don't add.
9361   Entry &E = Map[ID];
9362   if (IsRecursive && !E.Str.empty()) {
9363     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9364            "This is not the same Recursive entry");
9365     // The parent container was not recursive after all, so we could have used
9366     // this Recursive sub-member entry after all, but we assumed the worse when
9367     // we started viz: IncompleteCount!=0.
9368     return;
9369   }
9370   assert(E.Str.empty() && "Entry already present");
9371   E.Str = Str.str();
9372   E.State = IsRecursive? Recursive : NonRecursive;
9373 }
9374 
9375 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9376 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9377 /// encoding is Recursive, return an empty StringRef.
9378 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9379   if (!ID)
9380     return StringRef();   // We have no key.
9381   auto I = Map.find(ID);
9382   if (I == Map.end())
9383     return StringRef();   // We have no encoding.
9384   Entry &E = I->second;
9385   if (E.State == Recursive && IncompleteCount)
9386     return StringRef();   // We don't use Recursive encodings for member types.
9387 
9388   if (E.State == Incomplete) {
9389     // The incomplete type is being used to break out of recursion.
9390     E.State = IncompleteUsed;
9391     ++IncompleteUsedCount;
9392   }
9393   return E.Str;
9394 }
9395 
9396 /// The XCore ABI includes a type information section that communicates symbol
9397 /// type information to the linker. The linker uses this information to verify
9398 /// safety/correctness of things such as array bound and pointers et al.
9399 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9400 /// This type information (TypeString) is emitted into meta data for all global
9401 /// symbols: definitions, declarations, functions & variables.
9402 ///
9403 /// The TypeString carries type, qualifier, name, size & value details.
9404 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9405 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9406 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9407 ///
9408 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9409                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
9410 
9411 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9412 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9413                                           CodeGen::CodeGenModule &CGM) const {
9414   SmallStringEnc Enc;
9415   if (getTypeString(Enc, D, CGM, TSC)) {
9416     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9417     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9418                                 llvm::MDString::get(Ctx, Enc.str())};
9419     llvm::NamedMDNode *MD =
9420       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9421     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9422   }
9423 }
9424 
9425 //===----------------------------------------------------------------------===//
9426 // SPIR ABI Implementation
9427 //===----------------------------------------------------------------------===//
9428 
9429 namespace {
9430 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9431 public:
9432   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9433     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
9434   unsigned getOpenCLKernelCallingConv() const override;
9435 };
9436 
9437 } // End anonymous namespace.
9438 
9439 namespace clang {
9440 namespace CodeGen {
9441 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9442   DefaultABIInfo SPIRABI(CGM.getTypes());
9443   SPIRABI.computeInfo(FI);
9444 }
9445 }
9446 }
9447 
9448 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9449   return llvm::CallingConv::SPIR_KERNEL;
9450 }
9451 
9452 static bool appendType(SmallStringEnc &Enc, QualType QType,
9453                        const CodeGen::CodeGenModule &CGM,
9454                        TypeStringCache &TSC);
9455 
9456 /// Helper function for appendRecordType().
9457 /// Builds a SmallVector containing the encoded field types in declaration
9458 /// order.
9459 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
9460                              const RecordDecl *RD,
9461                              const CodeGen::CodeGenModule &CGM,
9462                              TypeStringCache &TSC) {
9463   for (const auto *Field : RD->fields()) {
9464     SmallStringEnc Enc;
9465     Enc += "m(";
9466     Enc += Field->getName();
9467     Enc += "){";
9468     if (Field->isBitField()) {
9469       Enc += "b(";
9470       llvm::raw_svector_ostream OS(Enc);
9471       OS << Field->getBitWidthValue(CGM.getContext());
9472       Enc += ':';
9473     }
9474     if (!appendType(Enc, Field->getType(), CGM, TSC))
9475       return false;
9476     if (Field->isBitField())
9477       Enc += ')';
9478     Enc += '}';
9479     FE.emplace_back(!Field->getName().empty(), Enc);
9480   }
9481   return true;
9482 }
9483 
9484 /// Appends structure and union types to Enc and adds encoding to cache.
9485 /// Recursively calls appendType (via extractFieldType) for each field.
9486 /// Union types have their fields ordered according to the ABI.
9487 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
9488                              const CodeGen::CodeGenModule &CGM,
9489                              TypeStringCache &TSC, const IdentifierInfo *ID) {
9490   // Append the cached TypeString if we have one.
9491   StringRef TypeString = TSC.lookupStr(ID);
9492   if (!TypeString.empty()) {
9493     Enc += TypeString;
9494     return true;
9495   }
9496 
9497   // Start to emit an incomplete TypeString.
9498   size_t Start = Enc.size();
9499   Enc += (RT->isUnionType()? 'u' : 's');
9500   Enc += '(';
9501   if (ID)
9502     Enc += ID->getName();
9503   Enc += "){";
9504 
9505   // We collect all encoded fields and order as necessary.
