1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address emitMergePHI(CodeGenFunction &CGF, 396 Address Addr1, llvm::BasicBlock *Block1, 397 Address Addr2, llvm::BasicBlock *Block2, 398 const llvm::Twine &Name = "") { 399 assert(Addr1.getType() == Addr2.getType()); 400 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 401 PHI->addIncoming(Addr1.getPointer(), Block1); 402 PHI->addIncoming(Addr2.getPointer(), Block2); 403 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 404 return Address(PHI, Align); 405 } 406 407 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 408 409 // If someone can figure out a general rule for this, that would be great. 410 // It's probably just doomed to be platform-dependent, though. 411 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 412 // Verified for: 413 // x86-64 FreeBSD, Linux, Darwin 414 // x86-32 FreeBSD, Linux, Darwin 415 // PowerPC Linux, Darwin 416 // ARM Darwin (*not* EABI) 417 // AArch64 Linux 418 return 32; 419 } 420 421 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 422 const FunctionNoProtoType *fnType) const { 423 // The following conventions are known to require this to be false: 424 // x86_stdcall 425 // MIPS 426 // For everything else, we just prefer false unless we opt out. 427 return false; 428 } 429 430 void 431 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 432 llvm::SmallString<24> &Opt) const { 433 // This assumes the user is passing a library name like "rt" instead of a 434 // filename like "librt.a/so", and that they don't care whether it's static or 435 // dynamic. 436 Opt = "-l"; 437 Opt += Lib; 438 } 439 440 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 441 // OpenCL kernels are called via an explicit runtime API with arguments 442 // set with clSetKernelArg(), not as normal sub-functions. 443 // Return SPIR_KERNEL by default as the kernel calling convention to 444 // ensure the fingerprint is fixed such way that each OpenCL argument 445 // gets one matching argument in the produced kernel function argument 446 // list to enable feasible implementation of clSetKernelArg() with 447 // aggregates etc. In case we would use the default C calling conv here, 448 // clSetKernelArg() might break depending on the target-specific 449 // conventions; different targets might split structs passed as values 450 // to multiple function arguments etc. 451 return llvm::CallingConv::SPIR_KERNEL; 452 } 453 454 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 455 llvm::PointerType *T, QualType QT) const { 456 return llvm::ConstantPointerNull::get(T); 457 } 458 459 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 460 const VarDecl *D) const { 461 assert(!CGM.getLangOpts().OpenCL && 462 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 463 "Address space agnostic languages only"); 464 return D ? D->getType().getAddressSpace() : LangAS::Default; 465 } 466 467 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 468 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 469 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 470 // Since target may map different address spaces in AST to the same address 471 // space, an address space conversion may end up as a bitcast. 472 if (auto *C = dyn_cast<llvm::Constant>(Src)) 473 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 474 // Try to preserve the source's name to make IR more readable. 475 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 476 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 477 } 478 479 llvm::Constant * 480 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 481 LangAS SrcAddr, LangAS DestAddr, 482 llvm::Type *DestTy) const { 483 // Since target may map different address spaces in AST to the same address 484 // space, an address space conversion may end up as a bitcast. 485 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 486 } 487 488 llvm::SyncScope::ID 489 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 490 SyncScope Scope, 491 llvm::AtomicOrdering Ordering, 492 llvm::LLVMContext &Ctx) const { 493 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 494 } 495 496 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 497 498 /// isEmptyField - Return true iff a the field is "empty", that is it 499 /// is an unnamed bit-field or an (array of) empty record(s). 500 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 501 bool AllowArrays) { 502 if (FD->isUnnamedBitfield()) 503 return true; 504 505 QualType FT = FD->getType(); 506 507 // Constant arrays of empty records count as empty, strip them off. 508 // Constant arrays of zero length always count as empty. 509 bool WasArray = false; 510 if (AllowArrays) 511 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 512 if (AT->getSize() == 0) 513 return true; 514 FT = AT->getElementType(); 515 // The [[no_unique_address]] special case below does not apply to 516 // arrays of C++ empty records, so we need to remember this fact. 517 WasArray = true; 518 } 519 520 const RecordType *RT = FT->getAs<RecordType>(); 521 if (!RT) 522 return false; 523 524 // C++ record fields are never empty, at least in the Itanium ABI. 525 // 526 // FIXME: We should use a predicate for whether this behavior is true in the 527 // current ABI. 528 // 529 // The exception to the above rule are fields marked with the 530 // [[no_unique_address]] attribute (since C++20). Those do count as empty 531 // according to the Itanium ABI. The exception applies only to records, 532 // not arrays of records, so we must also check whether we stripped off an 533 // array type above. 534 if (isa<CXXRecordDecl>(RT->getDecl()) && 535 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 536 return false; 537 538 return isEmptyRecord(Context, FT, AllowArrays); 539 } 540 541 /// isEmptyRecord - Return true iff a structure contains only empty 542 /// fields. Note that a structure with a flexible array member is not 543 /// considered empty. 544 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 545 const RecordType *RT = T->getAs<RecordType>(); 546 if (!RT) 547 return false; 548 const RecordDecl *RD = RT->getDecl(); 549 if (RD->hasFlexibleArrayMember()) 550 return false; 551 552 // If this is a C++ record, check the bases first. 553 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 554 for (const auto &I : CXXRD->bases()) 555 if (!isEmptyRecord(Context, I.getType(), true)) 556 return false; 557 558 for (const auto *I : RD->fields()) 559 if (!isEmptyField(Context, I, AllowArrays)) 560 return false; 561 return true; 562 } 563 564 /// isSingleElementStruct - Determine if a structure is a "single 565 /// element struct", i.e. it has exactly one non-empty field or 566 /// exactly one field which is itself a single element 567 /// struct. Structures with flexible array members are never 568 /// considered single element structs. 569 /// 570 /// \return The field declaration for the single non-empty field, if 571 /// it exists. 572 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 573 const RecordType *RT = T->getAs<RecordType>(); 574 if (!RT) 575 return nullptr; 576 577 const RecordDecl *RD = RT->getDecl(); 578 if (RD->hasFlexibleArrayMember()) 579 return nullptr; 580 581 const Type *Found = nullptr; 582 583 // If this is a C++ record, check the bases first. 584 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 585 for (const auto &I : CXXRD->bases()) { 586 // Ignore empty records. 587 if (isEmptyRecord(Context, I.getType(), true)) 588 continue; 589 590 // If we already found an element then this isn't a single-element struct. 591 if (Found) 592 return nullptr; 593 594 // If this is non-empty and not a single element struct, the composite 595 // cannot be a single element struct. 596 Found = isSingleElementStruct(I.getType(), Context); 597 if (!Found) 598 return nullptr; 599 } 600 } 601 602 // Check for single element. 603 for (const auto *FD : RD->fields()) { 604 QualType FT = FD->getType(); 605 606 // Ignore empty fields. 607 if (isEmptyField(Context, FD, true)) 608 continue; 609 610 // If we already found an element then this isn't a single-element 611 // struct. 612 if (Found) 613 return nullptr; 614 615 // Treat single element arrays as the element. 616 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 617 if (AT->getSize().getZExtValue() != 1) 618 break; 619 FT = AT->getElementType(); 620 } 621 622 if (!isAggregateTypeForABI(FT)) { 623 Found = FT.getTypePtr(); 624 } else { 625 Found = isSingleElementStruct(FT, Context); 626 if (!Found) 627 return nullptr; 628 } 629 } 630 631 // We don't consider a struct a single-element struct if it has 632 // padding beyond the element type. 633 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 634 return nullptr; 635 636 return Found; 637 } 638 639 namespace { 640 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 641 const ABIArgInfo &AI) { 642 // This default implementation defers to the llvm backend's va_arg 643 // instruction. It can handle only passing arguments directly 644 // (typically only handled in the backend for primitive types), or 645 // aggregates passed indirectly by pointer (NOTE: if the "byval" 646 // flag has ABI impact in the callee, this implementation cannot 647 // work.) 648 649 // Only a few cases are covered here at the moment -- those needed 650 // by the default abi. 651 llvm::Value *Val; 652 653 if (AI.isIndirect()) { 654 assert(!AI.getPaddingType() && 655 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 656 assert( 657 !AI.getIndirectRealign() && 658 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 659 660 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 661 CharUnits TyAlignForABI = TyInfo.Align; 662 663 llvm::Type *BaseTy = 664 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 665 llvm::Value *Addr = 666 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 667 return Address(Addr, TyAlignForABI); 668 } else { 669 assert((AI.isDirect() || AI.isExtend()) && 670 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 671 672 assert(!AI.getInReg() && 673 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getPaddingType() && 675 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getDirectOffset() && 677 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 678 assert(!AI.getCoerceToType() && 679 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 680 681 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 682 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 683 CGF.Builder.CreateStore(Val, Temp); 684 return Temp; 685 } 686 } 687 688 /// DefaultABIInfo - The default implementation for ABI specific 689 /// details. This implementation provides information which results in 690 /// self-consistent and sensible LLVM IR generation, but does not 691 /// conform to any particular ABI. 692 class DefaultABIInfo : public ABIInfo { 693 public: 694 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 695 696 ABIArgInfo classifyReturnType(QualType RetTy) const; 697 ABIArgInfo classifyArgumentType(QualType RetTy) const; 698 699 void computeInfo(CGFunctionInfo &FI) const override { 700 if (!getCXXABI().classifyReturnType(FI)) 701 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 702 for (auto &I : FI.arguments()) 703 I.info = classifyArgumentType(I.type); 704 } 705 706 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 707 QualType Ty) const override { 708 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 709 } 710 }; 711 712 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 713 public: 714 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 715 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 716 }; 717 718 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 719 Ty = useFirstFieldIfTransparentUnion(Ty); 720 721 if (isAggregateTypeForABI(Ty)) { 722 // Records with non-trivial destructors/copy-constructors should not be 723 // passed by value. 724 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 725 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 726 727 return getNaturalAlignIndirect(Ty); 728 } 729 730 // Treat an enum type as its underlying type. 731 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 732 Ty = EnumTy->getDecl()->getIntegerType(); 733 734 ASTContext &Context = getContext(); 735 if (const auto *EIT = Ty->getAs<ExtIntType>()) 736 if (EIT->getNumBits() > 737 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 738 ? Context.Int128Ty 739 : Context.LongLongTy)) 740 return getNaturalAlignIndirect(Ty); 741 742 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 743 : ABIArgInfo::getDirect()); 744 } 745 746 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 747 if (RetTy->isVoidType()) 748 return ABIArgInfo::getIgnore(); 749 750 if (isAggregateTypeForABI(RetTy)) 751 return getNaturalAlignIndirect(RetTy); 752 753 // Treat an enum type as its underlying type. 754 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 755 RetTy = EnumTy->getDecl()->getIntegerType(); 756 757 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 758 if (EIT->getNumBits() > 759 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 760 ? getContext().Int128Ty 761 : getContext().LongLongTy)) 762 return getNaturalAlignIndirect(RetTy); 763 764 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 765 : ABIArgInfo::getDirect()); 766 } 767 768 //===----------------------------------------------------------------------===// 769 // WebAssembly ABI Implementation 770 // 771 // This is a very simple ABI that relies a lot on DefaultABIInfo. 772 //===----------------------------------------------------------------------===// 773 774 class WebAssemblyABIInfo final : public SwiftABIInfo { 775 public: 776 enum ABIKind { 777 MVP = 0, 778 ExperimentalMV = 1, 779 }; 780 781 private: 782 DefaultABIInfo defaultInfo; 783 ABIKind Kind; 784 785 public: 786 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 787 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 788 789 private: 790 ABIArgInfo classifyReturnType(QualType RetTy) const; 791 ABIArgInfo classifyArgumentType(QualType Ty) const; 792 793 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 794 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 795 // overload them. 796 void computeInfo(CGFunctionInfo &FI) const override { 797 if (!getCXXABI().classifyReturnType(FI)) 798 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 799 for (auto &Arg : FI.arguments()) 800 Arg.info = classifyArgumentType(Arg.type); 801 } 802 803 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 804 QualType Ty) const override; 805 806 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 807 bool asReturnValue) const override { 808 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 809 } 810 811 bool isSwiftErrorInRegister() const override { 812 return false; 813 } 814 }; 815 816 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 817 public: 818 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 819 WebAssemblyABIInfo::ABIKind K) 820 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 821 822 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 823 CodeGen::CodeGenModule &CGM) const override { 824 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 825 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 826 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 827 llvm::Function *Fn = cast<llvm::Function>(GV); 828 llvm::AttrBuilder B; 829 B.addAttribute("wasm-import-module", Attr->getImportModule()); 830 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 831 } 832 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 833 llvm::Function *Fn = cast<llvm::Function>(GV); 834 llvm::AttrBuilder B; 835 B.addAttribute("wasm-import-name", Attr->getImportName()); 836 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 837 } 838 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 839 llvm::Function *Fn = cast<llvm::Function>(GV); 840 llvm::AttrBuilder B; 841 B.addAttribute("wasm-export-name", Attr->getExportName()); 842 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 843 } 844 } 845 846 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 847 llvm::Function *Fn = cast<llvm::Function>(GV); 848 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 849 Fn->addFnAttr("no-prototype"); 850 } 851 } 852 }; 853 854 /// Classify argument of given type \p Ty. 855 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 856 Ty = useFirstFieldIfTransparentUnion(Ty); 857 858 if (isAggregateTypeForABI(Ty)) { 859 // Records with non-trivial destructors/copy-constructors should not be 860 // passed by value. 861 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 862 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 863 // Ignore empty structs/unions. 864 if (isEmptyRecord(getContext(), Ty, true)) 865 return ABIArgInfo::getIgnore(); 866 // Lower single-element structs to just pass a regular value. TODO: We 867 // could do reasonable-size multiple-element structs too, using getExpand(), 868 // though watch out for things like bitfields. 869 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 870 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 871 // For the experimental multivalue ABI, fully expand all other aggregates 872 if (Kind == ABIKind::ExperimentalMV) { 873 const RecordType *RT = Ty->getAs<RecordType>(); 874 assert(RT); 875 bool HasBitField = false; 876 for (auto *Field : RT->getDecl()->fields()) { 877 if (Field->isBitField()) { 878 HasBitField = true; 879 break; 880 } 881 } 882 if (!HasBitField) 883 return ABIArgInfo::getExpand(); 884 } 885 } 886 887 // Otherwise just do the default thing. 888 return defaultInfo.classifyArgumentType(Ty); 889 } 890 891 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 892 if (isAggregateTypeForABI(RetTy)) { 893 // Records with non-trivial destructors/copy-constructors should not be 894 // returned by value. 895 if (!getRecordArgABI(RetTy, getCXXABI())) { 896 // Ignore empty structs/unions. 897 if (isEmptyRecord(getContext(), RetTy, true)) 898 return ABIArgInfo::getIgnore(); 899 // Lower single-element structs to just return a regular value. TODO: We 900 // could do reasonable-size multiple-element structs too, using 901 // ABIArgInfo::getDirect(). 902 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 903 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 904 // For the experimental multivalue ABI, return all other aggregates 905 if (Kind == ABIKind::ExperimentalMV) 906 return ABIArgInfo::getDirect(); 907 } 908 } 909 910 // Otherwise just do the default thing. 911 return defaultInfo.classifyReturnType(RetTy); 912 } 913 914 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 915 QualType Ty) const { 916 bool IsIndirect = isAggregateTypeForABI(Ty) && 917 !isEmptyRecord(getContext(), Ty, true) && 918 !isSingleElementStruct(Ty, getContext()); 919 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 920 getContext().getTypeInfoInChars(Ty), 921 CharUnits::fromQuantity(4), 922 /*AllowHigherAlign=*/true); 923 } 924 925 //===----------------------------------------------------------------------===// 926 // le32/PNaCl bitcode ABI Implementation 927 // 928 // This is a simplified version of the x86_32 ABI. Arguments and return values 929 // are always passed on the stack. 930 //===----------------------------------------------------------------------===// 931 932 class PNaClABIInfo : public ABIInfo { 933 public: 934 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 935 936 ABIArgInfo classifyReturnType(QualType RetTy) const; 937 ABIArgInfo classifyArgumentType(QualType RetTy) const; 938 939 void computeInfo(CGFunctionInfo &FI) const override; 940 Address EmitVAArg(CodeGenFunction &CGF, 941 Address VAListAddr, QualType Ty) const override; 942 }; 943 944 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 945 public: 946 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 947 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 948 }; 949 950 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 951 if (!getCXXABI().classifyReturnType(FI)) 952 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 953 954 for (auto &I : FI.arguments()) 955 I.info = classifyArgumentType(I.type); 956 } 957 958 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 959 QualType Ty) const { 960 // The PNaCL ABI is a bit odd, in that varargs don't use normal 961 // function classification. Structs get passed directly for varargs 962 // functions, through a rewriting transform in 963 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 964 // this target to actually support a va_arg instructions with an 965 // aggregate type, unlike other targets. 966 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 967 } 968 969 /// Classify argument of given type \p Ty. 970 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 971 if (isAggregateTypeForABI(Ty)) { 972 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 973 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 974 return getNaturalAlignIndirect(Ty); 975 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 976 // Treat an enum type as its underlying type. 977 Ty = EnumTy->getDecl()->getIntegerType(); 978 } else if (Ty->isFloatingType()) { 979 // Floating-point types don't go inreg. 980 return ABIArgInfo::getDirect(); 981 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 982 // Treat extended integers as integers if <=64, otherwise pass indirectly. 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(Ty); 985 return ABIArgInfo::getDirect(); 986 } 987 988 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 989 : ABIArgInfo::getDirect()); 990 } 991 992 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 993 if (RetTy->isVoidType()) 994 return ABIArgInfo::getIgnore(); 995 996 // In the PNaCl ABI we always return records/structures on the stack. 997 if (isAggregateTypeForABI(RetTy)) 998 return getNaturalAlignIndirect(RetTy); 999 1000 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1001 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1002 if (EIT->getNumBits() > 64) 1003 return getNaturalAlignIndirect(RetTy); 1004 return ABIArgInfo::getDirect(); 1005 } 1006 1007 // Treat an enum type as its underlying type. 1008 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1009 RetTy = EnumTy->getDecl()->getIntegerType(); 1010 1011 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1012 : ABIArgInfo::getDirect()); 1013 } 1014 1015 /// IsX86_MMXType - Return true if this is an MMX type. 1016 bool IsX86_MMXType(llvm::Type *IRType) { 1017 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1018 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1019 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1020 IRType->getScalarSizeInBits() != 64; 1021 } 1022 1023 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1024 StringRef Constraint, 1025 llvm::Type* Ty) { 1026 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1027 .Cases("y", "&y", "^Ym", true) 1028 .Default(false); 1029 if (IsMMXCons && Ty->isVectorTy()) { 1030 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1031 64) { 1032 // Invalid MMX constraint 1033 return nullptr; 1034 } 1035 1036 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1037 } 1038 1039 // No operation needed 1040 return Ty; 1041 } 1042 1043 /// Returns true if this type can be passed in SSE registers with the 1044 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1045 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1046 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1047 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1048 if (BT->getKind() == BuiltinType::LongDouble) { 1049 if (&Context.getTargetInfo().getLongDoubleFormat() == 1050 &llvm::APFloat::x87DoubleExtended()) 1051 return false; 1052 } 1053 return true; 1054 } 1055 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1056 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1057 // registers specially. 1058 unsigned VecSize = Context.getTypeSize(VT); 1059 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1060 return true; 1061 } 1062 return false; 1063 } 1064 1065 /// Returns true if this aggregate is small enough to be passed in SSE registers 1066 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1067 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1068 return NumMembers <= 4; 1069 } 1070 1071 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1072 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1073 auto AI = ABIArgInfo::getDirect(T); 1074 AI.setInReg(true); 1075 AI.setCanBeFlattened(false); 1076 return AI; 1077 } 1078 1079 //===----------------------------------------------------------------------===// 1080 // X86-32 ABI Implementation 1081 //===----------------------------------------------------------------------===// 1082 1083 /// Similar to llvm::CCState, but for Clang. 1084 struct CCState { 1085 CCState(CGFunctionInfo &FI) 1086 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1087 1088 llvm::SmallBitVector IsPreassigned; 1089 unsigned CC = CallingConv::CC_C; 1090 unsigned FreeRegs = 0; 1091 unsigned FreeSSERegs = 0; 1092 }; 1093 1094 /// X86_32ABIInfo - The X86-32 ABI information. 1095 class X86_32ABIInfo : public SwiftABIInfo { 1096 enum Class { 1097 Integer, 1098 Float 1099 }; 1100 1101 static const unsigned MinABIStackAlignInBytes = 4; 1102 1103 bool IsDarwinVectorABI; 1104 bool IsRetSmallStructInRegABI; 1105 bool IsWin32StructABI; 1106 bool IsSoftFloatABI; 1107 bool IsMCUABI; 1108 bool IsLinuxABI; 1109 unsigned DefaultNumRegisterParameters; 1110 1111 static bool isRegisterSize(unsigned Size) { 1112 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1113 } 1114 1115 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1116 // FIXME: Assumes vectorcall is in use. 1117 return isX86VectorTypeForVectorCall(getContext(), Ty); 1118 } 1119 1120 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1121 uint64_t NumMembers) const override { 1122 // FIXME: Assumes vectorcall is in use. 1123 return isX86VectorCallAggregateSmallEnough(NumMembers); 1124 } 1125 1126 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1127 1128 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1129 /// such that the argument will be passed in memory. 1130 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1131 1132 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1133 1134 /// Return the alignment to use for the given type on the stack. 1135 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1136 1137 Class classify(QualType Ty) const; 1138 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1139 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1140 1141 /// Updates the number of available free registers, returns 1142 /// true if any registers were allocated. 1143 bool updateFreeRegs(QualType Ty, CCState &State) const; 1144 1145 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1146 bool &NeedsPadding) const; 1147 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1148 1149 bool canExpandIndirectArgument(QualType Ty) const; 1150 1151 /// Rewrite the function info so that all memory arguments use 1152 /// inalloca. 1153 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1154 1155 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1156 CharUnits &StackOffset, ABIArgInfo &Info, 1157 QualType Type) const; 1158 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1159 1160 public: 1161 1162 void computeInfo(CGFunctionInfo &FI) const override; 1163 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1164 QualType Ty) const override; 1165 1166 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1167 bool RetSmallStructInRegABI, bool Win32StructABI, 1168 unsigned NumRegisterParameters, bool SoftFloatABI) 1169 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1170 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1171 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1172 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1173 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux()), 1174 DefaultNumRegisterParameters(NumRegisterParameters) {} 1175 1176 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1177 bool asReturnValue) const override { 1178 // LLVM's x86-32 lowering currently only assigns up to three 1179 // integer registers and three fp registers. Oddly, it'll use up to 1180 // four vector registers for vectors, but those can overlap with the 1181 // scalar registers. 1182 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1183 } 1184 1185 bool isSwiftErrorInRegister() const override { 1186 // x86-32 lowering does not support passing swifterror in a register. 1187 return false; 1188 } 1189 }; 1190 1191 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1192 public: 1193 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1194 bool RetSmallStructInRegABI, bool Win32StructABI, 1195 unsigned NumRegisterParameters, bool SoftFloatABI) 1196 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1197 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1198 NumRegisterParameters, SoftFloatABI)) {} 1199 1200 static bool isStructReturnInRegABI( 1201 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1202 1203 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1204 CodeGen::CodeGenModule &CGM) const override; 1205 1206 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1207 // Darwin uses different dwarf register numbers for EH. 1208 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1209 return 4; 1210 } 1211 1212 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1213 llvm::Value *Address) const override; 1214 1215 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1216 StringRef Constraint, 1217 llvm::Type* Ty) const override { 1218 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1219 } 1220 1221 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1222 std::string &Constraints, 1223 std::vector<llvm::Type *> &ResultRegTypes, 1224 std::vector<llvm::Type *> &ResultTruncRegTypes, 1225 std::vector<LValue> &ResultRegDests, 1226 std::string &AsmString, 1227 unsigned NumOutputs) const override; 1228 1229 llvm::Constant * 1230 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1231 unsigned Sig = (0xeb << 0) | // jmp rel8 1232 (0x06 << 8) | // .+0x08 1233 ('v' << 16) | 1234 ('2' << 24); 1235 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1236 } 1237 1238 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1239 return "movl\t%ebp, %ebp" 1240 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1241 } 1242 }; 1243 1244 } 1245 1246 /// Rewrite input constraint references after adding some output constraints. 1247 /// In the case where there is one output and one input and we add one output, 1248 /// we need to replace all operand references greater than or equal to 1: 1249 /// mov $0, $1 1250 /// mov eax, $1 1251 /// The result will be: 1252 /// mov $0, $2 1253 /// mov eax, $2 1254 static void rewriteInputConstraintReferences(unsigned FirstIn, 1255 unsigned NumNewOuts, 1256 std::string &AsmString) { 1257 std::string Buf; 1258 llvm::raw_string_ostream OS(Buf); 1259 size_t Pos = 0; 1260 while (Pos < AsmString.size()) { 1261 size_t DollarStart = AsmString.find('$', Pos); 1262 if (DollarStart == std::string::npos) 1263 DollarStart = AsmString.size(); 1264 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1265 if (DollarEnd == std::string::npos) 1266 DollarEnd = AsmString.size(); 1267 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1268 Pos = DollarEnd; 1269 size_t NumDollars = DollarEnd - DollarStart; 1270 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1271 // We have an operand reference. 1272 size_t DigitStart = Pos; 1273 if (AsmString[DigitStart] == '{') { 1274 OS << '{'; 1275 ++DigitStart; 1276 } 1277 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1278 if (DigitEnd == std::string::npos) 1279 DigitEnd = AsmString.size(); 1280 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1281 unsigned OperandIndex; 1282 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1283 if (OperandIndex >= FirstIn) 1284 OperandIndex += NumNewOuts; 1285 OS << OperandIndex; 1286 } else { 1287 OS << OperandStr; 1288 } 1289 Pos = DigitEnd; 1290 } 1291 } 1292 AsmString = std::move(OS.str()); 1293 } 1294 1295 /// Add output constraints for EAX:EDX because they are return registers. 1296 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1297 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1298 std::vector<llvm::Type *> &ResultRegTypes, 1299 std::vector<llvm::Type *> &ResultTruncRegTypes, 1300 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1301 unsigned NumOutputs) const { 1302 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1303 1304 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1305 // larger. 1306 if (!Constraints.empty()) 1307 Constraints += ','; 1308 if (RetWidth <= 32) { 1309 Constraints += "={eax}"; 1310 ResultRegTypes.push_back(CGF.Int32Ty); 1311 } else { 1312 // Use the 'A' constraint for EAX:EDX. 1313 Constraints += "=A"; 1314 ResultRegTypes.push_back(CGF.Int64Ty); 1315 } 1316 1317 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1318 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1319 ResultTruncRegTypes.push_back(CoerceTy); 1320 1321 // Coerce the integer by bitcasting the return slot pointer. 1322 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1323 CoerceTy->getPointerTo())); 1324 ResultRegDests.push_back(ReturnSlot); 1325 1326 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1327 } 1328 1329 /// shouldReturnTypeInRegister - Determine if the given type should be 1330 /// returned in a register (for the Darwin and MCU ABI). 1331 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1332 ASTContext &Context) const { 1333 uint64_t Size = Context.getTypeSize(Ty); 1334 1335 // For i386, type must be register sized. 1336 // For the MCU ABI, it only needs to be <= 8-byte 1337 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1338 return false; 1339 1340 if (Ty->isVectorType()) { 1341 // 64- and 128- bit vectors inside structures are not returned in 1342 // registers. 1343 if (Size == 64 || Size == 128) 1344 return false; 1345 1346 return true; 1347 } 1348 1349 // If this is a builtin, pointer, enum, complex type, member pointer, or 1350 // member function pointer it is ok. 1351 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1352 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1353 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1354 return true; 1355 1356 // Arrays are treated like records. 1357 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1358 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1359 1360 // Otherwise, it must be a record type. 1361 const RecordType *RT = Ty->getAs<RecordType>(); 1362 if (!RT) return false; 1363 1364 // FIXME: Traverse bases here too. 1365 1366 // Structure types are passed in register if all fields would be 1367 // passed in a register. 1368 for (const auto *FD : RT->getDecl()->fields()) { 1369 // Empty fields are ignored. 1370 if (isEmptyField(Context, FD, true)) 1371 continue; 1372 1373 // Check fields recursively. 1374 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1375 return false; 1376 } 1377 return true; 1378 } 1379 1380 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1381 // Treat complex types as the element type. 1382 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1383 Ty = CTy->getElementType(); 1384 1385 // Check for a type which we know has a simple scalar argument-passing 1386 // convention without any padding. (We're specifically looking for 32 1387 // and 64-bit integer and integer-equivalents, float, and double.) 1388 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1389 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1390 return false; 1391 1392 uint64_t Size = Context.getTypeSize(Ty); 1393 return Size == 32 || Size == 64; 1394 } 1395 1396 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1397 uint64_t &Size) { 1398 for (const auto *FD : RD->fields()) { 1399 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1400 // argument is smaller than 32-bits, expanding the struct will create 1401 // alignment padding. 1402 if (!is32Or64BitBasicType(FD->getType(), Context)) 1403 return false; 1404 1405 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1406 // how to expand them yet, and the predicate for telling if a bitfield still 1407 // counts as "basic" is more complicated than what we were doing previously. 1408 if (FD->isBitField()) 1409 return false; 1410 1411 Size += Context.getTypeSize(FD->getType()); 1412 } 1413 return true; 1414 } 1415 1416 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1417 uint64_t &Size) { 1418 // Don't do this if there are any non-empty bases. 1419 for (const CXXBaseSpecifier &Base : RD->bases()) { 1420 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1421 Size)) 1422 return false; 1423 } 1424 if (!addFieldSizes(Context, RD, Size)) 1425 return false; 1426 return true; 1427 } 1428 1429 /// Test whether an argument type which is to be passed indirectly (on the 1430 /// stack) would have the equivalent layout if it was expanded into separate 1431 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1432 /// optimizations. 1433 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1434 // We can only expand structure types. 1435 const RecordType *RT = Ty->getAs<RecordType>(); 1436 if (!RT) 1437 return false; 1438 const RecordDecl *RD = RT->getDecl(); 1439 uint64_t Size = 0; 1440 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1441 if (!IsWin32StructABI) { 1442 // On non-Windows, we have to conservatively match our old bitcode 1443 // prototypes in order to be ABI-compatible at the bitcode level. 1444 if (!CXXRD->isCLike()) 1445 return false; 1446 } else { 1447 // Don't do this for dynamic classes. 1448 if (CXXRD->isDynamicClass()) 1449 return false; 1450 } 1451 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1452 return false; 1453 } else { 1454 if (!addFieldSizes(getContext(), RD, Size)) 1455 return false; 1456 } 1457 1458 // We can do this if there was no alignment padding. 1459 return Size == getContext().getTypeSize(Ty); 1460 } 1461 1462 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1463 // If the return value is indirect, then the hidden argument is consuming one 1464 // integer register. 1465 if (State.FreeRegs) { 1466 --State.FreeRegs; 1467 if (!IsMCUABI) 1468 return getNaturalAlignIndirectInReg(RetTy); 1469 } 1470 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1471 } 1472 1473 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1474 CCState &State) const { 1475 if (RetTy->isVoidType()) 1476 return ABIArgInfo::getIgnore(); 1477 1478 const Type *Base = nullptr; 1479 uint64_t NumElts = 0; 1480 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1481 State.CC == llvm::CallingConv::X86_RegCall) && 1482 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1483 // The LLVM struct type for such an aggregate should lower properly. 1484 return ABIArgInfo::getDirect(); 1485 } 1486 1487 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1488 // On Darwin, some vectors are returned in registers. 1489 if (IsDarwinVectorABI) { 1490 uint64_t Size = getContext().getTypeSize(RetTy); 1491 1492 // 128-bit vectors are a special case; they are returned in 1493 // registers and we need to make sure to pick a type the LLVM 1494 // backend will like. 1495 if (Size == 128) 1496 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1497 llvm::Type::getInt64Ty(getVMContext()), 2)); 1498 1499 // Always return in register if it fits in a general purpose 1500 // register, or if it is 64 bits and has a single element. 1501 if ((Size == 8 || Size == 16 || Size == 32) || 1502 (Size == 64 && VT->getNumElements() == 1)) 1503 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1504 Size)); 1505 1506 return getIndirectReturnResult(RetTy, State); 1507 } 1508 1509 return ABIArgInfo::getDirect(); 1510 } 1511 1512 if (isAggregateTypeForABI(RetTy)) { 1513 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1514 // Structures with flexible arrays are always indirect. 1515 if (RT->getDecl()->hasFlexibleArrayMember()) 1516 return getIndirectReturnResult(RetTy, State); 1517 } 1518 1519 // If specified, structs and unions are always indirect. 1520 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1521 return getIndirectReturnResult(RetTy, State); 1522 1523 // Ignore empty structs/unions. 1524 if (isEmptyRecord(getContext(), RetTy, true)) 1525 return ABIArgInfo::getIgnore(); 1526 1527 // Small structures which are register sized are generally returned 1528 // in a register. 1529 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1530 uint64_t Size = getContext().getTypeSize(RetTy); 1531 1532 // As a special-case, if the struct is a "single-element" struct, and 1533 // the field is of type "float" or "double", return it in a 1534 // floating-point register. (MSVC does not apply this special case.) 1535 // We apply a similar transformation for pointer types to improve the 1536 // quality of the generated IR. 1537 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1538 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1539 || SeltTy->hasPointerRepresentation()) 1540 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1541 1542 // FIXME: We should be able to narrow this integer in cases with dead 1543 // padding. 1544 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1545 } 1546 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // Treat an enum type as its underlying type. 1551 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1552 RetTy = EnumTy->getDecl()->getIntegerType(); 1553 1554 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1555 if (EIT->getNumBits() > 64) 1556 return getIndirectReturnResult(RetTy, State); 1557 1558 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1559 : ABIArgInfo::getDirect()); 1560 } 1561 1562 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1563 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1564 } 1565 1566 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1567 const RecordType *RT = Ty->getAs<RecordType>(); 1568 if (!RT) 1569 return 0; 1570 const RecordDecl *RD = RT->getDecl(); 1571 1572 // If this is a C++ record, check the bases first. 1573 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1574 for (const auto &I : CXXRD->bases()) 1575 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1576 return false; 1577 1578 for (const auto *i : RD->fields()) { 1579 QualType FT = i->getType(); 1580 1581 if (isSIMDVectorType(Context, FT)) 1582 return true; 1583 1584 if (isRecordWithSIMDVectorType(Context, FT)) 1585 return true; 1586 } 1587 1588 return false; 1589 } 1590 1591 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1592 unsigned Align) const { 1593 // Otherwise, if the alignment is less than or equal to the minimum ABI 1594 // alignment, just use the default; the backend will handle this. 1595 if (Align <= MinABIStackAlignInBytes) 1596 return 0; // Use default alignment. 1597 1598 if (IsLinuxABI) { 1599 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1600 // want to spend any effort dealing with the ramifications of ABI breaks. 1601 // 1602 // If the vector type is __m128/__m256/__m512, return the default alignment. 1603 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1604 return Align; 1605 } 1606 // On non-Darwin, the stack type alignment is always 4. 1607 if (!IsDarwinVectorABI) { 1608 // Set explicit alignment, since we may need to realign the top. 1609 return MinABIStackAlignInBytes; 1610 } 1611 1612 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1613 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1614 isRecordWithSIMDVectorType(getContext(), Ty))) 1615 return 16; 1616 1617 return MinABIStackAlignInBytes; 1618 } 1619 1620 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1621 CCState &State) const { 1622 if (!ByVal) { 1623 if (State.FreeRegs) { 1624 --State.FreeRegs; // Non-byval indirects just use one pointer. 1625 if (!IsMCUABI) 1626 return getNaturalAlignIndirectInReg(Ty); 1627 } 1628 return getNaturalAlignIndirect(Ty, false); 1629 } 1630 1631 // Compute the byval alignment. 1632 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1633 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1634 if (StackAlign == 0) 1635 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1636 1637 // If the stack alignment is less than the type alignment, realign the 1638 // argument. 1639 bool Realign = TypeAlign > StackAlign; 1640 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1641 /*ByVal=*/true, Realign); 1642 } 1643 1644 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1645 const Type *T = isSingleElementStruct(Ty, getContext()); 1646 if (!T) 1647 T = Ty.getTypePtr(); 1648 1649 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1650 BuiltinType::Kind K = BT->getKind(); 1651 if (K == BuiltinType::Float || K == BuiltinType::Double) 1652 return Float; 1653 } 1654 return Integer; 1655 } 1656 1657 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1658 if (!IsSoftFloatABI) { 1659 Class C = classify(Ty); 1660 if (C == Float) 1661 return false; 1662 } 1663 1664 unsigned Size = getContext().getTypeSize(Ty); 1665 unsigned SizeInRegs = (Size + 31) / 32; 1666 1667 if (SizeInRegs == 0) 1668 return false; 1669 1670 if (!IsMCUABI) { 1671 if (SizeInRegs > State.FreeRegs) { 1672 State.FreeRegs = 0; 1673 return false; 1674 } 1675 } else { 1676 // The MCU psABI allows passing parameters in-reg even if there are 1677 // earlier parameters that are passed on the stack. Also, 1678 // it does not allow passing >8-byte structs in-register, 1679 // even if there are 3 free registers available. 1680 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1681 return false; 1682 } 1683 1684 State.FreeRegs -= SizeInRegs; 1685 return true; 1686 } 1687 1688 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1689 bool &InReg, 1690 bool &NeedsPadding) const { 1691 // On Windows, aggregates other than HFAs are never passed in registers, and 1692 // they do not consume register slots. Homogenous floating-point aggregates 1693 // (HFAs) have already been dealt with at this point. 1694 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1695 return false; 1696 1697 NeedsPadding = false; 1698 InReg = !IsMCUABI; 1699 1700 if (!updateFreeRegs(Ty, State)) 1701 return false; 1702 1703 if (IsMCUABI) 1704 return true; 1705 1706 if (State.CC == llvm::CallingConv::X86_FastCall || 1707 State.CC == llvm::CallingConv::X86_VectorCall || 1708 State.CC == llvm::CallingConv::X86_RegCall) { 1709 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1710 NeedsPadding = true; 1711 1712 return false; 1713 } 1714 1715 return true; 1716 } 1717 1718 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1719 if (!updateFreeRegs(Ty, State)) 1720 return false; 1721 1722 if (IsMCUABI) 1723 return false; 1724 1725 if (State.CC == llvm::CallingConv::X86_FastCall || 1726 State.CC == llvm::CallingConv::X86_VectorCall || 1727 State.CC == llvm::CallingConv::X86_RegCall) { 1728 if (getContext().getTypeSize(Ty) > 32) 1729 return false; 1730 1731 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1732 Ty->isReferenceType()); 1733 } 1734 1735 return true; 1736 } 1737 1738 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1739 // Vectorcall x86 works subtly different than in x64, so the format is 1740 // a bit different than the x64 version. First, all vector types (not HVAs) 1741 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1742 // This differs from the x64 implementation, where the first 6 by INDEX get 1743 // registers. 1744 // In the second pass over the arguments, HVAs are passed in the remaining 1745 // vector registers if possible, or indirectly by address. The address will be 1746 // passed in ECX/EDX if available. Any other arguments are passed according to 1747 // the usual fastcall rules. 1748 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1749 for (int I = 0, E = Args.size(); I < E; ++I) { 1750 const Type *Base = nullptr; 1751 uint64_t NumElts = 0; 1752 const QualType &Ty = Args[I].type; 1753 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1754 isHomogeneousAggregate(Ty, Base, NumElts)) { 1755 if (State.FreeSSERegs >= NumElts) { 1756 State.FreeSSERegs -= NumElts; 1757 Args[I].info = ABIArgInfo::getDirectInReg(); 1758 State.IsPreassigned.set(I); 1759 } 1760 } 1761 } 1762 } 1763 1764 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1765 CCState &State) const { 1766 // FIXME: Set alignment on indirect arguments. 