1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 30 llvm::Value *Array, 31 llvm::Value *Value, 32 unsigned FirstIndex, 33 unsigned LastIndex) { 34 // Alternatively, we could emit this as a loop in the source. 35 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 36 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 37 Builder.CreateStore(Value, Cell); 38 } 39 } 40 41 static bool isAggregateTypeForABI(QualType T) { 42 return !CodeGenFunction::hasScalarEvaluationKind(T) || 43 T->isMemberFunctionPointerType(); 44 } 45 46 ABIInfo::~ABIInfo() {} 47 48 static bool isRecordReturnIndirect(const RecordType *RT, 49 CGCXXABI &CXXABI) { 50 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 51 if (!RD) 52 return false; 53 return CXXABI.isReturnTypeIndirect(RD); 54 } 55 56 57 static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) { 58 const RecordType *RT = T->getAs<RecordType>(); 59 if (!RT) 60 return false; 61 return isRecordReturnIndirect(RT, CXXABI); 62 } 63 64 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 65 CGCXXABI &CXXABI) { 66 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 67 if (!RD) 68 return CGCXXABI::RAA_Default; 69 return CXXABI.getRecordArgABI(RD); 70 } 71 72 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 73 CGCXXABI &CXXABI) { 74 const RecordType *RT = T->getAs<RecordType>(); 75 if (!RT) 76 return CGCXXABI::RAA_Default; 77 return getRecordArgABI(RT, CXXABI); 78 } 79 80 CGCXXABI &ABIInfo::getCXXABI() const { 81 return CGT.getCXXABI(); 82 } 83 84 ASTContext &ABIInfo::getContext() const { 85 return CGT.getContext(); 86 } 87 88 llvm::LLVMContext &ABIInfo::getVMContext() const { 89 return CGT.getLLVMContext(); 90 } 91 92 const llvm::DataLayout &ABIInfo::getDataLayout() const { 93 return CGT.getDataLayout(); 94 } 95 96 const TargetInfo &ABIInfo::getTarget() const { 97 return CGT.getTarget(); 98 } 99 100 void ABIArgInfo::dump() const { 101 raw_ostream &OS = llvm::errs(); 102 OS << "(ABIArgInfo Kind="; 103 switch (TheKind) { 104 case Direct: 105 OS << "Direct Type="; 106 if (llvm::Type *Ty = getCoerceToType()) 107 Ty->print(OS); 108 else 109 OS << "null"; 110 break; 111 case Extend: 112 OS << "Extend"; 113 break; 114 case Ignore: 115 OS << "Ignore"; 116 break; 117 case Indirect: 118 OS << "Indirect Align=" << getIndirectAlign() 119 << " ByVal=" << getIndirectByVal() 120 << " Realign=" << getIndirectRealign(); 121 break; 122 case Expand: 123 OS << "Expand"; 124 break; 125 } 126 OS << ")\n"; 127 } 128 129 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 130 131 // If someone can figure out a general rule for this, that would be great. 132 // It's probably just doomed to be platform-dependent, though. 133 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 134 // Verified for: 135 // x86-64 FreeBSD, Linux, Darwin 136 // x86-32 FreeBSD, Linux, Darwin 137 // PowerPC Linux, Darwin 138 // ARM Darwin (*not* EABI) 139 // AArch64 Linux 140 return 32; 141 } 142 143 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 144 const FunctionNoProtoType *fnType) const { 145 // The following conventions are known to require this to be false: 146 // x86_stdcall 147 // MIPS 148 // For everything else, we just prefer false unless we opt out. 149 return false; 150 } 151 152 void 153 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 154 llvm::SmallString<24> &Opt) const { 155 // This assumes the user is passing a library name like "rt" instead of a 156 // filename like "librt.a/so", and that they don't care whether it's static or 157 // dynamic. 158 Opt = "-l"; 159 Opt += Lib; 160 } 161 162 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 163 164 /// isEmptyField - Return true iff a the field is "empty", that is it 165 /// is an unnamed bit-field or an (array of) empty record(s). 166 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 167 bool AllowArrays) { 168 if (FD->isUnnamedBitfield()) 169 return true; 170 171 QualType FT = FD->getType(); 172 173 // Constant arrays of empty records count as empty, strip them off. 174 // Constant arrays of zero length always count as empty. 175 if (AllowArrays) 176 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 177 if (AT->getSize() == 0) 178 return true; 179 FT = AT->getElementType(); 180 } 181 182 const RecordType *RT = FT->getAs<RecordType>(); 183 if (!RT) 184 return false; 185 186 // C++ record fields are never empty, at least in the Itanium ABI. 187 // 188 // FIXME: We should use a predicate for whether this behavior is true in the 189 // current ABI. 190 if (isa<CXXRecordDecl>(RT->getDecl())) 191 return false; 192 193 return isEmptyRecord(Context, FT, AllowArrays); 194 } 195 196 /// isEmptyRecord - Return true iff a structure contains only empty 197 /// fields. Note that a structure with a flexible array member is not 198 /// considered empty. 199 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 200 const RecordType *RT = T->getAs<RecordType>(); 201 if (!RT) 202 return 0; 203 const RecordDecl *RD = RT->getDecl(); 204 if (RD->hasFlexibleArrayMember()) 205 return false; 206 207 // If this is a C++ record, check the bases first. 208 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 209 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 210 e = CXXRD->bases_end(); i != e; ++i) 211 if (!isEmptyRecord(Context, i->getType(), true)) 212 return false; 213 214 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 215 i != e; ++i) 216 if (!isEmptyField(Context, *i, AllowArrays)) 217 return false; 218 return true; 219 } 220 221 /// isSingleElementStruct - Determine if a structure is a "single 222 /// element struct", i.e. it has exactly one non-empty field or 223 /// exactly one field which is itself a single element 224 /// struct. Structures with flexible array members are never 225 /// considered single element structs. 226 /// 227 /// \return The field declaration for the single non-empty field, if 228 /// it exists. 229 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 230 const RecordType *RT = T->getAsStructureType(); 231 if (!RT) 232 return 0; 233 234 const RecordDecl *RD = RT->getDecl(); 235 if (RD->hasFlexibleArrayMember()) 236 return 0; 237 238 const Type *Found = 0; 239 240 // If this is a C++ record, check the bases first. 241 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 242 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 243 e = CXXRD->bases_end(); i != e; ++i) { 244 // Ignore empty records. 245 if (isEmptyRecord(Context, i->getType(), true)) 246 continue; 247 248 // If we already found an element then this isn't a single-element struct. 249 if (Found) 250 return 0; 251 252 // If this is non-empty and not a single element struct, the composite 253 // cannot be a single element struct. 254 Found = isSingleElementStruct(i->getType(), Context); 255 if (!Found) 256 return 0; 257 } 258 } 259 260 // Check for single element. 261 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 262 i != e; ++i) { 263 const FieldDecl *FD = *i; 264 QualType FT = FD->getType(); 265 266 // Ignore empty fields. 267 if (isEmptyField(Context, FD, true)) 268 continue; 269 270 // If we already found an element then this isn't a single-element 271 // struct. 272 if (Found) 273 return 0; 274 275 // Treat single element arrays as the element. 276 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 277 if (AT->getSize().getZExtValue() != 1) 278 break; 279 FT = AT->getElementType(); 280 } 281 282 if (!isAggregateTypeForABI(FT)) { 283 Found = FT.getTypePtr(); 284 } else { 285 Found = isSingleElementStruct(FT, Context); 286 if (!Found) 287 return 0; 288 } 289 } 290 291 // We don't consider a struct a single-element struct if it has 292 // padding beyond the element type. 293 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 294 return 0; 295 296 return Found; 297 } 298 299 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 300 // Treat complex types as the element type. 301 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 302 Ty = CTy->getElementType(); 303 304 // Check for a type which we know has a simple scalar argument-passing 305 // convention without any padding. (We're specifically looking for 32 306 // and 64-bit integer and integer-equivalents, float, and double.) 307 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 308 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 309 return false; 310 311 uint64_t Size = Context.getTypeSize(Ty); 312 return Size == 32 || Size == 64; 313 } 314 315 /// canExpandIndirectArgument - Test whether an argument type which is to be 316 /// passed indirectly (on the stack) would have the equivalent layout if it was 317 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 318 /// inhibiting optimizations. 319 /// 320 // FIXME: This predicate is missing many cases, currently it just follows 321 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 322 // should probably make this smarter, or better yet make the LLVM backend 323 // capable of handling it. 324 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 325 // We can only expand structure types. 326 const RecordType *RT = Ty->getAs<RecordType>(); 327 if (!RT) 328 return false; 329 330 // We can only expand (C) structures. 331 // 332 // FIXME: This needs to be generalized to handle classes as well. 333 const RecordDecl *RD = RT->getDecl(); 334 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 335 return false; 336 337 uint64_t Size = 0; 338 339 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 340 i != e; ++i) { 341 const FieldDecl *FD = *i; 342 343 if (!is32Or64BitBasicType(FD->getType(), Context)) 344 return false; 345 346 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 347 // how to expand them yet, and the predicate for telling if a bitfield still 348 // counts as "basic" is more complicated than what we were doing previously. 349 if (FD->isBitField()) 350 return false; 351 352 Size += Context.getTypeSize(FD->getType()); 353 } 354 355 // Make sure there are not any holes in the struct. 356 if (Size != Context.getTypeSize(Ty)) 357 return false; 358 359 return true; 360 } 361 362 namespace { 363 /// DefaultABIInfo - The default implementation for ABI specific 364 /// details. This implementation provides information which results in 365 /// self-consistent and sensible LLVM IR generation, but does not 366 /// conform to any particular ABI. 367 class DefaultABIInfo : public ABIInfo { 368 public: 369 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 370 371 ABIArgInfo classifyReturnType(QualType RetTy) const; 372 ABIArgInfo classifyArgumentType(QualType RetTy) const; 373 374 virtual void computeInfo(CGFunctionInfo &FI) const { 375 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 376 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 377 it != ie; ++it) 378 it->info = classifyArgumentType(it->type); 379 } 380 381 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 382 CodeGenFunction &CGF) const; 383 }; 384 385 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 386 public: 387 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 388 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 389 }; 390 391 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 392 CodeGenFunction &CGF) const { 393 return 0; 394 } 395 396 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 397 if (isAggregateTypeForABI(Ty)) { 398 // Records with non-trivial destructors/constructors should not be passed 399 // by value. 400 if (isRecordReturnIndirect(Ty, getCXXABI())) 401 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 402 403 return ABIArgInfo::getIndirect(0); 404 } 405 406 // Treat an enum type as its underlying type. 407 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 408 Ty = EnumTy->getDecl()->getIntegerType(); 409 410 return (Ty->isPromotableIntegerType() ? 411 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 412 } 413 414 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 415 if (RetTy->isVoidType()) 416 return ABIArgInfo::getIgnore(); 417 418 if (isAggregateTypeForABI(RetTy)) 419 return ABIArgInfo::getIndirect(0); 420 421 // Treat an enum type as its underlying type. 422 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 423 RetTy = EnumTy->getDecl()->getIntegerType(); 424 425 return (RetTy->isPromotableIntegerType() ? 426 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 427 } 428 429 //===----------------------------------------------------------------------===// 430 // le32/PNaCl bitcode ABI Implementation 431 // 432 // This is a simplified version of the x86_32 ABI. Arguments and return values 433 // are always passed on the stack. 434 //===----------------------------------------------------------------------===// 435 436 class PNaClABIInfo : public ABIInfo { 437 public: 438 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 439 440 ABIArgInfo classifyReturnType(QualType RetTy) const; 441 ABIArgInfo classifyArgumentType(QualType RetTy) const; 442 443 virtual void computeInfo(CGFunctionInfo &FI) const; 444 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 445 CodeGenFunction &CGF) const; 446 }; 447 448 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 449 public: 450 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 451 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 452 }; 453 454 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 455 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 456 457 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 458 it != ie; ++it) 459 it->info = classifyArgumentType(it->type); 460 } 461 462 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 463 CodeGenFunction &CGF) const { 464 return 0; 465 } 466 467 /// \brief Classify argument of given type \p Ty. 468 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 469 if (isAggregateTypeForABI(Ty)) { 470 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 471 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 472 return ABIArgInfo::getIndirect(0); 473 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 474 // Treat an enum type as its underlying type. 475 Ty = EnumTy->getDecl()->getIntegerType(); 476 } else if (Ty->isFloatingType()) { 477 // Floating-point types don't go inreg. 478 return ABIArgInfo::getDirect(); 479 } 480 481 return (Ty->isPromotableIntegerType() ? 482 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 483 } 484 485 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 486 if (RetTy->isVoidType()) 487 return ABIArgInfo::getIgnore(); 488 489 // In the PNaCl ABI we always return records/structures on the stack. 490 if (isAggregateTypeForABI(RetTy)) 491 return ABIArgInfo::getIndirect(0); 492 493 // Treat an enum type as its underlying type. 494 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 495 RetTy = EnumTy->getDecl()->getIntegerType(); 496 497 return (RetTy->isPromotableIntegerType() ? 498 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 499 } 500 501 /// IsX86_MMXType - Return true if this is an MMX type. 502 bool IsX86_MMXType(llvm::Type *IRType) { 503 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 504 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 505 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 506 IRType->getScalarSizeInBits() != 64; 507 } 508 509 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 510 StringRef Constraint, 511 llvm::Type* Ty) { 512 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 513 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 514 // Invalid MMX constraint 515 return 0; 516 } 517 518 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 519 } 520 521 // No operation needed 522 return Ty; 523 } 524 525 //===----------------------------------------------------------------------===// 526 // X86-32 ABI Implementation 527 //===----------------------------------------------------------------------===// 528 529 /// X86_32ABIInfo - The X86-32 ABI information. 530 class X86_32ABIInfo : public ABIInfo { 531 enum Class { 532 Integer, 533 Float 534 }; 535 536 static const unsigned MinABIStackAlignInBytes = 4; 537 538 bool IsDarwinVectorABI; 539 bool IsSmallStructInRegABI; 540 bool IsWin32StructABI; 541 unsigned DefaultNumRegisterParameters; 542 543 static bool isRegisterSize(unsigned Size) { 544 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 545 } 546 547 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, 548 unsigned callingConvention); 549 550 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 551 /// such that the argument will be passed in memory. 552 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, 553 unsigned &FreeRegs) const; 554 555 /// \brief Return the alignment to use for the given type on the stack. 556 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 557 558 Class classify(QualType Ty) const; 559 ABIArgInfo classifyReturnType(QualType RetTy, 560 unsigned callingConvention) const; 561 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs, 562 bool IsFastCall) const; 563 bool shouldUseInReg(QualType Ty, unsigned &FreeRegs, 564 bool IsFastCall, bool &NeedsPadding) const; 565 566 public: 567 568 virtual void computeInfo(CGFunctionInfo &FI) const; 569 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 570 CodeGenFunction &CGF) const; 571 572 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 573 unsigned r) 574 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 575 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 576 }; 577 578 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 579 public: 580 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 581 bool d, bool p, bool w, unsigned r) 582 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 583 584 static bool isStructReturnInRegABI( 585 const llvm::Triple &Triple, const CodeGenOptions &Opts); 586 587 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 588 CodeGen::CodeGenModule &CGM) const; 589 590 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 591 // Darwin uses different dwarf register numbers for EH. 592 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 593 return 4; 594 } 595 596 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 597 llvm::Value *Address) const; 598 599 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 600 StringRef Constraint, 601 llvm::Type* Ty) const { 602 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 603 } 604 605 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { 606 unsigned Sig = (0xeb << 0) | // jmp rel8 607 (0x06 << 8) | // .+0x08 608 ('F' << 16) | 609 ('T' << 24); 610 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 611 } 612 613 }; 614 615 } 616 617 /// shouldReturnTypeInRegister - Determine if the given type should be 618 /// passed in a register (for the Darwin ABI). 619 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 620 ASTContext &Context, 621 unsigned callingConvention) { 622 uint64_t Size = Context.getTypeSize(Ty); 623 624 // Type must be register sized. 625 if (!isRegisterSize(Size)) 626 return false; 627 628 if (Ty->isVectorType()) { 629 // 64- and 128- bit vectors inside structures are not returned in 630 // registers. 631 if (Size == 64 || Size == 128) 632 return false; 633 634 return true; 635 } 636 637 // If this is a builtin, pointer, enum, complex type, member pointer, or 638 // member function pointer it is ok. 639 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 640 Ty->isAnyComplexType() || Ty->isEnumeralType() || 641 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 642 return true; 643 644 // Arrays are treated like records. 645 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 646 return shouldReturnTypeInRegister(AT->getElementType(), Context, 647 callingConvention); 648 649 // Otherwise, it must be a record type. 650 const RecordType *RT = Ty->getAs<RecordType>(); 651 if (!RT) return false; 652 653 // FIXME: Traverse bases here too. 654 655 // For thiscall conventions, structures will never be returned in 656 // a register. This is for compatibility with the MSVC ABI 657 if (callingConvention == llvm::CallingConv::X86_ThisCall && 658 RT->isStructureType()) { 659 return false; 660 } 661 662 // Structure types are passed in register if all fields would be 663 // passed in a register. 664 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), 665 e = RT->getDecl()->field_end(); i != e; ++i) { 666 const FieldDecl *FD = *i; 667 668 // Empty fields are ignored. 669 if (isEmptyField(Context, FD, true)) 670 continue; 671 672 // Check fields recursively. 673 if (!shouldReturnTypeInRegister(FD->getType(), Context, 674 callingConvention)) 675 return false; 676 } 677 return true; 678 } 679 680 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 681 unsigned callingConvention) const { 682 if (RetTy->isVoidType()) 683 return ABIArgInfo::getIgnore(); 684 685 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 686 // On Darwin, some vectors are returned in registers. 687 if (IsDarwinVectorABI) { 688 uint64_t Size = getContext().getTypeSize(RetTy); 689 690 // 128-bit vectors are a special case; they are returned in 691 // registers and we need to make sure to pick a type the LLVM 692 // backend will like. 693 if (Size == 128) 694 return ABIArgInfo::getDirect(llvm::VectorType::get( 695 llvm::Type::getInt64Ty(getVMContext()), 2)); 696 697 // Always return in register if it fits in a general purpose 698 // register, or if it is 64 bits and has a single element. 699 if ((Size == 8 || Size == 16 || Size == 32) || 700 (Size == 64 && VT->getNumElements() == 1)) 701 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 702 Size)); 703 704 return ABIArgInfo::getIndirect(0); 705 } 706 707 return ABIArgInfo::getDirect(); 708 } 709 710 if (isAggregateTypeForABI(RetTy)) { 711 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 712 if (isRecordReturnIndirect(RT, getCXXABI())) 713 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 714 715 // Structures with flexible arrays are always indirect. 716 if (RT->getDecl()->hasFlexibleArrayMember()) 717 return ABIArgInfo::getIndirect(0); 718 } 719 720 // If specified, structs and unions are always indirect. 721 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 722 return ABIArgInfo::getIndirect(0); 723 724 // Small structures which are register sized are generally returned 725 // in a register. 726 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(), 727 callingConvention)) { 728 uint64_t Size = getContext().getTypeSize(RetTy); 729 730 // As a special-case, if the struct is a "single-element" struct, and 731 // the field is of type "float" or "double", return it in a 732 // floating-point register. (MSVC does not apply this special case.) 733 // We apply a similar transformation for pointer types to improve the 734 // quality of the generated IR. 735 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 736 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 737 || SeltTy->hasPointerRepresentation()) 738 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 739 740 // FIXME: We should be able to narrow this integer in cases with dead 741 // padding. 742 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 743 } 744 745 return ABIArgInfo::getIndirect(0); 746 } 747 748 // Treat an enum type as its underlying type. 749 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 750 RetTy = EnumTy->getDecl()->getIntegerType(); 751 752 return (RetTy->isPromotableIntegerType() ? 753 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 754 } 755 756 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 757 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 758 } 759 760 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 761 const RecordType *RT = Ty->getAs<RecordType>(); 762 if (!RT) 763 return 0; 764 const RecordDecl *RD = RT->getDecl(); 765 766 // If this is a C++ record, check the bases first. 767 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 768 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 769 e = CXXRD->bases_end(); i != e; ++i) 770 if (!isRecordWithSSEVectorType(Context, i->getType())) 771 return false; 772 773 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 774 i != e; ++i) { 775 QualType FT = i->getType(); 776 777 if (isSSEVectorType(Context, FT)) 778 return true; 779 780 if (isRecordWithSSEVectorType(Context, FT)) 781 return true; 782 } 783 784 return false; 785 } 786 787 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 788 unsigned Align) const { 789 // Otherwise, if the alignment is less than or equal to the minimum ABI 790 // alignment, just use the default; the backend will handle this. 791 if (Align <= MinABIStackAlignInBytes) 792 return 0; // Use default alignment. 