9506   bool IsRecursive = false;
9507   const RecordDecl *RD = RT->getDecl()->getDefinition();
9508   if (RD && !RD->field_empty()) {
9509     // An incomplete TypeString stub is placed in the cache for this RecordType
9510     // so that recursive calls to this RecordType will use it whilst building a
9511     // complete TypeString for this RecordType.
9512     SmallVector<FieldEncoding, 16> FE;
9513     std::string StubEnc(Enc.substr(Start).str());
9514     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
9515     TSC.addIncomplete(ID, std::move(StubEnc));
9516     if (!extractFieldType(FE, RD, CGM, TSC)) {
9517       (void) TSC.removeIncomplete(ID);
9518       return false;
9519     }
9520     IsRecursive = TSC.removeIncomplete(ID);
9521     // The ABI requires unions to be sorted but not structures.
9522     // See FieldEncoding::operator< for sort algorithm.
9523     if (RT->isUnionType())
9524       llvm::sort(FE);
9525     // We can now complete the TypeString.
9526     unsigned E = FE.size();
9527     for (unsigned I = 0; I != E; ++I) {
9528       if (I)
9529         Enc += ',';
9530       Enc += FE[I].str();
9531     }
9532   }
9533   Enc += '}';
9534   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
9535   return true;
9536 }
9537 
9538 /// Appends enum types to Enc and adds the encoding to the cache.
9539 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
9540                            TypeStringCache &TSC,
9541                            const IdentifierInfo *ID) {
9542   // Append the cached TypeString if we have one.
9543   StringRef TypeString = TSC.lookupStr(ID);
9544   if (!TypeString.empty()) {
9545     Enc += TypeString;
9546     return true;
9547   }
9548 
9549   size_t Start = Enc.size();
9550   Enc += "e(";
9551   if (ID)
9552     Enc += ID->getName();
9553   Enc += "){";
9554 
9555   // We collect all encoded enumerations and order them alphanumerically.
9556   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
9557     SmallVector<FieldEncoding, 16> FE;
9558     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
9559          ++I) {
9560       SmallStringEnc EnumEnc;
9561       EnumEnc += "m(";
9562       EnumEnc += I->getName();
9563       EnumEnc += "){";
9564       I->getInitVal().toString(EnumEnc);
9565       EnumEnc += '}';
9566       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
9567     }
9568     llvm::sort(FE);
9569     unsigned E = FE.size();
9570     for (unsigned I = 0; I != E; ++I) {
9571       if (I)
9572         Enc += ',';
9573       Enc += FE[I].str();
9574     }
9575   }
9576   Enc += '}';
9577   TSC.addIfComplete(ID, Enc.substr(Start), false);
9578   return true;
9579 }
9580 
9581 /// Appends type's qualifier to Enc.
9582 /// This is done prior to appending the type's encoding.
9583 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
9584   // Qualifiers are emitted in alphabetical order.
9585   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
9586   int Lookup = 0;
9587   if (QT.isConstQualified())
9588     Lookup += 1<<0;
9589   if (QT.isRestrictQualified())
9590     Lookup += 1<<1;
9591   if (QT.isVolatileQualified())
9592     Lookup += 1<<2;
9593   Enc += Table[Lookup];
9594 }
9595 
9596 /// Appends built-in types to Enc.
9597 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
9598   const char *EncType;
9599   switch (BT->getKind()) {
9600     case BuiltinType::Void:
9601       EncType = "0";
9602       break;
9603     case BuiltinType::Bool:
9604       EncType = "b";
9605       break;
9606     case BuiltinType::Char_U:
9607       EncType = "uc";
9608       break;
9609     case BuiltinType::UChar:
9610       EncType = "uc";
9611       break;
9612     case BuiltinType::SChar:
9613       EncType = "sc";
9614       break;
9615     case BuiltinType::UShort:
9616       EncType = "us";
9617       break;
9618     case BuiltinType::Short:
9619       EncType = "ss";
9620       break;
9621     case BuiltinType::UInt:
9622       EncType = "ui";
9623       break;
9624     case BuiltinType::Int:
9625       EncType = "si";
9626       break;
9627     case BuiltinType::ULong:
9628       EncType = "ul";
9629       break;
9630     case BuiltinType::Long:
9631       EncType = "sl";
9632       break;
9633     case BuiltinType::ULongLong:
9634       EncType = "ull";
9635       break;
9636     case BuiltinType::LongLong:
9637       EncType = "sll";
9638       break;
9639     case BuiltinType::Float:
9640       EncType = "ft";
9641       break;
9642     case BuiltinType::Double:
9643       EncType = "d";
9644       break;
9645     case BuiltinType::LongDouble:
9646       EncType = "ld";
9647       break;
9648     default:
9649       return false;
9650   }
9651   Enc += EncType;
9652   return true;
9653 }
9654 
9655 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9656 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9657                               const CodeGen::CodeGenModule &CGM,
9658                               TypeStringCache &TSC) {
9659   Enc += "p(";
9660   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9661     return false;
9662   Enc += ')';
9663   return true;
9664 }
9665 
9666 /// Appends array encoding to Enc before calling appendType for the element.
