1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/SwiftCallingConv.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IntrinsicsNVPTX.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm> // std::sort
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 // Helper for coercing an aggregate argument or return value into an integer
41 // array of the same size (including padding) and alignment.  This alternate
42 // coercion happens only for the RenderScript ABI and can be removed after
43 // runtimes that rely on it are no longer supported.
44 //
45 // RenderScript assumes that the size of the argument / return value in the IR
46 // is the same as the size of the corresponding qualified type. This helper
47 // coerces the aggregate type into an array of the same size (including
48 // padding).  This coercion is used in lieu of expansion of struct members or
49 // other canonical coercions that return a coerced-type of larger size.
50 //
51 // Ty          - The argument / return value type
52 // Context     - The associated ASTContext
53 // LLVMContext - The associated LLVMContext
54 static ABIArgInfo coerceToIntArray(QualType Ty,
55                                    ASTContext &Context,
56                                    llvm::LLVMContext &LLVMContext) {
57   // Alignment and Size are measured in bits.
58   const uint64_t Size = Context.getTypeSize(Ty);
59   const uint64_t Alignment = Context.getTypeAlign(Ty);
60   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
61   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
62   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
63 }
64 
65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
66                                llvm::Value *Array,
67                                llvm::Value *Value,
68                                unsigned FirstIndex,
69                                unsigned LastIndex) {
70   // Alternatively, we could emit this as a loop in the source.
71   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
72     llvm::Value *Cell =
73         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
74     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
75   }
76 }
77 
78 static bool isAggregateTypeForABI(QualType T) {
79   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
80          T->isMemberFunctionPointerType();
81 }
82 
83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
84                                             bool Realign,
85                                             llvm::Type *Padding) const {
86   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
87                                  Realign, Padding);
88 }
89 
90 ABIArgInfo
91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
92   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
93                                       /*ByVal*/ false, Realign);
94 }
95 
96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
97                              QualType Ty) const {
98   return Address::invalid();
99 }
100 
101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
102   if (Ty->isPromotableIntegerType())
103     return true;
104 
105   if (const auto *EIT = Ty->getAs<ExtIntType>())
106     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
107       return true;
108 
109   return false;
110 }
111 
112 ABIInfo::~ABIInfo() {}
113 
114 /// Does the given lowering require more than the given number of
115 /// registers when expanded?
116 ///
117 /// This is intended to be the basis of a reasonable basic implementation
118 /// of should{Pass,Return}IndirectlyForSwift.
119 ///
120 /// For most targets, a limit of four total registers is reasonable; this
121 /// limits the amount of code required in order to move around the value
122 /// in case it wasn't produced immediately prior to the call by the caller
123 /// (or wasn't produced in exactly the right registers) or isn't used
124 /// immediately within the callee.  But some targets may need to further
125 /// limit the register count due to an inability to support that many
126 /// return registers.
127 static bool occupiesMoreThan(CodeGenTypes &cgt,
128                              ArrayRef<llvm::Type*> scalarTypes,
129                              unsigned maxAllRegisters) {
130   unsigned intCount = 0, fpCount = 0;
131   for (llvm::Type *type : scalarTypes) {
132     if (type->isPointerTy()) {
133       intCount++;
134     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
135       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
136       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
137     } else {
138       assert(type->isVectorTy() || type->isFloatingPointTy());
139       fpCount++;
140     }
141   }
142 
143   return (intCount + fpCount > maxAllRegisters);
144 }
145 
146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
147                                              llvm::Type *eltTy,
148                                              unsigned numElts) const {
149   // The default implementation of this assumes that the target guarantees
150   // 128-bit SIMD support but nothing more.
151   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
152 }
153 
154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
155                                               CGCXXABI &CXXABI) {
156   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
157   if (!RD) {
158     if (!RT->getDecl()->canPassInRegisters())
159       return CGCXXABI::RAA_Indirect;
160     return CGCXXABI::RAA_Default;
161   }
162   return CXXABI.getRecordArgABI(RD);
163 }
164 
165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
166                                               CGCXXABI &CXXABI) {
167   const RecordType *RT = T->getAs<RecordType>();
168   if (!RT)
169     return CGCXXABI::RAA_Default;
170   return getRecordArgABI(RT, CXXABI);
171 }
172 
173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
174                                const ABIInfo &Info) {
175   QualType Ty = FI.getReturnType();
176 
177   if (const auto *RT = Ty->getAs<RecordType>())
178     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
179         !RT->getDecl()->canPassInRegisters()) {
180       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
181       return true;
182     }
183 
184   return CXXABI.classifyReturnType(FI);
185 }
186 
187 /// Pass transparent unions as if they were the type of the first element. Sema
188 /// should ensure that all elements of the union have the same "machine type".
189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
190   if (const RecordType *UT = Ty->getAsUnionType()) {
191     const RecordDecl *UD = UT->getDecl();
192     if (UD->hasAttr<TransparentUnionAttr>()) {
193       assert(!UD->field_empty() && "sema created an empty transparent union");
194       return UD->field_begin()->getType();
195     }
196   }
197   return Ty;
198 }
199 
200 CGCXXABI &ABIInfo::getCXXABI() const {
201   return CGT.getCXXABI();
202 }
203 
204 ASTContext &ABIInfo::getContext() const {
205   return CGT.getContext();
206 }
207 
208 llvm::LLVMContext &ABIInfo::getVMContext() const {
209   return CGT.getLLVMContext();
210 }
211 
212 const llvm::DataLayout &ABIInfo::getDataLayout() const {
213   return CGT.getDataLayout();
214 }
215 
216 const TargetInfo &ABIInfo::getTarget() const {
217   return CGT.getTarget();
218 }
219 
220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
221   return CGT.getCodeGenOpts();
222 }
223 
224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
225 
226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
227   return false;
228 }
229 
230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
231                                                 uint64_t Members) const {
232   return false;
233 }
234 
235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
236   raw_ostream &OS = llvm::errs();
237   OS << "(ABIArgInfo Kind=";
238   switch (TheKind) {
239   case Direct:
240     OS << "Direct Type=";
241     if (llvm::Type *Ty = getCoerceToType())
242       Ty->print(OS);
243     else
244       OS << "null";
245     break;
246   case Extend:
247     OS << "Extend";
248     break;
249   case Ignore:
250     OS << "Ignore";
251     break;
252   case InAlloca:
253     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
254     break;
255   case Indirect:
256     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
257        << " ByVal=" << getIndirectByVal()
258        << " Realign=" << getIndirectRealign();
259     break;
260   case IndirectAliased:
261     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
262        << " AadrSpace=" << getIndirectAddrSpace()
263        << " Realign=" << getIndirectRealign();
264     break;
265   case Expand:
266     OS << "Expand";
267     break;
268   case CoerceAndExpand:
269     OS << "CoerceAndExpand Type=";
270     getCoerceAndExpandType()->print(OS);
271     break;
272   }
273   OS << ")\n";
274 }
275 
276 // Dynamically round a pointer up to a multiple of the given alignment.
277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
278                                                   llvm::Value *Ptr,
279                                                   CharUnits Align) {
280   llvm::Value *PtrAsInt = Ptr;
281   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
282   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
283   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
284         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
285   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
286            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
287   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
288                                         Ptr->getType(),
289                                         Ptr->getName() + ".aligned");
290   return PtrAsInt;
291 }
292 
293 /// Emit va_arg for a platform using the common void* representation,
294 /// where arguments are simply emitted in an array of slots on the stack.
295 ///
296 /// This version implements the core direct-value passing rules.
297 ///
298 /// \param SlotSize - The size and alignment of a stack slot.
299 ///   Each argument will be allocated to a multiple of this number of
300 ///   slots, and all the slots will be aligned to this value.
301 /// \param AllowHigherAlign - The slot alignment is not a cap;
302 ///   an argument type with an alignment greater than the slot size
303 ///   will be emitted on a higher-alignment address, potentially
304 ///   leaving one or more empty slots behind as padding.  If this
305 ///   is false, the returned address might be less-aligned than
306 ///   DirectAlign.
307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
308                                       Address VAListAddr,
309                                       llvm::Type *DirectTy,
310                                       CharUnits DirectSize,
311                                       CharUnits DirectAlign,
312                                       CharUnits SlotSize,
313                                       bool AllowHigherAlign) {
314   // Cast the element type to i8* if necessary.  Some platforms define
315   // va_list as a struct containing an i8* instead of just an i8*.
316   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
317     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
318 
319   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
320 
321   // If the CC aligns values higher than the slot size, do so if needed.
322   Address Addr = Address::invalid();
323   if (AllowHigherAlign && DirectAlign > SlotSize) {
324     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
325                                                  DirectAlign);
326   } else {
327     Addr = Address(Ptr, SlotSize);
328   }
329 
330   // Advance the pointer past the argument, then store that back.
331   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
332   Address NextPtr =
333       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
334   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
335 
336   // If the argument is smaller than a slot, and this is a big-endian
337   // target, the argument will be right-adjusted in its slot.
338   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
339       !DirectTy->isStructTy()) {
340     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
341   }
342 
343   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
344   return Addr;
345 }
346 
347 /// Emit va_arg for a platform using the common void* representation,
348 /// where arguments are simply emitted in an array of slots on the stack.
349 ///
350 /// \param IsIndirect - Values of this type are passed indirectly.
351 /// \param ValueInfo - The size and alignment of this type, generally
352 ///   computed with getContext().getTypeInfoInChars(ValueTy).
353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
354 ///   Each argument will be allocated to a multiple of this number of
355 ///   slots, and all the slots will be aligned to this value.
356 /// \param AllowHigherAlign - The slot alignment is not a cap;
357 ///   an argument type with an alignment greater than the slot size
358 ///   will be emitted on a higher-alignment address, potentially
359 ///   leaving one or more empty slots behind as padding.
360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
361                                 QualType ValueTy, bool IsIndirect,
362                                 std::pair<CharUnits, CharUnits> ValueInfo,
363                                 CharUnits SlotSizeAndAlign,
364                                 bool AllowHigherAlign) {
365   // The size and alignment of the value that was passed directly.
366   CharUnits DirectSize, DirectAlign;
367   if (IsIndirect) {
368     DirectSize = CGF.getPointerSize();
369     DirectAlign = CGF.getPointerAlign();
370   } else {
371     DirectSize = ValueInfo.first;
372     DirectAlign = ValueInfo.second;
373   }
374 
375   // Cast the address we've calculated to the right type.
376   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
377   if (IsIndirect)
378     DirectTy = DirectTy->getPointerTo(0);
379 
380   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
381                                         DirectSize, DirectAlign,
382                                         SlotSizeAndAlign,
383                                         AllowHigherAlign);
384 
385   if (IsIndirect) {
386     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
387   }
388 
389   return Addr;
390 
391 }
392 
393 static Address emitMergePHI(CodeGenFunction &CGF,
394                             Address Addr1, llvm::BasicBlock *Block1,
395                             Address Addr2, llvm::BasicBlock *Block2,
396                             const llvm::Twine &Name = "") {
397   assert(Addr1.getType() == Addr2.getType());
398   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
399   PHI->addIncoming(Addr1.getPointer(), Block1);
400   PHI->addIncoming(Addr2.getPointer(), Block2);
401   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
402   return Address(PHI, Align);
403 }
404 
405 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
406 
407 // If someone can figure out a general rule for this, that would be great.
408 // It's probably just doomed to be platform-dependent, though.
409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
410   // Verified for:
411   //   x86-64     FreeBSD, Linux, Darwin
412   //   x86-32     FreeBSD, Linux, Darwin
413   //   PowerPC    Linux, Darwin
414   //   ARM        Darwin (*not* EABI)
415   //   AArch64    Linux
416   return 32;
417 }
418 
419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
420                                      const FunctionNoProtoType *fnType) const {
421   // The following conventions are known to require this to be false:
422   //   x86_stdcall
423   //   MIPS
424   // For everything else, we just prefer false unless we opt out.
425   return false;
426 }
427 
428 void
429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
430                                              llvm::SmallString<24> &Opt) const {
431   // This assumes the user is passing a library name like "rt" instead of a
432   // filename like "librt.a/so", and that they don't care whether it's static or
433   // dynamic.
434   Opt = "-l";
435   Opt += Lib;
436 }
437 
438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
439   // OpenCL kernels are called via an explicit runtime API with arguments
440   // set with clSetKernelArg(), not as normal sub-functions.
441   // Return SPIR_KERNEL by default as the kernel calling convention to
442   // ensure the fingerprint is fixed such way that each OpenCL argument
443   // gets one matching argument in the produced kernel function argument
444   // list to enable feasible implementation of clSetKernelArg() with
445   // aggregates etc. In case we would use the default C calling conv here,
446   // clSetKernelArg() might break depending on the target-specific
447   // conventions; different targets might split structs passed as values
448   // to multiple function arguments etc.