793 794 // On non-Darwin, the stack type alignment is always 4. 795 if (!IsDarwinVectorABI) { 796 // Set explicit alignment, since we may need to realign the top. 797 return MinABIStackAlignInBytes; 798 } 799 800 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 801 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 802 isRecordWithSSEVectorType(getContext(), Ty))) 803 return 16; 804 805 return MinABIStackAlignInBytes; 806 } 807 808 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 809 unsigned &FreeRegs) const { 810 if (!ByVal) { 811 if (FreeRegs) { 812 --FreeRegs; // Non-byval indirects just use one pointer. 813 return ABIArgInfo::getIndirectInReg(0, false); 814 } 815 return ABIArgInfo::getIndirect(0, false); 816 } 817 818 // Compute the byval alignment. 819 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 820 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 821 if (StackAlign == 0) 822 return ABIArgInfo::getIndirect(4); 823 824 // If the stack alignment is less than the type alignment, realign the 825 // argument. 826 if (StackAlign < TypeAlign) 827 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, 828 /*Realign=*/true); 829 830 return ABIArgInfo::getIndirect(StackAlign); 831 } 832 833 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 834 const Type *T = isSingleElementStruct(Ty, getContext()); 835 if (!T) 836 T = Ty.getTypePtr(); 837 838 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 839 BuiltinType::Kind K = BT->getKind(); 840 if (K == BuiltinType::Float || K == BuiltinType::Double) 841 return Float; 842 } 843 return Integer; 844 } 845 846 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs, 847 bool IsFastCall, bool &NeedsPadding) const { 848 NeedsPadding = false; 849 Class C = classify(Ty); 850 if (C == Float) 851 return false; 852 853 unsigned Size = getContext().getTypeSize(Ty); 854 unsigned SizeInRegs = (Size + 31) / 32; 855 856 if (SizeInRegs == 0) 857 return false; 858 859 if (SizeInRegs > FreeRegs) { 860 FreeRegs = 0; 861 return false; 862 } 863 864 FreeRegs -= SizeInRegs; 865 866 if (IsFastCall) { 867 if (Size > 32) 868 return false; 869 870 if (Ty->isIntegralOrEnumerationType()) 871 return true; 872 873 if (Ty->isPointerType()) 874 return true; 875 876 if (Ty->isReferenceType()) 877 return true; 878 879 if (FreeRegs) 880 NeedsPadding = true; 881 882 return false; 883 } 884 885 return true; 886 } 887 888 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 889 unsigned &FreeRegs, 890 bool IsFastCall) const { 891 // FIXME: Set alignment on indirect arguments. 892 if (isAggregateTypeForABI(Ty)) { 893 if (const RecordType *RT = Ty->getAs<RecordType>()) { 894 if (IsWin32StructABI) 895 return getIndirectResult(Ty, true, FreeRegs); 896 897 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 898 return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs); 899 900 // Structures with flexible arrays are always indirect. 901 if (RT->getDecl()->hasFlexibleArrayMember()) 902 return getIndirectResult(Ty, true, FreeRegs); 903 } 904 905 // Ignore empty structs/unions. 906 if (isEmptyRecord(getContext(), Ty, true)) 907 return ABIArgInfo::getIgnore(); 908 909 llvm::LLVMContext &LLVMContext = getVMContext(); 910 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 911 bool NeedsPadding; 912 if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) { 913 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 914 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 915 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 916 return ABIArgInfo::getDirectInReg(Result); 917 } 918 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0; 919 920 // Expand small (<= 128-bit) record types when we know that the stack layout 921 // of those arguments will match the struct. This is important because the 922 // LLVM backend isn't smart enough to remove byval, which inhibits many 923 // optimizations. 924 if (getContext().getTypeSize(Ty) <= 4*32 && 925 canExpandIndirectArgument(Ty, getContext())) 926 return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType); 927 928 return getIndirectResult(Ty, true, FreeRegs); 929 } 930 931 if (const VectorType *VT = Ty->getAs<VectorType>()) { 932 // On Darwin, some vectors are passed in memory, we handle this by passing 933 // it as an i8/i16/i32/i64. 934 if (IsDarwinVectorABI) { 935 uint64_t Size = getContext().getTypeSize(Ty); 936 if ((Size == 8 || Size == 16 || Size == 32) || 937 (Size == 64 && VT->getNumElements() == 1)) 938 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 939 Size)); 940 } 941 942 if (IsX86_MMXType(CGT.ConvertType(Ty))) 943 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 944 945 return ABIArgInfo::getDirect(); 946 } 947 948 949 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 950 Ty = EnumTy->getDecl()->getIntegerType(); 951 952 bool NeedsPadding; 953 bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding); 954 955 if (Ty->isPromotableIntegerType()) { 956 if (InReg) 957 return ABIArgInfo::getExtendInReg(); 958 return ABIArgInfo::getExtend(); 959 } 960 if (InReg) 961 return ABIArgInfo::getDirectInReg(); 962 return ABIArgInfo::getDirect(); 963 } 964 965 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 966 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), 967 FI.getCallingConvention()); 968 969 unsigned CC = FI.getCallingConvention(); 970 bool IsFastCall = CC == llvm::CallingConv::X86_FastCall; 971 unsigned FreeRegs; 972 if (IsFastCall) 973 FreeRegs = 2; 974 else if (FI.getHasRegParm()) 975 FreeRegs = FI.getRegParm(); 976 else 977 FreeRegs = DefaultNumRegisterParameters; 978 979 // If the return value is indirect, then the hidden argument is consuming one 980 // integer register. 981 if (FI.getReturnInfo().isIndirect() && FreeRegs) { 982 --FreeRegs; 983 ABIArgInfo &Old = FI.getReturnInfo(); 984 Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(), 985 Old.getIndirectByVal(), 986 Old.getIndirectRealign()); 987 } 988 989 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 990 it != ie; ++it) 991 it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall); 992 } 993 994 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 995 CodeGenFunction &CGF) const { 996 llvm::Type *BPP = CGF.Int8PtrPtrTy; 997 998 CGBuilderTy &Builder = CGF.Builder; 999 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1000 "ap"); 1001 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1002 1003 // Compute if the address needs to be aligned 1004 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1005 Align = getTypeStackAlignInBytes(Ty, Align); 1006 Align = std::max(Align, 4U); 1007 if (Align > 4) { 1008 // addr = (addr + align - 1) & -align; 1009 llvm::Value *Offset = 1010 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1011 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1012 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1013 CGF.Int32Ty); 1014 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1015 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1016 Addr->getType(), 1017 "ap.cur.aligned"); 1018 } 1019 1020 llvm::Type *PTy = 1021 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1022 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1023 1024 uint64_t Offset = 1025 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1026 llvm::Value *NextAddr = 1027 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1028 "ap.next"); 1029 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1030 1031 return AddrTyped; 1032 } 1033 1034 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1035 llvm::GlobalValue *GV, 1036 CodeGen::CodeGenModule &CGM) const { 1037 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1038 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1039 // Get the LLVM function. 1040 llvm::Function *Fn = cast<llvm::Function>(GV); 1041 1042 // Now add the 'alignstack' attribute with a value of 16. 1043 llvm::AttrBuilder B; 1044 B.addStackAlignmentAttr(16); 1045 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1046 llvm::AttributeSet::get(CGM.getLLVMContext(), 1047 llvm::AttributeSet::FunctionIndex, 1048 B)); 1049 } 1050 } 1051 } 1052 1053 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1054 CodeGen::CodeGenFunction &CGF, 1055 llvm::Value *Address) const { 1056 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1057 1058 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1059 1060 // 0-7 are the eight integer registers; the order is different 1061 // on Darwin (for EH), but the range is the same. 1062 // 8 is %eip. 1063 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1064 1065 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1066 // 12-16 are st(0..4). Not sure why we stop at 4. 1067 // These have size 16, which is sizeof(long double) on 1068 // platforms with 8-byte alignment for that type. 1069 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1070 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1071 1072 } else { 1073 // 9 is %eflags, which doesn't get a size on Darwin for some 1074 // reason. 1075 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1076 1077 // 11-16 are st(0..5). Not sure why we stop at 5. 1078 // These have size 12, which is sizeof(long double) on 1079 // platforms with 4-byte alignment for that type. 1080 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1081 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1082 } 1083 1084 return false; 1085 } 1086 1087 //===----------------------------------------------------------------------===// 1088 // X86-64 ABI Implementation 1089 //===----------------------------------------------------------------------===// 1090 1091 1092 namespace { 1093 /// X86_64ABIInfo - The X86_64 ABI information. 1094 class X86_64ABIInfo : public ABIInfo { 1095 enum Class { 1096 Integer = 0, 1097 SSE, 1098 SSEUp, 1099 X87, 1100 X87Up, 1101 ComplexX87, 1102 NoClass, 1103 Memory 1104 }; 1105 1106 /// merge - Implement the X86_64 ABI merging algorithm. 1107 /// 1108 /// Merge an accumulating classification \arg Accum with a field 1109 /// classification \arg Field. 1110 /// 1111 /// \param Accum - The accumulating classification. This should 1112 /// always be either NoClass or the result of a previous merge 1113 /// call. In addition, this should never be Memory (the caller 1114 /// should just return Memory for the aggregate). 1115 static Class merge(Class Accum, Class Field); 1116 1117 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1118 /// 1119 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1120 /// final MEMORY or SSE classes when necessary. 1121 /// 1122 /// \param AggregateSize - The size of the current aggregate in 1123 /// the classification process. 1124 /// 1125 /// \param Lo - The classification for the parts of the type 1126 /// residing in the low word of the containing object. 1127 /// 1128 /// \param Hi - The classification for the parts of the type 1129 /// residing in the higher words of the containing object. 1130 /// 1131 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1132 1133 /// classify - Determine the x86_64 register classes in which the 1134 /// given type T should be passed. 1135 /// 1136 /// \param Lo - The classification for the parts of the type 1137 /// residing in the low word of the containing object. 1138 /// 1139 /// \param Hi - The classification for the parts of the type 1140 /// residing in the high word of the containing object. 1141 /// 1142 /// \param OffsetBase - The bit offset of this type in the 1143 /// containing object. Some parameters are classified different 1144 /// depending on whether they straddle an eightbyte boundary. 1145 /// 1146 /// \param isNamedArg - Whether the argument in question is a "named" 1147 /// argument, as used in AMD64-ABI 3.5.7. 1148 /// 1149 /// If a word is unused its result will be NoClass; if a type should 1150 /// be passed in Memory then at least the classification of \arg Lo 1151 /// will be Memory. 1152 /// 1153 /// The \arg Lo class will be NoClass iff the argument is ignored. 1154 /// 1155 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1156 /// also be ComplexX87. 1157 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1158 bool isNamedArg) const; 1159 1160 llvm::Type *GetByteVectorType(QualType Ty) const; 1161 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1162 unsigned IROffset, QualType SourceTy, 1163 unsigned SourceOffset) const; 1164 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1165 unsigned IROffset, QualType SourceTy, 1166 unsigned SourceOffset) const; 1167 1168 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1169 /// such that the argument will be returned in memory. 1170 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1171 1172 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1173 /// such that the argument will be passed in memory. 1174 /// 1175 /// \param freeIntRegs - The number of free integer registers remaining 1176 /// available. 1177 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1178 1179 ABIArgInfo classifyReturnType(QualType RetTy) const; 1180 1181 ABIArgInfo classifyArgumentType(QualType Ty, 1182 unsigned freeIntRegs, 1183 unsigned &neededInt, 1184 unsigned &neededSSE, 1185 bool isNamedArg) const; 1186 1187 bool IsIllegalVectorType(QualType Ty) const; 1188 1189 /// The 0.98 ABI revision clarified a lot of ambiguities, 1190 /// unfortunately in ways that were not always consistent with 1191 /// certain previous compilers. In particular, platforms which 1192 /// required strict binary compatibility with older versions of GCC 1193 /// may need to exempt themselves. 1194 bool honorsRevision0_98() const { 1195 return !getTarget().getTriple().isOSDarwin(); 1196 } 1197 1198 bool HasAVX; 1199 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1200 // 64-bit hardware. 1201 bool Has64BitPointers; 1202 1203 public: 1204 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1205 ABIInfo(CGT), HasAVX(hasavx), 1206 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1207 } 1208 1209 bool isPassedUsingAVXType(QualType type) const { 1210 unsigned neededInt, neededSSE; 1211 // The freeIntRegs argument doesn't matter here. 1212 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1213 /*isNamedArg*/true); 1214 if (info.isDirect()) { 1215 llvm::Type *ty = info.getCoerceToType(); 1216 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1217 return (vectorTy->getBitWidth() > 128); 1218 } 1219 return false; 1220 } 1221 1222 virtual void computeInfo(CGFunctionInfo &FI) const; 1223 1224 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1225 CodeGenFunction &CGF) const; 1226 }; 1227 1228 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1229 class WinX86_64ABIInfo : public ABIInfo { 1230 1231 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1232 1233 public: 1234 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1235 1236 virtual void computeInfo(CGFunctionInfo &FI) const; 1237 1238 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1239 CodeGenFunction &CGF) const; 1240 }; 1241 1242 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1243 public: 1244 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1245 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1246 1247 const X86_64ABIInfo &getABIInfo() const { 1248 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1249 } 1250 1251 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 1252 return 7; 1253 } 1254 1255 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1256 llvm::Value *Address) const { 1257 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1258 1259 // 0-15 are the 16 integer registers. 1260 // 16 is %rip. 1261 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1262 return false; 1263 } 1264 1265 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1266 StringRef Constraint, 1267 llvm::Type* Ty) const { 1268 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1269 } 1270 1271 bool isNoProtoCallVariadic(const CallArgList &args, 1272 const FunctionNoProtoType *fnType) const { 1273 // The default CC on x86-64 sets %al to the number of SSA 1274 // registers used, and GCC sets this when calling an unprototyped 1275 // function, so we override the default behavior. However, don't do 1276 // that when AVX types are involved: the ABI explicitly states it is 1277 // undefined, and it doesn't work in practice because of how the ABI 1278 // defines varargs anyway. 1279 if (fnType->getCallConv() == CC_C) { 1280 bool HasAVXType = false; 1281 for (CallArgList::const_iterator 1282 it = args.begin(), ie = args.end(); it != ie; ++it) { 1283 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1284 HasAVXType = true; 1285 break; 1286 } 1287 } 1288 1289 if (!HasAVXType) 1290 return true; 1291 } 1292 1293 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1294 } 1295 1296 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { 1297 unsigned Sig = (0xeb << 0) | // jmp rel8 1298 (0x0a << 8) | // .+0x0c 1299 ('F' << 16) | 1300 ('T' << 24); 1301 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1302 } 1303 1304 }; 1305 1306 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1307 // If the argument does not end in .lib, automatically add the suffix. This 1308 // matches the behavior of MSVC. 1309 std::string ArgStr = Lib; 1310 if (!Lib.endswith_lower(".lib")) 1311 ArgStr += ".lib"; 1312 return ArgStr; 1313 } 1314 1315 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1316 public: 1317 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1318 bool d, bool p, bool w, unsigned RegParms) 1319 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1320 1321 void getDependentLibraryOption(llvm::StringRef Lib, 1322 llvm::SmallString<24> &Opt) const { 1323 Opt = "/DEFAULTLIB:"; 1324 Opt += qualifyWindowsLibrary(Lib); 1325 } 1326 1327 void getDetectMismatchOption(llvm::StringRef Name, 1328 llvm::StringRef Value, 1329 llvm::SmallString<32> &Opt) const { 1330 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1331 } 1332 }; 1333 1334 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1335 public: 1336 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1337 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1338 1339 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 1340 return 7; 1341 } 1342 1343 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1344 llvm::Value *Address) const { 1345 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1346 1347 // 0-15 are the 16 integer registers. 1348 // 16 is %rip. 1349 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1350 return false; 1351 } 1352 1353 void getDependentLibraryOption(llvm::StringRef Lib, 1354 llvm::SmallString<24> &Opt) const { 1355 Opt = "/DEFAULTLIB:"; 1356 Opt += qualifyWindowsLibrary(Lib); 1357 } 1358 1359 void getDetectMismatchOption(llvm::StringRef Name, 1360 llvm::StringRef Value, 1361 llvm::SmallString<32> &Opt) const { 1362 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1363 } 1364 }; 1365 1366 } 1367 1368 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1369 Class &Hi) const { 1370 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1371 // 1372 // (a) If one of the classes is Memory, the whole argument is passed in 1373 // memory. 1374 // 1375 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1376 // memory. 1377 // 1378 // (c) If the size of the aggregate exceeds two eightbytes and the first 1379 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1380 // argument is passed in memory. NOTE: This is necessary to keep the 1381 // ABI working for processors that don't support the __m256 type. 1382 // 1383 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1384 // 1385 // Some of these are enforced by the merging logic. Others can arise 1386 // only with unions; for example: 1387 // union { _Complex double; unsigned; } 1388 // 1389 // Note that clauses (b) and (c) were added in 0.98. 1390 // 1391 if (Hi == Memory) 1392 Lo = Memory; 1393 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1394 Lo = Memory; 1395 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1396 Lo = Memory; 1397 if (Hi == SSEUp && Lo != SSE) 1398 Hi = SSE; 1399 } 1400 1401 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1402 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1403 // classified recursively so that always two fields are 1404 // considered. The resulting class is calculated according to 1405 // the classes of the fields in the eightbyte: 1406 // 1407 // (a) If both classes are equal, this is the resulting class. 1408 // 1409 // (b) If one of the classes is NO_CLASS, the resulting class is 1410 // the other class. 1411 // 1412 // (c) If one of the classes is MEMORY, the result is the MEMORY 1413 // class. 1414 // 1415 // (d) If one of the classes is INTEGER, the result is the 1416 // INTEGER. 1417 // 1418 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1419 // MEMORY is used as class. 1420 // 1421 // (f) Otherwise class SSE is used. 1422 1423 // Accum should never be memory (we should have returned) or 1424 // ComplexX87 (because this cannot be passed in a structure). 1425 assert((Accum != Memory && Accum != ComplexX87) && 1426 "Invalid accumulated classification during merge."); 1427 if (Accum == Field || Field == NoClass) 1428 return Accum; 1429 if (Field == Memory) 1430 return Memory; 1431 if (Accum == NoClass) 1432 return Field; 1433 if (Accum == Integer || Field == Integer) 1434 return Integer; 1435 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1436 Accum == X87 || Accum == X87Up) 1437 return Memory; 1438 return SSE; 1439 } 1440 1441 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1442 Class &Lo, Class &Hi, bool isNamedArg) const { 1443 // FIXME: This code can be simplified by introducing a simple value class for 1444 // Class pairs with appropriate constructor methods for the various 1445 // situations. 1446 1447 // FIXME: Some of the split computations are wrong; unaligned vectors 1448 // shouldn't be passed in registers for example, so there is no chance they 1449 // can straddle an eightbyte. Verify & simplify. 1450 1451 Lo = Hi = NoClass; 1452 1453 Class &Current = OffsetBase < 64 ? Lo : Hi; 1454 Current = Memory; 1455 1456 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1457 BuiltinType::Kind k = BT->getKind(); 1458 1459 if (k == BuiltinType::Void) { 1460 Current = NoClass; 1461 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1462 Lo = Integer; 1463 Hi = Integer; 1464 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1465 Current = Integer; 1466 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1467 (k == BuiltinType::LongDouble && 1468 getTarget().getTriple().isOSNaCl())) { 1469 Current = SSE; 1470 } else if (k == BuiltinType::LongDouble) { 1471 Lo = X87; 1472 Hi = X87Up; 1473 } 1474 // FIXME: _Decimal32 and _Decimal64 are SSE. 1475 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1476 return; 1477 } 1478 1479 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1480 // Classify the underlying integer type. 1481 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1482 return; 1483 } 1484 1485 if (Ty->hasPointerRepresentation()) { 1486 Current = Integer; 1487 return; 1488 } 1489 1490 if (Ty->isMemberPointerType()) { 1491 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1492 Lo = Hi = Integer; 1493 else 1494 Current = Integer; 1495 return; 1496 } 1497 1498 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1499 uint64_t Size = getContext().getTypeSize(VT); 1500 if (Size == 32) { 1501 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1502 // float> as integer. 1503 Current = Integer; 1504 1505 // If this type crosses an eightbyte boundary, it should be 1506 // split. 1507 uint64_t EB_Real = (OffsetBase) / 64; 1508 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1509 if (EB_Real != EB_Imag) 1510 Hi = Lo; 1511 } else if (Size == 64) { 1512 // gcc passes <1 x double> in memory. :( 1513 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1514 return; 1515 1516 // gcc passes <1 x long long> as INTEGER. 1517 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1518 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1519 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1520 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1521 Current = Integer; 1522 else 1523 Current = SSE; 1524 1525 // If this type crosses an eightbyte boundary, it should be 1526 // split. 