1767 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1768 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1769 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1770 1771 Ty = useFirstFieldIfTransparentUnion(Ty); 1772 TypeInfo TI = getContext().getTypeInfo(Ty); 1773 1774 // Check with the C++ ABI first. 1775 const RecordType *RT = Ty->getAs<RecordType>(); 1776 if (RT) { 1777 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1778 if (RAA == CGCXXABI::RAA_Indirect) { 1779 return getIndirectResult(Ty, false, State); 1780 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1781 // The field index doesn't matter, we'll fix it up later. 1782 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1783 } 1784 } 1785 1786 // Regcall uses the concept of a homogenous vector aggregate, similar 1787 // to other targets. 1788 const Type *Base = nullptr; 1789 uint64_t NumElts = 0; 1790 if ((IsRegCall || IsVectorCall) && 1791 isHomogeneousAggregate(Ty, Base, NumElts)) { 1792 if (State.FreeSSERegs >= NumElts) { 1793 State.FreeSSERegs -= NumElts; 1794 1795 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1796 // does. 1797 if (IsVectorCall) 1798 return getDirectX86Hva(); 1799 1800 if (Ty->isBuiltinType() || Ty->isVectorType()) 1801 return ABIArgInfo::getDirect(); 1802 return ABIArgInfo::getExpand(); 1803 } 1804 return getIndirectResult(Ty, /*ByVal=*/false, State); 1805 } 1806 1807 if (isAggregateTypeForABI(Ty)) { 1808 // Structures with flexible arrays are always indirect. 1809 // FIXME: This should not be byval! 1810 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1811 return getIndirectResult(Ty, true, State); 1812 1813 // Ignore empty structs/unions on non-Windows. 1814 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1815 return ABIArgInfo::getIgnore(); 1816 1817 llvm::LLVMContext &LLVMContext = getVMContext(); 1818 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1819 bool NeedsPadding = false; 1820 bool InReg; 1821 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1822 unsigned SizeInRegs = (TI.Width + 31) / 32; 1823 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1824 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1825 if (InReg) 1826 return ABIArgInfo::getDirectInReg(Result); 1827 else 1828 return ABIArgInfo::getDirect(Result); 1829 } 1830 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1831 1832 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1833 // added in MSVC 2015. 1834 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1835 return getIndirectResult(Ty, /*ByVal=*/false, State); 1836 1837 // Expand small (<= 128-bit) record types when we know that the stack layout 1838 // of those arguments will match the struct. This is important because the 1839 // LLVM backend isn't smart enough to remove byval, which inhibits many 1840 // optimizations. 1841 // Don't do this for the MCU if there are still free integer registers 1842 // (see X86_64 ABI for full explanation). 1843 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1844 canExpandIndirectArgument(Ty)) 1845 return ABIArgInfo::getExpandWithPadding( 1846 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1847 1848 return getIndirectResult(Ty, true, State); 1849 } 1850 1851 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1852 // On Windows, vectors are passed directly if registers are available, or 1853 // indirectly if not. This avoids the need to align argument memory. Pass 1854 // user-defined vector types larger than 512 bits indirectly for simplicity. 1855 if (IsWin32StructABI) { 1856 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1857 --State.FreeSSERegs; 1858 return ABIArgInfo::getDirectInReg(); 1859 } 1860 return getIndirectResult(Ty, /*ByVal=*/false, State); 1861 } 1862 1863 // On Darwin, some vectors are passed in memory, we handle this by passing 1864 // it as an i8/i16/i32/i64. 1865 if (IsDarwinVectorABI) { 1866 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1867 (TI.Width == 64 && VT->getNumElements() == 1)) 1868 return ABIArgInfo::getDirect( 1869 llvm::IntegerType::get(getVMContext(), TI.Width)); 1870 } 1871 1872 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1873 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1874 1875 return ABIArgInfo::getDirect(); 1876 } 1877 1878 1879 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1880 Ty = EnumTy->getDecl()->getIntegerType(); 1881 1882 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1883 1884 if (isPromotableIntegerTypeForABI(Ty)) { 1885 if (InReg) 1886 return ABIArgInfo::getExtendInReg(Ty); 1887 return ABIArgInfo::getExtend(Ty); 1888 } 1889 1890 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1891 if (EIT->getNumBits() <= 64) { 1892 if (InReg) 1893 return ABIArgInfo::getDirectInReg(); 1894 return ABIArgInfo::getDirect(); 1895 } 1896 return getIndirectResult(Ty, /*ByVal=*/false, State); 1897 } 1898 1899 if (InReg) 1900 return ABIArgInfo::getDirectInReg(); 1901 return ABIArgInfo::getDirect(); 1902 } 1903 1904 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1905 CCState State(FI); 1906 if (IsMCUABI) 1907 State.FreeRegs = 3; 1908 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1909 State.FreeRegs = 2; 1910 State.FreeSSERegs = 3; 1911 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1912 State.FreeRegs = 2; 1913 State.FreeSSERegs = 6; 1914 } else if (FI.getHasRegParm()) 1915 State.FreeRegs = FI.getRegParm(); 1916 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1917 State.FreeRegs = 5; 1918 State.FreeSSERegs = 8; 1919 } else if (IsWin32StructABI) { 1920 // Since MSVC 2015, the first three SSE vectors have been passed in 1921 // registers. The rest are passed indirectly. 1922 State.FreeRegs = DefaultNumRegisterParameters; 1923 State.FreeSSERegs = 3; 1924 } else 1925 State.FreeRegs = DefaultNumRegisterParameters; 1926 1927 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1928 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1929 } else if (FI.getReturnInfo().isIndirect()) { 1930 // The C++ ABI is not aware of register usage, so we have to check if the 1931 // return value was sret and put it in a register ourselves if appropriate. 1932 if (State.FreeRegs) { 1933 --State.FreeRegs; // The sret parameter consumes a register. 1934 if (!IsMCUABI) 1935 FI.getReturnInfo().setInReg(true); 1936 } 1937 } 1938 1939 // The chain argument effectively gives us another free register. 1940 if (FI.isChainCall()) 1941 ++State.FreeRegs; 1942 1943 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1944 // arguments to XMM registers as available. 1945 if (State.CC == llvm::CallingConv::X86_VectorCall) 1946 runVectorCallFirstPass(FI, State); 1947 1948 bool UsedInAlloca = false; 1949 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1950 for (int I = 0, E = Args.size(); I < E; ++I) { 1951 // Skip arguments that have already been assigned. 1952 if (State.IsPreassigned.test(I)) 1953 continue; 1954 1955 Args[I].info = classifyArgumentType(Args[I].type, State); 1956 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1957 } 1958 1959 // If we needed to use inalloca for any argument, do a second pass and rewrite 1960 // all the memory arguments to use inalloca. 1961 if (UsedInAlloca) 1962 rewriteWithInAlloca(FI); 1963 } 1964 1965 void 1966 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1967 CharUnits &StackOffset, ABIArgInfo &Info, 1968 QualType Type) const { 1969 // Arguments are always 4-byte-aligned. 1970 CharUnits WordSize = CharUnits::fromQuantity(4); 1971 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1972 1973 // sret pointers and indirect things will require an extra pointer 1974 // indirection, unless they are byval. Most things are byval, and will not 1975 // require this indirection. 1976 bool IsIndirect = false; 1977 if (Info.isIndirect() && !Info.getIndirectByVal()) 1978 IsIndirect = true; 1979 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1980 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1981 if (IsIndirect) 1982 LLTy = LLTy->getPointerTo(0); 1983 FrameFields.push_back(LLTy); 1984 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1985 1986 // Insert padding bytes to respect alignment. 1987 CharUnits FieldEnd = StackOffset; 1988 StackOffset = FieldEnd.alignTo(WordSize); 1989 if (StackOffset != FieldEnd) { 1990 CharUnits NumBytes = StackOffset - FieldEnd; 1991 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1992 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1993 FrameFields.push_back(Ty); 1994 } 1995 } 1996 1997 static bool isArgInAlloca(const ABIArgInfo &Info) { 1998 // Leave ignored and inreg arguments alone. 1999 switch (Info.getKind()) { 2000 case ABIArgInfo::InAlloca: 2001 return true; 2002 case ABIArgInfo::Ignore: 2003 case ABIArgInfo::IndirectAliased: 2004 return false; 2005 case ABIArgInfo::Indirect: 2006 case ABIArgInfo::Direct: 2007 case ABIArgInfo::Extend: 2008 return !Info.getInReg(); 2009 case ABIArgInfo::Expand: 2010 case ABIArgInfo::CoerceAndExpand: 2011 // These are aggregate types which are never passed in registers when 2012 // inalloca is involved. 2013 return true; 2014 } 2015 llvm_unreachable("invalid enum"); 2016 } 2017 2018 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2019 assert(IsWin32StructABI && "inalloca only supported on win32"); 2020 2021 // Build a packed struct type for all of the arguments in memory. 2022 SmallVector<llvm::Type *, 6> FrameFields; 2023 2024 // The stack alignment is always 4. 2025 CharUnits StackAlign = CharUnits::fromQuantity(4); 2026 2027 CharUnits StackOffset; 2028 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2029 2030 // Put 'this' into the struct before 'sret', if necessary. 2031 bool IsThisCall = 2032 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2033 ABIArgInfo &Ret = FI.getReturnInfo(); 2034 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2035 isArgInAlloca(I->info)) { 2036 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2037 ++I; 2038 } 2039 2040 // Put the sret parameter into the inalloca struct if it's in memory. 2041 if (Ret.isIndirect() && !Ret.getInReg()) { 2042 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2043 // On Windows, the hidden sret parameter is always returned in eax. 2044 Ret.setInAllocaSRet(IsWin32StructABI); 2045 } 2046 2047 // Skip the 'this' parameter in ecx. 2048 if (IsThisCall) 2049 ++I; 2050 2051 // Put arguments passed in memory into the struct. 2052 for (; I != E; ++I) { 2053 if (isArgInAlloca(I->info)) 2054 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2055 } 2056 2057 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2058 /*isPacked=*/true), 2059 StackAlign); 2060 } 2061 2062 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2063 Address VAListAddr, QualType Ty) const { 2064 2065 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2066 2067 // x86-32 changes the alignment of certain arguments on the stack. 2068 // 2069 // Just messing with TypeInfo like this works because we never pass 2070 // anything indirectly. 2071 TypeInfo.Align = CharUnits::fromQuantity( 2072 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2073 2074 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2075 TypeInfo, CharUnits::fromQuantity(4), 2076 /*AllowHigherAlign*/ true); 2077 } 2078 2079 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2080 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2081 assert(Triple.getArch() == llvm::Triple::x86); 2082 2083 switch (Opts.getStructReturnConvention()) { 2084 case CodeGenOptions::SRCK_Default: 2085 break; 2086 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2087 return false; 2088 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2089 return true; 2090 } 2091 2092 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2093 return true; 2094 2095 switch (Triple.getOS()) { 2096 case llvm::Triple::DragonFly: 2097 case llvm::Triple::FreeBSD: 2098 case llvm::Triple::OpenBSD: 2099 case llvm::Triple::Win32: 2100 return true; 2101 default: 2102 return false; 2103 } 2104 } 2105 2106 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2107 CodeGen::CodeGenModule &CGM) { 2108 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2109 return; 2110 2111 llvm::Function *Fn = cast<llvm::Function>(GV); 2112 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2113 if (FD->getNumParams() == 0) 2114 return; 2115 2116 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2117 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2118 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2119 Fn->getContext(), ByValTy); 2120 Fn->addParamAttr(0, NewAttr); 2121 } 2122 2123 void X86_32TargetCodeGenInfo::setTargetAttributes( 2124 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2125 if (GV->isDeclaration()) 2126 return; 2127 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2128 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2129 llvm::Function *Fn = cast<llvm::Function>(GV); 2130 Fn->addFnAttr("stackrealign"); 2131 } 2132 2133 addX86InterruptAttrs(FD, GV, CGM); 2134 } 2135 } 2136 2137 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2138 CodeGen::CodeGenFunction &CGF, 2139 llvm::Value *Address) const { 2140 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2141 2142 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2143 2144 // 0-7 are the eight integer registers; the order is different 2145 // on Darwin (for EH), but the range is the same. 2146 // 8 is %eip. 2147 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2148 2149 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2150 // 12-16 are st(0..4). Not sure why we stop at 4. 2151 // These have size 16, which is sizeof(long double) on 2152 // platforms with 8-byte alignment for that type. 2153 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2154 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2155 2156 } else { 2157 // 9 is %eflags, which doesn't get a size on Darwin for some 2158 // reason. 2159 Builder.CreateAlignedStore( 2160 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2161 CharUnits::One()); 2162 2163 // 11-16 are st(0..5). Not sure why we stop at 5. 2164 // These have size 12, which is sizeof(long double) on 2165 // platforms with 4-byte alignment for that type. 2166 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2167 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2168 } 2169 2170 return false; 2171 } 2172 2173 //===----------------------------------------------------------------------===// 2174 // X86-64 ABI Implementation 2175 //===----------------------------------------------------------------------===// 2176 2177 2178 namespace { 2179 /// The AVX ABI level for X86 targets. 2180 enum class X86AVXABILevel { 2181 None, 2182 AVX, 2183 AVX512 2184 }; 2185 2186 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2187 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2188 switch (AVXLevel) { 2189 case X86AVXABILevel::AVX512: 2190 return 512; 2191 case X86AVXABILevel::AVX: 2192 return 256; 2193 case X86AVXABILevel::None: 2194 return 128; 2195 } 2196 llvm_unreachable("Unknown AVXLevel"); 2197 } 2198 2199 /// X86_64ABIInfo - The X86_64 ABI information. 2200 class X86_64ABIInfo : public SwiftABIInfo { 2201 enum Class { 2202 Integer = 0, 2203 SSE, 2204 SSEUp, 2205 X87, 2206 X87Up, 2207 ComplexX87, 2208 NoClass, 2209 Memory 2210 }; 2211 2212 /// merge - Implement the X86_64 ABI merging algorithm. 2213 /// 2214 /// Merge an accumulating classification \arg Accum with a field 2215 /// classification \arg Field. 2216 /// 2217 /// \param Accum - The accumulating classification. This should 2218 /// always be either NoClass or the result of a previous merge 2219 /// call. In addition, this should never be Memory (the caller 2220 /// should just return Memory for the aggregate). 2221 static Class merge(Class Accum, Class Field); 2222 2223 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2224 /// 2225 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2226 /// final MEMORY or SSE classes when necessary. 2227 /// 2228 /// \param AggregateSize - The size of the current aggregate in 2229 /// the classification process. 2230 /// 2231 /// \param Lo - The classification for the parts of the type 2232 /// residing in the low word of the containing object. 2233 /// 2234 /// \param Hi - The classification for the parts of the type 2235 /// residing in the higher words of the containing object. 2236 /// 2237 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2238 2239 /// classify - Determine the x86_64 register classes in which the 2240 /// given type T should be passed. 2241 /// 2242 /// \param Lo - The classification for the parts of the type 2243 /// residing in the low word of the containing object. 2244 /// 2245 /// \param Hi - The classification for the parts of the type 2246 /// residing in the high word of the containing object. 2247 /// 2248 /// \param OffsetBase - The bit offset of this type in the 2249 /// containing object. Some parameters are classified different 2250 /// depending on whether they straddle an eightbyte boundary. 2251 /// 2252 /// \param isNamedArg - Whether the argument in question is a "named" 2253 /// argument, as used in AMD64-ABI 3.5.7. 2254 /// 2255 /// If a word is unused its result will be NoClass; if a type should 2256 /// be passed in Memory then at least the classification of \arg Lo 2257 /// will be Memory. 2258 /// 2259 /// The \arg Lo class will be NoClass iff the argument is ignored. 2260 /// 2261 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2262 /// also be ComplexX87. 2263 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2264 bool isNamedArg) const; 2265 2266 llvm::Type *GetByteVectorType(QualType Ty) const; 2267 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2268 unsigned IROffset, QualType SourceTy, 2269 unsigned SourceOffset) const; 2270 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2271 unsigned IROffset, QualType SourceTy, 2272 unsigned SourceOffset) const; 2273 2274 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2275 /// such that the argument will be returned in memory. 2276 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2277 2278 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2279 /// such that the argument will be passed in memory. 2280 /// 2281 /// \param freeIntRegs - The number of free integer registers remaining 2282 /// available. 2283 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2284 2285 ABIArgInfo classifyReturnType(QualType RetTy) const; 2286 2287 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2288 unsigned &neededInt, unsigned &neededSSE, 2289 bool isNamedArg) const; 2290 2291 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2292 unsigned &NeededSSE) const; 2293 2294 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2295 unsigned &NeededSSE) const; 2296 2297 bool IsIllegalVectorType(QualType Ty) const; 2298 2299 /// The 0.98 ABI revision clarified a lot of ambiguities, 2300 /// unfortunately in ways that were not always consistent with 2301 /// certain previous compilers. In particular, platforms which 2302 /// required strict binary compatibility with older versions of GCC 2303 /// may need to exempt themselves. 2304 bool honorsRevision0_98() const { 2305 return !getTarget().getTriple().isOSDarwin(); 2306 } 2307 2308 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2309 /// classify it as INTEGER (for compatibility with older clang compilers). 2310 bool classifyIntegerMMXAsSSE() const { 2311 // Clang <= 3.8 did not do this. 2312 if (getContext().getLangOpts().getClangABICompat() <= 2313 LangOptions::ClangABI::Ver3_8) 2314 return false; 2315 2316 const llvm::Triple &Triple = getTarget().getTriple(); 2317 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2318 return false; 2319 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2320 return false; 2321 return true; 2322 } 2323 2324 // GCC classifies vectors of __int128 as memory. 2325 bool passInt128VectorsInMem() const { 2326 // Clang <= 9.0 did not do this. 2327 if (getContext().getLangOpts().getClangABICompat() <= 2328 LangOptions::ClangABI::Ver9) 2329 return false; 2330 2331 const llvm::Triple &T = getTarget().getTriple(); 2332 return T.isOSLinux() || T.isOSNetBSD(); 2333 } 2334 2335 X86AVXABILevel AVXLevel; 2336 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2337 // 64-bit hardware. 2338 bool Has64BitPointers; 2339 2340 public: 2341 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2342 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2343 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2344 } 2345 2346 bool isPassedUsingAVXType(QualType type) const { 2347 unsigned neededInt, neededSSE; 2348 // The freeIntRegs argument doesn't matter here. 2349 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2350 /*isNamedArg*/true); 2351 if (info.isDirect()) { 2352 llvm::Type *ty = info.getCoerceToType(); 2353 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2354 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2355 } 2356 return false; 2357 } 2358 2359 void computeInfo(CGFunctionInfo &FI) const override; 2360 2361 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2362 QualType Ty) const override; 2363 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2364 QualType Ty) const override; 2365 2366 bool has64BitPointers() const { 2367 return Has64BitPointers; 2368 } 2369 2370 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2371 bool asReturnValue) const override { 2372 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2373 } 2374 bool isSwiftErrorInRegister() const override { 2375 return true; 2376 } 2377 }; 2378 2379 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2380 class WinX86_64ABIInfo : public SwiftABIInfo { 2381 public: 2382 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2383 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2384 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2385 2386 void computeInfo(CGFunctionInfo &FI) const override; 2387 2388 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2389 QualType Ty) const override; 2390 2391 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2392 // FIXME: Assumes vectorcall is in use. 2393 return isX86VectorTypeForVectorCall(getContext(), Ty); 2394 } 2395 2396 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2397 uint64_t NumMembers) const override { 2398 // FIXME: Assumes vectorcall is in use. 2399 return isX86VectorCallAggregateSmallEnough(NumMembers); 2400 } 2401 2402 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2403 bool asReturnValue) const override { 2404 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2405 } 2406 2407 bool isSwiftErrorInRegister() const override { 2408 return true; 2409 } 2410 2411 private: 2412 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2413 bool IsVectorCall, bool IsRegCall) const; 2414 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2415 const ABIArgInfo ¤t) const; 2416 2417 X86AVXABILevel AVXLevel; 2418 2419 bool IsMingw64; 2420 }; 2421 2422 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2423 public: 2424 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2425 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2426 2427 const X86_64ABIInfo &getABIInfo() const { 2428 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2429 } 2430 2431 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2432 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2433 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2434 2435 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2436 return 7; 2437 } 2438 2439 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2440 llvm::Value *Address) const override { 2441 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2442 2443 // 0-15 are the 16 integer registers. 2444 // 16 is %rip. 2445 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2446 return false; 2447 } 2448 2449 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2450 StringRef Constraint, 2451 llvm::Type* Ty) const override { 2452 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2453 } 2454 2455 bool isNoProtoCallVariadic(const CallArgList &args, 2456 const FunctionNoProtoType *fnType) const override { 2457 // The default CC on x86-64 sets %al to the number of SSA 2458 // registers used, and GCC sets this when calling an unprototyped 2459 // function, so we override the default behavior. However, don't do 2460 // that when AVX types are involved: the ABI explicitly states it is 2461 // undefined, and it doesn't work in practice because of how the ABI 2462 // defines varargs anyway. 2463 if (fnType->getCallConv() == CC_C) { 2464 bool HasAVXType = false; 2465 for (CallArgList::const_iterator 2466 it = args.begin(), ie = args.end(); it != ie; ++it) { 2467 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2468 HasAVXType = true; 2469 break; 2470 } 2471 } 2472 2473 if (!HasAVXType) 2474 return true; 2475 } 2476 2477 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2478 } 2479 2480 llvm::Constant * 2481 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2482 unsigned Sig = (0xeb << 0) | // jmp rel8 2483 (0x06 << 8) | // .+0x08 2484 ('v' << 16) | 2485 ('2' << 24); 2486 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2487 } 2488 2489 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2490 CodeGen::CodeGenModule &CGM) const override { 2491 if (GV->isDeclaration()) 2492 return; 2493 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2494 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2495 llvm::Function *Fn = cast<llvm::Function>(GV); 2496 Fn->addFnAttr("stackrealign"); 2497 } 2498 2499 addX86InterruptAttrs(FD, GV, CGM); 2500 } 2501 } 2502 2503 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2504 const FunctionDecl *Caller, 2505 const FunctionDecl *Callee, 2506 const CallArgList &Args) const override; 2507 }; 2508 2509 static void initFeatureMaps(const ASTContext &Ctx, 2510 llvm::StringMap<bool> &CallerMap, 2511 const FunctionDecl *Caller, 2512 llvm::StringMap<bool> &CalleeMap, 2513 const FunctionDecl *Callee) { 2514 if (CalleeMap.empty() && CallerMap.empty()) { 2515 // The caller is potentially nullptr in the case where the call isn't in a 2516 // function. In this case, the getFunctionFeatureMap ensures we just get 2517 // the TU level setting (since it cannot be modified by 'target'.. 2518 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2519 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2520 } 2521 } 2522 2523 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2524 SourceLocation CallLoc, 2525 const llvm::StringMap<bool> &CallerMap, 2526 const llvm::StringMap<bool> &CalleeMap, 2527 QualType Ty, StringRef Feature, 2528 bool IsArgument) { 2529 bool CallerHasFeat = CallerMap.lookup(Feature); 2530 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2531 if (!CallerHasFeat && !CalleeHasFeat) 2532 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2533 << IsArgument << Ty << Feature; 2534 2535 // Mixing calling conventions here is very clearly an error. 2536 if (!CallerHasFeat || !CalleeHasFeat) 2537 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2538 << IsArgument << Ty << Feature; 2539 2540 // Else, both caller and callee have the required feature, so there is no need 2541 // to diagnose. 2542 return false; 2543 } 2544 2545 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2546 SourceLocation CallLoc, 2547 const llvm::StringMap<bool> &CallerMap, 2548 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2549 bool IsArgument) { 2550 uint64_t Size = Ctx.getTypeSize(Ty); 2551 if (Size > 256) 2552 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2553 "avx512f", IsArgument); 2554 2555 if (Size > 128) 2556 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2557 IsArgument); 2558 2559 return false; 2560 } 2561 2562 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2563 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2564 const FunctionDecl *Callee, const CallArgList &Args) const { 2565 llvm::StringMap<bool> CallerMap; 2566 llvm::StringMap<bool> CalleeMap; 2567 unsigned ArgIndex = 0; 2568 2569 // We need to loop through the actual call arguments rather than the the 2570 // function's parameters, in case this variadic. 2571 for (const CallArg &Arg : Args) { 2572 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2573 // additionally changes how vectors >256 in size are passed. Like GCC, we 2574 // warn when a function is called with an argument where this will change. 2575 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2576 // the caller and callee features are mismatched. 2577 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2578 // change its ABI with attribute-target after this call. 2579 if (Arg.getType()->isVectorType() && 2580 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2581 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2582 QualType Ty = Arg.getType(); 2583 // The CallArg seems to have desugared the type already, so for clearer 2584 // diagnostics, replace it with the type in the FunctionDecl if possible. 2585 if (ArgIndex < Callee->getNumParams()) 2586 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2587 2588 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2589 CalleeMap, Ty, /*IsArgument*/ true)) 2590 return; 2591 } 2592 ++ArgIndex; 2593 } 2594 2595 // Check return always, as we don't have a good way of knowing in codegen 2596 // whether this value is used, tail-called, etc. 2597 if (Callee->getReturnType()->isVectorType() && 2598 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2599 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2600 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2601 CalleeMap, Callee->getReturnType(), 2602 /*IsArgument*/ false); 2603 } 2604 } 2605 2606 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2607 // If the argument does not end in .lib, automatically add the suffix. 2608 // If the argument contains a space, enclose it in quotes. 2609 // This matches the behavior of MSVC. 2610 bool Quote = (Lib.find(' ') != StringRef::npos); 2611 std::string ArgStr = Quote ? "\"" : ""; 2612 ArgStr += Lib; 2613 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2614 ArgStr += ".lib"; 2615 ArgStr += Quote ? "\"" : ""; 2616 return ArgStr; 2617 } 2618 2619 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2620 public: 2621 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2622 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2623 unsigned NumRegisterParameters) 2624 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2625 Win32StructABI, NumRegisterParameters, false) {} 2626 2627 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2628 CodeGen::CodeGenModule &CGM) const override; 2629 2630 void getDependentLibraryOption(llvm::StringRef Lib, 2631 llvm::SmallString<24> &Opt) const override { 2632 Opt = "/DEFAULTLIB:"; 2633 Opt += qualifyWindowsLibrary(Lib); 2634 } 2635 2636 void getDetectMismatchOption(llvm::StringRef Name, 2637 llvm::StringRef Value, 2638 llvm::SmallString<32> &Opt) const override { 2639 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2640 } 2641 }; 2642 2643 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2644 CodeGen::CodeGenModule &CGM) { 2645 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2646 2647 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2648 Fn->addFnAttr("stack-probe-size", 2649 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2650 if (CGM.getCodeGenOpts().NoStackArgProbe) 2651 Fn->addFnAttr("no-stack-arg-probe"); 2652 } 2653 } 2654 2655 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2656 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2657 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2658 if (GV->isDeclaration()) 2659 return; 2660 addStackProbeTargetAttributes(D, GV, CGM); 2661 } 2662 2663 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2664 public: 2665 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2666 X86AVXABILevel AVXLevel) 2667 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2668 2669 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2670 CodeGen::CodeGenModule &CGM) const override; 2671 2672 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2673 return 7; 2674 } 2675 2676 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2677 llvm::Value *Address) const override { 2678 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2679 2680 // 0-15 are the 16 integer registers. 2681 // 16 is %rip. 2682 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2683 return false; 2684 } 2685 2686 void getDependentLibraryOption(llvm::StringRef Lib, 2687 llvm::SmallString<24> &Opt) const override { 2688 Opt = "/DEFAULTLIB:"; 2689 Opt += qualifyWindowsLibrary(Lib); 2690 } 2691 2692 void getDetectMismatchOption(llvm::StringRef Name, 2693 llvm::StringRef Value, 2694 llvm::SmallString<32> &Opt) const override { 2695 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2696 } 2697 }; 2698 2699 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2700 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2701 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2702 if (GV->isDeclaration()) 2703 return; 2704 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2705 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2706 llvm::Function *Fn = cast<llvm::Function>(GV); 2707 Fn->addFnAttr("stackrealign"); 2708 } 2709 2710 addX86InterruptAttrs(FD, GV, CGM); 2711 } 2712 2713 addStackProbeTargetAttributes(D, GV, CGM); 2714 } 2715 } 2716 2717 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2718 Class &Hi) const { 2719 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2720 // 2721 // (a) If one of the classes is Memory, the whole argument is passed in 2722 // memory. 2723 // 2724 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2725 // memory. 2726 // 2727 // (c) If the size of the aggregate exceeds two eightbytes and the first 2728 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2729 // argument is passed in memory. NOTE: This is necessary to keep the 2730 // ABI working for processors that don't support the __m256 type. 2731 // 2732 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2733 // 2734 // Some of these are enforced by the merging logic. Others can arise 2735 // only with unions; for example: 2736 // union { _Complex double; unsigned; } 2737 // 2738 // Note that clauses (b) and (c) were added in 0.98. 2739 // 2740 if (Hi == Memory) 2741 Lo = Memory; 2742 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2743 Lo = Memory; 2744 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2745 Lo = Memory; 2746 if (Hi == SSEUp && Lo != SSE) 2747 Hi = SSE; 2748 } 2749 2750 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2751 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2752 // classified recursively so that always two fields are 2753 // considered. The resulting class is calculated according to 2754 // the classes of the fields in the eightbyte: 2755 // 2756 // (a) If both classes are equal, this is the resulting class. 2757 // 2758 // (b) If one of the classes is NO_CLASS, the resulting class is 2759 // the other class. 2760 // 2761 // (c) If one of the classes is MEMORY, the result is the MEMORY 2762 // class. 2763 // 2764 // (d) If one of the classes is INTEGER, the result is the 2765 // INTEGER. 2766 // 2767 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2768 // MEMORY is used as class. 2769 // 2770 // (f) Otherwise class SSE is used. 2771 2772 // Accum should never be memory (we should have returned) or 2773 // ComplexX87 (because this cannot be passed in a structure). 2774 assert((Accum != Memory && Accum != ComplexX87) && 2775 "Invalid accumulated classification during merge."); 2776 if (Accum == Field || Field == NoClass) 2777 return Accum; 2778 if (Field == Memory) 2779 return Memory; 2780 if (Accum == NoClass) 2781 return Field; 2782 if (Accum == Integer || Field == Integer) 2783 return Integer; 2784 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2785 Accum == X87 || Accum == X87Up) 2786 return Memory; 2787 return SSE; 2788 } 2789 2790 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2791 Class &Lo, Class &Hi, bool isNamedArg) const { 2792 // FIXME: This code can be simplified by introducing a simple value class for 2793 // Class pairs with appropriate constructor methods for the various 2794 // situations. 2795 2796 // FIXME: Some of the split computations are wrong; unaligned vectors 2797 // shouldn't be passed in registers for example, so there is no chance they 2798 // can straddle an eightbyte. Verify & simplify. 2799 2800 Lo = Hi = NoClass; 2801 2802 Class &Current = OffsetBase < 64 ? Lo : Hi; 2803 Current = Memory; 2804 2805 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2806 BuiltinType::Kind k = BT->getKind(); 2807 2808 if (k == BuiltinType::Void) { 2809 Current = NoClass; 2810 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2811 Lo = Integer; 2812 Hi = Integer; 2813 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2814 Current = Integer; 2815 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2816 Current = SSE; 2817 } else if (k == BuiltinType::LongDouble) { 2818 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2819 if (LDF == &llvm::APFloat::IEEEquad()) { 2820 Lo = SSE; 2821 Hi = SSEUp; 2822 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2823 Lo = X87; 2824 Hi = X87Up; 2825 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2826 Current = SSE; 2827 } else 2828 llvm_unreachable("unexpected long double representation!"); 2829 } 2830 // FIXME: _Decimal32 and _Decimal64 are SSE. 2831 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2832 return; 2833 } 2834 2835 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2836 // Classify the underlying integer type. 2837 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2838 return; 2839 } 2840 2841 if (Ty->hasPointerRepresentation()) { 2842 Current = Integer; 2843 return; 2844 } 2845 2846 if (Ty->isMemberPointerType()) { 2847 if (Ty->isMemberFunctionPointerType()) { 2848 if (Has64BitPointers) { 2849 // If Has64BitPointers, this is an {i64, i64}, so classify both 2850 // Lo and Hi now. 2851 Lo = Hi = Integer; 2852 } else { 2853 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2854 // straddles an eightbyte boundary, Hi should be classified as well. 2855 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2856 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2857 if (EB_FuncPtr != EB_ThisAdj) { 2858 Lo = Hi = Integer; 2859 } else { 2860 Current = Integer; 2861 } 2862 } 2863 } else { 2864 Current = Integer; 2865 } 2866 return; 2867 } 2868 2869 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2870 uint64_t Size = getContext().getTypeSize(VT); 2871 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2872 // gcc passes the following as integer: 2873 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2874 // 2 bytes - <2 x char>, <1 x short> 2875 // 1 byte - <1 x char> 2876 Current = Integer; 2877 2878 // If this type crosses an eightbyte boundary, it should be 2879 // split. 2880 uint64_t EB_Lo = (OffsetBase) / 64; 2881 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2882 if (EB_Lo != EB_Hi) 2883 Hi = Lo; 2884 } else if (Size == 64) { 2885 QualType ElementType = VT->getElementType(); 2886 2887 // gcc passes <1 x double> in memory. :( 2888 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2889 return; 2890 2891 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2892 // pass them as integer. For platforms where clang is the de facto 2893 // platform compiler, we must continue to use integer. 2894 if (!classifyIntegerMMXAsSSE() && 2895 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2896 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2897 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2898 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2899 Current = Integer; 2900 else 2901 Current = SSE; 2902 2903 // If this type crosses an eightbyte boundary, it should be 2904 // split. 2905 if (OffsetBase && OffsetBase != 64) 2906 Hi = Lo; 2907 } else if (Size == 128 || 2908 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2909 QualType ElementType = VT->getElementType(); 2910 2911 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2912 if (passInt128VectorsInMem() && Size != 128 && 2913 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2914 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2915 return; 2916 2917 // Arguments of 256-bits are split into four eightbyte chunks. The 2918 // least significant one belongs to class SSE and all the others to class 2919 // SSEUP. The original Lo and Hi design considers that types can't be 2920 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2921 // This design isn't correct for 256-bits, but since there're no cases 2922 // where the upper parts would need to be inspected, avoid adding 2923 // complexity and just consider Hi to match the 64-256 part. 2924 // 2925 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2926 // registers if they are "named", i.e. not part of the "..." of a 2927 // variadic function. 2928 // 2929 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2930 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2931 Lo = SSE; 2932 Hi = SSEUp; 2933 } 2934 return; 2935 } 2936 2937 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2938 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2939 2940 uint64_t Size = getContext().getTypeSize(Ty); 2941 if (ET->isIntegralOrEnumerationType()) { 2942 if (Size <= 64) 2943 Current = Integer; 2944 else if (Size <= 128) 2945 Lo = Hi = Integer; 2946 } else if (ET == getContext().FloatTy) { 2947 Current = SSE; 2948 } else if (ET == getContext().DoubleTy) { 2949 Lo = Hi = SSE; 2950 } else if (ET == getContext().LongDoubleTy) { 2951 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2952 if (LDF == &llvm::APFloat::IEEEquad()) 2953 Current = Memory; 2954 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2955 Current = ComplexX87; 2956 else if (LDF == &llvm::APFloat::IEEEdouble()) 2957 Lo = Hi = SSE; 2958 else 2959 llvm_unreachable("unexpected long double representation!"); 2960 } 2961 2962 // If this complex type crosses an eightbyte boundary then it 2963 // should be split. 2964 uint64_t EB_Real = (OffsetBase) / 64; 2965 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2966 if (Hi == NoClass && EB_Real != EB_Imag) 2967 Hi = Lo; 2968 2969 return; 2970 } 2971 2972 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2973 if (EITy->getNumBits() <= 64) 2974 Current = Integer; 2975 else if (EITy->getNumBits() <= 128) 2976 Lo = Hi = Integer; 2977 // Larger values need to get passed in memory. 2978 return; 2979 } 2980 2981 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2982 // Arrays are treated like structures. 2983 2984 uint64_t Size = getContext().getTypeSize(Ty); 2985 2986 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2987 // than eight eightbytes, ..., it has class MEMORY. 2988 if (Size > 512) 2989 return; 2990 2991 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2992 // fields, it has class MEMORY. 2993 // 2994 // Only need to check alignment of array base. 2995 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2996 return; 2997 2998 // Otherwise implement simplified merge. We could be smarter about 2999 // this, but it isn't worth it and would be harder to verify. 3000 Current = NoClass; 3001 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3002 uint64_t ArraySize = AT->getSize().getZExtValue(); 3003 3004 // The only case a 256-bit wide vector could be used is when the array 3005 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3006 // to work for sizes wider than 128, early check and fallback to memory. 3007 // 3008 if (Size > 128 && 3009 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3010 return; 3011 3012 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3013 Class FieldLo, FieldHi; 3014 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3015 Lo = merge(Lo, FieldLo); 3016 Hi = merge(Hi, FieldHi); 3017 if (Lo == Memory || Hi == Memory) 3018 break; 3019 } 3020 3021 postMerge(Size, Lo, Hi); 3022 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3023 return; 3024 } 3025 3026 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3027 uint64_t Size = getContext().getTypeSize(Ty); 3028 3029 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3030 // than eight eightbytes, ..., it has class MEMORY. 3031 if (Size > 512) 3032 return; 3033 3034 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3035 // copy constructor or a non-trivial destructor, it is passed by invisible 3036 // reference. 3037 if (getRecordArgABI(RT, getCXXABI())) 3038 return; 3039 3040 const RecordDecl *RD = RT->getDecl(); 3041 3042 // Assume variable sized types are passed in memory. 3043 if (RD->hasFlexibleArrayMember()) 3044 return; 3045 3046 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3047 3048 // Reset Lo class, this will be recomputed. 3049 Current = NoClass; 3050 3051 // If this is a C++ record, classify the bases first. 3052 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3053 for (const auto &I : CXXRD->bases()) { 3054 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3055 "Unexpected base class!"); 3056 const auto *Base = 3057 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3058 3059 // Classify this field. 3060 // 3061 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3062 // single eightbyte, each is classified separately. Each eightbyte gets 3063 // initialized to class NO_CLASS. 3064 Class FieldLo, FieldHi; 3065 uint64_t Offset = 3066 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3067 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3068 Lo = merge(Lo, FieldLo); 3069 Hi = merge(Hi, FieldHi); 3070 if (Lo == Memory || Hi == Memory) { 3071 postMerge(Size, Lo, Hi); 3072 return; 3073 } 3074 } 3075 } 3076 3077 // Classify the fields one at a time, merging the results. 3078 unsigned idx = 0; 3079 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3080 LangOptions::ClangABI::Ver11 || 3081 getContext().getTargetInfo().getTriple().isPS4(); 3082 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3083 3084 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3085 i != e; ++i, ++idx) { 3086 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3087 bool BitField = i->isBitField(); 3088 3089 // Ignore padding bit-fields. 3090 if (BitField && i->isUnnamedBitfield()) 3091 continue; 3092 3093 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3094 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3095 // 3096 // The only case a 256-bit or a 512-bit wide vector could be used is when 3097 // the struct contains a single 256-bit or 512-bit element. Early check 3098 // and fallback to memory. 3099 // 3100 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3101 // than 128. 3102 if (Size > 128 && 3103 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3104 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3105 Lo = Memory; 3106 postMerge(Size, Lo, Hi); 3107 return; 3108 } 3109 // Note, skip this test for bit-fields, see below. 3110 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3111 Lo = Memory; 3112 postMerge(Size, Lo, Hi); 3113 return; 3114 } 3115 3116 // Classify this field. 3117 // 3118 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3119 // exceeds a single eightbyte, each is classified 3120 // separately. Each eightbyte gets initialized to class 3121 // NO_CLASS. 3122 Class FieldLo, FieldHi; 3123 3124 // Bit-fields require special handling, they do not force the 3125 // structure to be passed in memory even if unaligned, and 3126 // therefore they can straddle an eightbyte. 