1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/Basic/CodeGenOptions.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>    // std::sort
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 // Helper for coercing an aggregate argument or return value into an integer
37 // array of the same size (including padding) and alignment.  This alternate
38 // coercion happens only for the RenderScript ABI and can be removed after
39 // runtimes that rely on it are no longer supported.
40 //
41 // RenderScript assumes that the size of the argument / return value in the IR
42 // is the same as the size of the corresponding qualified type. This helper
43 // coerces the aggregate type into an array of the same size (including
44 // padding).  This coercion is used in lieu of expansion of struct members or
45 // other canonical coercions that return a coerced-type of larger size.
46 //
47 // Ty          - The argument / return value type
48 // Context     - The associated ASTContext
49 // LLVMContext - The associated LLVMContext
50 static ABIArgInfo coerceToIntArray(QualType Ty,
51                                    ASTContext &Context,
52                                    llvm::LLVMContext &LLVMContext) {
53   // Alignment and Size are measured in bits.
54   const uint64_t Size = Context.getTypeSize(Ty);
55   const uint64_t Alignment = Context.getTypeAlign(Ty);
56   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
57   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
58   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
59 }
60 
61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
62                                llvm::Value *Array,
63                                llvm::Value *Value,
64                                unsigned FirstIndex,
65                                unsigned LastIndex) {
66   // Alternatively, we could emit this as a loop in the source.
67   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
68     llvm::Value *Cell =
69         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
70     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
71   }
72 }
73 
74 static bool isAggregateTypeForABI(QualType T) {
75   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
76          T->isMemberFunctionPointerType();
77 }
78 
79 ABIArgInfo
80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
81                                  llvm::Type *Padding) const {
82   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
83                                  ByRef, Realign, Padding);
84 }
85 
86 ABIArgInfo
87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
88   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
89                                       /*ByRef*/ false, Realign);
90 }
91 
92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
93                              QualType Ty) const {
94   return Address::invalid();
95 }
96 
97 ABIInfo::~ABIInfo() {}
98 
99 /// Does the given lowering require more than the given number of
100 /// registers when expanded?
101 ///
102 /// This is intended to be the basis of a reasonable basic implementation
103 /// of should{Pass,Return}IndirectlyForSwift.
104 ///
105 /// For most targets, a limit of four total registers is reasonable; this
106 /// limits the amount of code required in order to move around the value
107 /// in case it wasn't produced immediately prior to the call by the caller
108 /// (or wasn't produced in exactly the right registers) or isn't used
109 /// immediately within the callee.  But some targets may need to further
110 /// limit the register count due to an inability to support that many
111 /// return registers.
112 static bool occupiesMoreThan(CodeGenTypes &cgt,
113                              ArrayRef<llvm::Type*> scalarTypes,
114                              unsigned maxAllRegisters) {
115   unsigned intCount = 0, fpCount = 0;
116   for (llvm::Type *type : scalarTypes) {
117     if (type->isPointerTy()) {
118       intCount++;
119     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
120       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
121       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
122     } else {
123       assert(type->isVectorTy() || type->isFloatingPointTy());
124       fpCount++;
125     }
126   }
127 
128   return (intCount + fpCount > maxAllRegisters);
129 }
130 
131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
132                                              llvm::Type *eltTy,
133                                              unsigned numElts) const {
134   // The default implementation of this assumes that the target guarantees
135   // 128-bit SIMD support but nothing more.
136   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
137 }
138 
139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
140                                               CGCXXABI &CXXABI) {
141   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
142   if (!RD) {
143     if (!RT->getDecl()->canPassInRegisters())
144       return CGCXXABI::RAA_Indirect;
145     return CGCXXABI::RAA_Default;
146   }
147   return CXXABI.getRecordArgABI(RD);
148 }
149 
150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
151                                               CGCXXABI &CXXABI) {
152   const RecordType *RT = T->getAs<RecordType>();
153   if (!RT)
154     return CGCXXABI::RAA_Default;
155   return getRecordArgABI(RT, CXXABI);
156 }
157 
158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
159                                const ABIInfo &Info) {
160   QualType Ty = FI.getReturnType();
161 
162   if (const auto *RT = Ty->getAs<RecordType>())
163     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
164         !RT->getDecl()->canPassInRegisters()) {
165       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
166       return true;
167     }
168 
169   return CXXABI.classifyReturnType(FI);
170 }
171 
172 /// Pass transparent unions as if they were the type of the first element. Sema
173 /// should ensure that all elements of the union have the same "machine type".
174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
175   if (const RecordType *UT = Ty->getAsUnionType()) {
176     const RecordDecl *UD = UT->getDecl();
177     if (UD->hasAttr<TransparentUnionAttr>()) {
178       assert(!UD->field_empty() && "sema created an empty transparent union");
179       return UD->field_begin()->getType();
180     }
181   }
182   return Ty;
183 }
184 
185 CGCXXABI &ABIInfo::getCXXABI() const {
186   return CGT.getCXXABI();
187 }
188 
189 ASTContext &ABIInfo::getContext() const {
190   return CGT.getContext();
191 }
192 
193 llvm::LLVMContext &ABIInfo::getVMContext() const {
194   return CGT.getLLVMContext();
195 }
196 
197 const llvm::DataLayout &ABIInfo::getDataLayout() const {
198   return CGT.getDataLayout();
199 }
200 
201 const TargetInfo &ABIInfo::getTarget() const {
202   return CGT.getTarget();
203 }
204 
205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
206   return CGT.getCodeGenOpts();
207 }
208 
209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
210 
211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
212   return false;
213 }
214 
215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
216                                                 uint64_t Members) const {
217   return false;
218 }
219 
220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
221   raw_ostream &OS = llvm::errs();
222   OS << "(ABIArgInfo Kind=";
223   switch (TheKind) {
224   case Direct:
225     OS << "Direct Type=";
226     if (llvm::Type *Ty = getCoerceToType())
227       Ty->print(OS);
228     else
229       OS << "null";
230     break;
231   case Extend:
232     OS << "Extend";
233     break;
234   case Ignore:
235     OS << "Ignore";
236     break;
237   case InAlloca:
238     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
239     break;
240   case Indirect:
241     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
242        << " ByVal=" << getIndirectByVal()
243        << " Realign=" << getIndirectRealign();
244     break;
245   case Expand:
246     OS << "Expand";
247     break;
248   case CoerceAndExpand:
249     OS << "CoerceAndExpand Type=";
250     getCoerceAndExpandType()->print(OS);
251     break;
252   }
253   OS << ")\n";
254 }
255 
256 // Dynamically round a pointer up to a multiple of the given alignment.
257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
258                                                   llvm::Value *Ptr,
259                                                   CharUnits Align) {
260   llvm::Value *PtrAsInt = Ptr;
261   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
262   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
263   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
264         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
265   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
266            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
267   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
268                                         Ptr->getType(),
269                                         Ptr->getName() + ".aligned");
270   return PtrAsInt;
271 }
272 
273 /// Emit va_arg for a platform using the common void* representation,
274 /// where arguments are simply emitted in an array of slots on the stack.
275 ///
276 /// This version implements the core direct-value passing rules.
277 ///
278 /// \param SlotSize - The size and alignment of a stack slot.
279 ///   Each argument will be allocated to a multiple of this number of
280 ///   slots, and all the slots will be aligned to this value.
281 /// \param AllowHigherAlign - The slot alignment is not a cap;
282 ///   an argument type with an alignment greater than the slot size
283 ///   will be emitted on a higher-alignment address, potentially
284 ///   leaving one or more empty slots behind as padding.  If this
285 ///   is false, the returned address might be less-aligned than
286 ///   DirectAlign.
287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
288                                       Address VAListAddr,
289                                       llvm::Type *DirectTy,
290                                       CharUnits DirectSize,
291                                       CharUnits DirectAlign,
292                                       CharUnits SlotSize,
293                                       bool AllowHigherAlign) {
294   // Cast the element type to i8* if necessary.  Some platforms define
295   // va_list as a struct containing an i8* instead of just an i8*.
296   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
297     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
298 
299   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
300 
301   // If the CC aligns values higher than the slot size, do so if needed.
302   Address Addr = Address::invalid();
303   if (AllowHigherAlign && DirectAlign > SlotSize) {
304     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
305                                                  DirectAlign);
306   } else {
307     Addr = Address(Ptr, SlotSize);
308   }
309 
310   // Advance the pointer past the argument, then store that back.
311   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
312   Address NextPtr =
313       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
314   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
315 
316   // If the argument is smaller than a slot, and this is a big-endian
317   // target, the argument will be right-adjusted in its slot.
318   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
319       !DirectTy->isStructTy()) {
320     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
321   }
322 
323   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
324   return Addr;
325 }
326 
327 /// Emit va_arg for a platform using the common void* representation,
328 /// where arguments are simply emitted in an array of slots on the stack.
329 ///
330 /// \param IsIndirect - Values of this type are passed indirectly.
331 /// \param ValueInfo - The size and alignment of this type, generally
332 ///   computed with getContext().getTypeInfoInChars(ValueTy).
333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
334 ///   Each argument will be allocated to a multiple of this number of
335 ///   slots, and all the slots will be aligned to this value.
336 /// \param AllowHigherAlign - The slot alignment is not a cap;
337 ///   an argument type with an alignment greater than the slot size
338 ///   will be emitted on a higher-alignment address, potentially
339 ///   leaving one or more empty slots behind as padding.
340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
341                                 QualType ValueTy, bool IsIndirect,
342                                 std::pair<CharUnits, CharUnits> ValueInfo,
343                                 CharUnits SlotSizeAndAlign,
344                                 bool AllowHigherAlign) {
345   // The size and alignment of the value that was passed directly.
346   CharUnits DirectSize, DirectAlign;
347   if (IsIndirect) {
348     DirectSize = CGF.getPointerSize();
349     DirectAlign = CGF.getPointerAlign();
350   } else {
351     DirectSize = ValueInfo.first;
352     DirectAlign = ValueInfo.second;
353   }
354 
355   // Cast the address we've calculated to the right type.
356   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
357   if (IsIndirect)
358     DirectTy = DirectTy->getPointerTo(0);
359 
360   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
361                                         DirectSize, DirectAlign,
362                                         SlotSizeAndAlign,
363                                         AllowHigherAlign);
364 
365   if (IsIndirect) {
366     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
367   }
368 
369   return Addr;
370 
371 }
372 
373 static Address emitMergePHI(CodeGenFunction &CGF,
374                             Address Addr1, llvm::BasicBlock *Block1,
375                             Address Addr2, llvm::BasicBlock *Block2,
376                             const llvm::Twine &Name = "") {
377   assert(Addr1.getType() == Addr2.getType());
378   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
379   PHI->addIncoming(Addr1.getPointer(), Block1);
380   PHI->addIncoming(Addr2.getPointer(), Block2);
381   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
382   return Address(PHI, Align);
383 }
384 
385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
386 
387 // If someone can figure out a general rule for this, that would be great.
388 // It's probably just doomed to be platform-dependent, though.
389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
390   // Verified for:
391   //   x86-64     FreeBSD, Linux, Darwin
392   //   x86-32     FreeBSD, Linux, Darwin
393   //   PowerPC    Linux, Darwin
394   //   ARM        Darwin (*not* EABI)
395   //   AArch64    Linux
396   return 32;
397 }
398 
399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
400                                      const FunctionNoProtoType *fnType) const {
401   // The following conventions are known to require this to be false:
402   //   x86_stdcall
403   //   MIPS
404   // For everything else, we just prefer false unless we opt out.
405   return false;
406 }
407 
408 void
409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
410                                              llvm::SmallString<24> &Opt) const {
411   // This assumes the user is passing a library name like "rt" instead of a
412   // filename like "librt.a/so", and that they don't care whether it's static or
413   // dynamic.
414   Opt = "-l";
415   Opt += Lib;
416 }
417 
418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
419   // OpenCL kernels are called via an explicit runtime API with arguments
420   // set with clSetKernelArg(), not as normal sub-functions.
421   // Return SPIR_KERNEL by default as the kernel calling convention to
422   // ensure the fingerprint is fixed such way that each OpenCL argument
423   // gets one matching argument in the produced kernel function argument
424   // list to enable feasible implementation of clSetKernelArg() with
425   // aggregates etc. In case we would use the default C calling conv here,
426   // clSetKernelArg() might break depending on the target-specific
427   // conventions; different targets might split structs passed as values
428   // to multiple function arguments etc.
429   return llvm::CallingConv::SPIR_KERNEL;
430 }
431 
432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
433     llvm::PointerType *T, QualType QT) const {
434   return llvm::ConstantPointerNull::get(T);
435 }
436 
437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
438                                                    const VarDecl *D) const {
439   assert(!CGM.getLangOpts().OpenCL &&
440          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
441          "Address space agnostic languages only");
442   return D ? D->getType().getAddressSpace() : LangAS::Default;
443 }
444 
445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
446     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
447     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
448   // Since target may map different address spaces in AST to the same address
449   // space, an address space conversion may end up as a bitcast.
450   if (auto *C = dyn_cast<llvm::Constant>(Src))
451     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
452   // Try to preserve the source's name to make IR more readable.
453   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
454       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
455 }
456 
457 llvm::Constant *
458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
459                                         LangAS SrcAddr, LangAS DestAddr,
460                                         llvm::Type *DestTy) const {
461   // Since target may map different address spaces in AST to the same address
462   // space, an address space conversion may end up as a bitcast.
463   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
464 }
465 
466 llvm::SyncScope::ID
467 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
468                                       SyncScope Scope,
469                                       llvm::AtomicOrdering Ordering,
470                                       llvm::LLVMContext &Ctx) const {
471   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
472 }
473 
474 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
475 
476 /// isEmptyField - Return true iff a the field is "empty", that is it
477 /// is an unnamed bit-field or an (array of) empty record(s).
478 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
479                          bool AllowArrays) {
480   if (FD->isUnnamedBitfield())
481     return true;
482 
483   QualType FT = FD->getType();
484 
485   // Constant arrays of empty records count as empty, strip them off.
486   // Constant arrays of zero length always count as empty.
487   if (AllowArrays)
488     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
489       if (AT->getSize() == 0)
490         return true;
491       FT = AT->getElementType();
492     }
493 
494   const RecordType *RT = FT->getAs<RecordType>();
495   if (!RT)
496     return false;
497 
498   // C++ record fields are never empty, at least in the Itanium ABI.
499   //
500   // FIXME: We should use a predicate for whether this behavior is true in the
501   // current ABI.
502   if (isa<CXXRecordDecl>(RT->getDecl()))
503     return false;
504 
505   return isEmptyRecord(Context, FT, AllowArrays);
506 }
507 
508 /// isEmptyRecord - Return true iff a structure contains only empty
509 /// fields. Note that a structure with a flexible array member is not
510 /// considered empty.
511 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
512   const RecordType *RT = T->getAs<RecordType>();
513   if (!RT)
514     return false;
515   const RecordDecl *RD = RT->getDecl();
516   if (RD->hasFlexibleArrayMember())
517     return false;
518 
519   // If this is a C++ record, check the bases first.
520   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
521     for (const auto &I : CXXRD->bases())
522       if (!isEmptyRecord(Context, I.getType(), true))
523         return false;
524 
525   for (const auto *I : RD->fields())
526     if (!isEmptyField(Context, I, AllowArrays))
527       return false;
528   return true;
529 }
530 
531 /// isSingleElementStruct - Determine if a structure is a "single
532 /// element struct", i.e. it has exactly one non-empty field or
533 /// exactly one field which is itself a single element
534 /// struct. Structures with flexible array members are never
535 /// considered single element structs.
536 ///
537 /// \return The field declaration for the single non-empty field, if
538 /// it exists.
539 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
540   const RecordType *RT = T->getAs<RecordType>();
541   if (!RT)
542     return nullptr;
543 
544   const RecordDecl *RD = RT->getDecl();
545   if (RD->hasFlexibleArrayMember())
546     return nullptr;
547 
548   const Type *Found = nullptr;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
552     for (const auto &I : CXXRD->bases()) {
553       // Ignore empty records.
554       if (isEmptyRecord(Context, I.getType(), true))
555         continue;
556 
557       // If we already found an element then this isn't a single-element struct.
558       if (Found)
559         return nullptr;
560 
561       // If this is non-empty and not a single element struct, the composite
562       // cannot be a single element struct.
563       Found = isSingleElementStruct(I.getType(), Context);
564       if (!Found)
565         return nullptr;
566     }
567   }
568 
569   // Check for single element.
570   for (const auto *FD : RD->fields()) {
571     QualType FT = FD->getType();
572 
573     // Ignore empty fields.
574     if (isEmptyField(Context, FD, true))
575       continue;
576 
577     // If we already found an element then this isn't a single-element
578     // struct.
579     if (Found)
580       return nullptr;
581 
582     // Treat single element arrays as the element.
583     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
584       if (AT->getSize().getZExtValue() != 1)
585         break;
586       FT = AT->getElementType();
587     }
588 
589     if (!isAggregateTypeForABI(FT)) {
590       Found = FT.getTypePtr();
591     } else {
592       Found = isSingleElementStruct(FT, Context);
593       if (!Found)
594         return nullptr;
595     }
596   }
597 
598   // We don't consider a struct a single-element struct if it has
599   // padding beyond the element type.
600   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
601     return nullptr;
602 
603   return Found;
604 }
605 
606 namespace {
607 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
608                        const ABIArgInfo &AI) {
609   // This default implementation defers to the llvm backend's va_arg
610   // instruction. It can handle only passing arguments directly
611   // (typically only handled in the backend for primitive types), or
612   // aggregates passed indirectly by pointer (NOTE: if the "byval"
613   // flag has ABI impact in the callee, this implementation cannot
614   // work.)
615 
616   // Only a few cases are covered here at the moment -- those needed
617   // by the default abi.
618   llvm::Value *Val;
619 
620   if (AI.isIndirect()) {
621     assert(!AI.getPaddingType() &&
622            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
623     assert(
624         !AI.getIndirectRealign() &&
625         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
626 
627     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
628     CharUnits TyAlignForABI = TyInfo.second;
629 
630     llvm::Type *BaseTy =
631         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
632     llvm::Value *Addr =
633         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
634     return Address(Addr, TyAlignForABI);
635   } else {
636     assert((AI.isDirect() || AI.isExtend()) &&
637            "Unexpected ArgInfo Kind in generic VAArg emitter!");
638 
639     assert(!AI.getInReg() &&
640            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
641     assert(!AI.getPaddingType() &&
642            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
643     assert(!AI.getDirectOffset() &&
644            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
645     assert(!AI.getCoerceToType() &&
646            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
647 
648     Address Temp = CGF.CreateMemTemp(Ty, "varet");
649     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
650     CGF.Builder.CreateStore(Val, Temp);
651     return Temp;
652   }
653 }
654 
655 /// DefaultABIInfo - The default implementation for ABI specific
656 /// details. This implementation provides information which results in
657 /// self-consistent and sensible LLVM IR generation, but does not
658 /// conform to any particular ABI.
659 class DefaultABIInfo : public ABIInfo {
660 public:
661   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
662 
663   ABIArgInfo classifyReturnType(QualType RetTy) const;
664   ABIArgInfo classifyArgumentType(QualType RetTy) const;
665 
666   void computeInfo(CGFunctionInfo &FI) const override {
667     if (!getCXXABI().classifyReturnType(FI))
668       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
669     for (auto &I : FI.arguments())
670       I.info = classifyArgumentType(I.type);
671   }
672 
673   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
674                     QualType Ty) const override {
675     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
676   }
677 };
678 
679 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
680 public:
681   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
682     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
683 };
684 
685 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
686   Ty = useFirstFieldIfTransparentUnion(Ty);
687 
688   if (isAggregateTypeForABI(Ty)) {
689     // Records with non-trivial destructors/copy-constructors should not be
690     // passed by value.
691     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
692       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
693 
694     return getNaturalAlignIndirect(Ty);
695   }
696 
697   // Treat an enum type as its underlying type.
698   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
699     Ty = EnumTy->getDecl()->getIntegerType();
700 
701   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
702                                         : ABIArgInfo::getDirect());
703 }
704 
705 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
706   if (RetTy->isVoidType())
707     return ABIArgInfo::getIgnore();
708 
709   if (isAggregateTypeForABI(RetTy))
710     return getNaturalAlignIndirect(RetTy);
711 
712   // Treat an enum type as its underlying type.
713   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
714     RetTy = EnumTy->getDecl()->getIntegerType();
715 
716   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
717                                            : ABIArgInfo::getDirect());
718 }
719 
720 //===----------------------------------------------------------------------===//
721 // WebAssembly ABI Implementation
722 //
723 // This is a very simple ABI that relies a lot on DefaultABIInfo.
724 //===----------------------------------------------------------------------===//
725 
726 class WebAssemblyABIInfo final : public SwiftABIInfo {
727   DefaultABIInfo defaultInfo;
728 
729 public:
730   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
731       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
732 
733 private:
734   ABIArgInfo classifyReturnType(QualType RetTy) const;
735   ABIArgInfo classifyArgumentType(QualType Ty) const;
736 
737   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
738   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
739   // overload them.
740   void computeInfo(CGFunctionInfo &FI) const override {
741     if (!getCXXABI().classifyReturnType(FI))
742       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
743     for (auto &Arg : FI.arguments())
744       Arg.info = classifyArgumentType(Arg.type);
745   }
746 
747   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
748                     QualType Ty) const override;
749 
750   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
751                                     bool asReturnValue) const override {
752     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
753   }
754 
755   bool isSwiftErrorInRegister() const override {
756     return false;
757   }
758 };
759 
760 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
761 public:
762   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
763       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
764 
765   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
766                            CodeGen::CodeGenModule &CGM) const override {
767     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
768     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
769       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
770         llvm::Function *Fn = cast<llvm::Function>(GV);
771         llvm::AttrBuilder B;
772         B.addAttribute("wasm-import-module", Attr->getImportModule());
773         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
774       }
775       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
776         llvm::Function *Fn = cast<llvm::Function>(GV);
777         llvm::AttrBuilder B;
778         B.addAttribute("wasm-import-name", Attr->getImportName());
779         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
780       }
781     }
782 
783     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
784       llvm::Function *Fn = cast<llvm::Function>(GV);
785       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
786         Fn->addFnAttr("no-prototype");
787     }
788   }
789 };
790 
791 /// Classify argument of given type \p Ty.
792 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
793   Ty = useFirstFieldIfTransparentUnion(Ty);
794 
795   if (isAggregateTypeForABI(Ty)) {
796     // Records with non-trivial destructors/copy-constructors should not be
797     // passed by value.
798     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
799       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
800     // Ignore empty structs/unions.
801     if (isEmptyRecord(getContext(), Ty, true))
802       return ABIArgInfo::getIgnore();
803     // Lower single-element structs to just pass a regular value. TODO: We
804     // could do reasonable-size multiple-element structs too, using getExpand(),
805     // though watch out for things like bitfields.
806     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
807       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
808   }
809 
810   // Otherwise just do the default thing.
811   return defaultInfo.classifyArgumentType(Ty);
812 }
813 
814 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
815   if (isAggregateTypeForABI(RetTy)) {
816     // Records with non-trivial destructors/copy-constructors should not be
817     // returned by value.
818     if (!getRecordArgABI(RetTy, getCXXABI())) {
819       // Ignore empty structs/unions.
820       if (isEmptyRecord(getContext(), RetTy, true))
821         return ABIArgInfo::getIgnore();
822       // Lower single-element structs to just return a regular value. TODO: We
823       // could do reasonable-size multiple-element structs too, using
824       // ABIArgInfo::getDirect().
825       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
826         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
827     }
828   }
829 
830   // Otherwise just do the default thing.
831   return defaultInfo.classifyReturnType(RetTy);
832 }
833 
834 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
835                                       QualType Ty) const {
836   bool IsIndirect = isAggregateTypeForABI(Ty) &&
837                     !isEmptyRecord(getContext(), Ty, true) &&
838                     !isSingleElementStruct(Ty, getContext());
839   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
840                           getContext().getTypeInfoInChars(Ty),
841                           CharUnits::fromQuantity(4),
842                           /*AllowHigherAlign=*/true);
843 }
844 
845 //===----------------------------------------------------------------------===//
846 // le32/PNaCl bitcode ABI Implementation
847 //
848 // This is a simplified version of the x86_32 ABI.  Arguments and return values
849 // are always passed on the stack.
850 //===----------------------------------------------------------------------===//
851 
852 class PNaClABIInfo : public ABIInfo {
853  public:
854   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
855 
856   ABIArgInfo classifyReturnType(QualType RetTy) const;
857   ABIArgInfo classifyArgumentType(QualType RetTy) const;
858 
859   void computeInfo(CGFunctionInfo &FI) const override;
860   Address EmitVAArg(CodeGenFunction &CGF,
861                     Address VAListAddr, QualType Ty) const override;
862 };
863 
864 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
865  public:
866   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
867     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
868 };
869 
870 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
871   if (!getCXXABI().classifyReturnType(FI))
872     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
873 
874   for (auto &I : FI.arguments())
875     I.info = classifyArgumentType(I.type);
876 }
877 
878 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
879                                 QualType Ty) const {
880   // The PNaCL ABI is a bit odd, in that varargs don't use normal
881   // function classification. Structs get passed directly for varargs
882   // functions, through a rewriting transform in
883   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
884   // this target to actually support a va_arg instructions with an
885   // aggregate type, unlike other targets.
886   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
887 }
888 
889 /// Classify argument of given type \p Ty.
890 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
891   if (isAggregateTypeForABI(Ty)) {
892     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
893       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
894     return getNaturalAlignIndirect(Ty);
895   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
896     // Treat an enum type as its underlying type.
897     Ty = EnumTy->getDecl()->getIntegerType();
898   } else if (Ty->isFloatingType()) {
899     // Floating-point types don't go inreg.
900     return ABIArgInfo::getDirect();
901   }
902 
903   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
904                                         : ABIArgInfo::getDirect());
905 }
906 
907 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
908   if (RetTy->isVoidType())
909     return ABIArgInfo::getIgnore();
910 
911   // In the PNaCl ABI we always return records/structures on the stack.
912   if (isAggregateTypeForABI(RetTy))
913     return getNaturalAlignIndirect(RetTy);
914 
915   // Treat an enum type as its underlying type.
916   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
917     RetTy = EnumTy->getDecl()->getIntegerType();
918 
919   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
920                                            : ABIArgInfo::getDirect());
921 }
922 
923 /// IsX86_MMXType - Return true if this is an MMX type.
924 bool IsX86_MMXType(llvm::Type *IRType) {
925   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
926   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
927     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
928     IRType->getScalarSizeInBits() != 64;
929 }
930 
931 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
932                                           StringRef Constraint,
933                                           llvm::Type* Ty) {
934   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
935                      .Cases("y", "&y", "^Ym", true)
936                      .Default(false);
937   if (IsMMXCons && Ty->isVectorTy()) {
938     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
939       // Invalid MMX constraint
940       return nullptr;
941     }
942 
943     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
944   }
945 
946   // No operation needed
947   return Ty;
948 }
949 
950 /// Returns true if this type can be passed in SSE registers with the
951 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
952 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
953   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
954     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
955       if (BT->getKind() == BuiltinType::LongDouble) {
956         if (&Context.getTargetInfo().getLongDoubleFormat() ==
957             &llvm::APFloat::x87DoubleExtended())
958           return false;
959       }
960       return true;
961     }
962   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
963     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
964     // registers specially.
965     unsigned VecSize = Context.getTypeSize(VT);
966     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
967       return true;
968   }
969   return false;
970 }
971 
972 /// Returns true if this aggregate is small enough to be passed in SSE registers
973 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
974 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
975   return NumMembers <= 4;
976 }
977 
978 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
979 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
980   auto AI = ABIArgInfo::getDirect(T);
981   AI.setInReg(true);
982   AI.setCanBeFlattened(false);
983   return AI;
984 }
985 
986 //===----------------------------------------------------------------------===//
987 // X86-32 ABI Implementation
988 //===----------------------------------------------------------------------===//
989 
990 /// Similar to llvm::CCState, but for Clang.
991 struct CCState {
992   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
993 
994   unsigned CC;
995   unsigned FreeRegs;
996   unsigned FreeSSERegs;
997 };
998 
999 enum {
1000   // Vectorcall only allows the first 6 parameters to be passed in registers.
1001   VectorcallMaxParamNumAsReg = 6
1002 };
1003 
1004 /// X86_32ABIInfo - The X86-32 ABI information.
1005 class X86_32ABIInfo : public SwiftABIInfo {
1006   enum Class {
1007     Integer,
1008     Float
1009   };
1010 
1011   static const unsigned MinABIStackAlignInBytes = 4;
1012 
1013   bool IsDarwinVectorABI;
1014   bool IsRetSmallStructInRegABI;
1015   bool IsWin32StructABI;
1016   bool IsSoftFloatABI;
1017   bool IsMCUABI;
1018   unsigned DefaultNumRegisterParameters;
1019 
1020   static bool isRegisterSize(unsigned Size) {
1021     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1022   }
1023 
1024   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1025     // FIXME: Assumes vectorcall is in use.
1026     return isX86VectorTypeForVectorCall(getContext(), Ty);
1027   }
1028 
1029   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1030                                          uint64_t NumMembers) const override {
1031     // FIXME: Assumes vectorcall is in use.
1032     return isX86VectorCallAggregateSmallEnough(NumMembers);
1033   }
1034 
1035   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1036 
1037   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1038   /// such that the argument will be passed in memory.
1039   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1040 
1041   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1042 
1043   /// Return the alignment to use for the given type on the stack.
1044   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1045 
1046   Class classify(QualType Ty) const;
1047   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1048   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1049 
1050   /// Updates the number of available free registers, returns
1051   /// true if any registers were allocated.
1052   bool updateFreeRegs(QualType Ty, CCState &State) const;
1053 
1054   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1055                                 bool &NeedsPadding) const;
1056   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1057 
1058   bool canExpandIndirectArgument(QualType Ty) const;
1059 
1060   /// Rewrite the function info so that all memory arguments use
1061   /// inalloca.
1062   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1063 
1064   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1065                            CharUnits &StackOffset, ABIArgInfo &Info,
1066                            QualType Type) const;
1067   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1068                              bool &UsedInAlloca) const;
1069 
1070 public:
1071 
1072   void computeInfo(CGFunctionInfo &FI) const override;
1073   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1074                     QualType Ty) const override;
1075 
1076   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1077                 bool RetSmallStructInRegABI, bool Win32StructABI,
1078                 unsigned NumRegisterParameters, bool SoftFloatABI)
1079     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1080       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1081       IsWin32StructABI(Win32StructABI),
1082       IsSoftFloatABI(SoftFloatABI),
1083       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1084       DefaultNumRegisterParameters(NumRegisterParameters) {}
1085 
1086   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1087                                     bool asReturnValue) const override {
1088     // LLVM's x86-32 lowering currently only assigns up to three
1089     // integer registers and three fp registers.  Oddly, it'll use up to
1090     // four vector registers for vectors, but those can overlap with the
1091     // scalar registers.
1092     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1093   }
1094 
1095   bool isSwiftErrorInRegister() const override {
1096     // x86-32 lowering does not support passing swifterror in a register.
1097     return false;
1098   }
1099 };
1100 
1101 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1102 public:
1103   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1104                           bool RetSmallStructInRegABI, bool Win32StructABI,
1105                           unsigned NumRegisterParameters, bool SoftFloatABI)
1106       : TargetCodeGenInfo(new X86_32ABIInfo(
1107             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1108             NumRegisterParameters, SoftFloatABI)) {}
1109 
1110   static bool isStructReturnInRegABI(
1111       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1112 
1113   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1114                            CodeGen::CodeGenModule &CGM) const override;
1115 
1116   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1117     // Darwin uses different dwarf register numbers for EH.
1118     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1119     return 4;
1120   }
1121 
1122   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1123                                llvm::Value *Address) const override;
1124 
1125   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1126                                   StringRef Constraint,
1127                                   llvm::Type* Ty) const override {
1128     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1129   }
1130 
1131   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1132                                 std::string &Constraints,
1133                                 std::vector<llvm::Type *> &ResultRegTypes,
1134                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1135                                 std::vector<LValue> &ResultRegDests,
1136                                 std::string &AsmString,
1137                                 unsigned NumOutputs) const override;
1138 
1139   llvm::Constant *
1140   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1141     unsigned Sig = (0xeb << 0) |  // jmp rel8
1142                    (0x06 << 8) |  //           .+0x08
1143                    ('v' << 16) |
1144                    ('2' << 24);
1145     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1146   }
1147 
1148   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1149     return "movl\t%ebp, %ebp"
1150            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1151   }
1152 };
1153 
1154 }
1155 
1156 /// Rewrite input constraint references after adding some output constraints.
1157 /// In the case where there is one output and one input and we add one output,
1158 /// we need to replace all operand references greater than or equal to 1:
1159 ///     mov $0, $1
1160 ///     mov eax, $1
1161 /// The result will be:
1162 ///     mov $0, $2
1163 ///     mov eax, $2
1164 static void rewriteInputConstraintReferences(unsigned FirstIn,
1165                                              unsigned NumNewOuts,
1166                                              std::string &AsmString) {
1167   std::string Buf;
1168   llvm::raw_string_ostream OS(Buf);
1169   size_t Pos = 0;
1170   while (Pos < AsmString.size()) {
1171     size_t DollarStart = AsmString.find('$', Pos);
1172     if (DollarStart == std::string::npos)
1173       DollarStart = AsmString.size();
1174     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1175     if (DollarEnd == std::string::npos)
1176       DollarEnd = AsmString.size();
1177     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1178     Pos = DollarEnd;
1179     size_t NumDollars = DollarEnd - DollarStart;
1180     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1181       // We have an operand reference.
1182       size_t DigitStart = Pos;
1183       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1184       if (DigitEnd == std::string::npos)
1185         DigitEnd = AsmString.size();
1186       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1187       unsigned OperandIndex;
1188       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1189         if (OperandIndex >= FirstIn)
1190           OperandIndex += NumNewOuts;
1191         OS << OperandIndex;
1192       } else {
1193         OS << OperandStr;
1194       }
1195       Pos = DigitEnd;
1196     }
1197   }
1198   AsmString = std::move(OS.str());
1199 }
1200 
1201 /// Add output constraints for EAX:EDX because they are return registers.
1202 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1203     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1204     std::vector<llvm::Type *> &ResultRegTypes,
1205     std::vector<llvm::Type *> &ResultTruncRegTypes,
1206     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1207     unsigned NumOutputs) const {
1208   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1209 
1210   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1211   // larger.
1212   if (!Constraints.empty())
1213     Constraints += ',';
1214   if (RetWidth <= 32) {
1215     Constraints += "={eax}";
1216     ResultRegTypes.push_back(CGF.Int32Ty);
1217   } else {
1218     // Use the 'A' constraint for EAX:EDX.
1219     Constraints += "=A";
1220     ResultRegTypes.push_back(CGF.Int64Ty);
1221   }
1222 
1223   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1224   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1225   ResultTruncRegTypes.push_back(CoerceTy);
1226 
1227   // Coerce the integer by bitcasting the return slot pointer.
1228   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1229                                                   CoerceTy->getPointerTo()));
1230   ResultRegDests.push_back(ReturnSlot);
1231 
1232   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1233 }
1234 
1235 /// shouldReturnTypeInRegister - Determine if the given type should be
1236 /// returned in a register (for the Darwin and MCU ABI).
1237 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1238                                                ASTContext &Context) const {
1239   uint64_t Size = Context.getTypeSize(Ty);
1240 
1241   // For i386, type must be register sized.
1242   // For the MCU ABI, it only needs to be <= 8-byte
1243   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1244    return false;
1245 
1246   if (Ty->isVectorType()) {
1247     // 64- and 128- bit vectors inside structures are not returned in
1248     // registers.
1249     if (Size == 64 || Size == 128)
1250       return false;
1251 
1252     return true;
1253   }
1254 
1255   // If this is a builtin, pointer, enum, complex type, member pointer, or
1256   // member function pointer it is ok.
1257   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1258       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1259       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1260     return true;
1261 
1262   // Arrays are treated like records.
1263   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1264     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1265 
1266   // Otherwise, it must be a record type.