1527 if (OffsetBase && OffsetBase != 64) 1528 Hi = Lo; 1529 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1530 // Arguments of 256-bits are split into four eightbyte chunks. The 1531 // least significant one belongs to class SSE and all the others to class 1532 // SSEUP. The original Lo and Hi design considers that types can't be 1533 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1534 // This design isn't correct for 256-bits, but since there're no cases 1535 // where the upper parts would need to be inspected, avoid adding 1536 // complexity and just consider Hi to match the 64-256 part. 1537 // 1538 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1539 // registers if they are "named", i.e. not part of the "..." of a 1540 // variadic function. 1541 Lo = SSE; 1542 Hi = SSEUp; 1543 } 1544 return; 1545 } 1546 1547 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1548 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1549 1550 uint64_t Size = getContext().getTypeSize(Ty); 1551 if (ET->isIntegralOrEnumerationType()) { 1552 if (Size <= 64) 1553 Current = Integer; 1554 else if (Size <= 128) 1555 Lo = Hi = Integer; 1556 } else if (ET == getContext().FloatTy) 1557 Current = SSE; 1558 else if (ET == getContext().DoubleTy || 1559 (ET == getContext().LongDoubleTy && 1560 getTarget().getTriple().isOSNaCl())) 1561 Lo = Hi = SSE; 1562 else if (ET == getContext().LongDoubleTy) 1563 Current = ComplexX87; 1564 1565 // If this complex type crosses an eightbyte boundary then it 1566 // should be split. 1567 uint64_t EB_Real = (OffsetBase) / 64; 1568 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1569 if (Hi == NoClass && EB_Real != EB_Imag) 1570 Hi = Lo; 1571 1572 return; 1573 } 1574 1575 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1576 // Arrays are treated like structures. 1577 1578 uint64_t Size = getContext().getTypeSize(Ty); 1579 1580 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1581 // than four eightbytes, ..., it has class MEMORY. 1582 if (Size > 256) 1583 return; 1584 1585 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1586 // fields, it has class MEMORY. 1587 // 1588 // Only need to check alignment of array base. 1589 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1590 return; 1591 1592 // Otherwise implement simplified merge. We could be smarter about 1593 // this, but it isn't worth it and would be harder to verify. 1594 Current = NoClass; 1595 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1596 uint64_t ArraySize = AT->getSize().getZExtValue(); 1597 1598 // The only case a 256-bit wide vector could be used is when the array 1599 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1600 // to work for sizes wider than 128, early check and fallback to memory. 1601 if (Size > 128 && EltSize != 256) 1602 return; 1603 1604 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1605 Class FieldLo, FieldHi; 1606 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1607 Lo = merge(Lo, FieldLo); 1608 Hi = merge(Hi, FieldHi); 1609 if (Lo == Memory || Hi == Memory) 1610 break; 1611 } 1612 1613 postMerge(Size, Lo, Hi); 1614 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1615 return; 1616 } 1617 1618 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1619 uint64_t Size = getContext().getTypeSize(Ty); 1620 1621 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1622 // than four eightbytes, ..., it has class MEMORY. 1623 if (Size > 256) 1624 return; 1625 1626 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1627 // copy constructor or a non-trivial destructor, it is passed by invisible 1628 // reference. 1629 if (getRecordArgABI(RT, getCXXABI())) 1630 return; 1631 1632 const RecordDecl *RD = RT->getDecl(); 1633 1634 // Assume variable sized types are passed in memory. 1635 if (RD->hasFlexibleArrayMember()) 1636 return; 1637 1638 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1639 1640 // Reset Lo class, this will be recomputed. 1641 Current = NoClass; 1642 1643 // If this is a C++ record, classify the bases first. 1644 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1645 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1646 e = CXXRD->bases_end(); i != e; ++i) { 1647 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1648 "Unexpected base class!"); 1649 const CXXRecordDecl *Base = 1650 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1651 1652 // Classify this field. 1653 // 1654 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1655 // single eightbyte, each is classified separately. Each eightbyte gets 1656 // initialized to class NO_CLASS. 1657 Class FieldLo, FieldHi; 1658 uint64_t Offset = 1659 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1660 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1661 Lo = merge(Lo, FieldLo); 1662 Hi = merge(Hi, FieldHi); 1663 if (Lo == Memory || Hi == Memory) 1664 break; 1665 } 1666 } 1667 1668 // Classify the fields one at a time, merging the results. 1669 unsigned idx = 0; 1670 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1671 i != e; ++i, ++idx) { 1672 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1673 bool BitField = i->isBitField(); 1674 1675 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1676 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1677 // 1678 // The only case a 256-bit wide vector could be used is when the struct 1679 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1680 // to work for sizes wider than 128, early check and fallback to memory. 1681 // 1682 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1683 Lo = Memory; 1684 return; 1685 } 1686 // Note, skip this test for bit-fields, see below. 1687 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1688 Lo = Memory; 1689 return; 1690 } 1691 1692 // Classify this field. 1693 // 1694 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1695 // exceeds a single eightbyte, each is classified 1696 // separately. Each eightbyte gets initialized to class 1697 // NO_CLASS. 1698 Class FieldLo, FieldHi; 1699 1700 // Bit-fields require special handling, they do not force the 1701 // structure to be passed in memory even if unaligned, and 1702 // therefore they can straddle an eightbyte. 1703 if (BitField) { 1704 // Ignore padding bit-fields. 1705 if (i->isUnnamedBitfield()) 1706 continue; 1707 1708 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1709 uint64_t Size = i->getBitWidthValue(getContext()); 1710 1711 uint64_t EB_Lo = Offset / 64; 1712 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1713 1714 if (EB_Lo) { 1715 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1716 FieldLo = NoClass; 1717 FieldHi = Integer; 1718 } else { 1719 FieldLo = Integer; 1720 FieldHi = EB_Hi ? Integer : NoClass; 1721 } 1722 } else 1723 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1724 Lo = merge(Lo, FieldLo); 1725 Hi = merge(Hi, FieldHi); 1726 if (Lo == Memory || Hi == Memory) 1727 break; 1728 } 1729 1730 postMerge(Size, Lo, Hi); 1731 } 1732 } 1733 1734 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1735 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1736 // place naturally. 1737 if (!isAggregateTypeForABI(Ty)) { 1738 // Treat an enum type as its underlying type. 1739 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1740 Ty = EnumTy->getDecl()->getIntegerType(); 1741 1742 return (Ty->isPromotableIntegerType() ? 1743 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1744 } 1745 1746 return ABIArgInfo::getIndirect(0); 1747 } 1748 1749 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1750 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1751 uint64_t Size = getContext().getTypeSize(VecTy); 1752 unsigned LargestVector = HasAVX ? 256 : 128; 1753 if (Size <= 64 || Size > LargestVector) 1754 return true; 1755 } 1756 1757 return false; 1758 } 1759 1760 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1761 unsigned freeIntRegs) const { 1762 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1763 // place naturally. 1764 // 1765 // This assumption is optimistic, as there could be free registers available 1766 // when we need to pass this argument in memory, and LLVM could try to pass 1767 // the argument in the free register. This does not seem to happen currently, 1768 // but this code would be much safer if we could mark the argument with 1769 // 'onstack'. See PR12193. 1770 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1771 // Treat an enum type as its underlying type. 1772 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1773 Ty = EnumTy->getDecl()->getIntegerType(); 1774 1775 return (Ty->isPromotableIntegerType() ? 1776 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1777 } 1778 1779 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1780 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1781 1782 // Compute the byval alignment. We specify the alignment of the byval in all 1783 // cases so that the mid-level optimizer knows the alignment of the byval. 1784 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1785 1786 // Attempt to avoid passing indirect results using byval when possible. This 1787 // is important for good codegen. 1788 // 1789 // We do this by coercing the value into a scalar type which the backend can 1790 // handle naturally (i.e., without using byval). 1791 // 1792 // For simplicity, we currently only do this when we have exhausted all of the 1793 // free integer registers. Doing this when there are free integer registers 1794 // would require more care, as we would have to ensure that the coerced value 1795 // did not claim the unused register. That would require either reording the 1796 // arguments to the function (so that any subsequent inreg values came first), 1797 // or only doing this optimization when there were no following arguments that 1798 // might be inreg. 1799 // 1800 // We currently expect it to be rare (particularly in well written code) for 1801 // arguments to be passed on the stack when there are still free integer 1802 // registers available (this would typically imply large structs being passed 1803 // by value), so this seems like a fair tradeoff for now. 1804 // 1805 // We can revisit this if the backend grows support for 'onstack' parameter 1806 // attributes. See PR12193. 1807 if (freeIntRegs == 0) { 1808 uint64_t Size = getContext().getTypeSize(Ty); 1809 1810 // If this type fits in an eightbyte, coerce it into the matching integral 1811 // type, which will end up on the stack (with alignment 8). 1812 if (Align == 8 && Size <= 64) 1813 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1814 Size)); 1815 } 1816 1817 return ABIArgInfo::getIndirect(Align); 1818 } 1819 1820 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1821 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1822 /// vector register. 1823 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1824 llvm::Type *IRType = CGT.ConvertType(Ty); 1825 1826 // Wrapper structs that just contain vectors are passed just like vectors, 1827 // strip them off if present. 1828 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1829 while (STy && STy->getNumElements() == 1) { 1830 IRType = STy->getElementType(0); 1831 STy = dyn_cast<llvm::StructType>(IRType); 1832 } 1833 1834 // If the preferred type is a 16-byte vector, prefer to pass it. 1835 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1836 llvm::Type *EltTy = VT->getElementType(); 1837 unsigned BitWidth = VT->getBitWidth(); 1838 if ((BitWidth >= 128 && BitWidth <= 256) && 1839 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1840 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1841 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1842 EltTy->isIntegerTy(128))) 1843 return VT; 1844 } 1845 1846 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1847 } 1848 1849 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1850 /// is known to either be off the end of the specified type or being in 1851 /// alignment padding. The user type specified is known to be at most 128 bits 1852 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1853 /// classification that put one of the two halves in the INTEGER class. 1854 /// 1855 /// It is conservatively correct to return false. 1856 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1857 unsigned EndBit, ASTContext &Context) { 1858 // If the bytes being queried are off the end of the type, there is no user 1859 // data hiding here. This handles analysis of builtins, vectors and other 1860 // types that don't contain interesting padding. 1861 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1862 if (TySize <= StartBit) 1863 return true; 1864 1865 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1866 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1867 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1868 1869 // Check each element to see if the element overlaps with the queried range. 1870 for (unsigned i = 0; i != NumElts; ++i) { 1871 // If the element is after the span we care about, then we're done.. 1872 unsigned EltOffset = i*EltSize; 1873 if (EltOffset >= EndBit) break; 1874 1875 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1876 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1877 EndBit-EltOffset, Context)) 1878 return false; 1879 } 1880 // If it overlaps no elements, then it is safe to process as padding. 1881 return true; 1882 } 1883 1884 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1885 const RecordDecl *RD = RT->getDecl(); 1886 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1887 1888 // If this is a C++ record, check the bases first. 1889 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1890 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 1891 e = CXXRD->bases_end(); i != e; ++i) { 1892 assert(!i->isVirtual() && !i->getType()->isDependentType() && 1893 "Unexpected base class!"); 1894 const CXXRecordDecl *Base = 1895 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 1896 1897 // If the base is after the span we care about, ignore it. 1898 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 1899 if (BaseOffset >= EndBit) continue; 1900 1901 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 1902 if (!BitsContainNoUserData(i->getType(), BaseStart, 1903 EndBit-BaseOffset, Context)) 1904 return false; 1905 } 1906 } 1907 1908 // Verify that no field has data that overlaps the region of interest. Yes 1909 // this could be sped up a lot by being smarter about queried fields, 1910 // however we're only looking at structs up to 16 bytes, so we don't care 1911 // much. 1912 unsigned idx = 0; 1913 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1914 i != e; ++i, ++idx) { 1915 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 1916 1917 // If we found a field after the region we care about, then we're done. 1918 if (FieldOffset >= EndBit) break; 1919 1920 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 1921 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 1922 Context)) 1923 return false; 1924 } 1925 1926 // If nothing in this record overlapped the area of interest, then we're 1927 // clean. 1928 return true; 1929 } 1930 1931 return false; 1932 } 1933 1934 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 1935 /// float member at the specified offset. For example, {int,{float}} has a 1936 /// float at offset 4. It is conservatively correct for this routine to return 1937 /// false. 1938 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 1939 const llvm::DataLayout &TD) { 1940 // Base case if we find a float. 1941 if (IROffset == 0 && IRType->isFloatTy()) 1942 return true; 1943 1944 // If this is a struct, recurse into the field at the specified offset. 1945 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 1946 const llvm::StructLayout *SL = TD.getStructLayout(STy); 1947 unsigned Elt = SL->getElementContainingOffset(IROffset); 1948 IROffset -= SL->getElementOffset(Elt); 1949 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 1950 } 1951 1952 // If this is an array, recurse into the field at the specified offset. 1953 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 1954 llvm::Type *EltTy = ATy->getElementType(); 1955 unsigned EltSize = TD.getTypeAllocSize(EltTy); 1956 IROffset -= IROffset/EltSize*EltSize; 1957 return ContainsFloatAtOffset(EltTy, IROffset, TD); 1958 } 1959 1960 return false; 1961 } 1962 1963 1964 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 1965 /// low 8 bytes of an XMM register, corresponding to the SSE class. 1966 llvm::Type *X86_64ABIInfo:: 1967 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 1968 QualType SourceTy, unsigned SourceOffset) const { 1969 // The only three choices we have are either double, <2 x float>, or float. We 1970 // pass as float if the last 4 bytes is just padding. This happens for 1971 // structs that contain 3 floats. 1972 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 1973 SourceOffset*8+64, getContext())) 1974 return llvm::Type::getFloatTy(getVMContext()); 1975 1976 // We want to pass as <2 x float> if the LLVM IR type contains a float at 1977 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 1978 // case. 1979 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 1980 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 1981 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 1982 1983 return llvm::Type::getDoubleTy(getVMContext()); 1984 } 1985 1986 1987 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 1988 /// an 8-byte GPR. This means that we either have a scalar or we are talking 1989 /// about the high or low part of an up-to-16-byte struct. This routine picks 1990 /// the best LLVM IR type to represent this, which may be i64 or may be anything 1991 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 1992 /// etc). 1993 /// 1994 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 1995 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 1996 /// the 8-byte value references. PrefType may be null. 1997 /// 1998 /// SourceTy is the source level type for the entire argument. SourceOffset is 1999 /// an offset into this that we're processing (which is always either 0 or 8). 2000 /// 2001 llvm::Type *X86_64ABIInfo:: 2002 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2003 QualType SourceTy, unsigned SourceOffset) const { 2004 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2005 // returning an 8-byte unit starting with it. See if we can safely use it. 2006 if (IROffset == 0) { 2007 // Pointers and int64's always fill the 8-byte unit. 2008 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2009 IRType->isIntegerTy(64)) 2010 return IRType; 2011 2012 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2013 // goodness in the source type is just tail padding. This is allowed to 2014 // kick in for struct {double,int} on the int, but not on 2015 // struct{double,int,int} because we wouldn't return the second int. We 2016 // have to do this analysis on the source type because we can't depend on 2017 // unions being lowered a specific way etc. 2018 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2019 IRType->isIntegerTy(32) || 2020 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2021 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2022 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2023 2024 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2025 SourceOffset*8+64, getContext())) 2026 return IRType; 2027 } 2028 } 2029 2030 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2031 // If this is a struct, recurse into the field at the specified offset. 2032 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2033 if (IROffset < SL->getSizeInBytes()) { 2034 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2035 IROffset -= SL->getElementOffset(FieldIdx); 2036 2037 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2038 SourceTy, SourceOffset); 2039 } 2040 } 2041 2042 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2043 llvm::Type *EltTy = ATy->getElementType(); 2044 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2045 unsigned EltOffset = IROffset/EltSize*EltSize; 2046 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2047 SourceOffset); 2048 } 2049 2050 // Okay, we don't have any better idea of what to pass, so we pass this in an 2051 // integer register that isn't too big to fit the rest of the struct. 2052 unsigned TySizeInBytes = 2053 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2054 2055 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2056 2057 // It is always safe to classify this as an integer type up to i64 that 2058 // isn't larger than the structure. 2059 return llvm::IntegerType::get(getVMContext(), 2060 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2061 } 2062 2063 2064 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2065 /// be used as elements of a two register pair to pass or return, return a 2066 /// first class aggregate to represent them. For example, if the low part of 2067 /// a by-value argument should be passed as i32* and the high part as float, 2068 /// return {i32*, float}. 2069 static llvm::Type * 2070 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2071 const llvm::DataLayout &TD) { 2072 // In order to correctly satisfy the ABI, we need to the high part to start 2073 // at offset 8. If the high and low parts we inferred are both 4-byte types 2074 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2075 // the second element at offset 8. Check for this: 2076 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2077 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2078 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2079 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2080 2081 // To handle this, we have to increase the size of the low part so that the 2082 // second element will start at an 8 byte offset. We can't increase the size 2083 // of the second element because it might make us access off the end of the 2084 // struct. 2085 if (HiStart != 8) { 2086 // There are only two sorts of types the ABI generation code can produce for 2087 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2088 // Promote these to a larger type. 2089 if (Lo->isFloatTy()) 2090 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2091 else { 2092 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2093 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2094 } 2095 } 2096 2097 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2098 2099 2100 // Verify that the second element is at an 8-byte offset. 2101 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2102 "Invalid x86-64 argument pair!"); 2103 return Result; 2104 } 2105 2106 ABIArgInfo X86_64ABIInfo:: 2107 classifyReturnType(QualType RetTy) const { 2108 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2109 // classification algorithm. 2110 X86_64ABIInfo::Class Lo, Hi; 2111 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2112 2113 // Check some invariants. 2114 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2115 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2116 2117 llvm::Type *ResType = 0; 2118 switch (Lo) { 2119 case NoClass: 2120 if (Hi == NoClass) 2121 return ABIArgInfo::getIgnore(); 2122 // If the low part is just padding, it takes no register, leave ResType 2123 // null. 2124 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2125 "Unknown missing lo part"); 2126 break; 2127 2128 case SSEUp: 2129 case X87Up: 2130 llvm_unreachable("Invalid classification for lo word."); 2131 2132 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2133 // hidden argument. 2134 case Memory: 2135 return getIndirectReturnResult(RetTy); 2136 2137 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2138 // available register of the sequence %rax, %rdx is used. 2139 case Integer: 2140 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2141 2142 // If we have a sign or zero extended integer, make sure to return Extend 2143 // so that the parameter gets the right LLVM IR attributes. 2144 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2145 // Treat an enum type as its underlying type. 2146 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2147 RetTy = EnumTy->getDecl()->getIntegerType(); 2148 2149 if (RetTy->isIntegralOrEnumerationType() && 2150 RetTy->isPromotableIntegerType()) 2151 return ABIArgInfo::getExtend(); 2152 } 2153 break; 2154 2155 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2156 // available SSE register of the sequence %xmm0, %xmm1 is used. 2157 case SSE: 2158 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2159 break; 2160 2161 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2162 // returned on the X87 stack in %st0 as 80-bit x87 number. 