9667 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9668                             const ArrayType *AT,
9669                             const CodeGen::CodeGenModule &CGM,
9670                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9671   if (AT->getSizeModifier() != ArrayType::Normal)
9672     return false;
9673   Enc += "a(";
9674   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9675     CAT->getSize().toStringUnsigned(Enc);
9676   else
9677     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9678   Enc += ':';
9679   // The Qualifiers should be attached to the type rather than the array.
9680   appendQualifier(Enc, QT);
9681   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9682     return false;
9683   Enc += ')';
9684   return true;
9685 }
9686 
9687 /// Appends a function encoding to Enc, calling appendType for the return type
9688 /// and the arguments.
9689 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9690                              const CodeGen::CodeGenModule &CGM,
9691                              TypeStringCache &TSC) {
9692   Enc += "f{";
9693   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9694     return false;
9695   Enc += "}(";
9696   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9697     // N.B. we are only interested in the adjusted param types.
9698     auto I = FPT->param_type_begin();
9699     auto E = FPT->param_type_end();
9700     if (I != E) {
9701       do {
9702         if (!appendType(Enc, *I, CGM, TSC))
9703           return false;
9704         ++I;
9705         if (I != E)
9706           Enc += ',';
9707       } while (I != E);
9708       if (FPT->isVariadic())
9709         Enc += ",va";
9710     } else {
9711       if (FPT->isVariadic())
9712         Enc += "va";
9713       else
9714         Enc += '0';
9715     }
9716   }
9717   Enc += ')';
9718   return true;
9719 }
9720 
9721 /// Handles the type's qualifier before dispatching a call to handle specific
9722 /// type encodings.
9723 static bool appendType(SmallStringEnc &Enc, QualType QType,
9724                        const CodeGen::CodeGenModule &CGM,
9725                        TypeStringCache &TSC) {
9726 
9727   QualType QT = QType.getCanonicalType();
9728 
9729   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9730     // The Qualifiers should be attached to the type rather than the array.
9731     // Thus we don't call appendQualifier() here.
9732     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9733 
9734   appendQualifier(Enc, QT);
9735 
9736   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9737     return appendBuiltinType(Enc, BT);
9738 
9739   if (const PointerType *PT = QT->getAs<PointerType>())
9740     return appendPointerType(Enc, PT, CGM, TSC);
9741 
9742   if (const EnumType *ET = QT->getAs<EnumType>())
9743     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9744 
9745   if (const RecordType *RT = QT->getAsStructureType())
9746     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9747 
9748   if (const RecordType *RT = QT->getAsUnionType())
9749     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9750 
9751   if (const FunctionType *FT = QT->getAs<FunctionType>())
9752     return appendFunctionType(Enc, FT, CGM, TSC);
9753 
9754   return false;
9755 }
9756 
9757 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9758                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9759   if (!D)
9760     return false;
9761 
9762   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9763     if (FD->getLanguageLinkage() != CLanguageLinkage)
9764       return false;
9765     return appendType(Enc, FD->getType(), CGM, TSC);
9766   }
9767 
9768   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9769     if (VD->getLanguageLinkage() != CLanguageLinkage)
9770       return false;
9771     QualType QT = VD->getType().getCanonicalType();
9772     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9773       // Global ArrayTypes are given a size of '*' if the size is unknown.
9774       // The Qualifiers should be attached to the type rather than the array.
9775       // Thus we don't call appendQualifier() here.
9776       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9777     }
9778     return appendType(Enc, QT, CGM, TSC);
9779   }
9780   return false;
9781 }
9782 
9783 //===----------------------------------------------------------------------===//
9784 // RISCV ABI Implementation
9785 //===----------------------------------------------------------------------===//
9786 
9787 namespace {
9788 class RISCVABIInfo : public DefaultABIInfo {
9789 private:
9790   // Size of the integer ('x') registers in bits.
9791   unsigned XLen;
9792   // Size of the floating point ('f') registers in bits. Note that the target
9793   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
9794   // with soft float ABI has FLen==0).
9795   unsigned FLen;
9796   static const int NumArgGPRs = 8;
9797   static const int NumArgFPRs = 8;
9798   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9799                                       llvm::Type *&Field1Ty,
9800                                       CharUnits &Field1Off,
9801                                       llvm::Type *&Field2Ty,
9802                                       CharUnits &Field2Off) const;
9803 
9804 public:
9805   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
9806       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
9807 
9808   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9809   // non-virtual, but computeInfo is virtual, so we overload it.