1267   const RecordType *RT = Ty->getAs<RecordType>();
1268   if (!RT) return false;
1269 
1270   // FIXME: Traverse bases here too.
1271 
1272   // Structure types are passed in register if all fields would be
1273   // passed in a register.
1274   for (const auto *FD : RT->getDecl()->fields()) {
1275     // Empty fields are ignored.
1276     if (isEmptyField(Context, FD, true))
1277       continue;
1278 
1279     // Check fields recursively.
1280     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1281       return false;
1282   }
1283   return true;
1284 }
1285 
1286 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1287   // Treat complex types as the element type.
1288   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1289     Ty = CTy->getElementType();
1290 
1291   // Check for a type which we know has a simple scalar argument-passing
1292   // convention without any padding.  (We're specifically looking for 32
1293   // and 64-bit integer and integer-equivalents, float, and double.)
1294   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1295       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1296     return false;
1297 
1298   uint64_t Size = Context.getTypeSize(Ty);
1299   return Size == 32 || Size == 64;
1300 }
1301 
1302 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1303                           uint64_t &Size) {
1304   for (const auto *FD : RD->fields()) {
1305     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1306     // argument is smaller than 32-bits, expanding the struct will create
1307     // alignment padding.
1308     if (!is32Or64BitBasicType(FD->getType(), Context))
1309       return false;
1310 
1311     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1312     // how to expand them yet, and the predicate for telling if a bitfield still
1313     // counts as "basic" is more complicated than what we were doing previously.
1314     if (FD->isBitField())
1315       return false;
1316 
1317     Size += Context.getTypeSize(FD->getType());
1318   }
1319   return true;
1320 }
1321 
1322 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1323                                  uint64_t &Size) {
1324   // Don't do this if there are any non-empty bases.
1325   for (const CXXBaseSpecifier &Base : RD->bases()) {
1326     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1327                               Size))
1328       return false;
1329   }
1330   if (!addFieldSizes(Context, RD, Size))
1331     return false;
1332   return true;
1333 }
1334 
1335 /// Test whether an argument type which is to be passed indirectly (on the
1336 /// stack) would have the equivalent layout if it was expanded into separate
1337 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1338 /// optimizations.
1339 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1340   // We can only expand structure types.
1341   const RecordType *RT = Ty->getAs<RecordType>();
1342   if (!RT)
1343     return false;
1344   const RecordDecl *RD = RT->getDecl();
1345   uint64_t Size = 0;
1346   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1347     if (!IsWin32StructABI) {
1348       // On non-Windows, we have to conservatively match our old bitcode
1349       // prototypes in order to be ABI-compatible at the bitcode level.
1350       if (!CXXRD->isCLike())
1351         return false;
1352     } else {
1353       // Don't do this for dynamic classes.
1354       if (CXXRD->isDynamicClass())
1355         return false;
1356     }
1357     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1358       return false;
1359   } else {
1360     if (!addFieldSizes(getContext(), RD, Size))
1361       return false;
1362   }
1363 
1364   // We can do this if there was no alignment padding.
1365   return Size == getContext().getTypeSize(Ty);
1366 }
1367 
1368 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1369   // If the return value is indirect, then the hidden argument is consuming one
1370   // integer register.
1371   if (State.FreeRegs) {
1372     --State.FreeRegs;
1373     if (!IsMCUABI)
1374       return getNaturalAlignIndirectInReg(RetTy);
1375   }
1376   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1377 }
1378 
1379 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1380                                              CCState &State) const {
1381   if (RetTy->isVoidType())
1382     return ABIArgInfo::getIgnore();
1383 
1384   const Type *Base = nullptr;
1385   uint64_t NumElts = 0;
1386   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1387        State.CC == llvm::CallingConv::X86_RegCall) &&
1388       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1389     // The LLVM struct type for such an aggregate should lower properly.
1390     return ABIArgInfo::getDirect();
1391   }
1392 
1393   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1394     // On Darwin, some vectors are returned in registers.
1395     if (IsDarwinVectorABI) {
1396       uint64_t Size = getContext().getTypeSize(RetTy);
1397 
1398       // 128-bit vectors are a special case; they are returned in
1399       // registers and we need to make sure to pick a type the LLVM
1400       // backend will like.
1401       if (Size == 128)
1402         return ABIArgInfo::getDirect(llvm::VectorType::get(
1403                   llvm::Type::getInt64Ty(getVMContext()), 2));
1404 
1405       // Always return in register if it fits in a general purpose
1406       // register, or if it is 64 bits and has a single element.
1407       if ((Size == 8 || Size == 16 || Size == 32) ||
1408           (Size == 64 && VT->getNumElements() == 1))
1409         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1410                                                             Size));
1411 
1412       return getIndirectReturnResult(RetTy, State);
1413     }
1414 
1415     return ABIArgInfo::getDirect();
1416   }
1417 
1418   if (isAggregateTypeForABI(RetTy)) {
1419     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1420       // Structures with flexible arrays are always indirect.
1421       if (RT->getDecl()->hasFlexibleArrayMember())
1422         return getIndirectReturnResult(RetTy, State);
1423     }
1424 
1425     // If specified, structs and unions are always indirect.
1426     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1427       return getIndirectReturnResult(RetTy, State);
1428 
1429     // Ignore empty structs/unions.
1430     if (isEmptyRecord(getContext(), RetTy, true))
1431       return ABIArgInfo::getIgnore();
1432 
1433     // Small structures which are register sized are generally returned
1434     // in a register.
1435     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1436       uint64_t Size = getContext().getTypeSize(RetTy);
1437 
1438       // As a special-case, if the struct is a "single-element" struct, and
1439       // the field is of type "float" or "double", return it in a
1440       // floating-point register. (MSVC does not apply this special case.)
1441       // We apply a similar transformation for pointer types to improve the
1442       // quality of the generated IR.
1443       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1444         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1445             || SeltTy->hasPointerRepresentation())
1446           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1447 
1448       // FIXME: We should be able to narrow this integer in cases with dead
1449       // padding.
1450       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1451     }
1452 
1453     return getIndirectReturnResult(RetTy, State);
1454   }
1455 
1456   // Treat an enum type as its underlying type.
1457   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1458     RetTy = EnumTy->getDecl()->getIntegerType();
1459 
1460   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1461                                            : ABIArgInfo::getDirect());
1462 }
1463 
1464 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1465   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1466 }
1467 
1468 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1469   const RecordType *RT = Ty->getAs<RecordType>();
1470   if (!RT)
1471     return 0;
1472   const RecordDecl *RD = RT->getDecl();
1473 
1474   // If this is a C++ record, check the bases first.
1475   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1476     for (const auto &I : CXXRD->bases())
1477       if (!isRecordWithSSEVectorType(Context, I.getType()))
1478         return false;
1479 
1480   for (const auto *i : RD->fields()) {
1481     QualType FT = i->getType();
1482 
1483     if (isSSEVectorType(Context, FT))
1484       return true;
1485 
1486     if (isRecordWithSSEVectorType(Context, FT))
1487       return true;
1488   }
1489 
1490   return false;
1491 }
1492 
1493 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1494                                                  unsigned Align) const {
1495   // Otherwise, if the alignment is less than or equal to the minimum ABI
1496   // alignment, just use the default; the backend will handle this.
1497   if (Align <= MinABIStackAlignInBytes)
1498     return 0; // Use default alignment.
1499 
1500   // On non-Darwin, the stack type alignment is always 4.
1501   if (!IsDarwinVectorABI) {
1502     // Set explicit alignment, since we may need to realign the top.
1503     return MinABIStackAlignInBytes;
1504   }
1505 
1506   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1507   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1508                       isRecordWithSSEVectorType(getContext(), Ty)))
1509     return 16;
1510 
1511   return MinABIStackAlignInBytes;
1512 }
1513 
1514 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1515                                             CCState &State) const {
1516   if (!ByVal) {
1517     if (State.FreeRegs) {
1518       --State.FreeRegs; // Non-byval indirects just use one pointer.
1519       if (!IsMCUABI)
1520         return getNaturalAlignIndirectInReg(Ty);
1521     }
1522     return getNaturalAlignIndirect(Ty, false);
1523   }
1524 
1525   // Compute the byval alignment.
1526   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1527   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1528   if (StackAlign == 0)
1529     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1530 
1531   // If the stack alignment is less than the type alignment, realign the
1532   // argument.
1533   bool Realign = TypeAlign > StackAlign;
1534   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1535                                  /*ByVal=*/true, Realign);
1536 }
1537 
1538 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1539   const Type *T = isSingleElementStruct(Ty, getContext());
1540   if (!T)
1541     T = Ty.getTypePtr();
1542 
1543   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1544     BuiltinType::Kind K = BT->getKind();
1545     if (K == BuiltinType::Float || K == BuiltinType::Double)
1546       return Float;
1547   }
1548   return Integer;
1549 }
1550 
1551 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1552   if (!IsSoftFloatABI) {
1553     Class C = classify(Ty);
1554     if (C == Float)
1555       return false;
1556   }
1557 
1558   unsigned Size = getContext().getTypeSize(Ty);
1559   unsigned SizeInRegs = (Size + 31) / 32;
1560 
1561   if (SizeInRegs == 0)
1562     return false;
1563 
1564   if (!IsMCUABI) {
1565     if (SizeInRegs > State.FreeRegs) {
1566       State.FreeRegs = 0;
1567       return false;
1568     }
1569   } else {
1570     // The MCU psABI allows passing parameters in-reg even if there are
1571     // earlier parameters that are passed on the stack. Also,
1572     // it does not allow passing >8-byte structs in-register,
1573     // even if there are 3 free registers available.
1574     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1575       return false;
1576   }
1577 
1578   State.FreeRegs -= SizeInRegs;
1579   return true;
1580 }
1581 
1582 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1583                                              bool &InReg,
1584                                              bool &NeedsPadding) const {
1585   // On Windows, aggregates other than HFAs are never passed in registers, and
1586   // they do not consume register slots. Homogenous floating-point aggregates
1587   // (HFAs) have already been dealt with at this point.
1588   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1589     return false;
1590 
1591   NeedsPadding = false;
1592   InReg = !IsMCUABI;
1593 
1594   if (!updateFreeRegs(Ty, State))
1595     return false;
1596 
1597   if (IsMCUABI)
1598     return true;
1599 
1600   if (State.CC == llvm::CallingConv::X86_FastCall ||
1601       State.CC == llvm::CallingConv::X86_VectorCall ||
1602       State.CC == llvm::CallingConv::X86_RegCall) {
1603     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1604       NeedsPadding = true;
1605 
1606     return false;
1607   }
1608 
1609   return true;
1610 }
1611 
1612 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1613   if (!updateFreeRegs(Ty, State))
1614     return false;
1615 
1616   if (IsMCUABI)
1617     return false;
1618 
1619   if (State.CC == llvm::CallingConv::X86_FastCall ||
1620       State.CC == llvm::CallingConv::X86_VectorCall ||
1621       State.CC == llvm::CallingConv::X86_RegCall) {
1622     if (getContext().getTypeSize(Ty) > 32)
1623       return false;
1624 
1625     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1626         Ty->isReferenceType());
1627   }
1628 
1629   return true;
1630 }
1631 
1632 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1633                                                CCState &State) const {
1634   // FIXME: Set alignment on indirect arguments.
1635 
1636   Ty = useFirstFieldIfTransparentUnion(Ty);
1637 
1638   // Check with the C++ ABI first.
1639   const RecordType *RT = Ty->getAs<RecordType>();
1640   if (RT) {
1641     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1642     if (RAA == CGCXXABI::RAA_Indirect) {
1643       return getIndirectResult(Ty, false, State);
1644     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1645       // The field index doesn't matter, we'll fix it up later.
1646       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1647     }
1648   }
1649 
1650   // Regcall uses the concept of a homogenous vector aggregate, similar
1651   // to other targets.
1652   const Type *Base = nullptr;
1653   uint64_t NumElts = 0;
1654   if (State.CC == llvm::CallingConv::X86_RegCall &&
1655       isHomogeneousAggregate(Ty, Base, NumElts)) {
1656 
1657     if (State.FreeSSERegs >= NumElts) {
1658       State.FreeSSERegs -= NumElts;
1659       if (Ty->isBuiltinType() || Ty->isVectorType())
1660         return ABIArgInfo::getDirect();
1661       return ABIArgInfo::getExpand();
1662     }
1663     return getIndirectResult(Ty, /*ByVal=*/false, State);
1664   }
1665 
1666   if (isAggregateTypeForABI(Ty)) {
1667     // Structures with flexible arrays are always indirect.
1668     // FIXME: This should not be byval!
1669     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1670       return getIndirectResult(Ty, true, State);
1671 
1672     // Ignore empty structs/unions on non-Windows.
1673     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1674       return ABIArgInfo::getIgnore();
1675 
1676     llvm::LLVMContext &LLVMContext = getVMContext();
1677     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1678     bool NeedsPadding = false;
1679     bool InReg;
1680     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1681       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1682       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1683       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1684       if (InReg)
1685         return ABIArgInfo::getDirectInReg(Result);
1686       else
1687         return ABIArgInfo::getDirect(Result);
1688     }
1689     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1690 
1691     // Expand small (<= 128-bit) record types when we know that the stack layout
1692     // of those arguments will match the struct. This is important because the
1693     // LLVM backend isn't smart enough to remove byval, which inhibits many
1694     // optimizations.
1695     // Don't do this for the MCU if there are still free integer registers
1696     // (see X86_64 ABI for full explanation).
1697     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1698         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1699       return ABIArgInfo::getExpandWithPadding(
1700           State.CC == llvm::CallingConv::X86_FastCall ||
1701               State.CC == llvm::CallingConv::X86_VectorCall ||
1702               State.CC == llvm::CallingConv::X86_RegCall,
1703           PaddingType);
1704 
1705     return getIndirectResult(Ty, true, State);
1706   }
1707 
1708   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1709     // On Darwin, some vectors are passed in memory, we handle this by passing
1710     // it as an i8/i16/i32/i64.
1711     if (IsDarwinVectorABI) {
1712       uint64_t Size = getContext().getTypeSize(Ty);
1713       if ((Size == 8 || Size == 16 || Size == 32) ||
1714           (Size == 64 && VT->getNumElements() == 1))
1715         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1716                                                             Size));
1717     }
1718 
1719     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1720       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1721 
1722     return ABIArgInfo::getDirect();
1723   }
1724 
1725 
1726   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1727     Ty = EnumTy->getDecl()->getIntegerType();
1728 
1729   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1730 
1731   if (Ty->isPromotableIntegerType()) {
1732     if (InReg)
1733       return ABIArgInfo::getExtendInReg(Ty);
1734     return ABIArgInfo::getExtend(Ty);
1735   }
1736 
1737   if (InReg)
1738     return ABIArgInfo::getDirectInReg();
1739   return ABIArgInfo::getDirect();
1740 }
1741 
1742 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1743                                           bool &UsedInAlloca) const {
1744   // Vectorcall x86 works subtly different than in x64, so the format is
1745   // a bit different than the x64 version.  First, all vector types (not HVAs)
1746   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1747   // This differs from the x64 implementation, where the first 6 by INDEX get
1748   // registers.
1749   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1750   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1751   // first take up the remaining YMM/XMM registers. If insufficient registers
1752   // remain but an integer register (ECX/EDX) is available, it will be passed
1753   // in that, else, on the stack.
1754   for (auto &I : FI.arguments()) {
1755     // First pass do all the vector types.
1756     const Type *Base = nullptr;
1757     uint64_t NumElts = 0;
1758     const QualType& Ty = I.type;
1759     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1760         isHomogeneousAggregate(Ty, Base, NumElts)) {
1761       if (State.FreeSSERegs >= NumElts) {
1762         State.FreeSSERegs -= NumElts;
1763         I.info = ABIArgInfo::getDirect();
1764       } else {
1765         I.info = classifyArgumentType(Ty, State);
1766       }
1767       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1768     }
1769   }
1770 
1771   for (auto &I : FI.arguments()) {
1772     // Second pass, do the rest!
1773     const Type *Base = nullptr;
1774     uint64_t NumElts = 0;
1775     const QualType& Ty = I.type;
1776     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1777 
1778     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1779       // Assign true HVAs (non vector/native FP types).
1780       if (State.FreeSSERegs >= NumElts) {
1781         State.FreeSSERegs -= NumElts;
1782         I.info = getDirectX86Hva();
1783       } else {
1784         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1785       }
1786     } else if (!IsHva) {
1787       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1788       I.info = classifyArgumentType(Ty, State);
1789       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1790     }
1791   }
1792 }
1793 
1794 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1795   CCState State(FI.getCallingConvention());
1796   if (IsMCUABI)
1797     State.FreeRegs = 3;
1798   else if (State.CC == llvm::CallingConv::X86_FastCall)
1799     State.FreeRegs = 2;
1800   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1801     State.FreeRegs = 2;
1802     State.FreeSSERegs = 6;
1803   } else if (FI.getHasRegParm())
1804     State.FreeRegs = FI.getRegParm();
1805   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1806     State.FreeRegs = 5;
1807     State.FreeSSERegs = 8;
1808   } else
1809     State.FreeRegs = DefaultNumRegisterParameters;
1810 
1811   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1812     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1813   } else if (FI.getReturnInfo().isIndirect()) {
1814     // The C++ ABI is not aware of register usage, so we have to check if the
1815     // return value was sret and put it in a register ourselves if appropriate.
1816     if (State.FreeRegs) {
1817       --State.FreeRegs;  // The sret parameter consumes a register.
1818       if (!IsMCUABI)
1819         FI.getReturnInfo().setInReg(true);
1820     }
1821   }
1822 
1823   // The chain argument effectively gives us another free register.
1824   if (FI.isChainCall())
1825     ++State.FreeRegs;
1826 
1827   bool UsedInAlloca = false;
1828   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1829     computeVectorCallArgs(FI, State, UsedInAlloca);
1830   } else {
1831     // If not vectorcall, revert to normal behavior.
1832     for (auto &I : FI.arguments()) {
1833       I.info = classifyArgumentType(I.type, State);
1834       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1835     }
1836   }
1837 
1838   // If we needed to use inalloca for any argument, do a second pass and rewrite
1839   // all the memory arguments to use inalloca.
1840   if (UsedInAlloca)
1841     rewriteWithInAlloca(FI);
1842 }
1843 
1844 void
1845 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1846                                    CharUnits &StackOffset, ABIArgInfo &Info,
1847                                    QualType Type) const {
1848   // Arguments are always 4-byte-aligned.
1849   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1850 
1851   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1852   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1853   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1854   StackOffset += getContext().getTypeSizeInChars(Type);
1855 
1856   // Insert padding bytes to respect alignment.
1857   CharUnits FieldEnd = StackOffset;
1858   StackOffset = FieldEnd.alignTo(FieldAlign);
1859   if (StackOffset != FieldEnd) {
1860     CharUnits NumBytes = StackOffset - FieldEnd;
1861     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1862     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1863     FrameFields.push_back(Ty);
1864   }
1865 }
1866 
1867 static bool isArgInAlloca(const ABIArgInfo &Info) {
1868   // Leave ignored and inreg arguments alone.
1869   switch (Info.getKind()) {
1870   case ABIArgInfo::InAlloca:
1871     return true;
1872   case ABIArgInfo::Indirect:
1873     assert(Info.getIndirectByVal());
1874     return true;
1875   case ABIArgInfo::Ignore:
1876     return false;
1877   case ABIArgInfo::Direct:
1878   case ABIArgInfo::Extend:
1879     if (Info.getInReg())
1880       return false;
1881     return true;
1882   case ABIArgInfo::Expand:
1883   case ABIArgInfo::CoerceAndExpand:
1884     // These are aggregate types which are never passed in registers when
1885     // inalloca is involved.
1886     return true;
1887   }
1888   llvm_unreachable("invalid enum");
1889 }
1890 
1891 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1892   assert(IsWin32StructABI && "inalloca only supported on win32");
1893 
1894   // Build a packed struct type for all of the arguments in memory.
1895   SmallVector<llvm::Type *, 6> FrameFields;
1896 
1897   // The stack alignment is always 4.
1898   CharUnits StackAlign = CharUnits::fromQuantity(4);
1899 
1900   CharUnits StackOffset;
1901   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1902 
1903   // Put 'this' into the struct before 'sret', if necessary.
1904   bool IsThisCall =
1905       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1906   ABIArgInfo &Ret = FI.getReturnInfo();
1907   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1908       isArgInAlloca(I->info)) {
1909     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1910     ++I;
1911   }
1912 
1913   // Put the sret parameter into the inalloca struct if it's in memory.
1914   if (Ret.isIndirect() && !Ret.getInReg()) {
1915     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1916     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1917     // On Windows, the hidden sret parameter is always returned in eax.
1918     Ret.setInAllocaSRet(IsWin32StructABI);
1919   }
1920 
1921   // Skip the 'this' parameter in ecx.
1922   if (IsThisCall)
1923     ++I;
1924 
1925   // Put arguments passed in memory into the struct.
1926   for (; I != E; ++I) {
1927     if (isArgInAlloca(I->info))
1928       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1929   }
1930 
1931   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1932                                         /*isPacked=*/true),
1933                   StackAlign);
1934 }
1935 
1936 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1937                                  Address VAListAddr, QualType Ty) const {
1938 
1939   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1940 
1941   // x86-32 changes the alignment of certain arguments on the stack.
1942   //
1943   // Just messing with TypeInfo like this works because we never pass
1944   // anything indirectly.
1945   TypeInfo.second = CharUnits::fromQuantity(
1946                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1947 
1948   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1949                           TypeInfo, CharUnits::fromQuantity(4),
1950                           /*AllowHigherAlign*/ true);
1951 }
1952 
1953 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1954     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1955   assert(Triple.getArch() == llvm::Triple::x86);
1956 
1957   switch (Opts.getStructReturnConvention()) {
1958   case CodeGenOptions::SRCK_Default:
1959     break;
1960   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1961     return false;
1962   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1963     return true;
1964   }
1965 
1966   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1967     return true;
1968 
1969   switch (Triple.getOS()) {
1970   case llvm::Triple::DragonFly:
1971   case llvm::Triple::FreeBSD:
1972   case llvm::Triple::OpenBSD:
1973   case llvm::Triple::Win32:
1974     return true;
1975   default:
1976     return false;
1977   }
1978 }
1979 
1980 void X86_32TargetCodeGenInfo::setTargetAttributes(
1981     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1982   if (GV->isDeclaration())
1983     return;
1984   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1985     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1986       llvm::Function *Fn = cast<llvm::Function>(GV);
1987       Fn->addFnAttr("stackrealign");
1988     }
1989     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1990       llvm::Function *Fn = cast<llvm::Function>(GV);
1991       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1992     }
1993   }
1994 }
1995 
1996 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1997                                                CodeGen::CodeGenFunction &CGF,
1998                                                llvm::Value *Address) const {
1999   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2000 
2001   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2002 
2003   // 0-7 are the eight integer registers;  the order is different
2004   //   on Darwin (for EH), but the range is the same.
2005   // 8 is %eip.
2006   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2007 
2008   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2009     // 12-16 are st(0..4).  Not sure why we stop at 4.
2010     // These have size 16, which is sizeof(long double) on
2011     // platforms with 8-byte alignment for that type.
2012     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2013     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2014 
2015   } else {
2016     // 9 is %eflags, which doesn't get a size on Darwin for some
2017     // reason.
2018     Builder.CreateAlignedStore(
2019         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2020                                CharUnits::One());
2021 
2022     // 11-16 are st(0..5).  Not sure why we stop at 5.
2023     // These have size 12, which is sizeof(long double) on
2024     // platforms with 4-byte alignment for that type.
2025     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2026     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2027   }
2028 
2029   return false;
2030 }
2031 
2032 //===----------------------------------------------------------------------===//
2033 // X86-64 ABI Implementation
2034 //===----------------------------------------------------------------------===//
2035 
2036 
2037 namespace {
2038 /// The AVX ABI level for X86 targets.
2039 enum class X86AVXABILevel {
2040   None,
2041   AVX,
2042   AVX512
2043 };
2044 
2045 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2046 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2047   switch (AVXLevel) {
2048   case X86AVXABILevel::AVX512:
2049     return 512;
2050   case X86AVXABILevel::AVX:
2051     return 256;
2052   case X86AVXABILevel::None:
2053     return 128;
2054   }
2055   llvm_unreachable("Unknown AVXLevel");
2056 }
2057 
2058 /// X86_64ABIInfo - The X86_64 ABI information.
2059 class X86_64ABIInfo : public SwiftABIInfo {
2060   enum Class {
2061     Integer = 0,
2062     SSE,
2063     SSEUp,
2064     X87,
2065     X87Up,
2066     ComplexX87,
2067     NoClass,
2068     Memory
2069   };
2070 
2071   /// merge - Implement the X86_64 ABI merging algorithm.
2072   ///
2073   /// Merge an accumulating classification \arg Accum with a field
2074   /// classification \arg Field.
2075   ///
2076   /// \param Accum - The accumulating classification. This should
2077   /// always be either NoClass or the result of a previous merge
2078   /// call. In addition, this should never be Memory (the caller
2079   /// should just return Memory for the aggregate).
2080   static Class merge(Class Accum, Class Field);
2081 
2082   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2083   ///
2084   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2085   /// final MEMORY or SSE classes when necessary.
2086   ///
2087   /// \param AggregateSize - The size of the current aggregate in
2088   /// the classification process.
2089   ///
2090   /// \param Lo - The classification for the parts of the type
2091   /// residing in the low word of the containing object.
2092   ///
2093   /// \param Hi - The classification for the parts of the type
2094   /// residing in the higher words of the containing object.
2095   ///
2096   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2097 
2098   /// classify - Determine the x86_64 register classes in which the
2099   /// given type T should be passed.
2100   ///
2101   /// \param Lo - The classification for the parts of the type
2102   /// residing in the low word of the containing object.
2103   ///
2104   /// \param Hi - The classification for the parts of the type
2105   /// residing in the high word of the containing object.
2106   ///
2107   /// \param OffsetBase - The bit offset of this type in the
2108   /// containing object.  Some parameters are classified different
2109   /// depending on whether they straddle an eightbyte boundary.
2110   ///
2111   /// \param isNamedArg - Whether the argument in question is a "named"
2112   /// argument, as used in AMD64-ABI 3.5.7.
2113   ///
2114   /// If a word is unused its result will be NoClass; if a type should
2115   /// be passed in Memory then at least the classification of \arg Lo
2116   /// will be Memory.
2117   ///
2118   /// The \arg Lo class will be NoClass iff the argument is ignored.
2119   ///
2120   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2121   /// also be ComplexX87.
2122   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2123                 bool isNamedArg) const;
2124 
2125   llvm::Type *GetByteVectorType(QualType Ty) const;
2126   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2127                                  unsigned IROffset, QualType SourceTy,
2128                                  unsigned SourceOffset) const;
2129   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2130                                      unsigned IROffset, QualType SourceTy,
2131                                      unsigned SourceOffset) const;
2132 
2133   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2134   /// such that the argument will be returned in memory.
2135   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2136 
2137   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2138   /// such that the argument will be passed in memory.
2139   ///
2140   /// \param freeIntRegs - The number of free integer registers remaining
2141   /// available.
2142   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2143 
2144   ABIArgInfo classifyReturnType(QualType RetTy) const;
2145 
2146   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2147                                   unsigned &neededInt, unsigned &neededSSE,
2148                                   bool isNamedArg) const;
2149 
2150   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2151                                        unsigned &NeededSSE) const;
2152 
2153   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2154                                            unsigned &NeededSSE) const;
2155 
2156   bool IsIllegalVectorType(QualType Ty) const;
2157 
2158   /// The 0.98 ABI revision clarified a lot of ambiguities,
2159   /// unfortunately in ways that were not always consistent with
2160   /// certain previous compilers.  In particular, platforms which
2161   /// required strict binary compatibility with older versions of GCC
2162   /// may need to exempt themselves.
2163   bool honorsRevision0_98() const {
2164     return !getTarget().getTriple().isOSDarwin();
2165   }
2166 
2167   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2168   /// classify it as INTEGER (for compatibility with older clang compilers).
2169   bool classifyIntegerMMXAsSSE() const {
2170     // Clang <= 3.8 did not do this.
2171     if (getContext().getLangOpts().getClangABICompat() <=
2172         LangOptions::ClangABI::Ver3_8)
2173       return false;
2174 
2175     const llvm::Triple &Triple = getTarget().getTriple();
2176     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2177       return false;
2178     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2179       return false;
2180     return true;
2181   }
2182 
2183   X86AVXABILevel AVXLevel;
2184   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2185   // 64-bit hardware.
2186   bool Has64BitPointers;
2187 
2188 public:
2189   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2190       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2191       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2192   }
2193 
2194   bool isPassedUsingAVXType(QualType type) const {
2195     unsigned neededInt, neededSSE;
2196     // The freeIntRegs argument doesn't matter here.
2197     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2198                                            /*isNamedArg*/true);
2199     if (info.isDirect()) {
2200       llvm::Type *ty = info.getCoerceToType();
2201       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2202         return (vectorTy->getBitWidth() > 128);
2203     }
2204     return false;
2205   }
2206 
2207   void computeInfo(CGFunctionInfo &FI) const override;
2208 
2209   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2210                     QualType Ty) const override;
2211   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2212                       QualType Ty) const override;
2213 
2214   bool has64BitPointers() const {
2215     return Has64BitPointers;
2216   }
2217 
2218   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2219                                     bool asReturnValue) const override {
2220     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2221   }
2222   bool isSwiftErrorInRegister() const override {
2223     return true;
2224   }
2225 };
2226 
2227 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2228 class WinX86_64ABIInfo : public SwiftABIInfo {
2229 public:
2230   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2231       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2232         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2233 
2234   void computeInfo(CGFunctionInfo &FI) const override;
2235 
2236   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2237                     QualType Ty) const override;
2238 
2239   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2240     // FIXME: Assumes vectorcall is in use.
2241     return isX86VectorTypeForVectorCall(getContext(), Ty);
2242   }
2243 
2244   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2245                                          uint64_t NumMembers) const override {
2246     // FIXME: Assumes vectorcall is in use.
2247     return isX86VectorCallAggregateSmallEnough(NumMembers);
2248   }
2249 
2250   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2251                                     bool asReturnValue) const override {
2252     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2253   }
2254 
2255   bool isSwiftErrorInRegister() const override {
2256     return true;
2257   }
2258 
2259 private:
2260   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2261                       bool IsVectorCall, bool IsRegCall) const;
2262   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2263                                       const ABIArgInfo &current) const;
2264   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2265                              bool IsVectorCall, bool IsRegCall) const;
2266 
2267   X86AVXABILevel AVXLevel;
2268 
2269   bool IsMingw64;
2270 };
2271 
2272 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2273 public:
2274   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2275       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2276 
2277   const X86_64ABIInfo &getABIInfo() const {
2278     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2279   }
2280 
2281   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2282   /// the autoreleaseRV/retainRV optimization.
2283   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2284     return true;
2285   }
2286 
2287   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2288     return 7;
2289   }
2290 
2291   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2292                                llvm::Value *Address) const override {
2293     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2294 
2295     // 0-15 are the 16 integer registers.
2296     // 16 is %rip.
2297     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2298     return false;
2299   }
2300 
2301   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2302                                   StringRef Constraint,
2303                                   llvm::Type* Ty) const override {
2304     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2305   }
2306 
2307   bool isNoProtoCallVariadic(const CallArgList &args,
2308                              const FunctionNoProtoType *fnType) const override {
2309     // The default CC on x86-64 sets %al to the number of SSA
2310     // registers used, and GCC sets this when calling an unprototyped
2311     // function, so we override the default behavior.  However, don't do
2312     // that when AVX types are involved: the ABI explicitly states it is
2313     // undefined, and it doesn't work in practice because of how the ABI
2314     // defines varargs anyway.
2315     if (fnType->getCallConv() == CC_C) {
2316       bool HasAVXType = false;
2317       for (CallArgList::const_iterator
2318              it = args.begin(), ie = args.end(); it != ie; ++it) {
2319         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2320           HasAVXType = true;
2321           break;
2322         }
2323       }
2324 
2325       if (!HasAVXType)
2326         return true;
2327     }
2328 
2329     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2330   }
2331 
2332   llvm::Constant *
2333   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2334     unsigned Sig = (0xeb << 0) | // jmp rel8
2335                    (0x06 << 8) | //           .+0x08
2336                    ('v' << 16) |
2337                    ('2' << 24);
2338     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2339   }
2340 
2341   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2342                            CodeGen::CodeGenModule &CGM) const override {
2343     if (GV->isDeclaration())
2344       return;
2345     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2346       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2347         llvm::Function *Fn = cast<llvm::Function>(GV);
2348         Fn->addFnAttr("stackrealign");
2349       }
2350       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2351         llvm::Function *Fn = cast<llvm::Function>(GV);
2352         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2353       }
2354     }
2355   }
2356 };
2357 
2358 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2359   // If the argument does not end in .lib, automatically add the suffix.
2360   // If the argument contains a space, enclose it in quotes.
2361   // This matches the behavior of MSVC.
2362   bool Quote = (Lib.find(" ") != StringRef::npos);
2363   std::string ArgStr = Quote ? "\"" : "";
2364   ArgStr += Lib;
2365   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2366     ArgStr += ".lib";
2367   ArgStr += Quote ? "\"" : "";
2368   return ArgStr;
2369 }
2370 
2371 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2372 public:
2373   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2374         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2375         unsigned NumRegisterParameters)
2376     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2377         Win32StructABI, NumRegisterParameters, false) {}
2378 
2379   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2380                            CodeGen::CodeGenModule &CGM) const override;
2381 
2382   void getDependentLibraryOption(llvm::StringRef Lib,
2383                                  llvm::SmallString<24> &Opt) const override {
2384     Opt = "/DEFAULTLIB:";
2385     Opt += qualifyWindowsLibrary(Lib);
2386   }
2387 
2388   void getDetectMismatchOption(llvm::StringRef Name,
2389                                llvm::StringRef Value,
2390                                llvm::SmallString<32> &Opt) const override {
2391     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2392   }
2393 };
2394 
2395 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2396                                           CodeGen::CodeGenModule &CGM) {
2397   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2398 
2399     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2400       Fn->addFnAttr("stack-probe-size",
2401                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2402     if (CGM.getCodeGenOpts().NoStackArgProbe)
2403       Fn->addFnAttr("no-stack-arg-probe");
2404   }
2405 }
2406 
2407 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2408     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2409   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2410   if (GV->isDeclaration())
2411     return;
2412   addStackProbeTargetAttributes(D, GV, CGM);
2413 }
2414 
2415 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2416 public:
2417   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2418                              X86AVXABILevel AVXLevel)
2419       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {}
2420 
2421   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2422                            CodeGen::CodeGenModule &CGM) const override;
2423 
2424   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2425     return 7;
2426   }
2427 
2428   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2429                                llvm::Value *Address) const override {
2430     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2431 
2432     // 0-15 are the 16 integer registers.
2433     // 16 is %rip.
2434     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2435     return false;
2436   }
2437 
2438   void getDependentLibraryOption(llvm::StringRef Lib,
2439                                  llvm::SmallString<24> &Opt) const override {
2440     Opt = "/DEFAULTLIB:";
2441     Opt += qualifyWindowsLibrary(Lib);
2442   }
2443 
2444   void getDetectMismatchOption(llvm::StringRef Name,
2445                                llvm::StringRef Value,
2446                                llvm::SmallString<32> &Opt) const override {
2447     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2448   }
2449 };
2450 
2451 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2452     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2453   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2454   if (GV->isDeclaration())
2455     return;
2456   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2457     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2458       llvm::Function *Fn = cast<llvm::Function>(GV);
2459       Fn->addFnAttr("stackrealign");
2460     }
2461     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2462       llvm::Function *Fn = cast<llvm::Function>(GV);
2463       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2464     }
2465   }
2466 
2467   addStackProbeTargetAttributes(D, GV, CGM);
2468 }
2469 }
2470 
2471 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2472                               Class &Hi) const {
2473   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2474   //
2475   // (a) If one of the classes is Memory, the whole argument is passed in
2476   //     memory.
2477   //
2478   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2479   //     memory.