2163 case X87: 2164 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2165 break; 2166 2167 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2168 // part of the value is returned in %st0 and the imaginary part in 2169 // %st1. 2170 case ComplexX87: 2171 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2172 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2173 llvm::Type::getX86_FP80Ty(getVMContext()), 2174 NULL); 2175 break; 2176 } 2177 2178 llvm::Type *HighPart = 0; 2179 switch (Hi) { 2180 // Memory was handled previously and X87 should 2181 // never occur as a hi class. 2182 case Memory: 2183 case X87: 2184 llvm_unreachable("Invalid classification for hi word."); 2185 2186 case ComplexX87: // Previously handled. 2187 case NoClass: 2188 break; 2189 2190 case Integer: 2191 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2192 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2193 return ABIArgInfo::getDirect(HighPart, 8); 2194 break; 2195 case SSE: 2196 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2197 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2198 return ABIArgInfo::getDirect(HighPart, 8); 2199 break; 2200 2201 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2202 // is passed in the next available eightbyte chunk if the last used 2203 // vector register. 2204 // 2205 // SSEUP should always be preceded by SSE, just widen. 2206 case SSEUp: 2207 assert(Lo == SSE && "Unexpected SSEUp classification."); 2208 ResType = GetByteVectorType(RetTy); 2209 break; 2210 2211 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2212 // returned together with the previous X87 value in %st0. 2213 case X87Up: 2214 // If X87Up is preceded by X87, we don't need to do 2215 // anything. However, in some cases with unions it may not be 2216 // preceded by X87. In such situations we follow gcc and pass the 2217 // extra bits in an SSE reg. 2218 if (Lo != X87) { 2219 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2220 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2221 return ABIArgInfo::getDirect(HighPart, 8); 2222 } 2223 break; 2224 } 2225 2226 // If a high part was specified, merge it together with the low part. It is 2227 // known to pass in the high eightbyte of the result. We do this by forming a 2228 // first class struct aggregate with the high and low part: {low, high} 2229 if (HighPart) 2230 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2231 2232 return ABIArgInfo::getDirect(ResType); 2233 } 2234 2235 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2236 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2237 bool isNamedArg) 2238 const 2239 { 2240 X86_64ABIInfo::Class Lo, Hi; 2241 classify(Ty, 0, Lo, Hi, isNamedArg); 2242 2243 // Check some invariants. 2244 // FIXME: Enforce these by construction. 2245 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2246 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2247 2248 neededInt = 0; 2249 neededSSE = 0; 2250 llvm::Type *ResType = 0; 2251 switch (Lo) { 2252 case NoClass: 2253 if (Hi == NoClass) 2254 return ABIArgInfo::getIgnore(); 2255 // If the low part is just padding, it takes no register, leave ResType 2256 // null. 2257 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2258 "Unknown missing lo part"); 2259 break; 2260 2261 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2262 // on the stack. 2263 case Memory: 2264 2265 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2266 // COMPLEX_X87, it is passed in memory. 2267 case X87: 2268 case ComplexX87: 2269 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2270 ++neededInt; 2271 return getIndirectResult(Ty, freeIntRegs); 2272 2273 case SSEUp: 2274 case X87Up: 2275 llvm_unreachable("Invalid classification for lo word."); 2276 2277 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2278 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2279 // and %r9 is used. 2280 case Integer: 2281 ++neededInt; 2282 2283 // Pick an 8-byte type based on the preferred type. 2284 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2285 2286 // If we have a sign or zero extended integer, make sure to return Extend 2287 // so that the parameter gets the right LLVM IR attributes. 2288 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2289 // Treat an enum type as its underlying type. 2290 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2291 Ty = EnumTy->getDecl()->getIntegerType(); 2292 2293 if (Ty->isIntegralOrEnumerationType() && 2294 Ty->isPromotableIntegerType()) 2295 return ABIArgInfo::getExtend(); 2296 } 2297 2298 break; 2299 2300 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2301 // available SSE register is used, the registers are taken in the 2302 // order from %xmm0 to %xmm7. 2303 case SSE: { 2304 llvm::Type *IRType = CGT.ConvertType(Ty); 2305 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2306 ++neededSSE; 2307 break; 2308 } 2309 } 2310 2311 llvm::Type *HighPart = 0; 2312 switch (Hi) { 2313 // Memory was handled previously, ComplexX87 and X87 should 2314 // never occur as hi classes, and X87Up must be preceded by X87, 2315 // which is passed in memory. 2316 case Memory: 2317 case X87: 2318 case ComplexX87: 2319 llvm_unreachable("Invalid classification for hi word."); 2320 2321 case NoClass: break; 2322 2323 case Integer: 2324 ++neededInt; 2325 // Pick an 8-byte type based on the preferred type. 2326 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2327 2328 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2329 return ABIArgInfo::getDirect(HighPart, 8); 2330 break; 2331 2332 // X87Up generally doesn't occur here (long double is passed in 2333 // memory), except in situations involving unions. 2334 case X87Up: 2335 case SSE: 2336 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2337 2338 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2339 return ABIArgInfo::getDirect(HighPart, 8); 2340 2341 ++neededSSE; 2342 break; 2343 2344 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2345 // eightbyte is passed in the upper half of the last used SSE 2346 // register. This only happens when 128-bit vectors are passed. 2347 case SSEUp: 2348 assert(Lo == SSE && "Unexpected SSEUp classification"); 2349 ResType = GetByteVectorType(Ty); 2350 break; 2351 } 2352 2353 // If a high part was specified, merge it together with the low part. It is 2354 // known to pass in the high eightbyte of the result. We do this by forming a 2355 // first class struct aggregate with the high and low part: {low, high} 2356 if (HighPart) 2357 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2358 2359 return ABIArgInfo::getDirect(ResType); 2360 } 2361 2362 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2363 2364 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2365 2366 // Keep track of the number of assigned registers. 2367 unsigned freeIntRegs = 6, freeSSERegs = 8; 2368 2369 // If the return value is indirect, then the hidden argument is consuming one 2370 // integer register. 2371 if (FI.getReturnInfo().isIndirect()) 2372 --freeIntRegs; 2373 2374 bool isVariadic = FI.isVariadic(); 2375 unsigned numRequiredArgs = 0; 2376 if (isVariadic) 2377 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2378 2379 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2380 // get assigned (in left-to-right order) for passing as follows... 2381 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2382 it != ie; ++it) { 2383 bool isNamedArg = true; 2384 if (isVariadic) 2385 isNamedArg = (it - FI.arg_begin()) < 2386 static_cast<signed>(numRequiredArgs); 2387 2388 unsigned neededInt, neededSSE; 2389 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2390 neededSSE, isNamedArg); 2391 2392 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2393 // eightbyte of an argument, the whole argument is passed on the 2394 // stack. If registers have already been assigned for some 2395 // eightbytes of such an argument, the assignments get reverted. 2396 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2397 freeIntRegs -= neededInt; 2398 freeSSERegs -= neededSSE; 2399 } else { 2400 it->info = getIndirectResult(it->type, freeIntRegs); 2401 } 2402 } 2403 } 2404 2405 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2406 QualType Ty, 2407 CodeGenFunction &CGF) { 2408 llvm::Value *overflow_arg_area_p = 2409 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2410 llvm::Value *overflow_arg_area = 2411 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2412 2413 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2414 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2415 // It isn't stated explicitly in the standard, but in practice we use 2416 // alignment greater than 16 where necessary. 2417 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2418 if (Align > 8) { 2419 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2420 llvm::Value *Offset = 2421 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2422 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2423 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2424 CGF.Int64Ty); 2425 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2426 overflow_arg_area = 2427 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2428 overflow_arg_area->getType(), 2429 "overflow_arg_area.align"); 2430 } 2431 2432 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2433 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2434 llvm::Value *Res = 2435 CGF.Builder.CreateBitCast(overflow_arg_area, 2436 llvm::PointerType::getUnqual(LTy)); 2437 2438 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2439 // l->overflow_arg_area + sizeof(type). 2440 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2441 // an 8 byte boundary. 2442 2443 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2444 llvm::Value *Offset = 2445 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2446 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2447 "overflow_arg_area.next"); 2448 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2449 2450 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2451 return Res; 2452 } 2453 2454 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2455 CodeGenFunction &CGF) const { 2456 // Assume that va_list type is correct; should be pointer to LLVM type: 2457 // struct { 2458 // i32 gp_offset; 2459 // i32 fp_offset; 2460 // i8* overflow_arg_area; 2461 // i8* reg_save_area; 2462 // }; 2463 unsigned neededInt, neededSSE; 2464 2465 Ty = CGF.getContext().getCanonicalType(Ty); 2466 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2467 /*isNamedArg*/false); 2468 2469 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2470 // in the registers. If not go to step 7. 2471 if (!neededInt && !neededSSE) 2472 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2473 2474 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2475 // general purpose registers needed to pass type and num_fp to hold 2476 // the number of floating point registers needed. 2477 2478 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2479 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2480 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2481 // 2482 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2483 // register save space). 2484 2485 llvm::Value *InRegs = 0; 2486 llvm::Value *gp_offset_p = 0, *gp_offset = 0; 2487 llvm::Value *fp_offset_p = 0, *fp_offset = 0; 2488 if (neededInt) { 2489 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2490 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2491 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2492 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2493 } 2494 2495 if (neededSSE) { 2496 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2497 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2498 llvm::Value *FitsInFP = 2499 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2500 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2501 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2502 } 2503 2504 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2505 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2506 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2507 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2508 2509 // Emit code to load the value if it was passed in registers. 2510 2511 CGF.EmitBlock(InRegBlock); 2512 2513 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2514 // an offset of l->gp_offset and/or l->fp_offset. This may require 2515 // copying to a temporary location in case the parameter is passed 2516 // in different register classes or requires an alignment greater 2517 // than 8 for general purpose registers and 16 for XMM registers. 2518 // 2519 // FIXME: This really results in shameful code when we end up needing to 2520 // collect arguments from different places; often what should result in a 2521 // simple assembling of a structure from scattered addresses has many more 2522 // loads than necessary. Can we clean this up? 2523 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2524 llvm::Value *RegAddr = 2525 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2526 "reg_save_area"); 2527 if (neededInt && neededSSE) { 2528 // FIXME: Cleanup. 2529 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2530 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2531 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2532 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2533 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2534 llvm::Type *TyLo = ST->getElementType(0); 2535 llvm::Type *TyHi = ST->getElementType(1); 2536 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2537 "Unexpected ABI info for mixed regs"); 2538 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2539 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2540 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2541 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2542 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; 2543 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; 2544 llvm::Value *V = 2545 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2546 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2547 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2548 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2549 2550 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2551 llvm::PointerType::getUnqual(LTy)); 2552 } else if (neededInt) { 2553 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2554 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2555 llvm::PointerType::getUnqual(LTy)); 2556 2557 // Copy to a temporary if necessary to ensure the appropriate alignment. 2558 std::pair<CharUnits, CharUnits> SizeAlign = 2559 CGF.getContext().getTypeInfoInChars(Ty); 2560 uint64_t TySize = SizeAlign.first.getQuantity(); 2561 unsigned TyAlign = SizeAlign.second.getQuantity(); 2562 if (TyAlign > 8) { 2563 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2564 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2565 RegAddr = Tmp; 2566 } 2567 } else if (neededSSE == 1) { 2568 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2569 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2570 llvm::PointerType::getUnqual(LTy)); 2571 } else { 2572 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2573 // SSE registers are spaced 16 bytes apart in the register save 2574 // area, we need to collect the two eightbytes together. 2575 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2576 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2577 llvm::Type *DoubleTy = CGF.DoubleTy; 2578 llvm::Type *DblPtrTy = 2579 llvm::PointerType::getUnqual(DoubleTy); 2580 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2581 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2582 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2583 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2584 DblPtrTy)); 2585 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2586 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2587 DblPtrTy)); 2588 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2589 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2590 llvm::PointerType::getUnqual(LTy)); 2591 } 2592 2593 // AMD64-ABI 3.5.7p5: Step 5. Set: 2594 // l->gp_offset = l->gp_offset + num_gp * 8 2595 // l->fp_offset = l->fp_offset + num_fp * 16. 2596 if (neededInt) { 2597 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2598 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2599 gp_offset_p); 2600 } 2601 if (neededSSE) { 2602 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2603 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2604 fp_offset_p); 2605 } 2606 CGF.EmitBranch(ContBlock); 2607 2608 // Emit code to load the value if it was passed in memory. 2609 2610 CGF.EmitBlock(InMemBlock); 2611 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2612 2613 // Return the appropriate result. 2614 2615 CGF.EmitBlock(ContBlock); 2616 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2617 "vaarg.addr"); 2618 ResAddr->addIncoming(RegAddr, InRegBlock); 2619 ResAddr->addIncoming(MemAddr, InMemBlock); 2620 return ResAddr; 2621 } 2622 2623 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2624 2625 if (Ty->isVoidType()) 2626 return ABIArgInfo::getIgnore(); 2627 2628 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2629 Ty = EnumTy->getDecl()->getIntegerType(); 2630 2631 uint64_t Size = getContext().getTypeSize(Ty); 2632 2633 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2634 if (IsReturnType) { 2635 if (isRecordReturnIndirect(RT, getCXXABI())) 2636 return ABIArgInfo::getIndirect(0, false); 2637 } else { 2638 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2639 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2640 } 2641 2642 if (RT->getDecl()->hasFlexibleArrayMember()) 2643 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2644 2645 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2646 if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32) 2647 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2648 Size)); 2649 2650 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2651 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2652 if (Size <= 64 && 2653 (Size & (Size - 1)) == 0) 2654 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2655 Size)); 2656 2657 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2658 } 2659 2660 if (Ty->isPromotableIntegerType()) 2661 return ABIArgInfo::getExtend(); 2662 2663 return ABIArgInfo::getDirect(); 2664 } 2665 2666 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2667 2668 QualType RetTy = FI.getReturnType(); 2669 FI.getReturnInfo() = classify(RetTy, true); 2670 2671 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2672 it != ie; ++it) 2673 it->info = classify(it->type, false); 2674 } 2675 2676 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2677 CodeGenFunction &CGF) const { 2678 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2679 2680 CGBuilderTy &Builder = CGF.Builder; 2681 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2682 "ap"); 2683 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2684 llvm::Type *PTy = 2685 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2686 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2687 2688 uint64_t Offset = 2689 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2690 llvm::Value *NextAddr = 2691 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2692 "ap.next"); 2693 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2694 2695 return AddrTyped; 2696 } 2697 2698 namespace { 2699 2700 class NaClX86_64ABIInfo : public ABIInfo { 2701 public: 2702 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2703 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2704 virtual void computeInfo(CGFunctionInfo &FI) const; 2705 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2706 CodeGenFunction &CGF) const; 2707 private: 2708 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2709 X86_64ABIInfo NInfo; // Used for everything else. 2710 }; 2711 2712 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2713 public: 2714 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2715 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2716 }; 2717 2718 } 2719 2720 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2721 if (FI.getASTCallingConvention() == CC_PnaclCall) 2722 PInfo.computeInfo(FI); 2723 else 2724 NInfo.computeInfo(FI); 2725 } 2726 2727 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2728 CodeGenFunction &CGF) const { 2729 // Always use the native convention; calling pnacl-style varargs functions 2730 // is unuspported. 2731 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2732 } 2733 2734 2735 // PowerPC-32 2736 2737 namespace { 2738 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2739 public: 2740 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2741 2742 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2743 // This is recovered from gcc output. 2744 return 1; // r1 is the dedicated stack pointer 2745 } 2746 2747 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2748 llvm::Value *Address) const; 2749 }; 2750 2751 } 2752 2753 bool 2754 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2755 llvm::Value *Address) const { 2756 // This is calculated from the LLVM and GCC tables and verified 2757 // against gcc output. AFAIK all ABIs use the same encoding. 2758 2759 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2760 2761 llvm::IntegerType *i8 = CGF.Int8Ty; 2762 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2763 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2764 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2765 2766 // 0-31: r0-31, the 4-byte general-purpose registers 2767 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2768 2769 // 32-63: fp0-31, the 8-byte floating-point registers 2770 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2771 2772 // 64-76 are various 4-byte special-purpose registers: 2773 // 64: mq 2774 // 65: lr 2775 // 66: ctr 2776 // 67: ap 2777 // 68-75 cr0-7 2778 // 76: xer 2779 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2780 2781 // 77-108: v0-31, the 16-byte vector registers 2782 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2783 2784 // 109: vrsave 2785 // 110: vscr 2786 // 111: spe_acc 2787 // 112: spefscr 2788 // 113: sfp 2789 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2790 2791 return false; 2792 } 2793 2794 // PowerPC-64 2795 2796 namespace { 2797 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2798 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2799 2800 public: 2801 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 2802 2803 bool isPromotableTypeForABI(QualType Ty) const; 2804 2805 ABIArgInfo classifyReturnType(QualType RetTy) const; 2806 ABIArgInfo classifyArgumentType(QualType Ty) const; 2807 2808 // TODO: We can add more logic to computeInfo to improve performance. 2809 // Example: For aggregate arguments that fit in a register, we could 2810 // use getDirectInReg (as is done below for structs containing a single 2811 // floating-point value) to avoid pushing them to memory on function 2812 // entry. This would require changing the logic in PPCISelLowering 2813 // when lowering the parameters in the caller and args in the callee. 2814 virtual void computeInfo(CGFunctionInfo &FI) const { 2815 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2816 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2817 it != ie; ++it) { 2818 // We rely on the default argument classification for the most part. 2819 // One exception: An aggregate containing a single floating-point 2820 // or vector item must be passed in a register if one is available. 2821 const Type *T = isSingleElementStruct(it->type, getContext()); 2822 if (T) { 2823 const BuiltinType *BT = T->getAs<BuiltinType>(); 2824 if (T->isVectorType() || (BT && BT->isFloatingPoint())) { 2825 QualType QT(T, 0); 2826 it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2827 continue; 2828 } 2829 } 2830 it->info = classifyArgumentType(it->type); 2831 } 2832 } 2833 2834 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, 2835 QualType Ty, 2836 CodeGenFunction &CGF) const; 2837 }; 2838 2839 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2840 public: 2841 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) 2842 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} 2843 2844 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2845 // This is recovered from gcc output. 