449   return llvm::CallingConv::SPIR_KERNEL;
450 }
451 
452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
453     llvm::PointerType *T, QualType QT) const {
454   return llvm::ConstantPointerNull::get(T);
455 }
456 
457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
458                                                    const VarDecl *D) const {
459   assert(!CGM.getLangOpts().OpenCL &&
460          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
461          "Address space agnostic languages only");
462   return D ? D->getType().getAddressSpace() : LangAS::Default;
463 }
464 
465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
466     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
467     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
468   // Since target may map different address spaces in AST to the same address
469   // space, an address space conversion may end up as a bitcast.
470   if (auto *C = dyn_cast<llvm::Constant>(Src))
471     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
472   // Try to preserve the source's name to make IR more readable.
473   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
474       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
475 }
476 
477 llvm::Constant *
478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
479                                         LangAS SrcAddr, LangAS DestAddr,
480                                         llvm::Type *DestTy) const {
481   // Since target may map different address spaces in AST to the same address
482   // space, an address space conversion may end up as a bitcast.
483   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
484 }
485 
486 llvm::SyncScope::ID
487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
488                                       SyncScope Scope,
489                                       llvm::AtomicOrdering Ordering,
490                                       llvm::LLVMContext &Ctx) const {
491   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
492 }
493 
494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
495 
496 /// isEmptyField - Return true iff a the field is "empty", that is it
497 /// is an unnamed bit-field or an (array of) empty record(s).
498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
499                          bool AllowArrays) {
500   if (FD->isUnnamedBitfield())
501     return true;
502 
503   QualType FT = FD->getType();
504 
505   // Constant arrays of empty records count as empty, strip them off.
506   // Constant arrays of zero length always count as empty.
507   bool WasArray = false;
508   if (AllowArrays)
509     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
510       if (AT->getSize() == 0)
511         return true;
512       FT = AT->getElementType();
513       // The [[no_unique_address]] special case below does not apply to
514       // arrays of C++ empty records, so we need to remember this fact.
515       WasArray = true;
516     }
517 
518   const RecordType *RT = FT->getAs<RecordType>();
519   if (!RT)
520     return false;
521 
522   // C++ record fields are never empty, at least in the Itanium ABI.
523   //
524   // FIXME: We should use a predicate for whether this behavior is true in the
525   // current ABI.
526   //
527   // The exception to the above rule are fields marked with the
528   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
529   // according to the Itanium ABI.  The exception applies only to records,
530   // not arrays of records, so we must also check whether we stripped off an
531   // array type above.
532   if (isa<CXXRecordDecl>(RT->getDecl()) &&
533       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
534     return false;
535 
536   return isEmptyRecord(Context, FT, AllowArrays);
537 }
538 
539 /// isEmptyRecord - Return true iff a structure contains only empty
540 /// fields. Note that a structure with a flexible array member is not
541 /// considered empty.
542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
543   const RecordType *RT = T->getAs<RecordType>();
544   if (!RT)
545     return false;
546   const RecordDecl *RD = RT->getDecl();
547   if (RD->hasFlexibleArrayMember())
548     return false;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
552     for (const auto &I : CXXRD->bases())
553       if (!isEmptyRecord(Context, I.getType(), true))
554         return false;
555 
556   for (const auto *I : RD->fields())
557     if (!isEmptyField(Context, I, AllowArrays))
558       return false;
559   return true;
560 }
561 
562 /// isSingleElementStruct - Determine if a structure is a "single
563 /// element struct", i.e. it has exactly one non-empty field or
564 /// exactly one field which is itself a single element
565 /// struct. Structures with flexible array members are never
566 /// considered single element structs.
567 ///
568 /// \return The field declaration for the single non-empty field, if
569 /// it exists.
570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
571   const RecordType *RT = T->getAs<RecordType>();
572   if (!RT)
573     return nullptr;
574 
575   const RecordDecl *RD = RT->getDecl();
576   if (RD->hasFlexibleArrayMember())
577     return nullptr;
578 
579   const Type *Found = nullptr;
580 
581   // If this is a C++ record, check the bases first.
582   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
583     for (const auto &I : CXXRD->bases()) {
584       // Ignore empty records.
585       if (isEmptyRecord(Context, I.getType(), true))
586         continue;
587 
588       // If we already found an element then this isn't a single-element struct.
589       if (Found)
590         return nullptr;
591 
592       // If this is non-empty and not a single element struct, the composite
593       // cannot be a single element struct.
594       Found = isSingleElementStruct(I.getType(), Context);
595       if (!Found)
596         return nullptr;
597     }
598   }
599 
600   // Check for single element.
601   for (const auto *FD : RD->fields()) {
602     QualType FT = FD->getType();
603 
604     // Ignore empty fields.
605     if (isEmptyField(Context, FD, true))
606       continue;
607 
608     // If we already found an element then this isn't a single-element
609     // struct.
610     if (Found)
611       return nullptr;
612 
613     // Treat single element arrays as the element.
614     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
615       if (AT->getSize().getZExtValue() != 1)
616         break;
617       FT = AT->getElementType();
618     }
619 
620     if (!isAggregateTypeForABI(FT)) {
621       Found = FT.getTypePtr();
622     } else {
623       Found = isSingleElementStruct(FT, Context);
624       if (!Found)
625         return nullptr;
626     }
627   }
628 
629   // We don't consider a struct a single-element struct if it has
630   // padding beyond the element type.
631   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
632     return nullptr;
633 
634   return Found;
635 }
636 
637 namespace {
638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
639                        const ABIArgInfo &AI) {
640   // This default implementation defers to the llvm backend's va_arg
641   // instruction. It can handle only passing arguments directly
642   // (typically only handled in the backend for primitive types), or
643   // aggregates passed indirectly by pointer (NOTE: if the "byval"
644   // flag has ABI impact in the callee, this implementation cannot
645   // work.)
646 
647   // Only a few cases are covered here at the moment -- those needed
648   // by the default abi.
649   llvm::Value *Val;
650 
651   if (AI.isIndirect()) {
652     assert(!AI.getPaddingType() &&
653            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
654     assert(
655         !AI.getIndirectRealign() &&
656         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
657 
658     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
659     CharUnits TyAlignForABI = TyInfo.second;
660 
661     llvm::Type *BaseTy =
662         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
663     llvm::Value *Addr =
664         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
665     return Address(Addr, TyAlignForABI);
666   } else {
667     assert((AI.isDirect() || AI.isExtend()) &&
668            "Unexpected ArgInfo Kind in generic VAArg emitter!");
669 
670     assert(!AI.getInReg() &&
671            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
672     assert(!AI.getPaddingType() &&
673            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getDirectOffset() &&
675            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getCoerceToType() &&
677            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
678 
679     Address Temp = CGF.CreateMemTemp(Ty, "varet");
680     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
681     CGF.Builder.CreateStore(Val, Temp);
682     return Temp;
683   }
684 }
685 
686 /// DefaultABIInfo - The default implementation for ABI specific
687 /// details. This implementation provides information which results in
688 /// self-consistent and sensible LLVM IR generation, but does not
689 /// conform to any particular ABI.
690 class DefaultABIInfo : public ABIInfo {
691 public:
692   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
693 
694   ABIArgInfo classifyReturnType(QualType RetTy) const;
695   ABIArgInfo classifyArgumentType(QualType RetTy) const;
696 
697   void computeInfo(CGFunctionInfo &FI) const override {
698     if (!getCXXABI().classifyReturnType(FI))
699       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
700     for (auto &I : FI.arguments())
701       I.info = classifyArgumentType(I.type);
702   }
703 
704   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
705                     QualType Ty) const override {
706     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
707   }
708 };
709 
710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
711 public:
712   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
713       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
714 };
715 
716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
717   Ty = useFirstFieldIfTransparentUnion(Ty);
718 
719   if (isAggregateTypeForABI(Ty)) {
720     // Records with non-trivial destructors/copy-constructors should not be
721     // passed by value.
722     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
723       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
724 
725     return getNaturalAlignIndirect(Ty);
726   }
727 
728   // Treat an enum type as its underlying type.
729   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
730     Ty = EnumTy->getDecl()->getIntegerType();
731 
732   ASTContext &Context = getContext();
733   if (const auto *EIT = Ty->getAs<ExtIntType>())
734     if (EIT->getNumBits() >
735         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
736                                 ? Context.Int128Ty
737                                 : Context.LongLongTy))
738       return getNaturalAlignIndirect(Ty);
739 
740   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
741                                             : ABIArgInfo::getDirect());
742 }
743 
744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
745   if (RetTy->isVoidType())
746     return ABIArgInfo::getIgnore();
747 
748   if (isAggregateTypeForABI(RetTy))
749     return getNaturalAlignIndirect(RetTy);
750 
751   // Treat an enum type as its underlying type.
752   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
753     RetTy = EnumTy->getDecl()->getIntegerType();
754 
755   if (const auto *EIT = RetTy->getAs<ExtIntType>())
756     if (EIT->getNumBits() >
757         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
758                                      ? getContext().Int128Ty
759                                      : getContext().LongLongTy))
760       return getNaturalAlignIndirect(RetTy);
761 
762   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
763                                                : ABIArgInfo::getDirect());
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // WebAssembly ABI Implementation
768 //
769 // This is a very simple ABI that relies a lot on DefaultABIInfo.
770 //===----------------------------------------------------------------------===//
771 
772 class WebAssemblyABIInfo final : public SwiftABIInfo {
773 public:
774   enum ABIKind {
775     MVP = 0,
776     ExperimentalMV = 1,
777   };
778 
779 private:
780   DefaultABIInfo defaultInfo;
781   ABIKind Kind;
782 
783 public:
784   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
785       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
786 
787 private:
788   ABIArgInfo classifyReturnType(QualType RetTy) const;
789   ABIArgInfo classifyArgumentType(QualType Ty) const;
790 
791   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
792   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
793   // overload them.
794   void computeInfo(CGFunctionInfo &FI) const override {
795     if (!getCXXABI().classifyReturnType(FI))
796       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
797     for (auto &Arg : FI.arguments())
798       Arg.info = classifyArgumentType(Arg.type);
799   }
800 
801   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
802                     QualType Ty) const override;
803 
804   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
805                                     bool asReturnValue) const override {
806     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
807   }
808 
809   bool isSwiftErrorInRegister() const override {
810     return false;
811   }
812 };
813 
814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
815 public:
816   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
817                                         WebAssemblyABIInfo::ABIKind K)
818       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
819 
820   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
821                            CodeGen::CodeGenModule &CGM) const override {
822     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
823     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
824       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
825         llvm::Function *Fn = cast<llvm::Function>(GV);
826         llvm::AttrBuilder B;
827         B.addAttribute("wasm-import-module", Attr->getImportModule());
828         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
829       }
830       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
831         llvm::Function *Fn = cast<llvm::Function>(GV);
832         llvm::AttrBuilder B;
833         B.addAttribute("wasm-import-name", Attr->getImportName());
834         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
835       }
836       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
837         llvm::Function *Fn = cast<llvm::Function>(GV);
838         llvm::AttrBuilder B;
839         B.addAttribute("wasm-export-name", Attr->getExportName());
840         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
841       }
842     }
843 
844     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
845       llvm::Function *Fn = cast<llvm::Function>(GV);
846       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
847         Fn->addFnAttr("no-prototype");
848     }
849   }
850 };
851 
852 /// Classify argument of given type \p Ty.
853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
854   Ty = useFirstFieldIfTransparentUnion(Ty);
855 
856   if (isAggregateTypeForABI(Ty)) {
857     // Records with non-trivial destructors/copy-constructors should not be
858     // passed by value.
859     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
860       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
861     // Ignore empty structs/unions.
862     if (isEmptyRecord(getContext(), Ty, true))
863       return ABIArgInfo::getIgnore();
864     // Lower single-element structs to just pass a regular value. TODO: We
865     // could do reasonable-size multiple-element structs too, using getExpand(),
866     // though watch out for things like bitfields.
867     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
868       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
869     // For the experimental multivalue ABI, fully expand all other aggregates
870     if (Kind == ABIKind::ExperimentalMV) {
871       const RecordType *RT = Ty->getAs<RecordType>();
872       assert(RT);
873       bool HasBitField = false;
874       for (auto *Field : RT->getDecl()->fields()) {
875         if (Field->isBitField()) {
876           HasBitField = true;
877           break;
878         }
879       }
880       if (!HasBitField)
881         return ABIArgInfo::getExpand();
882     }
883   }
884 
885   // Otherwise just do the default thing.
886   return defaultInfo.classifyArgumentType(Ty);
887 }
888 
889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
890   if (isAggregateTypeForABI(RetTy)) {
891     // Records with non-trivial destructors/copy-constructors should not be
892     // returned by value.
893     if (!getRecordArgABI(RetTy, getCXXABI())) {
894       // Ignore empty structs/unions.
895       if (isEmptyRecord(getContext(), RetTy, true))
896         return ABIArgInfo::getIgnore();
897       // Lower single-element structs to just return a regular value. TODO: We
898       // could do reasonable-size multiple-element structs too, using
899       // ABIArgInfo::getDirect().