2480   //
2481   // (c) If the size of the aggregate exceeds two eightbytes and the first
2482   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2483   //     argument is passed in memory. NOTE: This is necessary to keep the
2484   //     ABI working for processors that don't support the __m256 type.
2485   //
2486   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2487   //
2488   // Some of these are enforced by the merging logic.  Others can arise
2489   // only with unions; for example:
2490   //   union { _Complex double; unsigned; }
2491   //
2492   // Note that clauses (b) and (c) were added in 0.98.
2493   //
2494   if (Hi == Memory)
2495     Lo = Memory;
2496   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2497     Lo = Memory;
2498   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2499     Lo = Memory;
2500   if (Hi == SSEUp && Lo != SSE)
2501     Hi = SSE;
2502 }
2503 
2504 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2505   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2506   // classified recursively so that always two fields are
2507   // considered. The resulting class is calculated according to
2508   // the classes of the fields in the eightbyte:
2509   //
2510   // (a) If both classes are equal, this is the resulting class.
2511   //
2512   // (b) If one of the classes is NO_CLASS, the resulting class is
2513   // the other class.
2514   //
2515   // (c) If one of the classes is MEMORY, the result is the MEMORY
2516   // class.
2517   //
2518   // (d) If one of the classes is INTEGER, the result is the
2519   // INTEGER.
2520   //
2521   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2522   // MEMORY is used as class.
2523   //
2524   // (f) Otherwise class SSE is used.
2525 
2526   // Accum should never be memory (we should have returned) or
2527   // ComplexX87 (because this cannot be passed in a structure).
2528   assert((Accum != Memory && Accum != ComplexX87) &&
2529          "Invalid accumulated classification during merge.");
2530   if (Accum == Field || Field == NoClass)
2531     return Accum;
2532   if (Field == Memory)
2533     return Memory;
2534   if (Accum == NoClass)
2535     return Field;
2536   if (Accum == Integer || Field == Integer)
2537     return Integer;
2538   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2539       Accum == X87 || Accum == X87Up)
2540     return Memory;
2541   return SSE;
2542 }
2543 
2544 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2545                              Class &Lo, Class &Hi, bool isNamedArg) const {
2546   // FIXME: This code can be simplified by introducing a simple value class for
2547   // Class pairs with appropriate constructor methods for the various
2548   // situations.
2549 
2550   // FIXME: Some of the split computations are wrong; unaligned vectors
2551   // shouldn't be passed in registers for example, so there is no chance they
2552   // can straddle an eightbyte. Verify & simplify.
2553 
2554   Lo = Hi = NoClass;
2555 
2556   Class &Current = OffsetBase < 64 ? Lo : Hi;
2557   Current = Memory;
2558 
2559   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2560     BuiltinType::Kind k = BT->getKind();
2561 
2562     if (k == BuiltinType::Void) {
2563       Current = NoClass;
2564     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2565       Lo = Integer;
2566       Hi = Integer;
2567     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2568       Current = Integer;
2569     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2570       Current = SSE;
2571     } else if (k == BuiltinType::LongDouble) {
2572       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2573       if (LDF == &llvm::APFloat::IEEEquad()) {
2574         Lo = SSE;
2575         Hi = SSEUp;
2576       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2577         Lo = X87;
2578         Hi = X87Up;
2579       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2580         Current = SSE;
2581       } else
2582         llvm_unreachable("unexpected long double representation!");
2583     }
2584     // FIXME: _Decimal32 and _Decimal64 are SSE.
2585     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2586     return;
2587   }
2588 
2589   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2590     // Classify the underlying integer type.
2591     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2592     return;
2593   }
2594 
2595   if (Ty->hasPointerRepresentation()) {
2596     Current = Integer;
2597     return;
2598   }
2599 
2600   if (Ty->isMemberPointerType()) {
2601     if (Ty->isMemberFunctionPointerType()) {
2602       if (Has64BitPointers) {
2603         // If Has64BitPointers, this is an {i64, i64}, so classify both
2604         // Lo and Hi now.
2605         Lo = Hi = Integer;
2606       } else {
2607         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2608         // straddles an eightbyte boundary, Hi should be classified as well.
2609         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2610         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2611         if (EB_FuncPtr != EB_ThisAdj) {
2612           Lo = Hi = Integer;
2613         } else {
2614           Current = Integer;
2615         }
2616       }
2617     } else {
2618       Current = Integer;
2619     }
2620     return;
2621   }
2622 
2623   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2624     uint64_t Size = getContext().getTypeSize(VT);
2625     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2626       // gcc passes the following as integer:
2627       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2628       // 2 bytes - <2 x char>, <1 x short>
2629       // 1 byte  - <1 x char>
2630       Current = Integer;
2631 
2632       // If this type crosses an eightbyte boundary, it should be
2633       // split.
2634       uint64_t EB_Lo = (OffsetBase) / 64;
2635       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2636       if (EB_Lo != EB_Hi)
2637         Hi = Lo;
2638     } else if (Size == 64) {
2639       QualType ElementType = VT->getElementType();
2640 
2641       // gcc passes <1 x double> in memory. :(
2642       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2643         return;
2644 
2645       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2646       // pass them as integer.  For platforms where clang is the de facto
2647       // platform compiler, we must continue to use integer.
2648       if (!classifyIntegerMMXAsSSE() &&
2649           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2650            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2651            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2652            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2653         Current = Integer;
2654       else
2655         Current = SSE;
2656 
2657       // If this type crosses an eightbyte boundary, it should be
2658       // split.
2659       if (OffsetBase && OffsetBase != 64)
2660         Hi = Lo;
2661     } else if (Size == 128 ||
2662                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2663       // Arguments of 256-bits are split into four eightbyte chunks. The
2664       // least significant one belongs to class SSE and all the others to class
2665       // SSEUP. The original Lo and Hi design considers that types can't be
2666       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2667       // This design isn't correct for 256-bits, but since there're no cases
2668       // where the upper parts would need to be inspected, avoid adding
2669       // complexity and just consider Hi to match the 64-256 part.
2670       //
2671       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2672       // registers if they are "named", i.e. not part of the "..." of a
2673       // variadic function.
2674       //
2675       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2676       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2677       Lo = SSE;
2678       Hi = SSEUp;
2679     }
2680     return;
2681   }
2682 
2683   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2684     QualType ET = getContext().getCanonicalType(CT->getElementType());
2685 
2686     uint64_t Size = getContext().getTypeSize(Ty);
2687     if (ET->isIntegralOrEnumerationType()) {
2688       if (Size <= 64)
2689         Current = Integer;
2690       else if (Size <= 128)
2691         Lo = Hi = Integer;
2692     } else if (ET == getContext().FloatTy) {
2693       Current = SSE;
2694     } else if (ET == getContext().DoubleTy) {
2695       Lo = Hi = SSE;
2696     } else if (ET == getContext().LongDoubleTy) {
2697       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2698       if (LDF == &llvm::APFloat::IEEEquad())
2699         Current = Memory;
2700       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2701         Current = ComplexX87;
2702       else if (LDF == &llvm::APFloat::IEEEdouble())
2703         Lo = Hi = SSE;
2704       else
2705         llvm_unreachable("unexpected long double representation!");
2706     }
2707 
2708     // If this complex type crosses an eightbyte boundary then it
2709     // should be split.
2710     uint64_t EB_Real = (OffsetBase) / 64;
2711     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2712     if (Hi == NoClass && EB_Real != EB_Imag)
2713       Hi = Lo;
2714 
2715     return;
2716   }
2717 
2718   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2719     // Arrays are treated like structures.
2720 
2721     uint64_t Size = getContext().getTypeSize(Ty);
2722 
2723     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2724     // than eight eightbytes, ..., it has class MEMORY.
2725     if (Size > 512)
2726       return;
2727 
2728     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2729     // fields, it has class MEMORY.
2730     //
2731     // Only need to check alignment of array base.
2732     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2733       return;
2734 
2735     // Otherwise implement simplified merge. We could be smarter about
2736     // this, but it isn't worth it and would be harder to verify.
2737     Current = NoClass;
2738     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2739     uint64_t ArraySize = AT->getSize().getZExtValue();
2740 
2741     // The only case a 256-bit wide vector could be used is when the array
2742     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2743     // to work for sizes wider than 128, early check and fallback to memory.
2744     //
2745     if (Size > 128 &&
2746         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2747       return;
2748 
2749     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2750       Class FieldLo, FieldHi;
2751       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2752       Lo = merge(Lo, FieldLo);
2753       Hi = merge(Hi, FieldHi);
2754       if (Lo == Memory || Hi == Memory)
2755         break;
2756     }
2757 
2758     postMerge(Size, Lo, Hi);
2759     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2760     return;
2761   }
2762 
2763   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2764     uint64_t Size = getContext().getTypeSize(Ty);
2765 
2766     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2767     // than eight eightbytes, ..., it has class MEMORY.
2768     if (Size > 512)
2769       return;
2770 
2771     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2772     // copy constructor or a non-trivial destructor, it is passed by invisible
2773     // reference.
2774     if (getRecordArgABI(RT, getCXXABI()))
2775       return;
2776 
2777     const RecordDecl *RD = RT->getDecl();
2778 
2779     // Assume variable sized types are passed in memory.
2780     if (RD->hasFlexibleArrayMember())
2781       return;
2782 
2783     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2784 
2785     // Reset Lo class, this will be recomputed.
2786     Current = NoClass;
2787 
2788     // If this is a C++ record, classify the bases first.
2789     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2790       for (const auto &I : CXXRD->bases()) {
2791         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2792                "Unexpected base class!");
2793         const CXXRecordDecl *Base =
2794           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2795 
2796         // Classify this field.
2797         //
2798         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2799         // single eightbyte, each is classified separately. Each eightbyte gets
2800         // initialized to class NO_CLASS.
2801         Class FieldLo, FieldHi;
2802         uint64_t Offset =
2803           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2804         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2805         Lo = merge(Lo, FieldLo);
2806         Hi = merge(Hi, FieldHi);
2807         if (Lo == Memory || Hi == Memory) {
2808           postMerge(Size, Lo, Hi);
2809           return;
2810         }
2811       }
2812     }
2813 
2814     // Classify the fields one at a time, merging the results.
2815     unsigned idx = 0;
2816     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2817            i != e; ++i, ++idx) {
2818       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2819       bool BitField = i->isBitField();
2820 
2821       // Ignore padding bit-fields.
2822       if (BitField && i->isUnnamedBitfield())
2823         continue;
2824 
2825       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2826       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2827       //
2828       // The only case a 256-bit wide vector could be used is when the struct
2829       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2830       // to work for sizes wider than 128, early check and fallback to memory.
2831       //
2832       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2833                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2834         Lo = Memory;
2835         postMerge(Size, Lo, Hi);
2836         return;
2837       }
2838       // Note, skip this test for bit-fields, see below.
2839       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2840         Lo = Memory;
2841         postMerge(Size, Lo, Hi);
2842         return;
2843       }
2844 
2845       // Classify this field.
2846       //
2847       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2848       // exceeds a single eightbyte, each is classified
2849       // separately. Each eightbyte gets initialized to class
2850       // NO_CLASS.
2851       Class FieldLo, FieldHi;
2852 
2853       // Bit-fields require special handling, they do not force the
2854       // structure to be passed in memory even if unaligned, and
2855       // therefore they can straddle an eightbyte.
2856       if (BitField) {
2857         assert(!i->isUnnamedBitfield());
2858         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2859         uint64_t Size = i->getBitWidthValue(getContext());
2860 
2861         uint64_t EB_Lo = Offset / 64;
2862         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2863 
2864         if (EB_Lo) {
2865           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2866           FieldLo = NoClass;
2867           FieldHi = Integer;
2868         } else {
2869           FieldLo = Integer;
2870           FieldHi = EB_Hi ? Integer : NoClass;
2871         }
2872       } else
2873         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2874       Lo = merge(Lo, FieldLo);
2875       Hi = merge(Hi, FieldHi);
2876       if (Lo == Memory || Hi == Memory)
2877         break;
2878     }
2879 
2880     postMerge(Size, Lo, Hi);
2881   }
2882 }
2883 
2884 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2885   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2886   // place naturally.
2887   if (!isAggregateTypeForABI(Ty)) {
2888     // Treat an enum type as its underlying type.
2889     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2890       Ty = EnumTy->getDecl()->getIntegerType();
2891 
2892     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2893                                           : ABIArgInfo::getDirect());
2894   }
2895 
2896   return getNaturalAlignIndirect(Ty);
2897 }
2898 
2899 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2900   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2901     uint64_t Size = getContext().getTypeSize(VecTy);
2902     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2903     if (Size <= 64 || Size > LargestVector)
2904       return true;
2905   }
2906 
2907   return false;
2908 }
2909 
2910 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2911                                             unsigned freeIntRegs) const {
2912   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2913   // place naturally.
2914   //
2915   // This assumption is optimistic, as there could be free registers available
2916   // when we need to pass this argument in memory, and LLVM could try to pass
2917   // the argument in the free register. This does not seem to happen currently,
2918   // but this code would be much safer if we could mark the argument with
2919   // 'onstack'. See PR12193.
2920   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2921     // Treat an enum type as its underlying type.
2922     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2923       Ty = EnumTy->getDecl()->getIntegerType();
2924 
2925     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2926                                           : ABIArgInfo::getDirect());
2927   }
2928 
2929   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2930     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2931 
2932   // Compute the byval alignment. We specify the alignment of the byval in all
2933   // cases so that the mid-level optimizer knows the alignment of the byval.
2934   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2935 
2936   // Attempt to avoid passing indirect results using byval when possible. This
2937   // is important for good codegen.
2938   //
2939   // We do this by coercing the value into a scalar type which the backend can
2940   // handle naturally (i.e., without using byval).
2941   //
2942   // For simplicity, we currently only do this when we have exhausted all of the
2943   // free integer registers. Doing this when there are free integer registers
2944   // would require more care, as we would have to ensure that the coerced value
2945   // did not claim the unused register. That would require either reording the
2946   // arguments to the function (so that any subsequent inreg values came first),
2947   // or only doing this optimization when there were no following arguments that
2948   // might be inreg.
2949   //
2950   // We currently expect it to be rare (particularly in well written code) for
2951   // arguments to be passed on the stack when there are still free integer
2952   // registers available (this would typically imply large structs being passed
2953   // by value), so this seems like a fair tradeoff for now.
2954   //
2955   // We can revisit this if the backend grows support for 'onstack' parameter
2956   // attributes. See PR12193.
2957   if (freeIntRegs == 0) {
2958     uint64_t Size = getContext().getTypeSize(Ty);
2959 
2960     // If this type fits in an eightbyte, coerce it into the matching integral
2961     // type, which will end up on the stack (with alignment 8).
2962     if (Align == 8 && Size <= 64)
2963       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2964                                                           Size));
2965   }
2966 
2967   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2968 }
2969 
2970 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2971 /// register. Pick an LLVM IR type that will be passed as a vector register.
2972 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2973   // Wrapper structs/arrays that only contain vectors are passed just like
2974   // vectors; strip them off if present.
2975   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2976     Ty = QualType(InnerTy, 0);
2977 
2978   llvm::Type *IRType = CGT.ConvertType(Ty);
2979   if (isa<llvm::VectorType>(IRType) ||
2980       IRType->getTypeID() == llvm::Type::FP128TyID)
2981     return IRType;
2982 
2983   // We couldn't find the preferred IR vector type for 'Ty'.
2984   uint64_t Size = getContext().getTypeSize(Ty);
2985   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2986 
2987   // Return a LLVM IR vector type based on the size of 'Ty'.
2988   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2989                                Size / 64);
2990 }
2991 
2992 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2993 /// is known to either be off the end of the specified type or being in
2994 /// alignment padding.  The user type specified is known to be at most 128 bits
2995 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2996 /// classification that put one of the two halves in the INTEGER class.
2997 ///
2998 /// It is conservatively correct to return false.
2999 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3000                                   unsigned EndBit, ASTContext &Context) {
3001   // If the bytes being queried are off the end of the type, there is no user
3002   // data hiding here.  This handles analysis of builtins, vectors and other
3003   // types that don't contain interesting padding.
3004   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3005   if (TySize <= StartBit)
3006     return true;
3007 
3008   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3009     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3010     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3011 
3012     // Check each element to see if the element overlaps with the queried range.
3013     for (unsigned i = 0; i != NumElts; ++i) {
3014       // If the element is after the span we care about, then we're done..
3015       unsigned EltOffset = i*EltSize;
3016       if (EltOffset >= EndBit) break;
3017 
3018       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3019       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3020                                  EndBit-EltOffset, Context))
3021         return false;
3022     }
3023     // If it overlaps no elements, then it is safe to process as padding.
3024     return true;
3025   }
3026 
3027   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3028     const RecordDecl *RD = RT->getDecl();
3029     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3030 
3031     // If this is a C++ record, check the bases first.
3032     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3033       for (const auto &I : CXXRD->bases()) {
3034         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3035                "Unexpected base class!");
3036         const CXXRecordDecl *Base =
3037           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3038 
3039         // If the base is after the span we care about, ignore it.
3040         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3041         if (BaseOffset >= EndBit) continue;
3042 
3043         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3044         if (!BitsContainNoUserData(I.getType(), BaseStart,
3045                                    EndBit-BaseOffset, Context))
3046           return false;
3047       }
3048     }
3049 
3050     // Verify that no field has data that overlaps the region of interest.  Yes
3051     // this could be sped up a lot by being smarter about queried fields,
3052     // however we're only looking at structs up to 16 bytes, so we don't care
3053     // much.
3054     unsigned idx = 0;
3055     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3056          i != e; ++i, ++idx) {
3057       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3058 
3059       // If we found a field after the region we care about, then we're done.
3060       if (FieldOffset >= EndBit) break;
3061 
3062       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3063       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3064                                  Context))
3065         return false;
3066     }
3067 
3068     // If nothing in this record overlapped the area of interest, then we're
3069     // clean.
3070     return true;
3071   }
3072 
3073   return false;
3074 }
3075 
3076 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3077 /// float member at the specified offset.  For example, {int,{float}} has a
3078 /// float at offset 4.  It is conservatively correct for this routine to return
3079 /// false.
3080 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3081                                   const llvm::DataLayout &TD) {
3082   // Base case if we find a float.
3083   if (IROffset == 0 && IRType->isFloatTy())
3084     return true;
3085 
3086   // If this is a struct, recurse into the field at the specified offset.
3087   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3088     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3089     unsigned Elt = SL->getElementContainingOffset(IROffset);
3090     IROffset -= SL->getElementOffset(Elt);
3091     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3092   }
3093 
3094   // If this is an array, recurse into the field at the specified offset.
3095   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3096     llvm::Type *EltTy = ATy->getElementType();
3097     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3098     IROffset -= IROffset/EltSize*EltSize;
3099     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3100   }
3101 
3102   return false;
3103 }
3104 
3105 
3106 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3107 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3108 llvm::Type *X86_64ABIInfo::
3109 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3110                    QualType SourceTy, unsigned SourceOffset) const {
3111   // The only three choices we have are either double, <2 x float>, or float. We
3112   // pass as float if the last 4 bytes is just padding.  This happens for
3113   // structs that contain 3 floats.
3114   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3115                             SourceOffset*8+64, getContext()))
3116     return llvm::Type::getFloatTy(getVMContext());
3117 
3118   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3119   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3120   // case.
3121   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3122       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3123     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3124 
3125   return llvm::Type::getDoubleTy(getVMContext());
3126 }
3127 
3128 
3129 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3130 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3131 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3132 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3133 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3134 /// etc).
3135 ///
3136 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3137 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3138 /// the 8-byte value references.  PrefType may be null.
3139 ///
3140 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3141 /// an offset into this that we're processing (which is always either 0 or 8).
3142 ///
3143 llvm::Type *X86_64ABIInfo::
3144 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3145                        QualType SourceTy, unsigned SourceOffset) const {
3146   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3147   // returning an 8-byte unit starting with it.  See if we can safely use it.
3148   if (IROffset == 0) {
3149     // Pointers and int64's always fill the 8-byte unit.
3150     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3151         IRType->isIntegerTy(64))
3152       return IRType;
3153 
3154     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3155     // goodness in the source type is just tail padding.  This is allowed to
3156     // kick in for struct {double,int} on the int, but not on
3157     // struct{double,int,int} because we wouldn't return the second int.  We
3158     // have to do this analysis on the source type because we can't depend on
3159     // unions being lowered a specific way etc.
3160     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3161         IRType->isIntegerTy(32) ||
3162         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3163       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3164           cast<llvm::IntegerType>(IRType)->getBitWidth();
3165 
3166       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3167                                 SourceOffset*8+64, getContext()))
3168         return IRType;
3169     }
3170   }
3171 
3172   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3173     // If this is a struct, recurse into the field at the specified offset.
3174     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3175     if (IROffset < SL->getSizeInBytes()) {
3176       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3177       IROffset -= SL->getElementOffset(FieldIdx);
3178 
3179       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3180                                     SourceTy, SourceOffset);
3181     }
3182   }
3183 
3184   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3185     llvm::Type *EltTy = ATy->getElementType();
3186     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3187     unsigned EltOffset = IROffset/EltSize*EltSize;
3188     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3189                                   SourceOffset);
3190   }
3191 
3192   // Okay, we don't have any better idea of what to pass, so we pass this in an
3193   // integer register that isn't too big to fit the rest of the struct.
3194   unsigned TySizeInBytes =
3195     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3196 
3197   assert(TySizeInBytes != SourceOffset && "Empty field?");
3198 
3199   // It is always safe to classify this as an integer type up to i64 that
3200   // isn't larger than the structure.
3201   return llvm::IntegerType::get(getVMContext(),
3202                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3203 }
3204 
3205 
3206 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3207 /// be used as elements of a two register pair to pass or return, return a
3208 /// first class aggregate to represent them.  For example, if the low part of
3209 /// a by-value argument should be passed as i32* and the high part as float,
3210 /// return {i32*, float}.
3211 static llvm::Type *
3212 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3213                            const llvm::DataLayout &TD) {
3214   // In order to correctly satisfy the ABI, we need to the high part to start
3215   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3216   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3217   // the second element at offset 8.  Check for this:
3218   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3219   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3220   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3221   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3222 
3223   // To handle this, we have to increase the size of the low part so that the
3224   // second element will start at an 8 byte offset.  We can't increase the size
3225   // of the second element because it might make us access off the end of the
3226   // struct.
3227   if (HiStart != 8) {
3228     // There are usually two sorts of types the ABI generation code can produce
3229     // for the low part of a pair that aren't 8 bytes in size: float or
3230     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3231     // NaCl).
3232     // Promote these to a larger type.
3233     if (Lo->isFloatTy())
3234       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3235     else {
3236       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3237              && "Invalid/unknown lo type");
3238       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3239     }
3240   }
3241 
3242   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3243 
3244   // Verify that the second element is at an 8-byte offset.
3245   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3246          "Invalid x86-64 argument pair!");
3247   return Result;
3248 }
3249 
3250 ABIArgInfo X86_64ABIInfo::
3251 classifyReturnType(QualType RetTy) const {
3252   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3253   // classification algorithm.
3254   X86_64ABIInfo::Class Lo, Hi;
3255   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3256 
3257   // Check some invariants.
3258   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3259   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3260 
3261   llvm::Type *ResType = nullptr;
3262   switch (Lo) {
3263   case NoClass:
3264     if (Hi == NoClass)
3265       return ABIArgInfo::getIgnore();
3266     // If the low part is just padding, it takes no register, leave ResType
3267     // null.
3268     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3269            "Unknown missing lo part");
3270     break;
3271 
3272   case SSEUp:
3273   case X87Up:
3274     llvm_unreachable("Invalid classification for lo word.");
3275 
3276     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3277     // hidden argument.
3278   case Memory:
3279     return getIndirectReturnResult(RetTy);
3280 
3281     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3282     // available register of the sequence %rax, %rdx is used.
3283   case Integer:
3284     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3285 
3286     // If we have a sign or zero extended integer, make sure to return Extend
3287     // so that the parameter gets the right LLVM IR attributes.
3288     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3289       // Treat an enum type as its underlying type.
3290       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3291         RetTy = EnumTy->getDecl()->getIntegerType();
3292 
3293       if (RetTy->isIntegralOrEnumerationType() &&
3294           RetTy->isPromotableIntegerType())
3295         return ABIArgInfo::getExtend(RetTy);
3296     }
3297     break;
3298 
3299     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3300     // available SSE register of the sequence %xmm0, %xmm1 is used.
3301   case SSE:
3302     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3303     break;
3304 
3305     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3306     // returned on the X87 stack in %st0 as 80-bit x87 number.
3307   case X87:
3308     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3309     break;
3310 
3311     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3312     // part of the value is returned in %st0 and the imaginary part in
3313     // %st1.
3314   case ComplexX87:
3315     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3316     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3317                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3318     break;
3319   }
3320 
3321   llvm::Type *HighPart = nullptr;
3322   switch (Hi) {
3323     // Memory was handled previously and X87 should
3324     // never occur as a hi class.
3325   case Memory:
3326   case X87:
3327     llvm_unreachable("Invalid classification for hi word.");
3328 
3329   case ComplexX87: // Previously handled.
3330   case NoClass:
3331     break;
3332 
3333   case Integer:
3334     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3335     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3336       return ABIArgInfo::getDirect(HighPart, 8);
3337     break;
3338   case SSE:
3339     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3340     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3341       return ABIArgInfo::getDirect(HighPart, 8);
3342     break;
3343 
3344     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3345     // is passed in the next available eightbyte chunk if the last used
3346     // vector register.
3347     //
3348     // SSEUP should always be preceded by SSE, just widen.
3349   case SSEUp:
3350     assert(Lo == SSE && "Unexpected SSEUp classification.");
3351     ResType = GetByteVectorType(RetTy);
3352     break;
3353 
3354     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3355     // returned together with the previous X87 value in %st0.
3356   case X87Up:
3357     // If X87Up is preceded by X87, we don't need to do
3358     // anything. However, in some cases with unions it may not be
3359     // preceded by X87. In such situations we follow gcc and pass the
3360     // extra bits in an SSE reg.
3361     if (Lo != X87) {
3362       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3363       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3364         return ABIArgInfo::getDirect(HighPart, 8);
3365     }
3366     break;
3367   }
3368 
3369   // If a high part was specified, merge it together with the low part.  It is
3370   // known to pass in the high eightbyte of the result.  We do this by forming a
3371   // first class struct aggregate with the high and low part: {low, high}
3372   if (HighPart)
3373     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3374 
3375   return ABIArgInfo::getDirect(ResType);
3376 }
3377 
3378 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3379   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3380   bool isNamedArg)
3381   const
3382 {
3383   Ty = useFirstFieldIfTransparentUnion(Ty);
3384 
3385   X86_64ABIInfo::Class Lo, Hi;
3386   classify(Ty, 0, Lo, Hi, isNamedArg);
3387 
3388   // Check some invariants.
3389   // FIXME: Enforce these by construction.
3390   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3391   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3392 
3393   neededInt = 0;
3394   neededSSE = 0;
3395   llvm::Type *ResType = nullptr;
3396   switch (Lo) {
3397   case NoClass:
3398     if (Hi == NoClass)
3399       return ABIArgInfo::getIgnore();
3400     // If the low part is just padding, it takes no register, leave ResType
3401     // null.
3402     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3403            "Unknown missing lo part");
3404     break;
3405 
3406     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3407     // on the stack.
3408   case Memory:
3409 
3410     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3411     // COMPLEX_X87, it is passed in memory.
3412   case X87:
3413   case ComplexX87:
3414     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3415       ++neededInt;
3416     return getIndirectResult(Ty, freeIntRegs);
3417 
3418   case SSEUp:
3419   case X87Up:
3420     llvm_unreachable("Invalid classification for lo word.");
3421 
3422     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3423     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3424     // and %r9 is used.
3425   case Integer:
3426     ++neededInt;
3427 
3428     // Pick an 8-byte type based on the preferred type.
3429     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3430 
3431     // If we have a sign or zero extended integer, make sure to return Extend
3432     // so that the parameter gets the right LLVM IR attributes.
3433     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3434       // Treat an enum type as its underlying type.
3435       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3436         Ty = EnumTy->getDecl()->getIntegerType();
3437 
3438       if (Ty->isIntegralOrEnumerationType() &&
3439           Ty->isPromotableIntegerType())
3440         return ABIArgInfo::getExtend(Ty);
3441     }
3442 
3443     break;
3444 
3445     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3446     // available SSE register is used, the registers are taken in the
3447     // order from %xmm0 to %xmm7.
3448   case SSE: {
3449     llvm::Type *IRType = CGT.ConvertType(Ty);
3450     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3451     ++neededSSE;
3452     break;
3453   }
3454   }
3455 
3456   llvm::Type *HighPart = nullptr;
3457   switch (Hi) {
3458     // Memory was handled previously, ComplexX87 and X87 should
3459     // never occur as hi classes, and X87Up must be preceded by X87,
3460     // which is passed in memory.
3461   case Memory:
3462   case X87:
3463   case ComplexX87:
3464     llvm_unreachable("Invalid classification for hi word.");
3465 
3466   case NoClass: break;
3467 
3468   case Integer:
3469     ++neededInt;
3470     // Pick an 8-byte type based on the preferred type.
3471     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3472 
3473     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3474       return ABIArgInfo::getDirect(HighPart, 8);
3475     break;
3476 
3477     // X87Up generally doesn't occur here (long double is passed in
3478     // memory), except in situations involving unions.
3479   case X87Up:
3480   case SSE:
3481     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3482 
3483     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3484       return ABIArgInfo::getDirect(HighPart, 8);
3485 
3486     ++neededSSE;
3487     break;
3488 
3489     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3490     // eightbyte is passed in the upper half of the last used SSE
3491     // register.  This only happens when 128-bit vectors are passed.
3492   case SSEUp:
3493     assert(Lo == SSE && "Unexpected SSEUp classification");
3494     ResType = GetByteVectorType(Ty);
3495     break;
3496   }
3497 
3498   // If a high part was specified, merge it together with the low part.  It is
3499   // known to pass in the high eightbyte of the result.  We do this by forming a
3500   // first class struct aggregate with the high and low part: {low, high}
3501   if (HighPart)
3502     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3503 
3504   return ABIArgInfo::getDirect(ResType);
3505 }
3506 
3507 ABIArgInfo
3508 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3509                                              unsigned &NeededSSE) const {
3510   auto RT = Ty->getAs<RecordType>();
3511   assert(RT && "classifyRegCallStructType only valid with struct types");
3512 
3513   if (RT->getDecl()->hasFlexibleArrayMember())
3514     return getIndirectReturnResult(Ty);
3515 
3516   // Sum up bases
3517   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3518     if (CXXRD->isDynamicClass()) {
3519       NeededInt = NeededSSE = 0;
3520       return getIndirectReturnResult(Ty);
3521     }
3522 
3523     for (const auto &I : CXXRD->bases())
3524       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3525               .isIndirect()) {
3526         NeededInt = NeededSSE = 0;
3527         return getIndirectReturnResult(Ty);
3528       }
3529   }
3530 
3531   // Sum up members
3532   for (const auto *FD : RT->getDecl()->fields()) {
3533     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3534       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3535               .isIndirect()) {
3536         NeededInt = NeededSSE = 0;
3537         return getIndirectReturnResult(Ty);
3538       }
3539     } else {
3540       unsigned LocalNeededInt, LocalNeededSSE;
3541       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3542                                LocalNeededSSE, true)
3543               .isIndirect()) {
3544         NeededInt = NeededSSE = 0;
3545         return getIndirectReturnResult(Ty);
3546       }
3547       NeededInt += LocalNeededInt;
3548       NeededSSE += LocalNeededSSE;
3549     }
3550   }
3551 
3552   return ABIArgInfo::getDirect();
3553 }
3554 
3555 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3556                                                     unsigned &NeededInt,
3557                                                     unsigned &NeededSSE) const {
3558 
3559   NeededInt = 0;
3560   NeededSSE = 0;
3561 
3562   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3563 }
3564 
3565 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3566 
3567   const unsigned CallingConv = FI.getCallingConvention();
3568   // It is possible to force Win64 calling convention on any x86_64 target by
3569   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3570   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3571   if (CallingConv == llvm::CallingConv::Win64) {
3572     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3573     Win64ABIInfo.computeInfo(FI);
3574     return;
3575   }
3576 
3577   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3578 
3579   // Keep track of the number of assigned registers.
3580   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3581   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3582   unsigned NeededInt, NeededSSE;
3583 
3584   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3585     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3586         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3587       FI.getReturnInfo() =
3588           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3589       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3590         FreeIntRegs -= NeededInt;
3591         FreeSSERegs -= NeededSSE;
3592       } else {
3593         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3594       }
3595     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3596       // Complex Long Double Type is passed in Memory when Regcall
3597       // calling convention is used.
3598       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3599       if (getContext().getCanonicalType(CT->getElementType()) ==
3600           getContext().LongDoubleTy)
3601         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3602     } else
3603       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3604   }
3605 
3606   // If the return value is indirect, then the hidden argument is consuming one
3607   // integer register.
3608   if (FI.getReturnInfo().isIndirect())
3609     --FreeIntRegs;
3610 
3611   // The chain argument effectively gives us another free register.
3612   if (FI.isChainCall())
3613     ++FreeIntRegs;
3614 
3615   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3616   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3617   // get assigned (in left-to-right order) for passing as follows...
3618   unsigned ArgNo = 0;
3619   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3620        it != ie; ++it, ++ArgNo) {
3621     bool IsNamedArg = ArgNo < NumRequiredArgs;
3622 
3623     if (IsRegCall && it->type->isStructureOrClassType())
3624       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3625     else
3626       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3627                                       NeededSSE, IsNamedArg);
3628 
3629     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3630     // eightbyte of an argument, the whole argument is passed on the
3631     // stack. If registers have already been assigned for some
3632     // eightbytes of such an argument, the assignments get reverted.
3633     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3634       FreeIntRegs -= NeededInt;
3635       FreeSSERegs -= NeededSSE;
3636     } else {
3637       it->info = getIndirectResult(it->type, FreeIntRegs);
3638     }
3639   }
3640 }
3641 
3642 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3643                                          Address VAListAddr, QualType Ty) {
3644   Address overflow_arg_area_p =
3645       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3646   llvm::Value *overflow_arg_area =
3647     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3648 
3649   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3650   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3651   // It isn't stated explicitly in the standard, but in practice we use
3652   // alignment greater than 16 where necessary.
3653   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3654   if (Align > CharUnits::fromQuantity(8)) {
3655     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3656                                                       Align);
3657   }
3658 
3659   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3660   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3661   llvm::Value *Res =
3662     CGF.Builder.CreateBitCast(overflow_arg_area,
3663                               llvm::PointerType::getUnqual(LTy));
3664 
3665   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3666   // l->overflow_arg_area + sizeof(type).
3667   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3668   // an 8 byte boundary.
3669 
3670   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3671   llvm::Value *Offset =
3672       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3673   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3674                                             "overflow_arg_area.next");
3675   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3676 
3677   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3678   return Address(Res, Align);
3679 }
3680 
3681 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3682                                  QualType Ty) const {
3683   // Assume that va_list type is correct; should be pointer to LLVM type:
3684   // struct {
3685   //   i32 gp_offset;
3686   //   i32 fp_offset;
3687   //   i8* overflow_arg_area;
3688   //   i8* reg_save_area;
3689   // };
3690   unsigned neededInt, neededSSE;
3691 
3692   Ty = getContext().getCanonicalType(Ty);
3693   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3694                                        /*isNamedArg*/false);
3695 
3696   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3697   // in the registers. If not go to step 7.
3698   if (!neededInt && !neededSSE)
3699     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3700 
3701   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3702   // general purpose registers needed to pass type and num_fp to hold
3703   // the number of floating point registers needed.
3704 
3705   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3706   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3707   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3708   //
3709   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3710   // register save space).
3711 
3712   llvm::Value *InRegs = nullptr;
3713   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3714   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3715   if (neededInt) {
3716     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3717     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3718     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3719     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3720   }
3721 
3722   if (neededSSE) {
3723     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3724     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3725     llvm::Value *FitsInFP =
3726       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3727     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3728     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3729   }
3730 
3731   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3732   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3733   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3734   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3735 
3736   // Emit code to load the value if it was passed in registers.