2846 return 1; // r1 is the dedicated stack pointer 2847 } 2848 2849 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2850 llvm::Value *Address) const; 2851 }; 2852 2853 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2854 public: 2855 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2856 2857 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 2858 // This is recovered from gcc output. 2859 return 1; // r1 is the dedicated stack pointer 2860 } 2861 2862 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2863 llvm::Value *Address) const; 2864 }; 2865 2866 } 2867 2868 // Return true if the ABI requires Ty to be passed sign- or zero- 2869 // extended to 64 bits. 2870 bool 2871 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 2872 // Treat an enum type as its underlying type. 2873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2874 Ty = EnumTy->getDecl()->getIntegerType(); 2875 2876 // Promotable integer types are required to be promoted by the ABI. 2877 if (Ty->isPromotableIntegerType()) 2878 return true; 2879 2880 // In addition to the usual promotable integer types, we also need to 2881 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 2882 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2883 switch (BT->getKind()) { 2884 case BuiltinType::Int: 2885 case BuiltinType::UInt: 2886 return true; 2887 default: 2888 break; 2889 } 2890 2891 return false; 2892 } 2893 2894 ABIArgInfo 2895 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 2896 if (Ty->isAnyComplexType()) 2897 return ABIArgInfo::getDirect(); 2898 2899 if (isAggregateTypeForABI(Ty)) { 2900 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2901 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2902 2903 return ABIArgInfo::getIndirect(0); 2904 } 2905 2906 return (isPromotableTypeForABI(Ty) ? 2907 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2908 } 2909 2910 ABIArgInfo 2911 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 2912 if (RetTy->isVoidType()) 2913 return ABIArgInfo::getIgnore(); 2914 2915 if (RetTy->isAnyComplexType()) 2916 return ABIArgInfo::getDirect(); 2917 2918 if (isAggregateTypeForABI(RetTy)) 2919 return ABIArgInfo::getIndirect(0); 2920 2921 return (isPromotableTypeForABI(RetTy) ? 2922 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2923 } 2924 2925 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 2926 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 2927 QualType Ty, 2928 CodeGenFunction &CGF) const { 2929 llvm::Type *BP = CGF.Int8PtrTy; 2930 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2931 2932 CGBuilderTy &Builder = CGF.Builder; 2933 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 2934 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2935 2936 // Update the va_list pointer. The pointer should be bumped by the 2937 // size of the object. We can trust getTypeSize() except for a complex 2938 // type whose base type is smaller than a doubleword. For these, the 2939 // size of the object is 16 bytes; see below for further explanation. 2940 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 2941 QualType BaseTy; 2942 unsigned CplxBaseSize = 0; 2943 2944 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 2945 BaseTy = CTy->getElementType(); 2946 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 2947 if (CplxBaseSize < 8) 2948 SizeInBytes = 16; 2949 } 2950 2951 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 2952 llvm::Value *NextAddr = 2953 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 2954 "ap.next"); 2955 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2956 2957 // If we have a complex type and the base type is smaller than 8 bytes, 2958 // the ABI calls for the real and imaginary parts to be right-adjusted 2959 // in separate doublewords. However, Clang expects us to produce a 2960 // pointer to a structure with the two parts packed tightly. So generate 2961 // loads of the real and imaginary parts relative to the va_list pointer, 2962 // and store them to a temporary structure. 2963 if (CplxBaseSize && CplxBaseSize < 8) { 2964 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 2965 llvm::Value *ImagAddr = RealAddr; 2966 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 2967 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 2968 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 2969 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 2970 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 2971 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 2972 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 2973 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 2974 "vacplx"); 2975 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 2976 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 2977 Builder.CreateStore(Real, RealPtr, false); 2978 Builder.CreateStore(Imag, ImagPtr, false); 2979 return Ptr; 2980 } 2981 2982 // If the argument is smaller than 8 bytes, it is right-adjusted in 2983 // its doubleword slot. Adjust the pointer to pick it up from the 2984 // correct offset. 2985 if (SizeInBytes < 8) { 2986 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 2987 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 2988 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 2989 } 2990 2991 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2992 return Builder.CreateBitCast(Addr, PTy); 2993 } 2994 2995 static bool 2996 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2997 llvm::Value *Address) { 2998 // This is calculated from the LLVM and GCC tables and verified 2999 // against gcc output. AFAIK all ABIs use the same encoding. 3000 3001 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3002 3003 llvm::IntegerType *i8 = CGF.Int8Ty; 3004 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3005 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3006 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3007 3008 // 0-31: r0-31, the 8-byte general-purpose registers 3009 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3010 3011 // 32-63: fp0-31, the 8-byte floating-point registers 3012 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3013 3014 // 64-76 are various 4-byte special-purpose registers: 3015 // 64: mq 3016 // 65: lr 3017 // 66: ctr 3018 // 67: ap 3019 // 68-75 cr0-7 3020 // 76: xer 3021 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3022 3023 // 77-108: v0-31, the 16-byte vector registers 3024 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3025 3026 // 109: vrsave 3027 // 110: vscr 3028 // 111: spe_acc 3029 // 112: spefscr 3030 // 113: sfp 3031 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3032 3033 return false; 3034 } 3035 3036 bool 3037 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3038 CodeGen::CodeGenFunction &CGF, 3039 llvm::Value *Address) const { 3040 3041 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3042 } 3043 3044 bool 3045 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3046 llvm::Value *Address) const { 3047 3048 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3049 } 3050 3051 //===----------------------------------------------------------------------===// 3052 // ARM ABI Implementation 3053 //===----------------------------------------------------------------------===// 3054 3055 namespace { 3056 3057 class ARMABIInfo : public ABIInfo { 3058 public: 3059 enum ABIKind { 3060 APCS = 0, 3061 AAPCS = 1, 3062 AAPCS_VFP 3063 }; 3064 3065 private: 3066 ABIKind Kind; 3067 3068 public: 3069 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 3070 setRuntimeCC(); 3071 } 3072 3073 bool isEABI() const { 3074 switch (getTarget().getTriple().getEnvironment()) { 3075 case llvm::Triple::Android: 3076 case llvm::Triple::EABI: 3077 case llvm::Triple::EABIHF: 3078 case llvm::Triple::GNUEABI: 3079 case llvm::Triple::GNUEABIHF: 3080 return true; 3081 default: 3082 return false; 3083 } 3084 } 3085 3086 bool isEABIHF() const { 3087 switch (getTarget().getTriple().getEnvironment()) { 3088 case llvm::Triple::EABIHF: 3089 case llvm::Triple::GNUEABIHF: 3090 return true; 3091 default: 3092 return false; 3093 } 3094 } 3095 3096 ABIKind getABIKind() const { return Kind; } 3097 3098 private: 3099 ABIArgInfo classifyReturnType(QualType RetTy) const; 3100 ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs, 3101 unsigned &AllocatedVFP, 3102 bool &IsHA) const; 3103 bool isIllegalVectorType(QualType Ty) const; 3104 3105 virtual void computeInfo(CGFunctionInfo &FI) const; 3106 3107 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3108 CodeGenFunction &CGF) const; 3109 3110 llvm::CallingConv::ID getLLVMDefaultCC() const; 3111 llvm::CallingConv::ID getABIDefaultCC() const; 3112 void setRuntimeCC(); 3113 }; 3114 3115 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 3116 public: 3117 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 3118 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 3119 3120 const ARMABIInfo &getABIInfo() const { 3121 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3122 } 3123 3124 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 3125 return 13; 3126 } 3127 3128 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3129 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 3130 } 3131 3132 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3133 llvm::Value *Address) const { 3134 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 3135 3136 // 0-15 are the 16 integer registers. 3137 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 3138 return false; 3139 } 3140 3141 unsigned getSizeOfUnwindException() const { 3142 if (getABIInfo().isEABI()) return 88; 3143 return TargetCodeGenInfo::getSizeOfUnwindException(); 3144 } 3145 3146 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3147 CodeGen::CodeGenModule &CGM) const { 3148 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3149 if (!FD) 3150 return; 3151 3152 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 3153 if (!Attr) 3154 return; 3155 3156 const char *Kind; 3157 switch (Attr->getInterrupt()) { 3158 case ARMInterruptAttr::Generic: Kind = ""; break; 3159 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 3160 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 3161 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 3162 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 3163 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 3164 } 3165 3166 llvm::Function *Fn = cast<llvm::Function>(GV); 3167 3168 Fn->addFnAttr("interrupt", Kind); 3169 3170 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 3171 return; 3172 3173 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 3174 // however this is not necessarily true on taking any interrupt. Instruct 3175 // the backend to perform a realignment as part of the function prologue. 3176 llvm::AttrBuilder B; 3177 B.addStackAlignmentAttr(8); 3178 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 3179 llvm::AttributeSet::get(CGM.getLLVMContext(), 3180 llvm::AttributeSet::FunctionIndex, 3181 B)); 3182 } 3183 3184 }; 3185 3186 } 3187 3188 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3189 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3190 // VFP registers allocated so far. 3191 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3192 // VFP registers of the appropriate type unallocated then the argument is 3193 // allocated to the lowest-numbered sequence of such registers. 3194 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3195 // unallocated are marked as unavailable. 3196 unsigned AllocatedVFP = 0; 3197 int VFPRegs[16] = { 0 }; 3198 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3199 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3200 it != ie; ++it) { 3201 unsigned PreAllocation = AllocatedVFP; 3202 bool IsHA = false; 3203 // 6.1.2.3 There is one VFP co-processor register class using registers 3204 // s0-s15 (d0-d7) for passing arguments. 3205 const unsigned NumVFPs = 16; 3206 it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA); 3207 // If we do not have enough VFP registers for the HA, any VFP registers 3208 // that are unallocated are marked as unavailable. To achieve this, we add 3209 // padding of (NumVFPs - PreAllocation) floats. 3210 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3211 llvm::Type *PaddingTy = llvm::ArrayType::get( 3212 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3213 it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy); 3214 } 3215 } 3216 3217 // Always honor user-specified calling convention. 3218 if (FI.getCallingConvention() != llvm::CallingConv::C) 3219 return; 3220 3221 llvm::CallingConv::ID cc = getRuntimeCC(); 3222 if (cc != llvm::CallingConv::C) 3223 FI.setEffectiveCallingConvention(cc); 3224 } 3225 3226 /// Return the default calling convention that LLVM will use. 3227 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 3228 // The default calling convention that LLVM will infer. 3229 if (isEABIHF()) 3230 return llvm::CallingConv::ARM_AAPCS_VFP; 3231 else if (isEABI()) 3232 return llvm::CallingConv::ARM_AAPCS; 3233 else 3234 return llvm::CallingConv::ARM_APCS; 3235 } 3236 3237 /// Return the calling convention that our ABI would like us to use 3238 /// as the C calling convention. 3239 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 3240 switch (getABIKind()) { 3241 case APCS: return llvm::CallingConv::ARM_APCS; 3242 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 3243 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 3244 } 3245 llvm_unreachable("bad ABI kind"); 3246 } 3247 3248 void ARMABIInfo::setRuntimeCC() { 3249 assert(getRuntimeCC() == llvm::CallingConv::C); 3250 3251 // Don't muddy up the IR with a ton of explicit annotations if 3252 // they'd just match what LLVM will infer from the triple. 3253 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 3254 if (abiCC != getLLVMDefaultCC()) 3255 RuntimeCC = abiCC; 3256 } 3257 3258 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 3259 /// aggregate. If HAMembers is non-null, the number of base elements 3260 /// contained in the type is returned through it; this is used for the 3261 /// recursive calls that check aggregate component types. 3262 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3263 ASTContext &Context, 3264 uint64_t *HAMembers = 0) { 3265 uint64_t Members = 0; 3266 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3267 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 3268 return false; 3269 Members *= AT->getSize().getZExtValue(); 3270 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3271 const RecordDecl *RD = RT->getDecl(); 3272 if (RD->hasFlexibleArrayMember()) 3273 return false; 3274 3275 Members = 0; 3276 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3277 i != e; ++i) { 3278 const FieldDecl *FD = *i; 3279 uint64_t FldMembers; 3280 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 3281 return false; 3282 3283 Members = (RD->isUnion() ? 3284 std::max(Members, FldMembers) : Members + FldMembers); 3285 } 3286 } else { 3287 Members = 1; 3288 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3289 Members = 2; 3290 Ty = CT->getElementType(); 3291 } 3292 3293 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 3294 // double, or 64-bit or 128-bit vectors. 3295 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3296 if (BT->getKind() != BuiltinType::Float && 3297 BT->getKind() != BuiltinType::Double && 3298 BT->getKind() != BuiltinType::LongDouble) 3299 return false; 3300 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 3301 unsigned VecSize = Context.getTypeSize(VT); 3302 if (VecSize != 64 && VecSize != 128) 3303 return false; 3304 } else { 3305 return false; 3306 } 3307 3308 // The base type must be the same for all members. Vector types of the 3309 // same total size are treated as being equivalent here. 3310 const Type *TyPtr = Ty.getTypePtr(); 3311 if (!Base) 3312 Base = TyPtr; 3313 if (Base != TyPtr && 3314 (!Base->isVectorType() || !TyPtr->isVectorType() || 3315 Context.getTypeSize(Base) != Context.getTypeSize(TyPtr))) 3316 return false; 3317 } 3318 3319 // Homogeneous Aggregates can have at most 4 members of the base type. 3320 if (HAMembers) 3321 *HAMembers = Members; 3322 3323 return (Members > 0 && Members <= 4); 3324 } 3325 3326 /// markAllocatedVFPs - update VFPRegs according to the alignment and 3327 /// number of VFP registers (unit is S register) requested. 3328 static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP, 3329 unsigned Alignment, 3330 unsigned NumRequired) { 3331 // Early Exit. 3332 if (AllocatedVFP >= 16) 3333 return; 3334 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3335 // VFP registers of the appropriate type unallocated then the argument is 3336 // allocated to the lowest-numbered sequence of such registers. 3337 for (unsigned I = 0; I < 16; I += Alignment) { 3338 bool FoundSlot = true; 3339 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 3340 if (J >= 16 || VFPRegs[J]) { 3341 FoundSlot = false; 3342 break; 3343 } 3344 if (FoundSlot) { 3345 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 3346 VFPRegs[J] = 1; 3347 AllocatedVFP += NumRequired; 3348 return; 3349 } 3350 } 3351 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3352 // unallocated are marked as unavailable. 3353 for (unsigned I = 0; I < 16; I++) 3354 VFPRegs[I] = 1; 3355 AllocatedVFP = 17; // We do not have enough VFP registers. 3356 } 3357 3358 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs, 3359 unsigned &AllocatedVFP, 3360 bool &IsHA) const { 3361 // We update number of allocated VFPs according to 3362 // 6.1.2.1 The following argument types are VFP CPRCs: 3363 // A single-precision floating-point type (including promoted 3364 // half-precision types); A double-precision floating-point type; 3365 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 3366 // with a Base Type of a single- or double-precision floating-point type, 3367 // 64-bit containerized vectors or 128-bit containerized vectors with one 3368 // to four Elements. 3369 3370 // Handle illegal vector types here. 3371 if (isIllegalVectorType(Ty)) { 3372 uint64_t Size = getContext().getTypeSize(Ty); 3373 if (Size <= 32) { 3374 llvm::Type *ResType = 3375 llvm::Type::getInt32Ty(getVMContext()); 3376 return ABIArgInfo::getDirect(ResType); 3377 } 3378 if (Size == 64) { 3379 llvm::Type *ResType = llvm::VectorType::get( 3380 llvm::Type::getInt32Ty(getVMContext()), 2); 3381 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); 3382 return ABIArgInfo::getDirect(ResType); 3383 } 3384 if (Size == 128) { 3385 llvm::Type *ResType = llvm::VectorType::get( 3386 llvm::Type::getInt32Ty(getVMContext()), 4); 3387 markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4); 3388 return ABIArgInfo::getDirect(ResType); 3389 } 3390 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3391 } 3392 // Update VFPRegs for legal vector types. 3393 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3394 uint64_t Size = getContext().getTypeSize(VT); 3395 // Size of a legal vector should be power of 2 and above 64. 3396 markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32); 3397 } 3398 // Update VFPRegs for floating point types. 3399 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3400 if (BT->getKind() == BuiltinType::Half || 3401 BT->getKind() == BuiltinType::Float) 3402 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1); 3403 if (BT->getKind() == BuiltinType::Double || 3404 BT->getKind() == BuiltinType::LongDouble) 3405 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); 3406 } 3407 3408 if (!isAggregateTypeForABI(Ty)) { 3409 // Treat an enum type as its underlying type. 3410 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3411 Ty = EnumTy->getDecl()->getIntegerType(); 3412 3413 return (Ty->isPromotableIntegerType() ? 3414 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3415 } 3416 3417 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3418 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3419 3420 // Ignore empty records. 3421 if (isEmptyRecord(getContext(), Ty, true)) 3422 return ABIArgInfo::getIgnore(); 3423 3424 if (getABIKind() == ARMABIInfo::AAPCS_VFP) { 3425 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 3426 // into VFP registers. 3427 const Type *Base = 0; 3428 uint64_t Members = 0; 3429 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 3430 assert(Base && "Base class should be set for homogeneous aggregate"); 3431 // Base can be a floating-point or a vector. 3432 if (Base->isVectorType()) { 3433 // ElementSize is in number of floats. 3434 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 3435 markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize, 3436 Members * ElementSize); 3437 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 3438 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members); 3439 else { 3440 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 3441 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 3442 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2); 3443 } 3444 IsHA = true; 3445 return ABIArgInfo::getExpand(); 3446 } 3447 } 3448 3449 // Support byval for ARM. 3450 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 3451 // most 8-byte. We realign the indirect argument if type alignment is bigger 3452 // than ABI alignment. 3453 uint64_t ABIAlign = 4; 3454 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3455 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 3456 getABIKind() == ARMABIInfo::AAPCS) 3457 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 3458 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 3459 return ABIArgInfo::getIndirect(0, /*ByVal=*/true, 3460 /*Realign=*/TyAlign > ABIAlign); 3461 } 3462 3463 // Otherwise, pass by coercing to a structure of the appropriate size. 3464 llvm::Type* ElemTy; 3465 unsigned SizeRegs; 3466 // FIXME: Try to match the types of the arguments more accurately where 3467 // we can. 3468 if (getContext().getTypeAlign(Ty) <= 32) { 3469 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 3470 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 3471 } else { 3472 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 3473 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 3474 } 3475 3476 llvm::Type *STy = 3477 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 3478 return ABIArgInfo::getDirect(STy); 3479 } 3480 3481 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 3482 llvm::LLVMContext &VMContext) { 3483 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 3484 // is called integer-like if its size is less than or equal to one word, and 3485 // the offset of each of its addressable sub-fields is zero. 3486 3487 uint64_t Size = Context.getTypeSize(Ty); 3488 3489 // Check that the type fits in a word. 3490 if (Size > 32) 3491 return false; 3492 3493 // FIXME: Handle vector types! 3494 if (Ty->isVectorType()) 3495 return false; 3496 3497 // Float types are never treated as "integer like". 3498 if (Ty->isRealFloatingType()) 3499 return false; 3500 3501 // If this is a builtin or pointer type then it is ok. 3502 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 3503 return true; 3504 3505 // Small complex integer types are "integer like". 3506 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 3507 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 3508 3509 // Single element and zero sized arrays should be allowed, by the definition 3510 // above, but they are not. 3511 3512 // Otherwise, it must be a record type. 3513 const RecordType *RT = Ty->getAs<RecordType>(); 3514 if (!RT) return false; 3515 3516 // Ignore records with flexible arrays. 3517 const RecordDecl *RD = RT->getDecl(); 3518 if (RD->hasFlexibleArrayMember()) 3519 return false; 3520 3521 // Check that all sub-fields are at offset 0, and are themselves "integer 3522 // like". 3523 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3524 3525 bool HadField = false; 3526 unsigned idx = 0; 3527 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3528 i != e; ++i, ++idx) { 3529 const FieldDecl *FD = *i; 3530 3531 // Bit-fields are not addressable, we only need to verify they are "integer 3532 // like". We still have to disallow a subsequent non-bitfield, for example: 3533 // struct { int : 0; int x } 3534 // is non-integer like according to gcc. 3535 if (FD->isBitField()) { 3536 if (!RD->isUnion()) 3537 HadField = true; 3538 3539 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 3540 return false; 3541 3542 continue; 3543 } 3544 3545 // Check if this field is at offset 0. 