9810   void computeInfo(CGFunctionInfo &FI) const override;
9811 
9812   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
9813                                   int &ArgFPRsLeft) const;
9814   ABIArgInfo classifyReturnType(QualType RetTy) const;
9815 
9816   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9817                     QualType Ty) const override;
9818 
9819   ABIArgInfo extendType(QualType Ty) const;
9820 
9821   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9822                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
9823                                 CharUnits &Field2Off, int &NeededArgGPRs,
9824                                 int &NeededArgFPRs) const;
9825   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
9826                                                CharUnits Field1Off,
9827                                                llvm::Type *Field2Ty,
9828                                                CharUnits Field2Off) const;
9829 };
9830 } // end anonymous namespace
9831 
9832 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9833   QualType RetTy = FI.getReturnType();
9834   if (!getCXXABI().classifyReturnType(FI))
9835     FI.getReturnInfo() = classifyReturnType(RetTy);
9836 
9837   // IsRetIndirect is true if classifyArgumentType indicated the value should
9838   // be passed indirect, or if the type size is a scalar greater than 2*XLen
9839   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
9840   // in LLVM IR, relying on the backend lowering code to rewrite the argument
9841   // list and pass indirectly on RV32.
9842   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
9843   if (!IsRetIndirect && RetTy->isScalarType() &&
9844       getContext().getTypeSize(RetTy) > (2 * XLen)) {
9845     if (RetTy->isComplexType() && FLen) {
9846       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
9847       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
9848     } else {
9849       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
9850       IsRetIndirect = true;
9851     }
9852   }
9853 
9854   // We must track the number of GPRs used in order to conform to the RISC-V
9855   // ABI, as integer scalars passed in registers should have signext/zeroext
9856   // when promoted, but are anyext if passed on the stack. As GPR usage is
9857   // different for variadic arguments, we must also track whether we are
9858   // examining a vararg or not.
9859   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9860   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
9861   int NumFixedArgs = FI.getNumRequiredArgs();
9862 
9863   int ArgNum = 0;
9864   for (auto &ArgInfo : FI.arguments()) {
9865     bool IsFixed = ArgNum < NumFixedArgs;
9866     ArgInfo.info =
9867         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
9868     ArgNum++;
9869   }
9870 }
9871 
9872 // Returns true if the struct is a potential candidate for the floating point
9873 // calling convention. If this function returns true, the caller is
9874 // responsible for checking that if there is only a single field then that
9875 // field is a float.
9876 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9877                                                   llvm::Type *&Field1Ty,
9878                                                   CharUnits &Field1Off,
9879                                                   llvm::Type *&Field2Ty,
9880                                                   CharUnits &Field2Off) const {
9881   bool IsInt = Ty->isIntegralOrEnumerationType();
9882   bool IsFloat = Ty->isRealFloatingType();
9883 
9884   if (IsInt || IsFloat) {
9885     uint64_t Size = getContext().getTypeSize(Ty);
9886     if (IsInt && Size > XLen)
9887       return false;
9888     // Can't be eligible if larger than the FP registers. Half precision isn't
9889     // currently supported on RISC-V and the ABI hasn't been confirmed, so
9890     // default to the integer ABI in that case.
9891     if (IsFloat && (Size > FLen || Size < 32))
9892       return false;
9893     // Can't be eligible if an integer type was already found (int+int pairs
9894     // are not eligible).
9895     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
9896       return false;
9897     if (!Field1Ty) {
9898       Field1Ty = CGT.ConvertType(Ty);
9899       Field1Off = CurOff;
9900       return true;
9901     }
9902     if (!Field2Ty) {
9903       Field2Ty = CGT.ConvertType(Ty);
9904       Field2Off = CurOff;
9905       return true;
9906     }
9907     return false;
9908   }
9909 
9910   if (auto CTy = Ty->getAs<ComplexType>()) {
9911     if (Field1Ty)
9912       return false;
9913     QualType EltTy = CTy->getElementType();
9914     if (getContext().getTypeSize(EltTy) > FLen)
9915       return false;
9916     Field1Ty = CGT.ConvertType(EltTy);
9917     Field1Off = CurOff;
9918     assert(CurOff.isZero() && "Unexpected offset for first field");
9919     Field2Ty = Field1Ty;
9920     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
9921     return true;
9922   }
9923 
9924   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
9925     uint64_t ArraySize = ATy->getSize().getZExtValue();
9926     QualType EltTy = ATy->getElementType();
9927     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
9928     for (uint64_t i = 0; i < ArraySize; ++i) {
9929       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
9930                                                 Field1Off, Field2Ty, Field2Off);
9931       if (!Ret)
9932         return false;
9933       CurOff += EltSize;
9934     }
9935     return true;
9936   }
9937 
9938   if (const auto *RTy = Ty->getAs<RecordType>()) {
9939     // Structures with either a non-trivial destructor or a non-trivial
9940     // copy constructor are not eligible for the FP calling convention.