3127 if (BitField) { 3128 assert(!i->isUnnamedBitfield()); 3129 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3130 uint64_t Size = i->getBitWidthValue(getContext()); 3131 3132 uint64_t EB_Lo = Offset / 64; 3133 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3134 3135 if (EB_Lo) { 3136 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3137 FieldLo = NoClass; 3138 FieldHi = Integer; 3139 } else { 3140 FieldLo = Integer; 3141 FieldHi = EB_Hi ? Integer : NoClass; 3142 } 3143 } else 3144 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3145 Lo = merge(Lo, FieldLo); 3146 Hi = merge(Hi, FieldHi); 3147 if (Lo == Memory || Hi == Memory) 3148 break; 3149 } 3150 3151 postMerge(Size, Lo, Hi); 3152 } 3153 } 3154 3155 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3156 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3157 // place naturally. 3158 if (!isAggregateTypeForABI(Ty)) { 3159 // Treat an enum type as its underlying type. 3160 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3161 Ty = EnumTy->getDecl()->getIntegerType(); 3162 3163 if (Ty->isExtIntType()) 3164 return getNaturalAlignIndirect(Ty); 3165 3166 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3167 : ABIArgInfo::getDirect()); 3168 } 3169 3170 return getNaturalAlignIndirect(Ty); 3171 } 3172 3173 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3174 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3175 uint64_t Size = getContext().getTypeSize(VecTy); 3176 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3177 if (Size <= 64 || Size > LargestVector) 3178 return true; 3179 QualType EltTy = VecTy->getElementType(); 3180 if (passInt128VectorsInMem() && 3181 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3182 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3183 return true; 3184 } 3185 3186 return false; 3187 } 3188 3189 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3190 unsigned freeIntRegs) const { 3191 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3192 // place naturally. 3193 // 3194 // This assumption is optimistic, as there could be free registers available 3195 // when we need to pass this argument in memory, and LLVM could try to pass 3196 // the argument in the free register. This does not seem to happen currently, 3197 // but this code would be much safer if we could mark the argument with 3198 // 'onstack'. See PR12193. 3199 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3200 !Ty->isExtIntType()) { 3201 // Treat an enum type as its underlying type. 3202 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3203 Ty = EnumTy->getDecl()->getIntegerType(); 3204 3205 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3206 : ABIArgInfo::getDirect()); 3207 } 3208 3209 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3210 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3211 3212 // Compute the byval alignment. We specify the alignment of the byval in all 3213 // cases so that the mid-level optimizer knows the alignment of the byval. 3214 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3215 3216 // Attempt to avoid passing indirect results using byval when possible. This 3217 // is important for good codegen. 3218 // 3219 // We do this by coercing the value into a scalar type which the backend can 3220 // handle naturally (i.e., without using byval). 3221 // 3222 // For simplicity, we currently only do this when we have exhausted all of the 3223 // free integer registers. Doing this when there are free integer registers 3224 // would require more care, as we would have to ensure that the coerced value 3225 // did not claim the unused register. That would require either reording the 3226 // arguments to the function (so that any subsequent inreg values came first), 3227 // or only doing this optimization when there were no following arguments that 3228 // might be inreg. 3229 // 3230 // We currently expect it to be rare (particularly in well written code) for 3231 // arguments to be passed on the stack when there are still free integer 3232 // registers available (this would typically imply large structs being passed 3233 // by value), so this seems like a fair tradeoff for now. 3234 // 3235 // We can revisit this if the backend grows support for 'onstack' parameter 3236 // attributes. See PR12193. 3237 if (freeIntRegs == 0) { 3238 uint64_t Size = getContext().getTypeSize(Ty); 3239 3240 // If this type fits in an eightbyte, coerce it into the matching integral 3241 // type, which will end up on the stack (with alignment 8). 3242 if (Align == 8 && Size <= 64) 3243 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3244 Size)); 3245 } 3246 3247 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3248 } 3249 3250 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3251 /// register. Pick an LLVM IR type that will be passed as a vector register. 3252 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3253 // Wrapper structs/arrays that only contain vectors are passed just like 3254 // vectors; strip them off if present. 3255 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3256 Ty = QualType(InnerTy, 0); 3257 3258 llvm::Type *IRType = CGT.ConvertType(Ty); 3259 if (isa<llvm::VectorType>(IRType)) { 3260 // Don't pass vXi128 vectors in their native type, the backend can't 3261 // legalize them. 3262 if (passInt128VectorsInMem() && 3263 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3264 // Use a vXi64 vector. 3265 uint64_t Size = getContext().getTypeSize(Ty); 3266 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3267 Size / 64); 3268 } 3269 3270 return IRType; 3271 } 3272 3273 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3274 return IRType; 3275 3276 // We couldn't find the preferred IR vector type for 'Ty'. 3277 uint64_t Size = getContext().getTypeSize(Ty); 3278 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3279 3280 3281 // Return a LLVM IR vector type based on the size of 'Ty'. 3282 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3283 Size / 64); 3284 } 3285 3286 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3287 /// is known to either be off the end of the specified type or being in 3288 /// alignment padding. The user type specified is known to be at most 128 bits 3289 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3290 /// classification that put one of the two halves in the INTEGER class. 3291 /// 3292 /// It is conservatively correct to return false. 3293 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3294 unsigned EndBit, ASTContext &Context) { 3295 // If the bytes being queried are off the end of the type, there is no user 3296 // data hiding here. This handles analysis of builtins, vectors and other 3297 // types that don't contain interesting padding. 3298 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3299 if (TySize <= StartBit) 3300 return true; 3301 3302 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3303 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3304 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3305 3306 // Check each element to see if the element overlaps with the queried range. 3307 for (unsigned i = 0; i != NumElts; ++i) { 3308 // If the element is after the span we care about, then we're done.. 3309 unsigned EltOffset = i*EltSize; 3310 if (EltOffset >= EndBit) break; 3311 3312 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3313 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3314 EndBit-EltOffset, Context)) 3315 return false; 3316 } 3317 // If it overlaps no elements, then it is safe to process as padding. 3318 return true; 3319 } 3320 3321 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3322 const RecordDecl *RD = RT->getDecl(); 3323 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3324 3325 // If this is a C++ record, check the bases first. 3326 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3327 for (const auto &I : CXXRD->bases()) { 3328 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3329 "Unexpected base class!"); 3330 const auto *Base = 3331 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3332 3333 // If the base is after the span we care about, ignore it. 3334 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3335 if (BaseOffset >= EndBit) continue; 3336 3337 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3338 if (!BitsContainNoUserData(I.getType(), BaseStart, 3339 EndBit-BaseOffset, Context)) 3340 return false; 3341 } 3342 } 3343 3344 // Verify that no field has data that overlaps the region of interest. Yes 3345 // this could be sped up a lot by being smarter about queried fields, 3346 // however we're only looking at structs up to 16 bytes, so we don't care 3347 // much. 3348 unsigned idx = 0; 3349 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3350 i != e; ++i, ++idx) { 3351 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3352 3353 // If we found a field after the region we care about, then we're done. 3354 if (FieldOffset >= EndBit) break; 3355 3356 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3357 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3358 Context)) 3359 return false; 3360 } 3361 3362 // If nothing in this record overlapped the area of interest, then we're 3363 // clean. 3364 return true; 3365 } 3366 3367 return false; 3368 } 3369 3370 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3371 /// float member at the specified offset. For example, {int,{float}} has a 3372 /// float at offset 4. It is conservatively correct for this routine to return 3373 /// false. 3374 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3375 const llvm::DataLayout &TD) { 3376 // Base case if we find a float. 3377 if (IROffset == 0 && IRType->isFloatTy()) 3378 return true; 3379 3380 // If this is a struct, recurse into the field at the specified offset. 3381 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3382 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3383 unsigned Elt = SL->getElementContainingOffset(IROffset); 3384 IROffset -= SL->getElementOffset(Elt); 3385 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3386 } 3387 3388 // If this is an array, recurse into the field at the specified offset. 3389 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3390 llvm::Type *EltTy = ATy->getElementType(); 3391 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3392 IROffset -= IROffset/EltSize*EltSize; 3393 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3394 } 3395 3396 return false; 3397 } 3398 3399 3400 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3401 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3402 llvm::Type *X86_64ABIInfo:: 3403 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3404 QualType SourceTy, unsigned SourceOffset) const { 3405 // The only three choices we have are either double, <2 x float>, or float. We 3406 // pass as float if the last 4 bytes is just padding. This happens for 3407 // structs that contain 3 floats. 3408 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3409 SourceOffset*8+64, getContext())) 3410 return llvm::Type::getFloatTy(getVMContext()); 3411 3412 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3413 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3414 // case. 3415 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3416 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3417 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3418 2); 3419 3420 return llvm::Type::getDoubleTy(getVMContext()); 3421 } 3422 3423 3424 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3425 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3426 /// about the high or low part of an up-to-16-byte struct. This routine picks 3427 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3428 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3429 /// etc). 3430 /// 3431 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3432 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3433 /// the 8-byte value references. PrefType may be null. 3434 /// 3435 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3436 /// an offset into this that we're processing (which is always either 0 or 8). 3437 /// 3438 llvm::Type *X86_64ABIInfo:: 3439 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3440 QualType SourceTy, unsigned SourceOffset) const { 3441 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3442 // returning an 8-byte unit starting with it. See if we can safely use it. 3443 if (IROffset == 0) { 3444 // Pointers and int64's always fill the 8-byte unit. 3445 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3446 IRType->isIntegerTy(64)) 3447 return IRType; 3448 3449 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3450 // goodness in the source type is just tail padding. This is allowed to 3451 // kick in for struct {double,int} on the int, but not on 3452 // struct{double,int,int} because we wouldn't return the second int. We 3453 // have to do this analysis on the source type because we can't depend on 3454 // unions being lowered a specific way etc. 3455 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3456 IRType->isIntegerTy(32) || 3457 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3458 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3459 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3460 3461 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3462 SourceOffset*8+64, getContext())) 3463 return IRType; 3464 } 3465 } 3466 3467 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3468 // If this is a struct, recurse into the field at the specified offset. 3469 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3470 if (IROffset < SL->getSizeInBytes()) { 3471 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3472 IROffset -= SL->getElementOffset(FieldIdx); 3473 3474 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3475 SourceTy, SourceOffset); 3476 } 3477 } 3478 3479 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3480 llvm::Type *EltTy = ATy->getElementType(); 3481 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3482 unsigned EltOffset = IROffset/EltSize*EltSize; 3483 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3484 SourceOffset); 3485 } 3486 3487 // Okay, we don't have any better idea of what to pass, so we pass this in an 3488 // integer register that isn't too big to fit the rest of the struct. 3489 unsigned TySizeInBytes = 3490 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3491 3492 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3493 3494 // It is always safe to classify this as an integer type up to i64 that 3495 // isn't larger than the structure. 3496 return llvm::IntegerType::get(getVMContext(), 3497 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3498 } 3499 3500 3501 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3502 /// be used as elements of a two register pair to pass or return, return a 3503 /// first class aggregate to represent them. For example, if the low part of 3504 /// a by-value argument should be passed as i32* and the high part as float, 3505 /// return {i32*, float}. 3506 static llvm::Type * 3507 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3508 const llvm::DataLayout &TD) { 3509 // In order to correctly satisfy the ABI, we need to the high part to start 3510 // at offset 8. If the high and low parts we inferred are both 4-byte types 3511 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3512 // the second element at offset 8. Check for this: 3513 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3514 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3515 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3516 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3517 3518 // To handle this, we have to increase the size of the low part so that the 3519 // second element will start at an 8 byte offset. We can't increase the size 3520 // of the second element because it might make us access off the end of the 3521 // struct. 3522 if (HiStart != 8) { 3523 // There are usually two sorts of types the ABI generation code can produce 3524 // for the low part of a pair that aren't 8 bytes in size: float or 3525 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3526 // NaCl). 3527 // Promote these to a larger type. 3528 if (Lo->isFloatTy()) 3529 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3530 else { 3531 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3532 && "Invalid/unknown lo type"); 3533 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3534 } 3535 } 3536 3537 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3538 3539 // Verify that the second element is at an 8-byte offset. 3540 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3541 "Invalid x86-64 argument pair!"); 3542 return Result; 3543 } 3544 3545 ABIArgInfo X86_64ABIInfo:: 3546 classifyReturnType(QualType RetTy) const { 3547 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3548 // classification algorithm. 3549 X86_64ABIInfo::Class Lo, Hi; 3550 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3551 3552 // Check some invariants. 3553 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3554 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3555 3556 llvm::Type *ResType = nullptr; 3557 switch (Lo) { 3558 case NoClass: 3559 if (Hi == NoClass) 3560 return ABIArgInfo::getIgnore(); 3561 // If the low part is just padding, it takes no register, leave ResType 3562 // null. 3563 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3564 "Unknown missing lo part"); 3565 break; 3566 3567 case SSEUp: 3568 case X87Up: 3569 llvm_unreachable("Invalid classification for lo word."); 3570 3571 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3572 // hidden argument. 3573 case Memory: 3574 return getIndirectReturnResult(RetTy); 3575 3576 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3577 // available register of the sequence %rax, %rdx is used. 3578 case Integer: 3579 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3580 3581 // If we have a sign or zero extended integer, make sure to return Extend 3582 // so that the parameter gets the right LLVM IR attributes. 3583 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3584 // Treat an enum type as its underlying type. 3585 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3586 RetTy = EnumTy->getDecl()->getIntegerType(); 3587 3588 if (RetTy->isIntegralOrEnumerationType() && 3589 isPromotableIntegerTypeForABI(RetTy)) 3590 return ABIArgInfo::getExtend(RetTy); 3591 } 3592 break; 3593 3594 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3595 // available SSE register of the sequence %xmm0, %xmm1 is used. 3596 case SSE: 3597 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3598 break; 3599 3600 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3601 // returned on the X87 stack in %st0 as 80-bit x87 number. 3602 case X87: 3603 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3604 break; 3605 3606 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3607 // part of the value is returned in %st0 and the imaginary part in 3608 // %st1. 3609 case ComplexX87: 3610 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3611 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3612 llvm::Type::getX86_FP80Ty(getVMContext())); 3613 break; 3614 } 3615 3616 llvm::Type *HighPart = nullptr; 3617 switch (Hi) { 3618 // Memory was handled previously and X87 should 3619 // never occur as a hi class. 3620 case Memory: 3621 case X87: 3622 llvm_unreachable("Invalid classification for hi word."); 3623 3624 case ComplexX87: // Previously handled. 3625 case NoClass: 3626 break; 3627 3628 case Integer: 3629 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3630 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3631 return ABIArgInfo::getDirect(HighPart, 8); 3632 break; 3633 case SSE: 3634 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3635 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3636 return ABIArgInfo::getDirect(HighPart, 8); 3637 break; 3638 3639 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3640 // is passed in the next available eightbyte chunk if the last used 3641 // vector register. 3642 // 3643 // SSEUP should always be preceded by SSE, just widen. 3644 case SSEUp: 3645 assert(Lo == SSE && "Unexpected SSEUp classification."); 3646 ResType = GetByteVectorType(RetTy); 3647 break; 3648 3649 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3650 // returned together with the previous X87 value in %st0. 3651 case X87Up: 3652 // If X87Up is preceded by X87, we don't need to do 3653 // anything. However, in some cases with unions it may not be 3654 // preceded by X87. In such situations we follow gcc and pass the 3655 // extra bits in an SSE reg. 3656 if (Lo != X87) { 3657 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3658 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3659 return ABIArgInfo::getDirect(HighPart, 8); 3660 } 3661 break; 3662 } 3663 3664 // If a high part was specified, merge it together with the low part. It is 3665 // known to pass in the high eightbyte of the result. We do this by forming a 3666 // first class struct aggregate with the high and low part: {low, high} 3667 if (HighPart) 3668 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3669 3670 return ABIArgInfo::getDirect(ResType); 3671 } 3672 3673 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3674 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3675 bool isNamedArg) 3676 const 3677 { 3678 Ty = useFirstFieldIfTransparentUnion(Ty); 3679 3680 X86_64ABIInfo::Class Lo, Hi; 3681 classify(Ty, 0, Lo, Hi, isNamedArg); 3682 3683 // Check some invariants. 3684 // FIXME: Enforce these by construction. 3685 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3686 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3687 3688 neededInt = 0; 3689 neededSSE = 0; 3690 llvm::Type *ResType = nullptr; 3691 switch (Lo) { 3692 case NoClass: 3693 if (Hi == NoClass) 3694 return ABIArgInfo::getIgnore(); 3695 // If the low part is just padding, it takes no register, leave ResType 3696 // null. 3697 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3698 "Unknown missing lo part"); 3699 break; 3700 3701 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3702 // on the stack. 3703 case Memory: 3704 3705 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3706 // COMPLEX_X87, it is passed in memory. 3707 case X87: 3708 case ComplexX87: 3709 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3710 ++neededInt; 3711 return getIndirectResult(Ty, freeIntRegs); 3712 3713 case SSEUp: 3714 case X87Up: 3715 llvm_unreachable("Invalid classification for lo word."); 3716 3717 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3718 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3719 // and %r9 is used. 3720 case Integer: 3721 ++neededInt; 3722 3723 // Pick an 8-byte type based on the preferred type. 3724 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3725 3726 // If we have a sign or zero extended integer, make sure to return Extend 3727 // so that the parameter gets the right LLVM IR attributes. 3728 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3729 // Treat an enum type as its underlying type. 3730 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3731 Ty = EnumTy->getDecl()->getIntegerType(); 3732 3733 if (Ty->isIntegralOrEnumerationType() && 3734 isPromotableIntegerTypeForABI(Ty)) 3735 return ABIArgInfo::getExtend(Ty); 3736 } 3737 3738 break; 3739 3740 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3741 // available SSE register is used, the registers are taken in the 3742 // order from %xmm0 to %xmm7. 3743 case SSE: { 3744 llvm::Type *IRType = CGT.ConvertType(Ty); 3745 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3746 ++neededSSE; 3747 break; 3748 } 3749 } 3750 3751 llvm::Type *HighPart = nullptr; 3752 switch (Hi) { 3753 // Memory was handled previously, ComplexX87 and X87 should 3754 // never occur as hi classes, and X87Up must be preceded by X87, 3755 // which is passed in memory. 3756 case Memory: 3757 case X87: 3758 case ComplexX87: 3759 llvm_unreachable("Invalid classification for hi word."); 3760 3761 case NoClass: break; 3762 3763 case Integer: 3764 ++neededInt; 3765 // Pick an 8-byte type based on the preferred type. 3766 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3767 3768 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3769 return ABIArgInfo::getDirect(HighPart, 8); 3770 break; 3771 3772 // X87Up generally doesn't occur here (long double is passed in 3773 // memory), except in situations involving unions. 3774 case X87Up: 3775 case SSE: 3776 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3777 3778 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3779 return ABIArgInfo::getDirect(HighPart, 8); 3780 3781 ++neededSSE; 3782 break; 3783 3784 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3785 // eightbyte is passed in the upper half of the last used SSE 3786 // register. This only happens when 128-bit vectors are passed. 3787 case SSEUp: 3788 assert(Lo == SSE && "Unexpected SSEUp classification"); 3789 ResType = GetByteVectorType(Ty); 3790 break; 3791 } 3792 3793 // If a high part was specified, merge it together with the low part. It is 3794 // known to pass in the high eightbyte of the result. We do this by forming a 3795 // first class struct aggregate with the high and low part: {low, high} 3796 if (HighPart) 3797 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3798 3799 return ABIArgInfo::getDirect(ResType); 3800 } 3801 3802 ABIArgInfo 3803 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3804 unsigned &NeededSSE) const { 3805 auto RT = Ty->getAs<RecordType>(); 3806 assert(RT && "classifyRegCallStructType only valid with struct types"); 3807 3808 if (RT->getDecl()->hasFlexibleArrayMember()) 3809 return getIndirectReturnResult(Ty); 3810 3811 // Sum up bases 3812 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3813 if (CXXRD->isDynamicClass()) { 3814 NeededInt = NeededSSE = 0; 3815 return getIndirectReturnResult(Ty); 3816 } 3817 3818 for (const auto &I : CXXRD->bases()) 3819 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3820 .isIndirect()) { 3821 NeededInt = NeededSSE = 0; 3822 return getIndirectReturnResult(Ty); 3823 } 3824 } 3825 3826 // Sum up members 3827 for (const auto *FD : RT->getDecl()->fields()) { 3828 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3829 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3830 .isIndirect()) { 3831 NeededInt = NeededSSE = 0; 3832 return getIndirectReturnResult(Ty); 3833 } 3834 } else { 3835 unsigned LocalNeededInt, LocalNeededSSE; 3836 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3837 LocalNeededSSE, true) 3838 .isIndirect()) { 3839 NeededInt = NeededSSE = 0; 3840 return getIndirectReturnResult(Ty); 3841 } 3842 NeededInt += LocalNeededInt; 3843 NeededSSE += LocalNeededSSE; 3844 } 3845 } 3846 3847 return ABIArgInfo::getDirect(); 3848 } 3849 3850 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3851 unsigned &NeededInt, 3852 unsigned &NeededSSE) const { 3853 3854 NeededInt = 0; 3855 NeededSSE = 0; 3856 3857 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3858 } 3859 3860 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3861 3862 const unsigned CallingConv = FI.getCallingConvention(); 3863 // It is possible to force Win64 calling convention on any x86_64 target by 3864 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3865 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3866 if (CallingConv == llvm::CallingConv::Win64) { 3867 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3868 Win64ABIInfo.computeInfo(FI); 3869 return; 3870 } 3871 3872 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3873 3874 // Keep track of the number of assigned registers. 3875 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3876 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3877 unsigned NeededInt, NeededSSE; 3878 3879 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3880 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3881 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3882 FI.getReturnInfo() = 3883 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3884 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3885 FreeIntRegs -= NeededInt; 3886 FreeSSERegs -= NeededSSE; 3887 } else { 3888 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3889 } 3890 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3891 getContext().getCanonicalType(FI.getReturnType() 3892 ->getAs<ComplexType>() 3893 ->getElementType()) == 3894 getContext().LongDoubleTy) 3895 // Complex Long Double Type is passed in Memory when Regcall 3896 // calling convention is used. 3897 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3898 else 3899 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3900 } 3901 3902 // If the return value is indirect, then the hidden argument is consuming one 3903 // integer register. 3904 if (FI.getReturnInfo().isIndirect()) 3905 --FreeIntRegs; 3906 3907 // The chain argument effectively gives us another free register. 3908 if (FI.isChainCall()) 3909 ++FreeIntRegs; 3910 3911 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3912 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3913 // get assigned (in left-to-right order) for passing as follows... 3914 unsigned ArgNo = 0; 3915 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3916 it != ie; ++it, ++ArgNo) { 3917 bool IsNamedArg = ArgNo < NumRequiredArgs; 3918 3919 if (IsRegCall && it->type->isStructureOrClassType()) 3920 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3921 else 3922 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3923 NeededSSE, IsNamedArg); 3924 3925 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3926 // eightbyte of an argument, the whole argument is passed on the 3927 // stack. If registers have already been assigned for some 3928 // eightbytes of such an argument, the assignments get reverted. 3929 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3930 FreeIntRegs -= NeededInt; 3931 FreeSSERegs -= NeededSSE; 3932 } else { 3933 it->info = getIndirectResult(it->type, FreeIntRegs); 3934 } 3935 } 3936 } 3937 3938 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3939 Address VAListAddr, QualType Ty) { 3940 Address overflow_arg_area_p = 3941 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3942 llvm::Value *overflow_arg_area = 3943 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3944 3945 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3946 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3947 // It isn't stated explicitly in the standard, but in practice we use 3948 // alignment greater than 16 where necessary. 3949 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3950 if (Align > CharUnits::fromQuantity(8)) { 3951 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3952 Align); 3953 } 3954 3955 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3956 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3957 llvm::Value *Res = 3958 CGF.Builder.CreateBitCast(overflow_arg_area, 3959 llvm::PointerType::getUnqual(LTy)); 3960 3961 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3962 // l->overflow_arg_area + sizeof(type). 3963 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3964 // an 8 byte boundary. 3965 3966 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3967 llvm::Value *Offset = 3968 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3969 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3970 "overflow_arg_area.next"); 3971 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3972 3973 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3974 return Address(Res, Align); 3975 } 3976 3977 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3978 QualType Ty) const { 3979 // Assume that va_list type is correct; should be pointer to LLVM type: 3980 // struct { 3981 // i32 gp_offset; 3982 // i32 fp_offset; 3983 // i8* overflow_arg_area; 3984 // i8* reg_save_area; 3985 // }; 3986 unsigned neededInt, neededSSE; 3987 3988 Ty = getContext().getCanonicalType(Ty); 3989 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3990 /*isNamedArg*/false); 3991 3992 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3993 // in the registers. If not go to step 7. 3994 if (!neededInt && !neededSSE) 3995 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3996 3997 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3998 // general purpose registers needed to pass type and num_fp to hold 3999 // the number of floating point registers needed. 4000 4001 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4002 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4003 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4004 // 4005 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4006 // register save space). 4007 4008 llvm::Value *InRegs = nullptr; 4009 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4010 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4011 if (neededInt) { 4012 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4013 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4014 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4015 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4016 } 4017 4018 if (neededSSE) { 4019 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4020 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4021 llvm::Value *FitsInFP = 4022 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4023 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4024 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4025 } 4026 4027 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4028 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4029 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4030 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4031 4032 // Emit code to load the value if it was passed in registers. 4033 4034 CGF.EmitBlock(InRegBlock); 4035 4036 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4037 // an offset of l->gp_offset and/or l->fp_offset. This may require 4038 // copying to a temporary location in case the parameter is passed 4039 // in different register classes or requires an alignment greater 4040 // than 8 for general purpose registers and 16 for XMM registers. 4041 // 4042 // FIXME: This really results in shameful code when we end up needing to 4043 // collect arguments from different places; often what should result in a 4044 // simple assembling of a structure from scattered addresses has many more 4045 // loads than necessary. Can we clean this up? 4046 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4047 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4048 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4049 4050 Address RegAddr = Address::invalid(); 4051 if (neededInt && neededSSE) { 4052 // FIXME: Cleanup. 4053 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4054 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4055 Address Tmp = CGF.CreateMemTemp(Ty); 4056 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4057 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4058 llvm::Type *TyLo = ST->getElementType(0); 4059 llvm::Type *TyHi = ST->getElementType(1); 4060 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4061 "Unexpected ABI info for mixed regs"); 4062 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4063 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4064 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4065 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4066 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4067 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4068 4069 // Copy the first element. 4070 // FIXME: Our choice of alignment here and below is probably pessimistic. 4071 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4072 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4073 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4074 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4075 4076 // Copy the second element. 4077 V = CGF.Builder.CreateAlignedLoad( 4078 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4079 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4080 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4081 4082 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4083 } else if (neededInt) { 4084 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4085 CharUnits::fromQuantity(8)); 4086 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4087 4088 // Copy to a temporary if necessary to ensure the appropriate alignment. 4089 auto TInfo = getContext().getTypeInfoInChars(Ty); 4090 uint64_t TySize = TInfo.Width.getQuantity(); 4091 CharUnits TyAlign = TInfo.Align; 4092 4093 // Copy into a temporary if the type is more aligned than the 4094 // register save area. 4095 if (TyAlign.getQuantity() > 8) { 4096 Address Tmp = CGF.CreateMemTemp(Ty); 4097 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4098 RegAddr = Tmp; 4099 } 4100 4101 } else if (neededSSE == 1) { 4102 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4103 CharUnits::fromQuantity(16)); 4104 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4105 } else { 4106 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4107 // SSE registers are spaced 16 bytes apart in the register save 4108 // area, we need to collect the two eightbytes together. 4109 // The ABI isn't explicit about this, but it seems reasonable 4110 // to assume that the slots are 16-byte aligned, since the stack is 4111 // naturally 16-byte aligned and the prologue is expected to store 4112 // all the SSE registers to the RSA. 4113 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4114 CharUnits::fromQuantity(16)); 4115 Address RegAddrHi = 4116 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4117 CharUnits::fromQuantity(16)); 4118 llvm::Type *ST = AI.canHaveCoerceToType() 4119 ? AI.getCoerceToType() 4120 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4121 llvm::Value *V; 4122 Address Tmp = CGF.CreateMemTemp(Ty); 4123 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4124 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4125 RegAddrLo, ST->getStructElementType(0))); 4126 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4127 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4128 RegAddrHi, ST->getStructElementType(1))); 4129 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4130 4131 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4132 } 4133 4134 // AMD64-ABI 3.5.7p5: Step 5. Set: 4135 // l->gp_offset = l->gp_offset + num_gp * 8 4136 // l->fp_offset = l->fp_offset + num_fp * 16. 4137 if (neededInt) { 4138 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4139 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4140 gp_offset_p); 4141 } 4142 if (neededSSE) { 4143 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4144 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4145 fp_offset_p); 4146 } 4147 CGF.EmitBranch(ContBlock); 4148 4149 // Emit code to load the value if it was passed in memory. 4150 4151 CGF.EmitBlock(InMemBlock); 4152 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4153 4154 // Return the appropriate result. 4155 4156 CGF.EmitBlock(ContBlock); 4157 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4158 "vaarg.addr"); 4159 return ResAddr; 4160 } 4161 4162 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4163 QualType Ty) const { 4164 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4165 CGF.getContext().getTypeInfoInChars(Ty), 4166 CharUnits::fromQuantity(8), 4167 /*allowHigherAlign*/ false); 4168 } 4169 4170 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4171 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4172 const Type *Base = nullptr; 4173 uint64_t NumElts = 0; 4174 4175 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4176 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4177 FreeSSERegs -= NumElts; 4178 return getDirectX86Hva(); 4179 } 4180 return current; 4181 } 4182 4183 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4184 bool IsReturnType, bool IsVectorCall, 4185 bool IsRegCall) const { 4186 4187 if (Ty->isVoidType()) 4188 return ABIArgInfo::getIgnore(); 4189 4190 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4191 Ty = EnumTy->getDecl()->getIntegerType(); 4192 4193 TypeInfo Info = getContext().getTypeInfo(Ty); 4194 uint64_t Width = Info.Width; 4195 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4196 4197 const RecordType *RT = Ty->getAs<RecordType>(); 4198 if (RT) { 4199 if (!IsReturnType) { 4200 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4201 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4202 } 4203 4204 if (RT->getDecl()->hasFlexibleArrayMember()) 4205 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4206 4207 } 4208 4209 const Type *Base = nullptr; 4210 uint64_t NumElts = 0; 4211 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4212 // other targets. 4213 if ((IsVectorCall || IsRegCall) && 4214 isHomogeneousAggregate(Ty, Base, NumElts)) { 4215 if (IsRegCall) { 4216 if (FreeSSERegs >= NumElts) { 4217 FreeSSERegs -= NumElts; 4218 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4219 return ABIArgInfo::getDirect(); 4220 return ABIArgInfo::getExpand(); 4221 } 4222 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4223 } else if (IsVectorCall) { 4224 if (FreeSSERegs >= NumElts && 4225 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4226 FreeSSERegs -= NumElts; 4227 return ABIArgInfo::getDirect(); 4228 } else if (IsReturnType) { 4229 return ABIArgInfo::getExpand(); 4230 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4231 // HVAs are delayed and reclassified in the 2nd step. 4232 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4233 } 4234 } 4235 } 4236 4237 if (Ty->isMemberPointerType()) { 4238 // If the member pointer is represented by an LLVM int or ptr, pass it 4239 // directly. 4240 llvm::Type *LLTy = CGT.ConvertType(Ty); 4241 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4242 return ABIArgInfo::getDirect(); 4243 } 4244 4245 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4246 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4247 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4248 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4249 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4250 4251 // Otherwise, coerce it to a small integer. 4252 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4253 } 4254 4255 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4256 switch (BT->getKind()) { 4257 case BuiltinType::Bool: 4258 // Bool type is always extended to the ABI, other builtin types are not 4259 // extended. 4260 return ABIArgInfo::getExtend(Ty); 4261 4262 case BuiltinType::LongDouble: 4263 // Mingw64 GCC uses the old 80 bit extended precision floating point 4264 // unit. It passes them indirectly through memory. 4265 if (IsMingw64) { 4266 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4267 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4268 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4269 } 4270 break; 4271 4272 case BuiltinType::Int128: 4273 case BuiltinType::UInt128: 4274 // If it's a parameter type, the normal ABI rule is that arguments larger 4275 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4276 // even though it isn't particularly efficient. 4277 if (!IsReturnType) 4278 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4279 4280 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4281 // Clang matches them for compatibility. 4282 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4283 llvm::Type::getInt64Ty(getVMContext()), 2)); 4284 4285 default: 4286 break; 4287 } 4288 } 4289 4290 if (Ty->isExtIntType()) { 4291 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4292 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4293 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4294 // anyway as long is it fits in them, so we don't have to check the power of 4295 // 2. 4296 if (Width <= 64) 4297 return ABIArgInfo::getDirect(); 4298 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4299 } 4300 4301 return ABIArgInfo::getDirect(); 4302 } 4303 4304 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4305 const unsigned CC = FI.getCallingConvention(); 4306 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4307 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4308 4309 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4310 // classification rules. 4311 if (CC == llvm::CallingConv::X86_64_SysV) { 4312 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4313 SysVABIInfo.computeInfo(FI); 4314 return; 4315 } 4316 4317 unsigned FreeSSERegs = 0; 4318 if (IsVectorCall) { 4319 // We can use up to 4 SSE return registers with vectorcall. 4320 FreeSSERegs = 4; 4321 } else if (IsRegCall) { 4322 // RegCall gives us 16 SSE registers. 4323 FreeSSERegs = 16; 4324 } 4325 4326 if (!getCXXABI().classifyReturnType(FI)) 4327 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4328 IsVectorCall, IsRegCall); 4329 4330 if (IsVectorCall) { 4331 // We can use up to 6 SSE register parameters with vectorcall. 4332 FreeSSERegs = 6; 4333 } else if (IsRegCall) { 4334 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4335 FreeSSERegs = 16; 4336 } 4337 4338 unsigned ArgNum = 0; 4339 unsigned ZeroSSERegs = 0; 4340 for (auto &I : FI.arguments()) { 4341 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4342 // XMM/YMM registers. After the sixth argument, pretend no vector 4343 // registers are left. 4344 unsigned *MaybeFreeSSERegs = 4345 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4346 I.info = 4347 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4348 ++ArgNum; 4349 } 4350 4351 if (IsVectorCall) { 4352 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4353 // second pass. 4354 for (auto &I : FI.arguments()) 4355 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4356 } 4357 } 4358 4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4360 QualType Ty) const { 4361 4362 bool IsIndirect = false; 4363 4364 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4365 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4366 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4367 uint64_t Width = getContext().getTypeSize(Ty); 4368 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4369 } 4370 4371 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4372 CGF.getContext().getTypeInfoInChars(Ty), 4373 CharUnits::fromQuantity(8), 4374 /*allowHigherAlign*/ false); 4375 } 4376 4377 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4378 llvm::Value *Address, bool Is64Bit, 4379 bool IsAIX) { 4380 // This is calculated from the LLVM and GCC tables and verified 4381 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4382 4383 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4384 4385 llvm::IntegerType *i8 = CGF.Int8Ty; 4386 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4387 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4388 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4389 4390 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4391 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4392 4393 // 32-63: fp0-31, the 8-byte floating-point registers 4394 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4395 4396 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4397 // 64: mq 4398 // 65: lr 4399 // 66: ctr 4400 // 67: ap 4401 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4402 4403 // 68-76 are various 4-byte special-purpose registers: 4404 // 68-75 cr0-7 4405 // 76: xer 4406 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4407 4408 // 77-108: v0-31, the 16-byte vector registers 4409 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4410 4411 // 109: vrsave 4412 // 110: vscr 4413 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4414 4415 // AIX does not utilize the rest of the registers. 