900       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
901         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
902       // For the experimental multivalue ABI, return all other aggregates
903       if (Kind == ABIKind::ExperimentalMV)
904         return ABIArgInfo::getDirect();
905     }
906   }
907 
908   // Otherwise just do the default thing.
909   return defaultInfo.classifyReturnType(RetTy);
910 }
911 
912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
913                                       QualType Ty) const {
914   bool IsIndirect = isAggregateTypeForABI(Ty) &&
915                     !isEmptyRecord(getContext(), Ty, true) &&
916                     !isSingleElementStruct(Ty, getContext());
917   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
918                           getContext().getTypeInfoInChars(Ty),
919                           CharUnits::fromQuantity(4),
920                           /*AllowHigherAlign=*/true);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 // le32/PNaCl bitcode ABI Implementation
925 //
926 // This is a simplified version of the x86_32 ABI.  Arguments and return values
927 // are always passed on the stack.
928 //===----------------------------------------------------------------------===//
929 
930 class PNaClABIInfo : public ABIInfo {
931  public:
932   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
933 
934   ABIArgInfo classifyReturnType(QualType RetTy) const;
935   ABIArgInfo classifyArgumentType(QualType RetTy) const;
936 
937   void computeInfo(CGFunctionInfo &FI) const override;
938   Address EmitVAArg(CodeGenFunction &CGF,
939                     Address VAListAddr, QualType Ty) const override;
940 };
941 
942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
943  public:
944    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
945        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
946 };
947 
948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
949   if (!getCXXABI().classifyReturnType(FI))
950     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
951 
952   for (auto &I : FI.arguments())
953     I.info = classifyArgumentType(I.type);
954 }
955 
956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
957                                 QualType Ty) const {
958   // The PNaCL ABI is a bit odd, in that varargs don't use normal
959   // function classification. Structs get passed directly for varargs
960   // functions, through a rewriting transform in
961   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
962   // this target to actually support a va_arg instructions with an
963   // aggregate type, unlike other targets.
964   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
965 }
966 
967 /// Classify argument of given type \p Ty.
968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
969   if (isAggregateTypeForABI(Ty)) {
970     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
971       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
972     return getNaturalAlignIndirect(Ty);
973   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
974     // Treat an enum type as its underlying type.
975     Ty = EnumTy->getDecl()->getIntegerType();
976   } else if (Ty->isFloatingType()) {
977     // Floating-point types don't go inreg.
978     return ABIArgInfo::getDirect();
979   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
980     // Treat extended integers as integers if <=64, otherwise pass indirectly.
981     if (EIT->getNumBits() > 64)
982       return getNaturalAlignIndirect(Ty);
983     return ABIArgInfo::getDirect();
984   }
985 
986   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
987                                             : ABIArgInfo::getDirect());
988 }
989 
990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
991   if (RetTy->isVoidType())
992     return ABIArgInfo::getIgnore();
993 
994   // In the PNaCl ABI we always return records/structures on the stack.
995   if (isAggregateTypeForABI(RetTy))
996     return getNaturalAlignIndirect(RetTy);
997 
998   // Treat extended integers as integers if <=64, otherwise pass indirectly.
999   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1000     if (EIT->getNumBits() > 64)
1001       return getNaturalAlignIndirect(RetTy);
1002     return ABIArgInfo::getDirect();
1003   }
1004 
1005   // Treat an enum type as its underlying type.
1006   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1007     RetTy = EnumTy->getDecl()->getIntegerType();
1008 
1009   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1010                                                : ABIArgInfo::getDirect());
1011 }
1012 
1013 /// IsX86_MMXType - Return true if this is an MMX type.
1014 bool IsX86_MMXType(llvm::Type *IRType) {
1015   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1016   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1017     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1018     IRType->getScalarSizeInBits() != 64;
1019 }
1020 
1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1022                                           StringRef Constraint,
1023                                           llvm::Type* Ty) {
1024   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1025                      .Cases("y", "&y", "^Ym", true)
1026                      .Default(false);
1027   if (IsMMXCons && Ty->isVectorTy()) {
1028     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1029         64) {
1030       // Invalid MMX constraint
1031       return nullptr;
1032     }
1033 
1034     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1035   }
1036 
1037   // No operation needed
1038   return Ty;
1039 }
1040 
1041 /// Returns true if this type can be passed in SSE registers with the
1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1044   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1045     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1046       if (BT->getKind() == BuiltinType::LongDouble) {
1047         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1048             &llvm::APFloat::x87DoubleExtended())
1049           return false;
1050       }
1051       return true;
1052     }
1053   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1054     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1055     // registers specially.
1056     unsigned VecSize = Context.getTypeSize(VT);
1057     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1058       return true;
1059   }
1060   return false;
1061 }
1062 
1063 /// Returns true if this aggregate is small enough to be passed in SSE registers
1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1066   return NumMembers <= 4;
1067 }
1068 
1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1071   auto AI = ABIArgInfo::getDirect(T);
1072   AI.setInReg(true);
1073   AI.setCanBeFlattened(false);
1074   return AI;
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 // X86-32 ABI Implementation
1079 //===----------------------------------------------------------------------===//
1080 
1081 /// Similar to llvm::CCState, but for Clang.
1082 struct CCState {
1083   CCState(CGFunctionInfo &FI)
1084       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1085 
1086   llvm::SmallBitVector IsPreassigned;
1087   unsigned CC = CallingConv::CC_C;
1088   unsigned FreeRegs = 0;
1089   unsigned FreeSSERegs = 0;
1090 };
1091 
1092 enum {
1093   // Vectorcall only allows the first 6 parameters to be passed in registers.
1094   VectorcallMaxParamNumAsReg = 6
1095 };
1096 
1097 /// X86_32ABIInfo - The X86-32 ABI information.
1098 class X86_32ABIInfo : public SwiftABIInfo {
1099   enum Class {
1100     Integer,
1101     Float
1102   };
1103 
1104   static const unsigned MinABIStackAlignInBytes = 4;
1105 
1106   bool IsDarwinVectorABI;
1107   bool IsRetSmallStructInRegABI;
1108   bool IsWin32StructABI;
1109   bool IsSoftFloatABI;
1110   bool IsMCUABI;
1111   unsigned DefaultNumRegisterParameters;
1112 
1113   static bool isRegisterSize(unsigned Size) {
1114     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1115   }
1116 
1117   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1118     // FIXME: Assumes vectorcall is in use.
1119     return isX86VectorTypeForVectorCall(getContext(), Ty);
1120   }
1121 
1122   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1123                                          uint64_t NumMembers) const override {
1124     // FIXME: Assumes vectorcall is in use.
1125     return isX86VectorCallAggregateSmallEnough(NumMembers);
1126   }
1127 
1128   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1129 
1130   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1131   /// such that the argument will be passed in memory.
1132   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1133 
1134   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1135 
1136   /// Return the alignment to use for the given type on the stack.
1137   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1138 
1139   Class classify(QualType Ty) const;
1140   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1141   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1142 
1143   /// Updates the number of available free registers, returns
1144   /// true if any registers were allocated.
1145   bool updateFreeRegs(QualType Ty, CCState &State) const;
1146 
1147   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1148                                 bool &NeedsPadding) const;
1149   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1150 
1151   bool canExpandIndirectArgument(QualType Ty) const;
1152 
1153   /// Rewrite the function info so that all memory arguments use
1154   /// inalloca.
1155   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1156 
1157   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1158                            CharUnits &StackOffset, ABIArgInfo &Info,
1159                            QualType Type) const;
1160   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1161 
1162 public:
1163 
1164   void computeInfo(CGFunctionInfo &FI) const override;
1165   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1166                     QualType Ty) const override;
1167 
1168   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1169                 bool RetSmallStructInRegABI, bool Win32StructABI,
1170                 unsigned NumRegisterParameters, bool SoftFloatABI)
1171     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1172       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1173       IsWin32StructABI(Win32StructABI),
1174       IsSoftFloatABI(SoftFloatABI),
1175       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1176       DefaultNumRegisterParameters(NumRegisterParameters) {}
1177 
1178   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1179                                     bool asReturnValue) const override {
1180     // LLVM's x86-32 lowering currently only assigns up to three
1181     // integer registers and three fp registers.  Oddly, it'll use up to
1182     // four vector registers for vectors, but those can overlap with the
1183     // scalar registers.
1184     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1185   }
1186 
1187   bool isSwiftErrorInRegister() const override {
1188     // x86-32 lowering does not support passing swifterror in a register.
1189     return false;
1190   }
1191 };
1192 
1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1194 public:
1195   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1196                           bool RetSmallStructInRegABI, bool Win32StructABI,
1197                           unsigned NumRegisterParameters, bool SoftFloatABI)
1198       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1199             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1200             NumRegisterParameters, SoftFloatABI)) {}
1201 
1202   static bool isStructReturnInRegABI(
1203       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1204 
1205   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1206                            CodeGen::CodeGenModule &CGM) const override;
1207 
1208   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1209     // Darwin uses different dwarf register numbers for EH.
1210     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1211     return 4;
1212   }
1213 
1214   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1215                                llvm::Value *Address) const override;
1216 
1217   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1218                                   StringRef Constraint,
1219                                   llvm::Type* Ty) const override {
1220     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1221   }
1222 
1223   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1224                                 std::string &Constraints,
1225                                 std::vector<llvm::Type *> &ResultRegTypes,
1226                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1227                                 std::vector<LValue> &ResultRegDests,
1228                                 std::string &AsmString,
1229                                 unsigned NumOutputs) const override;
1230 
1231   llvm::Constant *
1232   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1233     unsigned Sig = (0xeb << 0) |  // jmp rel8
1234                    (0x06 << 8) |  //           .+0x08
1235                    ('v' << 16) |
1236                    ('2' << 24);
1237     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1238   }
1239 
1240   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1241     return "movl\t%ebp, %ebp"
1242            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1243   }
1244 };
1245 
1246 }
1247 
1248 /// Rewrite input constraint references after adding some output constraints.
1249 /// In the case where there is one output and one input and we add one output,
1250 /// we need to replace all operand references greater than or equal to 1:
1251 ///     mov $0, $1
1252 ///     mov eax, $1
1253 /// The result will be:
1254 ///     mov $0, $2
1255 ///     mov eax, $2
1256 static void rewriteInputConstraintReferences(unsigned FirstIn,
1257                                              unsigned NumNewOuts,
1258                                              std::string &AsmString) {
1259   std::string Buf;
1260   llvm::raw_string_ostream OS(Buf);
1261   size_t Pos = 0;
1262   while (Pos < AsmString.size()) {
1263     size_t DollarStart = AsmString.find('$', Pos);
1264     if (DollarStart == std::string::npos)
1265       DollarStart = AsmString.size();
1266     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1267     if (DollarEnd == std::string::npos)
1268       DollarEnd = AsmString.size();
1269     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1270     Pos = DollarEnd;
1271     size_t NumDollars = DollarEnd - DollarStart;
1272     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1273       // We have an operand reference.
1274       size_t DigitStart = Pos;
1275       if (AsmString[DigitStart] == '{') {
1276         OS << '{';
1277         ++DigitStart;
1278       }
1279       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1280       if (DigitEnd == std::string::npos)
1281         DigitEnd = AsmString.size();
1282       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1283       unsigned OperandIndex;
1284       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1285         if (OperandIndex >= FirstIn)
1286           OperandIndex += NumNewOuts;
1287         OS << OperandIndex;
1288       } else {
1289         OS << OperandStr;
1290       }
1291       Pos = DigitEnd;
1292     }
1293   }
1294   AsmString = std::move(OS.str());
1295 }
1296 
1297 /// Add output constraints for EAX:EDX because they are return registers.
1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1299     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1300     std::vector<llvm::Type *> &ResultRegTypes,
1301     std::vector<llvm::Type *> &ResultTruncRegTypes,
1302     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1303     unsigned NumOutputs) const {
1304   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1305 
1306   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1307   // larger.
1308   if (!Constraints.empty())
1309     Constraints += ',';
1310   if (RetWidth <= 32) {
1311     Constraints += "={eax}";
1312     ResultRegTypes.push_back(CGF.Int32Ty);
1313   } else {
1314     // Use the 'A' constraint for EAX:EDX.
1315     Constraints += "=A";
1316     ResultRegTypes.push_back(CGF.Int64Ty);
1317   }
1318 
1319   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1320   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1321   ResultTruncRegTypes.push_back(CoerceTy);
1322 
1323   // Coerce the integer by bitcasting the return slot pointer.
1324   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1325                                                   CoerceTy->getPointerTo()));
1326   ResultRegDests.push_back(ReturnSlot);
1327 
1328   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1329 }
1330 
1331 /// shouldReturnTypeInRegister - Determine if the given type should be
1332 /// returned in a register (for the Darwin and MCU ABI).