9941     if (getRecordArgABI(Ty, CGT.getCXXABI()))
9942       return false;
9943     if (isEmptyRecord(getContext(), Ty, true))
9944       return true;
9945     const RecordDecl *RD = RTy->getDecl();
9946     // Unions aren't eligible unless they're empty (which is caught above).
9947     if (RD->isUnion())
9948       return false;
9949     int ZeroWidthBitFieldCount = 0;
9950     for (const FieldDecl *FD : RD->fields()) {
9951       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
9952       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
9953       QualType QTy = FD->getType();
9954       if (FD->isBitField()) {
9955         unsigned BitWidth = FD->getBitWidthValue(getContext());
9956         // Allow a bitfield with a type greater than XLen as long as the
9957         // bitwidth is XLen or less.
9958         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
9959           QTy = getContext().getIntTypeForBitwidth(XLen, false);
9960         if (BitWidth == 0) {
9961           ZeroWidthBitFieldCount++;
9962           continue;
9963         }
9964       }
9965 
9966       bool Ret = detectFPCCEligibleStructHelper(
9967           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
9968           Field1Ty, Field1Off, Field2Ty, Field2Off);
9969       if (!Ret)
9970         return false;
9971 
9972       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
9973       // or int+fp structs, but are ignored for a struct with an fp field and
9974       // any number of zero-width bitfields.
9975       if (Field2Ty && ZeroWidthBitFieldCount > 0)
9976         return false;
9977     }
9978     return Field1Ty != nullptr;
9979   }
9980 
9981   return false;
9982 }
9983 
9984 // Determine if a struct is eligible for passing according to the floating
9985 // point calling convention (i.e., when flattened it contains a single fp
9986 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
9987 // NeededArgGPRs are incremented appropriately.
9988 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9989                                             CharUnits &Field1Off,
9990                                             llvm::Type *&Field2Ty,
9991                                             CharUnits &Field2Off,
9992                                             int &NeededArgGPRs,
9993                                             int &NeededArgFPRs) const {
9994   Field1Ty = nullptr;
9995   Field2Ty = nullptr;
9996   NeededArgGPRs = 0;
9997   NeededArgFPRs = 0;
9998   bool IsCandidate = detectFPCCEligibleStructHelper(
9999       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10000   // Not really a candidate if we have a single int but no float.
10001   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10002     return false;
10003   if (!IsCandidate)
10004     return false;
10005   if (Field1Ty && Field1Ty->isFloatingPointTy())
10006     NeededArgFPRs++;
10007   else if (Field1Ty)
10008     NeededArgGPRs++;
10009   if (Field2Ty && Field2Ty->isFloatingPointTy())
10010     NeededArgFPRs++;
10011   else if (Field2Ty)
10012     NeededArgGPRs++;
10013   return IsCandidate;
10014 }
10015 
10016 // Call getCoerceAndExpand for the two-element flattened struct described by
10017 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10018 // appropriate coerceToType and unpaddedCoerceToType.
10019 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10020     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10021     CharUnits Field2Off) const {
10022   SmallVector<llvm::Type *, 3> CoerceElts;
10023   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10024   if (!Field1Off.isZero())
10025     CoerceElts.push_back(llvm::ArrayType::get(
10026         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10027 
10028   CoerceElts.push_back(Field1Ty);
10029   UnpaddedCoerceElts.push_back(Field1Ty);
10030 
10031   if (!Field2Ty) {
10032     return ABIArgInfo::getCoerceAndExpand(
10033         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10034         UnpaddedCoerceElts[0]);
10035   }
10036 
10037   CharUnits Field2Align =
10038       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10039   CharUnits Field1Size =
10040       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10041   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
10042 
10043   CharUnits Padding = CharUnits::Zero();
10044   if (Field2Off > Field2OffNoPadNoPack)
10045     Padding = Field2Off - Field2OffNoPadNoPack;
10046   else if (Field2Off != Field2Align && Field2Off > Field1Size)
10047     Padding = Field2Off - Field1Size;
10048 
10049   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10050 
10051   if (!Padding.isZero())
10052     CoerceElts.push_back(llvm::ArrayType::get(
10053         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10054 
10055   CoerceElts.push_back(Field2Ty);
10056   UnpaddedCoerceElts.push_back(Field2Ty);
10057 
10058   auto CoerceToType =
10059       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10060   auto UnpaddedCoerceToType =
10061       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10062 
10063   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10064 }
10065 
10066 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10067                                               int &ArgGPRsLeft,
10068                                               int &ArgFPRsLeft) const {
10069   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10070   Ty = useFirstFieldIfTransparentUnion(Ty);
10071 
10072   // Structures with either a non-trivial destructor or a non-trivial
10073   // copy constructor are always passed indirectly.