3737 
3738   CGF.EmitBlock(InRegBlock);
3739 
3740   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3741   // an offset of l->gp_offset and/or l->fp_offset. This may require
3742   // copying to a temporary location in case the parameter is passed
3743   // in different register classes or requires an alignment greater
3744   // than 8 for general purpose registers and 16 for XMM registers.
3745   //
3746   // FIXME: This really results in shameful code when we end up needing to
3747   // collect arguments from different places; often what should result in a
3748   // simple assembling of a structure from scattered addresses has many more
3749   // loads than necessary. Can we clean this up?
3750   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3751   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3752       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3753 
3754   Address RegAddr = Address::invalid();
3755   if (neededInt && neededSSE) {
3756     // FIXME: Cleanup.
3757     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3758     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3759     Address Tmp = CGF.CreateMemTemp(Ty);
3760     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3761     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3762     llvm::Type *TyLo = ST->getElementType(0);
3763     llvm::Type *TyHi = ST->getElementType(1);
3764     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3765            "Unexpected ABI info for mixed regs");
3766     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3767     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3768     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3769     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3770     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3771     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3772 
3773     // Copy the first element.
3774     // FIXME: Our choice of alignment here and below is probably pessimistic.
3775     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3776         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3777         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3778     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3779 
3780     // Copy the second element.
3781     V = CGF.Builder.CreateAlignedLoad(
3782         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3783         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3784     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3785 
3786     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3787   } else if (neededInt) {
3788     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3789                       CharUnits::fromQuantity(8));
3790     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3791 
3792     // Copy to a temporary if necessary to ensure the appropriate alignment.
3793     std::pair<CharUnits, CharUnits> SizeAlign =
3794         getContext().getTypeInfoInChars(Ty);
3795     uint64_t TySize = SizeAlign.first.getQuantity();
3796     CharUnits TyAlign = SizeAlign.second;
3797 
3798     // Copy into a temporary if the type is more aligned than the
3799     // register save area.
3800     if (TyAlign.getQuantity() > 8) {
3801       Address Tmp = CGF.CreateMemTemp(Ty);
3802       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3803       RegAddr = Tmp;
3804     }
3805 
3806   } else if (neededSSE == 1) {
3807     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3808                       CharUnits::fromQuantity(16));
3809     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3810   } else {
3811     assert(neededSSE == 2 && "Invalid number of needed registers!");
3812     // SSE registers are spaced 16 bytes apart in the register save
3813     // area, we need to collect the two eightbytes together.
3814     // The ABI isn't explicit about this, but it seems reasonable
3815     // to assume that the slots are 16-byte aligned, since the stack is
3816     // naturally 16-byte aligned and the prologue is expected to store
3817     // all the SSE registers to the RSA.
3818     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3819                                 CharUnits::fromQuantity(16));
3820     Address RegAddrHi =
3821       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3822                                              CharUnits::fromQuantity(16));
3823     llvm::Type *ST = AI.canHaveCoerceToType()
3824                          ? AI.getCoerceToType()
3825                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3826     llvm::Value *V;
3827     Address Tmp = CGF.CreateMemTemp(Ty);
3828     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3829     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3830         RegAddrLo, ST->getStructElementType(0)));
3831     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3832     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3833         RegAddrHi, ST->getStructElementType(1)));
3834     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3835 
3836     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3837   }
3838 
3839   // AMD64-ABI 3.5.7p5: Step 5. Set:
3840   // l->gp_offset = l->gp_offset + num_gp * 8
3841   // l->fp_offset = l->fp_offset + num_fp * 16.
3842   if (neededInt) {
3843     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3844     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3845                             gp_offset_p);
3846   }
3847   if (neededSSE) {
3848     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3849     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3850                             fp_offset_p);
3851   }
3852   CGF.EmitBranch(ContBlock);
3853 
3854   // Emit code to load the value if it was passed in memory.
3855 
3856   CGF.EmitBlock(InMemBlock);
3857   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3858 
3859   // Return the appropriate result.
3860 
3861   CGF.EmitBlock(ContBlock);
3862   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3863                                  "vaarg.addr");
3864   return ResAddr;
3865 }
3866 
3867 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3868                                    QualType Ty) const {
3869   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3870                           CGF.getContext().getTypeInfoInChars(Ty),
3871                           CharUnits::fromQuantity(8),
3872                           /*allowHigherAlign*/ false);
3873 }
3874 
3875 ABIArgInfo
3876 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3877                                     const ABIArgInfo &current) const {
3878   // Assumes vectorCall calling convention.
3879   const Type *Base = nullptr;
3880   uint64_t NumElts = 0;
3881 
3882   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3883       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3884     FreeSSERegs -= NumElts;
3885     return getDirectX86Hva();
3886   }
3887   return current;
3888 }
3889 
3890 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3891                                       bool IsReturnType, bool IsVectorCall,
3892                                       bool IsRegCall) const {
3893 
3894   if (Ty->isVoidType())
3895     return ABIArgInfo::getIgnore();
3896 
3897   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3898     Ty = EnumTy->getDecl()->getIntegerType();
3899 
3900   TypeInfo Info = getContext().getTypeInfo(Ty);
3901   uint64_t Width = Info.Width;
3902   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3903 
3904   const RecordType *RT = Ty->getAs<RecordType>();
3905   if (RT) {
3906     if (!IsReturnType) {
3907       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3908         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3909     }
3910 
3911     if (RT->getDecl()->hasFlexibleArrayMember())
3912       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3913 
3914   }
3915 
3916   const Type *Base = nullptr;
3917   uint64_t NumElts = 0;
3918   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3919   // other targets.
3920   if ((IsVectorCall || IsRegCall) &&
3921       isHomogeneousAggregate(Ty, Base, NumElts)) {
3922     if (IsRegCall) {
3923       if (FreeSSERegs >= NumElts) {
3924         FreeSSERegs -= NumElts;
3925         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3926           return ABIArgInfo::getDirect();
3927         return ABIArgInfo::getExpand();
3928       }
3929       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3930     } else if (IsVectorCall) {
3931       if (FreeSSERegs >= NumElts &&
3932           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3933         FreeSSERegs -= NumElts;
3934         return ABIArgInfo::getDirect();
3935       } else if (IsReturnType) {
3936         return ABIArgInfo::getExpand();
3937       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3938         // HVAs are delayed and reclassified in the 2nd step.
3939         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3940       }
3941     }
3942   }
3943 
3944   if (Ty->isMemberPointerType()) {
3945     // If the member pointer is represented by an LLVM int or ptr, pass it
3946     // directly.
3947     llvm::Type *LLTy = CGT.ConvertType(Ty);
3948     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3949       return ABIArgInfo::getDirect();
3950   }
3951 
3952   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3953     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3954     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3955     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3956       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3957 
3958     // Otherwise, coerce it to a small integer.
3959     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3960   }
3961 
3962   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3963     switch (BT->getKind()) {
3964     case BuiltinType::Bool:
3965       // Bool type is always extended to the ABI, other builtin types are not
3966       // extended.
3967       return ABIArgInfo::getExtend(Ty);
3968 
3969     case BuiltinType::LongDouble:
3970       // Mingw64 GCC uses the old 80 bit extended precision floating point
3971       // unit. It passes them indirectly through memory.
3972       if (IsMingw64) {
3973         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3974         if (LDF == &llvm::APFloat::x87DoubleExtended())
3975           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3976       }
3977       break;
3978 
3979     case BuiltinType::Int128:
3980     case BuiltinType::UInt128:
3981       // If it's a parameter type, the normal ABI rule is that arguments larger
3982       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3983       // even though it isn't particularly efficient.
3984       if (!IsReturnType)
3985         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3986 
3987       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3988       // Clang matches them for compatibility.
3989       return ABIArgInfo::getDirect(
3990           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
3991 
3992     default:
3993       break;
3994     }
3995   }
3996 
3997   return ABIArgInfo::getDirect();
3998 }
3999 
4000 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4001                                              unsigned FreeSSERegs,
4002                                              bool IsVectorCall,
4003                                              bool IsRegCall) const {
4004   unsigned Count = 0;
4005   for (auto &I : FI.arguments()) {
4006     // Vectorcall in x64 only permits the first 6 arguments to be passed
4007     // as XMM/YMM registers.
4008     if (Count < VectorcallMaxParamNumAsReg)
4009       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4010     else {
4011       // Since these cannot be passed in registers, pretend no registers
4012       // are left.
4013       unsigned ZeroSSERegsAvail = 0;
4014       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4015                         IsVectorCall, IsRegCall);
4016     }
4017     ++Count;
4018   }
4019 
4020   for (auto &I : FI.arguments()) {
4021     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4022   }
4023 }
4024 
4025 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4026   const unsigned CC = FI.getCallingConvention();
4027   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4028   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4029 
4030   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4031   // classification rules.
4032   if (CC == llvm::CallingConv::X86_64_SysV) {
4033     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4034     SysVABIInfo.computeInfo(FI);
4035     return;
4036   }
4037 
4038   unsigned FreeSSERegs = 0;
4039   if (IsVectorCall) {
4040     // We can use up to 4 SSE return registers with vectorcall.
4041     FreeSSERegs = 4;
4042   } else if (IsRegCall) {
4043     // RegCall gives us 16 SSE registers.
4044     FreeSSERegs = 16;
4045   }
4046 
4047   if (!getCXXABI().classifyReturnType(FI))
4048     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4049                                   IsVectorCall, IsRegCall);
4050 
4051   if (IsVectorCall) {
4052     // We can use up to 6 SSE register parameters with vectorcall.
4053     FreeSSERegs = 6;
4054   } else if (IsRegCall) {
4055     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4056     FreeSSERegs = 16;
4057   }
4058 
4059   if (IsVectorCall) {
4060     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4061   } else {
4062     for (auto &I : FI.arguments())
4063       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4064   }
4065 
4066 }
4067 
4068 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4069                                     QualType Ty) const {
4070 
4071   bool IsIndirect = false;
4072 
4073   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4074   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4075   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4076     uint64_t Width = getContext().getTypeSize(Ty);
4077     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4078   }
4079 
4080   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4081                           CGF.getContext().getTypeInfoInChars(Ty),
4082                           CharUnits::fromQuantity(8),
4083                           /*allowHigherAlign*/ false);
4084 }
4085 
4086 // PowerPC-32
4087 namespace {
4088 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4089 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4090   bool IsSoftFloatABI;
4091 
4092   CharUnits getParamTypeAlignment(QualType Ty) const;
4093 
4094 public:
4095   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4096       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4097 
4098   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4099                     QualType Ty) const override;
4100 };
4101 
4102 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4103 public:
4104   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4105       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4106 
4107   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4108     // This is recovered from gcc output.
4109     return 1; // r1 is the dedicated stack pointer
4110   }
4111 
4112   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4113                                llvm::Value *Address) const override;
4114 };
4115 }
4116 
4117 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4118   // Complex types are passed just like their elements
4119   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4120     Ty = CTy->getElementType();
4121 
4122   if (Ty->isVectorType())
4123     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4124                                                                        : 4);
4125 
4126   // For single-element float/vector structs, we consider the whole type
4127   // to have the same alignment requirements as its single element.
4128   const Type *AlignTy = nullptr;
4129   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4130     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4131     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4132         (BT && BT->isFloatingPoint()))
4133       AlignTy = EltType;
4134   }
4135 
4136   if (AlignTy)
4137     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4138   return CharUnits::fromQuantity(4);
4139 }
4140 
4141 // TODO: this implementation is now likely redundant with
4142 // DefaultABIInfo::EmitVAArg.
4143 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4144                                       QualType Ty) const {
4145   if (getTarget().getTriple().isOSDarwin()) {
4146     auto TI = getContext().getTypeInfoInChars(Ty);
4147     TI.second = getParamTypeAlignment(Ty);
4148 
4149     CharUnits SlotSize = CharUnits::fromQuantity(4);
4150     return emitVoidPtrVAArg(CGF, VAList, Ty,
4151                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4152                             /*AllowHigherAlign=*/true);
4153   }
4154 
4155   const unsigned OverflowLimit = 8;
4156   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4157     // TODO: Implement this. For now ignore.
4158     (void)CTy;
4159     return Address::invalid(); // FIXME?
4160   }
4161 
4162   // struct __va_list_tag {
4163   //   unsigned char gpr;
4164   //   unsigned char fpr;
4165   //   unsigned short reserved;
4166   //   void *overflow_arg_area;
4167   //   void *reg_save_area;
4168   // };
4169 
4170   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4171   bool isInt =
4172       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4173   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4174 
4175   // All aggregates are passed indirectly?  That doesn't seem consistent
4176   // with the argument-lowering code.
4177   bool isIndirect = Ty->isAggregateType();
4178 
4179   CGBuilderTy &Builder = CGF.Builder;
4180 
4181   // The calling convention either uses 1-2 GPRs or 1 FPR.
4182   Address NumRegsAddr = Address::invalid();
4183   if (isInt || IsSoftFloatABI) {
4184     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4185   } else {
4186     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4187   }
4188 
4189   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4190 
4191   // "Align" the register count when TY is i64.
4192   if (isI64 || (isF64 && IsSoftFloatABI)) {
4193     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4194     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4195   }
4196 
4197   llvm::Value *CC =
4198       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4199 
4200   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4201   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4202   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4203 
4204   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4205 
4206   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4207   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4208 
4209   // Case 1: consume registers.
4210   Address RegAddr = Address::invalid();
4211   {
4212     CGF.EmitBlock(UsingRegs);
4213 
4214     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4215     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4216                       CharUnits::fromQuantity(8));
4217     assert(RegAddr.getElementType() == CGF.Int8Ty);
4218 
4219     // Floating-point registers start after the general-purpose registers.
4220     if (!(isInt || IsSoftFloatABI)) {
4221       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4222                                                    CharUnits::fromQuantity(32));
4223     }
4224 
4225     // Get the address of the saved value by scaling the number of
4226     // registers we've used by the number of
4227     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4228     llvm::Value *RegOffset =
4229       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4230     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4231                                             RegAddr.getPointer(), RegOffset),
4232                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4233     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4234 
4235     // Increase the used-register count.
4236     NumRegs =
4237       Builder.CreateAdd(NumRegs,
4238                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4239     Builder.CreateStore(NumRegs, NumRegsAddr);
4240 
4241     CGF.EmitBranch(Cont);
4242   }
4243 
4244   // Case 2: consume space in the overflow area.
4245   Address MemAddr = Address::invalid();
4246   {
4247     CGF.EmitBlock(UsingOverflow);
4248 
4249     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4250 
4251     // Everything in the overflow area is rounded up to a size of at least 4.
4252     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4253 
4254     CharUnits Size;
4255     if (!isIndirect) {
4256       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4257       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4258     } else {
4259       Size = CGF.getPointerSize();
4260     }
4261 
4262     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4263     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4264                          OverflowAreaAlign);
4265     // Round up address of argument to alignment
4266     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4267     if (Align > OverflowAreaAlign) {
4268       llvm::Value *Ptr = OverflowArea.getPointer();
4269       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4270                                                            Align);
4271     }
4272 
4273     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4274 
4275     // Increase the overflow area.
4276     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4277     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4278     CGF.EmitBranch(Cont);
4279   }
4280 
4281   CGF.EmitBlock(Cont);
4282 
4283   // Merge the cases with a phi.
4284   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4285                                 "vaarg.addr");
4286 
4287   // Load the pointer if the argument was passed indirectly.
4288   if (isIndirect) {
4289     Result = Address(Builder.CreateLoad(Result, "aggr"),
4290                      getContext().getTypeAlignInChars(Ty));
4291   }
4292 
4293   return Result;
4294 }
4295 
4296 bool
4297 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4298                                                 llvm::Value *Address) const {
4299   // This is calculated from the LLVM and GCC tables and verified
4300   // against gcc output.  AFAIK all ABIs use the same encoding.
4301 
4302   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4303 
4304   llvm::IntegerType *i8 = CGF.Int8Ty;
4305   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4306   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4307   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4308 
4309   // 0-31: r0-31, the 4-byte general-purpose registers
4310   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4311 
4312   // 32-63: fp0-31, the 8-byte floating-point registers
4313   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4314 
4315   // 64-76 are various 4-byte special-purpose registers:
4316   // 64: mq
4317   // 65: lr
4318   // 66: ctr
4319   // 67: ap
4320   // 68-75 cr0-7
4321   // 76: xer
4322   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4323 
4324   // 77-108: v0-31, the 16-byte vector registers
4325   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4326 
4327   // 109: vrsave
4328   // 110: vscr
4329   // 111: spe_acc
4330   // 112: spefscr
4331   // 113: sfp
4332   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4333 
4334   return false;
4335 }
4336 
4337 // PowerPC-64
4338 
4339 namespace {
4340 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4341 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4342 public:
4343   enum ABIKind {
4344     ELFv1 = 0,
4345     ELFv2
4346   };
4347 
4348 private:
4349   static const unsigned GPRBits = 64;
4350   ABIKind Kind;
4351   bool HasQPX;
4352   bool IsSoftFloatABI;
4353 
4354   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4355   // will be passed in a QPX register.
4356   bool IsQPXVectorTy(const Type *Ty) const {
4357     if (!HasQPX)
4358       return false;
4359 
4360     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4361       unsigned NumElements = VT->getNumElements();
4362       if (NumElements == 1)
4363         return false;
4364 
4365       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4366         if (getContext().getTypeSize(Ty) <= 256)
4367           return true;
4368       } else if (VT->getElementType()->
4369                    isSpecificBuiltinType(BuiltinType::Float)) {
4370         if (getContext().getTypeSize(Ty) <= 128)
4371           return true;
4372       }
4373     }
4374 
4375     return false;
4376   }
4377 
4378   bool IsQPXVectorTy(QualType Ty) const {
4379     return IsQPXVectorTy(Ty.getTypePtr());
4380   }
4381 
4382 public:
4383   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4384                      bool SoftFloatABI)
4385       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4386         IsSoftFloatABI(SoftFloatABI) {}
4387 
4388   bool isPromotableTypeForABI(QualType Ty) const;
4389   CharUnits getParamTypeAlignment(QualType Ty) const;
4390 
4391   ABIArgInfo classifyReturnType(QualType RetTy) const;
4392   ABIArgInfo classifyArgumentType(QualType Ty) const;
4393 
4394   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4395   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4396                                          uint64_t Members) const override;
4397 
4398   // TODO: We can add more logic to computeInfo to improve performance.
4399   // Example: For aggregate arguments that fit in a register, we could
4400   // use getDirectInReg (as is done below for structs containing a single
4401   // floating-point value) to avoid pushing them to memory on function
4402   // entry.  This would require changing the logic in PPCISelLowering
4403   // when lowering the parameters in the caller and args in the callee.
4404   void computeInfo(CGFunctionInfo &FI) const override {
4405     if (!getCXXABI().classifyReturnType(FI))
4406       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4407     for (auto &I : FI.arguments()) {
4408       // We rely on the default argument classification for the most part.
4409       // One exception:  An aggregate containing a single floating-point
4410       // or vector item must be passed in a register if one is available.
4411       const Type *T = isSingleElementStruct(I.type, getContext());
4412       if (T) {
4413         const BuiltinType *BT = T->getAs<BuiltinType>();
4414         if (IsQPXVectorTy(T) ||
4415             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4416             (BT && BT->isFloatingPoint())) {
4417           QualType QT(T, 0);
4418           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4419           continue;
4420         }
4421       }
4422       I.info = classifyArgumentType(I.type);
4423     }
4424   }
4425 
4426   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4427                     QualType Ty) const override;
4428 
4429   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4430                                     bool asReturnValue) const override {
4431     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4432   }
4433 
4434   bool isSwiftErrorInRegister() const override {
4435     return false;
4436   }
4437 };
4438 
4439 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4440 
4441 public:
4442   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4443                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4444                                bool SoftFloatABI)
4445       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4446                                                  SoftFloatABI)) {}
4447 
4448   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4449     // This is recovered from gcc output.
4450     return 1; // r1 is the dedicated stack pointer
4451   }
4452 
4453   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4454                                llvm::Value *Address) const override;
4455 };
4456 
4457 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4458 public:
4459   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4460 
4461   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4462     // This is recovered from gcc output.
4463     return 1; // r1 is the dedicated stack pointer
4464   }
4465 
4466   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4467                                llvm::Value *Address) const override;
4468 };
4469 
4470 }
4471 
4472 // Return true if the ABI requires Ty to be passed sign- or zero-
4473 // extended to 64 bits.
4474 bool
4475 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4476   // Treat an enum type as its underlying type.
4477   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4478     Ty = EnumTy->getDecl()->getIntegerType();
4479 
4480   // Promotable integer types are required to be promoted by the ABI.
4481   if (Ty->isPromotableIntegerType())
4482     return true;
4483 
4484   // In addition to the usual promotable integer types, we also need to
4485   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4486   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4487     switch (BT->getKind()) {
4488     case BuiltinType::Int:
4489     case BuiltinType::UInt:
4490       return true;
4491     default:
4492       break;
4493     }
4494 
4495   return false;
4496 }
4497 
4498 /// isAlignedParamType - Determine whether a type requires 16-byte or
4499 /// higher alignment in the parameter area.  Always returns at least 8.
4500 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4501   // Complex types are passed just like their elements.
4502   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4503     Ty = CTy->getElementType();
4504 
4505   // Only vector types of size 16 bytes need alignment (larger types are
4506   // passed via reference, smaller types are not aligned).
4507   if (IsQPXVectorTy(Ty)) {
4508     if (getContext().getTypeSize(Ty) > 128)
4509       return CharUnits::fromQuantity(32);
4510 
4511     return CharUnits::fromQuantity(16);
4512   } else if (Ty->isVectorType()) {
4513     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4514   }
4515 
4516   // For single-element float/vector structs, we consider the whole type
4517   // to have the same alignment requirements as its single element.
4518   const Type *AlignAsType = nullptr;
4519   const Type *EltType = isSingleElementStruct(Ty, getContext());
4520   if (EltType) {
4521     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4522     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4523          getContext().getTypeSize(EltType) == 128) ||
4524         (BT && BT->isFloatingPoint()))
4525       AlignAsType = EltType;
4526   }
4527 
4528   // Likewise for ELFv2 homogeneous aggregates.
4529   const Type *Base = nullptr;
4530   uint64_t Members = 0;
4531   if (!AlignAsType && Kind == ELFv2 &&
4532       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4533     AlignAsType = Base;
4534 
4535   // With special case aggregates, only vector base types need alignment.
4536   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4537     if (getContext().getTypeSize(AlignAsType) > 128)
4538       return CharUnits::fromQuantity(32);
4539 
4540     return CharUnits::fromQuantity(16);
4541   } else if (AlignAsType) {
4542     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4543   }
4544 
4545   // Otherwise, we only need alignment for any aggregate type that
4546   // has an alignment requirement of >= 16 bytes.
4547   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4548     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4549       return CharUnits::fromQuantity(32);
4550     return CharUnits::fromQuantity(16);
4551   }
4552 
4553   return CharUnits::fromQuantity(8);
4554 }
4555 
4556 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4557 /// aggregate.  Base is set to the base element type, and Members is set
4558 /// to the number of base elements.
4559 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4560                                      uint64_t &Members) const {
4561   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4562     uint64_t NElements = AT->getSize().getZExtValue();
4563     if (NElements == 0)
4564       return false;
4565     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4566       return false;
4567     Members *= NElements;
4568   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4569     const RecordDecl *RD = RT->getDecl();
4570     if (RD->hasFlexibleArrayMember())
4571       return false;
4572 
4573     Members = 0;
4574 
4575     // If this is a C++ record, check the bases first.
4576     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4577       for (const auto &I : CXXRD->bases()) {
4578         // Ignore empty records.
4579         if (isEmptyRecord(getContext(), I.getType(), true))
4580           continue;
4581 
4582         uint64_t FldMembers;
4583         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4584           return false;
4585 
4586         Members += FldMembers;
4587       }
4588     }
4589 
4590     for (const auto *FD : RD->fields()) {
4591       // Ignore (non-zero arrays of) empty records.
4592       QualType FT = FD->getType();
4593       while (const ConstantArrayType *AT =
4594              getContext().getAsConstantArrayType(FT)) {
4595         if (AT->getSize().getZExtValue() == 0)
4596           return false;
4597         FT = AT->getElementType();
4598       }
4599       if (isEmptyRecord(getContext(), FT, true))
4600         continue;
4601 
4602       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4603       if (getContext().getLangOpts().CPlusPlus &&
4604           FD->isZeroLengthBitField(getContext()))
4605         continue;
4606 
4607       uint64_t FldMembers;
4608       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4609         return false;
4610 
4611       Members = (RD->isUnion() ?
4612                  std::max(Members, FldMembers) : Members + FldMembers);
4613     }
4614 
4615     if (!Base)
4616       return false;
4617 
4618     // Ensure there is no padding.
4619     if (getContext().getTypeSize(Base) * Members !=
4620         getContext().getTypeSize(Ty))
4621       return false;
4622   } else {
4623     Members = 1;
4624     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4625       Members = 2;
4626       Ty = CT->getElementType();
4627     }
4628 
4629     // Most ABIs only support float, double, and some vector type widths.
4630     if (!isHomogeneousAggregateBaseType(Ty))
4631       return false;
4632 
4633     // The base type must be the same for all members.  Types that
4634     // agree in both total size and mode (float vs. vector) are
4635     // treated as being equivalent here.
4636     const Type *TyPtr = Ty.getTypePtr();
4637     if (!Base) {
4638       Base = TyPtr;
4639       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4640       // so make sure to widen it explicitly.
4641       if (const VectorType *VT = Base->getAs<VectorType>()) {
4642         QualType EltTy = VT->getElementType();
4643         unsigned NumElements =
4644             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4645         Base = getContext()
4646                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4647                    .getTypePtr();
4648       }
4649     }
4650 
4651     if (Base->isVectorType() != TyPtr->isVectorType() ||
4652         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4653       return false;
4654   }
4655   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4656 }
4657 
4658 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4659   // Homogeneous aggregates for ELFv2 must have base types of float,
4660   // double, long double, or 128-bit vectors.
4661   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4662     if (BT->getKind() == BuiltinType::Float ||
4663         BT->getKind() == BuiltinType::Double ||
4664         BT->getKind() == BuiltinType::LongDouble ||
4665         (getContext().getTargetInfo().hasFloat128Type() &&
4666           (BT->getKind() == BuiltinType::Float128))) {
4667       if (IsSoftFloatABI)
4668         return false;
4669       return true;
4670     }
4671   }
4672   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4673     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4674       return true;
4675   }
4676   return false;
4677 }
4678 
4679 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4680     const Type *Base, uint64_t Members) const {
4681   // Vector and fp128 types require one register, other floating point types
4682   // require one or two registers depending on their size.
4683   uint32_t NumRegs =
4684       ((getContext().getTargetInfo().hasFloat128Type() &&
4685           Base->isFloat128Type()) ||
4686         Base->isVectorType()) ? 1
4687                               : (getContext().getTypeSize(Base) + 63) / 64;
4688 
4689   // Homogeneous Aggregates may occupy at most 8 registers.
4690   return Members * NumRegs <= 8;
4691 }
4692 
4693 ABIArgInfo
4694 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4695   Ty = useFirstFieldIfTransparentUnion(Ty);
4696 
4697   if (Ty->isAnyComplexType())
4698     return ABIArgInfo::getDirect();
4699 
4700   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4701   // or via reference (larger than 16 bytes).
4702   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4703     uint64_t Size = getContext().getTypeSize(Ty);
4704     if (Size > 128)
4705       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4706     else if (Size < 128) {
4707       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4708       return ABIArgInfo::getDirect(CoerceTy);
4709     }
4710   }
4711 
4712   if (isAggregateTypeForABI(Ty)) {
4713     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4714       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4715 
4716     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4717     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4718 
4719     // ELFv2 homogeneous aggregates are passed as array types.
4720     const Type *Base = nullptr;
4721     uint64_t Members = 0;
4722     if (Kind == ELFv2 &&
4723         isHomogeneousAggregate(Ty, Base, Members)) {
4724       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4725       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4726       return ABIArgInfo::getDirect(CoerceTy);
4727     }
4728 
4729     // If an aggregate may end up fully in registers, we do not
4730     // use the ByVal method, but pass the aggregate as array.
4731     // This is usually beneficial since we avoid forcing the
4732     // back-end to store the argument to memory.
4733     uint64_t Bits = getContext().getTypeSize(Ty);
4734     if (Bits > 0 && Bits <= 8 * GPRBits) {
4735       llvm::Type *CoerceTy;
4736 
4737       // Types up to 8 bytes are passed as integer type (which will be
4738       // properly aligned in the argument save area doubleword).
4739       if (Bits <= GPRBits)
4740         CoerceTy =
4741             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4742       // Larger types are passed as arrays, with the base type selected
4743       // according to the required alignment in the save area.
4744       else {
4745         uint64_t RegBits = ABIAlign * 8;
4746         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4747         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4748         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4749       }
4750 
4751       return ABIArgInfo::getDirect(CoerceTy);
4752     }
4753 
4754     // All other aggregates are passed ByVal.
4755     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4756                                    /*ByVal=*/true,
4757                                    /*Realign=*/TyAlign > ABIAlign);
4758   }
4759 
4760   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4761                                      : ABIArgInfo::getDirect());
4762 }
4763 
4764 ABIArgInfo
4765 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4766   if (RetTy->isVoidType())
4767     return ABIArgInfo::getIgnore();
4768 
4769   if (RetTy->isAnyComplexType())
4770     return ABIArgInfo::getDirect();
4771 
4772   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4773   // or via reference (larger than 16 bytes).
4774   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4775     uint64_t Size = getContext().getTypeSize(RetTy);
4776     if (Size > 128)
4777       return getNaturalAlignIndirect(RetTy);
4778     else if (Size < 128) {
4779       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4780       return ABIArgInfo::getDirect(CoerceTy);
4781     }
4782   }
4783 
4784   if (isAggregateTypeForABI(RetTy)) {
4785     // ELFv2 homogeneous aggregates are returned as array types.
4786     const Type *Base = nullptr;
4787     uint64_t Members = 0;
4788     if (Kind == ELFv2 &&
4789         isHomogeneousAggregate(RetTy, Base, Members)) {
4790       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4791       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4792       return ABIArgInfo::getDirect(CoerceTy);
4793     }
4794 
4795     // ELFv2 small aggregates are returned in up to two registers.
4796     uint64_t Bits = getContext().getTypeSize(RetTy);
4797     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4798       if (Bits == 0)
4799         return ABIArgInfo::getIgnore();
4800 
4801       llvm::Type *CoerceTy;
4802       if (Bits > GPRBits) {
4803         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4804         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4805       } else
4806         CoerceTy =
4807             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4808       return ABIArgInfo::getDirect(CoerceTy);
4809     }
4810 
4811     // All other aggregates are returned indirectly.
4812     return getNaturalAlignIndirect(RetTy);
4813   }
4814 
4815   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4816                                         : ABIArgInfo::getDirect());
4817 }
4818 
4819 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4820 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4821                                       QualType Ty) const {
4822   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4823   TypeInfo.second = getParamTypeAlignment(Ty);
4824 
4825   CharUnits SlotSize = CharUnits::fromQuantity(8);
4826 
4827   // If we have a complex type and the base type is smaller than 8 bytes,
4828   // the ABI calls for the real and imaginary parts to be right-adjusted
4829   // in separate doublewords.  However, Clang expects us to produce a
4830   // pointer to a structure with the two parts packed tightly.  So generate
4831   // loads of the real and imaginary parts relative to the va_list pointer,
4832   // and store them to a temporary structure.
4833   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4834     CharUnits EltSize = TypeInfo.first / 2;
4835     if (EltSize < SlotSize) {
4836       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4837                                             SlotSize * 2, SlotSize,
4838                                             SlotSize, /*AllowHigher*/ true);
4839 
4840       Address RealAddr = Addr;
4841       Address ImagAddr = RealAddr;
4842       if (CGF.CGM.getDataLayout().isBigEndian()) {
4843         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4844                                                           SlotSize - EltSize);
4845         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4846                                                       2 * SlotSize - EltSize);
4847       } else {
4848         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4849       }
4850 
4851       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4852       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4853       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4854       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4855       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4856 
4857       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4858       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4859                              /*init*/ true);
4860       return Temp;
4861     }
4862   }
4863 
4864   // Otherwise, just use the general rule.
4865   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4866                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4867 }
4868 
4869 static bool
4870 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4871                               llvm::Value *Address) {
4872   // This is calculated from the LLVM and GCC tables and verified
4873   // against gcc output.  AFAIK all ABIs use the same encoding.
4874 
4875   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4876 
4877   llvm::IntegerType *i8 = CGF.Int8Ty;
4878   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4879   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4880   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4881 
4882   // 0-31: r0-31, the 8-byte general-purpose registers
4883   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4884 
4885   // 32-63: fp0-31, the 8-byte floating-point registers
4886   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4887 
4888   // 64-67 are various 8-byte special-purpose registers:
4889   // 64: mq
4890   // 65: lr
4891   // 66: ctr
4892   // 67: ap
4893   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4894 
4895   // 68-76 are various 4-byte special-purpose registers:
4896   // 68-75 cr0-7
4897   // 76: xer
4898   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4899 
4900   // 77-108: v0-31, the 16-byte vector registers
4901   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4902 
4903   // 109: vrsave
4904   // 110: vscr
4905   // 111: spe_acc
4906   // 112: spefscr
4907   // 113: sfp
4908   // 114: tfhar
4909   // 115: tfiar
4910   // 116: texasr
4911   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4912 
4913   return false;
4914 }
4915 
4916 bool
4917 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4918   CodeGen::CodeGenFunction &CGF,
4919   llvm::Value *Address) const {
4920 
4921   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4922 }
4923 
4924 bool
4925 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4926                                                 llvm::Value *Address) const {
4927 
4928   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4929 }
4930 
4931 //===----------------------------------------------------------------------===//
4932 // AArch64 ABI Implementation
4933 //===----------------------------------------------------------------------===//
4934 
4935 namespace {
4936 
4937 class AArch64ABIInfo : public SwiftABIInfo {
4938 public:
4939   enum ABIKind {
4940     AAPCS = 0,
4941     DarwinPCS,
4942     Win64
4943   };
4944 
4945 private:
4946   ABIKind Kind;
4947 
4948 public:
4949   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4950     : SwiftABIInfo(CGT), Kind(Kind) {}
4951 
4952 private:
4953   ABIKind getABIKind() const { return Kind; }
4954   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4955 
4956   ABIArgInfo classifyReturnType(QualType RetTy) const;
4957   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4958   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4959   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4960                                          uint64_t Members) const override;
4961 
4962   bool isIllegalVectorType(QualType Ty) const;
4963 
4964   void computeInfo(CGFunctionInfo &FI) const override {
4965     if (!::classifyReturnType(getCXXABI(), FI, *this))
4966       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4967 
4968     for (auto &it : FI.arguments())
4969       it.info = classifyArgumentType(it.type);
4970   }
4971 
4972   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4973                           CodeGenFunction &CGF) const;
4974 
4975   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4976                          CodeGenFunction &CGF) const;
4977 
4978   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4979                     QualType Ty) const override {
4980     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4981                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4982                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4983   }
4984 
4985   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4986                       QualType Ty) const override;
4987 
4988   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4989                                     bool asReturnValue) const override {
4990     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4991   }
4992   bool isSwiftErrorInRegister() const override {
4993     return true;
4994   }
4995 
4996   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4997                                  unsigned elts) const override;
4998 };
4999 
5000 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5001 public:
5002   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5003       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5004 
5005   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5006     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5007   }
5008 
5009   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5010     return 31;
5011   }
5012 
5013   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5014 
5015   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5016                            CodeGen::CodeGenModule &CGM) const override {
5017     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5018     if (!FD)
5019       return;
5020     llvm::Function *Fn = cast<llvm::Function>(GV);
5021 
5022     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5023     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5024       Fn->addFnAttr("sign-return-address",
5025                     Kind == CodeGenOptions::SignReturnAddressScope::All
5026                         ? "all"
5027                         : "non-leaf");
5028 
5029       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5030       Fn->addFnAttr("sign-return-address-key",
5031                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5032                         ? "a_key"
5033                         : "b_key");
5034     }
5035 
5036     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5037       Fn->addFnAttr("branch-target-enforcement");
5038   }
5039 };
5040 
5041 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5042 public:
5043   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5044       : AArch64TargetCodeGenInfo(CGT, K) {}
5045 
5046   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5047                            CodeGen::CodeGenModule &CGM) const override;
5048 
5049   void getDependentLibraryOption(llvm::StringRef Lib,
5050                                  llvm::SmallString<24> &Opt) const override {
5051     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5052   }
5053 
5054   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5055                                llvm::SmallString<32> &Opt) const override {
5056     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5057   }
5058 };
5059 
5060 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5061     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5062   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5063   if (GV->isDeclaration())
5064     return;
5065   addStackProbeTargetAttributes(D, GV, CGM);
5066 }
5067 }
5068 
5069 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5070   Ty = useFirstFieldIfTransparentUnion(Ty);
5071 
5072   // Handle illegal vector types here.