3546 if (Layout.getFieldOffset(idx) != 0) 3547 return false; 3548 3549 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 3550 return false; 3551 3552 // Only allow at most one field in a structure. This doesn't match the 3553 // wording above, but follows gcc in situations with a field following an 3554 // empty structure. 3555 if (!RD->isUnion()) { 3556 if (HadField) 3557 return false; 3558 3559 HadField = true; 3560 } 3561 } 3562 3563 return true; 3564 } 3565 3566 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const { 3567 if (RetTy->isVoidType()) 3568 return ABIArgInfo::getIgnore(); 3569 3570 // Large vector types should be returned via memory. 3571 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3572 return ABIArgInfo::getIndirect(0); 3573 3574 if (!isAggregateTypeForABI(RetTy)) { 3575 // Treat an enum type as its underlying type. 3576 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3577 RetTy = EnumTy->getDecl()->getIntegerType(); 3578 3579 return (RetTy->isPromotableIntegerType() ? 3580 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3581 } 3582 3583 // Structures with either a non-trivial destructor or a non-trivial 3584 // copy constructor are always indirect. 3585 if (isRecordReturnIndirect(RetTy, getCXXABI())) 3586 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3587 3588 // Are we following APCS? 3589 if (getABIKind() == APCS) { 3590 if (isEmptyRecord(getContext(), RetTy, false)) 3591 return ABIArgInfo::getIgnore(); 3592 3593 // Complex types are all returned as packed integers. 3594 // 3595 // FIXME: Consider using 2 x vector types if the back end handles them 3596 // correctly. 3597 if (RetTy->isAnyComplexType()) 3598 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3599 getContext().getTypeSize(RetTy))); 3600 3601 // Integer like structures are returned in r0. 3602 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 3603 // Return in the smallest viable integer type. 3604 uint64_t Size = getContext().getTypeSize(RetTy); 3605 if (Size <= 8) 3606 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3607 if (Size <= 16) 3608 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 3609 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 3610 } 3611 3612 // Otherwise return in memory. 3613 return ABIArgInfo::getIndirect(0); 3614 } 3615 3616 // Otherwise this is an AAPCS variant. 3617 3618 if (isEmptyRecord(getContext(), RetTy, true)) 3619 return ABIArgInfo::getIgnore(); 3620 3621 // Check for homogeneous aggregates with AAPCS-VFP. 3622 if (getABIKind() == AAPCS_VFP) { 3623 const Type *Base = 0; 3624 if (isHomogeneousAggregate(RetTy, Base, getContext())) { 3625 assert(Base && "Base class should be set for homogeneous aggregate"); 3626 // Homogeneous Aggregates are returned directly. 3627 return ABIArgInfo::getDirect(); 3628 } 3629 } 3630 3631 // Aggregates <= 4 bytes are returned in r0; other aggregates 3632 // are returned indirectly. 3633 uint64_t Size = getContext().getTypeSize(RetTy); 3634 if (Size <= 32) { 3635 // Return in the smallest viable integer type. 3636 if (Size <= 8) 3637 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3638 if (Size <= 16) 3639 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 3640 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 3641 } 3642 3643 return ABIArgInfo::getIndirect(0); 3644 } 3645 3646 /// isIllegalVector - check whether Ty is an illegal vector type. 3647 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 3648 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3649 // Check whether VT is legal. 3650 unsigned NumElements = VT->getNumElements(); 3651 uint64_t Size = getContext().getTypeSize(VT); 3652 // NumElements should be power of 2. 3653 if ((NumElements & (NumElements - 1)) != 0) 3654 return true; 3655 // Size should be greater than 32 bits. 3656 return Size <= 32; 3657 } 3658 return false; 3659 } 3660 3661 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3662 CodeGenFunction &CGF) const { 3663 llvm::Type *BP = CGF.Int8PtrTy; 3664 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3665 3666 CGBuilderTy &Builder = CGF.Builder; 3667 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3668 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3669 3670 if (isEmptyRecord(getContext(), Ty, true)) { 3671 // These are ignored for parameter passing purposes. 3672 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3673 return Builder.CreateBitCast(Addr, PTy); 3674 } 3675 3676 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3677 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 3678 bool IsIndirect = false; 3679 3680 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 3681 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 3682 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 3683 getABIKind() == ARMABIInfo::AAPCS) 3684 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 3685 else 3686 TyAlign = 4; 3687 // Use indirect if size of the illegal vector is bigger than 16 bytes. 3688 if (isIllegalVectorType(Ty) && Size > 16) { 3689 IsIndirect = true; 3690 Size = 4; 3691 TyAlign = 4; 3692 } 3693 3694 // Handle address alignment for ABI alignment > 4 bytes. 3695 if (TyAlign > 4) { 3696 assert((TyAlign & (TyAlign - 1)) == 0 && 3697 "Alignment is not power of 2!"); 3698 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 3699 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 3700 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 3701 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3702 } 3703 3704 uint64_t Offset = 3705 llvm::RoundUpToAlignment(Size, 4); 3706 llvm::Value *NextAddr = 3707 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3708 "ap.next"); 3709 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3710 3711 if (IsIndirect) 3712 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 3713 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 3714 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 3715 // may not be correctly aligned for the vector type. We create an aligned 3716 // temporary space and copy the content over from ap.cur to the temporary 3717 // space. This is necessary if the natural alignment of the type is greater 3718 // than the ABI alignment. 3719 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 3720 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 3721 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 3722 "var.align"); 3723 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 3724 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 3725 Builder.CreateMemCpy(Dst, Src, 3726 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 3727 TyAlign, false); 3728 Addr = AlignedTemp; //The content is in aligned location. 3729 } 3730 llvm::Type *PTy = 3731 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3732 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3733 3734 return AddrTyped; 3735 } 3736 3737 namespace { 3738 3739 class NaClARMABIInfo : public ABIInfo { 3740 public: 3741 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 3742 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 3743 virtual void computeInfo(CGFunctionInfo &FI) const; 3744 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3745 CodeGenFunction &CGF) const; 3746 private: 3747 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 3748 ARMABIInfo NInfo; // Used for everything else. 3749 }; 3750 3751 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 3752 public: 3753 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 3754 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 3755 }; 3756 3757 } 3758 3759 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3760 if (FI.getASTCallingConvention() == CC_PnaclCall) 3761 PInfo.computeInfo(FI); 3762 else 3763 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 3764 } 3765 3766 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3767 CodeGenFunction &CGF) const { 3768 // Always use the native convention; calling pnacl-style varargs functions 3769 // is unsupported. 3770 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 3771 } 3772 3773 //===----------------------------------------------------------------------===// 3774 // AArch64 ABI Implementation 3775 //===----------------------------------------------------------------------===// 3776 3777 namespace { 3778 3779 class AArch64ABIInfo : public ABIInfo { 3780 public: 3781 AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 3782 3783 private: 3784 // The AArch64 PCS is explicit about return types and argument types being 3785 // handled identically, so we don't need to draw a distinction between 3786 // Argument and Return classification. 3787 ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs, 3788 int &FreeVFPRegs) const; 3789 3790 ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt, 3791 llvm::Type *DirectTy = 0) const; 3792 3793 virtual void computeInfo(CGFunctionInfo &FI) const; 3794 3795 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3796 CodeGenFunction &CGF) const; 3797 }; 3798 3799 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3800 public: 3801 AArch64TargetCodeGenInfo(CodeGenTypes &CGT) 3802 :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {} 3803 3804 const AArch64ABIInfo &getABIInfo() const { 3805 return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3806 } 3807 3808 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 3809 return 31; 3810 } 3811 3812 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3813 llvm::Value *Address) const { 3814 // 0-31 are x0-x30 and sp: 8 bytes each 3815 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 3816 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31); 3817 3818 // 64-95 are v0-v31: 16 bytes each 3819 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 3820 AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95); 3821 3822 return false; 3823 } 3824 3825 }; 3826 3827 } 3828 3829 void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3830 int FreeIntRegs = 8, FreeVFPRegs = 8; 3831 3832 FI.getReturnInfo() = classifyGenericType(FI.getReturnType(), 3833 FreeIntRegs, FreeVFPRegs); 3834 3835 FreeIntRegs = FreeVFPRegs = 8; 3836 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3837 it != ie; ++it) { 3838 it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs); 3839 3840 } 3841 } 3842 3843 ABIArgInfo 3844 AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, 3845 bool IsInt, llvm::Type *DirectTy) const { 3846 if (FreeRegs >= RegsNeeded) { 3847 FreeRegs -= RegsNeeded; 3848 return ABIArgInfo::getDirect(DirectTy); 3849 } 3850 3851 llvm::Type *Padding = 0; 3852 3853 // We need padding so that later arguments don't get filled in anyway. That 3854 // wouldn't happen if only ByVal arguments followed in the same category, but 3855 // a large structure will simply seem to be a pointer as far as LLVM is 3856 // concerned. 3857 if (FreeRegs > 0) { 3858 if (IsInt) 3859 Padding = llvm::Type::getInt64Ty(getVMContext()); 3860 else 3861 Padding = llvm::Type::getFloatTy(getVMContext()); 3862 3863 // Either [N x i64] or [N x float]. 3864 Padding = llvm::ArrayType::get(Padding, FreeRegs); 3865 FreeRegs = 0; 3866 } 3867 3868 return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8, 3869 /*IsByVal=*/ true, /*Realign=*/ false, 3870 Padding); 3871 } 3872 3873 3874 ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty, 3875 int &FreeIntRegs, 3876 int &FreeVFPRegs) const { 3877 // Can only occurs for return, but harmless otherwise. 3878 if (Ty->isVoidType()) 3879 return ABIArgInfo::getIgnore(); 3880 3881 // Large vector types should be returned via memory. There's no such concept 3882 // in the ABI, but they'd be over 16 bytes anyway so no matter how they're 3883 // classified they'd go into memory (see B.3). 3884 if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) { 3885 if (FreeIntRegs > 0) 3886 --FreeIntRegs; 3887 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3888 } 3889 3890 // All non-aggregate LLVM types have a concrete ABI representation so they can 3891 // be passed directly. After this block we're guaranteed to be in a 3892 // complicated case. 3893 if (!isAggregateTypeForABI(Ty)) { 3894 // Treat an enum type as its underlying type. 3895 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3896 Ty = EnumTy->getDecl()->getIntegerType(); 3897 3898 if (Ty->isFloatingType() || Ty->isVectorType()) 3899 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false); 3900 3901 assert(getContext().getTypeSize(Ty) <= 128 && 3902 "unexpectedly large scalar type"); 3903 3904 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3905 3906 // If the type may need padding registers to ensure "alignment", we must be 3907 // careful when this is accounted for. Increasing the effective size covers 3908 // all cases. 3909 if (getContext().getTypeAlign(Ty) == 128) 3910 RegsNeeded += FreeIntRegs % 2 != 0; 3911 3912 return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true); 3913 } 3914 3915 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3916 if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect) 3917 --FreeIntRegs; 3918 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3919 } 3920 3921 if (isEmptyRecord(getContext(), Ty, true)) { 3922 if (!getContext().getLangOpts().CPlusPlus) { 3923 // Empty structs outside C++ mode are a GNU extension, so no ABI can 3924 // possibly tell us what to do. It turns out (I believe) that GCC ignores 3925 // the object for parameter-passsing purposes. 3926 return ABIArgInfo::getIgnore(); 3927 } 3928 3929 // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode 3930 // description of va_arg in the PCS require that an empty struct does 3931 // actually occupy space for parameter-passing. I'm hoping for a 3932 // clarification giving an explicit paragraph to point to in future. 3933 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true, 3934 llvm::Type::getInt8Ty(getVMContext())); 3935 } 3936 3937 // Homogeneous vector aggregates get passed in registers or on the stack. 3938 const Type *Base = 0; 3939 uint64_t NumMembers = 0; 3940 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) { 3941 assert(Base && "Base class should be set for homogeneous aggregate"); 3942 // Homogeneous aggregates are passed and returned directly. 3943 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers, 3944 /*IsInt=*/ false); 3945 } 3946 3947 uint64_t Size = getContext().getTypeSize(Ty); 3948 if (Size <= 128) { 3949 // Small structs can use the same direct type whether they're in registers 3950 // or on the stack. 3951 llvm::Type *BaseTy; 3952 unsigned NumBases; 3953 int SizeInRegs = (Size + 63) / 64; 3954 3955 if (getContext().getTypeAlign(Ty) == 128) { 3956 BaseTy = llvm::Type::getIntNTy(getVMContext(), 128); 3957 NumBases = 1; 3958 3959 // If the type may need padding registers to ensure "alignment", we must 3960 // be careful when this is accounted for. Increasing the effective size 3961 // covers all cases. 3962 SizeInRegs += FreeIntRegs % 2 != 0; 3963 } else { 3964 BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3965 NumBases = SizeInRegs; 3966 } 3967 llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases); 3968 3969 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs, 3970 /*IsInt=*/ true, DirectTy); 3971 } 3972 3973 // If the aggregate is > 16 bytes, it's passed and returned indirectly. In 3974 // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere. 3975 --FreeIntRegs; 3976 return ABIArgInfo::getIndirect(0, /* byVal = */ false); 3977 } 3978 3979 llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3980 CodeGenFunction &CGF) const { 3981 // The AArch64 va_list type and handling is specified in the Procedure Call 3982 // Standard, section B.4: 3983 // 3984 // struct { 3985 // void *__stack; 3986 // void *__gr_top; 3987 // void *__vr_top; 3988 // int __gr_offs; 3989 // int __vr_offs; 3990 // }; 3991 3992 assert(!CGF.CGM.getDataLayout().isBigEndian() 3993 && "va_arg not implemented for big-endian AArch64"); 3994 3995 int FreeIntRegs = 8, FreeVFPRegs = 8; 3996 Ty = CGF.getContext().getCanonicalType(Ty); 3997 ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs); 3998 3999 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4000 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4001 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4002 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4003 4004 llvm::Value *reg_offs_p = 0, *reg_offs = 0; 4005 int reg_top_index; 4006 int RegSize; 4007 if (FreeIntRegs < 8) { 4008 assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs"); 4009 // 3 is the field number of __gr_offs 4010 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 4011 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4012 reg_top_index = 1; // field number for __gr_top 4013 RegSize = 8 * (8 - FreeIntRegs); 4014 } else { 4015 assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs"); 4016 // 4 is the field number of __vr_offs. 4017 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 4018 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4019 reg_top_index = 2; // field number for __vr_top 4020 RegSize = 16 * (8 - FreeVFPRegs); 4021 } 4022 4023 //======================================= 4024 // Find out where argument was passed 4025 //======================================= 4026 4027 // If reg_offs >= 0 we're already using the stack for this type of 4028 // argument. We don't want to keep updating reg_offs (in case it overflows, 4029 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4030 // whatever they get). 4031 llvm::Value *UsingStack = 0; 4032 UsingStack = CGF.Builder.CreateICmpSGE(reg_offs, 4033 llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4034 4035 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4036 4037 // Otherwise, at least some kind of argument could go in these registers, the 4038 // quesiton is whether this particular type is too big. 4039 CGF.EmitBlock(MaybeRegBlock); 4040 4041 // Integer arguments may need to correct register alignment (for example a 4042 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4043 // align __gr_offs to calculate the potential address. 4044 if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { 4045 int Align = getContext().getTypeAlign(Ty) / 8; 4046 4047 reg_offs = CGF.Builder.CreateAdd(reg_offs, 4048 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4049 "align_regoffs"); 4050 reg_offs = CGF.Builder.CreateAnd(reg_offs, 4051 llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4052 "aligned_regoffs"); 4053 } 4054 4055 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4056 llvm::Value *NewOffset = 0; 4057 NewOffset = CGF.Builder.CreateAdd(reg_offs, 4058 llvm::ConstantInt::get(CGF.Int32Ty, RegSize), 4059 "new_reg_offs"); 4060 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4061 4062 // Now we're in a position to decide whether this argument really was in 4063 // registers or not. 4064 llvm::Value *InRegs = 0; 4065 InRegs = CGF.Builder.CreateICmpSLE(NewOffset, 4066 llvm::ConstantInt::get(CGF.Int32Ty, 0), 4067 "inreg"); 4068 4069 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4070 4071 //======================================= 4072 // Argument was in registers 4073 //======================================= 4074 4075 // Now we emit the code for if the argument was originally passed in 4076 // registers. First start the appropriate block: 4077 CGF.EmitBlock(InRegBlock); 4078 4079 llvm::Value *reg_top_p = 0, *reg_top = 0; 4080 reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 4081 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4082 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4083 llvm::Value *RegAddr = 0; 4084 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4085 4086 if (!AI.isDirect()) { 4087 // If it's been passed indirectly (actually a struct), whatever we find from 4088 // stored registers or on the stack will actually be a struct **. 4089 MemTy = llvm::PointerType::getUnqual(MemTy); 4090 } 4091 4092 const Type *Base = 0; 4093 uint64_t NumMembers; 4094 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers) 4095 && NumMembers > 1) { 4096 // Homogeneous aggregates passed in registers will have their elements split 4097 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4098 // qN+1, ...). We reload and store into a temporary local variable 4099 // contiguously. 4100 assert(AI.isDirect() && "Homogeneous aggregates should be passed directly"); 4101 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4102 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4103 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 4104 4105 for (unsigned i = 0; i < NumMembers; ++i) { 4106 llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i); 4107 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4108 LoadAddr = CGF.Builder.CreateBitCast(LoadAddr, 4109 llvm::PointerType::getUnqual(BaseTy)); 4110 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 4111 4112 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4113 CGF.Builder.CreateStore(Elem, StoreAddr); 4114 } 4115 4116 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4117 } else { 4118 // Otherwise the object is contiguous in memory 4119 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4120 } 4121 4122 CGF.EmitBranch(ContBlock); 4123 4124 //======================================= 4125 // Argument was on the stack 4126 //======================================= 4127 CGF.EmitBlock(OnStackBlock); 4128 4129 llvm::Value *stack_p = 0, *OnStackAddr = 0; 4130 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 4131 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4132 4133 // Again, stack arguments may need realigmnent. In this case both integer and 4134 // floating-point ones might be affected. 4135 if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { 4136 int Align = getContext().getTypeAlign(Ty) / 8; 4137 4138 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4139 4140 OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr, 4141 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4142 "align_stack"); 4143 OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr, 4144 llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4145 "align_stack"); 4146 4147 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4148 } 4149 4150 uint64_t StackSize; 4151 if (AI.isDirect()) 4152 StackSize = getContext().getTypeSize(Ty) / 8; 4153 else 4154 StackSize = 8; 4155 4156 // All stack slots are 8 bytes 4157 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4158 4159 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4160 llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, 4161 "new_stack"); 4162 4163 // Write the new value of __stack for the next call to va_arg 4164 CGF.Builder.CreateStore(NewStack, stack_p); 4165 4166 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4167 4168 CGF.EmitBranch(ContBlock); 4169 4170 //======================================= 4171 // Tidy up 4172 //======================================= 4173 CGF.EmitBlock(ContBlock); 4174 4175 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4176 ResAddr->addIncoming(RegAddr, InRegBlock); 4177 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4178 4179 if (AI.isDirect()) 4180 return ResAddr; 4181 4182 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4183 } 4184 4185 //===----------------------------------------------------------------------===// 4186 // NVPTX ABI Implementation 4187 //===----------------------------------------------------------------------===// 4188 4189 namespace { 4190 4191 class NVPTXABIInfo : public ABIInfo { 4192 public: 4193 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4194 4195 ABIArgInfo classifyReturnType(QualType RetTy) const; 4196 ABIArgInfo classifyArgumentType(QualType Ty) const; 4197 4198 virtual void computeInfo(CGFunctionInfo &FI) const; 4199 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4200 CodeGenFunction &CFG) const; 4201 }; 4202 4203 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4204 public: 4205 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4206 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4207 4208 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4209 CodeGen::CodeGenModule &M) const; 4210 private: 4211 static void addKernelMetadata(llvm::Function *F); 4212 }; 4213 4214 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4215 if (RetTy->isVoidType()) 4216 return ABIArgInfo::getIgnore(); 4217 4218 // note: this is different from default ABI 4219 if (!RetTy->isScalarType()) 4220 return ABIArgInfo::getDirect(); 4221 4222 // Treat an enum type as its underlying type. 4223 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4224 RetTy = EnumTy->getDecl()->getIntegerType(); 4225 4226 return (RetTy->isPromotableIntegerType() ? 