4416 if (IsAIX) 4417 return false; 4418 4419 // 111: spe_acc 4420 // 112: spefscr 4421 // 113: sfp 4422 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4423 4424 if (!Is64Bit) 4425 return false; 4426 4427 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4428 // or above CPU. 4429 // 64-bit only registers: 4430 // 114: tfhar 4431 // 115: tfiar 4432 // 116: texasr 4433 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4434 4435 return false; 4436 } 4437 4438 // AIX 4439 namespace { 4440 /// AIXABIInfo - The AIX XCOFF ABI information. 4441 class AIXABIInfo : public ABIInfo { 4442 const bool Is64Bit; 4443 const unsigned PtrByteSize; 4444 CharUnits getParamTypeAlignment(QualType Ty) const; 4445 4446 public: 4447 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4448 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4449 4450 bool isPromotableTypeForABI(QualType Ty) const; 4451 4452 ABIArgInfo classifyReturnType(QualType RetTy) const; 4453 ABIArgInfo classifyArgumentType(QualType Ty) const; 4454 4455 void computeInfo(CGFunctionInfo &FI) const override { 4456 if (!getCXXABI().classifyReturnType(FI)) 4457 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4458 4459 for (auto &I : FI.arguments()) 4460 I.info = classifyArgumentType(I.type); 4461 } 4462 4463 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4464 QualType Ty) const override; 4465 }; 4466 4467 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4468 const bool Is64Bit; 4469 4470 public: 4471 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4472 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4473 Is64Bit(Is64Bit) {} 4474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4475 return 1; // r1 is the dedicated stack pointer 4476 } 4477 4478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4479 llvm::Value *Address) const override; 4480 }; 4481 } // namespace 4482 4483 // Return true if the ABI requires Ty to be passed sign- or zero- 4484 // extended to 32/64 bits. 4485 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4486 // Treat an enum type as its underlying type. 4487 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4488 Ty = EnumTy->getDecl()->getIntegerType(); 4489 4490 // Promotable integer types are required to be promoted by the ABI. 4491 if (Ty->isPromotableIntegerType()) 4492 return true; 4493 4494 if (!Is64Bit) 4495 return false; 4496 4497 // For 64 bit mode, in addition to the usual promotable integer types, we also 4498 // need to extend all 32-bit types, since the ABI requires promotion to 64 4499 // bits. 4500 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4501 switch (BT->getKind()) { 4502 case BuiltinType::Int: 4503 case BuiltinType::UInt: 4504 return true; 4505 default: 4506 break; 4507 } 4508 4509 return false; 4510 } 4511 4512 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4513 if (RetTy->isAnyComplexType()) 4514 return ABIArgInfo::getDirect(); 4515 4516 if (RetTy->isVectorType()) 4517 return ABIArgInfo::getDirect(); 4518 4519 if (RetTy->isVoidType()) 4520 return ABIArgInfo::getIgnore(); 4521 4522 if (isAggregateTypeForABI(RetTy)) 4523 return getNaturalAlignIndirect(RetTy); 4524 4525 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4526 : ABIArgInfo::getDirect()); 4527 } 4528 4529 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4530 Ty = useFirstFieldIfTransparentUnion(Ty); 4531 4532 if (Ty->isAnyComplexType()) 4533 return ABIArgInfo::getDirect(); 4534 4535 if (Ty->isVectorType()) 4536 return ABIArgInfo::getDirect(); 4537 4538 if (isAggregateTypeForABI(Ty)) { 4539 // Records with non-trivial destructors/copy-constructors should not be 4540 // passed by value. 4541 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4542 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4543 4544 CharUnits CCAlign = getParamTypeAlignment(Ty); 4545 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4546 4547 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4548 /*Realign*/ TyAlign > CCAlign); 4549 } 4550 4551 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4552 : ABIArgInfo::getDirect()); 4553 } 4554 4555 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4556 // Complex types are passed just like their elements. 4557 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4558 Ty = CTy->getElementType(); 4559 4560 if (Ty->isVectorType()) 4561 return CharUnits::fromQuantity(16); 4562 4563 // If the structure contains a vector type, the alignment is 16. 4564 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4565 return CharUnits::fromQuantity(16); 4566 4567 return CharUnits::fromQuantity(PtrByteSize); 4568 } 4569 4570 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4571 QualType Ty) const { 4572 if (Ty->isAnyComplexType()) 4573 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4574 4575 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4576 TypeInfo.Align = getParamTypeAlignment(Ty); 4577 4578 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4579 4580 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4581 SlotSize, /*AllowHigher*/ true); 4582 } 4583 4584 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4585 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4586 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4587 } 4588 4589 // PowerPC-32 4590 namespace { 4591 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4592 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4593 bool IsSoftFloatABI; 4594 bool IsRetSmallStructInRegABI; 4595 4596 CharUnits getParamTypeAlignment(QualType Ty) const; 4597 4598 public: 4599 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4600 bool RetSmallStructInRegABI) 4601 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4602 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4603 4604 ABIArgInfo classifyReturnType(QualType RetTy) const; 4605 4606 void computeInfo(CGFunctionInfo &FI) const override { 4607 if (!getCXXABI().classifyReturnType(FI)) 4608 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4609 for (auto &I : FI.arguments()) 4610 I.info = classifyArgumentType(I.type); 4611 } 4612 4613 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4614 QualType Ty) const override; 4615 }; 4616 4617 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4618 public: 4619 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4620 bool RetSmallStructInRegABI) 4621 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4622 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4623 4624 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4625 const CodeGenOptions &Opts); 4626 4627 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4628 // This is recovered from gcc output. 4629 return 1; // r1 is the dedicated stack pointer 4630 } 4631 4632 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4633 llvm::Value *Address) const override; 4634 }; 4635 } 4636 4637 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4638 // Complex types are passed just like their elements. 4639 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4640 Ty = CTy->getElementType(); 4641 4642 if (Ty->isVectorType()) 4643 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4644 : 4); 4645 4646 // For single-element float/vector structs, we consider the whole type 4647 // to have the same alignment requirements as its single element. 4648 const Type *AlignTy = nullptr; 4649 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4650 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4651 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4652 (BT && BT->isFloatingPoint())) 4653 AlignTy = EltType; 4654 } 4655 4656 if (AlignTy) 4657 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4658 return CharUnits::fromQuantity(4); 4659 } 4660 4661 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4662 uint64_t Size; 4663 4664 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4665 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4666 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4667 // System V ABI (1995), page 3-22, specified: 4668 // > A structure or union whose size is less than or equal to 8 bytes 4669 // > shall be returned in r3 and r4, as if it were first stored in the 4670 // > 8-byte aligned memory area and then the low addressed word were 4671 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4672 // > the last member of the structure or union are not defined. 4673 // 4674 // GCC for big-endian PPC32 inserts the pad before the first member, 4675 // not "beyond the last member" of the struct. To stay compatible 4676 // with GCC, we coerce the struct to an integer of the same size. 4677 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4678 if (Size == 0) 4679 return ABIArgInfo::getIgnore(); 4680 else { 4681 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4682 return ABIArgInfo::getDirect(CoerceTy); 4683 } 4684 } 4685 4686 return DefaultABIInfo::classifyReturnType(RetTy); 4687 } 4688 4689 // TODO: this implementation is now likely redundant with 4690 // DefaultABIInfo::EmitVAArg. 4691 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4692 QualType Ty) const { 4693 if (getTarget().getTriple().isOSDarwin()) { 4694 auto TI = getContext().getTypeInfoInChars(Ty); 4695 TI.Align = getParamTypeAlignment(Ty); 4696 4697 CharUnits SlotSize = CharUnits::fromQuantity(4); 4698 return emitVoidPtrVAArg(CGF, VAList, Ty, 4699 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4700 /*AllowHigherAlign=*/true); 4701 } 4702 4703 const unsigned OverflowLimit = 8; 4704 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4705 // TODO: Implement this. For now ignore. 4706 (void)CTy; 4707 return Address::invalid(); // FIXME? 4708 } 4709 4710 // struct __va_list_tag { 4711 // unsigned char gpr; 4712 // unsigned char fpr; 4713 // unsigned short reserved; 4714 // void *overflow_arg_area; 4715 // void *reg_save_area; 4716 // }; 4717 4718 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4719 bool isInt = !Ty->isFloatingType(); 4720 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4721 4722 // All aggregates are passed indirectly? That doesn't seem consistent 4723 // with the argument-lowering code. 4724 bool isIndirect = isAggregateTypeForABI(Ty); 4725 4726 CGBuilderTy &Builder = CGF.Builder; 4727 4728 // The calling convention either uses 1-2 GPRs or 1 FPR. 4729 Address NumRegsAddr = Address::invalid(); 4730 if (isInt || IsSoftFloatABI) { 4731 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4732 } else { 4733 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4734 } 4735 4736 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4737 4738 // "Align" the register count when TY is i64. 4739 if (isI64 || (isF64 && IsSoftFloatABI)) { 4740 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4741 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4742 } 4743 4744 llvm::Value *CC = 4745 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4746 4747 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4748 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4749 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4750 4751 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4752 4753 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4754 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4755 4756 // Case 1: consume registers. 4757 Address RegAddr = Address::invalid(); 4758 { 4759 CGF.EmitBlock(UsingRegs); 4760 4761 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4762 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4763 CharUnits::fromQuantity(8)); 4764 assert(RegAddr.getElementType() == CGF.Int8Ty); 4765 4766 // Floating-point registers start after the general-purpose registers. 4767 if (!(isInt || IsSoftFloatABI)) { 4768 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4769 CharUnits::fromQuantity(32)); 4770 } 4771 4772 // Get the address of the saved value by scaling the number of 4773 // registers we've used by the number of 4774 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4775 llvm::Value *RegOffset = 4776 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4777 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4778 RegAddr.getPointer(), RegOffset), 4779 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4780 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4781 4782 // Increase the used-register count. 4783 NumRegs = 4784 Builder.CreateAdd(NumRegs, 4785 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4786 Builder.CreateStore(NumRegs, NumRegsAddr); 4787 4788 CGF.EmitBranch(Cont); 4789 } 4790 4791 // Case 2: consume space in the overflow area. 4792 Address MemAddr = Address::invalid(); 4793 { 4794 CGF.EmitBlock(UsingOverflow); 4795 4796 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4797 4798 // Everything in the overflow area is rounded up to a size of at least 4. 4799 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4800 4801 CharUnits Size; 4802 if (!isIndirect) { 4803 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4804 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4805 } else { 4806 Size = CGF.getPointerSize(); 4807 } 4808 4809 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4810 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4811 OverflowAreaAlign); 4812 // Round up address of argument to alignment 4813 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4814 if (Align > OverflowAreaAlign) { 4815 llvm::Value *Ptr = OverflowArea.getPointer(); 4816 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4817 Align); 4818 } 4819 4820 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4821 4822 // Increase the overflow area. 4823 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4824 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4825 CGF.EmitBranch(Cont); 4826 } 4827 4828 CGF.EmitBlock(Cont); 4829 4830 // Merge the cases with a phi. 4831 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4832 "vaarg.addr"); 4833 4834 // Load the pointer if the argument was passed indirectly. 4835 if (isIndirect) { 4836 Result = Address(Builder.CreateLoad(Result, "aggr"), 4837 getContext().getTypeAlignInChars(Ty)); 4838 } 4839 4840 return Result; 4841 } 4842 4843 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4844 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4845 assert(Triple.isPPC32()); 4846 4847 switch (Opts.getStructReturnConvention()) { 4848 case CodeGenOptions::SRCK_Default: 4849 break; 4850 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4851 return false; 4852 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4853 return true; 4854 } 4855 4856 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4857 return true; 4858 4859 return false; 4860 } 4861 4862 bool 4863 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4864 llvm::Value *Address) const { 4865 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4866 /*IsAIX*/ false); 4867 } 4868 4869 // PowerPC-64 4870 4871 namespace { 4872 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4873 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4874 public: 4875 enum ABIKind { 4876 ELFv1 = 0, 4877 ELFv2 4878 }; 4879 4880 private: 4881 static const unsigned GPRBits = 64; 4882 ABIKind Kind; 4883 bool IsSoftFloatABI; 4884 4885 public: 4886 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4887 bool SoftFloatABI) 4888 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4889 4890 bool isPromotableTypeForABI(QualType Ty) const; 4891 CharUnits getParamTypeAlignment(QualType Ty) const; 4892 4893 ABIArgInfo classifyReturnType(QualType RetTy) const; 4894 ABIArgInfo classifyArgumentType(QualType Ty) const; 4895 4896 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4897 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4898 uint64_t Members) const override; 4899 4900 // TODO: We can add more logic to computeInfo to improve performance. 4901 // Example: For aggregate arguments that fit in a register, we could 4902 // use getDirectInReg (as is done below for structs containing a single 4903 // floating-point value) to avoid pushing them to memory on function 4904 // entry. This would require changing the logic in PPCISelLowering 4905 // when lowering the parameters in the caller and args in the callee. 4906 void computeInfo(CGFunctionInfo &FI) const override { 4907 if (!getCXXABI().classifyReturnType(FI)) 4908 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4909 for (auto &I : FI.arguments()) { 4910 // We rely on the default argument classification for the most part. 4911 // One exception: An aggregate containing a single floating-point 4912 // or vector item must be passed in a register if one is available. 4913 const Type *T = isSingleElementStruct(I.type, getContext()); 4914 if (T) { 4915 const BuiltinType *BT = T->getAs<BuiltinType>(); 4916 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4917 (BT && BT->isFloatingPoint())) { 4918 QualType QT(T, 0); 4919 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4920 continue; 4921 } 4922 } 4923 I.info = classifyArgumentType(I.type); 4924 } 4925 } 4926 4927 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4928 QualType Ty) const override; 4929 4930 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4931 bool asReturnValue) const override { 4932 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4933 } 4934 4935 bool isSwiftErrorInRegister() const override { 4936 return false; 4937 } 4938 }; 4939 4940 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4941 4942 public: 4943 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4944 PPC64_SVR4_ABIInfo::ABIKind Kind, 4945 bool SoftFloatABI) 4946 : TargetCodeGenInfo( 4947 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 4948 4949 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4950 // This is recovered from gcc output. 4951 return 1; // r1 is the dedicated stack pointer 4952 } 4953 4954 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4955 llvm::Value *Address) const override; 4956 }; 4957 4958 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4959 public: 4960 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4961 4962 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4963 // This is recovered from gcc output. 4964 return 1; // r1 is the dedicated stack pointer 4965 } 4966 4967 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4968 llvm::Value *Address) const override; 4969 }; 4970 4971 } 4972 4973 // Return true if the ABI requires Ty to be passed sign- or zero- 4974 // extended to 64 bits. 4975 bool 4976 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4977 // Treat an enum type as its underlying type. 4978 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4979 Ty = EnumTy->getDecl()->getIntegerType(); 4980 4981 // Promotable integer types are required to be promoted by the ABI. 4982 if (isPromotableIntegerTypeForABI(Ty)) 4983 return true; 4984 4985 // In addition to the usual promotable integer types, we also need to 4986 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4987 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4988 switch (BT->getKind()) { 4989 case BuiltinType::Int: 4990 case BuiltinType::UInt: 4991 return true; 4992 default: 4993 break; 4994 } 4995 4996 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4997 if (EIT->getNumBits() < 64) 4998 return true; 4999 5000 return false; 5001 } 5002 5003 /// isAlignedParamType - Determine whether a type requires 16-byte or 5004 /// higher alignment in the parameter area. Always returns at least 8. 5005 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5006 // Complex types are passed just like their elements. 5007 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5008 Ty = CTy->getElementType(); 5009 5010 // Only vector types of size 16 bytes need alignment (larger types are 5011 // passed via reference, smaller types are not aligned). 5012 if (Ty->isVectorType()) { 5013 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5014 } else if (Ty->isRealFloatingType() && 5015 &getContext().getFloatTypeSemantics(Ty) == 5016 &llvm::APFloat::IEEEquad()) { 5017 // According to ABI document section 'Optional Save Areas': If extended 5018 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5019 // format are supported, map them to a single quadword, quadword aligned. 5020 return CharUnits::fromQuantity(16); 5021 } 5022 5023 // For single-element float/vector structs, we consider the whole type 5024 // to have the same alignment requirements as its single element. 5025 const Type *AlignAsType = nullptr; 5026 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5027 if (EltType) { 5028 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5029 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5030 (BT && BT->isFloatingPoint())) 5031 AlignAsType = EltType; 5032 } 5033 5034 // Likewise for ELFv2 homogeneous aggregates. 5035 const Type *Base = nullptr; 5036 uint64_t Members = 0; 5037 if (!AlignAsType && Kind == ELFv2 && 5038 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5039 AlignAsType = Base; 5040 5041 // With special case aggregates, only vector base types need alignment. 5042 if (AlignAsType) { 5043 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5044 } 5045 5046 // Otherwise, we only need alignment for any aggregate type that 5047 // has an alignment requirement of >= 16 bytes. 5048 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5049 return CharUnits::fromQuantity(16); 5050 } 5051 5052 return CharUnits::fromQuantity(8); 5053 } 5054 5055 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5056 /// aggregate. Base is set to the base element type, and Members is set 5057 /// to the number of base elements. 5058 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5059 uint64_t &Members) const { 5060 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5061 uint64_t NElements = AT->getSize().getZExtValue(); 5062 if (NElements == 0) 5063 return false; 5064 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5065 return false; 5066 Members *= NElements; 5067 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5068 const RecordDecl *RD = RT->getDecl(); 5069 if (RD->hasFlexibleArrayMember()) 5070 return false; 5071 5072 Members = 0; 5073 5074 // If this is a C++ record, check the properties of the record such as 5075 // bases and ABI specific restrictions 5076 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5077 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5078 return false; 5079 5080 for (const auto &I : CXXRD->bases()) { 5081 // Ignore empty records. 5082 if (isEmptyRecord(getContext(), I.getType(), true)) 5083 continue; 5084 5085 uint64_t FldMembers; 5086 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5087 return false; 5088 5089 Members += FldMembers; 5090 } 5091 } 5092 5093 for (const auto *FD : RD->fields()) { 5094 // Ignore (non-zero arrays of) empty records. 5095 QualType FT = FD->getType(); 5096 while (const ConstantArrayType *AT = 5097 getContext().getAsConstantArrayType(FT)) { 5098 if (AT->getSize().getZExtValue() == 0) 5099 return false; 5100 FT = AT->getElementType(); 5101 } 5102 if (isEmptyRecord(getContext(), FT, true)) 5103 continue; 5104 5105 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5106 if (getContext().getLangOpts().CPlusPlus && 5107 FD->isZeroLengthBitField(getContext())) 5108 continue; 5109 5110 uint64_t FldMembers; 5111 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5112 return false; 5113 5114 Members = (RD->isUnion() ? 5115 std::max(Members, FldMembers) : Members + FldMembers); 5116 } 5117 5118 if (!Base) 5119 return false; 5120 5121 // Ensure there is no padding. 5122 if (getContext().getTypeSize(Base) * Members != 5123 getContext().getTypeSize(Ty)) 5124 return false; 5125 } else { 5126 Members = 1; 5127 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5128 Members = 2; 5129 Ty = CT->getElementType(); 5130 } 5131 5132 // Most ABIs only support float, double, and some vector type widths. 5133 if (!isHomogeneousAggregateBaseType(Ty)) 5134 return false; 5135 5136 // The base type must be the same for all members. Types that 5137 // agree in both total size and mode (float vs. vector) are 5138 // treated as being equivalent here. 5139 const Type *TyPtr = Ty.getTypePtr(); 5140 if (!Base) { 5141 Base = TyPtr; 5142 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5143 // so make sure to widen it explicitly. 5144 if (const VectorType *VT = Base->getAs<VectorType>()) { 5145 QualType EltTy = VT->getElementType(); 5146 unsigned NumElements = 5147 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5148 Base = getContext() 5149 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5150 .getTypePtr(); 5151 } 5152 } 5153 5154 if (Base->isVectorType() != TyPtr->isVectorType() || 5155 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5156 return false; 5157 } 5158 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5159 } 5160 5161 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5162 // Homogeneous aggregates for ELFv2 must have base types of float, 5163 // double, long double, or 128-bit vectors. 5164 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5165 if (BT->getKind() == BuiltinType::Float || 5166 BT->getKind() == BuiltinType::Double || 5167 BT->getKind() == BuiltinType::LongDouble || 5168 (getContext().getTargetInfo().hasFloat128Type() && 5169 (BT->getKind() == BuiltinType::Float128))) { 5170 if (IsSoftFloatABI) 5171 return false; 5172 return true; 5173 } 5174 } 5175 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5176 if (getContext().getTypeSize(VT) == 128) 5177 return true; 5178 } 5179 return false; 5180 } 5181 5182 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5183 const Type *Base, uint64_t Members) const { 5184 // Vector and fp128 types require one register, other floating point types 5185 // require one or two registers depending on their size. 5186 uint32_t NumRegs = 5187 ((getContext().getTargetInfo().hasFloat128Type() && 5188 Base->isFloat128Type()) || 5189 Base->isVectorType()) ? 1 5190 : (getContext().getTypeSize(Base) + 63) / 64; 5191 5192 // Homogeneous Aggregates may occupy at most 8 registers. 5193 return Members * NumRegs <= 8; 5194 } 5195 5196 ABIArgInfo 5197 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5198 Ty = useFirstFieldIfTransparentUnion(Ty); 5199 5200 if (Ty->isAnyComplexType()) 5201 return ABIArgInfo::getDirect(); 5202 5203 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5204 // or via reference (larger than 16 bytes). 5205 if (Ty->isVectorType()) { 5206 uint64_t Size = getContext().getTypeSize(Ty); 5207 if (Size > 128) 5208 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5209 else if (Size < 128) { 5210 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5211 return ABIArgInfo::getDirect(CoerceTy); 5212 } 5213 } 5214 5215 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5216 if (EIT->getNumBits() > 128) 5217 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5218 5219 if (isAggregateTypeForABI(Ty)) { 5220 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5221 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5222 5223 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5224 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5225 5226 // ELFv2 homogeneous aggregates are passed as array types. 5227 const Type *Base = nullptr; 5228 uint64_t Members = 0; 5229 if (Kind == ELFv2 && 5230 isHomogeneousAggregate(Ty, Base, Members)) { 5231 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5232 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5233 return ABIArgInfo::getDirect(CoerceTy); 5234 } 5235 5236 // If an aggregate may end up fully in registers, we do not 5237 // use the ByVal method, but pass the aggregate as array. 5238 // This is usually beneficial since we avoid forcing the 5239 // back-end to store the argument to memory. 5240 uint64_t Bits = getContext().getTypeSize(Ty); 5241 if (Bits > 0 && Bits <= 8 * GPRBits) { 5242 llvm::Type *CoerceTy; 5243 5244 // Types up to 8 bytes are passed as integer type (which will be 5245 // properly aligned in the argument save area doubleword). 5246 if (Bits <= GPRBits) 5247 CoerceTy = 5248 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5249 // Larger types are passed as arrays, with the base type selected 5250 // according to the required alignment in the save area. 5251 else { 5252 uint64_t RegBits = ABIAlign * 8; 5253 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5254 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5255 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5256 } 5257 5258 return ABIArgInfo::getDirect(CoerceTy); 5259 } 5260 5261 // All other aggregates are passed ByVal. 5262 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5263 /*ByVal=*/true, 5264 /*Realign=*/TyAlign > ABIAlign); 5265 } 5266 5267 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5268 : ABIArgInfo::getDirect()); 5269 } 5270 5271 ABIArgInfo 5272 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5273 if (RetTy->isVoidType()) 5274 return ABIArgInfo::getIgnore(); 5275 5276 if (RetTy->isAnyComplexType()) 5277 return ABIArgInfo::getDirect(); 5278 5279 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5280 // or via reference (larger than 16 bytes). 5281 if (RetTy->isVectorType()) { 5282 uint64_t Size = getContext().getTypeSize(RetTy); 5283 if (Size > 128) 5284 return getNaturalAlignIndirect(RetTy); 5285 else if (Size < 128) { 5286 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5287 return ABIArgInfo::getDirect(CoerceTy); 5288 } 5289 } 5290 5291 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5292 if (EIT->getNumBits() > 128) 5293 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5294 5295 if (isAggregateTypeForABI(RetTy)) { 5296 // ELFv2 homogeneous aggregates are returned as array types. 5297 const Type *Base = nullptr; 5298 uint64_t Members = 0; 5299 if (Kind == ELFv2 && 5300 isHomogeneousAggregate(RetTy, Base, Members)) { 5301 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5302 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5303 return ABIArgInfo::getDirect(CoerceTy); 5304 } 5305 5306 // ELFv2 small aggregates are returned in up to two registers. 5307 uint64_t Bits = getContext().getTypeSize(RetTy); 5308 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5309 if (Bits == 0) 5310 return ABIArgInfo::getIgnore(); 5311 5312 llvm::Type *CoerceTy; 5313 if (Bits > GPRBits) { 5314 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5315 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5316 } else 5317 CoerceTy = 5318 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5319 return ABIArgInfo::getDirect(CoerceTy); 5320 } 5321 5322 // All other aggregates are returned indirectly. 5323 return getNaturalAlignIndirect(RetTy); 5324 } 5325 5326 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5327 : ABIArgInfo::getDirect()); 5328 } 5329 5330 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5331 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5332 QualType Ty) const { 5333 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5334 TypeInfo.Align = getParamTypeAlignment(Ty); 5335 5336 CharUnits SlotSize = CharUnits::fromQuantity(8); 5337 5338 // If we have a complex type and the base type is smaller than 8 bytes, 5339 // the ABI calls for the real and imaginary parts to be right-adjusted 5340 // in separate doublewords. However, Clang expects us to produce a 5341 // pointer to a structure with the two parts packed tightly. So generate 5342 // loads of the real and imaginary parts relative to the va_list pointer, 5343 // and store them to a temporary structure. 5344 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5345 CharUnits EltSize = TypeInfo.Width / 2; 5346 if (EltSize < SlotSize) { 5347 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5348 SlotSize * 2, SlotSize, 5349 SlotSize, /*AllowHigher*/ true); 5350 5351 Address RealAddr = Addr; 5352 Address ImagAddr = RealAddr; 5353 if (CGF.CGM.getDataLayout().isBigEndian()) { 5354 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5355 SlotSize - EltSize); 5356 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5357 2 * SlotSize - EltSize); 5358 } else { 5359 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5360 } 5361 5362 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5363 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5364 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5365 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5366 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5367 5368 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5369 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5370 /*init*/ true); 5371 return Temp; 5372 } 5373 } 5374 5375 // Otherwise, just use the general rule. 5376 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5377 TypeInfo, SlotSize, /*AllowHigher*/ true); 5378 } 5379 5380 bool 5381 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5382 CodeGen::CodeGenFunction &CGF, 5383 llvm::Value *Address) const { 5384 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5385 /*IsAIX*/ false); 5386 } 5387 5388 bool 5389 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5390 llvm::Value *Address) const { 5391 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5392 /*IsAIX*/ false); 5393 } 5394 5395 //===----------------------------------------------------------------------===// 5396 // AArch64 ABI Implementation 5397 //===----------------------------------------------------------------------===// 5398 5399 namespace { 5400 5401 class AArch64ABIInfo : public SwiftABIInfo { 5402 public: 5403 enum ABIKind { 5404 AAPCS = 0, 5405 DarwinPCS, 5406 Win64 5407 }; 5408 5409 private: 5410 ABIKind Kind; 5411 5412 public: 5413 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5414 : SwiftABIInfo(CGT), Kind(Kind) {} 5415 5416 private: 5417 ABIKind getABIKind() const { return Kind; } 5418 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5419 5420 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5421 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5422 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5423 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5424 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5425 uint64_t Members) const override; 5426 5427 bool isIllegalVectorType(QualType Ty) const; 5428 5429 void computeInfo(CGFunctionInfo &FI) const override { 5430 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5431 FI.getReturnInfo() = 5432 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5433 5434 for (auto &it : FI.arguments()) 5435 it.info = classifyArgumentType(it.type); 5436 } 5437 5438 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5439 CodeGenFunction &CGF) const; 5440 5441 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5442 CodeGenFunction &CGF) const; 5443 5444 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5445 QualType Ty) const override { 5446 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5447 if (isa<llvm::ScalableVectorType>(BaseTy)) 5448 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5449 "currently not supported"); 5450 5451 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5452 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5453 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5454 } 5455 5456 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5457 QualType Ty) const override; 5458 5459 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5460 bool asReturnValue) const override { 5461 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5462 } 5463 bool isSwiftErrorInRegister() const override { 5464 return true; 5465 } 5466 5467 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5468 unsigned elts) const override; 5469 5470 bool allowBFloatArgsAndRet() const override { 5471 return getTarget().hasBFloat16Type(); 5472 } 5473 }; 5474 5475 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5476 public: 5477 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5478 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5479 5480 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5481 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5482 } 5483 5484 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5485 return 31; 5486 } 5487 5488 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5489 5490 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5491 CodeGen::CodeGenModule &CGM) const override { 5492 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5493 if (!FD) 5494 return; 5495 5496 const auto *TA = FD->getAttr<TargetAttr>(); 5497 if (TA == nullptr) 5498 return; 5499 5500 ParsedTargetAttr Attr = TA->parse(); 5501 if (Attr.BranchProtection.empty()) 5502 return; 5503 5504 TargetInfo::BranchProtectionInfo BPI; 5505 StringRef Error; 5506 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5507 BPI, Error); 5508 assert(Error.empty()); 5509 5510 auto *Fn = cast<llvm::Function>(GV); 5511 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5512 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5513 5514 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5515 Fn->addFnAttr("sign-return-address-key", 5516 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5517 ? "a_key" 5518 : "b_key"); 5519 } 5520 5521 Fn->addFnAttr("branch-target-enforcement", 5522 BPI.BranchTargetEnforcement ? "true" : "false"); 5523 } 5524 }; 5525 5526 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5527 public: 5528 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5529 : AArch64TargetCodeGenInfo(CGT, K) {} 5530 5531 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5532 CodeGen::CodeGenModule &CGM) const override; 5533 5534 void getDependentLibraryOption(llvm::StringRef Lib, 5535 llvm::SmallString<24> &Opt) const override { 5536 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5537 } 5538 5539 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5540 llvm::SmallString<32> &Opt) const override { 5541 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5542 } 5543 }; 5544 5545 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5546 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5547 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5548 if (GV->isDeclaration()) 5549 return; 5550 addStackProbeTargetAttributes(D, GV, CGM); 5551 } 5552 } 5553 5554 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5555 assert(Ty->isVectorType() && "expected vector type!"); 5556 5557 const auto *VT = Ty->castAs<VectorType>(); 5558 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5559 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5560 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5561 BuiltinType::UChar && 5562 "unexpected builtin type for SVE predicate!"); 5563 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5564 llvm::Type::getInt1Ty(getVMContext()), 16)); 5565 } 5566 5567 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5568 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5569 5570 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5571 llvm::ScalableVectorType *ResType = nullptr; 5572 switch (BT->getKind()) { 5573 default: 5574 llvm_unreachable("unexpected builtin type for SVE vector!"); 5575 case BuiltinType::SChar: 5576 case BuiltinType::UChar: 5577 ResType = llvm::ScalableVectorType::get( 5578 llvm::Type::getInt8Ty(getVMContext()), 16); 5579 break; 5580 case BuiltinType::Short: 5581 case BuiltinType::UShort: 5582 ResType = llvm::ScalableVectorType::get( 5583 llvm::Type::getInt16Ty(getVMContext()), 8); 5584 break; 5585 case BuiltinType::Int: 5586 case BuiltinType::UInt: 5587 ResType = llvm::ScalableVectorType::get( 5588 llvm::Type::getInt32Ty(getVMContext()), 4); 5589 break; 5590 case BuiltinType::Long: 5591 case BuiltinType::ULong: 5592 ResType = llvm::ScalableVectorType::get( 5593 llvm::Type::getInt64Ty(getVMContext()), 2); 5594 break; 5595 case BuiltinType::Half: 5596 ResType = llvm::ScalableVectorType::get( 5597 llvm::Type::getHalfTy(getVMContext()), 8); 5598 break; 5599 case BuiltinType::Float: 5600 ResType = llvm::ScalableVectorType::get( 5601 llvm::Type::getFloatTy(getVMContext()), 4); 5602 break; 5603 case BuiltinType::Double: 5604 ResType = llvm::ScalableVectorType::get( 5605 llvm::Type::getDoubleTy(getVMContext()), 2); 5606 break; 5607 case BuiltinType::BFloat16: 5608 ResType = llvm::ScalableVectorType::get( 5609 llvm::Type::getBFloatTy(getVMContext()), 8); 5610 break; 5611 } 5612 return ABIArgInfo::getDirect(ResType); 5613 } 5614 5615 uint64_t Size = getContext().getTypeSize(Ty); 5616 // Android promotes <2 x i8> to i16, not i32 5617 if (isAndroid() && (Size <= 16)) { 5618 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5619 return ABIArgInfo::getDirect(ResType); 5620 } 5621 if (Size <= 32) { 5622 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5623 return ABIArgInfo::getDirect(ResType); 5624 } 5625 if (Size == 64) { 5626 auto *ResType = 5627 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5628 return ABIArgInfo::getDirect(ResType); 5629 } 5630 if (Size == 128) { 5631 auto *ResType = 5632 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5633 return ABIArgInfo::getDirect(ResType); 5634 } 5635 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5636 } 5637 5638 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5639 Ty = useFirstFieldIfTransparentUnion(Ty); 5640 5641 // Handle illegal vector types here. 5642 if (isIllegalVectorType(Ty)) 5643 return coerceIllegalVector(Ty); 5644 5645 if (!isAggregateTypeForABI(Ty)) { 5646 // Treat an enum type as its underlying type. 5647 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5648 Ty = EnumTy->getDecl()->getIntegerType(); 5649 5650 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5651 if (EIT->getNumBits() > 128) 5652 return getNaturalAlignIndirect(Ty); 5653 5654 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5655 ? ABIArgInfo::getExtend(Ty) 5656 : ABIArgInfo::getDirect()); 5657 } 5658 5659 // Structures with either a non-trivial destructor or a non-trivial 5660 // copy constructor are always indirect. 5661 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5662 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5663 CGCXXABI::RAA_DirectInMemory); 5664 } 5665 5666 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5667 // elsewhere for GNU compatibility. 5668 uint64_t Size = getContext().getTypeSize(Ty); 5669 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5670 if (IsEmpty || Size == 0) { 5671 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5672 return ABIArgInfo::getIgnore(); 5673 5674 // GNU C mode. The only argument that gets ignored is an empty one with size 5675 // 0. 5676 if (IsEmpty && Size == 0) 5677 return ABIArgInfo::getIgnore(); 5678 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5679 } 5680 5681 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5682 const Type *Base = nullptr; 5683 uint64_t Members = 0; 5684 if (isHomogeneousAggregate(Ty, Base, Members)) { 5685 return ABIArgInfo::getDirect( 5686 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5687 } 5688 5689 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5690 if (Size <= 128) { 5691 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5692 // same size and alignment. 5693 if (getTarget().isRenderScriptTarget()) { 5694 return coerceToIntArray(Ty, getContext(), getVMContext()); 5695 } 5696 unsigned Alignment; 5697 if (Kind == AArch64ABIInfo::AAPCS) { 5698 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5699 Alignment = Alignment < 128 ? 64 : 128; 5700 } else { 5701 Alignment = std::max(getContext().getTypeAlign(Ty), 5702 (unsigned)getTarget().getPointerWidth(0)); 5703 } 5704 Size = llvm::alignTo(Size, Alignment); 5705 5706 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5707 // For aggregates with 16-byte alignment, we use i128. 5708 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5709 return ABIArgInfo::getDirect( 5710 Size == Alignment ? BaseTy 5711 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5712 } 5713 5714 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5715 } 5716 5717 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5718 bool IsVariadic) const { 5719 if (RetTy->isVoidType()) 5720 return ABIArgInfo::getIgnore(); 5721 5722 if (const auto *VT = RetTy->getAs<VectorType>()) { 5723 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5724 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5725 return coerceIllegalVector(RetTy); 5726 } 5727 5728 // Large vector types should be returned via memory. 5729 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5730 return getNaturalAlignIndirect(RetTy); 5731 5732 if (!isAggregateTypeForABI(RetTy)) { 5733 // Treat an enum type as its underlying type. 5734 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5735 RetTy = EnumTy->getDecl()->getIntegerType(); 5736 5737 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5738 if (EIT->getNumBits() > 128) 5739 return getNaturalAlignIndirect(RetTy); 5740 5741 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5742 ? ABIArgInfo::getExtend(RetTy) 5743 : ABIArgInfo::getDirect()); 5744 } 5745 5746 uint64_t Size = getContext().getTypeSize(RetTy); 5747 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5748 return ABIArgInfo::getIgnore(); 5749 5750 const Type *Base = nullptr; 5751 uint64_t Members = 0; 5752 if (isHomogeneousAggregate(RetTy, Base, Members) && 5753 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5754 IsVariadic)) 5755 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5756 return ABIArgInfo::getDirect(); 5757 5758 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5759 if (Size <= 128) { 5760 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5761 // same size and alignment. 5762 if (getTarget().isRenderScriptTarget()) { 5763 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5764 } 5765 unsigned Alignment = getContext().getTypeAlign(RetTy); 5766 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5767 5768 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5769 // For aggregates with 16-byte alignment, we use i128. 5770 if (Alignment < 128 && Size == 128) { 5771 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5772 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5773 } 5774 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5775 } 5776 5777 return getNaturalAlignIndirect(RetTy); 5778 } 5779 5780 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5781 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5782 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5783 // Check whether VT is a fixed-length SVE vector. These types are 5784 // represented as scalable vectors in function args/return and must be 5785 // coerced from fixed vectors. 5786 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5787 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5788 return true; 5789 5790 // Check whether VT is legal. 5791 unsigned NumElements = VT->getNumElements(); 5792 uint64_t Size = getContext().getTypeSize(VT); 5793 // NumElements should be power of 2. 5794 if (!llvm::isPowerOf2_32(NumElements)) 5795 return true; 5796 5797 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5798 // vectors for some reason. 5799 llvm::Triple Triple = getTarget().getTriple(); 5800 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5801 Triple.isOSBinFormatMachO()) 5802 return Size <= 32; 5803 5804 return Size != 64 && (Size != 128 || NumElements == 1); 5805 } 5806 return false; 5807 } 5808 5809 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5810 llvm::Type *eltTy, 5811 unsigned elts) const { 5812 if (!llvm::isPowerOf2_32(elts)) 5813 return false; 5814 if (totalSize.getQuantity() != 8 && 5815 (totalSize.getQuantity() != 16 || elts == 1)) 5816 return false; 5817 return true; 5818 } 5819 5820 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5821 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5822 // point type or a short-vector type. This is the same as the 32-bit ABI, 5823 // but with the difference that any floating-point type is allowed, 5824 // including __fp16. 