1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1334                                                ASTContext &Context) const {
1335   uint64_t Size = Context.getTypeSize(Ty);
1336 
1337   // For i386, type must be register sized.
1338   // For the MCU ABI, it only needs to be <= 8-byte
1339   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1340    return false;
1341 
1342   if (Ty->isVectorType()) {
1343     // 64- and 128- bit vectors inside structures are not returned in
1344     // registers.
1345     if (Size == 64 || Size == 128)
1346       return false;
1347 
1348     return true;
1349   }
1350 
1351   // If this is a builtin, pointer, enum, complex type, member pointer, or
1352   // member function pointer it is ok.
1353   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1354       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1355       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1356     return true;
1357 
1358   // Arrays are treated like records.
1359   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1360     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1361 
1362   // Otherwise, it must be a record type.
1363   const RecordType *RT = Ty->getAs<RecordType>();
1364   if (!RT) return false;
1365 
1366   // FIXME: Traverse bases here too.
1367 
1368   // Structure types are passed in register if all fields would be
1369   // passed in a register.
1370   for (const auto *FD : RT->getDecl()->fields()) {
1371     // Empty fields are ignored.
1372     if (isEmptyField(Context, FD, true))
1373       continue;
1374 
1375     // Check fields recursively.
1376     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1377       return false;
1378   }
1379   return true;
1380 }
1381 
1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1383   // Treat complex types as the element type.
1384   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1385     Ty = CTy->getElementType();
1386 
1387   // Check for a type which we know has a simple scalar argument-passing
1388   // convention without any padding.  (We're specifically looking for 32
1389   // and 64-bit integer and integer-equivalents, float, and double.)
1390   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1391       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1392     return false;
1393 
1394   uint64_t Size = Context.getTypeSize(Ty);
1395   return Size == 32 || Size == 64;
1396 }
1397 
1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1399                           uint64_t &Size) {
1400   for (const auto *FD : RD->fields()) {
1401     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1402     // argument is smaller than 32-bits, expanding the struct will create
1403     // alignment padding.
1404     if (!is32Or64BitBasicType(FD->getType(), Context))
1405       return false;
1406 
1407     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1408     // how to expand them yet, and the predicate for telling if a bitfield still
1409     // counts as "basic" is more complicated than what we were doing previously.
1410     if (FD->isBitField())
1411       return false;
1412 
1413     Size += Context.getTypeSize(FD->getType());
1414   }
1415   return true;
1416 }
1417 
1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1419                                  uint64_t &Size) {
1420   // Don't do this if there are any non-empty bases.
1421   for (const CXXBaseSpecifier &Base : RD->bases()) {
1422     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1423                               Size))
1424       return false;
1425   }
1426   if (!addFieldSizes(Context, RD, Size))
1427     return false;
1428   return true;
1429 }
1430 
1431 /// Test whether an argument type which is to be passed indirectly (on the
1432 /// stack) would have the equivalent layout if it was expanded into separate
1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1434 /// optimizations.
1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1436   // We can only expand structure types.
1437   const RecordType *RT = Ty->getAs<RecordType>();
1438   if (!RT)
1439     return false;
1440   const RecordDecl *RD = RT->getDecl();
1441   uint64_t Size = 0;
1442   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1443     if (!IsWin32StructABI) {
1444       // On non-Windows, we have to conservatively match our old bitcode
1445       // prototypes in order to be ABI-compatible at the bitcode level.
1446       if (!CXXRD->isCLike())
1447         return false;
1448     } else {
1449       // Don't do this for dynamic classes.
1450       if (CXXRD->isDynamicClass())
1451         return false;
1452     }
1453     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1454       return false;
1455   } else {
1456     if (!addFieldSizes(getContext(), RD, Size))
1457       return false;
1458   }
1459 
1460   // We can do this if there was no alignment padding.
1461   return Size == getContext().getTypeSize(Ty);
1462 }
1463 
1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1465   // If the return value is indirect, then the hidden argument is consuming one
1466   // integer register.
1467   if (State.FreeRegs) {
1468     --State.FreeRegs;
1469     if (!IsMCUABI)
1470       return getNaturalAlignIndirectInReg(RetTy);
1471   }
1472   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1473 }
1474 
1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1476                                              CCState &State) const {
1477   if (RetTy->isVoidType())
1478     return ABIArgInfo::getIgnore();
1479 
1480   const Type *Base = nullptr;
1481   uint64_t NumElts = 0;
1482   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1483        State.CC == llvm::CallingConv::X86_RegCall) &&
1484       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1485     // The LLVM struct type for such an aggregate should lower properly.
1486     return ABIArgInfo::getDirect();
1487   }
1488 
1489   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1490     // On Darwin, some vectors are returned in registers.
1491     if (IsDarwinVectorABI) {
1492       uint64_t Size = getContext().getTypeSize(RetTy);
1493 
1494       // 128-bit vectors are a special case; they are returned in
1495       // registers and we need to make sure to pick a type the LLVM
1496       // backend will like.
1497       if (Size == 128)
1498         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1499             llvm::Type::getInt64Ty(getVMContext()), 2));
1500 
1501       // Always return in register if it fits in a general purpose
1502       // register, or if it is 64 bits and has a single element.
1503       if ((Size == 8 || Size == 16 || Size == 32) ||
1504           (Size == 64 && VT->getNumElements() == 1))
1505         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1506                                                             Size));
1507 
1508       return getIndirectReturnResult(RetTy, State);
1509     }
1510 
1511     return ABIArgInfo::getDirect();
1512   }
1513 
1514   if (isAggregateTypeForABI(RetTy)) {
1515     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1516       // Structures with flexible arrays are always indirect.
1517       if (RT->getDecl()->hasFlexibleArrayMember())
1518         return getIndirectReturnResult(RetTy, State);
1519     }
1520 
1521     // If specified, structs and unions are always indirect.
1522     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1523       return getIndirectReturnResult(RetTy, State);
1524 
1525     // Ignore empty structs/unions.
1526     if (isEmptyRecord(getContext(), RetTy, true))
1527       return ABIArgInfo::getIgnore();
1528 
1529     // Small structures which are register sized are generally returned
1530     // in a register.
1531     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1532       uint64_t Size = getContext().getTypeSize(RetTy);
1533 
1534       // As a special-case, if the struct is a "single-element" struct, and
1535       // the field is of type "float" or "double", return it in a
1536       // floating-point register. (MSVC does not apply this special case.)
1537       // We apply a similar transformation for pointer types to improve the
1538       // quality of the generated IR.
1539       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1540         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1541             || SeltTy->hasPointerRepresentation())
1542           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1543 
1544       // FIXME: We should be able to narrow this integer in cases with dead
1545       // padding.
1546       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1547     }
1548 
1549     return getIndirectReturnResult(RetTy, State);
1550   }
1551 
1552   // Treat an enum type as its underlying type.
1553   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1554     RetTy = EnumTy->getDecl()->getIntegerType();
1555 
1556   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1557     if (EIT->getNumBits() > 64)
1558       return getIndirectReturnResult(RetTy, State);
1559 
1560   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1561                                                : ABIArgInfo::getDirect());
1562 }
1563 
1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1565   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1566 }
1567 
1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1569   const RecordType *RT = Ty->getAs<RecordType>();
1570   if (!RT)
1571     return 0;
1572   const RecordDecl *RD = RT->getDecl();
1573 
1574   // If this is a C++ record, check the bases first.
1575   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1576     for (const auto &I : CXXRD->bases())
1577       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1578         return false;
1579 
1580   for (const auto *i : RD->fields()) {
1581     QualType FT = i->getType();
1582 
1583     if (isSIMDVectorType(Context, FT))
1584       return true;
1585 
1586     if (isRecordWithSIMDVectorType(Context, FT))
1587       return true;
1588   }
1589 
1590   return false;
1591 }
1592 
1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1594                                                  unsigned Align) const {
1595   // Otherwise, if the alignment is less than or equal to the minimum ABI
1596   // alignment, just use the default; the backend will handle this.
1597   if (Align <= MinABIStackAlignInBytes)
1598     return 0; // Use default alignment.
1599 
1600   // On non-Darwin, the stack type alignment is always 4.
1601   if (!IsDarwinVectorABI) {
1602     // Set explicit alignment, since we may need to realign the top.
1603     return MinABIStackAlignInBytes;
1604   }
1605 
1606   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1607   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1608                       isRecordWithSIMDVectorType(getContext(), Ty)))
1609     return 16;
1610 
1611   return MinABIStackAlignInBytes;
1612 }
1613 
1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1615                                             CCState &State) const {
1616   if (!ByVal) {
1617     if (State.FreeRegs) {
1618       --State.FreeRegs; // Non-byval indirects just use one pointer.
1619       if (!IsMCUABI)
1620         return getNaturalAlignIndirectInReg(Ty);
1621     }
1622     return getNaturalAlignIndirect(Ty, false);
1623   }
1624 
1625   // Compute the byval alignment.
1626   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1627   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1628   if (StackAlign == 0)
1629     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1630 
1631   // If the stack alignment is less than the type alignment, realign the
1632   // argument.
1633   bool Realign = TypeAlign > StackAlign;
1634   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1635                                  /*ByVal=*/true, Realign);
1636 }
1637 
1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1639   const Type *T = isSingleElementStruct(Ty, getContext());
1640   if (!T)
1641     T = Ty.getTypePtr();
1642 
1643   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1644     BuiltinType::Kind K = BT->getKind();
1645     if (K == BuiltinType::Float || K == BuiltinType::Double)
1646       return Float;
1647   }
1648   return Integer;
1649 }
1650 
1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1652   if (!IsSoftFloatABI) {
1653     Class C = classify(Ty);
1654     if (C == Float)
1655       return false;
1656   }
1657 
1658   unsigned Size = getContext().getTypeSize(Ty);
1659   unsigned SizeInRegs = (Size + 31) / 32;
1660 
1661   if (SizeInRegs == 0)
1662     return false;
1663 
1664   if (!IsMCUABI) {
1665     if (SizeInRegs > State.FreeRegs) {
1666       State.FreeRegs = 0;
1667       return false;
1668     }
1669   } else {
1670     // The MCU psABI allows passing parameters in-reg even if there are
1671     // earlier parameters that are passed on the stack. Also,
1672     // it does not allow passing >8-byte structs in-register,
1673     // even if there are 3 free registers available.
1674     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1675       return false;
1676   }
1677 
1678   State.FreeRegs -= SizeInRegs;
1679   return true;
1680 }
1681 
1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1683                                              bool &InReg,
1684                                              bool &NeedsPadding) const {
1685   // On Windows, aggregates other than HFAs are never passed in registers, and
1686   // they do not consume register slots. Homogenous floating-point aggregates
1687   // (HFAs) have already been dealt with at this point.
1688   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1689     return false;
1690 
1691   NeedsPadding = false;
1692   InReg = !IsMCUABI;
1693 
1694   if (!updateFreeRegs(Ty, State))
1695     return false;
1696 
1697   if (IsMCUABI)
1698     return true;
1699 
1700   if (State.CC == llvm::CallingConv::X86_FastCall ||
1701       State.CC == llvm::CallingConv::X86_VectorCall ||
1702       State.CC == llvm::CallingConv::X86_RegCall) {
1703     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1704       NeedsPadding = true;
1705 
1706     return false;
1707   }
1708 
1709   return true;
1710 }
1711 
1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1713   if (!updateFreeRegs(Ty, State))
1714     return false;
1715 
1716   if (IsMCUABI)
1717     return false;
1718 
1719   if (State.CC == llvm::CallingConv::X86_FastCall ||
1720       State.CC == llvm::CallingConv::X86_VectorCall ||
1721       State.CC == llvm::CallingConv::X86_RegCall) {
1722     if (getContext().getTypeSize(Ty) > 32)
1723       return false;
1724 
1725     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1726         Ty->isReferenceType());
1727   }
1728 
1729   return true;
1730 }
1731 
1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1733   // Vectorcall x86 works subtly different than in x64, so the format is
1734   // a bit different than the x64 version.  First, all vector types (not HVAs)
1735   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1736   // This differs from the x64 implementation, where the first 6 by INDEX get
1737   // registers.
1738   // In the second pass over the arguments, HVAs are passed in the remaining
1739   // vector registers if possible, or indirectly by address. The address will be
1740   // passed in ECX/EDX if available. Any other arguments are passed according to
1741   // the usual fastcall rules.
1742   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1743   for (int I = 0, E = Args.size(); I < E; ++I) {
1744     const Type *Base = nullptr;
1745     uint64_t NumElts = 0;
1746     const QualType &Ty = Args[I].type;
1747     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1748         isHomogeneousAggregate(Ty, Base, NumElts)) {
1749       if (State.FreeSSERegs >= NumElts) {
1750         State.FreeSSERegs -= NumElts;
1751         Args[I].info = ABIArgInfo::getDirectInReg();
1752         State.IsPreassigned.set(I);
1753       }
1754     }
1755   }
1756 }
1757 
1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1759                                                CCState &State) const {
1760   // FIXME: Set alignment on indirect arguments.