10074   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10075     if (ArgGPRsLeft)
10076       ArgGPRsLeft -= 1;
10077     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10078                                            CGCXXABI::RAA_DirectInMemory);
10079   }
10080 
10081   // Ignore empty structs/unions.
10082   if (isEmptyRecord(getContext(), Ty, true))
10083     return ABIArgInfo::getIgnore();
10084 
10085   uint64_t Size = getContext().getTypeSize(Ty);
10086 
10087   // Pass floating point values via FPRs if possible.
10088   if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
10089     ArgFPRsLeft--;
10090     return ABIArgInfo::getDirect();
10091   }
10092 
10093   // Complex types for the hard float ABI must be passed direct rather than
10094   // using CoerceAndExpand.
10095   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10096     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10097     if (getContext().getTypeSize(EltTy) <= FLen) {
10098       ArgFPRsLeft -= 2;
10099       return ABIArgInfo::getDirect();
10100     }
10101   }
10102 
10103   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10104     llvm::Type *Field1Ty = nullptr;
10105     llvm::Type *Field2Ty = nullptr;
10106     CharUnits Field1Off = CharUnits::Zero();
10107     CharUnits Field2Off = CharUnits::Zero();
10108     int NeededArgGPRs;
10109     int NeededArgFPRs;
10110     bool IsCandidate =
10111         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10112                                  NeededArgGPRs, NeededArgFPRs);
10113     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10114         NeededArgFPRs <= ArgFPRsLeft) {
10115       ArgGPRsLeft -= NeededArgGPRs;
10116       ArgFPRsLeft -= NeededArgFPRs;
10117       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10118                                                Field2Off);
10119     }
10120   }
10121 
10122   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10123   bool MustUseStack = false;
10124   // Determine the number of GPRs needed to pass the current argument
10125   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10126   // register pairs, so may consume 3 registers.
10127   int NeededArgGPRs = 1;
10128   if (!IsFixed && NeededAlign == 2 * XLen)
10129     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10130   else if (Size > XLen && Size <= 2 * XLen)
10131     NeededArgGPRs = 2;
10132 
10133   if (NeededArgGPRs > ArgGPRsLeft) {
10134     MustUseStack = true;
10135     NeededArgGPRs = ArgGPRsLeft;
10136   }
10137 
10138   ArgGPRsLeft -= NeededArgGPRs;
10139 
10140   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10141     // Treat an enum type as its underlying type.
10142     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10143       Ty = EnumTy->getDecl()->getIntegerType();
10144 
10145     // All integral types are promoted to XLen width, unless passed on the
10146     // stack.
10147     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10148       return extendType(Ty);
10149     }
10150 
10151     return ABIArgInfo::getDirect();
10152   }
10153 
10154   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10155   // so coerce to integers.
10156   if (Size <= 2 * XLen) {
10157     unsigned Alignment = getContext().getTypeAlign(Ty);
10158 
10159     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10160     // required, and a 2-element XLen array if only XLen alignment is required.
10161     if (Size <= XLen) {
10162       return ABIArgInfo::getDirect(
10163           llvm::IntegerType::get(getVMContext(), XLen));
10164     } else if (Alignment == 2 * XLen) {
10165       return ABIArgInfo::getDirect(
10166           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10167     } else {
10168       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10169           llvm::IntegerType::get(getVMContext(), XLen), 2));
10170     }
10171   }
10172   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10173 }
10174 
10175 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10176   if (RetTy->isVoidType())
10177     return ABIArgInfo::getIgnore();
10178 
10179   int ArgGPRsLeft = 2;
10180   int ArgFPRsLeft = FLen ? 2 : 0;
10181 
10182   // The rules for return and argument types are the same, so defer to
10183   // classifyArgumentType.
10184   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10185                               ArgFPRsLeft);
10186 }
10187 
10188 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10189                                 QualType Ty) const {
10190   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10191 
10192   // Empty records are ignored for parameter passing purposes.
10193   if (isEmptyRecord(getContext(), Ty, true)) {
10194     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10195     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10196     return Addr;
10197   }
10198 
10199   std::pair<CharUnits, CharUnits> SizeAndAlign =
10200       getContext().getTypeInfoInChars(Ty);
10201 
10202   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10203   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
10204 
10205   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
10206                           SlotSize, /*AllowHigherAlign=*/true);
10207 }
10208 
10209 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10210   int TySize = getContext().getTypeSize(Ty);
10211   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10212   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10213     return ABIArgInfo::getSignExtend(Ty);
10214   return ABIArgInfo::getExtend(Ty);
10215 }
10216 
10217 namespace {
10218 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10219 public:
10220   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10221                          unsigned FLen)
10222       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
10223 
10224   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10225                            CodeGen::CodeGenModule &CGM) const override {
10226     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10227     if (!FD) return;
10228 
10229     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10230     if (!Attr)
10231       return;
10232 
10233     const char *Kind;
10234     switch (Attr->getInterrupt()) {
10235     case RISCVInterruptAttr::user: Kind = "user"; break;
10236     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10237     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10238     }
10239 
10240     auto *Fn = cast<llvm::Function>(GV);
10241 
10242     Fn->addFnAttr("interrupt", Kind);
10243   }
10244 };
10245 } // namespace
10246 
10247 //===----------------------------------------------------------------------===//
10248 // Driver code
10249 //===----------------------------------------------------------------------===//
10250 
10251 bool CodeGenModule::supportsCOMDAT() const {
10252   return getTriple().supportsCOMDAT();
10253 }
10254 
10255 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10256   if (TheTargetCodeGenInfo)
10257     return *TheTargetCodeGenInfo;
10258 
10259   // Helper to set the unique_ptr while still keeping the return value.