5073   if (isIllegalVectorType(Ty)) {
5074     uint64_t Size = getContext().getTypeSize(Ty);
5075     // Android promotes <2 x i8> to i16, not i32
5076     if (isAndroid() && (Size <= 16)) {
5077       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5078       return ABIArgInfo::getDirect(ResType);
5079     }
5080     if (Size <= 32) {
5081       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5082       return ABIArgInfo::getDirect(ResType);
5083     }
5084     if (Size == 64) {
5085       llvm::Type *ResType =
5086           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5087       return ABIArgInfo::getDirect(ResType);
5088     }
5089     if (Size == 128) {
5090       llvm::Type *ResType =
5091           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5092       return ABIArgInfo::getDirect(ResType);
5093     }
5094     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5095   }
5096 
5097   if (!isAggregateTypeForABI(Ty)) {
5098     // Treat an enum type as its underlying type.
5099     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5100       Ty = EnumTy->getDecl()->getIntegerType();
5101 
5102     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5103                 ? ABIArgInfo::getExtend(Ty)
5104                 : ABIArgInfo::getDirect());
5105   }
5106 
5107   // Structures with either a non-trivial destructor or a non-trivial
5108   // copy constructor are always indirect.
5109   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5110     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5111                                      CGCXXABI::RAA_DirectInMemory);
5112   }
5113 
5114   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5115   // elsewhere for GNU compatibility.
5116   uint64_t Size = getContext().getTypeSize(Ty);
5117   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5118   if (IsEmpty || Size == 0) {
5119     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5120       return ABIArgInfo::getIgnore();
5121 
5122     // GNU C mode. The only argument that gets ignored is an empty one with size
5123     // 0.
5124     if (IsEmpty && Size == 0)
5125       return ABIArgInfo::getIgnore();
5126     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5127   }
5128 
5129   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5130   const Type *Base = nullptr;
5131   uint64_t Members = 0;
5132   if (isHomogeneousAggregate(Ty, Base, Members)) {
5133     return ABIArgInfo::getDirect(
5134         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5135   }
5136 
5137   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5138   if (Size <= 128) {
5139     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5140     // same size and alignment.
5141     if (getTarget().isRenderScriptTarget()) {
5142       return coerceToIntArray(Ty, getContext(), getVMContext());
5143     }
5144     unsigned Alignment;
5145     if (Kind == AArch64ABIInfo::AAPCS) {
5146       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5147       Alignment = Alignment < 128 ? 64 : 128;
5148     } else {
5149       Alignment = getContext().getTypeAlign(Ty);
5150     }
5151     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5152 
5153     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5154     // For aggregates with 16-byte alignment, we use i128.
5155     if (Alignment < 128 && Size == 128) {
5156       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5157       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5158     }
5159     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5160   }
5161 
5162   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5163 }
5164 
5165 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5166   if (RetTy->isVoidType())
5167     return ABIArgInfo::getIgnore();
5168 
5169   // Large vector types should be returned via memory.
5170   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5171     return getNaturalAlignIndirect(RetTy);
5172 
5173   if (!isAggregateTypeForABI(RetTy)) {
5174     // Treat an enum type as its underlying type.
5175     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5176       RetTy = EnumTy->getDecl()->getIntegerType();
5177 
5178     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5179                 ? ABIArgInfo::getExtend(RetTy)
5180                 : ABIArgInfo::getDirect());
5181   }
5182 
5183   uint64_t Size = getContext().getTypeSize(RetTy);
5184   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5185     return ABIArgInfo::getIgnore();
5186 
5187   const Type *Base = nullptr;
5188   uint64_t Members = 0;
5189   if (isHomogeneousAggregate(RetTy, Base, Members))
5190     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5191     return ABIArgInfo::getDirect();
5192 
5193   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5194   if (Size <= 128) {
5195     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5196     // same size and alignment.
5197     if (getTarget().isRenderScriptTarget()) {
5198       return coerceToIntArray(RetTy, getContext(), getVMContext());
5199     }
5200     unsigned Alignment = getContext().getTypeAlign(RetTy);
5201     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5202 
5203     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5204     // For aggregates with 16-byte alignment, we use i128.
5205     if (Alignment < 128 && Size == 128) {
5206       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5207       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5208     }
5209     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5210   }
5211 
5212   return getNaturalAlignIndirect(RetTy);
5213 }
5214 
5215 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5216 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5217   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5218     // Check whether VT is legal.
5219     unsigned NumElements = VT->getNumElements();
5220     uint64_t Size = getContext().getTypeSize(VT);
5221     // NumElements should be power of 2.
5222     if (!llvm::isPowerOf2_32(NumElements))
5223       return true;
5224     return Size != 64 && (Size != 128 || NumElements == 1);
5225   }
5226   return false;
5227 }
5228 
5229 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5230                                                llvm::Type *eltTy,
5231                                                unsigned elts) const {
5232   if (!llvm::isPowerOf2_32(elts))
5233     return false;
5234   if (totalSize.getQuantity() != 8 &&
5235       (totalSize.getQuantity() != 16 || elts == 1))
5236     return false;
5237   return true;
5238 }
5239 
5240 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5241   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5242   // point type or a short-vector type. This is the same as the 32-bit ABI,
5243   // but with the difference that any floating-point type is allowed,
5244   // including __fp16.
5245   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5246     if (BT->isFloatingPoint())
5247       return true;
5248   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5249     unsigned VecSize = getContext().getTypeSize(VT);
5250     if (VecSize == 64 || VecSize == 128)
5251       return true;
5252   }
5253   return false;
5254 }
5255 
5256 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5257                                                        uint64_t Members) const {
5258   return Members <= 4;
5259 }
5260 
5261 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5262                                             QualType Ty,
5263                                             CodeGenFunction &CGF) const {
5264   ABIArgInfo AI = classifyArgumentType(Ty);
5265   bool IsIndirect = AI.isIndirect();
5266 
5267   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5268   if (IsIndirect)
5269     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5270   else if (AI.getCoerceToType())
5271     BaseTy = AI.getCoerceToType();
5272 
5273   unsigned NumRegs = 1;
5274   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5275     BaseTy = ArrTy->getElementType();
5276     NumRegs = ArrTy->getNumElements();
5277   }
5278   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5279 
5280   // The AArch64 va_list type and handling is specified in the Procedure Call
5281   // Standard, section B.4:
5282   //
5283   // struct {
5284   //   void *__stack;
5285   //   void *__gr_top;
5286   //   void *__vr_top;
5287   //   int __gr_offs;
5288   //   int __vr_offs;
5289   // };
5290 
5291   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5292   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5293   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5294   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5295 
5296   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5297   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5298 
5299   Address reg_offs_p = Address::invalid();
5300   llvm::Value *reg_offs = nullptr;
5301   int reg_top_index;
5302   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5303   if (!IsFPR) {
5304     // 3 is the field number of __gr_offs
5305     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5306     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5307     reg_top_index = 1; // field number for __gr_top
5308     RegSize = llvm::alignTo(RegSize, 8);
5309   } else {
5310     // 4 is the field number of __vr_offs.
5311     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5312     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5313     reg_top_index = 2; // field number for __vr_top
5314     RegSize = 16 * NumRegs;
5315   }
5316 
5317   //=======================================
5318   // Find out where argument was passed
5319   //=======================================
5320 
5321   // If reg_offs >= 0 we're already using the stack for this type of
5322   // argument. We don't want to keep updating reg_offs (in case it overflows,
5323   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5324   // whatever they get).
5325   llvm::Value *UsingStack = nullptr;
5326   UsingStack = CGF.Builder.CreateICmpSGE(
5327       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5328 
5329   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5330 
5331   // Otherwise, at least some kind of argument could go in these registers, the
5332   // question is whether this particular type is too big.
5333   CGF.EmitBlock(MaybeRegBlock);
5334 
5335   // Integer arguments may need to correct register alignment (for example a
5336   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5337   // align __gr_offs to calculate the potential address.
5338   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5339     int Align = TyAlign.getQuantity();
5340 
5341     reg_offs = CGF.Builder.CreateAdd(
5342         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5343         "align_regoffs");
5344     reg_offs = CGF.Builder.CreateAnd(
5345         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5346         "aligned_regoffs");
5347   }
5348 
5349   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5350   // The fact that this is done unconditionally reflects the fact that
5351   // allocating an argument to the stack also uses up all the remaining
5352   // registers of the appropriate kind.
5353   llvm::Value *NewOffset = nullptr;
5354   NewOffset = CGF.Builder.CreateAdd(
5355       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5356   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5357 
5358   // Now we're in a position to decide whether this argument really was in
5359   // registers or not.
5360   llvm::Value *InRegs = nullptr;
5361   InRegs = CGF.Builder.CreateICmpSLE(
5362       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5363 
5364   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5365 
5366   //=======================================
5367   // Argument was in registers
5368   //=======================================
5369 
5370   // Now we emit the code for if the argument was originally passed in
5371   // registers. First start the appropriate block:
5372   CGF.EmitBlock(InRegBlock);
5373 
5374   llvm::Value *reg_top = nullptr;
5375   Address reg_top_p =
5376       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5377   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5378   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5379                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5380   Address RegAddr = Address::invalid();
5381   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5382 
5383   if (IsIndirect) {
5384     // If it's been passed indirectly (actually a struct), whatever we find from
5385     // stored registers or on the stack will actually be a struct **.
5386     MemTy = llvm::PointerType::getUnqual(MemTy);
5387   }
5388 
5389   const Type *Base = nullptr;
5390   uint64_t NumMembers = 0;
5391   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5392   if (IsHFA && NumMembers > 1) {
5393     // Homogeneous aggregates passed in registers will have their elements split
5394     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5395     // qN+1, ...). We reload and store into a temporary local variable
5396     // contiguously.
5397     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5398     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5399     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5400     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5401     Address Tmp = CGF.CreateTempAlloca(HFATy,
5402                                        std::max(TyAlign, BaseTyInfo.second));
5403 
5404     // On big-endian platforms, the value will be right-aligned in its slot.
5405     int Offset = 0;
5406     if (CGF.CGM.getDataLayout().isBigEndian() &&
5407         BaseTyInfo.first.getQuantity() < 16)
5408       Offset = 16 - BaseTyInfo.first.getQuantity();
5409 
5410     for (unsigned i = 0; i < NumMembers; ++i) {
5411       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5412       Address LoadAddr =
5413         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5414       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5415 
5416       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5417 
5418       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5419       CGF.Builder.CreateStore(Elem, StoreAddr);
5420     }
5421 
5422     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5423   } else {
5424     // Otherwise the object is contiguous in memory.
5425 
5426     // It might be right-aligned in its slot.
5427     CharUnits SlotSize = BaseAddr.getAlignment();
5428     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5429         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5430         TySize < SlotSize) {
5431       CharUnits Offset = SlotSize - TySize;
5432       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5433     }
5434 
5435     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5436   }
5437 
5438   CGF.EmitBranch(ContBlock);
5439 
5440   //=======================================
5441   // Argument was on the stack
5442   //=======================================
5443   CGF.EmitBlock(OnStackBlock);
5444 
5445   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5446   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5447 
5448   // Again, stack arguments may need realignment. In this case both integer and
5449   // floating-point ones might be affected.
5450   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5451     int Align = TyAlign.getQuantity();
5452 
5453     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5454 
5455     OnStackPtr = CGF.Builder.CreateAdd(
5456         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5457         "align_stack");
5458     OnStackPtr = CGF.Builder.CreateAnd(
5459         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5460         "align_stack");
5461 
5462     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5463   }
5464   Address OnStackAddr(OnStackPtr,
5465                       std::max(CharUnits::fromQuantity(8), TyAlign));
5466 
5467   // All stack slots are multiples of 8 bytes.
5468   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5469   CharUnits StackSize;
5470   if (IsIndirect)
5471     StackSize = StackSlotSize;
5472   else
5473     StackSize = TySize.alignTo(StackSlotSize);
5474 
5475   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5476   llvm::Value *NewStack =
5477       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5478 
5479   // Write the new value of __stack for the next call to va_arg
5480   CGF.Builder.CreateStore(NewStack, stack_p);
5481 
5482   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5483       TySize < StackSlotSize) {
5484     CharUnits Offset = StackSlotSize - TySize;
5485     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5486   }
5487 
5488   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5489 
5490   CGF.EmitBranch(ContBlock);
5491 
5492   //=======================================
5493   // Tidy up
5494   //=======================================
5495   CGF.EmitBlock(ContBlock);
5496 
5497   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5498                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5499 
5500   if (IsIndirect)
5501     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5502                    TyAlign);
5503 
5504   return ResAddr;
5505 }
5506 
5507 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5508                                         CodeGenFunction &CGF) const {
5509   // The backend's lowering doesn't support va_arg for aggregates or
5510   // illegal vector types.  Lower VAArg here for these cases and use
5511   // the LLVM va_arg instruction for everything else.
5512   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5513     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5514 
5515   CharUnits SlotSize = CharUnits::fromQuantity(8);
5516 
5517   // Empty records are ignored for parameter passing purposes.
5518   if (isEmptyRecord(getContext(), Ty, true)) {
5519     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5520     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5521     return Addr;
5522   }
5523 
5524   // The size of the actual thing passed, which might end up just
5525   // being a pointer for indirect types.
5526   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5527 
5528   // Arguments bigger than 16 bytes which aren't homogeneous
5529   // aggregates should be passed indirectly.
5530   bool IsIndirect = false;
5531   if (TyInfo.first.getQuantity() > 16) {
5532     const Type *Base = nullptr;
5533     uint64_t Members = 0;
5534     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5535   }
5536 
5537   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5538                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5539 }
5540 
5541 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5542                                     QualType Ty) const {
5543   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5544                           CGF.getContext().getTypeInfoInChars(Ty),
5545                           CharUnits::fromQuantity(8),
5546                           /*allowHigherAlign*/ false);
5547 }
5548 
5549 //===----------------------------------------------------------------------===//
5550 // ARM ABI Implementation
5551 //===----------------------------------------------------------------------===//
5552 
5553 namespace {
5554 
5555 class ARMABIInfo : public SwiftABIInfo {
5556 public:
5557   enum ABIKind {
5558     APCS = 0,
5559     AAPCS = 1,
5560     AAPCS_VFP = 2,
5561     AAPCS16_VFP = 3,
5562   };
5563 
5564 private:
5565   ABIKind Kind;
5566 
5567 public:
5568   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5569       : SwiftABIInfo(CGT), Kind(_Kind) {
5570     setCCs();
5571   }
5572 
5573   bool isEABI() const {
5574     switch (getTarget().getTriple().getEnvironment()) {
5575     case llvm::Triple::Android:
5576     case llvm::Triple::EABI:
5577     case llvm::Triple::EABIHF:
5578     case llvm::Triple::GNUEABI:
5579     case llvm::Triple::GNUEABIHF:
5580     case llvm::Triple::MuslEABI:
5581     case llvm::Triple::MuslEABIHF:
5582       return true;
5583     default:
5584       return false;
5585     }
5586   }
5587 
5588   bool isEABIHF() const {
5589     switch (getTarget().getTriple().getEnvironment()) {
5590     case llvm::Triple::EABIHF:
5591     case llvm::Triple::GNUEABIHF:
5592     case llvm::Triple::MuslEABIHF:
5593       return true;
5594     default:
5595       return false;
5596     }
5597   }
5598 
5599   ABIKind getABIKind() const { return Kind; }
5600 
5601 private:
5602   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5603                                 unsigned functionCallConv) const;
5604   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5605                                   unsigned functionCallConv) const;
5606   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5607                                           uint64_t Members) const;
5608   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5609   bool isIllegalVectorType(QualType Ty) const;
5610   bool containsAnyFP16Vectors(QualType Ty) const;
5611 
5612   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5613   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5614                                          uint64_t Members) const override;
5615 
5616   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5617 
5618   void computeInfo(CGFunctionInfo &FI) const override;
5619 
5620   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5621                     QualType Ty) const override;
5622 
5623   llvm::CallingConv::ID getLLVMDefaultCC() const;
5624   llvm::CallingConv::ID getABIDefaultCC() const;
5625   void setCCs();
5626 
5627   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5628                                     bool asReturnValue) const override {
5629     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5630   }
5631   bool isSwiftErrorInRegister() const override {
5632     return true;
5633   }
5634   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5635                                  unsigned elts) const override;
5636 };
5637 
5638 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5639 public:
5640   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5641     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5642 
5643   const ARMABIInfo &getABIInfo() const {
5644     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5645   }
5646 
5647   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5648     return 13;
5649   }
5650 
5651   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5652     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5653   }
5654 
5655   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5656                                llvm::Value *Address) const override {
5657     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5658 
5659     // 0-15 are the 16 integer registers.
5660     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5661     return false;
5662   }
5663 
5664   unsigned getSizeOfUnwindException() const override {
5665     if (getABIInfo().isEABI()) return 88;
5666     return TargetCodeGenInfo::getSizeOfUnwindException();
5667   }
5668 
5669   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5670                            CodeGen::CodeGenModule &CGM) const override {
5671     if (GV->isDeclaration())
5672       return;
5673     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5674     if (!FD)
5675       return;
5676 
5677     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5678     if (!Attr)
5679       return;
5680 
5681     const char *Kind;
5682     switch (Attr->getInterrupt()) {
5683     case ARMInterruptAttr::Generic: Kind = ""; break;
5684     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5685     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5686     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5687     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5688     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5689     }
5690 
5691     llvm::Function *Fn = cast<llvm::Function>(GV);
5692 
5693     Fn->addFnAttr("interrupt", Kind);
5694 
5695     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5696     if (ABI == ARMABIInfo::APCS)
5697       return;
5698 
5699     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5700     // however this is not necessarily true on taking any interrupt. Instruct
5701     // the backend to perform a realignment as part of the function prologue.
5702     llvm::AttrBuilder B;
5703     B.addStackAlignmentAttr(8);
5704     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5705   }
5706 };
5707 
5708 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5709 public:
5710   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5711       : ARMTargetCodeGenInfo(CGT, K) {}
5712 
5713   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5714                            CodeGen::CodeGenModule &CGM) const override;
5715 
5716   void getDependentLibraryOption(llvm::StringRef Lib,
5717                                  llvm::SmallString<24> &Opt) const override {
5718     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5719   }
5720 
5721   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5722                                llvm::SmallString<32> &Opt) const override {
5723     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5724   }
5725 };
5726 
5727 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5728     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5729   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5730   if (GV->isDeclaration())
5731     return;
5732   addStackProbeTargetAttributes(D, GV, CGM);
5733 }
5734 }
5735 
5736 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5737   if (!::classifyReturnType(getCXXABI(), FI, *this))
5738     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5739                                             FI.getCallingConvention());
5740 
5741   for (auto &I : FI.arguments())
5742     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5743                                   FI.getCallingConvention());
5744 
5745 
5746   // Always honor user-specified calling convention.
5747   if (FI.getCallingConvention() != llvm::CallingConv::C)
5748     return;
5749 
5750   llvm::CallingConv::ID cc = getRuntimeCC();
5751   if (cc != llvm::CallingConv::C)
5752     FI.setEffectiveCallingConvention(cc);
5753 }
5754 
5755 /// Return the default calling convention that LLVM will use.
5756 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5757   // The default calling convention that LLVM will infer.
5758   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5759     return llvm::CallingConv::ARM_AAPCS_VFP;
5760   else if (isEABI())
5761     return llvm::CallingConv::ARM_AAPCS;
5762   else
5763     return llvm::CallingConv::ARM_APCS;
5764 }
5765 
5766 /// Return the calling convention that our ABI would like us to use
5767 /// as the C calling convention.
5768 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5769   switch (getABIKind()) {
5770   case APCS: return llvm::CallingConv::ARM_APCS;
5771   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5772   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5773   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5774   }
5775   llvm_unreachable("bad ABI kind");
5776 }
5777 
5778 void ARMABIInfo::setCCs() {
5779   assert(getRuntimeCC() == llvm::CallingConv::C);
5780 
5781   // Don't muddy up the IR with a ton of explicit annotations if
5782   // they'd just match what LLVM will infer from the triple.
5783   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5784   if (abiCC != getLLVMDefaultCC())
5785     RuntimeCC = abiCC;
5786 }
5787 
5788 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5789   uint64_t Size = getContext().getTypeSize(Ty);
5790   if (Size <= 32) {
5791     llvm::Type *ResType =
5792         llvm::Type::getInt32Ty(getVMContext());
5793     return ABIArgInfo::getDirect(ResType);
5794   }
5795   if (Size == 64 || Size == 128) {
5796     llvm::Type *ResType = llvm::VectorType::get(
5797         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5798     return ABIArgInfo::getDirect(ResType);
5799   }
5800   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5801 }
5802 
5803 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5804                                                     const Type *Base,
5805                                                     uint64_t Members) const {
5806   assert(Base && "Base class should be set for homogeneous aggregate");
5807   // Base can be a floating-point or a vector.
5808   if (const VectorType *VT = Base->getAs<VectorType>()) {
5809     // FP16 vectors should be converted to integer vectors
5810     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
5811       uint64_t Size = getContext().getTypeSize(VT);
5812       llvm::Type *NewVecTy = llvm::VectorType::get(
5813           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5814       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5815       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5816     }
5817   }
5818   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5819 }
5820 
5821 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
5822                                             unsigned functionCallConv) const {
5823   // 6.1.2.1 The following argument types are VFP CPRCs:
5824   //   A single-precision floating-point type (including promoted
5825   //   half-precision types); A double-precision floating-point type;
5826   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5827   //   with a Base Type of a single- or double-precision floating-point type,
5828   //   64-bit containerized vectors or 128-bit containerized vectors with one
5829   //   to four Elements.
5830   // Variadic functions should always marshal to the base standard.
5831   bool IsAAPCS_VFP =
5832       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
5833 
5834   Ty = useFirstFieldIfTransparentUnion(Ty);
5835 
5836   // Handle illegal vector types here.
5837   if (isIllegalVectorType(Ty))
5838     return coerceIllegalVector(Ty);
5839 
5840   // _Float16 and __fp16 get passed as if it were an int or float, but with
5841   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5842   // half type natively, and does not need to interwork with AAPCS code.
5843   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5844       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5845     llvm::Type *ResType = IsAAPCS_VFP ?
5846       llvm::Type::getFloatTy(getVMContext()) :
5847       llvm::Type::getInt32Ty(getVMContext());
5848     return ABIArgInfo::getDirect(ResType);
5849   }
5850 
5851   if (!isAggregateTypeForABI(Ty)) {
5852     // Treat an enum type as its underlying type.
5853     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5854       Ty = EnumTy->getDecl()->getIntegerType();
5855     }
5856 
5857     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5858                                           : ABIArgInfo::getDirect());
5859   }
5860 
5861   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5862     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5863   }
5864 
5865   // Ignore empty records.
5866   if (isEmptyRecord(getContext(), Ty, true))
5867     return ABIArgInfo::getIgnore();
5868 
5869   if (IsAAPCS_VFP) {
5870     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5871     // into VFP registers.
5872     const Type *Base = nullptr;
5873     uint64_t Members = 0;
5874     if (isHomogeneousAggregate(Ty, Base, Members))
5875       return classifyHomogeneousAggregate(Ty, Base, Members);
5876   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5877     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5878     // this convention even for a variadic function: the backend will use GPRs
5879     // if needed.
5880     const Type *Base = nullptr;
5881     uint64_t Members = 0;
5882     if (isHomogeneousAggregate(Ty, Base, Members)) {
5883       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5884       llvm::Type *Ty =
5885         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5886       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5887     }
5888   }
5889 
5890   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5891       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5892     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5893     // bigger than 128-bits, they get placed in space allocated by the caller,
5894     // and a pointer is passed.
5895     return ABIArgInfo::getIndirect(
5896         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5897   }
5898 
5899   // Support byval for ARM.
5900   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5901   // most 8-byte. We realign the indirect argument if type alignment is bigger
5902   // than ABI alignment.
5903   uint64_t ABIAlign = 4;
5904   uint64_t TyAlign;
5905   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5906       getABIKind() == ARMABIInfo::AAPCS) {
5907     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5908     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5909   } else {
5910     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5911   }
5912   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5913     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5914     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5915                                    /*ByVal=*/true,
5916                                    /*Realign=*/TyAlign > ABIAlign);
5917   }
5918 
5919   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5920   // same size and alignment.
5921   if (getTarget().isRenderScriptTarget()) {
5922     return coerceToIntArray(Ty, getContext(), getVMContext());
5923   }
5924 
5925   // Otherwise, pass by coercing to a structure of the appropriate size.
5926   llvm::Type* ElemTy;
5927   unsigned SizeRegs;
5928   // FIXME: Try to match the types of the arguments more accurately where
5929   // we can.
5930   if (TyAlign <= 4) {
5931     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5932     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5933   } else {
5934     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5935     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5936   }
5937 
5938   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5939 }
5940 
5941 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5942                               llvm::LLVMContext &VMContext) {
5943   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5944   // is called integer-like if its size is less than or equal to one word, and
5945   // the offset of each of its addressable sub-fields is zero.
5946 
5947   uint64_t Size = Context.getTypeSize(Ty);
5948 
5949   // Check that the type fits in a word.
5950   if (Size > 32)
5951     return false;
5952 
5953   // FIXME: Handle vector types!
5954   if (Ty->isVectorType())
5955     return false;
5956 
5957   // Float types are never treated as "integer like".
5958   if (Ty->isRealFloatingType())
5959     return false;
5960 
5961   // If this is a builtin or pointer type then it is ok.
5962   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5963     return true;
5964 
5965   // Small complex integer types are "integer like".
5966   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5967     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5968 
5969   // Single element and zero sized arrays should be allowed, by the definition
5970   // above, but they are not.
5971 
5972   // Otherwise, it must be a record type.
5973   const RecordType *RT = Ty->getAs<RecordType>();
5974   if (!RT) return false;
5975 
5976   // Ignore records with flexible arrays.
5977   const RecordDecl *RD = RT->getDecl();
5978   if (RD->hasFlexibleArrayMember())
5979     return false;
5980 
5981   // Check that all sub-fields are at offset 0, and are themselves "integer
5982   // like".
5983   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5984 
5985   bool HadField = false;
5986   unsigned idx = 0;
5987   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5988        i != e; ++i, ++idx) {
5989     const FieldDecl *FD = *i;
5990 
5991     // Bit-fields are not addressable, we only need to verify they are "integer
5992     // like". We still have to disallow a subsequent non-bitfield, for example:
5993     //   struct { int : 0; int x }
5994     // is non-integer like according to gcc.
5995     if (FD->isBitField()) {
5996       if (!RD->isUnion())
5997         HadField = true;
5998 
5999       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6000         return false;
6001 
6002       continue;
6003     }
6004 
6005     // Check if this field is at offset 0.
6006     if (Layout.getFieldOffset(idx) != 0)
6007       return false;
6008 
6009     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6010       return false;
6011 
6012     // Only allow at most one field in a structure. This doesn't match the
6013     // wording above, but follows gcc in situations with a field following an
6014     // empty structure.
6015     if (!RD->isUnion()) {
6016       if (HadField)
6017         return false;
6018 
6019       HadField = true;
6020     }
6021   }
6022 
6023   return true;
6024 }
6025 
6026 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6027                                           unsigned functionCallConv) const {
6028 
6029   // Variadic functions should always marshal to the base standard.
6030   bool IsAAPCS_VFP =
6031       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6032 
6033   if (RetTy->isVoidType())
6034     return ABIArgInfo::getIgnore();
6035 
6036   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6037     // Large vector types should be returned via memory.
6038     if (getContext().getTypeSize(RetTy) > 128)
6039       return getNaturalAlignIndirect(RetTy);
6040     // FP16 vectors should be converted to integer vectors
6041     if (!getTarget().hasLegalHalfType() &&
6042         (VT->getElementType()->isFloat16Type() ||
6043          VT->getElementType()->isHalfType()))
6044       return coerceIllegalVector(RetTy);
6045   }
6046 
6047   // _Float16 and __fp16 get returned as if it were an int or float, but with
6048   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6049   // half type natively, and does not need to interwork with AAPCS code.
6050   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6051       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6052     llvm::Type *ResType = IsAAPCS_VFP ?
6053       llvm::Type::getFloatTy(getVMContext()) :
6054       llvm::Type::getInt32Ty(getVMContext());
6055     return ABIArgInfo::getDirect(ResType);
6056   }
6057 
6058   if (!isAggregateTypeForABI(RetTy)) {
6059     // Treat an enum type as its underlying type.
6060     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6061       RetTy = EnumTy->getDecl()->getIntegerType();
6062 
6063     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6064                                             : ABIArgInfo::getDirect();
6065   }
6066 
6067   // Are we following APCS?
6068   if (getABIKind() == APCS) {
6069     if (isEmptyRecord(getContext(), RetTy, false))
6070       return ABIArgInfo::getIgnore();
6071 
6072     // Complex types are all returned as packed integers.
6073     //
6074     // FIXME: Consider using 2 x vector types if the back end handles them
6075     // correctly.
6076     if (RetTy->isAnyComplexType())
6077       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6078           getVMContext(), getContext().getTypeSize(RetTy)));
6079 
6080     // Integer like structures are returned in r0.
6081     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6082       // Return in the smallest viable integer type.
6083       uint64_t Size = getContext().getTypeSize(RetTy);
6084       if (Size <= 8)
6085         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6086       if (Size <= 16)
6087         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6088       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6089     }
6090 
6091     // Otherwise return in memory.
6092     return getNaturalAlignIndirect(RetTy);
6093   }
6094 
6095   // Otherwise this is an AAPCS variant.
6096 
6097   if (isEmptyRecord(getContext(), RetTy, true))
6098     return ABIArgInfo::getIgnore();
6099 
6100   // Check for homogeneous aggregates with AAPCS-VFP.
6101   if (IsAAPCS_VFP) {
6102     const Type *Base = nullptr;
6103     uint64_t Members = 0;
6104     if (isHomogeneousAggregate(RetTy, Base, Members))
6105       return classifyHomogeneousAggregate(RetTy, Base, Members);
6106   }
6107 
6108   // Aggregates <= 4 bytes are returned in r0; other aggregates
6109   // are returned indirectly.
6110   uint64_t Size = getContext().getTypeSize(RetTy);
6111   if (Size <= 32) {
6112     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6113     // same size and alignment.
6114     if (getTarget().isRenderScriptTarget()) {
6115       return coerceToIntArray(RetTy, getContext(), getVMContext());
6116     }
6117     if (getDataLayout().isBigEndian())
6118       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6119       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6120 
6121     // Return in the smallest viable integer type.
6122     if (Size <= 8)
6123       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6124     if (Size <= 16)
6125       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6126     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6127   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6128     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6129     llvm::Type *CoerceTy =
6130         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6131     return ABIArgInfo::getDirect(CoerceTy);
6132   }
6133 
6134   return getNaturalAlignIndirect(RetTy);
6135 }
6136 
6137 /// isIllegalVector - check whether Ty is an illegal vector type.
6138 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6139   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6140     // On targets that don't support FP16, FP16 is expanded into float, and we
6141     // don't want the ABI to depend on whether or not FP16 is supported in
6142     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6143     if (!getTarget().hasLegalHalfType() &&
6144         (VT->getElementType()->isFloat16Type() ||
6145          VT->getElementType()->isHalfType()))
6146       return true;
6147     if (isAndroid()) {
6148       // Android shipped using Clang 3.1, which supported a slightly different
6149       // vector ABI. The primary differences were that 3-element vector types
6150       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6151       // accepts that legacy behavior for Android only.
6152       // Check whether VT is legal.
6153       unsigned NumElements = VT->getNumElements();
6154       // NumElements should be power of 2 or equal to 3.
6155       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6156         return true;
6157     } else {
6158       // Check whether VT is legal.
6159       unsigned NumElements = VT->getNumElements();
6160       uint64_t Size = getContext().getTypeSize(VT);
6161       // NumElements should be power of 2.
6162       if (!llvm::isPowerOf2_32(NumElements))
6163         return true;
6164       // Size should be greater than 32 bits.
6165       return Size <= 32;
6166     }
6167   }
6168   return false;
6169 }
6170 
6171 /// Return true if a type contains any 16-bit floating point vectors
6172 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6173   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6174     uint64_t NElements = AT->getSize().getZExtValue();
6175     if (NElements == 0)
6176       return false;
6177     return containsAnyFP16Vectors(AT->getElementType());
6178   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6179     const RecordDecl *RD = RT->getDecl();
6180 
6181     // If this is a C++ record, check the bases first.
6182     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6183       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6184             return containsAnyFP16Vectors(B.getType());
6185           }))
6186         return true;
6187 
6188     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6189           return FD && containsAnyFP16Vectors(FD->getType());
6190         }))
6191       return true;
6192 
6193     return false;
6194   } else {
6195     if (const VectorType *VT = Ty->getAs<VectorType>())
6196       return (VT->getElementType()->isFloat16Type() ||
6197               VT->getElementType()->isHalfType());
6198     return false;
6199   }
6200 }
6201 
6202 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6203                                            llvm::Type *eltTy,
6204                                            unsigned numElts) const {
6205   if (!llvm::isPowerOf2_32(numElts))
6206     return false;
6207   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6208   if (size > 64)
6209     return false;
6210   if (vectorSize.getQuantity() != 8 &&
6211       (vectorSize.getQuantity() != 16 || numElts == 1))
6212     return false;
6213   return true;
6214 }
6215 
6216 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6217   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6218   // double, or 64-bit or 128-bit vectors.
6219   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6220     if (BT->getKind() == BuiltinType::Float ||
6221         BT->getKind() == BuiltinType::Double ||
6222         BT->getKind() == BuiltinType::LongDouble)
6223       return true;
6224   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6225     unsigned VecSize = getContext().getTypeSize(VT);
6226     if (VecSize == 64 || VecSize == 128)
6227       return true;
6228   }
6229   return false;
6230 }
6231 
6232 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6233                                                    uint64_t Members) const {
6234   return Members <= 4;
6235 }
6236 
6237 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6238                                         bool acceptHalf) const {
6239   // Give precedence to user-specified calling conventions.
6240   if (callConvention != llvm::CallingConv::C)
6241     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6242   else
6243     return (getABIKind() == AAPCS_VFP) ||
6244            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6245 }
6246 
6247 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6248                               QualType Ty) const {
6249   CharUnits SlotSize = CharUnits::fromQuantity(4);
6250 
6251   // Empty records are ignored for parameter passing purposes.
6252   if (isEmptyRecord(getContext(), Ty, true)) {
6253     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6254     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6255     return Addr;
6256   }
6257 
6258   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6259   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6260 
6261   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6262   bool IsIndirect = false;
6263   const Type *Base = nullptr;
6264   uint64_t Members = 0;
6265   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6266     IsIndirect = true;
6267 
6268   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6269   // allocated by the caller.
6270   } else if (TySize > CharUnits::fromQuantity(16) &&
6271              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6272              !isHomogeneousAggregate(Ty, Base, Members)) {
6273     IsIndirect = true;
6274 
6275   // Otherwise, bound the type's ABI alignment.
6276   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6277   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6278   // Our callers should be prepared to handle an under-aligned address.
6279   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6280              getABIKind() == ARMABIInfo::AAPCS) {
6281     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6282     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6283   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6284     // ARMv7k allows type alignment up to 16 bytes.