5825 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5826 if (BT->isFloatingPoint()) 5827 return true; 5828 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5829 unsigned VecSize = getContext().getTypeSize(VT); 5830 if (VecSize == 64 || VecSize == 128) 5831 return true; 5832 } 5833 return false; 5834 } 5835 5836 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5837 uint64_t Members) const { 5838 return Members <= 4; 5839 } 5840 5841 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5842 QualType Ty, 5843 CodeGenFunction &CGF) const { 5844 ABIArgInfo AI = classifyArgumentType(Ty); 5845 bool IsIndirect = AI.isIndirect(); 5846 5847 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5848 if (IsIndirect) 5849 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5850 else if (AI.getCoerceToType()) 5851 BaseTy = AI.getCoerceToType(); 5852 5853 unsigned NumRegs = 1; 5854 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5855 BaseTy = ArrTy->getElementType(); 5856 NumRegs = ArrTy->getNumElements(); 5857 } 5858 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5859 5860 // The AArch64 va_list type and handling is specified in the Procedure Call 5861 // Standard, section B.4: 5862 // 5863 // struct { 5864 // void *__stack; 5865 // void *__gr_top; 5866 // void *__vr_top; 5867 // int __gr_offs; 5868 // int __vr_offs; 5869 // }; 5870 5871 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5872 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5873 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5874 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5875 5876 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5877 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5878 5879 Address reg_offs_p = Address::invalid(); 5880 llvm::Value *reg_offs = nullptr; 5881 int reg_top_index; 5882 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5883 if (!IsFPR) { 5884 // 3 is the field number of __gr_offs 5885 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5886 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5887 reg_top_index = 1; // field number for __gr_top 5888 RegSize = llvm::alignTo(RegSize, 8); 5889 } else { 5890 // 4 is the field number of __vr_offs. 5891 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5892 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5893 reg_top_index = 2; // field number for __vr_top 5894 RegSize = 16 * NumRegs; 5895 } 5896 5897 //======================================= 5898 // Find out where argument was passed 5899 //======================================= 5900 5901 // If reg_offs >= 0 we're already using the stack for this type of 5902 // argument. We don't want to keep updating reg_offs (in case it overflows, 5903 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5904 // whatever they get). 5905 llvm::Value *UsingStack = nullptr; 5906 UsingStack = CGF.Builder.CreateICmpSGE( 5907 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5908 5909 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5910 5911 // Otherwise, at least some kind of argument could go in these registers, the 5912 // question is whether this particular type is too big. 5913 CGF.EmitBlock(MaybeRegBlock); 5914 5915 // Integer arguments may need to correct register alignment (for example a 5916 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5917 // align __gr_offs to calculate the potential address. 5918 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5919 int Align = TyAlign.getQuantity(); 5920 5921 reg_offs = CGF.Builder.CreateAdd( 5922 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5923 "align_regoffs"); 5924 reg_offs = CGF.Builder.CreateAnd( 5925 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5926 "aligned_regoffs"); 5927 } 5928 5929 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5930 // The fact that this is done unconditionally reflects the fact that 5931 // allocating an argument to the stack also uses up all the remaining 5932 // registers of the appropriate kind. 5933 llvm::Value *NewOffset = nullptr; 5934 NewOffset = CGF.Builder.CreateAdd( 5935 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5936 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5937 5938 // Now we're in a position to decide whether this argument really was in 5939 // registers or not. 5940 llvm::Value *InRegs = nullptr; 5941 InRegs = CGF.Builder.CreateICmpSLE( 5942 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5943 5944 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5945 5946 //======================================= 5947 // Argument was in registers 5948 //======================================= 5949 5950 // Now we emit the code for if the argument was originally passed in 5951 // registers. First start the appropriate block: 5952 CGF.EmitBlock(InRegBlock); 5953 5954 llvm::Value *reg_top = nullptr; 5955 Address reg_top_p = 5956 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5957 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5958 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 5959 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5960 Address RegAddr = Address::invalid(); 5961 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5962 5963 if (IsIndirect) { 5964 // If it's been passed indirectly (actually a struct), whatever we find from 5965 // stored registers or on the stack will actually be a struct **. 5966 MemTy = llvm::PointerType::getUnqual(MemTy); 5967 } 5968 5969 const Type *Base = nullptr; 5970 uint64_t NumMembers = 0; 5971 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5972 if (IsHFA && NumMembers > 1) { 5973 // Homogeneous aggregates passed in registers will have their elements split 5974 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5975 // qN+1, ...). We reload and store into a temporary local variable 5976 // contiguously. 5977 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5978 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5979 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5980 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5981 Address Tmp = CGF.CreateTempAlloca(HFATy, 5982 std::max(TyAlign, BaseTyInfo.Align)); 5983 5984 // On big-endian platforms, the value will be right-aligned in its slot. 5985 int Offset = 0; 5986 if (CGF.CGM.getDataLayout().isBigEndian() && 5987 BaseTyInfo.Width.getQuantity() < 16) 5988 Offset = 16 - BaseTyInfo.Width.getQuantity(); 5989 5990 for (unsigned i = 0; i < NumMembers; ++i) { 5991 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5992 Address LoadAddr = 5993 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5994 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5995 5996 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5997 5998 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5999 CGF.Builder.CreateStore(Elem, StoreAddr); 6000 } 6001 6002 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6003 } else { 6004 // Otherwise the object is contiguous in memory. 6005 6006 // It might be right-aligned in its slot. 6007 CharUnits SlotSize = BaseAddr.getAlignment(); 6008 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6009 (IsHFA || !isAggregateTypeForABI(Ty)) && 6010 TySize < SlotSize) { 6011 CharUnits Offset = SlotSize - TySize; 6012 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6013 } 6014 6015 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6016 } 6017 6018 CGF.EmitBranch(ContBlock); 6019 6020 //======================================= 6021 // Argument was on the stack 6022 //======================================= 6023 CGF.EmitBlock(OnStackBlock); 6024 6025 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6026 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6027 6028 // Again, stack arguments may need realignment. In this case both integer and 6029 // floating-point ones might be affected. 6030 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6031 int Align = TyAlign.getQuantity(); 6032 6033 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6034 6035 OnStackPtr = CGF.Builder.CreateAdd( 6036 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6037 "align_stack"); 6038 OnStackPtr = CGF.Builder.CreateAnd( 6039 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6040 "align_stack"); 6041 6042 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6043 } 6044 Address OnStackAddr(OnStackPtr, 6045 std::max(CharUnits::fromQuantity(8), TyAlign)); 6046 6047 // All stack slots are multiples of 8 bytes. 6048 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6049 CharUnits StackSize; 6050 if (IsIndirect) 6051 StackSize = StackSlotSize; 6052 else 6053 StackSize = TySize.alignTo(StackSlotSize); 6054 6055 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6056 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6057 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6058 6059 // Write the new value of __stack for the next call to va_arg 6060 CGF.Builder.CreateStore(NewStack, stack_p); 6061 6062 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6063 TySize < StackSlotSize) { 6064 CharUnits Offset = StackSlotSize - TySize; 6065 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6066 } 6067 6068 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6069 6070 CGF.EmitBranch(ContBlock); 6071 6072 //======================================= 6073 // Tidy up 6074 //======================================= 6075 CGF.EmitBlock(ContBlock); 6076 6077 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6078 OnStackAddr, OnStackBlock, "vaargs.addr"); 6079 6080 if (IsIndirect) 6081 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6082 TyAlign); 6083 6084 return ResAddr; 6085 } 6086 6087 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6088 CodeGenFunction &CGF) const { 6089 // The backend's lowering doesn't support va_arg for aggregates or 6090 // illegal vector types. Lower VAArg here for these cases and use 6091 // the LLVM va_arg instruction for everything else. 6092 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6093 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6094 6095 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6096 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6097 6098 // Empty records are ignored for parameter passing purposes. 6099 if (isEmptyRecord(getContext(), Ty, true)) { 6100 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6101 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6102 return Addr; 6103 } 6104 6105 // The size of the actual thing passed, which might end up just 6106 // being a pointer for indirect types. 6107 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6108 6109 // Arguments bigger than 16 bytes which aren't homogeneous 6110 // aggregates should be passed indirectly. 6111 bool IsIndirect = false; 6112 if (TyInfo.Width.getQuantity() > 16) { 6113 const Type *Base = nullptr; 6114 uint64_t Members = 0; 6115 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6116 } 6117 6118 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6119 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6120 } 6121 6122 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6123 QualType Ty) const { 6124 bool IsIndirect = false; 6125 6126 // Composites larger than 16 bytes are passed by reference. 6127 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6128 IsIndirect = true; 6129 6130 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6131 CGF.getContext().getTypeInfoInChars(Ty), 6132 CharUnits::fromQuantity(8), 6133 /*allowHigherAlign*/ false); 6134 } 6135 6136 //===----------------------------------------------------------------------===// 6137 // ARM ABI Implementation 6138 //===----------------------------------------------------------------------===// 6139 6140 namespace { 6141 6142 class ARMABIInfo : public SwiftABIInfo { 6143 public: 6144 enum ABIKind { 6145 APCS = 0, 6146 AAPCS = 1, 6147 AAPCS_VFP = 2, 6148 AAPCS16_VFP = 3, 6149 }; 6150 6151 private: 6152 ABIKind Kind; 6153 bool IsFloatABISoftFP; 6154 6155 public: 6156 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6157 : SwiftABIInfo(CGT), Kind(_Kind) { 6158 setCCs(); 6159 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6160 CGT.getCodeGenOpts().FloatABI == ""; // default 6161 } 6162 6163 bool isEABI() const { 6164 switch (getTarget().getTriple().getEnvironment()) { 6165 case llvm::Triple::Android: 6166 case llvm::Triple::EABI: 6167 case llvm::Triple::EABIHF: 6168 case llvm::Triple::GNUEABI: 6169 case llvm::Triple::GNUEABIHF: 6170 case llvm::Triple::MuslEABI: 6171 case llvm::Triple::MuslEABIHF: 6172 return true; 6173 default: 6174 return false; 6175 } 6176 } 6177 6178 bool isEABIHF() const { 6179 switch (getTarget().getTriple().getEnvironment()) { 6180 case llvm::Triple::EABIHF: 6181 case llvm::Triple::GNUEABIHF: 6182 case llvm::Triple::MuslEABIHF: 6183 return true; 6184 default: 6185 return false; 6186 } 6187 } 6188 6189 ABIKind getABIKind() const { return Kind; } 6190 6191 bool allowBFloatArgsAndRet() const override { 6192 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6193 } 6194 6195 private: 6196 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6197 unsigned functionCallConv) const; 6198 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6199 unsigned functionCallConv) const; 6200 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6201 uint64_t Members) const; 6202 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6203 bool isIllegalVectorType(QualType Ty) const; 6204 bool containsAnyFP16Vectors(QualType Ty) const; 6205 6206 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6207 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6208 uint64_t Members) const override; 6209 6210 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6211 6212 void computeInfo(CGFunctionInfo &FI) const override; 6213 6214 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6215 QualType Ty) const override; 6216 6217 llvm::CallingConv::ID getLLVMDefaultCC() const; 6218 llvm::CallingConv::ID getABIDefaultCC() const; 6219 void setCCs(); 6220 6221 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6222 bool asReturnValue) const override { 6223 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6224 } 6225 bool isSwiftErrorInRegister() const override { 6226 return true; 6227 } 6228 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6229 unsigned elts) const override; 6230 }; 6231 6232 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6233 public: 6234 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6235 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6236 6237 const ARMABIInfo &getABIInfo() const { 6238 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6239 } 6240 6241 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6242 return 13; 6243 } 6244 6245 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6246 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6247 } 6248 6249 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6250 llvm::Value *Address) const override { 6251 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6252 6253 // 0-15 are the 16 integer registers. 6254 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6255 return false; 6256 } 6257 6258 unsigned getSizeOfUnwindException() const override { 6259 if (getABIInfo().isEABI()) return 88; 6260 return TargetCodeGenInfo::getSizeOfUnwindException(); 6261 } 6262 6263 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6264 CodeGen::CodeGenModule &CGM) const override { 6265 if (GV->isDeclaration()) 6266 return; 6267 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6268 if (!FD) 6269 return; 6270 6271 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6272 if (!Attr) 6273 return; 6274 6275 const char *Kind; 6276 switch (Attr->getInterrupt()) { 6277 case ARMInterruptAttr::Generic: Kind = ""; break; 6278 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6279 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6280 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6281 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6282 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6283 } 6284 6285 llvm::Function *Fn = cast<llvm::Function>(GV); 6286 6287 Fn->addFnAttr("interrupt", Kind); 6288 6289 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6290 if (ABI == ARMABIInfo::APCS) 6291 return; 6292 6293 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6294 // however this is not necessarily true on taking any interrupt. Instruct 6295 // the backend to perform a realignment as part of the function prologue. 6296 llvm::AttrBuilder B; 6297 B.addStackAlignmentAttr(8); 6298 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6299 } 6300 }; 6301 6302 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6303 public: 6304 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6305 : ARMTargetCodeGenInfo(CGT, K) {} 6306 6307 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6308 CodeGen::CodeGenModule &CGM) const override; 6309 6310 void getDependentLibraryOption(llvm::StringRef Lib, 6311 llvm::SmallString<24> &Opt) const override { 6312 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6313 } 6314 6315 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6316 llvm::SmallString<32> &Opt) const override { 6317 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6318 } 6319 }; 6320 6321 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6322 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6323 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6324 if (GV->isDeclaration()) 6325 return; 6326 addStackProbeTargetAttributes(D, GV, CGM); 6327 } 6328 } 6329 6330 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6331 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6332 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6333 FI.getCallingConvention()); 6334 6335 for (auto &I : FI.arguments()) 6336 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6337 FI.getCallingConvention()); 6338 6339 6340 // Always honor user-specified calling convention. 6341 if (FI.getCallingConvention() != llvm::CallingConv::C) 6342 return; 6343 6344 llvm::CallingConv::ID cc = getRuntimeCC(); 6345 if (cc != llvm::CallingConv::C) 6346 FI.setEffectiveCallingConvention(cc); 6347 } 6348 6349 /// Return the default calling convention that LLVM will use. 6350 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6351 // The default calling convention that LLVM will infer. 6352 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6353 return llvm::CallingConv::ARM_AAPCS_VFP; 6354 else if (isEABI()) 6355 return llvm::CallingConv::ARM_AAPCS; 6356 else 6357 return llvm::CallingConv::ARM_APCS; 6358 } 6359 6360 /// Return the calling convention that our ABI would like us to use 6361 /// as the C calling convention. 6362 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6363 switch (getABIKind()) { 6364 case APCS: return llvm::CallingConv::ARM_APCS; 6365 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6366 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6367 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6368 } 6369 llvm_unreachable("bad ABI kind"); 6370 } 6371 6372 void ARMABIInfo::setCCs() { 6373 assert(getRuntimeCC() == llvm::CallingConv::C); 6374 6375 // Don't muddy up the IR with a ton of explicit annotations if 6376 // they'd just match what LLVM will infer from the triple. 6377 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6378 if (abiCC != getLLVMDefaultCC()) 6379 RuntimeCC = abiCC; 6380 } 6381 6382 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6383 uint64_t Size = getContext().getTypeSize(Ty); 6384 if (Size <= 32) { 6385 llvm::Type *ResType = 6386 llvm::Type::getInt32Ty(getVMContext()); 6387 return ABIArgInfo::getDirect(ResType); 6388 } 6389 if (Size == 64 || Size == 128) { 6390 auto *ResType = llvm::FixedVectorType::get( 6391 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6392 return ABIArgInfo::getDirect(ResType); 6393 } 6394 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6395 } 6396 6397 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6398 const Type *Base, 6399 uint64_t Members) const { 6400 assert(Base && "Base class should be set for homogeneous aggregate"); 6401 // Base can be a floating-point or a vector. 6402 if (const VectorType *VT = Base->getAs<VectorType>()) { 6403 // FP16 vectors should be converted to integer vectors 6404 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6405 uint64_t Size = getContext().getTypeSize(VT); 6406 auto *NewVecTy = llvm::FixedVectorType::get( 6407 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6408 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6409 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6410 } 6411 } 6412 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6413 } 6414 6415 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6416 unsigned functionCallConv) const { 6417 // 6.1.2.1 The following argument types are VFP CPRCs: 6418 // A single-precision floating-point type (including promoted 6419 // half-precision types); A double-precision floating-point type; 6420 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6421 // with a Base Type of a single- or double-precision floating-point type, 6422 // 64-bit containerized vectors or 128-bit containerized vectors with one 6423 // to four Elements. 6424 // Variadic functions should always marshal to the base standard. 6425 bool IsAAPCS_VFP = 6426 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6427 6428 Ty = useFirstFieldIfTransparentUnion(Ty); 6429 6430 // Handle illegal vector types here. 6431 if (isIllegalVectorType(Ty)) 6432 return coerceIllegalVector(Ty); 6433 6434 if (!isAggregateTypeForABI(Ty)) { 6435 // Treat an enum type as its underlying type. 6436 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6437 Ty = EnumTy->getDecl()->getIntegerType(); 6438 } 6439 6440 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6441 if (EIT->getNumBits() > 64) 6442 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6443 6444 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6445 : ABIArgInfo::getDirect()); 6446 } 6447 6448 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6449 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6450 } 6451 6452 // Ignore empty records. 6453 if (isEmptyRecord(getContext(), Ty, true)) 6454 return ABIArgInfo::getIgnore(); 6455 6456 if (IsAAPCS_VFP) { 6457 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6458 // into VFP registers. 6459 const Type *Base = nullptr; 6460 uint64_t Members = 0; 6461 if (isHomogeneousAggregate(Ty, Base, Members)) 6462 return classifyHomogeneousAggregate(Ty, Base, Members); 6463 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6464 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6465 // this convention even for a variadic function: the backend will use GPRs 6466 // if needed. 6467 const Type *Base = nullptr; 6468 uint64_t Members = 0; 6469 if (isHomogeneousAggregate(Ty, Base, Members)) { 6470 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6471 llvm::Type *Ty = 6472 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6473 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6474 } 6475 } 6476 6477 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6478 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6479 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6480 // bigger than 128-bits, they get placed in space allocated by the caller, 6481 // and a pointer is passed. 6482 return ABIArgInfo::getIndirect( 6483 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6484 } 6485 6486 // Support byval for ARM. 6487 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6488 // most 8-byte. We realign the indirect argument if type alignment is bigger 6489 // than ABI alignment. 6490 uint64_t ABIAlign = 4; 6491 uint64_t TyAlign; 6492 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6493 getABIKind() == ARMABIInfo::AAPCS) { 6494 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6495 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6496 } else { 6497 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6498 } 6499 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6500 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6501 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6502 /*ByVal=*/true, 6503 /*Realign=*/TyAlign > ABIAlign); 6504 } 6505 6506 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6507 // same size and alignment. 6508 if (getTarget().isRenderScriptTarget()) { 6509 return coerceToIntArray(Ty, getContext(), getVMContext()); 6510 } 6511 6512 // Otherwise, pass by coercing to a structure of the appropriate size. 6513 llvm::Type* ElemTy; 6514 unsigned SizeRegs; 6515 // FIXME: Try to match the types of the arguments more accurately where 6516 // we can. 6517 if (TyAlign <= 4) { 6518 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6519 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6520 } else { 6521 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6522 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6523 } 6524 6525 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6526 } 6527 6528 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6529 llvm::LLVMContext &VMContext) { 6530 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6531 // is called integer-like if its size is less than or equal to one word, and 6532 // the offset of each of its addressable sub-fields is zero. 6533 6534 uint64_t Size = Context.getTypeSize(Ty); 6535 6536 // Check that the type fits in a word. 6537 if (Size > 32) 6538 return false; 6539 6540 // FIXME: Handle vector types! 6541 if (Ty->isVectorType()) 6542 return false; 6543 6544 // Float types are never treated as "integer like". 6545 if (Ty->isRealFloatingType()) 6546 return false; 6547 6548 // If this is a builtin or pointer type then it is ok. 6549 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6550 return true; 6551 6552 // Small complex integer types are "integer like". 6553 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6554 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6555 6556 // Single element and zero sized arrays should be allowed, by the definition 6557 // above, but they are not. 6558 6559 // Otherwise, it must be a record type. 6560 const RecordType *RT = Ty->getAs<RecordType>(); 6561 if (!RT) return false; 6562 6563 // Ignore records with flexible arrays. 6564 const RecordDecl *RD = RT->getDecl(); 6565 if (RD->hasFlexibleArrayMember()) 6566 return false; 6567 6568 // Check that all sub-fields are at offset 0, and are themselves "integer 6569 // like". 6570 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6571 6572 bool HadField = false; 6573 unsigned idx = 0; 6574 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6575 i != e; ++i, ++idx) { 6576 const FieldDecl *FD = *i; 6577 6578 // Bit-fields are not addressable, we only need to verify they are "integer 6579 // like". We still have to disallow a subsequent non-bitfield, for example: 6580 // struct { int : 0; int x } 6581 // is non-integer like according to gcc. 6582 if (FD->isBitField()) { 6583 if (!RD->isUnion()) 6584 HadField = true; 6585 6586 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6587 return false; 6588 6589 continue; 6590 } 6591 6592 // Check if this field is at offset 0. 6593 if (Layout.getFieldOffset(idx) != 0) 6594 return false; 6595 6596 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6597 return false; 6598 6599 // Only allow at most one field in a structure. This doesn't match the 6600 // wording above, but follows gcc in situations with a field following an 6601 // empty structure. 6602 if (!RD->isUnion()) { 6603 if (HadField) 6604 return false; 6605 6606 HadField = true; 6607 } 6608 } 6609 6610 return true; 6611 } 6612 6613 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6614 unsigned functionCallConv) const { 6615 6616 // Variadic functions should always marshal to the base standard. 6617 bool IsAAPCS_VFP = 6618 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6619 6620 if (RetTy->isVoidType()) 6621 return ABIArgInfo::getIgnore(); 6622 6623 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6624 // Large vector types should be returned via memory. 6625 if (getContext().getTypeSize(RetTy) > 128) 6626 return getNaturalAlignIndirect(RetTy); 6627 // TODO: FP16/BF16 vectors should be converted to integer vectors 6628 // This check is similar to isIllegalVectorType - refactor? 6629 if ((!getTarget().hasLegalHalfType() && 6630 (VT->getElementType()->isFloat16Type() || 6631 VT->getElementType()->isHalfType())) || 6632 (IsFloatABISoftFP && 6633 VT->getElementType()->isBFloat16Type())) 6634 return coerceIllegalVector(RetTy); 6635 } 6636 6637 if (!isAggregateTypeForABI(RetTy)) { 6638 // Treat an enum type as its underlying type. 6639 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6640 RetTy = EnumTy->getDecl()->getIntegerType(); 6641 6642 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6643 if (EIT->getNumBits() > 64) 6644 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6645 6646 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6647 : ABIArgInfo::getDirect(); 6648 } 6649 6650 // Are we following APCS? 6651 if (getABIKind() == APCS) { 6652 if (isEmptyRecord(getContext(), RetTy, false)) 6653 return ABIArgInfo::getIgnore(); 6654 6655 // Complex types are all returned as packed integers. 6656 // 6657 // FIXME: Consider using 2 x vector types if the back end handles them 6658 // correctly. 6659 if (RetTy->isAnyComplexType()) 6660 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6661 getVMContext(), getContext().getTypeSize(RetTy))); 6662 6663 // Integer like structures are returned in r0. 6664 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6665 // Return in the smallest viable integer type. 6666 uint64_t Size = getContext().getTypeSize(RetTy); 6667 if (Size <= 8) 6668 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6669 if (Size <= 16) 6670 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6671 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6672 } 6673 6674 // Otherwise return in memory. 6675 return getNaturalAlignIndirect(RetTy); 6676 } 6677 6678 // Otherwise this is an AAPCS variant. 6679 6680 if (isEmptyRecord(getContext(), RetTy, true)) 6681 return ABIArgInfo::getIgnore(); 6682 6683 // Check for homogeneous aggregates with AAPCS-VFP. 6684 if (IsAAPCS_VFP) { 6685 const Type *Base = nullptr; 6686 uint64_t Members = 0; 6687 if (isHomogeneousAggregate(RetTy, Base, Members)) 6688 return classifyHomogeneousAggregate(RetTy, Base, Members); 6689 } 6690 6691 // Aggregates <= 4 bytes are returned in r0; other aggregates 6692 // are returned indirectly. 6693 uint64_t Size = getContext().getTypeSize(RetTy); 6694 if (Size <= 32) { 6695 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6696 // same size and alignment. 6697 if (getTarget().isRenderScriptTarget()) { 6698 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6699 } 6700 if (getDataLayout().isBigEndian()) 6701 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6702 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6703 6704 // Return in the smallest viable integer type. 6705 if (Size <= 8) 6706 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6707 if (Size <= 16) 6708 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6709 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6710 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6711 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6712 llvm::Type *CoerceTy = 6713 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6714 return ABIArgInfo::getDirect(CoerceTy); 6715 } 6716 6717 return getNaturalAlignIndirect(RetTy); 6718 } 6719 6720 /// isIllegalVector - check whether Ty is an illegal vector type. 6721 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6722 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6723 // On targets that don't support half, fp16 or bfloat, they are expanded 6724 // into float, and we don't want the ABI to depend on whether or not they 6725 // are supported in hardware. Thus return false to coerce vectors of these 6726 // types into integer vectors. 6727 // We do not depend on hasLegalHalfType for bfloat as it is a 6728 // separate IR type. 6729 if ((!getTarget().hasLegalHalfType() && 6730 (VT->getElementType()->isFloat16Type() || 6731 VT->getElementType()->isHalfType())) || 6732 (IsFloatABISoftFP && 6733 VT->getElementType()->isBFloat16Type())) 6734 return true; 6735 if (isAndroid()) { 6736 // Android shipped using Clang 3.1, which supported a slightly different 6737 // vector ABI. The primary differences were that 3-element vector types 6738 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6739 // accepts that legacy behavior for Android only. 6740 // Check whether VT is legal. 6741 unsigned NumElements = VT->getNumElements(); 6742 // NumElements should be power of 2 or equal to 3. 6743 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6744 return true; 6745 } else { 6746 // Check whether VT is legal. 6747 unsigned NumElements = VT->getNumElements(); 6748 uint64_t Size = getContext().getTypeSize(VT); 6749 // NumElements should be power of 2. 6750 if (!llvm::isPowerOf2_32(NumElements)) 6751 return true; 6752 // Size should be greater than 32 bits. 6753 return Size <= 32; 6754 } 6755 } 6756 return false; 6757 } 6758 6759 /// Return true if a type contains any 16-bit floating point vectors 6760 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6761 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6762 uint64_t NElements = AT->getSize().getZExtValue(); 6763 if (NElements == 0) 6764 return false; 6765 return containsAnyFP16Vectors(AT->getElementType()); 6766 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6767 const RecordDecl *RD = RT->getDecl(); 6768 6769 // If this is a C++ record, check the bases first. 6770 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6771 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6772 return containsAnyFP16Vectors(B.getType()); 6773 })) 6774 return true; 6775 6776 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6777 return FD && containsAnyFP16Vectors(FD->getType()); 6778 })) 6779 return true; 6780 6781 return false; 6782 } else { 6783 if (const VectorType *VT = Ty->getAs<VectorType>()) 6784 return (VT->getElementType()->isFloat16Type() || 6785 VT->getElementType()->isBFloat16Type() || 6786 VT->getElementType()->isHalfType()); 6787 return false; 6788 } 6789 } 6790 6791 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6792 llvm::Type *eltTy, 6793 unsigned numElts) const { 6794 if (!llvm::isPowerOf2_32(numElts)) 6795 return false; 6796 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6797 if (size > 64) 6798 return false; 6799 if (vectorSize.getQuantity() != 8 && 6800 (vectorSize.getQuantity() != 16 || numElts == 1)) 6801 return false; 6802 return true; 6803 } 6804 6805 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6806 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6807 // double, or 64-bit or 128-bit vectors. 6808 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6809 if (BT->getKind() == BuiltinType::Float || 6810 BT->getKind() == BuiltinType::Double || 6811 BT->getKind() == BuiltinType::LongDouble) 6812 return true; 6813 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6814 unsigned VecSize = getContext().getTypeSize(VT); 6815 if (VecSize == 64 || VecSize == 128) 6816 return true; 6817 } 6818 return false; 6819 } 6820 6821 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6822 uint64_t Members) const { 6823 return Members <= 4; 6824 } 6825 6826 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6827 bool acceptHalf) const { 6828 // Give precedence to user-specified calling conventions. 6829 if (callConvention != llvm::CallingConv::C) 6830 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6831 else 6832 return (getABIKind() == AAPCS_VFP) || 6833 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6834 } 6835 6836 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6837 QualType Ty) const { 6838 CharUnits SlotSize = CharUnits::fromQuantity(4); 6839 6840 // Empty records are ignored for parameter passing purposes. 6841 if (isEmptyRecord(getContext(), Ty, true)) { 6842 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6843 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6844 return Addr; 6845 } 6846 6847 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6848 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6849 6850 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6851 bool IsIndirect = false; 6852 const Type *Base = nullptr; 6853 uint64_t Members = 0; 6854 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6855 IsIndirect = true; 6856 6857 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6858 // allocated by the caller. 6859 } else if (TySize > CharUnits::fromQuantity(16) && 6860 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6861 !isHomogeneousAggregate(Ty, Base, Members)) { 6862 IsIndirect = true; 6863 6864 // Otherwise, bound the type's ABI alignment. 6865 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6866 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6867 // Our callers should be prepared to handle an under-aligned address. 6868 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6869 getABIKind() == ARMABIInfo::AAPCS) { 6870 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6871 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6872 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6873 // ARMv7k allows type alignment up to 16 bytes. 6874 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6875 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6876 } else { 6877 TyAlignForABI = CharUnits::fromQuantity(4); 6878 } 6879 6880 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6881 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6882 SlotSize, /*AllowHigherAlign*/ true); 6883 } 6884 6885 //===----------------------------------------------------------------------===// 6886 // NVPTX ABI Implementation 6887 //===----------------------------------------------------------------------===// 6888 6889 namespace { 6890 6891 class NVPTXTargetCodeGenInfo; 6892 6893 class NVPTXABIInfo : public ABIInfo { 6894 NVPTXTargetCodeGenInfo &CGInfo; 6895 6896 public: 6897 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6898 : ABIInfo(CGT), CGInfo(Info) {} 6899 6900 ABIArgInfo classifyReturnType(QualType RetTy) const; 6901 ABIArgInfo classifyArgumentType(QualType Ty) const; 6902 6903 void computeInfo(CGFunctionInfo &FI) const override; 6904 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6905 QualType Ty) const override; 6906 bool isUnsupportedType(QualType T) const; 6907 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6908 }; 6909 6910 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6911 public: 6912 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6913 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6914 6915 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6916 CodeGen::CodeGenModule &M) const override; 6917 bool shouldEmitStaticExternCAliases() const override; 6918 6919 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6920 // On the device side, surface reference is represented as an object handle 6921 // in 64-bit integer. 6922 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6923 } 6924 6925 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6926 // On the device side, texture reference is represented as an object handle 6927 // in 64-bit integer. 6928 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6929 } 6930 6931 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6932 LValue Src) const override { 6933 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6934 return true; 6935 } 6936 6937 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6938 LValue Src) const override { 6939 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6940 return true; 6941 } 6942 6943 private: 6944 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6945 // resulting MDNode to the nvvm.annotations MDNode. 6946 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6947 int Operand); 6948 6949 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6950 LValue Src) { 6951 llvm::Value *Handle = nullptr; 6952 llvm::Constant *C = 6953 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6954 // Lookup `addrspacecast` through the constant pointer if any. 6955 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6956 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6957 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6958 // Load the handle from the specific global variable using 6959 // `nvvm.texsurf.handle.internal` intrinsic. 6960 Handle = CGF.EmitRuntimeCall( 6961 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6962 {GV->getType()}), 6963 {GV}, "texsurf_handle"); 6964 } else 6965 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6966 CGF.EmitStoreOfScalar(Handle, Dst); 6967 } 6968 }; 6969 6970 /// Checks if the type is unsupported directly by the current target. 6971 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6972 ASTContext &Context = getContext(); 6973 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6974 return true; 6975 if (!Context.getTargetInfo().hasFloat128Type() && 6976 (T->isFloat128Type() || 6977 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6978 return true; 6979 if (const auto *EIT = T->getAs<ExtIntType>()) 6980 return EIT->getNumBits() > 6981 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6982 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6983 Context.getTypeSize(T) > 64U) 6984 return true; 6985 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6986 return isUnsupportedType(AT->getElementType()); 6987 const auto *RT = T->getAs<RecordType>(); 6988 if (!RT) 6989 return false; 6990 const RecordDecl *RD = RT->getDecl(); 6991 6992 // If this is a C++ record, check the bases first. 6993 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6994 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6995 if (isUnsupportedType(I.getType())) 6996 return true; 6997 6998 for (const FieldDecl *I : RD->fields()) 6999 if (isUnsupportedType(I->getType())) 7000 return true; 7001 return false; 7002 } 7003 7004 /// Coerce the given type into an array with maximum allowed size of elements. 7005 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7006 unsigned MaxSize) const { 7007 // Alignment and Size are measured in bits. 7008 const uint64_t Size = getContext().getTypeSize(Ty); 7009 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7010 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7011 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7012 const uint64_t NumElements = (Size + Div - 1) / Div; 7013 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7014 } 7015 7016 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7017 if (RetTy->isVoidType()) 7018 return ABIArgInfo::getIgnore(); 7019 7020 if (getContext().getLangOpts().OpenMP && 7021 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7022 return coerceToIntArrayWithLimit(RetTy, 64); 7023 7024 // note: this is different from default ABI 7025 if (!RetTy->isScalarType()) 7026 return ABIArgInfo::getDirect(); 7027 7028 // Treat an enum type as its underlying type. 7029 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7030 RetTy = EnumTy->getDecl()->getIntegerType(); 7031 7032 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7033 : ABIArgInfo::getDirect()); 7034 } 7035 7036 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7037 // Treat an enum type as its underlying type. 7038 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7039 Ty = EnumTy->getDecl()->getIntegerType(); 7040 7041 // Return aggregates type as indirect by value 7042 if (isAggregateTypeForABI(Ty)) { 7043 // Under CUDA device compilation, tex/surf builtin types are replaced with 7044 // object types and passed directly. 7045 if (getContext().getLangOpts().CUDAIsDevice) { 7046 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7047 return ABIArgInfo::getDirect( 7048 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7049 if (Ty->isCUDADeviceBuiltinTextureType()) 7050 return ABIArgInfo::getDirect( 7051 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7052 } 7053 return getNaturalAlignIndirect(Ty, /* byval */ true); 7054 } 7055 7056 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7057 if ((EIT->getNumBits() > 128) || 7058 (!getContext().getTargetInfo().hasInt128Type() && 7059 EIT->getNumBits() > 64)) 7060 return getNaturalAlignIndirect(Ty, /* byval */ true); 7061 } 7062 7063 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7064 : ABIArgInfo::getDirect()); 7065 } 7066 7067 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7068 if (!getCXXABI().classifyReturnType(FI)) 7069 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7070 for (auto &I : FI.arguments()) 7071 I.info = classifyArgumentType(I.type); 7072 7073 // Always honor user-specified calling convention. 7074 if (FI.getCallingConvention() != llvm::CallingConv::C) 7075 return; 7076 7077 FI.setEffectiveCallingConvention(getRuntimeCC()); 7078 } 7079 7080 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7081 QualType Ty) const { 7082 llvm_unreachable("NVPTX does not support varargs"); 7083 } 7084 7085 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7086 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7087 if (GV->isDeclaration()) 7088 return; 7089 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7090 if (VD) { 7091 if (M.getLangOpts().CUDA) { 7092 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7093 addNVVMMetadata(GV, "surface", 1); 7094 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7095 addNVVMMetadata(GV, "texture", 1); 7096 return; 7097 } 7098 } 7099 7100 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7101 if (!FD) return; 7102 7103 llvm::Function *F = cast<llvm::Function>(GV); 7104 7105 // Perform special handling in OpenCL mode 7106 if (M.getLangOpts().OpenCL) { 7107 // Use OpenCL function attributes to check for kernel functions 7108 // By default, all functions are device functions 7109 if (FD->hasAttr<OpenCLKernelAttr>()) { 7110 // OpenCL __kernel functions get kernel metadata 7111 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7112 addNVVMMetadata(F, "kernel", 1); 7113 // And kernel functions are not subject to inlining 7114 F->addFnAttr(llvm::Attribute::NoInline); 7115 } 7116 } 7117 7118 // Perform special handling in CUDA mode. 7119 if (M.getLangOpts().CUDA) { 7120 // CUDA __global__ functions get a kernel metadata entry. Since 7121 // __global__ functions cannot be called from the device, we do not 7122 // need to set the noinline attribute. 7123 if (FD->hasAttr<CUDAGlobalAttr>()) { 7124 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7125 addNVVMMetadata(F, "kernel", 1); 7126 } 7127 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7128 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7129 llvm::APSInt MaxThreads(32); 7130 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7131 if (MaxThreads > 0) 7132 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7133 7134 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7135 // not specified in __launch_bounds__ or if the user specified a 0 value, 7136 // we don't have to add a PTX directive. 