1761   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1762   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1763   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1764 
1765   Ty = useFirstFieldIfTransparentUnion(Ty);
1766   TypeInfo TI = getContext().getTypeInfo(Ty);
1767 
1768   // Check with the C++ ABI first.
1769   const RecordType *RT = Ty->getAs<RecordType>();
1770   if (RT) {
1771     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1772     if (RAA == CGCXXABI::RAA_Indirect) {
1773       return getIndirectResult(Ty, false, State);
1774     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1775       // The field index doesn't matter, we'll fix it up later.
1776       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1777     }
1778   }
1779 
1780   // Regcall uses the concept of a homogenous vector aggregate, similar
1781   // to other targets.
1782   const Type *Base = nullptr;
1783   uint64_t NumElts = 0;
1784   if ((IsRegCall || IsVectorCall) &&
1785       isHomogeneousAggregate(Ty, Base, NumElts)) {
1786     if (State.FreeSSERegs >= NumElts) {
1787       State.FreeSSERegs -= NumElts;
1788 
1789       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1790       // does.
1791       if (IsVectorCall)
1792         return getDirectX86Hva();
1793 
1794       if (Ty->isBuiltinType() || Ty->isVectorType())
1795         return ABIArgInfo::getDirect();
1796       return ABIArgInfo::getExpand();
1797     }
1798     return getIndirectResult(Ty, /*ByVal=*/false, State);
1799   }
1800 
1801   if (isAggregateTypeForABI(Ty)) {
1802     // Structures with flexible arrays are always indirect.
1803     // FIXME: This should not be byval!
1804     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1805       return getIndirectResult(Ty, true, State);
1806 
1807     // Ignore empty structs/unions on non-Windows.
1808     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1809       return ABIArgInfo::getIgnore();
1810 
1811     llvm::LLVMContext &LLVMContext = getVMContext();
1812     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1813     bool NeedsPadding = false;
1814     bool InReg;
1815     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1816       unsigned SizeInRegs = (TI.Width + 31) / 32;
1817       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1818       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1819       if (InReg)
1820         return ABIArgInfo::getDirectInReg(Result);
1821       else
1822         return ABIArgInfo::getDirect(Result);
1823     }
1824     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1825 
1826     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1827     // added in MSVC 2015.
1828     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1829       return getIndirectResult(Ty, /*ByVal=*/false, State);
1830 
1831     // Expand small (<= 128-bit) record types when we know that the stack layout
1832     // of those arguments will match the struct. This is important because the
1833     // LLVM backend isn't smart enough to remove byval, which inhibits many
1834     // optimizations.
1835     // Don't do this for the MCU if there are still free integer registers
1836     // (see X86_64 ABI for full explanation).
1837     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1838         canExpandIndirectArgument(Ty))
1839       return ABIArgInfo::getExpandWithPadding(
1840           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1841 
1842     return getIndirectResult(Ty, true, State);
1843   }
1844 
1845   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1846     // On Windows, vectors are passed directly if registers are available, or
1847     // indirectly if not. This avoids the need to align argument memory. Pass
1848     // user-defined vector types larger than 512 bits indirectly for simplicity.
1849     if (IsWin32StructABI) {
1850       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1851         --State.FreeSSERegs;
1852         return ABIArgInfo::getDirectInReg();
1853       }
1854       return getIndirectResult(Ty, /*ByVal=*/false, State);
1855     }
1856 
1857     // On Darwin, some vectors are passed in memory, we handle this by passing
1858     // it as an i8/i16/i32/i64.
1859     if (IsDarwinVectorABI) {
1860       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1861           (TI.Width == 64 && VT->getNumElements() == 1))
1862         return ABIArgInfo::getDirect(
1863             llvm::IntegerType::get(getVMContext(), TI.Width));
1864     }
1865 
1866     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1867       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1868 
1869     return ABIArgInfo::getDirect();
1870   }
1871 
1872 
1873   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1874     Ty = EnumTy->getDecl()->getIntegerType();
1875 
1876   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1877 
1878   if (isPromotableIntegerTypeForABI(Ty)) {
1879     if (InReg)
1880       return ABIArgInfo::getExtendInReg(Ty);
1881     return ABIArgInfo::getExtend(Ty);
1882   }
1883 
1884   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1885     if (EIT->getNumBits() <= 64) {
1886       if (InReg)
1887         return ABIArgInfo::getDirectInReg();
1888       return ABIArgInfo::getDirect();
1889     }
1890     return getIndirectResult(Ty, /*ByVal=*/false, State);
1891   }
1892 
1893   if (InReg)
1894     return ABIArgInfo::getDirectInReg();
1895   return ABIArgInfo::getDirect();
1896 }
1897 
1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1899   CCState State(FI);
1900   if (IsMCUABI)
1901     State.FreeRegs = 3;
1902   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1903     State.FreeRegs = 2;
1904     State.FreeSSERegs = 3;
1905   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1906     State.FreeRegs = 2;
1907     State.FreeSSERegs = 6;
1908   } else if (FI.getHasRegParm())
1909     State.FreeRegs = FI.getRegParm();
1910   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1911     State.FreeRegs = 5;
1912     State.FreeSSERegs = 8;
1913   } else if (IsWin32StructABI) {
1914     // Since MSVC 2015, the first three SSE vectors have been passed in
1915     // registers. The rest are passed indirectly.
1916     State.FreeRegs = DefaultNumRegisterParameters;
1917     State.FreeSSERegs = 3;
1918   } else
1919     State.FreeRegs = DefaultNumRegisterParameters;
1920 
1921   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1922     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1923   } else if (FI.getReturnInfo().isIndirect()) {
1924     // The C++ ABI is not aware of register usage, so we have to check if the
1925     // return value was sret and put it in a register ourselves if appropriate.
1926     if (State.FreeRegs) {
1927       --State.FreeRegs;  // The sret parameter consumes a register.
1928       if (!IsMCUABI)
1929         FI.getReturnInfo().setInReg(true);
1930     }
1931   }
1932 
1933   // The chain argument effectively gives us another free register.
1934   if (FI.isChainCall())
1935     ++State.FreeRegs;
1936 
1937   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1938   // arguments to XMM registers as available.
1939   if (State.CC == llvm::CallingConv::X86_VectorCall)
1940     runVectorCallFirstPass(FI, State);
1941 
1942   bool UsedInAlloca = false;
1943   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1944   for (int I = 0, E = Args.size(); I < E; ++I) {
1945     // Skip arguments that have already been assigned.
1946     if (State.IsPreassigned.test(I))
1947       continue;
1948 
1949     Args[I].info = classifyArgumentType(Args[I].type, State);
1950     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1951   }
1952 
1953   // If we needed to use inalloca for any argument, do a second pass and rewrite
1954   // all the memory arguments to use inalloca.
1955   if (UsedInAlloca)
1956     rewriteWithInAlloca(FI);
1957 }
1958 
1959 void
1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1961                                    CharUnits &StackOffset, ABIArgInfo &Info,
1962                                    QualType Type) const {
1963   // Arguments are always 4-byte-aligned.
1964   CharUnits WordSize = CharUnits::fromQuantity(4);
1965   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1966 
1967   // sret pointers and indirect things will require an extra pointer
1968   // indirection, unless they are byval. Most things are byval, and will not
1969   // require this indirection.
1970   bool IsIndirect = false;
1971   if (Info.isIndirect() && !Info.getIndirectByVal())
1972     IsIndirect = true;
1973   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1974   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1975   if (IsIndirect)
1976     LLTy = LLTy->getPointerTo(0);
1977   FrameFields.push_back(LLTy);
1978   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1979 
1980   // Insert padding bytes to respect alignment.
1981   CharUnits FieldEnd = StackOffset;
1982   StackOffset = FieldEnd.alignTo(WordSize);
1983   if (StackOffset != FieldEnd) {
1984     CharUnits NumBytes = StackOffset - FieldEnd;
1985     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1986     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1987     FrameFields.push_back(Ty);
1988   }
1989 }
1990 
1991 static bool isArgInAlloca(const ABIArgInfo &Info) {
1992   // Leave ignored and inreg arguments alone.
1993   switch (Info.getKind()) {
1994   case ABIArgInfo::InAlloca:
1995     return true;
1996   case ABIArgInfo::Ignore:
1997   case ABIArgInfo::IndirectAliased:
1998     return false;
1999   case ABIArgInfo::Indirect:
2000   case ABIArgInfo::Direct:
2001   case ABIArgInfo::Extend:
2002     return !Info.getInReg();
2003   case ABIArgInfo::Expand:
2004   case ABIArgInfo::CoerceAndExpand:
2005     // These are aggregate types which are never passed in registers when
2006     // inalloca is involved.
2007     return true;
2008   }
2009   llvm_unreachable("invalid enum");
2010 }
2011 
2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2013   assert(IsWin32StructABI && "inalloca only supported on win32");
2014 
2015   // Build a packed struct type for all of the arguments in memory.
2016   SmallVector<llvm::Type *, 6> FrameFields;
2017 
2018   // The stack alignment is always 4.
2019   CharUnits StackAlign = CharUnits::fromQuantity(4);
2020 
2021   CharUnits StackOffset;
2022   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2023 
2024   // Put 'this' into the struct before 'sret', if necessary.
2025   bool IsThisCall =
2026       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2027   ABIArgInfo &Ret = FI.getReturnInfo();
2028   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2029       isArgInAlloca(I->info)) {
2030     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2031     ++I;
2032   }
2033 
2034   // Put the sret parameter into the inalloca struct if it's in memory.
2035   if (Ret.isIndirect() && !Ret.getInReg()) {
2036     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2037     // On Windows, the hidden sret parameter is always returned in eax.
2038     Ret.setInAllocaSRet(IsWin32StructABI);
2039   }
2040 
2041   // Skip the 'this' parameter in ecx.
2042   if (IsThisCall)
2043     ++I;
2044 
2045   // Put arguments passed in memory into the struct.
2046   for (; I != E; ++I) {
2047     if (isArgInAlloca(I->info))
2048       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2049   }
2050 
2051   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2052                                         /*isPacked=*/true),
2053                   StackAlign);
2054 }
2055 
2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2057                                  Address VAListAddr, QualType Ty) const {
2058 
2059   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2060 
2061   // x86-32 changes the alignment of certain arguments on the stack.
2062   //
2063   // Just messing with TypeInfo like this works because we never pass
2064   // anything indirectly.
2065   TypeInfo.second = CharUnits::fromQuantity(
2066                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
2067 
2068   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2069                           TypeInfo, CharUnits::fromQuantity(4),
2070                           /*AllowHigherAlign*/ true);
2071 }
2072 
2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2074     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2075   assert(Triple.getArch() == llvm::Triple::x86);
2076 
2077   switch (Opts.getStructReturnConvention()) {
2078   case CodeGenOptions::SRCK_Default:
2079     break;
2080   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2081     return false;
2082   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2083     return true;
2084   }
2085 
2086   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2087     return true;
2088 
2089   switch (Triple.getOS()) {
2090   case llvm::Triple::DragonFly:
2091   case llvm::Triple::FreeBSD:
2092   case llvm::Triple::OpenBSD:
2093   case llvm::Triple::Win32:
2094     return true;
2095   default:
2096     return false;
2097   }
2098 }
2099 
2100 void X86_32TargetCodeGenInfo::setTargetAttributes(
2101     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2102   if (GV->isDeclaration())
2103     return;
2104   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2105     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2106       llvm::Function *Fn = cast<llvm::Function>(GV);
2107       Fn->addFnAttr("stackrealign");
2108     }
2109     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2110       llvm::Function *Fn = cast<llvm::Function>(GV);
2111       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2112     }
2113   }
2114 }
2115 
2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2117                                                CodeGen::CodeGenFunction &CGF,
2118                                                llvm::Value *Address) const {
2119   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2120 
2121   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2122 
2123   // 0-7 are the eight integer registers;  the order is different
2124   //   on Darwin (for EH), but the range is the same.
2125   // 8 is %eip.
2126   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2127 
2128   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2129     // 12-16 are st(0..4).  Not sure why we stop at 4.
2130     // These have size 16, which is sizeof(long double) on
2131     // platforms with 8-byte alignment for that type.
2132     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2133     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2134 
2135   } else {
2136     // 9 is %eflags, which doesn't get a size on Darwin for some
2137     // reason.
2138     Builder.CreateAlignedStore(
2139         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2140                                CharUnits::One());
2141 
2142     // 11-16 are st(0..5).  Not sure why we stop at 5.
2143     // These have size 12, which is sizeof(long double) on
2144     // platforms with 4-byte alignment for that type.
2145     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2146     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2147   }
2148 
2149   return false;
2150 }
2151 
2152 //===----------------------------------------------------------------------===//
2153 // X86-64 ABI Implementation
2154 //===----------------------------------------------------------------------===//
2155 
2156 
2157 namespace {
2158 /// The AVX ABI level for X86 targets.