10260   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10261     this->TheTargetCodeGenInfo.reset(P);
10262     return *P;
10263   };
10264 
10265   const llvm::Triple &Triple = getTarget().getTriple();
10266   switch (Triple.getArch()) {
10267   default:
10268     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10269 
10270   case llvm::Triple::le32:
10271     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10272   case llvm::Triple::mips:
10273   case llvm::Triple::mipsel:
10274     if (Triple.getOS() == llvm::Triple::NaCl)
10275       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10276     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10277 
10278   case llvm::Triple::mips64:
10279   case llvm::Triple::mips64el:
10280     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10281 
10282   case llvm::Triple::avr:
10283     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10284 
10285   case llvm::Triple::aarch64:
10286   case llvm::Triple::aarch64_32:
10287   case llvm::Triple::aarch64_be: {
10288     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10289     if (getTarget().getABI() == "darwinpcs")
10290       Kind = AArch64ABIInfo::DarwinPCS;
10291     else if (Triple.isOSWindows())
10292       return SetCGInfo(
10293           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10294 
10295     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10296   }
10297 
10298   case llvm::Triple::wasm32:
10299   case llvm::Triple::wasm64: {
10300     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10301     if (getTarget().getABI() == "experimental-mv")
10302       Kind = WebAssemblyABIInfo::ExperimentalMV;
10303     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10304   }
10305 
10306   case llvm::Triple::arm:
10307   case llvm::Triple::armeb:
10308   case llvm::Triple::thumb:
10309   case llvm::Triple::thumbeb: {
10310     if (Triple.getOS() == llvm::Triple::Win32) {
10311       return SetCGInfo(
10312           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10313     }
10314 
10315     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10316     StringRef ABIStr = getTarget().getABI();
10317     if (ABIStr == "apcs-gnu")
10318       Kind = ARMABIInfo::APCS;
10319     else if (ABIStr == "aapcs16")
10320       Kind = ARMABIInfo::AAPCS16_VFP;
10321     else if (CodeGenOpts.FloatABI == "hard" ||
10322              (CodeGenOpts.FloatABI != "soft" &&
10323               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10324                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10325                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10326       Kind = ARMABIInfo::AAPCS_VFP;
10327 
10328     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10329   }
10330 
10331   case llvm::Triple::ppc: {
10332     bool IsSoftFloat =
10333         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10334     bool RetSmallStructInRegABI =
10335         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10336     return SetCGInfo(
10337         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10338   }
10339   case llvm::Triple::ppc64:
10340     if (Triple.isOSBinFormatELF()) {
10341       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10342       if (getTarget().getABI() == "elfv2")
10343         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10344       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10345       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10346 
10347       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10348                                                         IsSoftFloat));
10349     } else
10350       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10351   case llvm::Triple::ppc64le: {
10352     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10353     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10354     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10355       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10356     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10357     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10358 
10359     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10360                                                       IsSoftFloat));
10361   }
10362 
10363   case llvm::Triple::nvptx:
10364   case llvm::Triple::nvptx64:
10365     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10366 
10367   case llvm::Triple::msp430:
10368     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10369 
10370   case llvm::Triple::riscv32:
10371   case llvm::Triple::riscv64: {
10372     StringRef ABIStr = getTarget().getABI();
10373     unsigned XLen = getTarget().getPointerWidth(0);
10374     unsigned ABIFLen = 0;
10375     if (ABIStr.endswith("f"))
10376       ABIFLen = 32;
10377     else if (ABIStr.endswith("d"))
10378       ABIFLen = 64;
10379     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
10380   }
10381 
10382   case llvm::Triple::systemz: {
10383     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
10384     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
10385     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
10386   }
10387 
10388   case llvm::Triple::tce:
10389   case llvm::Triple::tcele:
10390     return SetCGInfo(new TCETargetCodeGenInfo(Types));
10391 
10392   case llvm::Triple::x86: {
10393     bool IsDarwinVectorABI = Triple.isOSDarwin();
10394     bool RetSmallStructInRegABI =
10395         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10396     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
10397 
10398     if (Triple.getOS() == llvm::Triple::Win32) {
10399       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
10400           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10401           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
10402     } else {
10403       return SetCGInfo(new X86_32TargetCodeGenInfo(
10404           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10405           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
10406           CodeGenOpts.FloatABI == "soft"));
10407     }
10408   }
10409 
10410   case llvm::Triple::x86_64: {
10411     StringRef ABI = getTarget().getABI();
10412     X86AVXABILevel AVXLevel =
10413         (ABI == "avx512"
10414              ? X86AVXABILevel::AVX512
10415              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
10416 
10417     switch (Triple.getOS()) {
10418     case llvm::Triple::Win32:
10419       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
10420     default:
10421       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
10422     }
10423   }
10424   case llvm::Triple::hexagon:
10425     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
10426   case llvm::Triple::lanai:
10427     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
10428   case llvm::Triple::r600:
10429     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10430   case llvm::Triple::amdgcn:
10431     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10432   case llvm::Triple::sparc:
10433     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
10434   case llvm::Triple::sparcv9:
10435     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
10436   case llvm::Triple::xcore:
10437     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
10438   case llvm::Triple::arc:
10439     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
10440   case llvm::Triple::spir:
10441   case llvm::Triple::spir64:
10442     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
10443   }
10444 }
10445 
10446 /// Create an OpenCL kernel for an enqueued block.