7137 if (Attr->getMinBlocks()) { 7138 llvm::APSInt MinBlocks(32); 7139 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7140 if (MinBlocks > 0) 7141 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7142 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7143 } 7144 } 7145 } 7146 } 7147 7148 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7149 StringRef Name, int Operand) { 7150 llvm::Module *M = GV->getParent(); 7151 llvm::LLVMContext &Ctx = M->getContext(); 7152 7153 // Get "nvvm.annotations" metadata node 7154 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7155 7156 llvm::Metadata *MDVals[] = { 7157 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7158 llvm::ConstantAsMetadata::get( 7159 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7160 // Append metadata to nvvm.annotations 7161 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7162 } 7163 7164 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7165 return false; 7166 } 7167 } 7168 7169 //===----------------------------------------------------------------------===// 7170 // SystemZ ABI Implementation 7171 //===----------------------------------------------------------------------===// 7172 7173 namespace { 7174 7175 class SystemZABIInfo : public SwiftABIInfo { 7176 bool HasVector; 7177 bool IsSoftFloatABI; 7178 7179 public: 7180 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7181 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7182 7183 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7184 bool isCompoundType(QualType Ty) const; 7185 bool isVectorArgumentType(QualType Ty) const; 7186 bool isFPArgumentType(QualType Ty) const; 7187 QualType GetSingleElementType(QualType Ty) const; 7188 7189 ABIArgInfo classifyReturnType(QualType RetTy) const; 7190 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7191 7192 void computeInfo(CGFunctionInfo &FI) const override { 7193 if (!getCXXABI().classifyReturnType(FI)) 7194 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7195 for (auto &I : FI.arguments()) 7196 I.info = classifyArgumentType(I.type); 7197 } 7198 7199 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7200 QualType Ty) const override; 7201 7202 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7203 bool asReturnValue) const override { 7204 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7205 } 7206 bool isSwiftErrorInRegister() const override { 7207 return false; 7208 } 7209 }; 7210 7211 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7212 public: 7213 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7214 : TargetCodeGenInfo( 7215 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7216 7217 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7218 CGBuilderTy &Builder, 7219 CodeGenModule &CGM) const override { 7220 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7221 // Only use TDC in constrained FP mode. 7222 if (!Builder.getIsFPConstrained()) 7223 return nullptr; 7224 7225 llvm::Type *Ty = V->getType(); 7226 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7227 llvm::Module &M = CGM.getModule(); 7228 auto &Ctx = M.getContext(); 7229 llvm::Function *TDCFunc = 7230 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7231 unsigned TDCBits = 0; 7232 switch (BuiltinID) { 7233 case Builtin::BI__builtin_isnan: 7234 TDCBits = 0xf; 7235 break; 7236 case Builtin::BIfinite: 7237 case Builtin::BI__finite: 7238 case Builtin::BIfinitef: 7239 case Builtin::BI__finitef: 7240 case Builtin::BIfinitel: 7241 case Builtin::BI__finitel: 7242 case Builtin::BI__builtin_isfinite: 7243 TDCBits = 0xfc0; 7244 break; 7245 case Builtin::BI__builtin_isinf: 7246 TDCBits = 0x30; 7247 break; 7248 default: 7249 break; 7250 } 7251 if (TDCBits) 7252 return Builder.CreateCall( 7253 TDCFunc, 7254 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7255 } 7256 return nullptr; 7257 } 7258 }; 7259 } 7260 7261 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7262 // Treat an enum type as its underlying type. 7263 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7264 Ty = EnumTy->getDecl()->getIntegerType(); 7265 7266 // Promotable integer types are required to be promoted by the ABI. 7267 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7268 return true; 7269 7270 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7271 if (EIT->getNumBits() < 64) 7272 return true; 7273 7274 // 32-bit values must also be promoted. 7275 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7276 switch (BT->getKind()) { 7277 case BuiltinType::Int: 7278 case BuiltinType::UInt: 7279 return true; 7280 default: 7281 return false; 7282 } 7283 return false; 7284 } 7285 7286 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7287 return (Ty->isAnyComplexType() || 7288 Ty->isVectorType() || 7289 isAggregateTypeForABI(Ty)); 7290 } 7291 7292 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7293 return (HasVector && 7294 Ty->isVectorType() && 7295 getContext().getTypeSize(Ty) <= 128); 7296 } 7297 7298 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7299 if (IsSoftFloatABI) 7300 return false; 7301 7302 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7303 switch (BT->getKind()) { 7304 case BuiltinType::Float: 7305 case BuiltinType::Double: 7306 return true; 7307 default: 7308 return false; 7309 } 7310 7311 return false; 7312 } 7313 7314 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7315 const RecordType *RT = Ty->getAs<RecordType>(); 7316 7317 if (RT && RT->isStructureOrClassType()) { 7318 const RecordDecl *RD = RT->getDecl(); 7319 QualType Found; 7320 7321 // If this is a C++ record, check the bases first. 7322 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7323 for (const auto &I : CXXRD->bases()) { 7324 QualType Base = I.getType(); 7325 7326 // Empty bases don't affect things either way. 7327 if (isEmptyRecord(getContext(), Base, true)) 7328 continue; 7329 7330 if (!Found.isNull()) 7331 return Ty; 7332 Found = GetSingleElementType(Base); 7333 } 7334 7335 // Check the fields. 7336 for (const auto *FD : RD->fields()) { 7337 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7338 // Unlike isSingleElementStruct(), empty structure and array fields 7339 // do count. So do anonymous bitfields that aren't zero-sized. 7340 if (getContext().getLangOpts().CPlusPlus && 7341 FD->isZeroLengthBitField(getContext())) 7342 continue; 7343 // Like isSingleElementStruct(), ignore C++20 empty data members. 7344 if (FD->hasAttr<NoUniqueAddressAttr>() && 7345 isEmptyRecord(getContext(), FD->getType(), true)) 7346 continue; 7347 7348 // Unlike isSingleElementStruct(), arrays do not count. 7349 // Nested structures still do though. 7350 if (!Found.isNull()) 7351 return Ty; 7352 Found = GetSingleElementType(FD->getType()); 7353 } 7354 7355 // Unlike isSingleElementStruct(), trailing padding is allowed. 7356 // An 8-byte aligned struct s { float f; } is passed as a double. 7357 if (!Found.isNull()) 7358 return Found; 7359 } 7360 7361 return Ty; 7362 } 7363 7364 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7365 QualType Ty) const { 7366 // Assume that va_list type is correct; should be pointer to LLVM type: 7367 // struct { 7368 // i64 __gpr; 7369 // i64 __fpr; 7370 // i8 *__overflow_arg_area; 7371 // i8 *__reg_save_area; 7372 // }; 7373 7374 // Every non-vector argument occupies 8 bytes and is passed by preference 7375 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7376 // always passed on the stack. 7377 Ty = getContext().getCanonicalType(Ty); 7378 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7379 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7380 llvm::Type *DirectTy = ArgTy; 7381 ABIArgInfo AI = classifyArgumentType(Ty); 7382 bool IsIndirect = AI.isIndirect(); 7383 bool InFPRs = false; 7384 bool IsVector = false; 7385 CharUnits UnpaddedSize; 7386 CharUnits DirectAlign; 7387 if (IsIndirect) { 7388 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7389 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7390 } else { 7391 if (AI.getCoerceToType()) 7392 ArgTy = AI.getCoerceToType(); 7393 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7394 IsVector = ArgTy->isVectorTy(); 7395 UnpaddedSize = TyInfo.Width; 7396 DirectAlign = TyInfo.Align; 7397 } 7398 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7399 if (IsVector && UnpaddedSize > PaddedSize) 7400 PaddedSize = CharUnits::fromQuantity(16); 7401 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7402 7403 CharUnits Padding = (PaddedSize - UnpaddedSize); 7404 7405 llvm::Type *IndexTy = CGF.Int64Ty; 7406 llvm::Value *PaddedSizeV = 7407 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7408 7409 if (IsVector) { 7410 // Work out the address of a vector argument on the stack. 7411 // Vector arguments are always passed in the high bits of a 7412 // single (8 byte) or double (16 byte) stack slot. 7413 Address OverflowArgAreaPtr = 7414 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7415 Address OverflowArgArea = 7416 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7417 TyInfo.Align); 7418 Address MemAddr = 7419 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7420 7421 // Update overflow_arg_area_ptr pointer 7422 llvm::Value *NewOverflowArgArea = 7423 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7424 "overflow_arg_area"); 7425 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7426 7427 return MemAddr; 7428 } 7429 7430 assert(PaddedSize.getQuantity() == 8); 7431 7432 unsigned MaxRegs, RegCountField, RegSaveIndex; 7433 CharUnits RegPadding; 7434 if (InFPRs) { 7435 MaxRegs = 4; // Maximum of 4 FPR arguments 7436 RegCountField = 1; // __fpr 7437 RegSaveIndex = 16; // save offset for f0 7438 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7439 } else { 7440 MaxRegs = 5; // Maximum of 5 GPR arguments 7441 RegCountField = 0; // __gpr 7442 RegSaveIndex = 2; // save offset for r2 7443 RegPadding = Padding; // values are passed in the low bits of a GPR 7444 } 7445 7446 Address RegCountPtr = 7447 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7448 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7449 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7450 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7451 "fits_in_regs"); 7452 7453 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7454 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7455 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7456 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7457 7458 // Emit code to load the value if it was passed in registers. 7459 CGF.EmitBlock(InRegBlock); 7460 7461 // Work out the address of an argument register. 7462 llvm::Value *ScaledRegCount = 7463 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7464 llvm::Value *RegBase = 7465 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7466 + RegPadding.getQuantity()); 7467 llvm::Value *RegOffset = 7468 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7469 Address RegSaveAreaPtr = 7470 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7471 llvm::Value *RegSaveArea = 7472 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7473 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7474 "raw_reg_addr"), 7475 PaddedSize); 7476 Address RegAddr = 7477 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7478 7479 // Update the register count 7480 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7481 llvm::Value *NewRegCount = 7482 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7483 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7484 CGF.EmitBranch(ContBlock); 7485 7486 // Emit code to load the value if it was passed in memory. 7487 CGF.EmitBlock(InMemBlock); 7488 7489 // Work out the address of a stack argument. 7490 Address OverflowArgAreaPtr = 7491 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7492 Address OverflowArgArea = 7493 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7494 PaddedSize); 7495 Address RawMemAddr = 7496 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7497 Address MemAddr = 7498 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7499 7500 // Update overflow_arg_area_ptr pointer 7501 llvm::Value *NewOverflowArgArea = 7502 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7503 "overflow_arg_area"); 7504 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7505 CGF.EmitBranch(ContBlock); 7506 7507 // Return the appropriate result. 7508 CGF.EmitBlock(ContBlock); 7509 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7510 MemAddr, InMemBlock, "va_arg.addr"); 7511 7512 if (IsIndirect) 7513 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7514 TyInfo.Align); 7515 7516 return ResAddr; 7517 } 7518 7519 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7520 if (RetTy->isVoidType()) 7521 return ABIArgInfo::getIgnore(); 7522 if (isVectorArgumentType(RetTy)) 7523 return ABIArgInfo::getDirect(); 7524 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7525 return getNaturalAlignIndirect(RetTy); 7526 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7527 : ABIArgInfo::getDirect()); 7528 } 7529 7530 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7531 // Handle the generic C++ ABI. 7532 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7533 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7534 7535 // Integers and enums are extended to full register width. 7536 if (isPromotableIntegerTypeForABI(Ty)) 7537 return ABIArgInfo::getExtend(Ty); 7538 7539 // Handle vector types and vector-like structure types. Note that 7540 // as opposed to float-like structure types, we do not allow any 7541 // padding for vector-like structures, so verify the sizes match. 7542 uint64_t Size = getContext().getTypeSize(Ty); 7543 QualType SingleElementTy = GetSingleElementType(Ty); 7544 if (isVectorArgumentType(SingleElementTy) && 7545 getContext().getTypeSize(SingleElementTy) == Size) 7546 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7547 7548 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7549 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7550 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7551 7552 // Handle small structures. 7553 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7554 // Structures with flexible arrays have variable length, so really 7555 // fail the size test above. 7556 const RecordDecl *RD = RT->getDecl(); 7557 if (RD->hasFlexibleArrayMember()) 7558 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7559 7560 // The structure is passed as an unextended integer, a float, or a double. 7561 llvm::Type *PassTy; 7562 if (isFPArgumentType(SingleElementTy)) { 7563 assert(Size == 32 || Size == 64); 7564 if (Size == 32) 7565 PassTy = llvm::Type::getFloatTy(getVMContext()); 7566 else 7567 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7568 } else 7569 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7570 return ABIArgInfo::getDirect(PassTy); 7571 } 7572 7573 // Non-structure compounds are passed indirectly. 7574 if (isCompoundType(Ty)) 7575 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7576 7577 return ABIArgInfo::getDirect(nullptr); 7578 } 7579 7580 //===----------------------------------------------------------------------===// 7581 // MSP430 ABI Implementation 7582 //===----------------------------------------------------------------------===// 7583 7584 namespace { 7585 7586 class MSP430ABIInfo : public DefaultABIInfo { 7587 static ABIArgInfo complexArgInfo() { 7588 ABIArgInfo Info = ABIArgInfo::getDirect(); 7589 Info.setCanBeFlattened(false); 7590 return Info; 7591 } 7592 7593 public: 7594 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7595 7596 ABIArgInfo classifyReturnType(QualType RetTy) const { 7597 if (RetTy->isAnyComplexType()) 7598 return complexArgInfo(); 7599 7600 return DefaultABIInfo::classifyReturnType(RetTy); 7601 } 7602 7603 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7604 if (RetTy->isAnyComplexType()) 7605 return complexArgInfo(); 7606 7607 return DefaultABIInfo::classifyArgumentType(RetTy); 7608 } 7609 7610 // Just copy the original implementations because 7611 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7612 void computeInfo(CGFunctionInfo &FI) const override { 7613 if (!getCXXABI().classifyReturnType(FI)) 7614 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7615 for (auto &I : FI.arguments()) 7616 I.info = classifyArgumentType(I.type); 7617 } 7618 7619 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7620 QualType Ty) const override { 7621 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7622 } 7623 }; 7624 7625 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7626 public: 7627 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7628 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7629 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7630 CodeGen::CodeGenModule &M) const override; 7631 }; 7632 7633 } 7634 7635 void MSP430TargetCodeGenInfo::setTargetAttributes( 7636 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7637 if (GV->isDeclaration()) 7638 return; 7639 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7640 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7641 if (!InterruptAttr) 7642 return; 7643 7644 // Handle 'interrupt' attribute: 7645 llvm::Function *F = cast<llvm::Function>(GV); 7646 7647 // Step 1: Set ISR calling convention. 7648 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7649 7650 // Step 2: Add attributes goodness. 7651 F->addFnAttr(llvm::Attribute::NoInline); 7652 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7653 } 7654 } 7655 7656 //===----------------------------------------------------------------------===// 7657 // MIPS ABI Implementation. This works for both little-endian and 7658 // big-endian variants. 7659 //===----------------------------------------------------------------------===// 7660 7661 namespace { 7662 class MipsABIInfo : public ABIInfo { 7663 bool IsO32; 7664 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7665 void CoerceToIntArgs(uint64_t TySize, 7666 SmallVectorImpl<llvm::Type *> &ArgList) const; 7667 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7668 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7669 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7670 public: 7671 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7672 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7673 StackAlignInBytes(IsO32 ? 8 : 16) {} 7674 7675 ABIArgInfo classifyReturnType(QualType RetTy) const; 7676 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7677 void computeInfo(CGFunctionInfo &FI) const override; 7678 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7679 QualType Ty) const override; 7680 ABIArgInfo extendType(QualType Ty) const; 7681 }; 7682 7683 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7684 unsigned SizeOfUnwindException; 7685 public: 7686 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7687 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7688 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7689 7690 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7691 return 29; 7692 } 7693 7694 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7695 CodeGen::CodeGenModule &CGM) const override { 7696 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7697 if (!FD) return; 7698 llvm::Function *Fn = cast<llvm::Function>(GV); 7699 7700 if (FD->hasAttr<MipsLongCallAttr>()) 7701 Fn->addFnAttr("long-call"); 7702 else if (FD->hasAttr<MipsShortCallAttr>()) 7703 Fn->addFnAttr("short-call"); 7704 7705 // Other attributes do not have a meaning for declarations. 7706 if (GV->isDeclaration()) 7707 return; 7708 7709 if (FD->hasAttr<Mips16Attr>()) { 7710 Fn->addFnAttr("mips16"); 7711 } 7712 else if (FD->hasAttr<NoMips16Attr>()) { 7713 Fn->addFnAttr("nomips16"); 7714 } 7715 7716 if (FD->hasAttr<MicroMipsAttr>()) 7717 Fn->addFnAttr("micromips"); 7718 else if (FD->hasAttr<NoMicroMipsAttr>()) 7719 Fn->addFnAttr("nomicromips"); 7720 7721 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7722 if (!Attr) 7723 return; 7724 7725 const char *Kind; 7726 switch (Attr->getInterrupt()) { 7727 case MipsInterruptAttr::eic: Kind = "eic"; break; 7728 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7729 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7730 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7731 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7732 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7733 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7734 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7735 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7736 } 7737 7738 Fn->addFnAttr("interrupt", Kind); 7739 7740 } 7741 7742 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7743 llvm::Value *Address) const override; 7744 7745 unsigned getSizeOfUnwindException() const override { 7746 return SizeOfUnwindException; 7747 } 7748 }; 7749 } 7750 7751 void MipsABIInfo::CoerceToIntArgs( 7752 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7753 llvm::IntegerType *IntTy = 7754 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7755 7756 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7757 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7758 ArgList.push_back(IntTy); 7759 7760 // If necessary, add one more integer type to ArgList. 7761 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7762 7763 if (R) 7764 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7765 } 7766 7767 // In N32/64, an aligned double precision floating point field is passed in 7768 // a register. 7769 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7770 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7771 7772 if (IsO32) { 7773 CoerceToIntArgs(TySize, ArgList); 7774 return llvm::StructType::get(getVMContext(), ArgList); 7775 } 7776 7777 if (Ty->isComplexType()) 7778 return CGT.ConvertType(Ty); 7779 7780 const RecordType *RT = Ty->getAs<RecordType>(); 7781 7782 // Unions/vectors are passed in integer registers. 7783 if (!RT || !RT->isStructureOrClassType()) { 7784 CoerceToIntArgs(TySize, ArgList); 7785 return llvm::StructType::get(getVMContext(), ArgList); 7786 } 7787 7788 const RecordDecl *RD = RT->getDecl(); 7789 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7790 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7791 7792 uint64_t LastOffset = 0; 7793 unsigned idx = 0; 7794 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7795 7796 // Iterate over fields in the struct/class and check if there are any aligned 7797 // double fields. 7798 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7799 i != e; ++i, ++idx) { 7800 const QualType Ty = i->getType(); 7801 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7802 7803 if (!BT || BT->getKind() != BuiltinType::Double) 7804 continue; 7805 7806 uint64_t Offset = Layout.getFieldOffset(idx); 7807 if (Offset % 64) // Ignore doubles that are not aligned. 7808 continue; 7809 7810 // Add ((Offset - LastOffset) / 64) args of type i64. 7811 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7812 ArgList.push_back(I64); 7813 7814 // Add double type. 7815 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7816 LastOffset = Offset + 64; 7817 } 7818 7819 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7820 ArgList.append(IntArgList.begin(), IntArgList.end()); 7821 7822 return llvm::StructType::get(getVMContext(), ArgList); 7823 } 7824 7825 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7826 uint64_t Offset) const { 7827 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7828 return nullptr; 7829 7830 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7831 } 7832 7833 ABIArgInfo 7834 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7835 Ty = useFirstFieldIfTransparentUnion(Ty); 7836 7837 uint64_t OrigOffset = Offset; 7838 uint64_t TySize = getContext().getTypeSize(Ty); 7839 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7840 7841 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7842 (uint64_t)StackAlignInBytes); 7843 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7844 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7845 7846 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7847 // Ignore empty aggregates. 7848 if (TySize == 0) 7849 return ABIArgInfo::getIgnore(); 7850 7851 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7852 Offset = OrigOffset + MinABIStackAlignInBytes; 7853 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7854 } 7855 7856 // If we have reached here, aggregates are passed directly by coercing to 7857 // another structure type. Padding is inserted if the offset of the 7858 // aggregate is unaligned. 7859 ABIArgInfo ArgInfo = 7860 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7861 getPaddingType(OrigOffset, CurrOffset)); 7862 ArgInfo.setInReg(true); 7863 return ArgInfo; 7864 } 7865 7866 // Treat an enum type as its underlying type. 7867 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7868 Ty = EnumTy->getDecl()->getIntegerType(); 7869 7870 // Make sure we pass indirectly things that are too large. 7871 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7872 if (EIT->getNumBits() > 128 || 7873 (EIT->getNumBits() > 64 && 7874 !getContext().getTargetInfo().hasInt128Type())) 7875 return getNaturalAlignIndirect(Ty); 7876 7877 // All integral types are promoted to the GPR width. 7878 if (Ty->isIntegralOrEnumerationType()) 7879 return extendType(Ty); 7880 7881 return ABIArgInfo::getDirect( 7882 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7883 } 7884 7885 llvm::Type* 7886 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7887 const RecordType *RT = RetTy->getAs<RecordType>(); 7888 SmallVector<llvm::Type*, 8> RTList; 7889 7890 if (RT && RT->isStructureOrClassType()) { 7891 const RecordDecl *RD = RT->getDecl(); 7892 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7893 unsigned FieldCnt = Layout.getFieldCount(); 7894 7895 // N32/64 returns struct/classes in floating point registers if the 7896 // following conditions are met: 7897 // 1. The size of the struct/class is no larger than 128-bit. 7898 // 2. The struct/class has one or two fields all of which are floating 7899 // point types. 7900 // 3. The offset of the first field is zero (this follows what gcc does). 7901 // 7902 // Any other composite results are returned in integer registers. 7903 // 7904 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7905 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7906 for (; b != e; ++b) { 7907 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7908 7909 if (!BT || !BT->isFloatingPoint()) 7910 break; 7911 7912 RTList.push_back(CGT.ConvertType(b->getType())); 7913 } 7914 7915 if (b == e) 7916 return llvm::StructType::get(getVMContext(), RTList, 7917 RD->hasAttr<PackedAttr>()); 7918 7919 RTList.clear(); 7920 } 7921 } 7922 7923 CoerceToIntArgs(Size, RTList); 7924 return llvm::StructType::get(getVMContext(), RTList); 7925 } 7926 7927 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7928 uint64_t Size = getContext().getTypeSize(RetTy); 7929 7930 if (RetTy->isVoidType()) 7931 return ABIArgInfo::getIgnore(); 7932 7933 // O32 doesn't treat zero-sized structs differently from other structs. 7934 // However, N32/N64 ignores zero sized return values. 7935 if (!IsO32 && Size == 0) 7936 return ABIArgInfo::getIgnore(); 7937 7938 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7939 if (Size <= 128) { 7940 if (RetTy->isAnyComplexType()) 7941 return ABIArgInfo::getDirect(); 7942 7943 // O32 returns integer vectors in registers and N32/N64 returns all small 7944 // aggregates in registers. 7945 if (!IsO32 || 7946 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7947 ABIArgInfo ArgInfo = 7948 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7949 ArgInfo.setInReg(true); 7950 return ArgInfo; 7951 } 7952 } 7953 7954 return getNaturalAlignIndirect(RetTy); 7955 } 7956 7957 // Treat an enum type as its underlying type. 7958 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7959 RetTy = EnumTy->getDecl()->getIntegerType(); 7960 7961 // Make sure we pass indirectly things that are too large. 7962 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7963 if (EIT->getNumBits() > 128 || 7964 (EIT->getNumBits() > 64 && 7965 !getContext().getTargetInfo().hasInt128Type())) 7966 return getNaturalAlignIndirect(RetTy); 7967 7968 if (isPromotableIntegerTypeForABI(RetTy)) 7969 return ABIArgInfo::getExtend(RetTy); 7970 7971 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7972 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7973 return ABIArgInfo::getSignExtend(RetTy); 7974 7975 return ABIArgInfo::getDirect(); 7976 } 7977 7978 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7979 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7980 if (!getCXXABI().classifyReturnType(FI)) 7981 RetInfo = classifyReturnType(FI.getReturnType()); 7982 7983 // Check if a pointer to an aggregate is passed as a hidden argument. 7984 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7985 7986 for (auto &I : FI.arguments()) 7987 I.info = classifyArgumentType(I.type, Offset); 7988 } 7989 7990 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7991 QualType OrigTy) const { 7992 QualType Ty = OrigTy; 7993 7994 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7995 // Pointers are also promoted in the same way but this only matters for N32. 7996 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7997 unsigned PtrWidth = getTarget().getPointerWidth(0); 7998 bool DidPromote = false; 7999 if ((Ty->isIntegerType() && 8000 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8001 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8002 DidPromote = true; 8003 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8004 Ty->isSignedIntegerType()); 8005 } 8006 8007 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8008 8009 // The alignment of things in the argument area is never larger than 8010 // StackAlignInBytes. 8011 TyInfo.Align = 8012 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8013 8014 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8015 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8016 8017 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8018 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8019 8020 8021 // If there was a promotion, "unpromote" into a temporary. 8022 // TODO: can we just use a pointer into a subset of the original slot? 8023 if (DidPromote) { 8024 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8025 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8026 8027 // Truncate down to the right width. 8028 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8029 : CGF.IntPtrTy); 8030 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8031 if (OrigTy->isPointerType()) 8032 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8033 8034 CGF.Builder.CreateStore(V, Temp); 8035 Addr = Temp; 8036 } 8037 8038 return Addr; 8039 } 8040 8041 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8042 int TySize = getContext().getTypeSize(Ty); 8043 8044 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8045 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8046 return ABIArgInfo::getSignExtend(Ty); 8047 8048 return ABIArgInfo::getExtend(Ty); 8049 } 8050 8051 bool 8052 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8053 llvm::Value *Address) const { 8054 // This information comes from gcc's implementation, which seems to 8055 // as canonical as it gets. 8056 8057 // Everything on MIPS is 4 bytes. Double-precision FP registers 8058 // are aliased to pairs of single-precision FP registers. 8059 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8060 8061 // 0-31 are the general purpose registers, $0 - $31. 8062 // 32-63 are the floating-point registers, $f0 - $f31. 8063 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8064 // 66 is the (notional, I think) register for signal-handler return. 8065 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8066 8067 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8068 // They are one bit wide and ignored here. 8069 8070 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8071 // (coprocessor 1 is the FP unit) 8072 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8073 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8074 // 176-181 are the DSP accumulator registers. 8075 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8076 return false; 8077 } 8078 8079 //===----------------------------------------------------------------------===// 8080 // M68k ABI Implementation 8081 //===----------------------------------------------------------------------===// 8082 8083 namespace { 8084 8085 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8086 public: 8087 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8088 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8089 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8090 CodeGen::CodeGenModule &M) const override; 8091 }; 8092 8093 } // namespace 8094 8095 void M68kTargetCodeGenInfo::setTargetAttributes( 8096 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8097 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8098 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8099 // Handle 'interrupt' attribute: 8100 llvm::Function *F = cast<llvm::Function>(GV); 8101 8102 // Step 1: Set ISR calling convention. 8103 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8104 8105 // Step 2: Add attributes goodness. 8106 F->addFnAttr(llvm::Attribute::NoInline); 8107 8108 // Step 3: Emit ISR vector alias. 8109 unsigned Num = attr->getNumber() / 2; 8110 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8111 "__isr_" + Twine(Num), F); 8112 } 8113 } 8114 } 8115 8116 //===----------------------------------------------------------------------===// 8117 // AVR ABI Implementation. 8118 //===----------------------------------------------------------------------===// 8119 8120 namespace { 8121 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8122 public: 8123 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8124 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8125 8126 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8127 const VarDecl *D) const override { 8128 // Check if a global/static variable is defined within address space 1 8129 // but not constant. 8130 LangAS AS = D->getType().getAddressSpace(); 8131 if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 && 8132 !D->getType().isConstQualified()) 8133 CGM.getDiags().Report(D->getLocation(), 8134 diag::err_verify_nonconst_addrspace) 8135 << "__flash"; 8136 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8137 } 8138 8139 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8140 CodeGen::CodeGenModule &CGM) const override { 8141 if (GV->isDeclaration()) 8142 return; 8143 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8144 if (!FD) return; 8145 auto *Fn = cast<llvm::Function>(GV); 8146 8147 if (FD->getAttr<AVRInterruptAttr>()) 8148 Fn->addFnAttr("interrupt"); 8149 8150 if (FD->getAttr<AVRSignalAttr>()) 8151 Fn->addFnAttr("signal"); 8152 } 8153 }; 8154 } 8155 8156 //===----------------------------------------------------------------------===// 8157 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8158 // Currently subclassed only to implement custom OpenCL C function attribute 8159 // handling. 8160 //===----------------------------------------------------------------------===// 8161 8162 namespace { 8163 8164 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8165 public: 8166 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8167 : DefaultTargetCodeGenInfo(CGT) {} 8168 8169 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8170 CodeGen::CodeGenModule &M) const override; 8171 }; 8172 8173 void TCETargetCodeGenInfo::setTargetAttributes( 8174 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8175 if (GV->isDeclaration()) 8176 return; 8177 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8178 if (!FD) return; 8179 8180 llvm::Function *F = cast<llvm::Function>(GV); 8181 8182 if (M.getLangOpts().OpenCL) { 8183 if (FD->hasAttr<OpenCLKernelAttr>()) { 8184 // OpenCL C Kernel functions are not subject to inlining 8185 F->addFnAttr(llvm::Attribute::NoInline); 8186 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8187 if (Attr) { 8188 // Convert the reqd_work_group_size() attributes to metadata. 8189 llvm::LLVMContext &Context = F->getContext(); 8190 llvm::NamedMDNode *OpenCLMetadata = 8191 M.getModule().getOrInsertNamedMetadata( 8192 "opencl.kernel_wg_size_info"); 8193 8194 SmallVector<llvm::Metadata *, 5> Operands; 8195 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8196 8197 Operands.push_back( 8198 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8199 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8200 Operands.push_back( 8201 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8202 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8203 Operands.push_back( 8204 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8205 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8206 8207 // Add a boolean constant operand for "required" (true) or "hint" 8208 // (false) for implementing the work_group_size_hint attr later. 8209 // Currently always true as the hint is not yet implemented. 8210 Operands.push_back( 8211 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8212 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8213 } 8214 } 8215 } 8216 } 8217 8218 } 8219 8220 //===----------------------------------------------------------------------===// 8221 // Hexagon ABI Implementation 8222 //===----------------------------------------------------------------------===// 8223 8224 namespace { 8225 8226 class HexagonABIInfo : public DefaultABIInfo { 8227 public: 8228 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8229 8230 private: 8231 ABIArgInfo classifyReturnType(QualType RetTy) const; 8232 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8233 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8234 8235 void computeInfo(CGFunctionInfo &FI) const override; 8236 8237 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8238 QualType Ty) const override; 8239 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8240 QualType Ty) const; 8241 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8242 QualType Ty) const; 8243 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8244 QualType Ty) const; 8245 }; 8246 8247 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8248 public: 8249 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8250 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8251 8252 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8253 return 29; 8254 } 8255 8256 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8257 CodeGen::CodeGenModule &GCM) const override { 8258 if (GV->isDeclaration()) 8259 return; 8260 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8261 if (!FD) 8262 return; 8263 } 8264 }; 8265 8266 } // namespace 8267 8268 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8269 unsigned RegsLeft = 6; 8270 if (!getCXXABI().classifyReturnType(FI)) 8271 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8272 for (auto &I : FI.arguments()) 8273 I.info = classifyArgumentType(I.type, &RegsLeft); 8274 } 8275 8276 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8277 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8278 " through registers"); 8279 8280 if (*RegsLeft == 0) 8281 return false; 8282 8283 if (Size <= 32) { 8284 (*RegsLeft)--; 8285 return true; 8286 } 8287 8288 if (2 <= (*RegsLeft & (~1U))) { 8289 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8290 return true; 8291 } 8292 8293 // Next available register was r5 but candidate was greater than 32-bits so it 8294 // has to go on the stack. However we still consume r5 8295 if (*RegsLeft == 1) 8296 *RegsLeft = 0; 8297 8298 return false; 8299 } 8300 8301 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8302 unsigned *RegsLeft) const { 8303 if (!isAggregateTypeForABI(Ty)) { 8304 // Treat an enum type as its underlying type. 8305 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8306 Ty = EnumTy->getDecl()->getIntegerType(); 8307 8308 uint64_t Size = getContext().getTypeSize(Ty); 8309 if (Size <= 64) 8310 HexagonAdjustRegsLeft(Size, RegsLeft); 8311 8312 if (Size > 64 && Ty->isExtIntType()) 8313 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8314 8315 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8316 : ABIArgInfo::getDirect(); 8317 } 8318 8319 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8320 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8321 8322 // Ignore empty records. 8323 if (isEmptyRecord(getContext(), Ty, true)) 8324 return ABIArgInfo::getIgnore(); 8325 8326 uint64_t Size = getContext().getTypeSize(Ty); 8327 unsigned Align = getContext().getTypeAlign(Ty); 8328 8329 if (Size > 64) 8330 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8331 8332 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8333 Align = Size <= 32 ? 32 : 64; 8334 if (Size <= Align) { 8335 // Pass in the smallest viable integer type. 8336 if (!llvm::isPowerOf2_64(Size)) 8337 Size = llvm::NextPowerOf2(Size); 8338 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8339 } 8340 return DefaultABIInfo::classifyArgumentType(Ty); 8341 } 8342 8343 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8344 if (RetTy->isVoidType()) 8345 return ABIArgInfo::getIgnore(); 8346 8347 const TargetInfo &T = CGT.getTarget(); 8348 uint64_t Size = getContext().getTypeSize(RetTy); 8349 8350 if (RetTy->getAs<VectorType>()) { 8351 // HVX vectors are returned in vector registers or register pairs. 8352 if (T.hasFeature("hvx")) { 8353 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8354 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8355 if (Size == VecSize || Size == 2*VecSize) 8356 return ABIArgInfo::getDirectInReg(); 8357 } 8358 // Large vector types should be returned via memory. 8359 if (Size > 64) 8360 return getNaturalAlignIndirect(RetTy); 8361 } 8362 8363 if (!isAggregateTypeForABI(RetTy)) { 8364 // Treat an enum type as its underlying type. 8365 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8366 RetTy = EnumTy->getDecl()->getIntegerType(); 8367 8368 if (Size > 64 && RetTy->isExtIntType()) 8369 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8370 8371 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8372 : ABIArgInfo::getDirect(); 8373 } 8374 8375 if (isEmptyRecord(getContext(), RetTy, true)) 8376 return ABIArgInfo::getIgnore(); 8377 8378 // Aggregates <= 8 bytes are returned in registers, other aggregates 8379 // are returned indirectly. 8380 if (Size <= 64) { 8381 // Return in the smallest viable integer type. 8382 if (!llvm::isPowerOf2_64(Size)) 8383 Size = llvm::NextPowerOf2(Size); 8384 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8385 } 8386 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8387 } 8388 8389 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8390 Address VAListAddr, 8391 QualType Ty) const { 8392 // Load the overflow area pointer. 8393 Address __overflow_area_pointer_p = 8394 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8395 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8396 __overflow_area_pointer_p, "__overflow_area_pointer"); 8397 8398 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8399 if (Align > 4) { 8400 // Alignment should be a power of 2. 8401 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8402 8403 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8404 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8405 8406 // Add offset to the current pointer to access the argument. 8407 __overflow_area_pointer = 8408 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8409 llvm::Value *AsInt = 8410 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8411 8412 // Create a mask which should be "AND"ed 8413 // with (overflow_arg_area + align - 1) 8414 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8415 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8416 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8417 "__overflow_area_pointer.align"); 8418 } 8419 8420 // Get the type of the argument from memory and bitcast 8421 // overflow area pointer to the argument type. 8422 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8423 Address AddrTyped = CGF.Builder.CreateBitCast( 8424 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8425 llvm::PointerType::getUnqual(PTy)); 8426 8427 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8428 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8429 8430 __overflow_area_pointer = CGF.Builder.CreateGEP( 8431 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8432 "__overflow_area_pointer.next"); 8433 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8434 8435 return AddrTyped; 8436 } 8437 8438 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8439 Address VAListAddr, 8440 QualType Ty) const { 8441 // FIXME: Need to handle alignment 8442 llvm::Type *BP = CGF.Int8PtrTy; 8443 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8444 CGBuilderTy &Builder = CGF.Builder; 8445 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8446 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8447 // Handle address alignment for type alignment > 32 bits 8448 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8449 if (TyAlign > 4) { 8450 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8451 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8452 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8453 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8454 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8455 } 8456 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8457 Address AddrTyped = Builder.CreateBitCast( 8458 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8459 8460 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8461 llvm::Value *NextAddr = Builder.CreateGEP( 8462 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8463 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8464 8465 return AddrTyped; 8466 } 8467 8468 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8469 Address VAListAddr, 8470 QualType Ty) const { 8471 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8472 8473 if (ArgSize > 8) 8474 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8475 8476 // Here we have check if the argument is in register area or 8477 // in overflow area. 8478 // If the saved register area pointer + argsize rounded up to alignment > 8479 // saved register area end pointer, argument is in overflow area. 8480 unsigned RegsLeft = 6; 8481 Ty = CGF.getContext().getCanonicalType(Ty); 8482 (void)classifyArgumentType(Ty, &RegsLeft); 8483 8484 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8485 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8486 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8487 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8488 8489 // Get rounded size of the argument.GCC does not allow vararg of 8490 // size < 4 bytes. We follow the same logic here. 8491 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8492 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8493 8494 // Argument may be in saved register area 8495 CGF.EmitBlock(MaybeRegBlock); 8496 8497 // Load the current saved register area pointer. 8498 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8499 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8500 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8501 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8502 8503 // Load the saved register area end pointer. 