2159 enum class X86AVXABILevel {
2160   None,
2161   AVX,
2162   AVX512
2163 };
2164 
2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2167   switch (AVXLevel) {
2168   case X86AVXABILevel::AVX512:
2169     return 512;
2170   case X86AVXABILevel::AVX:
2171     return 256;
2172   case X86AVXABILevel::None:
2173     return 128;
2174   }
2175   llvm_unreachable("Unknown AVXLevel");
2176 }
2177 
2178 /// X86_64ABIInfo - The X86_64 ABI information.
2179 class X86_64ABIInfo : public SwiftABIInfo {
2180   enum Class {
2181     Integer = 0,
2182     SSE,
2183     SSEUp,
2184     X87,
2185     X87Up,
2186     ComplexX87,
2187     NoClass,
2188     Memory
2189   };
2190 
2191   /// merge - Implement the X86_64 ABI merging algorithm.
2192   ///
2193   /// Merge an accumulating classification \arg Accum with a field
2194   /// classification \arg Field.
2195   ///
2196   /// \param Accum - The accumulating classification. This should
2197   /// always be either NoClass or the result of a previous merge
2198   /// call. In addition, this should never be Memory (the caller
2199   /// should just return Memory for the aggregate).
2200   static Class merge(Class Accum, Class Field);
2201 
2202   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2203   ///
2204   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2205   /// final MEMORY or SSE classes when necessary.
2206   ///
2207   /// \param AggregateSize - The size of the current aggregate in
2208   /// the classification process.
2209   ///
2210   /// \param Lo - The classification for the parts of the type
2211   /// residing in the low word of the containing object.
2212   ///
2213   /// \param Hi - The classification for the parts of the type
2214   /// residing in the higher words of the containing object.
2215   ///
2216   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2217 
2218   /// classify - Determine the x86_64 register classes in which the
2219   /// given type T should be passed.
2220   ///
2221   /// \param Lo - The classification for the parts of the type
2222   /// residing in the low word of the containing object.
2223   ///
2224   /// \param Hi - The classification for the parts of the type
2225   /// residing in the high word of the containing object.
2226   ///
2227   /// \param OffsetBase - The bit offset of this type in the
2228   /// containing object.  Some parameters are classified different
2229   /// depending on whether they straddle an eightbyte boundary.
2230   ///
2231   /// \param isNamedArg - Whether the argument in question is a "named"
2232   /// argument, as used in AMD64-ABI 3.5.7.
2233   ///
2234   /// If a word is unused its result will be NoClass; if a type should
2235   /// be passed in Memory then at least the classification of \arg Lo
2236   /// will be Memory.
2237   ///
2238   /// The \arg Lo class will be NoClass iff the argument is ignored.
2239   ///
2240   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2241   /// also be ComplexX87.
2242   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2243                 bool isNamedArg) const;
2244 
2245   llvm::Type *GetByteVectorType(QualType Ty) const;
2246   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2247                                  unsigned IROffset, QualType SourceTy,
2248                                  unsigned SourceOffset) const;
2249   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2250                                      unsigned IROffset, QualType SourceTy,
2251                                      unsigned SourceOffset) const;
2252 
2253   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2254   /// such that the argument will be returned in memory.
2255   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2256 
2257   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2258   /// such that the argument will be passed in memory.
2259   ///
2260   /// \param freeIntRegs - The number of free integer registers remaining
2261   /// available.
2262   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2263 
2264   ABIArgInfo classifyReturnType(QualType RetTy) const;
2265 
2266   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2267                                   unsigned &neededInt, unsigned &neededSSE,
2268                                   bool isNamedArg) const;
2269 
2270   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2271                                        unsigned &NeededSSE) const;
2272 
2273   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2274                                            unsigned &NeededSSE) const;
2275 
2276   bool IsIllegalVectorType(QualType Ty) const;
2277 
2278   /// The 0.98 ABI revision clarified a lot of ambiguities,
2279   /// unfortunately in ways that were not always consistent with
2280   /// certain previous compilers.  In particular, platforms which
2281   /// required strict binary compatibility with older versions of GCC
2282   /// may need to exempt themselves.
2283   bool honorsRevision0_98() const {
2284     return !getTarget().getTriple().isOSDarwin();
2285   }
2286 
2287   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2288   /// classify it as INTEGER (for compatibility with older clang compilers).
2289   bool classifyIntegerMMXAsSSE() const {
2290     // Clang <= 3.8 did not do this.
2291     if (getContext().getLangOpts().getClangABICompat() <=
2292         LangOptions::ClangABI::Ver3_8)
2293       return false;
2294 
2295     const llvm::Triple &Triple = getTarget().getTriple();
2296     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2297       return false;
2298     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2299       return false;
2300     return true;
2301   }
2302 
2303   // GCC classifies vectors of __int128 as memory.
2304   bool passInt128VectorsInMem() const {
2305     // Clang <= 9.0 did not do this.
2306     if (getContext().getLangOpts().getClangABICompat() <=
2307         LangOptions::ClangABI::Ver9)
2308       return false;
2309 
2310     const llvm::Triple &T = getTarget().getTriple();
2311     return T.isOSLinux() || T.isOSNetBSD();
2312   }
2313 
2314   X86AVXABILevel AVXLevel;
2315   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2316   // 64-bit hardware.
2317   bool Has64BitPointers;
2318 
2319 public:
2320   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2321       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2322       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2323   }
2324 
2325   bool isPassedUsingAVXType(QualType type) const {
2326     unsigned neededInt, neededSSE;
2327     // The freeIntRegs argument doesn't matter here.
2328     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2329                                            /*isNamedArg*/true);
2330     if (info.isDirect()) {
2331       llvm::Type *ty = info.getCoerceToType();
2332       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2333         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2334     }
2335     return false;
2336   }
2337 
2338   void computeInfo(CGFunctionInfo &FI) const override;
2339 
2340   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2341                     QualType Ty) const override;
2342   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2343                       QualType Ty) const override;
2344 
2345   bool has64BitPointers() const {
2346     return Has64BitPointers;
2347   }
2348 
2349   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2350                                     bool asReturnValue) const override {
2351     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2352   }
2353   bool isSwiftErrorInRegister() const override {
2354     return true;
2355   }
2356 };
2357 
2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2359 class WinX86_64ABIInfo : public SwiftABIInfo {
2360 public:
2361   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2362       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2363         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2364 
2365   void computeInfo(CGFunctionInfo &FI) const override;
2366 
2367   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2368                     QualType Ty) const override;
2369 
2370   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2371     // FIXME: Assumes vectorcall is in use.
2372     return isX86VectorTypeForVectorCall(getContext(), Ty);
2373   }
2374 
2375   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2376                                          uint64_t NumMembers) const override {
2377     // FIXME: Assumes vectorcall is in use.
2378     return isX86VectorCallAggregateSmallEnough(NumMembers);
2379   }
2380 
2381   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2382                                     bool asReturnValue) const override {
2383     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2384   }
2385 
2386   bool isSwiftErrorInRegister() const override {
2387     return true;
2388   }
2389 
2390 private:
2391   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2392                       bool IsVectorCall, bool IsRegCall) const;
2393   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2394                                       const ABIArgInfo &current) const;
2395   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2396                              bool IsVectorCall, bool IsRegCall) const;
2397 
2398   X86AVXABILevel AVXLevel;
2399 
2400   bool IsMingw64;
2401 };
2402 
2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2404 public:
2405   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2406       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2407 
2408   const X86_64ABIInfo &getABIInfo() const {
2409     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2410   }
2411 
2412   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2413   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2414   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2415 
2416   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2417     return 7;
2418   }
2419 
2420   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2421                                llvm::Value *Address) const override {
2422     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2423 
2424     // 0-15 are the 16 integer registers.
2425     // 16 is %rip.
2426     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2427     return false;
2428   }
2429 
2430   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2431                                   StringRef Constraint,
2432                                   llvm::Type* Ty) const override {
2433     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2434   }
2435 
2436   bool isNoProtoCallVariadic(const CallArgList &args,
2437                              const FunctionNoProtoType *fnType) const override {
2438     // The default CC on x86-64 sets %al to the number of SSA
2439     // registers used, and GCC sets this when calling an unprototyped
2440     // function, so we override the default behavior.  However, don't do
2441     // that when AVX types are involved: the ABI explicitly states it is
2442     // undefined, and it doesn't work in practice because of how the ABI
2443     // defines varargs anyway.
2444     if (fnType->getCallConv() == CC_C) {
2445       bool HasAVXType = false;
2446       for (CallArgList::const_iterator
2447              it = args.begin(), ie = args.end(); it != ie; ++it) {
2448         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2449           HasAVXType = true;
2450           break;
2451         }
2452       }
2453 
2454       if (!HasAVXType)
2455         return true;
2456     }
2457 
2458     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2459   }
2460 
2461   llvm::Constant *
2462   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2463     unsigned Sig = (0xeb << 0) | // jmp rel8
2464                    (0x06 << 8) | //           .+0x08
2465                    ('v' << 16) |
2466                    ('2' << 24);
2467     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2468   }
2469 
2470   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2471                            CodeGen::CodeGenModule &CGM) const override {
2472     if (GV->isDeclaration())
2473       return;
2474     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2475       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2476         llvm::Function *Fn = cast<llvm::Function>(GV);
2477         Fn->addFnAttr("stackrealign");
2478       }
2479       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2480         llvm::Function *Fn = cast<llvm::Function>(GV);
2481         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2482       }
2483     }
2484   }
2485 
2486   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2487                             const FunctionDecl *Caller,
2488                             const FunctionDecl *Callee,
2489                             const CallArgList &Args) const override;
2490 };
2491 
2492 static void initFeatureMaps(const ASTContext &Ctx,
2493                             llvm::StringMap<bool> &CallerMap,
2494                             const FunctionDecl *Caller,
2495                             llvm::StringMap<bool> &CalleeMap,
2496                             const FunctionDecl *Callee) {
2497   if (CalleeMap.empty() && CallerMap.empty()) {
2498     // The caller is potentially nullptr in the case where the call isn't in a
2499     // function.  In this case, the getFunctionFeatureMap ensures we just get
2500     // the TU level setting (since it cannot be modified by 'target'..
2501     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2502     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2503   }
2504 }
2505 
2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2507                                  SourceLocation CallLoc,
2508                                  const llvm::StringMap<bool> &CallerMap,
2509                                  const llvm::StringMap<bool> &CalleeMap,
2510                                  QualType Ty, StringRef Feature,
2511                                  bool IsArgument) {
2512   bool CallerHasFeat = CallerMap.lookup(Feature);
2513   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2514   if (!CallerHasFeat && !CalleeHasFeat)
2515     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2516            << IsArgument << Ty << Feature;
2517 
2518   // Mixing calling conventions here is very clearly an error.
2519   if (!CallerHasFeat || !CalleeHasFeat)
2520     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2521            << IsArgument << Ty << Feature;
2522 
2523   // Else, both caller and callee have the required feature, so there is no need
2524   // to diagnose.
2525   return false;
2526 }
2527 
2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2529                           SourceLocation CallLoc,
2530                           const llvm::StringMap<bool> &CallerMap,
2531                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2532                           bool IsArgument) {
2533   uint64_t Size = Ctx.getTypeSize(Ty);
2534   if (Size > 256)
2535     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2536                                 "avx512f", IsArgument);
2537 
2538   if (Size > 128)
2539     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2540                                 IsArgument);
2541 
2542   return false;
2543 }
2544 
2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2546     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2547     const FunctionDecl *Callee, const CallArgList &Args) const {
2548   llvm::StringMap<bool> CallerMap;
2549   llvm::StringMap<bool> CalleeMap;
2550   unsigned ArgIndex = 0;
2551 
2552   // We need to loop through the actual call arguments rather than the the
2553   // function's parameters, in case this variadic.
2554   for (const CallArg &Arg : Args) {
2555     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2556     // additionally changes how vectors >256 in size are passed. Like GCC, we
2557     // warn when a function is called with an argument where this will change.
2558     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2559     // the caller and callee features are mismatched.
2560     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2561     // change its ABI with attribute-target after this call.
2562     if (Arg.getType()->isVectorType() &&
2563         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2564       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2565       QualType Ty = Arg.getType();
2566       // The CallArg seems to have desugared the type already, so for clearer
2567       // diagnostics, replace it with the type in the FunctionDecl if possible.
2568       if (ArgIndex < Callee->getNumParams())
2569         Ty = Callee->getParamDecl(ArgIndex)->getType();
2570 
2571       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2572                         CalleeMap, Ty, /*IsArgument*/ true))
2573         return;
2574     }
2575     ++ArgIndex;
2576   }
2577 
2578   // Check return always, as we don't have a good way of knowing in codegen
2579   // whether this value is used, tail-called, etc.