10447 ///
10448 /// The kernel has the same function type as the block invoke function. Its
10449 /// name is the name of the block invoke function postfixed with "_kernel".
10450 /// It simply calls the block invoke function then returns.
10451 llvm::Function *
10452 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
10453                                              llvm::Function *Invoke,
10454                                              llvm::Value *BlockLiteral) const {
10455   auto *InvokeFT = Invoke->getFunctionType();
10456   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10457   for (auto &P : InvokeFT->params())
10458     ArgTys.push_back(P);
10459   auto &C = CGF.getLLVMContext();
10460   std::string Name = Invoke->getName().str() + "_kernel";
10461   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10462   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10463                                    &CGF.CGM.getModule());
10464   auto IP = CGF.Builder.saveIP();
10465   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10466   auto &Builder = CGF.Builder;
10467   Builder.SetInsertPoint(BB);
10468   llvm::SmallVector<llvm::Value *, 2> Args;
10469   for (auto &A : F->args())
10470     Args.push_back(&A);
10471   Builder.CreateCall(Invoke, Args);
10472   Builder.CreateRetVoid();
10473   Builder.restoreIP(IP);
10474   return F;
10475 }
10476 
10477 /// Create an OpenCL kernel for an enqueued block.
10478 ///
10479 /// The type of the first argument (the block literal) is the struct type
10480 /// of the block literal instead of a pointer type. The first argument
10481 /// (block literal) is passed directly by value to the kernel. The kernel
10482 /// allocates the same type of struct on stack and stores the block literal
10483 /// to it and passes its pointer to the block invoke function. The kernel
10484 /// has "enqueued-block" function attribute and kernel argument metadata.
10485 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
10486     CodeGenFunction &CGF, llvm::Function *Invoke,
10487     llvm::Value *BlockLiteral) const {
10488   auto &Builder = CGF.Builder;
10489   auto &C = CGF.getLLVMContext();
10490 
10491   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
10492   auto *InvokeFT = Invoke->getFunctionType();
10493   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10494   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
10495   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
10496   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
10497   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
10498   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
10499   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
10500 
10501   ArgTys.push_back(BlockTy);
10502   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10503   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
10504   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10505   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10506   AccessQuals.push_back(llvm::MDString::get(C, "none"));
10507   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
10508   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
10509     ArgTys.push_back(InvokeFT->getParamType(I));
10510     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
10511     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
10512     AccessQuals.push_back(llvm::MDString::get(C, "none"));
10513     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
10514     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10515     ArgNames.push_back(
10516         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
10517   }
10518   std::string Name = Invoke->getName().str() + "_kernel";
10519   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10520   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10521                                    &CGF.CGM.getModule());
10522   F->addFnAttr("enqueued-block");
10523   auto IP = CGF.Builder.saveIP();
10524   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10525   Builder.SetInsertPoint(BB);
10526   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
10527   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
10528   BlockPtr->setAlignment(BlockAlign);
10529   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
10530   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
10531   llvm::SmallVector<llvm::Value *, 2> Args;
10532   Args.push_back(Cast);
10533   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
10534     Args.push_back(I);
10535   Builder.CreateCall(Invoke, Args);
10536   Builder.CreateRetVoid();
10537   Builder.restoreIP(IP);
10538 
10539   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
10540   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
10541   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
10542   F->setMetadata("kernel_arg_base_type",
10543                  llvm::MDNode::get(C, ArgBaseTypeNames));
10544   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
10545   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
10546     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
10547 
10548   return F;
10549 }
10550