6285     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6286     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6287   } else {
6288     TyAlignForABI = CharUnits::fromQuantity(4);
6289   }
6290 
6291   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6292   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6293                           SlotSize, /*AllowHigherAlign*/ true);
6294 }
6295 
6296 //===----------------------------------------------------------------------===//
6297 // NVPTX ABI Implementation
6298 //===----------------------------------------------------------------------===//
6299 
6300 namespace {
6301 
6302 class NVPTXABIInfo : public ABIInfo {
6303 public:
6304   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6305 
6306   ABIArgInfo classifyReturnType(QualType RetTy) const;
6307   ABIArgInfo classifyArgumentType(QualType Ty) const;
6308 
6309   void computeInfo(CGFunctionInfo &FI) const override;
6310   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6311                     QualType Ty) const override;
6312 };
6313 
6314 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6315 public:
6316   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6317     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6318 
6319   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6320                            CodeGen::CodeGenModule &M) const override;
6321   bool shouldEmitStaticExternCAliases() const override;
6322 
6323 private:
6324   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6325   // resulting MDNode to the nvvm.annotations MDNode.
6326   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6327 };
6328 
6329 /// Checks if the type is unsupported directly by the current target.
6330 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6331   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6332     return true;
6333   if (!Context.getTargetInfo().hasFloat128Type() &&
6334       (T->isFloat128Type() ||
6335        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6336     return true;
6337   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6338       Context.getTypeSize(T) > 64)
6339     return true;
6340   if (const auto *AT = T->getAsArrayTypeUnsafe())
6341     return isUnsupportedType(Context, AT->getElementType());
6342   const auto *RT = T->getAs<RecordType>();
6343   if (!RT)
6344     return false;
6345   const RecordDecl *RD = RT->getDecl();
6346 
6347   // If this is a C++ record, check the bases first.
6348   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6349     for (const CXXBaseSpecifier &I : CXXRD->bases())
6350       if (isUnsupportedType(Context, I.getType()))
6351         return true;
6352 
6353   for (const FieldDecl *I : RD->fields())
6354     if (isUnsupportedType(Context, I->getType()))
6355       return true;
6356   return false;
6357 }
6358 
6359 /// Coerce the given type into an array with maximum allowed size of elements.
6360 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6361                                             llvm::LLVMContext &LLVMContext,
6362                                             unsigned MaxSize) {
6363   // Alignment and Size are measured in bits.
6364   const uint64_t Size = Context.getTypeSize(Ty);
6365   const uint64_t Alignment = Context.getTypeAlign(Ty);
6366   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6367   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6368   const uint64_t NumElements = (Size + Div - 1) / Div;
6369   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6370 }
6371 
6372 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6373   if (RetTy->isVoidType())
6374     return ABIArgInfo::getIgnore();
6375 
6376   if (getContext().getLangOpts().OpenMP &&
6377       getContext().getLangOpts().OpenMPIsDevice &&
6378       isUnsupportedType(getContext(), RetTy))
6379     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6380 
6381   // note: this is different from default ABI
6382   if (!RetTy->isScalarType())
6383     return ABIArgInfo::getDirect();
6384 
6385   // Treat an enum type as its underlying type.
6386   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6387     RetTy = EnumTy->getDecl()->getIntegerType();
6388 
6389   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6390                                            : ABIArgInfo::getDirect());
6391 }
6392 
6393 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6394   // Treat an enum type as its underlying type.
6395   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6396     Ty = EnumTy->getDecl()->getIntegerType();
6397 
6398   // Return aggregates type as indirect by value
6399   if (isAggregateTypeForABI(Ty))
6400     return getNaturalAlignIndirect(Ty, /* byval */ true);
6401 
6402   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6403                                         : ABIArgInfo::getDirect());
6404 }
6405 
6406 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6407   if (!getCXXABI().classifyReturnType(FI))
6408     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6409   for (auto &I : FI.arguments())
6410     I.info = classifyArgumentType(I.type);
6411 
6412   // Always honor user-specified calling convention.
6413   if (FI.getCallingConvention() != llvm::CallingConv::C)
6414     return;
6415 
6416   FI.setEffectiveCallingConvention(getRuntimeCC());
6417 }
6418 
6419 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6420                                 QualType Ty) const {
6421   llvm_unreachable("NVPTX does not support varargs");
6422 }
6423 
6424 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6425     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6426   if (GV->isDeclaration())
6427     return;
6428   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6429   if (!FD) return;
6430 
6431   llvm::Function *F = cast<llvm::Function>(GV);
6432 
6433   // Perform special handling in OpenCL mode
6434   if (M.getLangOpts().OpenCL) {
6435     // Use OpenCL function attributes to check for kernel functions
6436     // By default, all functions are device functions
6437     if (FD->hasAttr<OpenCLKernelAttr>()) {
6438       // OpenCL __kernel functions get kernel metadata
6439       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6440       addNVVMMetadata(F, "kernel", 1);
6441       // And kernel functions are not subject to inlining
6442       F->addFnAttr(llvm::Attribute::NoInline);
6443     }
6444   }
6445 
6446   // Perform special handling in CUDA mode.
6447   if (M.getLangOpts().CUDA) {
6448     // CUDA __global__ functions get a kernel metadata entry.  Since
6449     // __global__ functions cannot be called from the device, we do not
6450     // need to set the noinline attribute.
6451     if (FD->hasAttr<CUDAGlobalAttr>()) {
6452       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6453       addNVVMMetadata(F, "kernel", 1);
6454     }
6455     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6456       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6457       llvm::APSInt MaxThreads(32);
6458       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6459       if (MaxThreads > 0)
6460         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6461 
6462       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6463       // not specified in __launch_bounds__ or if the user specified a 0 value,
6464       // we don't have to add a PTX directive.
6465       if (Attr->getMinBlocks()) {
6466         llvm::APSInt MinBlocks(32);
6467         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6468         if (MinBlocks > 0)
6469           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6470           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6471       }
6472     }
6473   }
6474 }
6475 
6476 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6477                                              int Operand) {
6478   llvm::Module *M = F->getParent();
6479   llvm::LLVMContext &Ctx = M->getContext();
6480 
6481   // Get "nvvm.annotations" metadata node
6482   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6483 
6484   llvm::Metadata *MDVals[] = {
6485       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6486       llvm::ConstantAsMetadata::get(
6487           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6488   // Append metadata to nvvm.annotations
6489   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6490 }
6491 
6492 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6493   return false;
6494 }
6495 }
6496 
6497 //===----------------------------------------------------------------------===//
6498 // SystemZ ABI Implementation
6499 //===----------------------------------------------------------------------===//
6500 
6501 namespace {
6502 
6503 class SystemZABIInfo : public SwiftABIInfo {
6504   bool HasVector;
6505 
6506 public:
6507   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6508     : SwiftABIInfo(CGT), HasVector(HV) {}
6509 
6510   bool isPromotableIntegerType(QualType Ty) const;
6511   bool isCompoundType(QualType Ty) const;
6512   bool isVectorArgumentType(QualType Ty) const;
6513   bool isFPArgumentType(QualType Ty) const;
6514   QualType GetSingleElementType(QualType Ty) const;
6515 
6516   ABIArgInfo classifyReturnType(QualType RetTy) const;
6517   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6518 
6519   void computeInfo(CGFunctionInfo &FI) const override {
6520     if (!getCXXABI().classifyReturnType(FI))
6521       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6522     for (auto &I : FI.arguments())
6523       I.info = classifyArgumentType(I.type);
6524   }
6525 
6526   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6527                     QualType Ty) const override;
6528 
6529   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6530                                     bool asReturnValue) const override {
6531     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6532   }
6533   bool isSwiftErrorInRegister() const override {
6534     return false;
6535   }
6536 };
6537 
6538 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6539 public:
6540   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6541     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6542 };
6543 
6544 }
6545 
6546 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6547   // Treat an enum type as its underlying type.
6548   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6549     Ty = EnumTy->getDecl()->getIntegerType();
6550 
6551   // Promotable integer types are required to be promoted by the ABI.
6552   if (Ty->isPromotableIntegerType())
6553     return true;
6554 
6555   // 32-bit values must also be promoted.
6556   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6557     switch (BT->getKind()) {
6558     case BuiltinType::Int:
6559     case BuiltinType::UInt:
6560       return true;
6561     default:
6562       return false;
6563     }
6564   return false;
6565 }
6566 
6567 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6568   return (Ty->isAnyComplexType() ||
6569           Ty->isVectorType() ||
6570           isAggregateTypeForABI(Ty));
6571 }
6572 
6573 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6574   return (HasVector &&
6575           Ty->isVectorType() &&
6576           getContext().getTypeSize(Ty) <= 128);
6577 }
6578 
6579 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6580   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6581     switch (BT->getKind()) {
6582     case BuiltinType::Float:
6583     case BuiltinType::Double:
6584       return true;
6585     default:
6586       return false;
6587     }
6588 
6589   return false;
6590 }
6591 
6592 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6593   if (const RecordType *RT = Ty->getAsStructureType()) {
6594     const RecordDecl *RD = RT->getDecl();
6595     QualType Found;
6596 
6597     // If this is a C++ record, check the bases first.
6598     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6599       for (const auto &I : CXXRD->bases()) {
6600         QualType Base = I.getType();
6601 
6602         // Empty bases don't affect things either way.
6603         if (isEmptyRecord(getContext(), Base, true))
6604           continue;
6605 
6606         if (!Found.isNull())
6607           return Ty;
6608         Found = GetSingleElementType(Base);
6609       }
6610 
6611     // Check the fields.
6612     for (const auto *FD : RD->fields()) {
6613       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6614       // Unlike isSingleElementStruct(), empty structure and array fields
6615       // do count.  So do anonymous bitfields that aren't zero-sized.
6616       if (getContext().getLangOpts().CPlusPlus &&
6617           FD->isZeroLengthBitField(getContext()))
6618         continue;
6619 
6620       // Unlike isSingleElementStruct(), arrays do not count.
6621       // Nested structures still do though.
6622       if (!Found.isNull())
6623         return Ty;
6624       Found = GetSingleElementType(FD->getType());
6625     }
6626 
6627     // Unlike isSingleElementStruct(), trailing padding is allowed.
6628     // An 8-byte aligned struct s { float f; } is passed as a double.
6629     if (!Found.isNull())
6630       return Found;
6631   }
6632 
6633   return Ty;
6634 }
6635 
6636 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6637                                   QualType Ty) const {
6638   // Assume that va_list type is correct; should be pointer to LLVM type:
6639   // struct {
6640   //   i64 __gpr;
6641   //   i64 __fpr;
6642   //   i8 *__overflow_arg_area;
6643   //   i8 *__reg_save_area;
6644   // };
6645 
6646   // Every non-vector argument occupies 8 bytes and is passed by preference
6647   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6648   // always passed on the stack.
6649   Ty = getContext().getCanonicalType(Ty);
6650   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6651   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6652   llvm::Type *DirectTy = ArgTy;
6653   ABIArgInfo AI = classifyArgumentType(Ty);
6654   bool IsIndirect = AI.isIndirect();
6655   bool InFPRs = false;
6656   bool IsVector = false;
6657   CharUnits UnpaddedSize;
6658   CharUnits DirectAlign;
6659   if (IsIndirect) {
6660     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6661     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6662   } else {
6663     if (AI.getCoerceToType())
6664       ArgTy = AI.getCoerceToType();
6665     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6666     IsVector = ArgTy->isVectorTy();
6667     UnpaddedSize = TyInfo.first;
6668     DirectAlign = TyInfo.second;
6669   }
6670   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6671   if (IsVector && UnpaddedSize > PaddedSize)
6672     PaddedSize = CharUnits::fromQuantity(16);
6673   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6674 
6675   CharUnits Padding = (PaddedSize - UnpaddedSize);
6676 
6677   llvm::Type *IndexTy = CGF.Int64Ty;
6678   llvm::Value *PaddedSizeV =
6679     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6680 
6681   if (IsVector) {
6682     // Work out the address of a vector argument on the stack.
6683     // Vector arguments are always passed in the high bits of a
6684     // single (8 byte) or double (16 byte) stack slot.
6685     Address OverflowArgAreaPtr =
6686         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6687     Address OverflowArgArea =
6688       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6689               TyInfo.second);
6690     Address MemAddr =
6691       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6692 
6693     // Update overflow_arg_area_ptr pointer
6694     llvm::Value *NewOverflowArgArea =
6695       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6696                             "overflow_arg_area");
6697     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6698 
6699     return MemAddr;
6700   }
6701 
6702   assert(PaddedSize.getQuantity() == 8);
6703 
6704   unsigned MaxRegs, RegCountField, RegSaveIndex;
6705   CharUnits RegPadding;
6706   if (InFPRs) {
6707     MaxRegs = 4; // Maximum of 4 FPR arguments
6708     RegCountField = 1; // __fpr
6709     RegSaveIndex = 16; // save offset for f0
6710     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6711   } else {
6712     MaxRegs = 5; // Maximum of 5 GPR arguments
6713     RegCountField = 0; // __gpr
6714     RegSaveIndex = 2; // save offset for r2
6715     RegPadding = Padding; // values are passed in the low bits of a GPR
6716   }
6717 
6718   Address RegCountPtr =
6719       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6720   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6721   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6722   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6723                                                  "fits_in_regs");
6724 
6725   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6726   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6727   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6728   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6729 
6730   // Emit code to load the value if it was passed in registers.
6731   CGF.EmitBlock(InRegBlock);
6732 
6733   // Work out the address of an argument register.
6734   llvm::Value *ScaledRegCount =
6735     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6736   llvm::Value *RegBase =
6737     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6738                                       + RegPadding.getQuantity());
6739   llvm::Value *RegOffset =
6740     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6741   Address RegSaveAreaPtr =
6742       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6743   llvm::Value *RegSaveArea =
6744     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6745   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6746                                            "raw_reg_addr"),
6747                      PaddedSize);
6748   Address RegAddr =
6749     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6750 
6751   // Update the register count
6752   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6753   llvm::Value *NewRegCount =
6754     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6755   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6756   CGF.EmitBranch(ContBlock);
6757 
6758   // Emit code to load the value if it was passed in memory.
6759   CGF.EmitBlock(InMemBlock);
6760 
6761   // Work out the address of a stack argument.
6762   Address OverflowArgAreaPtr =
6763       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6764   Address OverflowArgArea =
6765     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6766             PaddedSize);
6767   Address RawMemAddr =
6768     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6769   Address MemAddr =
6770     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6771 
6772   // Update overflow_arg_area_ptr pointer
6773   llvm::Value *NewOverflowArgArea =
6774     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6775                           "overflow_arg_area");
6776   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6777   CGF.EmitBranch(ContBlock);
6778 
6779   // Return the appropriate result.
6780   CGF.EmitBlock(ContBlock);
6781   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6782                                  MemAddr, InMemBlock, "va_arg.addr");
6783 
6784   if (IsIndirect)
6785     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6786                       TyInfo.second);
6787 
6788   return ResAddr;
6789 }
6790 
6791 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6792   if (RetTy->isVoidType())
6793     return ABIArgInfo::getIgnore();
6794   if (isVectorArgumentType(RetTy))
6795     return ABIArgInfo::getDirect();
6796   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6797     return getNaturalAlignIndirect(RetTy);
6798   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6799                                          : ABIArgInfo::getDirect());
6800 }
6801 
6802 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6803   // Handle the generic C++ ABI.
6804   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6805     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6806 
6807   // Integers and enums are extended to full register width.
6808   if (isPromotableIntegerType(Ty))
6809     return ABIArgInfo::getExtend(Ty);
6810 
6811   // Handle vector types and vector-like structure types.  Note that
6812   // as opposed to float-like structure types, we do not allow any
6813   // padding for vector-like structures, so verify the sizes match.
6814   uint64_t Size = getContext().getTypeSize(Ty);
6815   QualType SingleElementTy = GetSingleElementType(Ty);
6816   if (isVectorArgumentType(SingleElementTy) &&
6817       getContext().getTypeSize(SingleElementTy) == Size)
6818     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6819 
6820   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6821   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6822     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6823 
6824   // Handle small structures.
6825   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6826     // Structures with flexible arrays have variable length, so really
6827     // fail the size test above.
6828     const RecordDecl *RD = RT->getDecl();
6829     if (RD->hasFlexibleArrayMember())
6830       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6831 
6832     // The structure is passed as an unextended integer, a float, or a double.
6833     llvm::Type *PassTy;
6834     if (isFPArgumentType(SingleElementTy)) {
6835       assert(Size == 32 || Size == 64);
6836       if (Size == 32)
6837         PassTy = llvm::Type::getFloatTy(getVMContext());
6838       else
6839         PassTy = llvm::Type::getDoubleTy(getVMContext());
6840     } else
6841       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6842     return ABIArgInfo::getDirect(PassTy);
6843   }
6844 
6845   // Non-structure compounds are passed indirectly.
6846   if (isCompoundType(Ty))
6847     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6848 
6849   return ABIArgInfo::getDirect(nullptr);
6850 }
6851 
6852 //===----------------------------------------------------------------------===//
6853 // MSP430 ABI Implementation
6854 //===----------------------------------------------------------------------===//
6855 
6856 namespace {
6857 
6858 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6859 public:
6860   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6861     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6862   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6863                            CodeGen::CodeGenModule &M) const override;
6864 };
6865 
6866 }
6867 
6868 void MSP430TargetCodeGenInfo::setTargetAttributes(
6869     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6870   if (GV->isDeclaration())
6871     return;
6872   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6873     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6874     if (!InterruptAttr)
6875       return;
6876 
6877     // Handle 'interrupt' attribute:
6878     llvm::Function *F = cast<llvm::Function>(GV);
6879 
6880     // Step 1: Set ISR calling convention.
6881     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6882 
6883     // Step 2: Add attributes goodness.
6884     F->addFnAttr(llvm::Attribute::NoInline);
6885     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6886   }
6887 }
6888 
6889 //===----------------------------------------------------------------------===//
6890 // MIPS ABI Implementation.  This works for both little-endian and
6891 // big-endian variants.
6892 //===----------------------------------------------------------------------===//
6893 
6894 namespace {
6895 class MipsABIInfo : public ABIInfo {
6896   bool IsO32;
6897   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6898   void CoerceToIntArgs(uint64_t TySize,
6899                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6900   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6901   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6902   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6903 public:
6904   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6905     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6906     StackAlignInBytes(IsO32 ? 8 : 16) {}
6907 
6908   ABIArgInfo classifyReturnType(QualType RetTy) const;
6909   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6910   void computeInfo(CGFunctionInfo &FI) const override;
6911   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6912                     QualType Ty) const override;
6913   ABIArgInfo extendType(QualType Ty) const;
6914 };
6915 
6916 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6917   unsigned SizeOfUnwindException;
6918 public:
6919   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6920     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6921       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6922 
6923   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6924     return 29;
6925   }
6926 
6927   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6928                            CodeGen::CodeGenModule &CGM) const override {
6929     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6930     if (!FD) return;
6931     llvm::Function *Fn = cast<llvm::Function>(GV);
6932 
6933     if (FD->hasAttr<MipsLongCallAttr>())
6934       Fn->addFnAttr("long-call");
6935     else if (FD->hasAttr<MipsShortCallAttr>())
6936       Fn->addFnAttr("short-call");
6937 
6938     // Other attributes do not have a meaning for declarations.
6939     if (GV->isDeclaration())
6940       return;
6941 
6942     if (FD->hasAttr<Mips16Attr>()) {
6943       Fn->addFnAttr("mips16");
6944     }
6945     else if (FD->hasAttr<NoMips16Attr>()) {
6946       Fn->addFnAttr("nomips16");
6947     }
6948 
6949     if (FD->hasAttr<MicroMipsAttr>())
6950       Fn->addFnAttr("micromips");
6951     else if (FD->hasAttr<NoMicroMipsAttr>())
6952       Fn->addFnAttr("nomicromips");
6953 
6954     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6955     if (!Attr)
6956       return;
6957 
6958     const char *Kind;
6959     switch (Attr->getInterrupt()) {
6960     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6961     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6962     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6963     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6964     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6965     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6966     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6967     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6968     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6969     }
6970 
6971     Fn->addFnAttr("interrupt", Kind);
6972 
6973   }
6974 
6975   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6976                                llvm::Value *Address) const override;
6977 
6978   unsigned getSizeOfUnwindException() const override {
6979     return SizeOfUnwindException;
6980   }
6981 };
6982 }
6983 
6984 void MipsABIInfo::CoerceToIntArgs(
6985     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6986   llvm::IntegerType *IntTy =
6987     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6988 
6989   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6990   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6991     ArgList.push_back(IntTy);
6992 
6993   // If necessary, add one more integer type to ArgList.
6994   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6995 
6996   if (R)
6997     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6998 }
6999 
7000 // In N32/64, an aligned double precision floating point field is passed in
7001 // a register.
7002 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7003   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7004 
7005   if (IsO32) {
7006     CoerceToIntArgs(TySize, ArgList);
7007     return llvm::StructType::get(getVMContext(), ArgList);
7008   }
7009 
7010   if (Ty->isComplexType())
7011     return CGT.ConvertType(Ty);
7012 
7013   const RecordType *RT = Ty->getAs<RecordType>();
7014 
7015   // Unions/vectors are passed in integer registers.
7016   if (!RT || !RT->isStructureOrClassType()) {
7017     CoerceToIntArgs(TySize, ArgList);
7018     return llvm::StructType::get(getVMContext(), ArgList);
7019   }
7020 
7021   const RecordDecl *RD = RT->getDecl();
7022   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7023   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7024 
7025   uint64_t LastOffset = 0;
7026   unsigned idx = 0;
7027   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7028 
7029   // Iterate over fields in the struct/class and check if there are any aligned
7030   // double fields.
7031   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7032        i != e; ++i, ++idx) {
7033     const QualType Ty = i->getType();
7034     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7035 
7036     if (!BT || BT->getKind() != BuiltinType::Double)
7037       continue;
7038 
7039     uint64_t Offset = Layout.getFieldOffset(idx);
7040     if (Offset % 64) // Ignore doubles that are not aligned.
7041       continue;
7042 
7043     // Add ((Offset - LastOffset) / 64) args of type i64.
7044     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7045       ArgList.push_back(I64);
7046 
7047     // Add double type.
7048     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7049     LastOffset = Offset + 64;
7050   }
7051 
7052   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7053   ArgList.append(IntArgList.begin(), IntArgList.end());
7054 
7055   return llvm::StructType::get(getVMContext(), ArgList);
7056 }
7057 
7058 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7059                                         uint64_t Offset) const {
7060   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7061     return nullptr;
7062 
7063   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7064 }
7065 
7066 ABIArgInfo
7067 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7068   Ty = useFirstFieldIfTransparentUnion(Ty);
7069 
7070   uint64_t OrigOffset = Offset;
7071   uint64_t TySize = getContext().getTypeSize(Ty);
7072   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7073 
7074   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7075                    (uint64_t)StackAlignInBytes);
7076   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7077   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7078 
7079   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7080     // Ignore empty aggregates.
7081     if (TySize == 0)
7082       return ABIArgInfo::getIgnore();
7083 
7084     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7085       Offset = OrigOffset + MinABIStackAlignInBytes;
7086       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7087     }
7088 
7089     // If we have reached here, aggregates are passed directly by coercing to
7090     // another structure type. Padding is inserted if the offset of the
7091     // aggregate is unaligned.
7092     ABIArgInfo ArgInfo =
7093         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7094                               getPaddingType(OrigOffset, CurrOffset));
7095     ArgInfo.setInReg(true);
7096     return ArgInfo;
7097   }
7098 
7099   // Treat an enum type as its underlying type.
7100   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7101     Ty = EnumTy->getDecl()->getIntegerType();
7102 
7103   // All integral types are promoted to the GPR width.
7104   if (Ty->isIntegralOrEnumerationType())
7105     return extendType(Ty);
7106 
7107   return ABIArgInfo::getDirect(
7108       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7109 }
7110 
7111 llvm::Type*
7112 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7113   const RecordType *RT = RetTy->getAs<RecordType>();
7114   SmallVector<llvm::Type*, 8> RTList;
7115 
7116   if (RT && RT->isStructureOrClassType()) {
7117     const RecordDecl *RD = RT->getDecl();
7118     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7119     unsigned FieldCnt = Layout.getFieldCount();
7120 
7121     // N32/64 returns struct/classes in floating point registers if the
7122     // following conditions are met:
7123     // 1. The size of the struct/class is no larger than 128-bit.
7124     // 2. The struct/class has one or two fields all of which are floating
7125     //    point types.
7126     // 3. The offset of the first field is zero (this follows what gcc does).
7127     //
7128     // Any other composite results are returned in integer registers.
7129     //
7130     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7131       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7132       for (; b != e; ++b) {
7133         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7134 
7135         if (!BT || !BT->isFloatingPoint())
7136           break;
7137 
7138         RTList.push_back(CGT.ConvertType(b->getType()));
7139       }
7140 
7141       if (b == e)
7142         return llvm::StructType::get(getVMContext(), RTList,
7143                                      RD->hasAttr<PackedAttr>());
7144 
7145       RTList.clear();
7146     }
7147   }
7148 
7149   CoerceToIntArgs(Size, RTList);
7150   return llvm::StructType::get(getVMContext(), RTList);
7151 }
7152 
7153 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7154   uint64_t Size = getContext().getTypeSize(RetTy);
7155 
7156   if (RetTy->isVoidType())
7157     return ABIArgInfo::getIgnore();
7158 
7159   // O32 doesn't treat zero-sized structs differently from other structs.
7160   // However, N32/N64 ignores zero sized return values.
7161   if (!IsO32 && Size == 0)
7162     return ABIArgInfo::getIgnore();
7163 
7164   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7165     if (Size <= 128) {
7166       if (RetTy->isAnyComplexType())
7167         return ABIArgInfo::getDirect();
7168 
7169       // O32 returns integer vectors in registers and N32/N64 returns all small
7170       // aggregates in registers.
7171       if (!IsO32 ||
7172           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7173         ABIArgInfo ArgInfo =
7174             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7175         ArgInfo.setInReg(true);
7176         return ArgInfo;
7177       }
7178     }
7179 
7180     return getNaturalAlignIndirect(RetTy);
7181   }
7182 
7183   // Treat an enum type as its underlying type.
7184   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7185     RetTy = EnumTy->getDecl()->getIntegerType();
7186 
7187   if (RetTy->isPromotableIntegerType())
7188     return ABIArgInfo::getExtend(RetTy);
7189 
7190   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7191       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7192     return ABIArgInfo::getSignExtend(RetTy);
7193 
7194   return ABIArgInfo::getDirect();
7195 }
7196 
7197 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7198   ABIArgInfo &RetInfo = FI.getReturnInfo();
7199   if (!getCXXABI().classifyReturnType(FI))
7200     RetInfo = classifyReturnType(FI.getReturnType());
7201 
7202   // Check if a pointer to an aggregate is passed as a hidden argument.
7203   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7204 
7205   for (auto &I : FI.arguments())
7206     I.info = classifyArgumentType(I.type, Offset);
7207 }
7208 
7209 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7210                                QualType OrigTy) const {
7211   QualType Ty = OrigTy;
7212 
7213   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7214   // Pointers are also promoted in the same way but this only matters for N32.
7215   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7216   unsigned PtrWidth = getTarget().getPointerWidth(0);
7217   bool DidPromote = false;
7218   if ((Ty->isIntegerType() &&
7219           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7220       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7221     DidPromote = true;
7222     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7223                                             Ty->isSignedIntegerType());
7224   }
7225 
7226   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7227 
7228   // The alignment of things in the argument area is never larger than
7229   // StackAlignInBytes.
7230   TyInfo.second =
7231     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7232 
7233   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7234   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7235 
7236   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7237                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7238 
7239 
7240   // If there was a promotion, "unpromote" into a temporary.
7241   // TODO: can we just use a pointer into a subset of the original slot?
7242   if (DidPromote) {
7243     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7244     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7245 
7246     // Truncate down to the right width.
7247     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7248                                                  : CGF.IntPtrTy);
7249     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7250     if (OrigTy->isPointerType())
7251       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7252 
7253     CGF.Builder.CreateStore(V, Temp);
7254     Addr = Temp;
7255   }
7256 
7257   return Addr;
7258 }
7259 
7260 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7261   int TySize = getContext().getTypeSize(Ty);
7262 
7263   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7264   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7265     return ABIArgInfo::getSignExtend(Ty);
7266 
7267   return ABIArgInfo::getExtend(Ty);
7268 }
7269 
7270 bool
7271 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7272                                                llvm::Value *Address) const {
7273   // This information comes from gcc's implementation, which seems to
7274   // as canonical as it gets.
7275 
7276   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7277   // are aliased to pairs of single-precision FP registers.
7278   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7279 
7280   // 0-31 are the general purpose registers, $0 - $31.
7281   // 32-63 are the floating-point registers, $f0 - $f31.
7282   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7283   // 66 is the (notional, I think) register for signal-handler return.
7284   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7285 
7286   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7287   // They are one bit wide and ignored here.
7288 
7289   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7290   // (coprocessor 1 is the FP unit)
7291   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7292   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7293   // 176-181 are the DSP accumulator registers.
7294   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7295   return false;
7296 }
7297 
7298 //===----------------------------------------------------------------------===//
7299 // AVR ABI Implementation.
7300 //===----------------------------------------------------------------------===//
7301 
7302 namespace {
7303 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7304 public:
7305   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7306     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7307 
7308   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7309                            CodeGen::CodeGenModule &CGM) const override {
7310     if (GV->isDeclaration())
7311       return;
7312     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7313     if (!FD) return;
7314     auto *Fn = cast<llvm::Function>(GV);
7315 
7316     if (FD->getAttr<AVRInterruptAttr>())
7317       Fn->addFnAttr("interrupt");
7318 
7319     if (FD->getAttr<AVRSignalAttr>())
7320       Fn->addFnAttr("signal");
7321   }
7322 };
7323 }
7324 
7325 //===----------------------------------------------------------------------===//
7326 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7327 // Currently subclassed only to implement custom OpenCL C function attribute
7328 // handling.
7329 //===----------------------------------------------------------------------===//
7330 
7331 namespace {
7332 
7333 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7334 public:
7335   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7336     : DefaultTargetCodeGenInfo(CGT) {}
7337 
7338   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7339                            CodeGen::CodeGenModule &M) const override;
7340 };
7341 
7342 void TCETargetCodeGenInfo::setTargetAttributes(
7343     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7344   if (GV->isDeclaration())
7345     return;
7346   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7347   if (!FD) return;
7348 
7349   llvm::Function *F = cast<llvm::Function>(GV);
7350 
7351   if (M.getLangOpts().OpenCL) {
7352     if (FD->hasAttr<OpenCLKernelAttr>()) {
7353       // OpenCL C Kernel functions are not subject to inlining
7354       F->addFnAttr(llvm::Attribute::NoInline);
7355       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7356       if (Attr) {
7357         // Convert the reqd_work_group_size() attributes to metadata.
7358         llvm::LLVMContext &Context = F->getContext();
7359         llvm::NamedMDNode *OpenCLMetadata =
7360             M.getModule().getOrInsertNamedMetadata(
7361                 "opencl.kernel_wg_size_info");
7362 
7363         SmallVector<llvm::Metadata *, 5> Operands;
7364         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7365 
7366         Operands.push_back(
7367             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7368                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7369         Operands.push_back(
7370             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7371                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7372         Operands.push_back(
7373             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7374                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7375 
7376         // Add a boolean constant operand for "required" (true) or "hint"
7377         // (false) for implementing the work_group_size_hint attr later.
7378         // Currently always true as the hint is not yet implemented.
7379         Operands.push_back(
7380             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7381         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7382       }
7383     }
7384   }
7385 }
7386 
7387 }
7388 
7389 //===----------------------------------------------------------------------===//
7390 // Hexagon ABI Implementation
7391 //===----------------------------------------------------------------------===//
7392 
7393 namespace {
7394 
7395 class HexagonABIInfo : public ABIInfo {
7396 
7397 
7398 public:
7399   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7400 
7401 private:
7402 
7403   ABIArgInfo classifyReturnType(QualType RetTy) const;
7404   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7405 
7406   void computeInfo(CGFunctionInfo &FI) const override;
7407 
7408   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7409                     QualType Ty) const override;
7410 };
7411 
7412 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7413 public:
7414   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7415     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7416 
7417   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7418     return 29;
7419   }
7420 };
7421 
7422 }
7423 
7424 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7425   if (!getCXXABI().classifyReturnType(FI))
7426     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7427   for (auto &I : FI.arguments())
7428     I.info = classifyArgumentType(I.type);
7429 }
7430 
7431 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7432   if (!isAggregateTypeForABI(Ty)) {
7433     // Treat an enum type as its underlying type.
7434     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7435       Ty = EnumTy->getDecl()->getIntegerType();
7436 
7437     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7438                                           : ABIArgInfo::getDirect());
7439   }
7440 
7441   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7442     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7443 
7444   // Ignore empty records.
7445   if (isEmptyRecord(getContext(), Ty, true))
7446     return ABIArgInfo::getIgnore();
7447 
7448   uint64_t Size = getContext().getTypeSize(Ty);
7449   if (Size > 64)
7450     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7451     // Pass in the smallest viable integer type.
7452   else if (Size > 32)
7453       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7454   else if (Size > 16)
7455       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7456   else if (Size > 8)
7457       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7458   else
7459       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7460 }
7461 
7462 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7463   if (RetTy->isVoidType())
7464     return ABIArgInfo::getIgnore();
7465 
7466   // Large vector types should be returned via memory.
7467   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7468     return getNaturalAlignIndirect(RetTy);
7469 
7470   if (!isAggregateTypeForABI(RetTy)) {
7471     // Treat an enum type as its underlying type.
7472     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7473       RetTy = EnumTy->getDecl()->getIntegerType();
7474 
7475     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7476                                              : ABIArgInfo::getDirect());
7477   }
7478 
7479   if (isEmptyRecord(getContext(), RetTy, true))
7480     return ABIArgInfo::getIgnore();
7481 
7482   // Aggregates <= 8 bytes are returned in r0; other aggregates
7483   // are returned indirectly.
7484   uint64_t Size = getContext().getTypeSize(RetTy);
7485   if (Size <= 64) {
7486     // Return in the smallest viable integer type.
7487     if (Size <= 8)
7488       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7489     if (Size <= 16)
7490       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7491     if (Size <= 32)
7492       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7493     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7494   }
7495 
7496   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7497 }
7498 
7499 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7500                                   QualType Ty) const {
7501   // FIXME: Someone needs to audit that this handle alignment correctly.
7502   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7503                           getContext().getTypeInfoInChars(Ty),
7504                           CharUnits::fromQuantity(4),
7505                           /*AllowHigherAlign*/ true);
7506 }
7507 
7508 //===----------------------------------------------------------------------===//
7509 // Lanai ABI Implementation
7510 //===----------------------------------------------------------------------===//
7511 
7512 namespace {
7513 class LanaiABIInfo : public DefaultABIInfo {
7514 public:
7515   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7516 
7517   bool shouldUseInReg(QualType Ty, CCState &State) const;
7518 
7519   void computeInfo(CGFunctionInfo &FI) const override {
7520     CCState State(FI.getCallingConvention());
7521     // Lanai uses 4 registers to pass arguments unless the function has the
7522     // regparm attribute set.
7523     if (FI.getHasRegParm()) {
7524       State.FreeRegs = FI.getRegParm();
7525     } else {
7526       State.FreeRegs = 4;
7527     }
7528 
7529     if (!getCXXABI().classifyReturnType(FI))
7530       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7531     for (auto &I : FI.arguments())
7532       I.info = classifyArgumentType(I.type, State);
7533   }
7534 
7535   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7536   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7537 };
7538 } // end anonymous namespace
7539 
7540 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7541   unsigned Size = getContext().getTypeSize(Ty);
7542   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7543 
7544   if (SizeInRegs == 0)
7545     return false;
7546 
7547   if (SizeInRegs > State.FreeRegs) {
7548     State.FreeRegs = 0;
7549     return false;
7550   }
7551 
7552   State.FreeRegs -= SizeInRegs;
7553 
7554   return true;
7555 }
7556 
7557 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7558                                            CCState &State) const {
7559   if (!ByVal) {
7560     if (State.FreeRegs) {
7561       --State.FreeRegs; // Non-byval indirects just use one pointer.