2580   if (Callee->getReturnType()->isVectorType() &&
2581       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2582     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2583     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2584                   CalleeMap, Callee->getReturnType(),
2585                   /*IsArgument*/ false);
2586   }
2587 }
2588 
2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2590   // If the argument does not end in .lib, automatically add the suffix.
2591   // If the argument contains a space, enclose it in quotes.
2592   // This matches the behavior of MSVC.
2593   bool Quote = (Lib.find(" ") != StringRef::npos);
2594   std::string ArgStr = Quote ? "\"" : "";
2595   ArgStr += Lib;
2596   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2597     ArgStr += ".lib";
2598   ArgStr += Quote ? "\"" : "";
2599   return ArgStr;
2600 }
2601 
2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2603 public:
2604   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2605         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2606         unsigned NumRegisterParameters)
2607     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2608         Win32StructABI, NumRegisterParameters, false) {}
2609 
2610   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2611                            CodeGen::CodeGenModule &CGM) const override;
2612 
2613   void getDependentLibraryOption(llvm::StringRef Lib,
2614                                  llvm::SmallString<24> &Opt) const override {
2615     Opt = "/DEFAULTLIB:";
2616     Opt += qualifyWindowsLibrary(Lib);
2617   }
2618 
2619   void getDetectMismatchOption(llvm::StringRef Name,
2620                                llvm::StringRef Value,
2621                                llvm::SmallString<32> &Opt) const override {
2622     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2623   }
2624 };
2625 
2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2627                                           CodeGen::CodeGenModule &CGM) {
2628   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2629 
2630     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2631       Fn->addFnAttr("stack-probe-size",
2632                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2633     if (CGM.getCodeGenOpts().NoStackArgProbe)
2634       Fn->addFnAttr("no-stack-arg-probe");
2635   }
2636 }
2637 
2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2639     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2640   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2641   if (GV->isDeclaration())
2642     return;
2643   addStackProbeTargetAttributes(D, GV, CGM);
2644 }
2645 
2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2647 public:
2648   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2649                              X86AVXABILevel AVXLevel)
2650       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2651 
2652   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2653                            CodeGen::CodeGenModule &CGM) const override;
2654 
2655   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2656     return 7;
2657   }
2658 
2659   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2660                                llvm::Value *Address) const override {
2661     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2662 
2663     // 0-15 are the 16 integer registers.
2664     // 16 is %rip.
2665     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2666     return false;
2667   }
2668 
2669   void getDependentLibraryOption(llvm::StringRef Lib,
2670                                  llvm::SmallString<24> &Opt) const override {
2671     Opt = "/DEFAULTLIB:";
2672     Opt += qualifyWindowsLibrary(Lib);
2673   }
2674 
2675   void getDetectMismatchOption(llvm::StringRef Name,
2676                                llvm::StringRef Value,
2677                                llvm::SmallString<32> &Opt) const override {
2678     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2679   }
2680 };
2681 
2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2683     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2684   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2685   if (GV->isDeclaration())
2686     return;
2687   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2688     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2689       llvm::Function *Fn = cast<llvm::Function>(GV);
2690       Fn->addFnAttr("stackrealign");
2691     }
2692     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2693       llvm::Function *Fn = cast<llvm::Function>(GV);
2694       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2695     }
2696   }
2697 
2698   addStackProbeTargetAttributes(D, GV, CGM);
2699 }
2700 }
2701 
2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2703                               Class &Hi) const {
2704   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2705   //
2706   // (a) If one of the classes is Memory, the whole argument is passed in
2707   //     memory.
2708   //
2709   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2710   //     memory.
2711   //
2712   // (c) If the size of the aggregate exceeds two eightbytes and the first
2713   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2714   //     argument is passed in memory. NOTE: This is necessary to keep the
2715   //     ABI working for processors that don't support the __m256 type.
2716   //
2717   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2718   //
2719   // Some of these are enforced by the merging logic.  Others can arise
2720   // only with unions; for example:
2721   //   union { _Complex double; unsigned; }
2722   //
2723   // Note that clauses (b) and (c) were added in 0.98.
2724   //
2725   if (Hi == Memory)
2726     Lo = Memory;
2727   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2728     Lo = Memory;
2729   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2730     Lo = Memory;
2731   if (Hi == SSEUp && Lo != SSE)
2732     Hi = SSE;
2733 }
2734 
2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2736   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2737   // classified recursively so that always two fields are
2738   // considered. The resulting class is calculated according to
2739   // the classes of the fields in the eightbyte:
2740   //
2741   // (a) If both classes are equal, this is the resulting class.
2742   //
2743   // (b) If one of the classes is NO_CLASS, the resulting class is
2744   // the other class.
2745   //
2746   // (c) If one of the classes is MEMORY, the result is the MEMORY
2747   // class.
2748   //
2749   // (d) If one of the classes is INTEGER, the result is the
2750   // INTEGER.
2751   //
2752   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2753   // MEMORY is used as class.
2754   //
2755   // (f) Otherwise class SSE is used.
2756 
2757   // Accum should never be memory (we should have returned) or
2758   // ComplexX87 (because this cannot be passed in a structure).
2759   assert((Accum != Memory && Accum != ComplexX87) &&
2760          "Invalid accumulated classification during merge.");
2761   if (Accum == Field || Field == NoClass)
2762     return Accum;
2763   if (Field == Memory)
2764     return Memory;
2765   if (Accum == NoClass)
2766     return Field;
2767   if (Accum == Integer || Field == Integer)
2768     return Integer;
2769   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2770       Accum == X87 || Accum == X87Up)
2771     return Memory;
2772   return SSE;
2773 }
2774 
2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2776                              Class &Lo, Class &Hi, bool isNamedArg) const {
2777   // FIXME: This code can be simplified by introducing a simple value class for
2778   // Class pairs with appropriate constructor methods for the various
2779   // situations.
2780 
2781   // FIXME: Some of the split computations are wrong; unaligned vectors
2782   // shouldn't be passed in registers for example, so there is no chance they
2783   // can straddle an eightbyte. Verify & simplify.
2784 
2785   Lo = Hi = NoClass;
2786 
2787   Class &Current = OffsetBase < 64 ? Lo : Hi;
2788   Current = Memory;
2789 
2790   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2791     BuiltinType::Kind k = BT->getKind();
2792 
2793     if (k == BuiltinType::Void) {
2794       Current = NoClass;
2795     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2796       Lo = Integer;
2797       Hi = Integer;
2798     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2799       Current = Integer;
2800     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2801       Current = SSE;
2802     } else if (k == BuiltinType::LongDouble) {
2803       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2804       if (LDF == &llvm::APFloat::IEEEquad()) {
2805         Lo = SSE;
2806         Hi = SSEUp;
2807       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2808         Lo = X87;
2809         Hi = X87Up;
2810       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2811         Current = SSE;
2812       } else
2813         llvm_unreachable("unexpected long double representation!");
2814     }
2815     // FIXME: _Decimal32 and _Decimal64 are SSE.
2816     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2817     return;
2818   }
2819 
2820   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2821     // Classify the underlying integer type.
2822     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2823     return;
2824   }
2825 
2826   if (Ty->hasPointerRepresentation()) {
2827     Current = Integer;
2828     return;
2829   }
2830 
2831   if (Ty->isMemberPointerType()) {
2832     if (Ty->isMemberFunctionPointerType()) {
2833       if (Has64BitPointers) {
2834         // If Has64BitPointers, this is an {i64, i64}, so classify both
2835         // Lo and Hi now.
2836         Lo = Hi = Integer;
2837       } else {
2838         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2839         // straddles an eightbyte boundary, Hi should be classified as well.
2840         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2841         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2842         if (EB_FuncPtr != EB_ThisAdj) {
2843           Lo = Hi = Integer;
2844         } else {
2845           Current = Integer;
2846         }
2847       }
2848     } else {
2849       Current = Integer;
2850     }
2851     return;
2852   }
2853 
2854   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2855     uint64_t Size = getContext().getTypeSize(VT);
2856     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2857       // gcc passes the following as integer:
2858       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2859       // 2 bytes - <2 x char>, <1 x short>
2860       // 1 byte  - <1 x char>
2861       Current = Integer;
2862 
2863       // If this type crosses an eightbyte boundary, it should be
2864       // split.
2865       uint64_t EB_Lo = (OffsetBase) / 64;
2866       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2867       if (EB_Lo != EB_Hi)
2868         Hi = Lo;
2869     } else if (Size == 64) {
2870       QualType ElementType = VT->getElementType();
2871 
2872       // gcc passes <1 x double> in memory. :(
2873       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2874         return;
2875 
2876       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2877       // pass them as integer.  For platforms where clang is the de facto
2878       // platform compiler, we must continue to use integer.
2879       if (!classifyIntegerMMXAsSSE() &&
2880           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2881            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2882            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2883            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2884         Current = Integer;
2885       else
2886         Current = SSE;
2887 
2888       // If this type crosses an eightbyte boundary, it should be
2889       // split.
2890       if (OffsetBase && OffsetBase != 64)
2891         Hi = Lo;
2892     } else if (Size == 128 ||
2893                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2894       QualType ElementType = VT->getElementType();
2895 
2896       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2897       if (passInt128VectorsInMem() && Size != 128 &&
2898           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2899            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2900         return;
2901 
2902       // Arguments of 256-bits are split into four eightbyte chunks. The
2903       // least significant one belongs to class SSE and all the others to class
2904       // SSEUP. The original Lo and Hi design considers that types can't be
2905       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2906       // This design isn't correct for 256-bits, but since there're no cases
2907       // where the upper parts would need to be inspected, avoid adding
2908       // complexity and just consider Hi to match the 64-256 part.
2909       //
2910       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2911       // registers if they are "named", i.e. not part of the "..." of a
2912       // variadic function.
2913       //
2914       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2915       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2916       Lo = SSE;
2917       Hi = SSEUp;
2918     }
2919     return;
2920   }
2921 
2922   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2923     QualType ET = getContext().getCanonicalType(CT->getElementType());
2924 
2925     uint64_t Size = getContext().getTypeSize(Ty);
2926     if (ET->isIntegralOrEnumerationType()) {
2927       if (Size <= 64)
2928         Current = Integer;
2929       else if (Size <= 128)
2930         Lo = Hi = Integer;
2931     } else if (ET == getContext().FloatTy) {
2932       Current = SSE;
2933     } else if (ET == getContext().DoubleTy) {
2934       Lo = Hi = SSE;
2935     } else if (ET == getContext().LongDoubleTy) {
2936       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2937       if (LDF == &llvm::APFloat::IEEEquad())
2938         Current = Memory;
2939       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2940         Current = ComplexX87;
2941       else if (LDF == &llvm::APFloat::IEEEdouble())
2942         Lo = Hi = SSE;
2943       else
2944         llvm_unreachable("unexpected long double representation!");
2945     }
2946 
2947     // If this complex type crosses an eightbyte boundary then it
2948     // should be split.
2949     uint64_t EB_Real = (OffsetBase) / 64;
2950     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2951     if (Hi == NoClass && EB_Real != EB_Imag)
2952       Hi = Lo;
2953 
2954     return;
2955   }
2956 
2957   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2958     if (EITy->getNumBits() <= 64)
2959       Current = Integer;
2960     else if (EITy->getNumBits() <= 128)
2961       Lo = Hi = Integer;
2962     // Larger values need to get passed in memory.
2963     return;
2964   }
2965 
2966   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2967     // Arrays are treated like structures.
2968 
2969     uint64_t Size = getContext().getTypeSize(Ty);
2970 
2971     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2972     // than eight eightbytes, ..., it has class MEMORY.
2973     if (Size > 512)
2974       return;
2975 
2976     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2977     // fields, it has class MEMORY.
2978     //
2979     // Only need to check alignment of array base.
2980     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2981       return;
2982 
2983     // Otherwise implement simplified merge. We could be smarter about
2984     // this, but it isn't worth it and would be harder to verify.
2985     Current = NoClass;
2986     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2987     uint64_t ArraySize = AT->getSize().getZExtValue();
2988 
2989     // The only case a 256-bit wide vector could be used is when the array
2990     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2991     // to work for sizes wider than 128, early check and fallback to memory.
2992     //
2993     if (Size > 128 &&
2994         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2995       return;
2996 
2997     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2998       Class FieldLo, FieldHi;
2999       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3000       Lo = merge(Lo, FieldLo);
3001       Hi = merge(Hi, FieldHi);
3002       if (Lo == Memory || Hi == Memory)
3003         break;
3004     }
3005 
3006     postMerge(Size, Lo, Hi);
3007     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3008     return;
3009   }
3010 
3011   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3012     uint64_t Size = getContext().getTypeSize(Ty);
3013 
3014     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3015     // than eight eightbytes, ..., it has class MEMORY.
3016     if (Size > 512)
3017       return;
3018 
3019     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3020     // copy constructor or a non-trivial destructor, it is passed by invisible
3021     // reference.