8504 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8505 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8506 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8507 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8508 8509 // If the size of argument is > 4 bytes, check if the stack 8510 // location is aligned to 8 bytes 8511 if (ArgAlign > 4) { 8512 8513 llvm::Value *__current_saved_reg_area_pointer_int = 8514 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8515 CGF.Int32Ty); 8516 8517 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8518 __current_saved_reg_area_pointer_int, 8519 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8520 "align_current_saved_reg_area_pointer"); 8521 8522 __current_saved_reg_area_pointer_int = 8523 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8524 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8525 "align_current_saved_reg_area_pointer"); 8526 8527 __current_saved_reg_area_pointer = 8528 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8529 __current_saved_reg_area_pointer->getType(), 8530 "align_current_saved_reg_area_pointer"); 8531 } 8532 8533 llvm::Value *__new_saved_reg_area_pointer = 8534 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8535 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8536 "__new_saved_reg_area_pointer"); 8537 8538 llvm::Value *UsingStack = 0; 8539 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8540 __saved_reg_area_end_pointer); 8541 8542 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8543 8544 // Argument in saved register area 8545 // Implement the block where argument is in register saved area 8546 CGF.EmitBlock(InRegBlock); 8547 8548 llvm::Type *PTy = CGF.ConvertType(Ty); 8549 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8550 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8551 8552 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8553 __current_saved_reg_area_pointer_p); 8554 8555 CGF.EmitBranch(ContBlock); 8556 8557 // Argument in overflow area 8558 // Implement the block where the argument is in overflow area. 8559 CGF.EmitBlock(OnStackBlock); 8560 8561 // Load the overflow area pointer 8562 Address __overflow_area_pointer_p = 8563 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8564 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8565 __overflow_area_pointer_p, "__overflow_area_pointer"); 8566 8567 // Align the overflow area pointer according to the alignment of the argument 8568 if (ArgAlign > 4) { 8569 llvm::Value *__overflow_area_pointer_int = 8570 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8571 8572 __overflow_area_pointer_int = 8573 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8574 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8575 "align_overflow_area_pointer"); 8576 8577 __overflow_area_pointer_int = 8578 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8579 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8580 "align_overflow_area_pointer"); 8581 8582 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8583 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8584 "align_overflow_area_pointer"); 8585 } 8586 8587 // Get the pointer for next argument in overflow area and store it 8588 // to overflow area pointer. 8589 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8590 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8591 "__overflow_area_pointer.next"); 8592 8593 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8594 __overflow_area_pointer_p); 8595 8596 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8597 __current_saved_reg_area_pointer_p); 8598 8599 // Bitcast the overflow area pointer to the type of argument. 8600 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8601 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8602 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8603 8604 CGF.EmitBranch(ContBlock); 8605 8606 // Get the correct pointer to load the variable argument 8607 // Implement the ContBlock 8608 CGF.EmitBlock(ContBlock); 8609 8610 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8611 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8612 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8613 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8614 8615 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8616 } 8617 8618 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8619 QualType Ty) const { 8620 8621 if (getTarget().getTriple().isMusl()) 8622 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8623 8624 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8625 } 8626 8627 //===----------------------------------------------------------------------===// 8628 // Lanai ABI Implementation 8629 //===----------------------------------------------------------------------===// 8630 8631 namespace { 8632 class LanaiABIInfo : public DefaultABIInfo { 8633 public: 8634 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8635 8636 bool shouldUseInReg(QualType Ty, CCState &State) const; 8637 8638 void computeInfo(CGFunctionInfo &FI) const override { 8639 CCState State(FI); 8640 // Lanai uses 4 registers to pass arguments unless the function has the 8641 // regparm attribute set. 8642 if (FI.getHasRegParm()) { 8643 State.FreeRegs = FI.getRegParm(); 8644 } else { 8645 State.FreeRegs = 4; 8646 } 8647 8648 if (!getCXXABI().classifyReturnType(FI)) 8649 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8650 for (auto &I : FI.arguments()) 8651 I.info = classifyArgumentType(I.type, State); 8652 } 8653 8654 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8655 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8656 }; 8657 } // end anonymous namespace 8658 8659 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8660 unsigned Size = getContext().getTypeSize(Ty); 8661 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8662 8663 if (SizeInRegs == 0) 8664 return false; 8665 8666 if (SizeInRegs > State.FreeRegs) { 8667 State.FreeRegs = 0; 8668 return false; 8669 } 8670 8671 State.FreeRegs -= SizeInRegs; 8672 8673 return true; 8674 } 8675 8676 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8677 CCState &State) const { 8678 if (!ByVal) { 8679 if (State.FreeRegs) { 8680 --State.FreeRegs; // Non-byval indirects just use one pointer. 8681 return getNaturalAlignIndirectInReg(Ty); 8682 } 8683 return getNaturalAlignIndirect(Ty, false); 8684 } 8685 8686 // Compute the byval alignment. 8687 const unsigned MinABIStackAlignInBytes = 4; 8688 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8689 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8690 /*Realign=*/TypeAlign > 8691 MinABIStackAlignInBytes); 8692 } 8693 8694 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8695 CCState &State) const { 8696 // Check with the C++ ABI first. 8697 const RecordType *RT = Ty->getAs<RecordType>(); 8698 if (RT) { 8699 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8700 if (RAA == CGCXXABI::RAA_Indirect) { 8701 return getIndirectResult(Ty, /*ByVal=*/false, State); 8702 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8703 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8704 } 8705 } 8706 8707 if (isAggregateTypeForABI(Ty)) { 8708 // Structures with flexible arrays are always indirect. 8709 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8710 return getIndirectResult(Ty, /*ByVal=*/true, State); 8711 8712 // Ignore empty structs/unions. 8713 if (isEmptyRecord(getContext(), Ty, true)) 8714 return ABIArgInfo::getIgnore(); 8715 8716 llvm::LLVMContext &LLVMContext = getVMContext(); 8717 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8718 if (SizeInRegs <= State.FreeRegs) { 8719 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8720 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8721 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8722 State.FreeRegs -= SizeInRegs; 8723 return ABIArgInfo::getDirectInReg(Result); 8724 } else { 8725 State.FreeRegs = 0; 8726 } 8727 return getIndirectResult(Ty, true, State); 8728 } 8729 8730 // Treat an enum type as its underlying type. 8731 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8732 Ty = EnumTy->getDecl()->getIntegerType(); 8733 8734 bool InReg = shouldUseInReg(Ty, State); 8735 8736 // Don't pass >64 bit integers in registers. 8737 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8738 if (EIT->getNumBits() > 64) 8739 return getIndirectResult(Ty, /*ByVal=*/true, State); 8740 8741 if (isPromotableIntegerTypeForABI(Ty)) { 8742 if (InReg) 8743 return ABIArgInfo::getDirectInReg(); 8744 return ABIArgInfo::getExtend(Ty); 8745 } 8746 if (InReg) 8747 return ABIArgInfo::getDirectInReg(); 8748 return ABIArgInfo::getDirect(); 8749 } 8750 8751 namespace { 8752 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8753 public: 8754 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8755 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8756 }; 8757 } 8758 8759 //===----------------------------------------------------------------------===// 8760 // AMDGPU ABI Implementation 8761 //===----------------------------------------------------------------------===// 8762 8763 namespace { 8764 8765 class AMDGPUABIInfo final : public DefaultABIInfo { 8766 private: 8767 static const unsigned MaxNumRegsForArgsRet = 16; 8768 8769 unsigned numRegsForType(QualType Ty) const; 8770 8771 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8772 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8773 uint64_t Members) const override; 8774 8775 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8776 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8777 unsigned ToAS) const { 8778 // Single value types. 8779 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8780 return llvm::PointerType::get( 8781 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8782 return Ty; 8783 } 8784 8785 public: 8786 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8787 DefaultABIInfo(CGT) {} 8788 8789 ABIArgInfo classifyReturnType(QualType RetTy) const; 8790 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8791 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8792 8793 void computeInfo(CGFunctionInfo &FI) const override; 8794 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8795 QualType Ty) const override; 8796 }; 8797 8798 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8799 return true; 8800 } 8801 8802 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8803 const Type *Base, uint64_t Members) const { 8804 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8805 8806 // Homogeneous Aggregates may occupy at most 16 registers. 8807 return Members * NumRegs <= MaxNumRegsForArgsRet; 8808 } 8809 8810 /// Estimate number of registers the type will use when passed in registers. 8811 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8812 unsigned NumRegs = 0; 8813 8814 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8815 // Compute from the number of elements. The reported size is based on the 8816 // in-memory size, which includes the padding 4th element for 3-vectors. 8817 QualType EltTy = VT->getElementType(); 8818 unsigned EltSize = getContext().getTypeSize(EltTy); 8819 8820 // 16-bit element vectors should be passed as packed. 8821 if (EltSize == 16) 8822 return (VT->getNumElements() + 1) / 2; 8823 8824 unsigned EltNumRegs = (EltSize + 31) / 32; 8825 return EltNumRegs * VT->getNumElements(); 8826 } 8827 8828 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8829 const RecordDecl *RD = RT->getDecl(); 8830 assert(!RD->hasFlexibleArrayMember()); 8831 8832 for (const FieldDecl *Field : RD->fields()) { 8833 QualType FieldTy = Field->getType(); 8834 NumRegs += numRegsForType(FieldTy); 8835 } 8836 8837 return NumRegs; 8838 } 8839 8840 return (getContext().getTypeSize(Ty) + 31) / 32; 8841 } 8842 8843 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8844 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8845 8846 if (!getCXXABI().classifyReturnType(FI)) 8847 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8848 8849 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8850 for (auto &Arg : FI.arguments()) { 8851 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8852 Arg.info = classifyKernelArgumentType(Arg.type); 8853 } else { 8854 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8855 } 8856 } 8857 } 8858 8859 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8860 QualType Ty) const { 8861 llvm_unreachable("AMDGPU does not support varargs"); 8862 } 8863 8864 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8865 if (isAggregateTypeForABI(RetTy)) { 8866 // Records with non-trivial destructors/copy-constructors should not be 8867 // returned by value. 8868 if (!getRecordArgABI(RetTy, getCXXABI())) { 8869 // Ignore empty structs/unions. 8870 if (isEmptyRecord(getContext(), RetTy, true)) 8871 return ABIArgInfo::getIgnore(); 8872 8873 // Lower single-element structs to just return a regular value. 8874 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8875 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8876 8877 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8878 const RecordDecl *RD = RT->getDecl(); 8879 if (RD->hasFlexibleArrayMember()) 8880 return DefaultABIInfo::classifyReturnType(RetTy); 8881 } 8882 8883 // Pack aggregates <= 4 bytes into single VGPR or pair. 8884 uint64_t Size = getContext().getTypeSize(RetTy); 8885 if (Size <= 16) 8886 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8887 8888 if (Size <= 32) 8889 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8890 8891 if (Size <= 64) { 8892 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8893 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8894 } 8895 8896 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8897 return ABIArgInfo::getDirect(); 8898 } 8899 } 8900 8901 // Otherwise just do the default thing. 8902 return DefaultABIInfo::classifyReturnType(RetTy); 8903 } 8904 8905 /// For kernels all parameters are really passed in a special buffer. It doesn't 8906 /// make sense to pass anything byval, so everything must be direct. 8907 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8908 Ty = useFirstFieldIfTransparentUnion(Ty); 8909 8910 // TODO: Can we omit empty structs? 8911 8912 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8913 Ty = QualType(SeltTy, 0); 8914 8915 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8916 llvm::Type *LTy = OrigLTy; 8917 if (getContext().getLangOpts().HIP) { 8918 LTy = coerceKernelArgumentType( 8919 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8920 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8921 } 8922 8923 // FIXME: Should also use this for OpenCL, but it requires addressing the 8924 // problem of kernels being called. 8925 // 8926 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8927 // to global address space when using byref. This would require implementing a 8928 // new kind of coercion of the in-memory type when for indirect arguments. 8929 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8930 isAggregateTypeForABI(Ty)) { 8931 return ABIArgInfo::getIndirectAliased( 8932 getContext().getTypeAlignInChars(Ty), 8933 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8934 false /*Realign*/, nullptr /*Padding*/); 8935 } 8936 8937 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8938 // individual elements, which confuses the Clover OpenCL backend; therefore we 8939 // have to set it to false here. Other args of getDirect() are just defaults. 8940 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8941 } 8942 8943 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8944 unsigned &NumRegsLeft) const { 8945 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8946 8947 Ty = useFirstFieldIfTransparentUnion(Ty); 8948 8949 if (isAggregateTypeForABI(Ty)) { 8950 // Records with non-trivial destructors/copy-constructors should not be 8951 // passed by value. 8952 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8953 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8954 8955 // Ignore empty structs/unions. 8956 if (isEmptyRecord(getContext(), Ty, true)) 8957 return ABIArgInfo::getIgnore(); 8958 8959 // Lower single-element structs to just pass a regular value. TODO: We 8960 // could do reasonable-size multiple-element structs too, using getExpand(), 8961 // though watch out for things like bitfields. 8962 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8963 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8964 8965 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8966 const RecordDecl *RD = RT->getDecl(); 8967 if (RD->hasFlexibleArrayMember()) 8968 return DefaultABIInfo::classifyArgumentType(Ty); 8969 } 8970 8971 // Pack aggregates <= 8 bytes into single VGPR or pair. 8972 uint64_t Size = getContext().getTypeSize(Ty); 8973 if (Size <= 64) { 8974 unsigned NumRegs = (Size + 31) / 32; 8975 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8976 8977 if (Size <= 16) 8978 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8979 8980 if (Size <= 32) 8981 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8982 8983 // XXX: Should this be i64 instead, and should the limit increase? 8984 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8985 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8986 } 8987 8988 if (NumRegsLeft > 0) { 8989 unsigned NumRegs = numRegsForType(Ty); 8990 if (NumRegsLeft >= NumRegs) { 8991 NumRegsLeft -= NumRegs; 8992 return ABIArgInfo::getDirect(); 8993 } 8994 } 8995 } 8996 8997 // Otherwise just do the default thing. 8998 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8999 if (!ArgInfo.isIndirect()) { 9000 unsigned NumRegs = numRegsForType(Ty); 9001 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9002 } 9003 9004 return ArgInfo; 9005 } 9006 9007 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9008 public: 9009 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9010 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9011 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9012 CodeGen::CodeGenModule &M) const override; 9013 unsigned getOpenCLKernelCallingConv() const override; 9014 9015 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9016 llvm::PointerType *T, QualType QT) const override; 9017 9018 LangAS getASTAllocaAddressSpace() const override { 9019 return getLangASFromTargetAS( 9020 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9021 } 9022 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9023 const VarDecl *D) const override; 9024 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9025 SyncScope Scope, 9026 llvm::AtomicOrdering Ordering, 9027 llvm::LLVMContext &Ctx) const override; 9028 llvm::Function * 9029 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9030 llvm::Function *BlockInvokeFunc, 9031 llvm::Value *BlockLiteral) const override; 9032 bool shouldEmitStaticExternCAliases() const override; 9033 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9034 }; 9035 } 9036 9037 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9038 llvm::GlobalValue *GV) { 9039 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9040 return false; 9041 9042 return D->hasAttr<OpenCLKernelAttr>() || 9043 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9044 (isa<VarDecl>(D) && 9045 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9046 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9047 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9048 } 9049 9050 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9051 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9052 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9053 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9054 GV->setDSOLocal(true); 9055 } 9056 9057 if (GV->isDeclaration()) 9058 return; 9059 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9060 if (!FD) 9061 return; 9062 9063 llvm::Function *F = cast<llvm::Function>(GV); 9064 9065 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9066 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9067 9068 9069 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9070 FD->hasAttr<OpenCLKernelAttr>(); 9071 const bool IsHIPKernel = M.getLangOpts().HIP && 9072 FD->hasAttr<CUDAGlobalAttr>(); 9073 if ((IsOpenCLKernel || IsHIPKernel) && 9074 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9075 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9076 9077 if (IsHIPKernel) 9078 F->addFnAttr("uniform-work-group-size", "true"); 9079 9080 9081 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9082 if (ReqdWGS || FlatWGS) { 9083 unsigned Min = 0; 9084 unsigned Max = 0; 9085 if (FlatWGS) { 9086 Min = FlatWGS->getMin() 9087 ->EvaluateKnownConstInt(M.getContext()) 9088 .getExtValue(); 9089 Max = FlatWGS->getMax() 9090 ->EvaluateKnownConstInt(M.getContext()) 9091 .getExtValue(); 9092 } 9093 if (ReqdWGS && Min == 0 && Max == 0) 9094 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9095 9096 if (Min != 0) { 9097 assert(Min <= Max && "Min must be less than or equal Max"); 9098 9099 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9100 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9101 } else 9102 assert(Max == 0 && "Max must be zero"); 9103 } else if (IsOpenCLKernel || IsHIPKernel) { 9104 // By default, restrict the maximum size to a value specified by 9105 // --gpu-max-threads-per-block=n or its default value for HIP. 9106 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9107 const unsigned DefaultMaxWorkGroupSize = 9108 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9109 : M.getLangOpts().GPUMaxThreadsPerBlock; 9110 std::string AttrVal = 9111 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9112 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9113 } 9114 9115 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9116 unsigned Min = 9117 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9118 unsigned Max = Attr->getMax() ? Attr->getMax() 9119 ->EvaluateKnownConstInt(M.getContext()) 9120 .getExtValue() 9121 : 0; 9122 9123 if (Min != 0) { 9124 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9125 9126 std::string AttrVal = llvm::utostr(Min); 9127 if (Max != 0) 9128 AttrVal = AttrVal + "," + llvm::utostr(Max); 9129 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9130 } else 9131 assert(Max == 0 && "Max must be zero"); 9132 } 9133 9134 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9135 unsigned NumSGPR = Attr->getNumSGPR(); 9136 9137 if (NumSGPR != 0) 9138 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9139 } 9140 9141 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9142 uint32_t NumVGPR = Attr->getNumVGPR(); 9143 9144 if (NumVGPR != 0) 9145 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9146 } 9147 9148 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9149 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9150 } 9151 9152 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9153 return llvm::CallingConv::AMDGPU_KERNEL; 9154 } 9155 9156 // Currently LLVM assumes null pointers always have value 0, 9157 // which results in incorrectly transformed IR. Therefore, instead of 9158 // emitting null pointers in private and local address spaces, a null 9159 // pointer in generic address space is emitted which is casted to a 9160 // pointer in local or private address space. 9161 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9162 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9163 QualType QT) const { 9164 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9165 return llvm::ConstantPointerNull::get(PT); 9166 9167 auto &Ctx = CGM.getContext(); 9168 auto NPT = llvm::PointerType::get(PT->getElementType(), 9169 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9170 return llvm::ConstantExpr::getAddrSpaceCast( 9171 llvm::ConstantPointerNull::get(NPT), PT); 9172 } 9173 9174 LangAS 9175 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9176 const VarDecl *D) const { 9177 assert(!CGM.getLangOpts().OpenCL && 9178 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9179 "Address space agnostic languages only"); 9180 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9181 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9182 if (!D) 9183 return DefaultGlobalAS; 9184 9185 LangAS AddrSpace = D->getType().getAddressSpace(); 9186 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9187 if (AddrSpace != LangAS::Default) 9188 return AddrSpace; 9189 9190 if (CGM.isTypeConstant(D->getType(), false)) { 9191 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9192 return ConstAS.getValue(); 9193 } 9194 return DefaultGlobalAS; 9195 } 9196 9197 llvm::SyncScope::ID 9198 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9199 SyncScope Scope, 9200 llvm::AtomicOrdering Ordering, 9201 llvm::LLVMContext &Ctx) const { 9202 std::string Name; 9203 switch (Scope) { 9204 case SyncScope::OpenCLWorkGroup: 9205 Name = "workgroup"; 9206 break; 9207 case SyncScope::OpenCLDevice: 9208 Name = "agent"; 9209 break; 9210 case SyncScope::OpenCLAllSVMDevices: 9211 Name = ""; 9212 break; 9213 case SyncScope::OpenCLSubGroup: 9214 Name = "wavefront"; 9215 } 9216 9217 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9218 if (!Name.empty()) 9219 Name = Twine(Twine(Name) + Twine("-")).str(); 9220 9221 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9222 } 9223 9224 return Ctx.getOrInsertSyncScopeID(Name); 9225 } 9226 9227 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9228 return false; 9229 } 9230 9231 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9232 const FunctionType *&FT) const { 9233 FT = getABIInfo().getContext().adjustFunctionType( 9234 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9235 } 9236 9237 //===----------------------------------------------------------------------===// 9238 // SPARC v8 ABI Implementation. 9239 // Based on the SPARC Compliance Definition version 2.4.1. 9240 // 9241 // Ensures that complex values are passed in registers. 9242 // 9243 namespace { 9244 class SparcV8ABIInfo : public DefaultABIInfo { 9245 public: 9246 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9247 9248 private: 9249 ABIArgInfo classifyReturnType(QualType RetTy) const; 9250 void computeInfo(CGFunctionInfo &FI) const override; 9251 }; 9252 } // end anonymous namespace 9253 9254 9255 ABIArgInfo 9256 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9257 if (Ty->isAnyComplexType()) { 9258 return ABIArgInfo::getDirect(); 9259 } 9260 else { 9261 return DefaultABIInfo::classifyReturnType(Ty); 9262 } 9263 } 9264 9265 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9266 9267 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9268 for (auto &Arg : FI.arguments()) 9269 Arg.info = classifyArgumentType(Arg.type); 9270 } 9271 9272 namespace { 9273 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9274 public: 9275 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9276 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9277 }; 9278 } // end anonymous namespace 9279 9280 //===----------------------------------------------------------------------===// 9281 // SPARC v9 ABI Implementation. 9282 // Based on the SPARC Compliance Definition version 2.4.1. 9283 // 9284 // Function arguments a mapped to a nominal "parameter array" and promoted to 9285 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9286 // the array, structs larger than 16 bytes are passed indirectly. 9287 // 9288 // One case requires special care: 9289 // 9290 // struct mixed { 9291 // int i; 9292 // float f; 9293 // }; 9294 // 9295 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9296 // parameter array, but the int is passed in an integer register, and the float 9297 // is passed in a floating point register. This is represented as two arguments 9298 // with the LLVM IR inreg attribute: 9299 // 9300 // declare void f(i32 inreg %i, float inreg %f) 9301 // 9302 // The code generator will only allocate 4 bytes from the parameter array for 9303 // the inreg arguments. All other arguments are allocated a multiple of 8 9304 // bytes. 9305 // 9306 namespace { 9307 class SparcV9ABIInfo : public ABIInfo { 9308 public: 9309 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9310 9311 private: 9312 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9313 void computeInfo(CGFunctionInfo &FI) const override; 9314 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9315 QualType Ty) const override; 9316 9317 // Coercion type builder for structs passed in registers. The coercion type 9318 // serves two purposes: 9319 // 9320 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9321 // in registers. 9322 // 2. Expose aligned floating point elements as first-level elements, so the 9323 // code generator knows to pass them in floating point registers. 9324 // 9325 // We also compute the InReg flag which indicates that the struct contains 9326 // aligned 32-bit floats. 9327 // 9328 struct CoerceBuilder { 9329 llvm::LLVMContext &Context; 9330 const llvm::DataLayout &DL; 9331 SmallVector<llvm::Type*, 8> Elems; 9332 uint64_t Size; 9333 bool InReg; 9334 9335 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9336 : Context(c), DL(dl), Size(0), InReg(false) {} 9337 9338 // Pad Elems with integers until Size is ToSize. 9339 void pad(uint64_t ToSize) { 9340 assert(ToSize >= Size && "Cannot remove elements"); 9341 if (ToSize == Size) 9342 return; 9343 9344 // Finish the current 64-bit word. 9345 uint64_t Aligned = llvm::alignTo(Size, 64); 9346 if (Aligned > Size && Aligned <= ToSize) { 9347 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9348 Size = Aligned; 9349 } 9350 9351 // Add whole 64-bit words. 9352 while (Size + 64 <= ToSize) { 9353 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9354 Size += 64; 9355 } 9356 9357 // Final in-word padding. 9358 if (Size < ToSize) { 9359 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9360 Size = ToSize; 9361 } 9362 } 9363 9364 // Add a floating point element at Offset. 9365 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9366 // Unaligned floats are treated as integers. 9367 if (Offset % Bits) 9368 return; 9369 // The InReg flag is only required if there are any floats < 64 bits. 9370 if (Bits < 64) 9371 InReg = true; 9372 pad(Offset); 9373 Elems.push_back(Ty); 9374 Size = Offset + Bits; 9375 } 9376 9377 // Add a struct type to the coercion type, starting at Offset (in bits). 9378 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9379 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9380 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9381 llvm::Type *ElemTy = StrTy->getElementType(i); 9382 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9383 switch (ElemTy->getTypeID()) { 9384 case llvm::Type::StructTyID: 9385 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9386 break; 9387 case llvm::Type::FloatTyID: 9388 addFloat(ElemOffset, ElemTy, 32); 9389 break; 9390 case llvm::Type::DoubleTyID: 9391 addFloat(ElemOffset, ElemTy, 64); 9392 break; 9393 case llvm::Type::FP128TyID: 9394 addFloat(ElemOffset, ElemTy, 128); 9395 break; 9396 case llvm::Type::PointerTyID: 9397 if (ElemOffset % 64 == 0) { 9398 pad(ElemOffset); 9399 Elems.push_back(ElemTy); 9400 Size += 64; 9401 } 9402 break; 9403 default: 9404 break; 9405 } 9406 } 9407 } 9408 9409 // Check if Ty is a usable substitute for the coercion type. 9410 bool isUsableType(llvm::StructType *Ty) const { 9411 return llvm::makeArrayRef(Elems) == Ty->elements(); 9412 } 9413 9414 // Get the coercion type as a literal struct type. 9415 llvm::Type *getType() const { 9416 if (Elems.size() == 1) 9417 return Elems.front(); 9418 else 9419 return llvm::StructType::get(Context, Elems); 9420 } 9421 }; 9422 }; 9423 } // end anonymous namespace 9424 9425 ABIArgInfo 9426 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9427 if (Ty->isVoidType()) 9428 return ABIArgInfo::getIgnore(); 9429 9430 uint64_t Size = getContext().getTypeSize(Ty); 9431 9432 // Anything too big to fit in registers is passed with an explicit indirect 9433 // pointer / sret pointer. 9434 if (Size > SizeLimit) 9435 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9436 9437 // Treat an enum type as its underlying type. 9438 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9439 Ty = EnumTy->getDecl()->getIntegerType(); 9440 9441 // Integer types smaller than a register are extended. 9442 if (Size < 64 && Ty->isIntegerType()) 9443 return ABIArgInfo::getExtend(Ty); 9444 9445 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9446 if (EIT->getNumBits() < 64) 9447 return ABIArgInfo::getExtend(Ty); 9448 9449 // Other non-aggregates go in registers. 9450 if (!isAggregateTypeForABI(Ty)) 9451 return ABIArgInfo::getDirect(); 9452 9453 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9454 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9455 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9456 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9457 9458 // This is a small aggregate type that should be passed in registers. 9459 // Build a coercion type from the LLVM struct type. 9460 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9461 if (!StrTy) 9462 return ABIArgInfo::getDirect(); 9463 9464 CoerceBuilder CB(getVMContext(), getDataLayout()); 9465 CB.addStruct(0, StrTy); 9466 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9467 9468 // Try to use the original type for coercion. 9469 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9470 9471 if (CB.InReg) 9472 return ABIArgInfo::getDirectInReg(CoerceTy); 9473 else 9474 return ABIArgInfo::getDirect(CoerceTy); 9475 } 9476 9477 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9478 QualType Ty) const { 9479 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9480 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9481 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9482 AI.setCoerceToType(ArgTy); 9483 9484 CharUnits SlotSize = CharUnits::fromQuantity(8); 9485 9486 CGBuilderTy &Builder = CGF.Builder; 9487 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9488 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9489 9490 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9491 9492 Address ArgAddr = Address::invalid(); 9493 CharUnits Stride; 9494 switch (AI.getKind()) { 9495 case ABIArgInfo::Expand: 9496 case ABIArgInfo::CoerceAndExpand: 9497 case ABIArgInfo::InAlloca: 9498 llvm_unreachable("Unsupported ABI kind for va_arg"); 9499 9500 case ABIArgInfo::Extend: { 9501 Stride = SlotSize; 9502 CharUnits Offset = SlotSize - TypeInfo.Width; 9503 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9504 break; 9505 } 9506 9507 case ABIArgInfo::Direct: { 9508 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9509 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9510 ArgAddr = Addr; 9511 break; 9512 } 9513 9514 case ABIArgInfo::Indirect: 9515 case ABIArgInfo::IndirectAliased: 9516 Stride = SlotSize; 9517 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9518 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9519 TypeInfo.Align); 9520 break; 9521 9522 case ABIArgInfo::Ignore: 9523 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9524 } 9525 9526 // Update VAList. 9527 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9528 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9529 9530 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9531 } 9532 9533 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9534 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9535 for (auto &I : FI.arguments()) 9536 I.info = classifyType(I.type, 16 * 8); 9537 } 9538 9539 namespace { 9540 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9541 public: 9542 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9543 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9544 9545 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9546 return 14; 9547 } 9548 9549 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9550 llvm::Value *Address) const override; 9551 }; 9552 } // end anonymous namespace 9553 9554 bool 9555 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9556 llvm::Value *Address) const { 9557 // This is calculated from the LLVM and GCC tables and verified 9558 // against gcc output. AFAIK all ABIs use the same encoding. 9559 9560 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9561 9562 llvm::IntegerType *i8 = CGF.Int8Ty; 9563 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9564 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9565 9566 // 0-31: the 8-byte general-purpose registers 9567 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9568 9569 // 32-63: f0-31, the 4-byte floating-point registers 9570 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9571 9572 // Y = 64 9573 // PSR = 65 9574 // WIM = 66 9575 // TBR = 67 9576 // PC = 68 9577 // NPC = 69 9578 // FSR = 70 9579 // CSR = 71 9580 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9581 9582 // 72-87: d0-15, the 8-byte floating-point registers 9583 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9584 9585 return false; 9586 } 9587 9588 // ARC ABI implementation. 9589 namespace { 9590 9591 class ARCABIInfo : public DefaultABIInfo { 9592 public: 9593 using DefaultABIInfo::DefaultABIInfo; 9594 9595 private: 9596 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9597 QualType Ty) const override; 9598 9599 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9600 if (!State.FreeRegs) 9601 return; 9602 if (Info.isIndirect() && Info.getInReg()) 9603 State.FreeRegs--; 9604 else if (Info.isDirect() && Info.getInReg()) { 9605 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9606 if (sz < State.FreeRegs) 9607 State.FreeRegs -= sz; 9608 else 9609 State.FreeRegs = 0; 9610 } 9611 } 9612 9613 void computeInfo(CGFunctionInfo &FI) const override { 9614 CCState State(FI); 9615 // ARC uses 8 registers to pass arguments. 9616 State.FreeRegs = 8; 9617 9618 if (!getCXXABI().classifyReturnType(FI)) 9619 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9620 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9621 for (auto &I : FI.arguments()) { 9622 I.info = classifyArgumentType(I.type, State.FreeRegs); 9623 updateState(I.info, I.type, State); 9624 } 9625 } 9626 9627 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9628 ABIArgInfo getIndirectByValue(QualType Ty) const; 9629 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9630 ABIArgInfo classifyReturnType(QualType RetTy) const; 9631 }; 9632 9633 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9634 public: 9635 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9636 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9637 }; 9638 9639 9640 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9641 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9642 getNaturalAlignIndirect(Ty, false); 9643 } 9644 9645 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9646 // Compute the byval alignment. 9647 const unsigned MinABIStackAlignInBytes = 4; 9648 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9649 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9650 TypeAlign > MinABIStackAlignInBytes); 9651 } 9652 9653 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9654 QualType Ty) const { 9655 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9656 getContext().getTypeInfoInChars(Ty), 9657 CharUnits::fromQuantity(4), true); 9658 } 9659 9660 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9661 uint8_t FreeRegs) const { 9662 // Handle the generic C++ ABI. 9663 const RecordType *RT = Ty->getAs<RecordType>(); 9664 if (RT) { 9665 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9666 if (RAA == CGCXXABI::RAA_Indirect) 9667 return getIndirectByRef(Ty, FreeRegs > 0); 9668 9669 if (RAA == CGCXXABI::RAA_DirectInMemory) 9670 return getIndirectByValue(Ty); 9671 } 9672 9673 // Treat an enum type as its underlying type. 9674 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9675 Ty = EnumTy->getDecl()->getIntegerType(); 9676 9677 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9678 9679 if (isAggregateTypeForABI(Ty)) { 9680 // Structures with flexible arrays are always indirect. 9681 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9682 return getIndirectByValue(Ty); 9683 9684 // Ignore empty structs/unions. 9685 if (isEmptyRecord(getContext(), Ty, true)) 9686 return ABIArgInfo::getIgnore(); 9687 9688 llvm::LLVMContext &LLVMContext = getVMContext(); 9689 9690 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9691 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9692 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9693 9694 return FreeRegs >= SizeInRegs ? 9695 ABIArgInfo::getDirectInReg(Result) : 9696 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9697 } 9698 9699 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9700 if (EIT->getNumBits() > 64) 9701 return getIndirectByValue(Ty); 9702 9703 return isPromotableIntegerTypeForABI(Ty) 9704 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9705 : ABIArgInfo::getExtend(Ty)) 9706 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9707 : ABIArgInfo::getDirect()); 9708 } 9709 9710 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9711 if (RetTy->isAnyComplexType()) 9712 return ABIArgInfo::getDirectInReg(); 9713 9714 // Arguments of size > 4 registers are indirect. 9715 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9716 if (RetSize > 4) 9717 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9718 9719 return DefaultABIInfo::classifyReturnType(RetTy); 9720 } 9721 9722 } // End anonymous namespace. 9723 9724 //===----------------------------------------------------------------------===// 9725 // XCore ABI Implementation 9726 //===----------------------------------------------------------------------===// 9727 9728 namespace { 9729 9730 /// A SmallStringEnc instance is used to build up the TypeString by passing 9731 /// it by reference between functions that append to it. 9732 typedef llvm::SmallString<128> SmallStringEnc; 9733 9734 /// TypeStringCache caches the meta encodings of Types. 9735 /// 9736 /// The reason for caching TypeStrings is two fold: 9737 /// 1. To cache a type's encoding for later uses; 9738 /// 2. As a means to break recursive member type inclusion. 9739 /// 9740 /// A cache Entry can have a Status of: 9741 /// NonRecursive: The type encoding is not recursive; 9742 /// Recursive: The type encoding is recursive; 9743 /// Incomplete: An incomplete TypeString; 9744 /// IncompleteUsed: An incomplete TypeString that has been used in a 9745 /// Recursive type encoding. 9746 /// 9747 /// A NonRecursive entry will have all of its sub-members expanded as fully 9748 /// as possible. Whilst it may contain types which are recursive, the type 9749 /// itself is not recursive and thus its encoding may be safely used whenever 9750 /// the type is encountered. 9751 /// 9752 /// A Recursive entry will have all of its sub-members expanded as fully as 9753 /// possible. The type itself is recursive and it may contain other types which 9754 /// are recursive. The Recursive encoding must not be used during the expansion 9755 /// of a recursive type's recursive branch. For simplicity the code uses 9756 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9757 /// 9758 /// An Incomplete entry is always a RecordType and only encodes its 9759 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9760 /// are placed into the cache during type expansion as a means to identify and 9761 /// handle recursive inclusion of types as sub-members. If there is recursion 9762 /// the entry becomes IncompleteUsed. 9763 /// 9764 /// During the expansion of a RecordType's members: 9765 /// 9766 /// If the cache contains a NonRecursive encoding for the member type, the 9767 /// cached encoding is used; 9768 /// 9769 /// If the cache contains a Recursive encoding for the member type, the 9770 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9771 /// 9772 /// If the member is a RecordType, an Incomplete encoding is placed into the 9773 /// cache to break potential recursive inclusion of itself as a sub-member; 9774 /// 9775 /// Once a member RecordType has been expanded, its temporary incomplete 9776 /// entry is removed from the cache. If a Recursive encoding was swapped out 9777 /// it is swapped back in; 9778 /// 9779 /// If an incomplete entry is used to expand a sub-member, the incomplete 9780 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9781 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9782 /// 9783 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9784 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9785 /// Else the member is part of a recursive type and thus the recursion has 9786 /// been exited too soon for the encoding to be correct for the member. 9787 /// 9788 class TypeStringCache { 9789 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9790 struct Entry { 9791 std::string Str; // The encoded TypeString for the type. 9792 enum Status State; // Information about the encoding in 'Str'. 9793 std::string Swapped; // A temporary place holder for a Recursive encoding 9794 // during the expansion of RecordType's members. 9795 }; 9796 std::map<const IdentifierInfo *, struct Entry> Map; 9797 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9798 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9799 public: 9800 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9801 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9802 bool removeIncomplete(const IdentifierInfo *ID); 9803 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9804 bool IsRecursive); 9805 StringRef lookupStr(const IdentifierInfo *ID); 9806 }; 9807 9808 /// TypeString encodings for enum & union fields must be order. 9809 /// FieldEncoding is a helper for this ordering process. 9810 class FieldEncoding { 9811 bool HasName; 9812 std::string Enc; 9813 public: 9814 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9815 StringRef str() { return Enc; } 9816 bool operator<(const FieldEncoding &rhs) const { 9817 if (HasName != rhs.HasName) return HasName; 9818 return Enc < rhs.Enc; 9819 } 9820 }; 9821 9822 class XCoreABIInfo : public DefaultABIInfo { 9823 public: 9824 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9825 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9826 QualType Ty) const override; 9827 }; 9828 9829 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9830 mutable TypeStringCache TSC; 9831 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9832 const CodeGen::CodeGenModule &M) const; 9833 9834 public: 9835 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9836 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9837 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9838 const llvm::MapVector<GlobalDecl, StringRef> 9839 &MangledDeclNames) const override; 9840 }; 9841 9842 } // End anonymous namespace. 9843 9844 // TODO: this implementation is likely now redundant with the default 9845 // EmitVAArg. 9846 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9847 QualType Ty) const { 9848 CGBuilderTy &Builder = CGF.Builder; 9849 9850 // Get the VAList. 9851 CharUnits SlotSize = CharUnits::fromQuantity(4); 9852 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9853 9854 // Handle the argument. 9855 ABIArgInfo AI = classifyArgumentType(Ty); 9856 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9857 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9858 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9859 AI.setCoerceToType(ArgTy); 9860 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9861 9862 Address Val = Address::invalid(); 9863 CharUnits ArgSize = CharUnits::Zero(); 9864 switch (AI.getKind()) { 9865 case ABIArgInfo::Expand: 9866 case ABIArgInfo::CoerceAndExpand: 9867 case ABIArgInfo::InAlloca: 9868 llvm_unreachable("Unsupported ABI kind for va_arg"); 9869 case ABIArgInfo::Ignore: 9870 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9871 ArgSize = CharUnits::Zero(); 9872 break; 9873 case ABIArgInfo::Extend: 9874 case ABIArgInfo::Direct: 9875 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9876 ArgSize = CharUnits::fromQuantity( 9877 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9878 ArgSize = ArgSize.alignTo(SlotSize); 9879 break; 9880 case ABIArgInfo::Indirect: 9881 case ABIArgInfo::IndirectAliased: 9882 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9883 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9884 ArgSize = SlotSize; 9885 break; 9886 } 9887 9888 // Increment the VAList. 9889 if (!ArgSize.isZero()) { 9890 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9891 Builder.CreateStore(APN.getPointer(), VAListAddr); 9892 } 9893 9894 return Val; 9895 } 9896 9897 /// During the expansion of a RecordType, an incomplete TypeString is placed 9898 /// into the cache as a means to identify and break recursion. 9899 /// If there is a Recursive encoding in the cache, it is swapped out and will 9900 /// be reinserted by removeIncomplete(). 9901 /// All other types of encoding should have been used rather than arriving here. 9902 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9903 std::string StubEnc) { 9904 if (!ID) 9905 return; 9906 Entry &E = Map[ID]; 9907 assert( (E.Str.empty() || E.State == Recursive) && 9908 "Incorrectly use of addIncomplete"); 9909 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9910 E.Swapped.swap(E.Str); // swap out the Recursive 9911 E.Str.swap(StubEnc); 9912 E.State = Incomplete; 9913 ++IncompleteCount; 9914 } 9915 9916 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9917 /// must be removed from the cache. 9918 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9919 /// Returns true if the RecordType was defined recursively. 