4227 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4228 } 4229 4230 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4231 // Treat an enum type as its underlying type. 4232 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4233 Ty = EnumTy->getDecl()->getIntegerType(); 4234 4235 return (Ty->isPromotableIntegerType() ? 4236 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4237 } 4238 4239 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4240 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4241 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4242 it != ie; ++it) 4243 it->info = classifyArgumentType(it->type); 4244 4245 // Always honor user-specified calling convention. 4246 if (FI.getCallingConvention() != llvm::CallingConv::C) 4247 return; 4248 4249 FI.setEffectiveCallingConvention(getRuntimeCC()); 4250 } 4251 4252 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4253 CodeGenFunction &CFG) const { 4254 llvm_unreachable("NVPTX does not support varargs"); 4255 } 4256 4257 void NVPTXTargetCodeGenInfo:: 4258 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4259 CodeGen::CodeGenModule &M) const{ 4260 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4261 if (!FD) return; 4262 4263 llvm::Function *F = cast<llvm::Function>(GV); 4264 4265 // Perform special handling in OpenCL mode 4266 if (M.getLangOpts().OpenCL) { 4267 // Use OpenCL function attributes to check for kernel functions 4268 // By default, all functions are device functions 4269 if (FD->hasAttr<OpenCLKernelAttr>()) { 4270 // OpenCL __kernel functions get kernel metadata 4271 addKernelMetadata(F); 4272 // And kernel functions are not subject to inlining 4273 F->addFnAttr(llvm::Attribute::NoInline); 4274 } 4275 } 4276 4277 // Perform special handling in CUDA mode. 4278 if (M.getLangOpts().CUDA) { 4279 // CUDA __global__ functions get a kernel metadata entry. Since 4280 // __global__ functions cannot be called from the device, we do not 4281 // need to set the noinline attribute. 4282 if (FD->hasAttr<CUDAGlobalAttr>()) 4283 addKernelMetadata(F); 4284 } 4285 } 4286 4287 void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) { 4288 llvm::Module *M = F->getParent(); 4289 llvm::LLVMContext &Ctx = M->getContext(); 4290 4291 // Get "nvvm.annotations" metadata node 4292 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4293 4294 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4295 llvm::SmallVector<llvm::Value *, 3> MDVals; 4296 MDVals.push_back(F); 4297 MDVals.push_back(llvm::MDString::get(Ctx, "kernel")); 4298 MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1)); 4299 4300 // Append metadata to nvvm.annotations 4301 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 4302 } 4303 4304 } 4305 4306 //===----------------------------------------------------------------------===// 4307 // SystemZ ABI Implementation 4308 //===----------------------------------------------------------------------===// 4309 4310 namespace { 4311 4312 class SystemZABIInfo : public ABIInfo { 4313 public: 4314 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4315 4316 bool isPromotableIntegerType(QualType Ty) const; 4317 bool isCompoundType(QualType Ty) const; 4318 bool isFPArgumentType(QualType Ty) const; 4319 4320 ABIArgInfo classifyReturnType(QualType RetTy) const; 4321 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 4322 4323 virtual void computeInfo(CGFunctionInfo &FI) const { 4324 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4325 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4326 it != ie; ++it) 4327 it->info = classifyArgumentType(it->type); 4328 } 4329 4330 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4331 CodeGenFunction &CGF) const; 4332 }; 4333 4334 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 4335 public: 4336 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 4337 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 4338 }; 4339 4340 } 4341 4342 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 4343 // Treat an enum type as its underlying type. 4344 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4345 Ty = EnumTy->getDecl()->getIntegerType(); 4346 4347 // Promotable integer types are required to be promoted by the ABI. 4348 if (Ty->isPromotableIntegerType()) 4349 return true; 4350 4351 // 32-bit values must also be promoted. 4352 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4353 switch (BT->getKind()) { 4354 case BuiltinType::Int: 4355 case BuiltinType::UInt: 4356 return true; 4357 default: 4358 return false; 4359 } 4360 return false; 4361 } 4362 4363 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 4364 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 4365 } 4366 4367 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 4368 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4369 switch (BT->getKind()) { 4370 case BuiltinType::Float: 4371 case BuiltinType::Double: 4372 return true; 4373 default: 4374 return false; 4375 } 4376 4377 if (const RecordType *RT = Ty->getAsStructureType()) { 4378 const RecordDecl *RD = RT->getDecl(); 4379 bool Found = false; 4380 4381 // If this is a C++ record, check the bases first. 4382 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 4383 for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(), 4384 E = CXXRD->bases_end(); I != E; ++I) { 4385 QualType Base = I->getType(); 4386 4387 // Empty bases don't affect things either way. 4388 if (isEmptyRecord(getContext(), Base, true)) 4389 continue; 4390 4391 if (Found) 4392 return false; 4393 Found = isFPArgumentType(Base); 4394 if (!Found) 4395 return false; 4396 } 4397 4398 // Check the fields. 4399 for (RecordDecl::field_iterator I = RD->field_begin(), 4400 E = RD->field_end(); I != E; ++I) { 4401 const FieldDecl *FD = *I; 4402 4403 // Empty bitfields don't affect things either way. 4404 // Unlike isSingleElementStruct(), empty structure and array fields 4405 // do count. So do anonymous bitfields that aren't zero-sized. 4406 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4407 return true; 4408 4409 // Unlike isSingleElementStruct(), arrays do not count. 4410 // Nested isFPArgumentType structures still do though. 4411 if (Found) 4412 return false; 4413 Found = isFPArgumentType(FD->getType()); 4414 if (!Found) 4415 return false; 4416 } 4417 4418 // Unlike isSingleElementStruct(), trailing padding is allowed. 4419 // An 8-byte aligned struct s { float f; } is passed as a double. 4420 return Found; 4421 } 4422 4423 return false; 4424 } 4425 4426 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4427 CodeGenFunction &CGF) const { 4428 // Assume that va_list type is correct; should be pointer to LLVM type: 4429 // struct { 4430 // i64 __gpr; 4431 // i64 __fpr; 4432 // i8 *__overflow_arg_area; 4433 // i8 *__reg_save_area; 4434 // }; 4435 4436 // Every argument occupies 8 bytes and is passed by preference in either 4437 // GPRs or FPRs. 4438 Ty = CGF.getContext().getCanonicalType(Ty); 4439 ABIArgInfo AI = classifyArgumentType(Ty); 4440 bool InFPRs = isFPArgumentType(Ty); 4441 4442 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4443 bool IsIndirect = AI.isIndirect(); 4444 unsigned UnpaddedBitSize; 4445 if (IsIndirect) { 4446 APTy = llvm::PointerType::getUnqual(APTy); 4447 UnpaddedBitSize = 64; 4448 } else 4449 UnpaddedBitSize = getContext().getTypeSize(Ty); 4450 unsigned PaddedBitSize = 64; 4451 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 4452 4453 unsigned PaddedSize = PaddedBitSize / 8; 4454 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 4455 4456 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 4457 if (InFPRs) { 4458 MaxRegs = 4; // Maximum of 4 FPR arguments 4459 RegCountField = 1; // __fpr 4460 RegSaveIndex = 16; // save offset for f0 4461 RegPadding = 0; // floats are passed in the high bits of an FPR 4462 } else { 4463 MaxRegs = 5; // Maximum of 5 GPR arguments 4464 RegCountField = 0; // __gpr 4465 RegSaveIndex = 2; // save offset for r2 4466 RegPadding = Padding; // values are passed in the low bits of a GPR 4467 } 4468 4469 llvm::Value *RegCountPtr = 4470 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 4471 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 4472 llvm::Type *IndexTy = RegCount->getType(); 4473 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 4474 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 4475 "fits_in_regs"); 4476 4477 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4478 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4479 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4480 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4481 4482 // Emit code to load the value if it was passed in registers. 4483 CGF.EmitBlock(InRegBlock); 4484 4485 // Work out the address of an argument register. 4486 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 4487 llvm::Value *ScaledRegCount = 4488 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 4489 llvm::Value *RegBase = 4490 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 4491 llvm::Value *RegOffset = 4492 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 4493 llvm::Value *RegSaveAreaPtr = 4494 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 4495 llvm::Value *RegSaveArea = 4496 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 4497 llvm::Value *RawRegAddr = 4498 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 4499 llvm::Value *RegAddr = 4500 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 4501 4502 // Update the register count 4503 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 4504 llvm::Value *NewRegCount = 4505 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 4506 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 4507 CGF.EmitBranch(ContBlock); 4508 4509 // Emit code to load the value if it was passed in memory. 4510 CGF.EmitBlock(InMemBlock); 4511 4512 // Work out the address of a stack argument. 4513 llvm::Value *OverflowArgAreaPtr = 4514 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 4515 llvm::Value *OverflowArgArea = 4516 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 4517 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 4518 llvm::Value *RawMemAddr = 4519 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 4520 llvm::Value *MemAddr = 4521 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 4522 4523 // Update overflow_arg_area_ptr pointer 4524 llvm::Value *NewOverflowArgArea = 4525 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 4526 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 4527 CGF.EmitBranch(ContBlock); 4528 4529 // Return the appropriate result. 4530 CGF.EmitBlock(ContBlock); 4531 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 4532 ResAddr->addIncoming(RegAddr, InRegBlock); 4533 ResAddr->addIncoming(MemAddr, InMemBlock); 4534 4535 if (IsIndirect) 4536 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 4537 4538 return ResAddr; 4539 } 4540 4541 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 4542 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4543 assert(Triple.getArch() == llvm::Triple::x86); 4544 4545 switch (Opts.getStructReturnConvention()) { 4546 case CodeGenOptions::SRCK_Default: 4547 break; 4548 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 4549 return false; 4550 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 4551 return true; 4552 } 4553 4554 if (Triple.isOSDarwin()) 4555 return true; 4556 4557 switch (Triple.getOS()) { 4558 case llvm::Triple::Cygwin: 4559 case llvm::Triple::MinGW32: 4560 case llvm::Triple::AuroraUX: 4561 case llvm::Triple::DragonFly: 4562 case llvm::Triple::FreeBSD: 4563 case llvm::Triple::OpenBSD: 4564 case llvm::Triple::Bitrig: 4565 case llvm::Triple::Win32: 4566 return true; 4567 default: 4568 return false; 4569 } 4570 } 4571 4572 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 4573 if (RetTy->isVoidType()) 4574 return ABIArgInfo::getIgnore(); 4575 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 4576 return ABIArgInfo::getIndirect(0); 4577 return (isPromotableIntegerType(RetTy) ? 4578 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4579 } 4580 4581 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 4582 // Handle the generic C++ ABI. 4583 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4584 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4585 4586 // Integers and enums are extended to full register width. 4587 if (isPromotableIntegerType(Ty)) 4588 return ABIArgInfo::getExtend(); 4589 4590 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 4591 uint64_t Size = getContext().getTypeSize(Ty); 4592 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 4593 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4594 4595 // Handle small structures. 4596 if (const RecordType *RT = Ty->getAs<RecordType>()) { 4597 // Structures with flexible arrays have variable length, so really 4598 // fail the size test above. 4599 const RecordDecl *RD = RT->getDecl(); 4600 if (RD->hasFlexibleArrayMember()) 4601 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4602 4603 // The structure is passed as an unextended integer, a float, or a double. 4604 llvm::Type *PassTy; 4605 if (isFPArgumentType(Ty)) { 4606 assert(Size == 32 || Size == 64); 4607 if (Size == 32) 4608 PassTy = llvm::Type::getFloatTy(getVMContext()); 4609 else 4610 PassTy = llvm::Type::getDoubleTy(getVMContext()); 4611 } else 4612 PassTy = llvm::IntegerType::get(getVMContext(), Size); 4613 return ABIArgInfo::getDirect(PassTy); 4614 } 4615 4616 // Non-structure compounds are passed indirectly. 4617 if (isCompoundType(Ty)) 4618 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4619 4620 return ABIArgInfo::getDirect(0); 4621 } 4622 4623 //===----------------------------------------------------------------------===// 4624 // MSP430 ABI Implementation 4625 //===----------------------------------------------------------------------===// 4626 4627 namespace { 4628 4629 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 4630 public: 4631 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 4632 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 4633 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4634 CodeGen::CodeGenModule &M) const; 4635 }; 4636 4637 } 4638 4639 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 4640 llvm::GlobalValue *GV, 4641 CodeGen::CodeGenModule &M) const { 4642 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4643 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 4644 // Handle 'interrupt' attribute: 4645 llvm::Function *F = cast<llvm::Function>(GV); 4646 4647 // Step 1: Set ISR calling convention. 4648 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 4649 4650 // Step 2: Add attributes goodness. 4651 F->addFnAttr(llvm::Attribute::NoInline); 4652 4653 // Step 3: Emit ISR vector alias. 4654 unsigned Num = attr->getNumber() / 2; 4655 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 4656 "__isr_" + Twine(Num), 4657 GV, &M.getModule()); 4658 } 4659 } 4660 } 4661 4662 //===----------------------------------------------------------------------===// 4663 // MIPS ABI Implementation. This works for both little-endian and 4664 // big-endian variants. 4665 //===----------------------------------------------------------------------===// 4666 4667 namespace { 4668 class MipsABIInfo : public ABIInfo { 4669 bool IsO32; 4670 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 4671 void CoerceToIntArgs(uint64_t TySize, 4672 SmallVectorImpl<llvm::Type *> &ArgList) const; 4673 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 4674 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 4675 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 4676 public: 4677 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 4678 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 4679 StackAlignInBytes(IsO32 ? 8 : 16) {} 4680 4681 ABIArgInfo classifyReturnType(QualType RetTy) const; 4682 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 4683 virtual void computeInfo(CGFunctionInfo &FI) const; 4684 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4685 CodeGenFunction &CGF) const; 4686 }; 4687 4688 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 4689 unsigned SizeOfUnwindException; 4690 public: 4691 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 4692 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 4693 SizeOfUnwindException(IsO32 ? 24 : 32) {} 4694 4695 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 4696 return 29; 4697 } 4698 4699 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4700 CodeGen::CodeGenModule &CGM) const { 4701 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4702 if (!FD) return; 4703 llvm::Function *Fn = cast<llvm::Function>(GV); 4704 if (FD->hasAttr<Mips16Attr>()) { 4705 Fn->addFnAttr("mips16"); 4706 } 4707 else if (FD->hasAttr<NoMips16Attr>()) { 4708 Fn->addFnAttr("nomips16"); 4709 } 4710 } 4711 4712 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4713 llvm::Value *Address) const; 4714 4715 unsigned getSizeOfUnwindException() const { 4716 return SizeOfUnwindException; 4717 } 4718 }; 4719 } 4720 4721 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 4722 SmallVectorImpl<llvm::Type *> &ArgList) const { 4723 llvm::IntegerType *IntTy = 4724 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 4725 4726 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 4727 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 4728 ArgList.push_back(IntTy); 4729 4730 // If necessary, add one more integer type to ArgList. 4731 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 4732 4733 if (R) 4734 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 4735 } 4736 4737 // In N32/64, an aligned double precision floating point field is passed in 4738 // a register. 4739 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 4740 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 4741 4742 if (IsO32) { 4743 CoerceToIntArgs(TySize, ArgList); 4744 return llvm::StructType::get(getVMContext(), ArgList); 4745 } 4746 4747 if (Ty->isComplexType()) 4748 return CGT.ConvertType(Ty); 4749 4750 const RecordType *RT = Ty->getAs<RecordType>(); 4751 4752 // Unions/vectors are passed in integer registers. 4753 if (!RT || !RT->isStructureOrClassType()) { 4754 CoerceToIntArgs(TySize, ArgList); 4755 return llvm::StructType::get(getVMContext(), ArgList); 4756 } 4757 4758 const RecordDecl *RD = RT->getDecl(); 4759 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 4760 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 4761 4762 uint64_t LastOffset = 0; 4763 unsigned idx = 0; 4764 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 4765 4766 // Iterate over fields in the struct/class and check if there are any aligned 4767 // double fields. 4768 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4769 i != e; ++i, ++idx) { 4770 const QualType Ty = i->getType(); 4771 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 4772 4773 if (!BT || BT->getKind() != BuiltinType::Double) 4774 continue; 4775 4776 uint64_t Offset = Layout.getFieldOffset(idx); 4777 if (Offset % 64) // Ignore doubles that are not aligned. 4778 continue; 4779 4780 // Add ((Offset - LastOffset) / 64) args of type i64. 4781 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 4782 ArgList.push_back(I64); 4783 4784 // Add double type. 4785 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 4786 LastOffset = Offset + 64; 4787 } 4788 4789 CoerceToIntArgs(TySize - LastOffset, IntArgList); 4790 ArgList.append(IntArgList.begin(), IntArgList.end()); 4791 4792 return llvm::StructType::get(getVMContext(), ArgList); 4793 } 4794 4795 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 4796 uint64_t Offset) const { 4797 if (OrigOffset + MinABIStackAlignInBytes > Offset) 4798 return 0; 4799 4800 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 4801 } 4802 4803 ABIArgInfo 4804 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 4805 uint64_t OrigOffset = Offset; 4806 uint64_t TySize = getContext().getTypeSize(Ty); 4807 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 4808 4809 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 4810 (uint64_t)StackAlignInBytes); 4811 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 4812 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 4813 4814 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 4815 // Ignore empty aggregates. 4816 if (TySize == 0) 4817 return ABIArgInfo::getIgnore(); 4818 4819 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4820 Offset = OrigOffset + MinABIStackAlignInBytes; 4821 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4822 } 4823 4824 // If we have reached here, aggregates are passed directly by coercing to 4825 // another structure type. Padding is inserted if the offset of the 4826 // aggregate is unaligned. 4827 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 4828 getPaddingType(OrigOffset, CurrOffset)); 4829 } 4830 4831 // Treat an enum type as its underlying type. 4832 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4833 Ty = EnumTy->getDecl()->getIntegerType(); 4834 4835 if (Ty->isPromotableIntegerType()) 4836 return ABIArgInfo::getExtend(); 4837 4838 return ABIArgInfo::getDirect( 4839 0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset)); 4840 } 4841 4842 llvm::Type* 4843 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 4844 const RecordType *RT = RetTy->getAs<RecordType>(); 4845 SmallVector<llvm::Type*, 8> RTList; 4846 4847 if (RT && RT->isStructureOrClassType()) { 4848 const RecordDecl *RD = RT->getDecl(); 4849 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 4850 unsigned FieldCnt = Layout.getFieldCount(); 4851 4852 // N32/64 returns struct/classes in floating point registers if the 4853 // following conditions are met: 4854 // 1. The size of the struct/class is no larger than 128-bit. 4855 // 2. The struct/class has one or two fields all of which are floating 4856 // point types. 4857 // 3. The offset of the first field is zero (this follows what gcc does). 4858 // 4859 // Any other composite results are returned in integer registers. 4860 // 4861 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 4862 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 4863 for (; b != e; ++b) { 4864 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 4865 4866 if (!BT || !BT->isFloatingPoint()) 4867 break; 4868 4869 RTList.push_back(CGT.ConvertType(b->getType())); 4870 } 4871 4872 if (b == e) 4873 return llvm::StructType::get(getVMContext(), RTList, 4874 RD->hasAttr<PackedAttr>()); 4875 4876 RTList.clear(); 4877 } 4878 } 4879 4880 CoerceToIntArgs(Size, RTList); 4881 return llvm::StructType::get(getVMContext(), RTList); 4882 } 4883 4884 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 4885 uint64_t Size = getContext().getTypeSize(RetTy); 4886 4887 if (RetTy->isVoidType() || Size == 0) 4888 return ABIArgInfo::getIgnore(); 4889 4890 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 4891 if (isRecordReturnIndirect(RetTy, getCXXABI())) 4892 return ABIArgInfo::getIndirect(0); 4893 4894 if (Size <= 128) { 4895 if (RetTy->isAnyComplexType()) 4896 return ABIArgInfo::getDirect(); 4897 4898 // O32 returns integer vectors in registers. 4899 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 4900 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 4901 4902 if (!IsO32) 4903 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 4904 } 4905 4906 return ABIArgInfo::getIndirect(0); 4907 } 4908 4909 // Treat an enum type as its underlying type. 4910 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4911 RetTy = EnumTy->getDecl()->getIntegerType(); 4912 4913 return (RetTy->isPromotableIntegerType() ? 4914 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4915 } 4916 4917 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 4918 ABIArgInfo &RetInfo = FI.getReturnInfo(); 4919 RetInfo = classifyReturnType(FI.getReturnType()); 4920 4921 // Check if a pointer to an aggregate is passed as a hidden argument. 