7562       return getNaturalAlignIndirectInReg(Ty);
7563     }
7564     return getNaturalAlignIndirect(Ty, false);
7565   }
7566 
7567   // Compute the byval alignment.
7568   const unsigned MinABIStackAlignInBytes = 4;
7569   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7570   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7571                                  /*Realign=*/TypeAlign >
7572                                      MinABIStackAlignInBytes);
7573 }
7574 
7575 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7576                                               CCState &State) const {
7577   // Check with the C++ ABI first.
7578   const RecordType *RT = Ty->getAs<RecordType>();
7579   if (RT) {
7580     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7581     if (RAA == CGCXXABI::RAA_Indirect) {
7582       return getIndirectResult(Ty, /*ByVal=*/false, State);
7583     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7584       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7585     }
7586   }
7587 
7588   if (isAggregateTypeForABI(Ty)) {
7589     // Structures with flexible arrays are always indirect.
7590     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7591       return getIndirectResult(Ty, /*ByVal=*/true, State);
7592 
7593     // Ignore empty structs/unions.
7594     if (isEmptyRecord(getContext(), Ty, true))
7595       return ABIArgInfo::getIgnore();
7596 
7597     llvm::LLVMContext &LLVMContext = getVMContext();
7598     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7599     if (SizeInRegs <= State.FreeRegs) {
7600       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7601       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7602       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7603       State.FreeRegs -= SizeInRegs;
7604       return ABIArgInfo::getDirectInReg(Result);
7605     } else {
7606       State.FreeRegs = 0;
7607     }
7608     return getIndirectResult(Ty, true, State);
7609   }
7610 
7611   // Treat an enum type as its underlying type.
7612   if (const auto *EnumTy = Ty->getAs<EnumType>())
7613     Ty = EnumTy->getDecl()->getIntegerType();
7614 
7615   bool InReg = shouldUseInReg(Ty, State);
7616   if (Ty->isPromotableIntegerType()) {
7617     if (InReg)
7618       return ABIArgInfo::getDirectInReg();
7619     return ABIArgInfo::getExtend(Ty);
7620   }
7621   if (InReg)
7622     return ABIArgInfo::getDirectInReg();
7623   return ABIArgInfo::getDirect();
7624 }
7625 
7626 namespace {
7627 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7628 public:
7629   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7630       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7631 };
7632 }
7633 
7634 //===----------------------------------------------------------------------===//
7635 // AMDGPU ABI Implementation
7636 //===----------------------------------------------------------------------===//
7637 
7638 namespace {
7639 
7640 class AMDGPUABIInfo final : public DefaultABIInfo {
7641 private:
7642   static const unsigned MaxNumRegsForArgsRet = 16;
7643 
7644   unsigned numRegsForType(QualType Ty) const;
7645 
7646   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7647   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7648                                          uint64_t Members) const override;
7649 
7650 public:
7651   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7652     DefaultABIInfo(CGT) {}
7653 
7654   ABIArgInfo classifyReturnType(QualType RetTy) const;
7655   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7656   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7657 
7658   void computeInfo(CGFunctionInfo &FI) const override;
7659 };
7660 
7661 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7662   return true;
7663 }
7664 
7665 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7666   const Type *Base, uint64_t Members) const {
7667   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7668 
7669   // Homogeneous Aggregates may occupy at most 16 registers.
7670   return Members * NumRegs <= MaxNumRegsForArgsRet;
7671 }
7672 
7673 /// Estimate number of registers the type will use when passed in registers.
7674 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7675   unsigned NumRegs = 0;
7676 
7677   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7678     // Compute from the number of elements. The reported size is based on the
7679     // in-memory size, which includes the padding 4th element for 3-vectors.
7680     QualType EltTy = VT->getElementType();
7681     unsigned EltSize = getContext().getTypeSize(EltTy);
7682 
7683     // 16-bit element vectors should be passed as packed.
7684     if (EltSize == 16)
7685       return (VT->getNumElements() + 1) / 2;
7686 
7687     unsigned EltNumRegs = (EltSize + 31) / 32;
7688     return EltNumRegs * VT->getNumElements();
7689   }
7690 
7691   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7692     const RecordDecl *RD = RT->getDecl();
7693     assert(!RD->hasFlexibleArrayMember());
7694 
7695     for (const FieldDecl *Field : RD->fields()) {
7696       QualType FieldTy = Field->getType();
7697       NumRegs += numRegsForType(FieldTy);
7698     }
7699 
7700     return NumRegs;
7701   }
7702 
7703   return (getContext().getTypeSize(Ty) + 31) / 32;
7704 }
7705 
7706 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7707   llvm::CallingConv::ID CC = FI.getCallingConvention();
7708 
7709   if (!getCXXABI().classifyReturnType(FI))
7710     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7711 
7712   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7713   for (auto &Arg : FI.arguments()) {
7714     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7715       Arg.info = classifyKernelArgumentType(Arg.type);
7716     } else {
7717       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7718     }
7719   }
7720 }
7721 
7722 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7723   if (isAggregateTypeForABI(RetTy)) {
7724     // Records with non-trivial destructors/copy-constructors should not be
7725     // returned by value.
7726     if (!getRecordArgABI(RetTy, getCXXABI())) {
7727       // Ignore empty structs/unions.
7728       if (isEmptyRecord(getContext(), RetTy, true))
7729         return ABIArgInfo::getIgnore();
7730 
7731       // Lower single-element structs to just return a regular value.
7732       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7733         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7734 
7735       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7736         const RecordDecl *RD = RT->getDecl();
7737         if (RD->hasFlexibleArrayMember())
7738           return DefaultABIInfo::classifyReturnType(RetTy);
7739       }
7740 
7741       // Pack aggregates <= 4 bytes into single VGPR or pair.
7742       uint64_t Size = getContext().getTypeSize(RetTy);
7743       if (Size <= 16)
7744         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7745 
7746       if (Size <= 32)
7747         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7748 
7749       if (Size <= 64) {
7750         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7751         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7752       }
7753 
7754       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7755         return ABIArgInfo::getDirect();
7756     }
7757   }
7758 
7759   // Otherwise just do the default thing.
7760   return DefaultABIInfo::classifyReturnType(RetTy);
7761 }
7762 
7763 /// For kernels all parameters are really passed in a special buffer. It doesn't
7764 /// make sense to pass anything byval, so everything must be direct.
7765 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7766   Ty = useFirstFieldIfTransparentUnion(Ty);
7767 
7768   // TODO: Can we omit empty structs?
7769 
7770   // Coerce single element structs to its element.
7771   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7772     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7773 
7774   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7775   // individual elements, which confuses the Clover OpenCL backend; therefore we
7776   // have to set it to false here. Other args of getDirect() are just defaults.
7777   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7778 }
7779 
7780 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7781                                                unsigned &NumRegsLeft) const {
7782   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7783 
7784   Ty = useFirstFieldIfTransparentUnion(Ty);
7785 
7786   if (isAggregateTypeForABI(Ty)) {
7787     // Records with non-trivial destructors/copy-constructors should not be
7788     // passed by value.
7789     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7790       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7791 
7792     // Ignore empty structs/unions.
7793     if (isEmptyRecord(getContext(), Ty, true))
7794       return ABIArgInfo::getIgnore();
7795 
7796     // Lower single-element structs to just pass a regular value. TODO: We
7797     // could do reasonable-size multiple-element structs too, using getExpand(),
7798     // though watch out for things like bitfields.
7799     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7800       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7801 
7802     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7803       const RecordDecl *RD = RT->getDecl();
7804       if (RD->hasFlexibleArrayMember())
7805         return DefaultABIInfo::classifyArgumentType(Ty);
7806     }
7807 
7808     // Pack aggregates <= 8 bytes into single VGPR or pair.
7809     uint64_t Size = getContext().getTypeSize(Ty);
7810     if (Size <= 64) {
7811       unsigned NumRegs = (Size + 31) / 32;
7812       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7813 
7814       if (Size <= 16)
7815         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7816 
7817       if (Size <= 32)
7818         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7819 
7820       // XXX: Should this be i64 instead, and should the limit increase?
7821       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7822       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7823     }
7824 
7825     if (NumRegsLeft > 0) {
7826       unsigned NumRegs = numRegsForType(Ty);
7827       if (NumRegsLeft >= NumRegs) {
7828         NumRegsLeft -= NumRegs;
7829         return ABIArgInfo::getDirect();
7830       }
7831     }
7832   }
7833 
7834   // Otherwise just do the default thing.
7835   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7836   if (!ArgInfo.isIndirect()) {
7837     unsigned NumRegs = numRegsForType(Ty);
7838     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7839   }
7840 
7841   return ArgInfo;
7842 }
7843 
7844 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7845 public:
7846   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7847     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7848   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7849                            CodeGen::CodeGenModule &M) const override;
7850   unsigned getOpenCLKernelCallingConv() const override;
7851 
7852   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7853       llvm::PointerType *T, QualType QT) const override;
7854 
7855   LangAS getASTAllocaAddressSpace() const override {
7856     return getLangASFromTargetAS(
7857         getABIInfo().getDataLayout().getAllocaAddrSpace());
7858   }
7859   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7860                                   const VarDecl *D) const override;
7861   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
7862                                          SyncScope Scope,
7863                                          llvm::AtomicOrdering Ordering,
7864                                          llvm::LLVMContext &Ctx) const override;
7865   llvm::Function *
7866   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7867                             llvm::Function *BlockInvokeFunc,
7868                             llvm::Value *BlockLiteral) const override;
7869   bool shouldEmitStaticExternCAliases() const override;
7870   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7871 };
7872 }
7873 
7874 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
7875                                               llvm::GlobalValue *GV) {
7876   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
7877     return false;
7878 
7879   return D->hasAttr<OpenCLKernelAttr>() ||
7880          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
7881          (isa<VarDecl>(D) &&
7882           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
7883            D->hasAttr<HIPPinnedShadowAttr>()));
7884 }
7885 
7886 static bool requiresAMDGPUDefaultVisibility(const Decl *D,
7887                                             llvm::GlobalValue *GV) {
7888   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
7889     return false;
7890 
7891   return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>();
7892 }
7893 
7894 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7895     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7896   if (requiresAMDGPUDefaultVisibility(D, GV)) {
7897     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
7898     GV->setDSOLocal(false);
7899   } else if (requiresAMDGPUProtectedVisibility(D, GV)) {
7900     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
7901     GV->setDSOLocal(true);
7902   }
7903 
7904   if (GV->isDeclaration())
7905     return;
7906   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7907   if (!FD)
7908     return;
7909 
7910   llvm::Function *F = cast<llvm::Function>(GV);
7911 
7912   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7913     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7914 
7915   if (((M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>()) ||
7916       (M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>())) &&
7917       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7918     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
7919 
7920   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7921   if (ReqdWGS || FlatWGS) {
7922     unsigned Min = 0;
7923     unsigned Max = 0;
7924     if (FlatWGS) {
7925       Min = FlatWGS->getMin()
7926                 ->EvaluateKnownConstInt(M.getContext())
7927                 .getExtValue();
7928       Max = FlatWGS->getMax()
7929                 ->EvaluateKnownConstInt(M.getContext())
7930                 .getExtValue();
7931     }
7932     if (ReqdWGS && Min == 0 && Max == 0)
7933       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7934 
7935     if (Min != 0) {
7936       assert(Min <= Max && "Min must be less than or equal Max");
7937 
7938       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7939       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7940     } else
7941       assert(Max == 0 && "Max must be zero");
7942   }
7943 
7944   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7945     unsigned Min =
7946         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
7947     unsigned Max = Attr->getMax() ? Attr->getMax()
7948                                         ->EvaluateKnownConstInt(M.getContext())
7949                                         .getExtValue()
7950                                   : 0;
7951 
7952     if (Min != 0) {
7953       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7954 
7955       std::string AttrVal = llvm::utostr(Min);
7956       if (Max != 0)
7957         AttrVal = AttrVal + "," + llvm::utostr(Max);
7958       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7959     } else
7960       assert(Max == 0 && "Max must be zero");
7961   }
7962 
7963   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7964     unsigned NumSGPR = Attr->getNumSGPR();
7965 
7966     if (NumSGPR != 0)
7967       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7968   }
7969 
7970   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7971     uint32_t NumVGPR = Attr->getNumVGPR();
7972 
7973     if (NumVGPR != 0)
7974       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7975   }
7976 }
7977 
7978 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7979   return llvm::CallingConv::AMDGPU_KERNEL;
7980 }
7981 
7982 // Currently LLVM assumes null pointers always have value 0,
7983 // which results in incorrectly transformed IR. Therefore, instead of
7984 // emitting null pointers in private and local address spaces, a null
7985 // pointer in generic address space is emitted which is casted to a
7986 // pointer in local or private address space.
7987 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7988     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7989     QualType QT) const {
7990   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7991     return llvm::ConstantPointerNull::get(PT);
7992 
7993   auto &Ctx = CGM.getContext();
7994   auto NPT = llvm::PointerType::get(PT->getElementType(),
7995       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7996   return llvm::ConstantExpr::getAddrSpaceCast(
7997       llvm::ConstantPointerNull::get(NPT), PT);
7998 }
7999 
8000 LangAS
8001 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
8002                                                   const VarDecl *D) const {
8003   assert(!CGM.getLangOpts().OpenCL &&
8004          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
8005          "Address space agnostic languages only");
8006   LangAS DefaultGlobalAS = getLangASFromTargetAS(
8007       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
8008   if (!D)
8009     return DefaultGlobalAS;
8010 
8011   LangAS AddrSpace = D->getType().getAddressSpace();
8012   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
8013   if (AddrSpace != LangAS::Default)
8014     return AddrSpace;
8015 
8016   if (CGM.isTypeConstant(D->getType(), false)) {
8017     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
8018       return ConstAS.getValue();
8019   }
8020   return DefaultGlobalAS;
8021 }
8022 
8023 llvm::SyncScope::ID
8024 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
8025                                             SyncScope Scope,
8026                                             llvm::AtomicOrdering Ordering,
8027                                             llvm::LLVMContext &Ctx) const {
8028   std::string Name;
8029   switch (Scope) {
8030   case SyncScope::OpenCLWorkGroup:
8031     Name = "workgroup";
8032     break;
8033   case SyncScope::OpenCLDevice:
8034     Name = "agent";
8035     break;
8036   case SyncScope::OpenCLAllSVMDevices:
8037     Name = "";
8038     break;
8039   case SyncScope::OpenCLSubGroup:
8040     Name = "wavefront";
8041   }
8042 
8043   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
8044     if (!Name.empty())
8045       Name = Twine(Twine(Name) + Twine("-")).str();
8046 
8047     Name = Twine(Twine(Name) + Twine("one-as")).str();
8048   }
8049 
8050   return Ctx.getOrInsertSyncScopeID(Name);
8051 }
8052 
8053 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8054   return false;
8055 }
8056 
8057 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8058     const FunctionType *&FT) const {
8059   FT = getABIInfo().getContext().adjustFunctionType(
8060       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8061 }
8062 
8063 //===----------------------------------------------------------------------===//
8064 // SPARC v8 ABI Implementation.
8065 // Based on the SPARC Compliance Definition version 2.4.1.
8066 //
8067 // Ensures that complex values are passed in registers.
8068 //
8069 namespace {
8070 class SparcV8ABIInfo : public DefaultABIInfo {
8071 public:
8072   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8073 
8074 private:
8075   ABIArgInfo classifyReturnType(QualType RetTy) const;
8076   void computeInfo(CGFunctionInfo &FI) const override;
8077 };
8078 } // end anonymous namespace
8079 
8080 
8081 ABIArgInfo
8082 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8083   if (Ty->isAnyComplexType()) {
8084     return ABIArgInfo::getDirect();
8085   }
8086   else {
8087     return DefaultABIInfo::classifyReturnType(Ty);
8088   }
8089 }
8090 
8091 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8092 
8093   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8094   for (auto &Arg : FI.arguments())
8095     Arg.info = classifyArgumentType(Arg.type);
8096 }
8097 
8098 namespace {
8099 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8100 public:
8101   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8102     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8103 };
8104 } // end anonymous namespace
8105 
8106 //===----------------------------------------------------------------------===//
8107 // SPARC v9 ABI Implementation.
8108 // Based on the SPARC Compliance Definition version 2.4.1.
8109 //
8110 // Function arguments a mapped to a nominal "parameter array" and promoted to
8111 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8112 // the array, structs larger than 16 bytes are passed indirectly.
8113 //
8114 // One case requires special care:
8115 //
8116 //   struct mixed {
8117 //     int i;
8118 //     float f;
8119 //   };
8120 //
8121 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8122 // parameter array, but the int is passed in an integer register, and the float
8123 // is passed in a floating point register. This is represented as two arguments
8124 // with the LLVM IR inreg attribute:
8125 //
8126 //   declare void f(i32 inreg %i, float inreg %f)
8127 //
8128 // The code generator will only allocate 4 bytes from the parameter array for
8129 // the inreg arguments. All other arguments are allocated a multiple of 8
8130 // bytes.
8131 //
8132 namespace {
8133 class SparcV9ABIInfo : public ABIInfo {
8134 public:
8135   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8136 
8137 private:
8138   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8139   void computeInfo(CGFunctionInfo &FI) const override;
8140   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8141                     QualType Ty) const override;
8142 
8143   // Coercion type builder for structs passed in registers. The coercion type
8144   // serves two purposes:
8145   //
8146   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8147   //    in registers.
8148   // 2. Expose aligned floating point elements as first-level elements, so the
8149   //    code generator knows to pass them in floating point registers.
8150   //
8151   // We also compute the InReg flag which indicates that the struct contains
8152   // aligned 32-bit floats.
8153   //
8154   struct CoerceBuilder {
8155     llvm::LLVMContext &Context;
8156     const llvm::DataLayout &DL;
8157     SmallVector<llvm::Type*, 8> Elems;
8158     uint64_t Size;
8159     bool InReg;
8160 
8161     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8162       : Context(c), DL(dl), Size(0), InReg(false) {}
8163 
8164     // Pad Elems with integers until Size is ToSize.
8165     void pad(uint64_t ToSize) {
8166       assert(ToSize >= Size && "Cannot remove elements");
8167       if (ToSize == Size)
8168         return;
8169 
8170       // Finish the current 64-bit word.
8171       uint64_t Aligned = llvm::alignTo(Size, 64);
8172       if (Aligned > Size && Aligned <= ToSize) {
8173         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8174         Size = Aligned;
8175       }
8176 
8177       // Add whole 64-bit words.
8178       while (Size + 64 <= ToSize) {
8179         Elems.push_back(llvm::Type::getInt64Ty(Context));
8180         Size += 64;
8181       }
8182 
8183       // Final in-word padding.
8184       if (Size < ToSize) {
8185         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8186         Size = ToSize;
8187       }
8188     }
8189 
8190     // Add a floating point element at Offset.
8191     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8192       // Unaligned floats are treated as integers.
8193       if (Offset % Bits)
8194         return;
8195       // The InReg flag is only required if there are any floats < 64 bits.
8196       if (Bits < 64)
8197         InReg = true;
8198       pad(Offset);
8199       Elems.push_back(Ty);
8200       Size = Offset + Bits;
8201     }
8202 
8203     // Add a struct type to the coercion type, starting at Offset (in bits).
8204     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8205       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8206       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8207         llvm::Type *ElemTy = StrTy->getElementType(i);
8208         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8209         switch (ElemTy->getTypeID()) {
8210         case llvm::Type::StructTyID:
8211           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8212           break;
8213         case llvm::Type::FloatTyID:
8214           addFloat(ElemOffset, ElemTy, 32);
8215           break;
8216         case llvm::Type::DoubleTyID:
8217           addFloat(ElemOffset, ElemTy, 64);
8218           break;
8219         case llvm::Type::FP128TyID:
8220           addFloat(ElemOffset, ElemTy, 128);
8221           break;
8222         case llvm::Type::PointerTyID:
8223           if (ElemOffset % 64 == 0) {
8224             pad(ElemOffset);
8225             Elems.push_back(ElemTy);
8226             Size += 64;
8227           }
8228           break;
8229         default:
8230           break;
8231         }
8232       }
8233     }
8234 
8235     // Check if Ty is a usable substitute for the coercion type.
8236     bool isUsableType(llvm::StructType *Ty) const {
8237       return llvm::makeArrayRef(Elems) == Ty->elements();
8238     }
8239 
8240     // Get the coercion type as a literal struct type.
8241     llvm::Type *getType() const {
8242       if (Elems.size() == 1)
8243         return Elems.front();
8244       else
8245         return llvm::StructType::get(Context, Elems);
8246     }
8247   };
8248 };
8249 } // end anonymous namespace
8250 
8251 ABIArgInfo
8252 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8253   if (Ty->isVoidType())
8254     return ABIArgInfo::getIgnore();
8255 
8256   uint64_t Size = getContext().getTypeSize(Ty);
8257 
8258   // Anything too big to fit in registers is passed with an explicit indirect
8259   // pointer / sret pointer.
8260   if (Size > SizeLimit)
8261     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8262 
8263   // Treat an enum type as its underlying type.
8264   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8265     Ty = EnumTy->getDecl()->getIntegerType();
8266 
8267   // Integer types smaller than a register are extended.
8268   if (Size < 64 && Ty->isIntegerType())
8269     return ABIArgInfo::getExtend(Ty);
8270 
8271   // Other non-aggregates go in registers.
8272   if (!isAggregateTypeForABI(Ty))
8273     return ABIArgInfo::getDirect();
8274 
8275   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8276   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8277   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8278     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8279 
8280   // This is a small aggregate type that should be passed in registers.
8281   // Build a coercion type from the LLVM struct type.
8282   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8283   if (!StrTy)
8284     return ABIArgInfo::getDirect();
8285 
8286   CoerceBuilder CB(getVMContext(), getDataLayout());
8287   CB.addStruct(0, StrTy);
8288   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8289 
8290   // Try to use the original type for coercion.
8291   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8292 
8293   if (CB.InReg)
8294     return ABIArgInfo::getDirectInReg(CoerceTy);
8295   else
8296     return ABIArgInfo::getDirect(CoerceTy);
8297 }
8298 
8299 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8300                                   QualType Ty) const {
8301   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8302   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8303   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8304     AI.setCoerceToType(ArgTy);
8305 
8306   CharUnits SlotSize = CharUnits::fromQuantity(8);
8307 
8308   CGBuilderTy &Builder = CGF.Builder;
8309   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8310   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8311 
8312   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8313 
8314   Address ArgAddr = Address::invalid();
8315   CharUnits Stride;
8316   switch (AI.getKind()) {
8317   case ABIArgInfo::Expand:
8318   case ABIArgInfo::CoerceAndExpand:
8319   case ABIArgInfo::InAlloca:
8320     llvm_unreachable("Unsupported ABI kind for va_arg");
8321 
8322   case ABIArgInfo::Extend: {
8323     Stride = SlotSize;
8324     CharUnits Offset = SlotSize - TypeInfo.first;
8325     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8326     break;
8327   }
8328 
8329   case ABIArgInfo::Direct: {
8330     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8331     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8332     ArgAddr = Addr;
8333     break;
8334   }
8335 
8336   case ABIArgInfo::Indirect:
8337     Stride = SlotSize;
8338     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8339     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8340                       TypeInfo.second);
8341     break;
8342 
8343   case ABIArgInfo::Ignore:
8344     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8345   }
8346 
8347   // Update VAList.
8348   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8349   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8350 
8351   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8352 }
8353 
8354 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8355   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8356   for (auto &I : FI.arguments())
8357     I.info = classifyType(I.type, 16 * 8);
8358 }
8359 
8360 namespace {
8361 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8362 public:
8363   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8364     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8365 
8366   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8367     return 14;
8368   }
8369 
8370   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8371                                llvm::Value *Address) const override;
8372 };
8373 } // end anonymous namespace
8374 
8375 bool
8376 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8377                                                 llvm::Value *Address) const {
8378   // This is calculated from the LLVM and GCC tables and verified
8379   // against gcc output.  AFAIK all ABIs use the same encoding.
8380 
8381   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8382 
8383   llvm::IntegerType *i8 = CGF.Int8Ty;
8384   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8385   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8386 
8387   // 0-31: the 8-byte general-purpose registers
8388   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8389 
8390   // 32-63: f0-31, the 4-byte floating-point registers
8391   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8392 
8393   //   Y   = 64
8394   //   PSR = 65
8395   //   WIM = 66
8396   //   TBR = 67
8397   //   PC  = 68
8398   //   NPC = 69
8399   //   FSR = 70
8400   //   CSR = 71
8401   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8402 
8403   // 72-87: d0-15, the 8-byte floating-point registers
8404   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8405 
8406   return false;
8407 }
8408 
8409 // ARC ABI implementation.
8410 namespace {
8411 
8412 class ARCABIInfo : public DefaultABIInfo {
8413 public:
8414   using DefaultABIInfo::DefaultABIInfo;
8415 
8416 private:
8417   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8418                     QualType Ty) const override;
8419 
8420   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8421     if (!State.FreeRegs)
8422       return;
8423     if (Info.isIndirect() && Info.getInReg())
8424       State.FreeRegs--;
8425     else if (Info.isDirect() && Info.getInReg()) {
8426       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8427       if (sz < State.FreeRegs)
8428         State.FreeRegs -= sz;
8429       else
8430         State.FreeRegs = 0;
8431     }
8432   }
8433 
8434   void computeInfo(CGFunctionInfo &FI) const override {
8435     CCState State(FI.getCallingConvention());
8436     // ARC uses 8 registers to pass arguments.
8437     State.FreeRegs = 8;
8438 
8439     if (!getCXXABI().classifyReturnType(FI))
8440       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8441     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8442     for (auto &I : FI.arguments()) {
8443       I.info = classifyArgumentType(I.type, State.FreeRegs);
8444       updateState(I.info, I.type, State);
8445     }
8446   }
8447 
8448   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8449   ABIArgInfo getIndirectByValue(QualType Ty) const;
8450   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8451   ABIArgInfo classifyReturnType(QualType RetTy) const;
8452 };
8453 
8454 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8455 public:
8456   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8457       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8458 };
8459 
8460 
8461 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8462   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8463                        getNaturalAlignIndirect(Ty, false);
8464 }
8465 
8466 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8467   // Compute the byval alignment.
8468   const unsigned MinABIStackAlignInBytes = 4;
8469   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8470   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8471                                  TypeAlign > MinABIStackAlignInBytes);
8472 }
8473 
8474 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8475                               QualType Ty) const {
8476   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8477                           getContext().getTypeInfoInChars(Ty),
8478                           CharUnits::fromQuantity(4), true);
8479 }
8480 
8481 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8482                                             uint8_t FreeRegs) const {
8483   // Handle the generic C++ ABI.
8484   const RecordType *RT = Ty->getAs<RecordType>();
8485   if (RT) {
8486     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8487     if (RAA == CGCXXABI::RAA_Indirect)
8488       return getIndirectByRef(Ty, FreeRegs > 0);
8489 
8490     if (RAA == CGCXXABI::RAA_DirectInMemory)
8491       return getIndirectByValue(Ty);
8492   }
8493 
8494   // Treat an enum type as its underlying type.
8495   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8496     Ty = EnumTy->getDecl()->getIntegerType();
8497 
8498   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8499 
8500   if (isAggregateTypeForABI(Ty)) {
8501     // Structures with flexible arrays are always indirect.
8502     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8503       return getIndirectByValue(Ty);
8504 
8505     // Ignore empty structs/unions.
8506     if (isEmptyRecord(getContext(), Ty, true))
8507       return ABIArgInfo::getIgnore();
8508 
8509     llvm::LLVMContext &LLVMContext = getVMContext();
8510 
8511     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8512     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8513     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8514 
8515     return FreeRegs >= SizeInRegs ?
8516         ABIArgInfo::getDirectInReg(Result) :
8517         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8518   }
8519 
8520   return Ty->isPromotableIntegerType() ?
8521       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8522                                 ABIArgInfo::getExtend(Ty)) :
8523       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8524                                 ABIArgInfo::getDirect());
8525 }
8526 
8527 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8528   if (RetTy->isAnyComplexType())
8529     return ABIArgInfo::getDirectInReg();
8530 
8531   // Arguments of size > 4 registers are indirect.
8532   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8533   if (RetSize > 4)
8534     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8535 
8536   return DefaultABIInfo::classifyReturnType(RetTy);
8537 }
8538 
8539 } // End anonymous namespace.
8540 
8541 //===----------------------------------------------------------------------===//
8542 // XCore ABI Implementation
8543 //===----------------------------------------------------------------------===//
8544 
8545 namespace {
8546 
8547 /// A SmallStringEnc instance is used to build up the TypeString by passing
8548 /// it by reference between functions that append to it.
8549 typedef llvm::SmallString<128> SmallStringEnc;
8550 
8551 /// TypeStringCache caches the meta encodings of Types.
8552 ///
8553 /// The reason for caching TypeStrings is two fold:
8554 ///   1. To cache a type's encoding for later uses;
8555 ///   2. As a means to break recursive member type inclusion.
8556 ///
8557 /// A cache Entry can have a Status of:
8558 ///   NonRecursive:   The type encoding is not recursive;
8559 ///   Recursive:      The type encoding is recursive;
8560 ///   Incomplete:     An incomplete TypeString;
8561 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8562 ///                   Recursive type encoding.
8563 ///
8564 /// A NonRecursive entry will have all of its sub-members expanded as fully
8565 /// as possible. Whilst it may contain types which are recursive, the type
8566 /// itself is not recursive and thus its encoding may be safely used whenever
8567 /// the type is encountered.
8568 ///
8569 /// A Recursive entry will have all of its sub-members expanded as fully as
8570 /// possible. The type itself is recursive and it may contain other types which
8571 /// are recursive. The Recursive encoding must not be used during the expansion
8572 /// of a recursive type's recursive branch. For simplicity the code uses
8573 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8574 ///
8575 /// An Incomplete entry is always a RecordType and only encodes its
8576 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8577 /// are placed into the cache during type expansion as a means to identify and
8578 /// handle recursive inclusion of types as sub-members. If there is recursion
8579 /// the entry becomes IncompleteUsed.
8580 ///
8581 /// During the expansion of a RecordType's members:
8582 ///
8583 ///   If the cache contains a NonRecursive encoding for the member type, the
8584 ///   cached encoding is used;
8585 ///
8586 ///   If the cache contains a Recursive encoding for the member type, the
8587 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8588 ///
8589 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8590 ///   cache to break potential recursive inclusion of itself as a sub-member;
8591 ///
8592 ///   Once a member RecordType has been expanded, its temporary incomplete
8593 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8594 ///   it is swapped back in;
8595 ///
8596 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8597 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8598 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8599 ///
8600 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8601 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8602 ///   Else the member is part of a recursive type and thus the recursion has
8603 ///   been exited too soon for the encoding to be correct for the member.
8604 ///
8605 class TypeStringCache {
8606   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8607   struct Entry {
8608     std::string Str;     // The encoded TypeString for the type.
8609     enum Status State;   // Information about the encoding in 'Str'.
8610     std::string Swapped; // A temporary place holder for a Recursive encoding
8611                          // during the expansion of RecordType's members.
8612   };
8613   std::map<const IdentifierInfo *, struct Entry> Map;
8614   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8615   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8616 public:
8617   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8618   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8619   bool removeIncomplete(const IdentifierInfo *ID);
8620   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8621                      bool IsRecursive);
8622   StringRef lookupStr(const IdentifierInfo *ID);
8623 };
8624 
8625 /// TypeString encodings for enum & union fields must be order.
8626 /// FieldEncoding is a helper for this ordering process.
8627 class FieldEncoding {
8628   bool HasName;
8629   std::string Enc;
8630 public:
8631   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8632   StringRef str() { return Enc; }
8633   bool operator<(const FieldEncoding &rhs) const {
8634     if (HasName != rhs.HasName) return HasName;
8635     return Enc < rhs.Enc;
8636   }
8637 };
8638 
8639 class XCoreABIInfo : public DefaultABIInfo {
8640 public:
8641   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8642   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8643                     QualType Ty) const override;
8644 };
8645 
8646 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8647   mutable TypeStringCache TSC;
8648 public:
8649   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8650     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8651   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8652                     CodeGen::CodeGenModule &M) const override;
8653 };
8654 
8655 } // End anonymous namespace.
8656 
8657 // TODO: this implementation is likely now redundant with the default
8658 // EmitVAArg.
8659 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8660                                 QualType Ty) const {
8661   CGBuilderTy &Builder = CGF.Builder;
8662 
8663   // Get the VAList.
8664   CharUnits SlotSize = CharUnits::fromQuantity(4);
8665   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8666 
8667   // Handle the argument.
8668   ABIArgInfo AI = classifyArgumentType(Ty);
8669   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8670   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8671   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8672     AI.setCoerceToType(ArgTy);
8673   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8674 
8675   Address Val = Address::invalid();
8676   CharUnits ArgSize = CharUnits::Zero();
8677   switch (AI.getKind()) {
8678   case ABIArgInfo::Expand:
8679   case ABIArgInfo::CoerceAndExpand:
8680   case ABIArgInfo::InAlloca:
8681     llvm_unreachable("Unsupported ABI kind for va_arg");
8682   case ABIArgInfo::Ignore:
8683     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8684     ArgSize = CharUnits::Zero();
8685     break;
8686   case ABIArgInfo::Extend:
8687   case ABIArgInfo::Direct:
8688     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8689     ArgSize = CharUnits::fromQuantity(
8690                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8691     ArgSize = ArgSize.alignTo(SlotSize);
8692     break;
8693   case ABIArgInfo::Indirect:
8694     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8695     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8696     ArgSize = SlotSize;
8697     break;
8698   }
8699 
8700   // Increment the VAList.
8701   if (!ArgSize.isZero()) {
8702     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
8703     Builder.CreateStore(APN.getPointer(), VAListAddr);
8704   }
8705 
8706   return Val;
8707 }
8708 
8709 /// During the expansion of a RecordType, an incomplete TypeString is placed
8710 /// into the cache as a means to identify and break recursion.
8711 /// If there is a Recursive encoding in the cache, it is swapped out and will
8712 /// be reinserted by removeIncomplete().
8713 /// All other types of encoding should have been used rather than arriving here.
8714 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8715                                     std::string StubEnc) {
8716   if (!ID)
8717     return;
8718   Entry &E = Map[ID];
8719   assert( (E.Str.empty() || E.State == Recursive) &&
8720          "Incorrectly use of addIncomplete");
8721   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8722   E.Swapped.swap(E.Str); // swap out the Recursive
8723   E.Str.swap(StubEnc);
8724   E.State = Incomplete;
8725   ++IncompleteCount;
8726 }
8727 
8728 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8729 /// must be removed from the cache.
8730 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8731 /// Returns true if the RecordType was defined recursively.
8732 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8733   if (!ID)
8734     return false;
8735   auto I = Map.find(ID);
8736   assert(I != Map.end() && "Entry not present");
8737   Entry &E = I->second;
8738   assert( (E.State == Incomplete ||
8739            E.State == IncompleteUsed) &&
8740          "Entry must be an incomplete type");
8741   bool IsRecursive = false;
8742   if (E.State == IncompleteUsed) {
8743     // We made use of our Incomplete encoding, thus we are recursive.
8744     IsRecursive = true;
8745     --IncompleteUsedCount;
8746   }
8747   if (E.Swapped.empty())
8748     Map.erase(I);
8749   else {
8750     // Swap the Recursive back.
8751     E.Swapped.swap(E.Str);
8752     E.Swapped.clear();
8753     E.State = Recursive;
8754   }
8755   --IncompleteCount;
8756   return IsRecursive;
8757 }
8758 
8759 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8760 /// Recursive (viz: all sub-members were expanded as fully as possible).
8761 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8762                                     bool IsRecursive) {
8763   if (!ID || IncompleteUsedCount)
8764     return; // No key or it is is an incomplete sub-type so don't add.
8765   Entry &E = Map[ID];
8766   if (IsRecursive && !E.Str.empty()) {
8767     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8768            "This is not the same Recursive entry");
8769     // The parent container was not recursive after all, so we could have used
8770     // this Recursive sub-member entry after all, but we assumed the worse when
8771     // we started viz: IncompleteCount!=0.