9920 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9921 if (!ID) 9922 return false; 9923 auto I = Map.find(ID); 9924 assert(I != Map.end() && "Entry not present"); 9925 Entry &E = I->second; 9926 assert( (E.State == Incomplete || 9927 E.State == IncompleteUsed) && 9928 "Entry must be an incomplete type"); 9929 bool IsRecursive = false; 9930 if (E.State == IncompleteUsed) { 9931 // We made use of our Incomplete encoding, thus we are recursive. 9932 IsRecursive = true; 9933 --IncompleteUsedCount; 9934 } 9935 if (E.Swapped.empty()) 9936 Map.erase(I); 9937 else { 9938 // Swap the Recursive back. 9939 E.Swapped.swap(E.Str); 9940 E.Swapped.clear(); 9941 E.State = Recursive; 9942 } 9943 --IncompleteCount; 9944 return IsRecursive; 9945 } 9946 9947 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9948 /// Recursive (viz: all sub-members were expanded as fully as possible). 9949 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9950 bool IsRecursive) { 9951 if (!ID || IncompleteUsedCount) 9952 return; // No key or it is is an incomplete sub-type so don't add. 9953 Entry &E = Map[ID]; 9954 if (IsRecursive && !E.Str.empty()) { 9955 assert(E.State==Recursive && E.Str.size() == Str.size() && 9956 "This is not the same Recursive entry"); 9957 // The parent container was not recursive after all, so we could have used 9958 // this Recursive sub-member entry after all, but we assumed the worse when 9959 // we started viz: IncompleteCount!=0. 9960 return; 9961 } 9962 assert(E.Str.empty() && "Entry already present"); 9963 E.Str = Str.str(); 9964 E.State = IsRecursive? Recursive : NonRecursive; 9965 } 9966 9967 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9968 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9969 /// encoding is Recursive, return an empty StringRef. 9970 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9971 if (!ID) 9972 return StringRef(); // We have no key. 9973 auto I = Map.find(ID); 9974 if (I == Map.end()) 9975 return StringRef(); // We have no encoding. 9976 Entry &E = I->second; 9977 if (E.State == Recursive && IncompleteCount) 9978 return StringRef(); // We don't use Recursive encodings for member types. 9979 9980 if (E.State == Incomplete) { 9981 // The incomplete type is being used to break out of recursion. 9982 E.State = IncompleteUsed; 9983 ++IncompleteUsedCount; 9984 } 9985 return E.Str; 9986 } 9987 9988 /// The XCore ABI includes a type information section that communicates symbol 9989 /// type information to the linker. The linker uses this information to verify 9990 /// safety/correctness of things such as array bound and pointers et al. 9991 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9992 /// This type information (TypeString) is emitted into meta data for all global 9993 /// symbols: definitions, declarations, functions & variables. 9994 /// 9995 /// The TypeString carries type, qualifier, name, size & value details. 9996 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9997 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9998 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9999 /// 10000 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10001 const CodeGen::CodeGenModule &CGM, 10002 TypeStringCache &TSC); 10003 10004 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10005 void XCoreTargetCodeGenInfo::emitTargetMD( 10006 const Decl *D, llvm::GlobalValue *GV, 10007 const CodeGen::CodeGenModule &CGM) const { 10008 SmallStringEnc Enc; 10009 if (getTypeString(Enc, D, CGM, TSC)) { 10010 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10011 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10012 llvm::MDString::get(Ctx, Enc.str())}; 10013 llvm::NamedMDNode *MD = 10014 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10015 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10016 } 10017 } 10018 10019 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10020 CodeGen::CodeGenModule &CGM, 10021 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10022 // Warning, new MangledDeclNames may be appended within this loop. 10023 // We rely on MapVector insertions adding new elements to the end 10024 // of the container. 10025 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10026 auto Val = *(MangledDeclNames.begin() + I); 10027 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10028 if (GV) { 10029 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10030 emitTargetMD(D, GV, CGM); 10031 } 10032 } 10033 } 10034 //===----------------------------------------------------------------------===// 10035 // SPIR ABI Implementation 10036 //===----------------------------------------------------------------------===// 10037 10038 namespace { 10039 class SPIRABIInfo : public DefaultABIInfo { 10040 public: 10041 SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10042 10043 private: 10044 void setCCs(); 10045 }; 10046 } // end anonymous namespace 10047 namespace { 10048 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10049 public: 10050 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10051 : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {} 10052 unsigned getOpenCLKernelCallingConv() const override; 10053 }; 10054 10055 } // End anonymous namespace. 10056 void SPIRABIInfo::setCCs() { 10057 assert(getRuntimeCC() == llvm::CallingConv::C); 10058 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10059 } 10060 10061 namespace clang { 10062 namespace CodeGen { 10063 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10064 DefaultABIInfo SPIRABI(CGM.getTypes()); 10065 SPIRABI.computeInfo(FI); 10066 } 10067 } 10068 } 10069 10070 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10071 return llvm::CallingConv::SPIR_KERNEL; 10072 } 10073 10074 static bool appendType(SmallStringEnc &Enc, QualType QType, 10075 const CodeGen::CodeGenModule &CGM, 10076 TypeStringCache &TSC); 10077 10078 /// Helper function for appendRecordType(). 10079 /// Builds a SmallVector containing the encoded field types in declaration 10080 /// order. 10081 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10082 const RecordDecl *RD, 10083 const CodeGen::CodeGenModule &CGM, 10084 TypeStringCache &TSC) { 10085 for (const auto *Field : RD->fields()) { 10086 SmallStringEnc Enc; 10087 Enc += "m("; 10088 Enc += Field->getName(); 10089 Enc += "){"; 10090 if (Field->isBitField()) { 10091 Enc += "b("; 10092 llvm::raw_svector_ostream OS(Enc); 10093 OS << Field->getBitWidthValue(CGM.getContext()); 10094 Enc += ':'; 10095 } 10096 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10097 return false; 10098 if (Field->isBitField()) 10099 Enc += ')'; 10100 Enc += '}'; 10101 FE.emplace_back(!Field->getName().empty(), Enc); 10102 } 10103 return true; 10104 } 10105 10106 /// Appends structure and union types to Enc and adds encoding to cache. 10107 /// Recursively calls appendType (via extractFieldType) for each field. 10108 /// Union types have their fields ordered according to the ABI. 10109 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10110 const CodeGen::CodeGenModule &CGM, 10111 TypeStringCache &TSC, const IdentifierInfo *ID) { 10112 // Append the cached TypeString if we have one. 10113 StringRef TypeString = TSC.lookupStr(ID); 10114 if (!TypeString.empty()) { 10115 Enc += TypeString; 10116 return true; 10117 } 10118 10119 // Start to emit an incomplete TypeString. 10120 size_t Start = Enc.size(); 10121 Enc += (RT->isUnionType()? 'u' : 's'); 10122 Enc += '('; 10123 if (ID) 10124 Enc += ID->getName(); 10125 Enc += "){"; 10126 10127 // We collect all encoded fields and order as necessary. 10128 bool IsRecursive = false; 10129 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10130 if (RD && !RD->field_empty()) { 10131 // An incomplete TypeString stub is placed in the cache for this RecordType 10132 // so that recursive calls to this RecordType will use it whilst building a 10133 // complete TypeString for this RecordType. 10134 SmallVector<FieldEncoding, 16> FE; 10135 std::string StubEnc(Enc.substr(Start).str()); 10136 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10137 TSC.addIncomplete(ID, std::move(StubEnc)); 10138 if (!extractFieldType(FE, RD, CGM, TSC)) { 10139 (void) TSC.removeIncomplete(ID); 10140 return false; 10141 } 10142 IsRecursive = TSC.removeIncomplete(ID); 10143 // The ABI requires unions to be sorted but not structures. 10144 // See FieldEncoding::operator< for sort algorithm. 10145 if (RT->isUnionType()) 10146 llvm::sort(FE); 10147 // We can now complete the TypeString. 10148 unsigned E = FE.size(); 10149 for (unsigned I = 0; I != E; ++I) { 10150 if (I) 10151 Enc += ','; 10152 Enc += FE[I].str(); 10153 } 10154 } 10155 Enc += '}'; 10156 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10157 return true; 10158 } 10159 10160 /// Appends enum types to Enc and adds the encoding to the cache. 10161 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10162 TypeStringCache &TSC, 10163 const IdentifierInfo *ID) { 10164 // Append the cached TypeString if we have one. 10165 StringRef TypeString = TSC.lookupStr(ID); 10166 if (!TypeString.empty()) { 10167 Enc += TypeString; 10168 return true; 10169 } 10170 10171 size_t Start = Enc.size(); 10172 Enc += "e("; 10173 if (ID) 10174 Enc += ID->getName(); 10175 Enc += "){"; 10176 10177 // We collect all encoded enumerations and order them alphanumerically. 10178 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10179 SmallVector<FieldEncoding, 16> FE; 10180 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10181 ++I) { 10182 SmallStringEnc EnumEnc; 10183 EnumEnc += "m("; 10184 EnumEnc += I->getName(); 10185 EnumEnc += "){"; 10186 I->getInitVal().toString(EnumEnc); 10187 EnumEnc += '}'; 10188 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10189 } 10190 llvm::sort(FE); 10191 unsigned E = FE.size(); 10192 for (unsigned I = 0; I != E; ++I) { 10193 if (I) 10194 Enc += ','; 10195 Enc += FE[I].str(); 10196 } 10197 } 10198 Enc += '}'; 10199 TSC.addIfComplete(ID, Enc.substr(Start), false); 10200 return true; 10201 } 10202 10203 /// Appends type's qualifier to Enc. 10204 /// This is done prior to appending the type's encoding. 10205 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10206 // Qualifiers are emitted in alphabetical order. 10207 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10208 int Lookup = 0; 10209 if (QT.isConstQualified()) 10210 Lookup += 1<<0; 10211 if (QT.isRestrictQualified()) 10212 Lookup += 1<<1; 10213 if (QT.isVolatileQualified()) 10214 Lookup += 1<<2; 10215 Enc += Table[Lookup]; 10216 } 10217 10218 /// Appends built-in types to Enc. 10219 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10220 const char *EncType; 10221 switch (BT->getKind()) { 10222 case BuiltinType::Void: 10223 EncType = "0"; 10224 break; 10225 case BuiltinType::Bool: 10226 EncType = "b"; 10227 break; 10228 case BuiltinType::Char_U: 10229 EncType = "uc"; 10230 break; 10231 case BuiltinType::UChar: 10232 EncType = "uc"; 10233 break; 10234 case BuiltinType::SChar: 10235 EncType = "sc"; 10236 break; 10237 case BuiltinType::UShort: 10238 EncType = "us"; 10239 break; 10240 case BuiltinType::Short: 10241 EncType = "ss"; 10242 break; 10243 case BuiltinType::UInt: 10244 EncType = "ui"; 10245 break; 10246 case BuiltinType::Int: 10247 EncType = "si"; 10248 break; 10249 case BuiltinType::ULong: 10250 EncType = "ul"; 10251 break; 10252 case BuiltinType::Long: 10253 EncType = "sl"; 10254 break; 10255 case BuiltinType::ULongLong: 10256 EncType = "ull"; 10257 break; 10258 case BuiltinType::LongLong: 10259 EncType = "sll"; 10260 break; 10261 case BuiltinType::Float: 10262 EncType = "ft"; 10263 break; 10264 case BuiltinType::Double: 10265 EncType = "d"; 10266 break; 10267 case BuiltinType::LongDouble: 10268 EncType = "ld"; 10269 break; 10270 default: 10271 return false; 10272 } 10273 Enc += EncType; 10274 return true; 10275 } 10276 10277 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10278 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10279 const CodeGen::CodeGenModule &CGM, 10280 TypeStringCache &TSC) { 10281 Enc += "p("; 10282 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10283 return false; 10284 Enc += ')'; 10285 return true; 10286 } 10287 10288 /// Appends array encoding to Enc before calling appendType for the element. 10289 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10290 const ArrayType *AT, 10291 const CodeGen::CodeGenModule &CGM, 10292 TypeStringCache &TSC, StringRef NoSizeEnc) { 10293 if (AT->getSizeModifier() != ArrayType::Normal) 10294 return false; 10295 Enc += "a("; 10296 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10297 CAT->getSize().toStringUnsigned(Enc); 10298 else 10299 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10300 Enc += ':'; 10301 // The Qualifiers should be attached to the type rather than the array. 10302 appendQualifier(Enc, QT); 10303 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10304 return false; 10305 Enc += ')'; 10306 return true; 10307 } 10308 10309 /// Appends a function encoding to Enc, calling appendType for the return type 10310 /// and the arguments. 10311 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10312 const CodeGen::CodeGenModule &CGM, 10313 TypeStringCache &TSC) { 10314 Enc += "f{"; 10315 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10316 return false; 10317 Enc += "}("; 10318 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10319 // N.B. we are only interested in the adjusted param types. 10320 auto I = FPT->param_type_begin(); 10321 auto E = FPT->param_type_end(); 10322 if (I != E) { 10323 do { 10324 if (!appendType(Enc, *I, CGM, TSC)) 10325 return false; 10326 ++I; 10327 if (I != E) 10328 Enc += ','; 10329 } while (I != E); 10330 if (FPT->isVariadic()) 10331 Enc += ",va"; 10332 } else { 10333 if (FPT->isVariadic()) 10334 Enc += "va"; 10335 else 10336 Enc += '0'; 10337 } 10338 } 10339 Enc += ')'; 10340 return true; 10341 } 10342 10343 /// Handles the type's qualifier before dispatching a call to handle specific 10344 /// type encodings. 10345 static bool appendType(SmallStringEnc &Enc, QualType QType, 10346 const CodeGen::CodeGenModule &CGM, 10347 TypeStringCache &TSC) { 10348 10349 QualType QT = QType.getCanonicalType(); 10350 10351 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10352 // The Qualifiers should be attached to the type rather than the array. 10353 // Thus we don't call appendQualifier() here. 10354 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10355 10356 appendQualifier(Enc, QT); 10357 10358 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10359 return appendBuiltinType(Enc, BT); 10360 10361 if (const PointerType *PT = QT->getAs<PointerType>()) 10362 return appendPointerType(Enc, PT, CGM, TSC); 10363 10364 if (const EnumType *ET = QT->getAs<EnumType>()) 10365 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10366 10367 if (const RecordType *RT = QT->getAsStructureType()) 10368 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10369 10370 if (const RecordType *RT = QT->getAsUnionType()) 10371 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10372 10373 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10374 return appendFunctionType(Enc, FT, CGM, TSC); 10375 10376 return false; 10377 } 10378 10379 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10380 const CodeGen::CodeGenModule &CGM, 10381 TypeStringCache &TSC) { 10382 if (!D) 10383 return false; 10384 10385 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10386 if (FD->getLanguageLinkage() != CLanguageLinkage) 10387 return false; 10388 return appendType(Enc, FD->getType(), CGM, TSC); 10389 } 10390 10391 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10392 if (VD->getLanguageLinkage() != CLanguageLinkage) 10393 return false; 10394 QualType QT = VD->getType().getCanonicalType(); 10395 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10396 // Global ArrayTypes are given a size of '*' if the size is unknown. 10397 // The Qualifiers should be attached to the type rather than the array. 10398 // Thus we don't call appendQualifier() here. 10399 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10400 } 10401 return appendType(Enc, QT, CGM, TSC); 10402 } 10403 return false; 10404 } 10405 10406 //===----------------------------------------------------------------------===// 10407 // RISCV ABI Implementation 10408 //===----------------------------------------------------------------------===// 10409 10410 namespace { 10411 class RISCVABIInfo : public DefaultABIInfo { 10412 private: 10413 // Size of the integer ('x') registers in bits. 10414 unsigned XLen; 10415 // Size of the floating point ('f') registers in bits. Note that the target 10416 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10417 // with soft float ABI has FLen==0). 10418 unsigned FLen; 10419 static const int NumArgGPRs = 8; 10420 static const int NumArgFPRs = 8; 10421 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10422 llvm::Type *&Field1Ty, 10423 CharUnits &Field1Off, 10424 llvm::Type *&Field2Ty, 10425 CharUnits &Field2Off) const; 10426 10427 public: 10428 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10429 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10430 10431 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10432 // non-virtual, but computeInfo is virtual, so we overload it. 10433 void computeInfo(CGFunctionInfo &FI) const override; 10434 10435 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10436 int &ArgFPRsLeft) const; 10437 ABIArgInfo classifyReturnType(QualType RetTy) const; 10438 10439 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10440 QualType Ty) const override; 10441 10442 ABIArgInfo extendType(QualType Ty) const; 10443 10444 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10445 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10446 CharUnits &Field2Off, int &NeededArgGPRs, 10447 int &NeededArgFPRs) const; 10448 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10449 CharUnits Field1Off, 10450 llvm::Type *Field2Ty, 10451 CharUnits Field2Off) const; 10452 }; 10453 } // end anonymous namespace 10454 10455 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10456 QualType RetTy = FI.getReturnType(); 10457 if (!getCXXABI().classifyReturnType(FI)) 10458 FI.getReturnInfo() = classifyReturnType(RetTy); 10459 10460 // IsRetIndirect is true if classifyArgumentType indicated the value should 10461 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10462 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10463 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10464 // list and pass indirectly on RV32. 10465 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10466 if (!IsRetIndirect && RetTy->isScalarType() && 10467 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10468 if (RetTy->isComplexType() && FLen) { 10469 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10470 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10471 } else { 10472 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10473 IsRetIndirect = true; 10474 } 10475 } 10476 10477 // We must track the number of GPRs used in order to conform to the RISC-V 10478 // ABI, as integer scalars passed in registers should have signext/zeroext 10479 // when promoted, but are anyext if passed on the stack. As GPR usage is 10480 // different for variadic arguments, we must also track whether we are 10481 // examining a vararg or not. 10482 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10483 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10484 int NumFixedArgs = FI.getNumRequiredArgs(); 10485 10486 int ArgNum = 0; 10487 for (auto &ArgInfo : FI.arguments()) { 10488 bool IsFixed = ArgNum < NumFixedArgs; 10489 ArgInfo.info = 10490 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10491 ArgNum++; 10492 } 10493 } 10494 10495 // Returns true if the struct is a potential candidate for the floating point 10496 // calling convention. If this function returns true, the caller is 10497 // responsible for checking that if there is only a single field then that 10498 // field is a float. 10499 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10500 llvm::Type *&Field1Ty, 10501 CharUnits &Field1Off, 10502 llvm::Type *&Field2Ty, 10503 CharUnits &Field2Off) const { 10504 bool IsInt = Ty->isIntegralOrEnumerationType(); 10505 bool IsFloat = Ty->isRealFloatingType(); 10506 10507 if (IsInt || IsFloat) { 10508 uint64_t Size = getContext().getTypeSize(Ty); 10509 if (IsInt && Size > XLen) 10510 return false; 10511 // Can't be eligible if larger than the FP registers. Half precision isn't 10512 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10513 // default to the integer ABI in that case. 10514 if (IsFloat && (Size > FLen || Size < 32)) 10515 return false; 10516 // Can't be eligible if an integer type was already found (int+int pairs 10517 // are not eligible). 10518 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10519 return false; 10520 if (!Field1Ty) { 10521 Field1Ty = CGT.ConvertType(Ty); 10522 Field1Off = CurOff; 10523 return true; 10524 } 10525 if (!Field2Ty) { 10526 Field2Ty = CGT.ConvertType(Ty); 10527 Field2Off = CurOff; 10528 return true; 10529 } 10530 return false; 10531 } 10532 10533 if (auto CTy = Ty->getAs<ComplexType>()) { 10534 if (Field1Ty) 10535 return false; 10536 QualType EltTy = CTy->getElementType(); 10537 if (getContext().getTypeSize(EltTy) > FLen) 10538 return false; 10539 Field1Ty = CGT.ConvertType(EltTy); 10540 Field1Off = CurOff; 10541 Field2Ty = Field1Ty; 10542 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10543 return true; 10544 } 10545 10546 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10547 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10548 QualType EltTy = ATy->getElementType(); 10549 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10550 for (uint64_t i = 0; i < ArraySize; ++i) { 10551 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10552 Field1Off, Field2Ty, Field2Off); 10553 if (!Ret) 10554 return false; 10555 CurOff += EltSize; 10556 } 10557 return true; 10558 } 10559 10560 if (const auto *RTy = Ty->getAs<RecordType>()) { 10561 // Structures with either a non-trivial destructor or a non-trivial 10562 // copy constructor are not eligible for the FP calling convention. 10563 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10564 return false; 10565 if (isEmptyRecord(getContext(), Ty, true)) 10566 return true; 10567 const RecordDecl *RD = RTy->getDecl(); 10568 // Unions aren't eligible unless they're empty (which is caught above). 10569 if (RD->isUnion()) 10570 return false; 10571 int ZeroWidthBitFieldCount = 0; 10572 for (const FieldDecl *FD : RD->fields()) { 10573 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10574 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10575 QualType QTy = FD->getType(); 10576 if (FD->isBitField()) { 10577 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10578 // Allow a bitfield with a type greater than XLen as long as the 10579 // bitwidth is XLen or less. 10580 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10581 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10582 if (BitWidth == 0) { 10583 ZeroWidthBitFieldCount++; 10584 continue; 10585 } 10586 } 10587 10588 bool Ret = detectFPCCEligibleStructHelper( 10589 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10590 Field1Ty, Field1Off, Field2Ty, Field2Off); 10591 if (!Ret) 10592 return false; 10593 10594 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10595 // or int+fp structs, but are ignored for a struct with an fp field and 10596 // any number of zero-width bitfields. 10597 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10598 return false; 10599 } 10600 return Field1Ty != nullptr; 10601 } 10602 10603 return false; 10604 } 10605 10606 // Determine if a struct is eligible for passing according to the floating 10607 // point calling convention (i.e., when flattened it contains a single fp 10608 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10609 // NeededArgGPRs are incremented appropriately. 10610 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10611 CharUnits &Field1Off, 10612 llvm::Type *&Field2Ty, 10613 CharUnits &Field2Off, 10614 int &NeededArgGPRs, 10615 int &NeededArgFPRs) const { 10616 Field1Ty = nullptr; 10617 Field2Ty = nullptr; 10618 NeededArgGPRs = 0; 10619 NeededArgFPRs = 0; 10620 bool IsCandidate = detectFPCCEligibleStructHelper( 10621 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10622 // Not really a candidate if we have a single int but no float. 10623 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10624 return false; 10625 if (!IsCandidate) 10626 return false; 10627 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10628 NeededArgFPRs++; 10629 else if (Field1Ty) 10630 NeededArgGPRs++; 10631 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10632 NeededArgFPRs++; 10633 else if (Field2Ty) 10634 NeededArgGPRs++; 10635 return true; 10636 } 10637 10638 // Call getCoerceAndExpand for the two-element flattened struct described by 10639 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10640 // appropriate coerceToType and unpaddedCoerceToType. 10641 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10642 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10643 CharUnits Field2Off) const { 10644 SmallVector<llvm::Type *, 3> CoerceElts; 10645 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10646 if (!Field1Off.isZero()) 10647 CoerceElts.push_back(llvm::ArrayType::get( 10648 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10649 10650 CoerceElts.push_back(Field1Ty); 10651 UnpaddedCoerceElts.push_back(Field1Ty); 10652 10653 if (!Field2Ty) { 10654 return ABIArgInfo::getCoerceAndExpand( 10655 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10656 UnpaddedCoerceElts[0]); 10657 } 10658 10659 CharUnits Field2Align = 10660 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10661 CharUnits Field1End = Field1Off + 10662 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10663 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10664 10665 CharUnits Padding = CharUnits::Zero(); 10666 if (Field2Off > Field2OffNoPadNoPack) 10667 Padding = Field2Off - Field2OffNoPadNoPack; 10668 else if (Field2Off != Field2Align && Field2Off > Field1End) 10669 Padding = Field2Off - Field1End; 10670 10671 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10672 10673 if (!Padding.isZero()) 10674 CoerceElts.push_back(llvm::ArrayType::get( 10675 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10676 10677 CoerceElts.push_back(Field2Ty); 10678 UnpaddedCoerceElts.push_back(Field2Ty); 10679 10680 auto CoerceToType = 10681 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10682 auto UnpaddedCoerceToType = 10683 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10684 10685 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10686 } 10687 10688 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10689 int &ArgGPRsLeft, 10690 int &ArgFPRsLeft) const { 10691 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10692 Ty = useFirstFieldIfTransparentUnion(Ty); 10693 10694 // Structures with either a non-trivial destructor or a non-trivial 10695 // copy constructor are always passed indirectly. 10696 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10697 if (ArgGPRsLeft) 10698 ArgGPRsLeft -= 1; 10699 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10700 CGCXXABI::RAA_DirectInMemory); 10701 } 10702 10703 // Ignore empty structs/unions. 10704 if (isEmptyRecord(getContext(), Ty, true)) 10705 return ABIArgInfo::getIgnore(); 10706 10707 uint64_t Size = getContext().getTypeSize(Ty); 10708 10709 // Pass floating point values via FPRs if possible. 10710 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10711 FLen >= Size && ArgFPRsLeft) { 10712 ArgFPRsLeft--; 10713 return ABIArgInfo::getDirect(); 10714 } 10715 10716 // Complex types for the hard float ABI must be passed direct rather than 10717 // using CoerceAndExpand. 10718 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10719 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10720 if (getContext().getTypeSize(EltTy) <= FLen) { 10721 ArgFPRsLeft -= 2; 10722 return ABIArgInfo::getDirect(); 10723 } 10724 } 10725 10726 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10727 llvm::Type *Field1Ty = nullptr; 10728 llvm::Type *Field2Ty = nullptr; 10729 CharUnits Field1Off = CharUnits::Zero(); 10730 CharUnits Field2Off = CharUnits::Zero(); 10731 int NeededArgGPRs = 0; 10732 int NeededArgFPRs = 0; 10733 bool IsCandidate = 10734 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10735 NeededArgGPRs, NeededArgFPRs); 10736 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10737 NeededArgFPRs <= ArgFPRsLeft) { 10738 ArgGPRsLeft -= NeededArgGPRs; 10739 ArgFPRsLeft -= NeededArgFPRs; 10740 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10741 Field2Off); 10742 } 10743 } 10744 10745 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10746 bool MustUseStack = false; 10747 // Determine the number of GPRs needed to pass the current argument 10748 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10749 // register pairs, so may consume 3 registers. 10750 int NeededArgGPRs = 1; 10751 if (!IsFixed && NeededAlign == 2 * XLen) 10752 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10753 else if (Size > XLen && Size <= 2 * XLen) 10754 NeededArgGPRs = 2; 10755 10756 if (NeededArgGPRs > ArgGPRsLeft) { 10757 MustUseStack = true; 10758 NeededArgGPRs = ArgGPRsLeft; 10759 } 10760 10761 ArgGPRsLeft -= NeededArgGPRs; 10762 10763 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10764 // Treat an enum type as its underlying type. 10765 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10766 Ty = EnumTy->getDecl()->getIntegerType(); 10767 10768 // All integral types are promoted to XLen width, unless passed on the 10769 // stack. 10770 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10771 return extendType(Ty); 10772 } 10773 10774 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10775 if (EIT->getNumBits() < XLen && !MustUseStack) 10776 return extendType(Ty); 10777 if (EIT->getNumBits() > 128 || 10778 (!getContext().getTargetInfo().hasInt128Type() && 10779 EIT->getNumBits() > 64)) 10780 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10781 } 10782 10783 return ABIArgInfo::getDirect(); 10784 } 10785 10786 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10787 // so coerce to integers. 10788 if (Size <= 2 * XLen) { 10789 unsigned Alignment = getContext().getTypeAlign(Ty); 10790 10791 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10792 // required, and a 2-element XLen array if only XLen alignment is required. 10793 if (Size <= XLen) { 10794 return ABIArgInfo::getDirect( 10795 llvm::IntegerType::get(getVMContext(), XLen)); 10796 } else if (Alignment == 2 * XLen) { 10797 return ABIArgInfo::getDirect( 10798 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10799 } else { 10800 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10801 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10802 } 10803 } 10804 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10805 } 10806 10807 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10808 if (RetTy->isVoidType()) 10809 return ABIArgInfo::getIgnore(); 10810 10811 int ArgGPRsLeft = 2; 10812 int ArgFPRsLeft = FLen ? 2 : 0; 10813 10814 // The rules for return and argument types are the same, so defer to 10815 // classifyArgumentType. 10816 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10817 ArgFPRsLeft); 10818 } 10819 10820 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10821 QualType Ty) const { 10822 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10823 10824 // Empty records are ignored for parameter passing purposes. 10825 if (isEmptyRecord(getContext(), Ty, true)) { 10826 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10827 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10828 return Addr; 10829 } 10830 10831 auto TInfo = getContext().getTypeInfoInChars(Ty); 10832 10833 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10834 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10835 10836 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10837 SlotSize, /*AllowHigherAlign=*/true); 10838 } 10839 10840 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10841 int TySize = getContext().getTypeSize(Ty); 10842 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10843 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10844 return ABIArgInfo::getSignExtend(Ty); 10845 return ABIArgInfo::getExtend(Ty); 10846 } 10847 10848 namespace { 10849 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10850 public: 10851 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10852 unsigned FLen) 10853 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10854 10855 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10856 CodeGen::CodeGenModule &CGM) const override { 10857 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10858 if (!FD) return; 10859 10860 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10861 if (!Attr) 10862 return; 10863 10864 const char *Kind; 10865 switch (Attr->getInterrupt()) { 10866 case RISCVInterruptAttr::user: Kind = "user"; break; 10867 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10868 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10869 } 10870 10871 auto *Fn = cast<llvm::Function>(GV); 10872 10873 Fn->addFnAttr("interrupt", Kind); 10874 } 10875 }; 10876 } // namespace 10877 10878 //===----------------------------------------------------------------------===// 10879 // VE ABI Implementation. 10880 // 10881 namespace { 10882 class VEABIInfo : public DefaultABIInfo { 10883 public: 10884 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10885 10886 private: 10887 ABIArgInfo classifyReturnType(QualType RetTy) const; 10888 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10889 void computeInfo(CGFunctionInfo &FI) const override; 10890 }; 10891 } // end anonymous namespace 10892 10893 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10894 if (Ty->isAnyComplexType()) 10895 return ABIArgInfo::getDirect(); 10896 uint64_t Size = getContext().getTypeSize(Ty); 10897 if (Size < 64 && Ty->isIntegerType()) 10898 return ABIArgInfo::getExtend(Ty); 10899 return DefaultABIInfo::classifyReturnType(Ty); 10900 } 10901 10902 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10903 if (Ty->isAnyComplexType()) 10904 return ABIArgInfo::getDirect(); 10905 uint64_t Size = getContext().getTypeSize(Ty); 10906 if (Size < 64 && Ty->isIntegerType()) 10907 return ABIArgInfo::getExtend(Ty); 10908 return DefaultABIInfo::classifyArgumentType(Ty); 10909 } 10910 10911 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10912 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10913 for (auto &Arg : FI.arguments()) 10914 Arg.info = classifyArgumentType(Arg.type); 10915 } 10916 10917 namespace { 10918 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10919 public: 10920 VETargetCodeGenInfo(CodeGenTypes &CGT) 10921 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10922 // VE ABI requires the arguments of variadic and prototype-less functions 10923 // are passed in both registers and memory. 10924 bool isNoProtoCallVariadic(const CallArgList &args, 10925 const FunctionNoProtoType *fnType) const override { 10926 return true; 10927 } 10928 }; 10929 } // end anonymous namespace 10930 10931 //===----------------------------------------------------------------------===// 10932 // Driver code 10933 //===----------------------------------------------------------------------===// 10934 10935 bool CodeGenModule::supportsCOMDAT() const { 10936 return getTriple().supportsCOMDAT(); 10937 } 10938 10939 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10940 if (TheTargetCodeGenInfo) 10941 return *TheTargetCodeGenInfo; 10942 10943 // Helper to set the unique_ptr while still keeping the return value. 10944 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10945 this->TheTargetCodeGenInfo.reset(P); 10946 return *P; 10947 }; 10948 10949 const llvm::Triple &Triple = getTarget().getTriple(); 10950 switch (Triple.getArch()) { 10951 default: 10952 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10953 10954 case llvm::Triple::le32: 10955 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10956 case llvm::Triple::m68k: 10957 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 10958 case llvm::Triple::mips: 10959 case llvm::Triple::mipsel: 10960 if (Triple.getOS() == llvm::Triple::NaCl) 10961 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10962 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10963 10964 case llvm::Triple::mips64: 10965 case llvm::Triple::mips64el: 10966 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10967 10968 case llvm::Triple::avr: 10969 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10970 10971 case llvm::Triple::aarch64: 10972 case llvm::Triple::aarch64_32: 10973 case llvm::Triple::aarch64_be: { 10974 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10975 if (getTarget().getABI() == "darwinpcs") 10976 Kind = AArch64ABIInfo::DarwinPCS; 10977 else if (Triple.isOSWindows()) 10978 return SetCGInfo( 10979 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10980 10981 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10982 } 10983 10984 case llvm::Triple::wasm32: 10985 case llvm::Triple::wasm64: { 10986 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10987 if (getTarget().getABI() == "experimental-mv") 10988 Kind = WebAssemblyABIInfo::ExperimentalMV; 10989 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10990 } 10991 10992 case llvm::Triple::arm: 10993 case llvm::Triple::armeb: 10994 case llvm::Triple::thumb: 10995 case llvm::Triple::thumbeb: { 10996 if (Triple.getOS() == llvm::Triple::Win32) { 10997 return SetCGInfo( 10998 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10999 } 11000 11001 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11002 StringRef ABIStr = getTarget().getABI(); 11003 if (ABIStr == "apcs-gnu") 11004 Kind = ARMABIInfo::APCS; 11005 else if (ABIStr == "aapcs16") 11006 Kind = ARMABIInfo::AAPCS16_VFP; 11007 else if (CodeGenOpts.FloatABI == "hard" || 11008 (CodeGenOpts.FloatABI != "soft" && 11009 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11010 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11011 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11012 Kind = ARMABIInfo::AAPCS_VFP; 11013 11014 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11015 } 11016 11017 case llvm::Triple::ppc: { 11018 if (Triple.isOSAIX()) 11019 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11020 11021 bool IsSoftFloat = 11022 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11023 bool RetSmallStructInRegABI = 11024 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11025 return SetCGInfo( 11026 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11027 } 11028 case llvm::Triple::ppcle: { 11029 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11030 bool RetSmallStructInRegABI = 11031 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11032 return SetCGInfo( 11033 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11034 } 11035 case llvm::Triple::ppc64: 11036 if (Triple.isOSAIX()) 11037 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11038 11039 if (Triple.isOSBinFormatELF()) { 11040 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11041 if (getTarget().getABI() == "elfv2") 11042 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11043 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11044 11045 return SetCGInfo( 11046 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11047 } 11048 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11049 case llvm::Triple::ppc64le: { 11050 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11051 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11052 if (getTarget().getABI() == "elfv1") 11053 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11054 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11055 11056 return SetCGInfo( 11057 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11058 } 11059 11060 case llvm::Triple::nvptx: 11061 case llvm::Triple::nvptx64: 11062 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11063 11064 case llvm::Triple::msp430: 11065 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11066 11067 case llvm::Triple::riscv32: 11068 case llvm::Triple::riscv64: { 11069 StringRef ABIStr = getTarget().getABI(); 11070 unsigned XLen = getTarget().getPointerWidth(0); 11071 unsigned ABIFLen = 0; 11072 if (ABIStr.endswith("f")) 11073 ABIFLen = 32; 11074 else if (ABIStr.endswith("d")) 11075 ABIFLen = 64; 11076 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11077 } 11078 11079 case llvm::Triple::systemz: { 11080 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11081 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11082 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11083 } 11084 11085 case llvm::Triple::tce: 11086 case llvm::Triple::tcele: 11087 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11088 11089 case llvm::Triple::x86: { 11090 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11091 bool RetSmallStructInRegABI = 11092 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11093 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11094 11095 if (Triple.getOS() == llvm::Triple::Win32) { 11096 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11097 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11098 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11099 } else { 11100 return SetCGInfo(new X86_32TargetCodeGenInfo( 11101 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11102 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11103 CodeGenOpts.FloatABI == "soft")); 11104 } 11105 } 11106 11107 case llvm::Triple::x86_64: { 11108 StringRef ABI = getTarget().getABI(); 11109 X86AVXABILevel AVXLevel = 11110 (ABI == "avx512" 11111 ? X86AVXABILevel::AVX512 11112 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11113 11114 switch (Triple.getOS()) { 11115 case llvm::Triple::Win32: 11116 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11117 default: 11118 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11119 } 11120 } 11121 case llvm::Triple::hexagon: 11122 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11123 case llvm::Triple::lanai: 11124 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11125 case llvm::Triple::r600: 11126 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11127 case llvm::Triple::amdgcn: 11128 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11129 case llvm::Triple::sparc: 11130 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11131 case llvm::Triple::sparcv9: 11132 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11133 case llvm::Triple::xcore: 11134 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11135 case llvm::Triple::arc: 11136 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11137 case llvm::Triple::spir: 11138 case llvm::Triple::spir64: 11139 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11140 case llvm::Triple::ve: 11141 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11142 } 11143 } 11144 11145 /// Create an OpenCL kernel for an enqueued block. 11146 /// 11147 /// The kernel has the same function type as the block invoke function. Its 11148 /// name is the name of the block invoke function postfixed with "_kernel". 11149 /// It simply calls the block invoke function then returns. 11150 llvm::Function * 11151 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11152 llvm::Function *Invoke, 11153 llvm::Value *BlockLiteral) const { 11154 auto *InvokeFT = Invoke->getFunctionType(); 11155 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11156 for (auto &P : InvokeFT->params()) 11157 ArgTys.push_back(P); 11158 auto &C = CGF.getLLVMContext(); 11159 std::string Name = Invoke->getName().str() + "_kernel"; 11160 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11161 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11162 &CGF.CGM.getModule()); 11163 auto IP = CGF.Builder.saveIP(); 11164 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11165 auto &Builder = CGF.Builder; 11166 Builder.SetInsertPoint(BB); 11167 llvm::SmallVector<llvm::Value *, 2> Args; 11168 for (auto &A : F->args()) 11169 Args.push_back(&A); 11170 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11171 call->setCallingConv(Invoke->getCallingConv()); 11172 Builder.CreateRetVoid(); 11173 Builder.restoreIP(IP); 11174 return F; 11175 } 11176 11177 /// Create an OpenCL kernel for an enqueued block. 11178 /// 11179 /// The type of the first argument (the block literal) is the struct type 11180 /// of the block literal instead of a pointer type. The first argument 11181 /// (block literal) is passed directly by value to the kernel. The kernel 11182 /// allocates the same type of struct on stack and stores the block literal 11183 /// to it and passes its pointer to the block invoke function. The kernel 11184 /// has "enqueued-block" function attribute and kernel argument metadata. 11185 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11186 CodeGenFunction &CGF, llvm::Function *Invoke, 11187 llvm::Value *BlockLiteral) const { 11188 auto &Builder = CGF.Builder; 11189 auto &C = CGF.getLLVMContext(); 11190 11191 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11192 auto *InvokeFT = Invoke->getFunctionType(); 11193 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11194 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11195 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11196 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11197 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11198 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11199 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11200 11201 ArgTys.push_back(BlockTy); 11202 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11203 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11204 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11205 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11206 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11207 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11208 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11209 ArgTys.push_back(InvokeFT->getParamType(I)); 11210 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11211 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11212 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11213 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11214 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11215 ArgNames.push_back( 11216 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11217 } 11218 std::string Name = Invoke->getName().str() + "_kernel"; 11219 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11220 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11221 &CGF.CGM.getModule()); 11222 F->addFnAttr("enqueued-block"); 11223 auto IP = CGF.Builder.saveIP(); 11224 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11225 Builder.SetInsertPoint(BB); 11226 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11227 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11228 BlockPtr->setAlignment(BlockAlign); 11229 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11230 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11231 llvm::SmallVector<llvm::Value *, 2> Args; 11232 Args.push_back(Cast); 11233 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11234 Args.push_back(I); 11235 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11236 call->setCallingConv(Invoke->getCallingConv()); 11237 Builder.CreateRetVoid(); 11238 Builder.restoreIP(IP); 11239 11240 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11241 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11242 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11243 F->setMetadata("kernel_arg_base_type", 11244 llvm::MDNode::get(C, ArgBaseTypeNames)); 11245 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11246 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11247 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11248 11249 return F; 11250 } 11251