4922 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 4923 4924 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 4925 it != ie; ++it) 4926 it->info = classifyArgumentType(it->type, Offset); 4927 } 4928 4929 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4930 CodeGenFunction &CGF) const { 4931 llvm::Type *BP = CGF.Int8PtrTy; 4932 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4933 4934 CGBuilderTy &Builder = CGF.Builder; 4935 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4936 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4937 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 4938 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4939 llvm::Value *AddrTyped; 4940 unsigned PtrWidth = getTarget().getPointerWidth(0); 4941 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 4942 4943 if (TypeAlign > MinABIStackAlignInBytes) { 4944 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 4945 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 4946 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 4947 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 4948 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 4949 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 4950 } 4951 else 4952 AddrTyped = Builder.CreateBitCast(Addr, PTy); 4953 4954 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 4955 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 4956 uint64_t Offset = 4957 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 4958 llvm::Value *NextAddr = 4959 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 4960 "ap.next"); 4961 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4962 4963 return AddrTyped; 4964 } 4965 4966 bool 4967 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4968 llvm::Value *Address) const { 4969 // This information comes from gcc's implementation, which seems to 4970 // as canonical as it gets. 4971 4972 // Everything on MIPS is 4 bytes. Double-precision FP registers 4973 // are aliased to pairs of single-precision FP registers. 4974 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4975 4976 // 0-31 are the general purpose registers, $0 - $31. 4977 // 32-63 are the floating-point registers, $f0 - $f31. 4978 // 64 and 65 are the multiply/divide registers, $hi and $lo. 4979 // 66 is the (notional, I think) register for signal-handler return. 4980 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 4981 4982 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 4983 // They are one bit wide and ignored here. 4984 4985 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 4986 // (coprocessor 1 is the FP unit) 4987 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 4988 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 4989 // 176-181 are the DSP accumulator registers. 4990 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 4991 return false; 4992 } 4993 4994 //===----------------------------------------------------------------------===// 4995 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 4996 // Currently subclassed only to implement custom OpenCL C function attribute 4997 // handling. 4998 //===----------------------------------------------------------------------===// 4999 5000 namespace { 5001 5002 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5003 public: 5004 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5005 : DefaultTargetCodeGenInfo(CGT) {} 5006 5007 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5008 CodeGen::CodeGenModule &M) const; 5009 }; 5010 5011 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5012 llvm::GlobalValue *GV, 5013 CodeGen::CodeGenModule &M) const { 5014 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5015 if (!FD) return; 5016 5017 llvm::Function *F = cast<llvm::Function>(GV); 5018 5019 if (M.getLangOpts().OpenCL) { 5020 if (FD->hasAttr<OpenCLKernelAttr>()) { 5021 // OpenCL C Kernel functions are not subject to inlining 5022 F->addFnAttr(llvm::Attribute::NoInline); 5023 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5024 if (Attr) { 5025 // Convert the reqd_work_group_size() attributes to metadata. 5026 llvm::LLVMContext &Context = F->getContext(); 5027 llvm::NamedMDNode *OpenCLMetadata = 5028 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5029 5030 SmallVector<llvm::Value*, 5> Operands; 5031 Operands.push_back(F); 5032 5033 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5034 llvm::APInt(32, Attr->getXDim()))); 5035 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5036 llvm::APInt(32, Attr->getYDim()))); 5037 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5038 llvm::APInt(32, Attr->getZDim()))); 5039 5040 // Add a boolean constant operand for "required" (true) or "hint" (false) 5041 // for implementing the work_group_size_hint attr later. Currently 5042 // always true as the hint is not yet implemented. 5043 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5044 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5045 } 5046 } 5047 } 5048 } 5049 5050 } 5051 5052 //===----------------------------------------------------------------------===// 5053 // Hexagon ABI Implementation 5054 //===----------------------------------------------------------------------===// 5055 5056 namespace { 5057 5058 class HexagonABIInfo : public ABIInfo { 5059 5060 5061 public: 5062 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5063 5064 private: 5065 5066 ABIArgInfo classifyReturnType(QualType RetTy) const; 5067 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5068 5069 virtual void computeInfo(CGFunctionInfo &FI) const; 5070 5071 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5072 CodeGenFunction &CGF) const; 5073 }; 5074 5075 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5076 public: 5077 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5078 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5079 5080 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 5081 return 29; 5082 } 5083 }; 5084 5085 } 5086 5087 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5088 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5089 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 5090 it != ie; ++it) 5091 it->info = classifyArgumentType(it->type); 5092 } 5093 5094 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5095 if (!isAggregateTypeForABI(Ty)) { 5096 // Treat an enum type as its underlying type. 5097 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5098 Ty = EnumTy->getDecl()->getIntegerType(); 5099 5100 return (Ty->isPromotableIntegerType() ? 5101 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5102 } 5103 5104 // Ignore empty records. 5105 if (isEmptyRecord(getContext(), Ty, true)) 5106 return ABIArgInfo::getIgnore(); 5107 5108 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5109 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5110 5111 uint64_t Size = getContext().getTypeSize(Ty); 5112 if (Size > 64) 5113 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5114 // Pass in the smallest viable integer type. 5115 else if (Size > 32) 5116 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5117 else if (Size > 16) 5118 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5119 else if (Size > 8) 5120 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5121 else 5122 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5123 } 5124 5125 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5126 if (RetTy->isVoidType()) 5127 return ABIArgInfo::getIgnore(); 5128 5129 // Large vector types should be returned via memory. 5130 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5131 return ABIArgInfo::getIndirect(0); 5132 5133 if (!isAggregateTypeForABI(RetTy)) { 5134 // Treat an enum type as its underlying type. 5135 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5136 RetTy = EnumTy->getDecl()->getIntegerType(); 5137 5138 return (RetTy->isPromotableIntegerType() ? 5139 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5140 } 5141 5142 // Structures with either a non-trivial destructor or a non-trivial 5143 // copy constructor are always indirect. 5144 if (isRecordReturnIndirect(RetTy, getCXXABI())) 5145 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5146 5147 if (isEmptyRecord(getContext(), RetTy, true)) 5148 return ABIArgInfo::getIgnore(); 5149 5150 // Aggregates <= 8 bytes are returned in r0; other aggregates 5151 // are returned indirectly. 5152 uint64_t Size = getContext().getTypeSize(RetTy); 5153 if (Size <= 64) { 5154 // Return in the smallest viable integer type. 5155 if (Size <= 8) 5156 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5157 if (Size <= 16) 5158 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5159 if (Size <= 32) 5160 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5161 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5162 } 5163 5164 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5165 } 5166 5167 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5168 CodeGenFunction &CGF) const { 5169 // FIXME: Need to handle alignment 5170 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5171 5172 CGBuilderTy &Builder = CGF.Builder; 5173 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5174 "ap"); 5175 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5176 llvm::Type *PTy = 5177 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5178 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5179 5180 uint64_t Offset = 5181 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5182 llvm::Value *NextAddr = 5183 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5184 "ap.next"); 5185 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5186 5187 return AddrTyped; 5188 } 5189 5190 5191 //===----------------------------------------------------------------------===// 5192 // SPARC v9 ABI Implementation. 5193 // Based on the SPARC Compliance Definition version 2.4.1. 5194 // 5195 // Function arguments a mapped to a nominal "parameter array" and promoted to 5196 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5197 // the array, structs larger than 16 bytes are passed indirectly. 5198 // 5199 // One case requires special care: 5200 // 5201 // struct mixed { 5202 // int i; 5203 // float f; 5204 // }; 5205 // 5206 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5207 // parameter array, but the int is passed in an integer register, and the float 5208 // is passed in a floating point register. This is represented as two arguments 5209 // with the LLVM IR inreg attribute: 5210 // 5211 // declare void f(i32 inreg %i, float inreg %f) 5212 // 5213 // The code generator will only allocate 4 bytes from the parameter array for 5214 // the inreg arguments. All other arguments are allocated a multiple of 8 5215 // bytes. 5216 // 5217 namespace { 5218 class SparcV9ABIInfo : public ABIInfo { 5219 public: 5220 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5221 5222 private: 5223 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5224 virtual void computeInfo(CGFunctionInfo &FI) const; 5225 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5226 CodeGenFunction &CGF) const; 5227 5228 // Coercion type builder for structs passed in registers. The coercion type 5229 // serves two purposes: 5230 // 5231 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5232 // in registers. 5233 // 2. Expose aligned floating point elements as first-level elements, so the 5234 // code generator knows to pass them in floating point registers. 5235 // 5236 // We also compute the InReg flag which indicates that the struct contains 5237 // aligned 32-bit floats. 5238 // 5239 struct CoerceBuilder { 5240 llvm::LLVMContext &Context; 5241 const llvm::DataLayout &DL; 5242 SmallVector<llvm::Type*, 8> Elems; 5243 uint64_t Size; 5244 bool InReg; 5245 5246 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5247 : Context(c), DL(dl), Size(0), InReg(false) {} 5248 5249 // Pad Elems with integers until Size is ToSize. 5250 void pad(uint64_t ToSize) { 5251 assert(ToSize >= Size && "Cannot remove elements"); 5252 if (ToSize == Size) 5253 return; 5254 5255 // Finish the current 64-bit word. 5256 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5257 if (Aligned > Size && Aligned <= ToSize) { 5258 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5259 Size = Aligned; 5260 } 5261 5262 // Add whole 64-bit words. 5263 while (Size + 64 <= ToSize) { 5264 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5265 Size += 64; 5266 } 5267 5268 // Final in-word padding. 5269 if (Size < ToSize) { 5270 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5271 Size = ToSize; 5272 } 5273 } 5274 5275 // Add a floating point element at Offset. 5276 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5277 // Unaligned floats are treated as integers. 5278 if (Offset % Bits) 5279 return; 5280 // The InReg flag is only required if there are any floats < 64 bits. 5281 if (Bits < 64) 5282 InReg = true; 5283 pad(Offset); 5284 Elems.push_back(Ty); 5285 Size = Offset + Bits; 5286 } 5287 5288 // Add a struct type to the coercion type, starting at Offset (in bits). 5289 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5290 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5291 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5292 llvm::Type *ElemTy = StrTy->getElementType(i); 5293 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5294 switch (ElemTy->getTypeID()) { 5295 case llvm::Type::StructTyID: 5296 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5297 break; 5298 case llvm::Type::FloatTyID: 5299 addFloat(ElemOffset, ElemTy, 32); 5300 break; 5301 case llvm::Type::DoubleTyID: 5302 addFloat(ElemOffset, ElemTy, 64); 5303 break; 5304 case llvm::Type::FP128TyID: 5305 addFloat(ElemOffset, ElemTy, 128); 5306 break; 5307 case llvm::Type::PointerTyID: 5308 if (ElemOffset % 64 == 0) { 5309 pad(ElemOffset); 5310 Elems.push_back(ElemTy); 5311 Size += 64; 5312 } 5313 break; 5314 default: 5315 break; 5316 } 5317 } 5318 } 5319 5320 // Check if Ty is a usable substitute for the coercion type. 5321 bool isUsableType(llvm::StructType *Ty) const { 5322 if (Ty->getNumElements() != Elems.size()) 5323 return false; 5324 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5325 if (Elems[i] != Ty->getElementType(i)) 5326 return false; 5327 return true; 5328 } 5329 5330 // Get the coercion type as a literal struct type. 5331 llvm::Type *getType() const { 5332 if (Elems.size() == 1) 5333 return Elems.front(); 5334 else 5335 return llvm::StructType::get(Context, Elems); 5336 } 5337 }; 5338 }; 5339 } // end anonymous namespace 5340 5341 ABIArgInfo 5342 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5343 if (Ty->isVoidType()) 5344 return ABIArgInfo::getIgnore(); 5345 5346 uint64_t Size = getContext().getTypeSize(Ty); 5347 5348 // Anything too big to fit in registers is passed with an explicit indirect 5349 // pointer / sret pointer. 5350 if (Size > SizeLimit) 5351 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5352 5353 // Treat an enum type as its underlying type. 5354 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5355 Ty = EnumTy->getDecl()->getIntegerType(); 5356 5357 // Integer types smaller than a register are extended. 5358 if (Size < 64 && Ty->isIntegerType()) 5359 return ABIArgInfo::getExtend(); 5360 5361 // Other non-aggregates go in registers. 5362 if (!isAggregateTypeForABI(Ty)) 5363 return ABIArgInfo::getDirect(); 5364 5365 // This is a small aggregate type that should be passed in registers. 5366 // Build a coercion type from the LLVM struct type. 5367 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 5368 if (!StrTy) 5369 return ABIArgInfo::getDirect(); 5370 5371 CoerceBuilder CB(getVMContext(), getDataLayout()); 5372 CB.addStruct(0, StrTy); 5373 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 5374 5375 // Try to use the original type for coercion. 5376 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 5377 5378 if (CB.InReg) 5379 return ABIArgInfo::getDirectInReg(CoerceTy); 5380 else 5381 return ABIArgInfo::getDirect(CoerceTy); 5382 } 5383 5384 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5385 CodeGenFunction &CGF) const { 5386 ABIArgInfo AI = classifyType(Ty, 16 * 8); 5387 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5388 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5389 AI.setCoerceToType(ArgTy); 5390 5391 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5392 CGBuilderTy &Builder = CGF.Builder; 5393 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5394 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5395 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5396 llvm::Value *ArgAddr; 5397 unsigned Stride; 5398 5399 switch (AI.getKind()) { 5400 case ABIArgInfo::Expand: 5401 llvm_unreachable("Unsupported ABI kind for va_arg"); 5402 5403 case ABIArgInfo::Extend: 5404 Stride = 8; 5405 ArgAddr = Builder 5406 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 5407 "extend"); 5408 break; 5409 5410 case ABIArgInfo::Direct: 5411 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5412 ArgAddr = Addr; 5413 break; 5414 5415 case ABIArgInfo::Indirect: 5416 Stride = 8; 5417 ArgAddr = Builder.CreateBitCast(Addr, 5418 llvm::PointerType::getUnqual(ArgPtrTy), 5419 "indirect"); 5420 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 5421 break; 5422 5423 case ABIArgInfo::Ignore: 5424 return llvm::UndefValue::get(ArgPtrTy); 5425 } 5426 5427 // Update VAList. 5428 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 5429 Builder.CreateStore(Addr, VAListAddrAsBPP); 5430 5431 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 5432 } 5433 5434 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 5435 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 5436 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 5437 it != ie; ++it) 5438 it->info = classifyType(it->type, 16 * 8); 5439 } 5440 5441 namespace { 5442 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 5443 public: 5444 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 5445 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 5446 }; 5447 } // end anonymous namespace 5448 5449 5450 //===----------------------------------------------------------------------===// 5451 // Xcore ABI Implementation 5452 //===----------------------------------------------------------------------===// 5453 namespace { 5454 class XCoreABIInfo : public DefaultABIInfo { 5455 public: 5456 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 5457 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5458 CodeGenFunction &CGF) const; 5459 }; 5460 5461 class XcoreTargetCodeGenInfo : public TargetCodeGenInfo { 5462 public: 5463 XcoreTargetCodeGenInfo(CodeGenTypes &CGT) 5464 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 5465 }; 5466 } // End anonymous namespace. 5467 5468 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5469 CodeGenFunction &CGF) const { 5470 CGBuilderTy &Builder = CGF.Builder; 5471 5472 // Get the VAList. 5473 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 5474 CGF.Int8PtrPtrTy); 5475 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 5476 5477 // Handle the argument. 5478 ABIArgInfo AI = classifyArgumentType(Ty); 5479 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5480 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5481 AI.setCoerceToType(ArgTy); 5482 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5483 llvm::Value *Val; 5484 uint64_t ArgSize = 0; 5485 switch (AI.getKind()) { 5486 case ABIArgInfo::Expand: 5487 llvm_unreachable("Unsupported ABI kind for va_arg"); 5488 case ABIArgInfo::Ignore: 5489 Val = llvm::UndefValue::get(ArgPtrTy); 5490 ArgSize = 0; 5491 break; 5492 case ABIArgInfo::Extend: 5493 case ABIArgInfo::Direct: 5494 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 5495 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5496 if (ArgSize < 4) 5497 ArgSize = 4; 5498 break; 5499 case ABIArgInfo::Indirect: 5500 llvm::Value *ArgAddr; 5501 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 5502 ArgAddr = Builder.CreateLoad(ArgAddr); 5503 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 5504 ArgSize = 4; 5505 break; 5506 } 5507 5508 // Increment the VAList. 5509 if (ArgSize) { 5510 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 5511 Builder.CreateStore(APN, VAListAddrAsBPP); 5512 } 5513 return Val; 5514 } 5515 5516 //===----------------------------------------------------------------------===// 5517 // Driver code 5518 //===----------------------------------------------------------------------===// 5519 5520 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 5521 if (TheTargetCodeGenInfo) 5522 return *TheTargetCodeGenInfo; 5523 5524 const llvm::Triple &Triple = getTarget().getTriple(); 5525 switch (Triple.getArch()) { 5526 default: 5527 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 5528 5529 case llvm::Triple::le32: 5530 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 5531 case llvm::Triple::mips: 5532 case llvm::Triple::mipsel: 5533 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 5534 5535 case llvm::Triple::mips64: 5536 case llvm::Triple::mips64el: 5537 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 5538 5539 case llvm::Triple::aarch64: 5540 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types)); 5541 5542 case llvm::Triple::arm: 5543 case llvm::Triple::thumb: 5544 { 5545 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 5546 if (strcmp(getTarget().getABI(), "apcs-gnu") == 0) 5547 Kind = ARMABIInfo::APCS; 5548 else if (CodeGenOpts.FloatABI == "hard" || 5549 (CodeGenOpts.FloatABI != "soft" && 5550 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 5551 Kind = ARMABIInfo::AAPCS_VFP; 5552 5553 switch (Triple.getOS()) { 5554 case llvm::Triple::NaCl: 5555 return *(TheTargetCodeGenInfo = 5556 new NaClARMTargetCodeGenInfo(Types, Kind)); 5557 default: 5558 return *(TheTargetCodeGenInfo = 5559 new ARMTargetCodeGenInfo(Types, Kind)); 5560 } 5561 } 5562 5563 case llvm::Triple::ppc: 5564 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 5565 case llvm::Triple::ppc64: 5566 if (Triple.isOSBinFormatELF()) 5567 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 5568 else 5569 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 5570 case llvm::Triple::ppc64le: 5571 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 5572 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 5573 5574 case llvm::Triple::nvptx: 5575 case llvm::Triple::nvptx64: 5576 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 5577 5578 case llvm::Triple::msp430: 5579 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 5580 5581 case llvm::Triple::systemz: 5582 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 5583 5584 case llvm::Triple::tce: 5585 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 5586 5587 case llvm::Triple::x86: { 5588 bool IsDarwinVectorABI = Triple.isOSDarwin(); 5589 bool IsSmallStructInRegABI = 5590 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 5591 bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32); 5592 5593 if (Triple.getOS() == llvm::Triple::Win32) { 5594 return *(TheTargetCodeGenInfo = 5595 new WinX86_32TargetCodeGenInfo(Types, 5596 IsDarwinVectorABI, IsSmallStructInRegABI, 5597 IsWin32FloatStructABI, 5598 CodeGenOpts.NumRegisterParameters)); 5599 } else { 5600 return *(TheTargetCodeGenInfo = 5601 new X86_32TargetCodeGenInfo(Types, 5602 IsDarwinVectorABI, IsSmallStructInRegABI, 5603 IsWin32FloatStructABI, 5604 CodeGenOpts.NumRegisterParameters)); 5605 } 5606 } 5607 5608 case llvm::Triple::x86_64: { 5609 bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0; 5610 5611 switch (Triple.getOS()) { 5612 case llvm::Triple::Win32: 5613 case llvm::Triple::MinGW32: 5614 case llvm::Triple::Cygwin: 5615 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 5616 case llvm::Triple::NaCl: 5617 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 5618 HasAVX)); 5619 default: 5620 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 5621 HasAVX)); 5622 } 5623 } 5624 case llvm::Triple::hexagon: 5625 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 5626 case llvm::Triple::sparcv9: 5627 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 5628 case llvm::Triple::xcore: 5629 return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types)); 5630 5631 } 5632 } 5633