8772     return;
8773   }
8774   assert(E.Str.empty() && "Entry already present");
8775   E.Str = Str.str();
8776   E.State = IsRecursive? Recursive : NonRecursive;
8777 }
8778 
8779 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8780 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8781 /// encoding is Recursive, return an empty StringRef.
8782 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8783   if (!ID)
8784     return StringRef();   // We have no key.
8785   auto I = Map.find(ID);
8786   if (I == Map.end())
8787     return StringRef();   // We have no encoding.
8788   Entry &E = I->second;
8789   if (E.State == Recursive && IncompleteCount)
8790     return StringRef();   // We don't use Recursive encodings for member types.
8791 
8792   if (E.State == Incomplete) {
8793     // The incomplete type is being used to break out of recursion.
8794     E.State = IncompleteUsed;
8795     ++IncompleteUsedCount;
8796   }
8797   return E.Str;
8798 }
8799 
8800 /// The XCore ABI includes a type information section that communicates symbol
8801 /// type information to the linker. The linker uses this information to verify
8802 /// safety/correctness of things such as array bound and pointers et al.
8803 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8804 /// This type information (TypeString) is emitted into meta data for all global
8805 /// symbols: definitions, declarations, functions & variables.
8806 ///
8807 /// The TypeString carries type, qualifier, name, size & value details.
8808 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8809 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8810 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8811 ///
8812 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8813                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8814 
8815 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8816 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8817                                           CodeGen::CodeGenModule &CGM) const {
8818   SmallStringEnc Enc;
8819   if (getTypeString(Enc, D, CGM, TSC)) {
8820     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8821     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8822                                 llvm::MDString::get(Ctx, Enc.str())};
8823     llvm::NamedMDNode *MD =
8824       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8825     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8826   }
8827 }
8828 
8829 //===----------------------------------------------------------------------===//
8830 // SPIR ABI Implementation
8831 //===----------------------------------------------------------------------===//
8832 
8833 namespace {
8834 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8835 public:
8836   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8837     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8838   unsigned getOpenCLKernelCallingConv() const override;
8839 };
8840 
8841 } // End anonymous namespace.
8842 
8843 namespace clang {
8844 namespace CodeGen {
8845 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8846   DefaultABIInfo SPIRABI(CGM.getTypes());
8847   SPIRABI.computeInfo(FI);
8848 }
8849 }
8850 }
8851 
8852 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8853   return llvm::CallingConv::SPIR_KERNEL;
8854 }
8855 
8856 static bool appendType(SmallStringEnc &Enc, QualType QType,
8857                        const CodeGen::CodeGenModule &CGM,
8858                        TypeStringCache &TSC);
8859 
8860 /// Helper function for appendRecordType().
8861 /// Builds a SmallVector containing the encoded field types in declaration
8862 /// order.
8863 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8864                              const RecordDecl *RD,
8865                              const CodeGen::CodeGenModule &CGM,
8866                              TypeStringCache &TSC) {
8867   for (const auto *Field : RD->fields()) {
8868     SmallStringEnc Enc;
8869     Enc += "m(";
8870     Enc += Field->getName();
8871     Enc += "){";
8872     if (Field->isBitField()) {
8873       Enc += "b(";
8874       llvm::raw_svector_ostream OS(Enc);
8875       OS << Field->getBitWidthValue(CGM.getContext());
8876       Enc += ':';
8877     }
8878     if (!appendType(Enc, Field->getType(), CGM, TSC))
8879       return false;
8880     if (Field->isBitField())
8881       Enc += ')';
8882     Enc += '}';
8883     FE.emplace_back(!Field->getName().empty(), Enc);
8884   }
8885   return true;
8886 }
8887 
8888 /// Appends structure and union types to Enc and adds encoding to cache.
8889 /// Recursively calls appendType (via extractFieldType) for each field.
8890 /// Union types have their fields ordered according to the ABI.
8891 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8892                              const CodeGen::CodeGenModule &CGM,
8893                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8894   // Append the cached TypeString if we have one.
8895   StringRef TypeString = TSC.lookupStr(ID);
8896   if (!TypeString.empty()) {
8897     Enc += TypeString;
8898     return true;
8899   }
8900 
8901   // Start to emit an incomplete TypeString.
8902   size_t Start = Enc.size();
8903   Enc += (RT->isUnionType()? 'u' : 's');
8904   Enc += '(';
8905   if (ID)
8906     Enc += ID->getName();
8907   Enc += "){";
8908 
8909   // We collect all encoded fields and order as necessary.
8910   bool IsRecursive = false;
8911   const RecordDecl *RD = RT->getDecl()->getDefinition();
8912   if (RD && !RD->field_empty()) {
8913     // An incomplete TypeString stub is placed in the cache for this RecordType
8914     // so that recursive calls to this RecordType will use it whilst building a
8915     // complete TypeString for this RecordType.
8916     SmallVector<FieldEncoding, 16> FE;
8917     std::string StubEnc(Enc.substr(Start).str());
8918     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8919     TSC.addIncomplete(ID, std::move(StubEnc));
8920     if (!extractFieldType(FE, RD, CGM, TSC)) {
8921       (void) TSC.removeIncomplete(ID);
8922       return false;
8923     }
8924     IsRecursive = TSC.removeIncomplete(ID);
8925     // The ABI requires unions to be sorted but not structures.
8926     // See FieldEncoding::operator< for sort algorithm.
8927     if (RT->isUnionType())
8928       llvm::sort(FE);
8929     // We can now complete the TypeString.
8930     unsigned E = FE.size();
8931     for (unsigned I = 0; I != E; ++I) {
8932       if (I)
8933         Enc += ',';
8934       Enc += FE[I].str();
8935     }
8936   }
8937   Enc += '}';
8938   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8939   return true;
8940 }
8941 
8942 /// Appends enum types to Enc and adds the encoding to the cache.
8943 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8944                            TypeStringCache &TSC,
8945                            const IdentifierInfo *ID) {
8946   // Append the cached TypeString if we have one.
8947   StringRef TypeString = TSC.lookupStr(ID);
8948   if (!TypeString.empty()) {
8949     Enc += TypeString;
8950     return true;
8951   }
8952 
8953   size_t Start = Enc.size();
8954   Enc += "e(";
8955   if (ID)
8956     Enc += ID->getName();
8957   Enc += "){";
8958 
8959   // We collect all encoded enumerations and order them alphanumerically.
8960   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8961     SmallVector<FieldEncoding, 16> FE;
8962     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8963          ++I) {
8964       SmallStringEnc EnumEnc;
8965       EnumEnc += "m(";
8966       EnumEnc += I->getName();
8967       EnumEnc += "){";
8968       I->getInitVal().toString(EnumEnc);
8969       EnumEnc += '}';
8970       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8971     }
8972     llvm::sort(FE);
8973     unsigned E = FE.size();
8974     for (unsigned I = 0; I != E; ++I) {
8975       if (I)
8976         Enc += ',';
8977       Enc += FE[I].str();
8978     }
8979   }
8980   Enc += '}';
8981   TSC.addIfComplete(ID, Enc.substr(Start), false);
8982   return true;
8983 }
8984 
8985 /// Appends type's qualifier to Enc.
8986 /// This is done prior to appending the type's encoding.
8987 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8988   // Qualifiers are emitted in alphabetical order.
8989   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8990   int Lookup = 0;
8991   if (QT.isConstQualified())
8992     Lookup += 1<<0;
8993   if (QT.isRestrictQualified())
8994     Lookup += 1<<1;
8995   if (QT.isVolatileQualified())
8996     Lookup += 1<<2;
8997   Enc += Table[Lookup];
8998 }
8999 
9000 /// Appends built-in types to Enc.
9001 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
9002   const char *EncType;
9003   switch (BT->getKind()) {
9004     case BuiltinType::Void:
9005       EncType = "0";
9006       break;
9007     case BuiltinType::Bool:
9008       EncType = "b";
9009       break;
9010     case BuiltinType::Char_U:
9011       EncType = "uc";
9012       break;
9013     case BuiltinType::UChar:
9014       EncType = "uc";
9015       break;
9016     case BuiltinType::SChar:
9017       EncType = "sc";
9018       break;
9019     case BuiltinType::UShort:
9020       EncType = "us";
9021       break;
9022     case BuiltinType::Short:
9023       EncType = "ss";
9024       break;
9025     case BuiltinType::UInt:
9026       EncType = "ui";
9027       break;
9028     case BuiltinType::Int:
9029       EncType = "si";
9030       break;
9031     case BuiltinType::ULong:
9032       EncType = "ul";
9033       break;
9034     case BuiltinType::Long:
9035       EncType = "sl";
9036       break;
9037     case BuiltinType::ULongLong:
9038       EncType = "ull";
9039       break;
9040     case BuiltinType::LongLong:
9041       EncType = "sll";
9042       break;
9043     case BuiltinType::Float:
9044       EncType = "ft";
9045       break;
9046     case BuiltinType::Double:
9047       EncType = "d";
9048       break;
9049     case BuiltinType::LongDouble:
9050       EncType = "ld";
9051       break;
9052     default:
9053       return false;
9054   }
9055   Enc += EncType;
9056   return true;
9057 }
9058 
9059 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9060 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9061                               const CodeGen::CodeGenModule &CGM,
9062                               TypeStringCache &TSC) {
9063   Enc += "p(";
9064   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9065     return false;
9066   Enc += ')';
9067   return true;
9068 }
9069 
9070 /// Appends array encoding to Enc before calling appendType for the element.
9071 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9072                             const ArrayType *AT,
9073                             const CodeGen::CodeGenModule &CGM,
9074                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9075   if (AT->getSizeModifier() != ArrayType::Normal)
9076     return false;
9077   Enc += "a(";
9078   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9079     CAT->getSize().toStringUnsigned(Enc);
9080   else
9081     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9082   Enc += ':';
9083   // The Qualifiers should be attached to the type rather than the array.
9084   appendQualifier(Enc, QT);
9085   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9086     return false;
9087   Enc += ')';
9088   return true;
9089 }
9090 
9091 /// Appends a function encoding to Enc, calling appendType for the return type
9092 /// and the arguments.
9093 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9094                              const CodeGen::CodeGenModule &CGM,
9095                              TypeStringCache &TSC) {
9096   Enc += "f{";
9097   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9098     return false;
9099   Enc += "}(";
9100   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9101     // N.B. we are only interested in the adjusted param types.
9102     auto I = FPT->param_type_begin();
9103     auto E = FPT->param_type_end();
9104     if (I != E) {
9105       do {
9106         if (!appendType(Enc, *I, CGM, TSC))
9107           return false;
9108         ++I;
9109         if (I != E)
9110           Enc += ',';
9111       } while (I != E);
9112       if (FPT->isVariadic())
9113         Enc += ",va";
9114     } else {
9115       if (FPT->isVariadic())
9116         Enc += "va";
9117       else
9118         Enc += '0';
9119     }
9120   }
9121   Enc += ')';
9122   return true;
9123 }
9124 
9125 /// Handles the type's qualifier before dispatching a call to handle specific
9126 /// type encodings.
9127 static bool appendType(SmallStringEnc &Enc, QualType QType,
9128                        const CodeGen::CodeGenModule &CGM,
9129                        TypeStringCache &TSC) {
9130 
9131   QualType QT = QType.getCanonicalType();
9132 
9133   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9134     // The Qualifiers should be attached to the type rather than the array.
9135     // Thus we don't call appendQualifier() here.
9136     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9137 
9138   appendQualifier(Enc, QT);
9139 
9140   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9141     return appendBuiltinType(Enc, BT);
9142 
9143   if (const PointerType *PT = QT->getAs<PointerType>())
9144     return appendPointerType(Enc, PT, CGM, TSC);
9145 
9146   if (const EnumType *ET = QT->getAs<EnumType>())
9147     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9148 
9149   if (const RecordType *RT = QT->getAsStructureType())
9150     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9151 
9152   if (const RecordType *RT = QT->getAsUnionType())
9153     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9154 
9155   if (const FunctionType *FT = QT->getAs<FunctionType>())
9156     return appendFunctionType(Enc, FT, CGM, TSC);
9157 
9158   return false;
9159 }
9160 
9161 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9162                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9163   if (!D)
9164     return false;
9165 
9166   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9167     if (FD->getLanguageLinkage() != CLanguageLinkage)
9168       return false;
9169     return appendType(Enc, FD->getType(), CGM, TSC);
9170   }
9171 
9172   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9173     if (VD->getLanguageLinkage() != CLanguageLinkage)
9174       return false;
9175     QualType QT = VD->getType().getCanonicalType();
9176     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9177       // Global ArrayTypes are given a size of '*' if the size is unknown.
9178       // The Qualifiers should be attached to the type rather than the array.
9179       // Thus we don't call appendQualifier() here.
9180       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9181     }
9182     return appendType(Enc, QT, CGM, TSC);
9183   }
9184   return false;
9185 }
9186 
9187 //===----------------------------------------------------------------------===//
9188 // RISCV ABI Implementation
9189 //===----------------------------------------------------------------------===//
9190 
9191 namespace {
9192 class RISCVABIInfo : public DefaultABIInfo {
9193 private:
9194   // Size of the integer ('x') registers in bits.
9195   unsigned XLen;
9196   // Size of the floating point ('f') registers in bits. Note that the target
9197   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
9198   // with soft float ABI has FLen==0).
9199   unsigned FLen;
9200   static const int NumArgGPRs = 8;
9201   static const int NumArgFPRs = 8;
9202   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9203                                       llvm::Type *&Field1Ty,
9204                                       CharUnits &Field1Off,
9205                                       llvm::Type *&Field2Ty,
9206                                       CharUnits &Field2Off) const;
9207 
9208 public:
9209   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
9210       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
9211 
9212   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9213   // non-virtual, but computeInfo is virtual, so we overload it.
9214   void computeInfo(CGFunctionInfo &FI) const override;
9215 
9216   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
9217                                   int &ArgFPRsLeft) const;
9218   ABIArgInfo classifyReturnType(QualType RetTy) const;
9219 
9220   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9221                     QualType Ty) const override;
9222 
9223   ABIArgInfo extendType(QualType Ty) const;
9224 
9225   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9226                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
9227                                 CharUnits &Field2Off, int &NeededArgGPRs,
9228                                 int &NeededArgFPRs) const;
9229   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
9230                                                CharUnits Field1Off,
9231                                                llvm::Type *Field2Ty,
9232                                                CharUnits Field2Off) const;
9233 };
9234 } // end anonymous namespace
9235 
9236 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9237   QualType RetTy = FI.getReturnType();
9238   if (!getCXXABI().classifyReturnType(FI))
9239     FI.getReturnInfo() = classifyReturnType(RetTy);
9240 
9241   // IsRetIndirect is true if classifyArgumentType indicated the value should
9242   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9243   // is passed direct in LLVM IR, relying on the backend lowering code to
9244   // rewrite the argument list and pass indirectly on RV32.
9245   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9246                        getContext().getTypeSize(RetTy) > (2 * XLen);
9247 
9248   // We must track the number of GPRs used in order to conform to the RISC-V
9249   // ABI, as integer scalars passed in registers should have signext/zeroext
9250   // when promoted, but are anyext if passed on the stack. As GPR usage is
9251   // different for variadic arguments, we must also track whether we are
9252   // examining a vararg or not.
9253   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9254   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
9255   int NumFixedArgs = FI.getNumRequiredArgs();
9256 
9257   int ArgNum = 0;
9258   for (auto &ArgInfo : FI.arguments()) {
9259     bool IsFixed = ArgNum < NumFixedArgs;
9260     ArgInfo.info =
9261         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
9262     ArgNum++;
9263   }
9264 }
9265 
9266 // Returns true if the struct is a potential candidate for the floating point
9267 // calling convention. If this function returns true, the caller is
9268 // responsible for checking that if there is only a single field then that
9269 // field is a float.
9270 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9271                                                   llvm::Type *&Field1Ty,
9272                                                   CharUnits &Field1Off,
9273                                                   llvm::Type *&Field2Ty,
9274                                                   CharUnits &Field2Off) const {
9275   bool IsInt = Ty->isIntegralOrEnumerationType();
9276   bool IsFloat = Ty->isRealFloatingType();
9277 
9278   if (IsInt || IsFloat) {
9279     uint64_t Size = getContext().getTypeSize(Ty);
9280     if (IsInt && Size > XLen)
9281       return false;
9282     // Can't be eligible if larger than the FP registers. Half precision isn't
9283     // currently supported on RISC-V and the ABI hasn't been confirmed, so
9284     // default to the integer ABI in that case.
9285     if (IsFloat && (Size > FLen || Size < 32))
9286       return false;
9287     // Can't be eligible if an integer type was already found (int+int pairs
9288     // are not eligible).
9289     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
9290       return false;
9291     if (!Field1Ty) {
9292       Field1Ty = CGT.ConvertType(Ty);
9293       Field1Off = CurOff;
9294       return true;
9295     }
9296     if (!Field2Ty) {
9297       Field2Ty = CGT.ConvertType(Ty);
9298       Field2Off = CurOff;
9299       return true;
9300     }
9301     return false;
9302   }
9303 
9304   if (auto CTy = Ty->getAs<ComplexType>()) {
9305     if (Field1Ty)
9306       return false;
9307     QualType EltTy = CTy->getElementType();
9308     if (getContext().getTypeSize(EltTy) > FLen)
9309       return false;
9310     Field1Ty = CGT.ConvertType(EltTy);
9311     Field1Off = CurOff;
9312     assert(CurOff.isZero() && "Unexpected offset for first field");
9313     Field2Ty = Field1Ty;
9314     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
9315     return true;
9316   }
9317 
9318   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
9319     uint64_t ArraySize = ATy->getSize().getZExtValue();
9320     QualType EltTy = ATy->getElementType();
9321     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
9322     for (uint64_t i = 0; i < ArraySize; ++i) {
9323       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
9324                                                 Field1Off, Field2Ty, Field2Off);
9325       if (!Ret)
9326         return false;
9327       CurOff += EltSize;
9328     }
9329     return true;
9330   }
9331 
9332   if (const auto *RTy = Ty->getAs<RecordType>()) {
9333     // Structures with either a non-trivial destructor or a non-trivial
9334     // copy constructor are not eligible for the FP calling convention.
9335     if (getRecordArgABI(Ty, CGT.getCXXABI()))
9336       return false;
9337     if (isEmptyRecord(getContext(), Ty, true))
9338       return true;
9339     const RecordDecl *RD = RTy->getDecl();
9340     // Unions aren't eligible unless they're empty (which is caught above).
9341     if (RD->isUnion())
9342       return false;
9343     int ZeroWidthBitFieldCount = 0;
9344     for (const FieldDecl *FD : RD->fields()) {
9345       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
9346       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
9347       QualType QTy = FD->getType();
9348       if (FD->isBitField()) {
9349         unsigned BitWidth = FD->getBitWidthValue(getContext());
9350         // Allow a bitfield with a type greater than XLen as long as the
9351         // bitwidth is XLen or less.
9352         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
9353           QTy = getContext().getIntTypeForBitwidth(XLen, false);
9354         if (BitWidth == 0) {
9355           ZeroWidthBitFieldCount++;
9356           continue;
9357         }
9358       }
9359 
9360       bool Ret = detectFPCCEligibleStructHelper(
9361           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
9362           Field1Ty, Field1Off, Field2Ty, Field2Off);
9363       if (!Ret)
9364         return false;
9365 
9366       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
9367       // or int+fp structs, but are ignored for a struct with an fp field and
9368       // any number of zero-width bitfields.
9369       if (Field2Ty && ZeroWidthBitFieldCount > 0)
9370         return false;
9371     }
9372     return Field1Ty != nullptr;
9373   }
9374 
9375   return false;
9376 }
9377 
9378 // Determine if a struct is eligible for passing according to the floating
9379 // point calling convention (i.e., when flattened it contains a single fp
9380 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
9381 // NeededArgGPRs are incremented appropriately.
9382 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9383                                             CharUnits &Field1Off,
9384                                             llvm::Type *&Field2Ty,
9385                                             CharUnits &Field2Off,
9386                                             int &NeededArgGPRs,
9387                                             int &NeededArgFPRs) const {
9388   Field1Ty = nullptr;
9389   Field2Ty = nullptr;
9390   NeededArgGPRs = 0;
9391   NeededArgFPRs = 0;
9392   bool IsCandidate = detectFPCCEligibleStructHelper(
9393       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
9394   // Not really a candidate if we have a single int but no float.
9395   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
9396     return IsCandidate = false;
9397   if (!IsCandidate)
9398     return false;
9399   if (Field1Ty && Field1Ty->isFloatingPointTy())
9400     NeededArgFPRs++;
9401   else if (Field1Ty)
9402     NeededArgGPRs++;
9403   if (Field2Ty && Field2Ty->isFloatingPointTy())
9404     NeededArgFPRs++;
9405   else if (Field2Ty)
9406     NeededArgGPRs++;
9407   return IsCandidate;
9408 }
9409 
9410 // Call getCoerceAndExpand for the two-element flattened struct described by
9411 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
9412 // appropriate coerceToType and unpaddedCoerceToType.
9413 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
9414     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
9415     CharUnits Field2Off) const {
9416   SmallVector<llvm::Type *, 3> CoerceElts;
9417   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
9418   if (!Field1Off.isZero())
9419     CoerceElts.push_back(llvm::ArrayType::get(
9420         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
9421 
9422   CoerceElts.push_back(Field1Ty);
9423   UnpaddedCoerceElts.push_back(Field1Ty);
9424 
9425   if (!Field2Ty) {
9426     return ABIArgInfo::getCoerceAndExpand(
9427         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
9428         UnpaddedCoerceElts[0]);
9429   }
9430 
9431   CharUnits Field2Align =
9432       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
9433   CharUnits Field1Size =
9434       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
9435   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
9436 
9437   CharUnits Padding = CharUnits::Zero();
9438   if (Field2Off > Field2OffNoPadNoPack)
9439     Padding = Field2Off - Field2OffNoPadNoPack;
9440   else if (Field2Off != Field2Align && Field2Off > Field1Size)
9441     Padding = Field2Off - Field1Size;
9442 
9443   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
9444 
9445   if (!Padding.isZero())
9446     CoerceElts.push_back(llvm::ArrayType::get(
9447         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
9448 
9449   CoerceElts.push_back(Field2Ty);
9450   UnpaddedCoerceElts.push_back(Field2Ty);
9451 
9452   auto CoerceToType =
9453       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
9454   auto UnpaddedCoerceToType =
9455       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
9456 
9457   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
9458 }
9459 
9460 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9461                                               int &ArgGPRsLeft,
9462                                               int &ArgFPRsLeft) const {
9463   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9464   Ty = useFirstFieldIfTransparentUnion(Ty);
9465 
9466   // Structures with either a non-trivial destructor or a non-trivial
9467   // copy constructor are always passed indirectly.
9468   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9469     if (ArgGPRsLeft)
9470       ArgGPRsLeft -= 1;
9471     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9472                                            CGCXXABI::RAA_DirectInMemory);
9473   }
9474 
9475   // Ignore empty structs/unions.
9476   if (isEmptyRecord(getContext(), Ty, true))
9477     return ABIArgInfo::getIgnore();
9478 
9479   uint64_t Size = getContext().getTypeSize(Ty);
9480 
9481   // Pass floating point values via FPRs if possible.
9482   if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
9483     ArgFPRsLeft--;
9484     return ABIArgInfo::getDirect();
9485   }
9486 
9487   // Complex types for the hard float ABI must be passed direct rather than
9488   // using CoerceAndExpand.
9489   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
9490     QualType EltTy = Ty->getAs<ComplexType>()->getElementType();
9491     if (getContext().getTypeSize(EltTy) <= FLen) {
9492       ArgFPRsLeft -= 2;
9493       return ABIArgInfo::getDirect();
9494     }
9495   }
9496 
9497   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
9498     llvm::Type *Field1Ty = nullptr;
9499     llvm::Type *Field2Ty = nullptr;
9500     CharUnits Field1Off = CharUnits::Zero();
9501     CharUnits Field2Off = CharUnits::Zero();
9502     int NeededArgGPRs;
9503     int NeededArgFPRs;
9504     bool IsCandidate =
9505         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
9506                                  NeededArgGPRs, NeededArgFPRs);
9507     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
9508         NeededArgFPRs <= ArgFPRsLeft) {
9509       ArgGPRsLeft -= NeededArgGPRs;
9510       ArgFPRsLeft -= NeededArgFPRs;
9511       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
9512                                                Field2Off);
9513     }
9514   }
9515 
9516   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9517   bool MustUseStack = false;
9518   // Determine the number of GPRs needed to pass the current argument
9519   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9520   // register pairs, so may consume 3 registers.
9521   int NeededArgGPRs = 1;
9522   if (!IsFixed && NeededAlign == 2 * XLen)
9523     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9524   else if (Size > XLen && Size <= 2 * XLen)
9525     NeededArgGPRs = 2;
9526 
9527   if (NeededArgGPRs > ArgGPRsLeft) {
9528     MustUseStack = true;
9529     NeededArgGPRs = ArgGPRsLeft;
9530   }
9531 
9532   ArgGPRsLeft -= NeededArgGPRs;
9533 
9534   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9535     // Treat an enum type as its underlying type.
9536     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9537       Ty = EnumTy->getDecl()->getIntegerType();
9538 
9539     // All integral types are promoted to XLen width, unless passed on the
9540     // stack.
9541     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9542       return extendType(Ty);
9543     }
9544 
9545     return ABIArgInfo::getDirect();
9546   }
9547 
9548   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9549   // so coerce to integers.
9550   if (Size <= 2 * XLen) {
9551     unsigned Alignment = getContext().getTypeAlign(Ty);
9552 
9553     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9554     // required, and a 2-element XLen array if only XLen alignment is required.
9555     if (Size <= XLen) {
9556       return ABIArgInfo::getDirect(
9557           llvm::IntegerType::get(getVMContext(), XLen));
9558     } else if (Alignment == 2 * XLen) {
9559       return ABIArgInfo::getDirect(
9560           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9561     } else {
9562       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9563           llvm::IntegerType::get(getVMContext(), XLen), 2));
9564     }
9565   }
9566   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9567 }
9568 
9569 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9570   if (RetTy->isVoidType())
9571     return ABIArgInfo::getIgnore();
9572 
9573   int ArgGPRsLeft = 2;
9574   int ArgFPRsLeft = FLen ? 2 : 0;
9575 
9576   // The rules for return and argument types are the same, so defer to
9577   // classifyArgumentType.
9578   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
9579                               ArgFPRsLeft);
9580 }
9581 
9582 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9583                                 QualType Ty) const {
9584   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9585 
9586   // Empty records are ignored for parameter passing purposes.
9587   if (isEmptyRecord(getContext(), Ty, true)) {
9588     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9589     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9590     return Addr;
9591   }
9592 
9593   std::pair<CharUnits, CharUnits> SizeAndAlign =
9594       getContext().getTypeInfoInChars(Ty);
9595 
9596   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9597   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9598 
9599   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9600                           SlotSize, /*AllowHigherAlign=*/true);
9601 }
9602 
9603 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9604   int TySize = getContext().getTypeSize(Ty);
9605   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9606   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9607     return ABIArgInfo::getSignExtend(Ty);
9608   return ABIArgInfo::getExtend(Ty);
9609 }
9610 
9611 namespace {
9612 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9613 public:
9614   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
9615                          unsigned FLen)
9616       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
9617 
9618   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9619                            CodeGen::CodeGenModule &CGM) const override {
9620     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9621     if (!FD) return;
9622 
9623     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9624     if (!Attr)
9625       return;
9626 
9627     const char *Kind;
9628     switch (Attr->getInterrupt()) {
9629     case RISCVInterruptAttr::user: Kind = "user"; break;
9630     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9631     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9632     }
9633 
9634     auto *Fn = cast<llvm::Function>(GV);
9635 
9636     Fn->addFnAttr("interrupt", Kind);
9637   }
9638 };
9639 } // namespace
9640 
9641 //===----------------------------------------------------------------------===//
9642 // Driver code
9643 //===----------------------------------------------------------------------===//
9644 
9645 bool CodeGenModule::supportsCOMDAT() const {
9646   return getTriple().supportsCOMDAT();
9647 }
9648 
9649 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9650   if (TheTargetCodeGenInfo)
9651     return *TheTargetCodeGenInfo;
9652 
9653   // Helper to set the unique_ptr while still keeping the return value.
9654   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9655     this->TheTargetCodeGenInfo.reset(P);
9656     return *P;
9657   };
9658 
9659   const llvm::Triple &Triple = getTarget().getTriple();
9660   switch (Triple.getArch()) {
9661   default:
9662     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9663 
9664   case llvm::Triple::le32:
9665     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9666   case llvm::Triple::mips:
9667   case llvm::Triple::mipsel:
9668     if (Triple.getOS() == llvm::Triple::NaCl)
9669       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9670     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9671 
9672   case llvm::Triple::mips64:
9673   case llvm::Triple::mips64el:
9674     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9675 
9676   case llvm::Triple::avr:
9677     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9678 
9679   case llvm::Triple::aarch64:
9680   case llvm::Triple::aarch64_be: {
9681     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9682     if (getTarget().getABI() == "darwinpcs")
9683       Kind = AArch64ABIInfo::DarwinPCS;
9684     else if (Triple.isOSWindows())
9685       return SetCGInfo(
9686           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9687 
9688     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9689   }
9690 
9691   case llvm::Triple::wasm32:
9692   case llvm::Triple::wasm64:
9693     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9694 
9695   case llvm::Triple::arm:
9696   case llvm::Triple::armeb:
9697   case llvm::Triple::thumb:
9698   case llvm::Triple::thumbeb: {
9699     if (Triple.getOS() == llvm::Triple::Win32) {
9700       return SetCGInfo(
9701           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9702     }
9703 
9704     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9705     StringRef ABIStr = getTarget().getABI();
9706     if (ABIStr == "apcs-gnu")
9707       Kind = ARMABIInfo::APCS;
9708     else if (ABIStr == "aapcs16")
9709       Kind = ARMABIInfo::AAPCS16_VFP;
9710     else if (CodeGenOpts.FloatABI == "hard" ||
9711              (CodeGenOpts.FloatABI != "soft" &&
9712               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9713                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9714                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9715       Kind = ARMABIInfo::AAPCS_VFP;
9716 
9717     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9718   }
9719 
9720   case llvm::Triple::ppc:
9721     return SetCGInfo(
9722         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9723   case llvm::Triple::ppc64:
9724     if (Triple.isOSBinFormatELF()) {
9725       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9726       if (getTarget().getABI() == "elfv2")
9727         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9728       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9729       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9730 
9731       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9732                                                         IsSoftFloat));
9733     } else
9734       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9735   case llvm::Triple::ppc64le: {
9736     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9737     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9738     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9739       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9740     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9741     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9742 
9743     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9744                                                       IsSoftFloat));
9745   }
9746 
9747   case llvm::Triple::nvptx:
9748   case llvm::Triple::nvptx64:
9749     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9750 
9751   case llvm::Triple::msp430:
9752     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9753 
9754   case llvm::Triple::riscv32:
9755   case llvm::Triple::riscv64: {
9756     StringRef ABIStr = getTarget().getABI();
9757     unsigned XLen = getTarget().getPointerWidth(0);
9758     unsigned ABIFLen = 0;
9759     if (ABIStr.endswith("f"))
9760       ABIFLen = 32;
9761     else if (ABIStr.endswith("d"))
9762       ABIFLen = 64;
9763     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
9764   }
9765 
9766   case llvm::Triple::systemz: {
9767     bool HasVector = getTarget().getABI() == "vector";
9768     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9769   }
9770 
9771   case llvm::Triple::tce:
9772   case llvm::Triple::tcele:
9773     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9774 
9775   case llvm::Triple::x86: {
9776     bool IsDarwinVectorABI = Triple.isOSDarwin();
9777     bool RetSmallStructInRegABI =
9778         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9779     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9780 
9781     if (Triple.getOS() == llvm::Triple::Win32) {
9782       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9783           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9784           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9785     } else {
9786       return SetCGInfo(new X86_32TargetCodeGenInfo(
9787           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9788           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9789           CodeGenOpts.FloatABI == "soft"));
9790     }
9791   }
9792 
9793   case llvm::Triple::x86_64: {
9794     StringRef ABI = getTarget().getABI();
9795     X86AVXABILevel AVXLevel =
9796         (ABI == "avx512"
9797              ? X86AVXABILevel::AVX512
9798              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9799 
9800     switch (Triple.getOS()) {
9801     case llvm::Triple::Win32:
9802       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9803     default:
9804       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9805     }
9806   }
9807   case llvm::Triple::hexagon:
9808     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9809   case llvm::Triple::lanai:
9810     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9811   case llvm::Triple::r600:
9812     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9813   case llvm::Triple::amdgcn:
9814     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9815   case llvm::Triple::sparc:
9816     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9817   case llvm::Triple::sparcv9:
9818     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9819   case llvm::Triple::xcore:
9820     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9821   case llvm::Triple::arc:
9822     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9823   case llvm::Triple::spir:
9824   case llvm::Triple::spir64:
9825     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9826   }
9827 }
9828 
9829 /// Create an OpenCL kernel for an enqueued block.
9830 ///
9831 /// The kernel has the same function type as the block invoke function. Its
9832 /// name is the name of the block invoke function postfixed with "_kernel".
9833 /// It simply calls the block invoke function then returns.
9834 llvm::Function *
9835 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9836                                              llvm::Function *Invoke,
9837                                              llvm::Value *BlockLiteral) const {
9838   auto *InvokeFT = Invoke->getFunctionType();
9839   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9840   for (auto &P : InvokeFT->params())
9841     ArgTys.push_back(P);
9842   auto &C = CGF.getLLVMContext();
9843   std::string Name = Invoke->getName().str() + "_kernel";
9844   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9845   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9846                                    &CGF.CGM.getModule());
9847   auto IP = CGF.Builder.saveIP();
9848   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9849   auto &Builder = CGF.Builder;
9850   Builder.SetInsertPoint(BB);
9851   llvm::SmallVector<llvm::Value *, 2> Args;
9852   for (auto &A : F->args())
9853     Args.push_back(&A);
9854   Builder.CreateCall(Invoke, Args);
9855   Builder.CreateRetVoid();
9856   Builder.restoreIP(IP);
9857   return F;
9858 }
9859 
9860 /// Create an OpenCL kernel for an enqueued block.
9861 ///
9862 /// The type of the first argument (the block literal) is the struct type
9863 /// of the block literal instead of a pointer type. The first argument
9864 /// (block literal) is passed directly by value to the kernel. The kernel
9865 /// allocates the same type of struct on stack and stores the block literal
9866 /// to it and passes its pointer to the block invoke function. The kernel
9867 /// has "enqueued-block" function attribute and kernel argument metadata.
9868 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9869     CodeGenFunction &CGF, llvm::Function *Invoke,
9870     llvm::Value *BlockLiteral) const {
9871   auto &Builder = CGF.Builder;
9872   auto &C = CGF.getLLVMContext();
9873 
9874   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9875   auto *InvokeFT = Invoke->getFunctionType();
9876   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9877   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9878   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9879   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9880   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9881   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9882   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9883 
9884   ArgTys.push_back(BlockTy);
9885   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9886   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9887   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9888   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9889   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9890   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9891   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9892     ArgTys.push_back(InvokeFT->getParamType(I));
9893     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9894     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9895     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9896     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9897     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9898     ArgNames.push_back(
9899         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9900   }
9901   std::string Name = Invoke->getName().str() + "_kernel";
9902   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9903   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9904                                    &CGF.CGM.getModule());
9905   F->addFnAttr("enqueued-block");
9906   auto IP = CGF.Builder.saveIP();
9907   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9908   Builder.SetInsertPoint(BB);
9909   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9910   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9911   BlockPtr->setAlignment(BlockAlign);
9912   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9913   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9914   llvm::SmallVector<llvm::Value *, 2> Args;
9915   Args.push_back(Cast);
9916   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9917     Args.push_back(I);
9918   Builder.CreateCall(Invoke, Args);
9919   Builder.CreateRetVoid();
9920   Builder.restoreIP(IP);
9921 
9922   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9923   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9924   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9925   F->setMetadata("kernel_arg_base_type",
9926                  llvm::MDNode::get(C, ArgBaseTypeNames));
9927   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9928   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9929     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9930 
9931   return F;
9932 }
9933