3022     if (getRecordArgABI(RT, getCXXABI()))
3023       return;
3024 
3025     const RecordDecl *RD = RT->getDecl();
3026 
3027     // Assume variable sized types are passed in memory.
3028     if (RD->hasFlexibleArrayMember())
3029       return;
3030 
3031     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3032 
3033     // Reset Lo class, this will be recomputed.
3034     Current = NoClass;
3035 
3036     // If this is a C++ record, classify the bases first.
3037     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3038       for (const auto &I : CXXRD->bases()) {
3039         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3040                "Unexpected base class!");
3041         const auto *Base =
3042             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3043 
3044         // Classify this field.
3045         //
3046         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3047         // single eightbyte, each is classified separately. Each eightbyte gets
3048         // initialized to class NO_CLASS.
3049         Class FieldLo, FieldHi;
3050         uint64_t Offset =
3051           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3052         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3053         Lo = merge(Lo, FieldLo);
3054         Hi = merge(Hi, FieldHi);
3055         if (Lo == Memory || Hi == Memory) {
3056           postMerge(Size, Lo, Hi);
3057           return;
3058         }
3059       }
3060     }
3061 
3062     // Classify the fields one at a time, merging the results.
3063     unsigned idx = 0;
3064     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3065            i != e; ++i, ++idx) {
3066       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3067       bool BitField = i->isBitField();
3068 
3069       // Ignore padding bit-fields.
3070       if (BitField && i->isUnnamedBitfield())
3071         continue;
3072 
3073       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3074       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
3075       //
3076       // The only case a 256-bit wide vector could be used is when the struct
3077       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3078       // to work for sizes wider than 128, early check and fallback to memory.
3079       //
3080       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
3081                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3082         Lo = Memory;
3083         postMerge(Size, Lo, Hi);
3084         return;
3085       }
3086       // Note, skip this test for bit-fields, see below.
3087       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3088         Lo = Memory;
3089         postMerge(Size, Lo, Hi);
3090         return;
3091       }
3092 
3093       // Classify this field.
3094       //
3095       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3096       // exceeds a single eightbyte, each is classified
3097       // separately. Each eightbyte gets initialized to class
3098       // NO_CLASS.
3099       Class FieldLo, FieldHi;
3100 
3101       // Bit-fields require special handling, they do not force the
3102       // structure to be passed in memory even if unaligned, and
3103       // therefore they can straddle an eightbyte.
3104       if (BitField) {
3105         assert(!i->isUnnamedBitfield());
3106         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3107         uint64_t Size = i->getBitWidthValue(getContext());
3108 
3109         uint64_t EB_Lo = Offset / 64;
3110         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3111 
3112         if (EB_Lo) {
3113           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3114           FieldLo = NoClass;
3115           FieldHi = Integer;
3116         } else {
3117           FieldLo = Integer;
3118           FieldHi = EB_Hi ? Integer : NoClass;
3119         }
3120       } else
3121         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3122       Lo = merge(Lo, FieldLo);
3123       Hi = merge(Hi, FieldHi);
3124       if (Lo == Memory || Hi == Memory)
3125         break;
3126     }
3127 
3128     postMerge(Size, Lo, Hi);
3129   }
3130 }
3131 
3132 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3133   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3134   // place naturally.
3135   if (!isAggregateTypeForABI(Ty)) {
3136     // Treat an enum type as its underlying type.
3137     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3138       Ty = EnumTy->getDecl()->getIntegerType();
3139 
3140     if (Ty->isExtIntType())
3141       return getNaturalAlignIndirect(Ty);
3142 
3143     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3144                                               : ABIArgInfo::getDirect());
3145   }
3146 
3147   return getNaturalAlignIndirect(Ty);
3148 }
3149 
3150 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3151   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3152     uint64_t Size = getContext().getTypeSize(VecTy);
3153     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3154     if (Size <= 64 || Size > LargestVector)
3155       return true;
3156     QualType EltTy = VecTy->getElementType();
3157     if (passInt128VectorsInMem() &&
3158         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3159          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3160       return true;
3161   }
3162 
3163   return false;
3164 }
3165 
3166 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3167                                             unsigned freeIntRegs) const {
3168   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3169   // place naturally.
3170   //
3171   // This assumption is optimistic, as there could be free registers available
3172   // when we need to pass this argument in memory, and LLVM could try to pass
3173   // the argument in the free register. This does not seem to happen currently,
3174   // but this code would be much safer if we could mark the argument with
3175   // 'onstack'. See PR12193.
3176   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3177       !Ty->isExtIntType()) {
3178     // Treat an enum type as its underlying type.
3179     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3180       Ty = EnumTy->getDecl()->getIntegerType();
3181 
3182     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3183                                               : ABIArgInfo::getDirect());
3184   }
3185 
3186   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3187     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3188 
3189   // Compute the byval alignment. We specify the alignment of the byval in all
3190   // cases so that the mid-level optimizer knows the alignment of the byval.
3191   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3192 
3193   // Attempt to avoid passing indirect results using byval when possible. This
3194   // is important for good codegen.
3195   //
3196   // We do this by coercing the value into a scalar type which the backend can
3197   // handle naturally (i.e., without using byval).
3198   //
3199   // For simplicity, we currently only do this when we have exhausted all of the
3200   // free integer registers. Doing this when there are free integer registers
3201   // would require more care, as we would have to ensure that the coerced value
3202   // did not claim the unused register. That would require either reording the
3203   // arguments to the function (so that any subsequent inreg values came first),
3204   // or only doing this optimization when there were no following arguments that
3205   // might be inreg.
3206   //
3207   // We currently expect it to be rare (particularly in well written code) for
3208   // arguments to be passed on the stack when there are still free integer
3209   // registers available (this would typically imply large structs being passed
3210   // by value), so this seems like a fair tradeoff for now.
3211   //
3212   // We can revisit this if the backend grows support for 'onstack' parameter
3213   // attributes. See PR12193.
3214   if (freeIntRegs == 0) {
3215     uint64_t Size = getContext().getTypeSize(Ty);
3216 
3217     // If this type fits in an eightbyte, coerce it into the matching integral
3218     // type, which will end up on the stack (with alignment 8).
3219     if (Align == 8 && Size <= 64)
3220       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3221                                                           Size));
3222   }
3223 
3224   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3225 }
3226 
3227 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3228 /// register. Pick an LLVM IR type that will be passed as a vector register.
3229 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3230   // Wrapper structs/arrays that only contain vectors are passed just like
3231   // vectors; strip them off if present.
3232   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3233     Ty = QualType(InnerTy, 0);
3234 
3235   llvm::Type *IRType = CGT.ConvertType(Ty);
3236   if (isa<llvm::VectorType>(IRType)) {
3237     // Don't pass vXi128 vectors in their native type, the backend can't
3238     // legalize them.
3239     if (passInt128VectorsInMem() &&
3240         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3241       // Use a vXi64 vector.
3242       uint64_t Size = getContext().getTypeSize(Ty);
3243       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3244                                         Size / 64);
3245     }
3246 
3247     return IRType;
3248   }
3249 
3250   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3251     return IRType;
3252 
3253   // We couldn't find the preferred IR vector type for 'Ty'.
3254   uint64_t Size = getContext().getTypeSize(Ty);
3255   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3256 
3257 
3258   // Return a LLVM IR vector type based on the size of 'Ty'.
3259   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3260                                     Size / 64);
3261 }
3262 
3263 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3264 /// is known to either be off the end of the specified type or being in
3265 /// alignment padding.  The user type specified is known to be at most 128 bits
3266 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3267 /// classification that put one of the two halves in the INTEGER class.
3268 ///
3269 /// It is conservatively correct to return false.
3270 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3271                                   unsigned EndBit, ASTContext &Context) {
3272   // If the bytes being queried are off the end of the type, there is no user
3273   // data hiding here.  This handles analysis of builtins, vectors and other
3274   // types that don't contain interesting padding.
3275   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3276   if (TySize <= StartBit)
3277     return true;
3278 
3279   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3280     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3281     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3282 
3283     // Check each element to see if the element overlaps with the queried range.
3284     for (unsigned i = 0; i != NumElts; ++i) {
3285       // If the element is after the span we care about, then we're done..
3286       unsigned EltOffset = i*EltSize;
3287       if (EltOffset >= EndBit) break;
3288 
3289       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3290       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3291                                  EndBit-EltOffset, Context))
3292         return false;
3293     }
3294     // If it overlaps no elements, then it is safe to process as padding.
3295     return true;
3296   }
3297 
3298   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3299     const RecordDecl *RD = RT->getDecl();
3300     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3301 
3302     // If this is a C++ record, check the bases first.
3303     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3304       for (const auto &I : CXXRD->bases()) {
3305         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3306                "Unexpected base class!");
3307         const auto *Base =
3308             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3309 
3310         // If the base is after the span we care about, ignore it.
3311         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3312         if (BaseOffset >= EndBit) continue;
3313 
3314         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3315         if (!BitsContainNoUserData(I.getType(), BaseStart,
3316                                    EndBit-BaseOffset, Context))
3317           return false;
3318       }
3319     }
3320 
3321     // Verify that no field has data that overlaps the region of interest.  Yes
3322     // this could be sped up a lot by being smarter about queried fields,
3323     // however we're only looking at structs up to 16 bytes, so we don't care
3324     // much.
3325     unsigned idx = 0;
3326     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3327          i != e; ++i, ++idx) {
3328       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3329 
3330       // If we found a field after the region we care about, then we're done.
3331       if (FieldOffset >= EndBit) break;
3332 
3333       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3334       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3335                                  Context))
3336         return false;
3337     }
3338 
3339     // If nothing in this record overlapped the area of interest, then we're
3340     // clean.
3341     return true;
3342   }
3343 
3344   return false;
3345 }
3346 
3347 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3348 /// float member at the specified offset.  For example, {int,{float}} has a
3349 /// float at offset 4.  It is conservatively correct for this routine to return
3350 /// false.
3351 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3352                                   const llvm::DataLayout &TD) {
3353   // Base case if we find a float.
3354   if (IROffset == 0 && IRType->isFloatTy())
3355     return true;
3356 
3357   // If this is a struct, recurse into the field at the specified offset.
3358   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3359     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3360     unsigned Elt = SL->getElementContainingOffset(IROffset);
3361     IROffset -= SL->getElementOffset(Elt);
3362     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3363   }
3364 
3365   // If this is an array, recurse into the field at the specified offset.
3366   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3367     llvm::Type *EltTy = ATy->getElementType();
3368     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3369     IROffset -= IROffset/EltSize*EltSize;
3370     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3371   }
3372 
3373   return false;
3374 }
3375 
3376 
3377 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3378 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3379 llvm::Type *X86_64ABIInfo::
3380 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3381                    QualType SourceTy, unsigned SourceOffset) const {
3382   // The only three choices we have are either double, <2 x float>, or float. We
3383   // pass as float if the last 4 bytes is just padding.  This happens for
3384   // structs that contain 3 floats.
3385   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3386                             SourceOffset*8+64, getContext()))
3387     return llvm::Type::getFloatTy(getVMContext());
3388 
3389   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3390   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3391   // case.
3392   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3393       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3394     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3395                                       2);
3396 
3397   return llvm::Type::getDoubleTy(getVMContext());
3398 }
3399 
3400 
3401 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3402 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3403 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3404 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3405 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3406 /// etc).
3407 ///
3408 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3409 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3410 /// the 8-byte value references.  PrefType may be null.
3411 ///
3412 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3413 /// an offset into this that we're processing (which is always either 0 or 8).
3414 ///
3415 llvm::Type *X86_64ABIInfo::
3416 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3417                        QualType SourceTy, unsigned SourceOffset) const {
3418   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3419   // returning an 8-byte unit starting with it.  See if we can safely use it.
3420   if (IROffset == 0) {
3421     // Pointers and int64's always fill the 8-byte unit.
3422     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3423         IRType->isIntegerTy(64))
3424       return IRType;
3425 
3426     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3427     // goodness in the source type is just tail padding.  This is allowed to
3428     // kick in for struct {double,int} on the int, but not on
3429     // struct{double,int,int} because we wouldn't return the second int.  We
3430     // have to do this analysis on the source type because we can't depend on
3431     // unions being lowered a specific way etc.
3432     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3433         IRType->isIntegerTy(32) ||
3434         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3435       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3436           cast<llvm::IntegerType>(IRType)->getBitWidth();
3437 
3438       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3439                                 SourceOffset*8+64, getContext()))
3440         return IRType;
3441     }
3442   }
3443 
3444   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3445     // If this is a struct, recurse into the field at the specified offset.
3446     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3447     if (IROffset < SL->getSizeInBytes()) {
3448       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3449       IROffset -= SL->getElementOffset(FieldIdx);
3450 
3451       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3452                                     SourceTy, SourceOffset);
3453     }
3454   }
3455 
3456   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3457     llvm::Type *EltTy = ATy->getElementType();
3458     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3459     unsigned EltOffset = IROffset/EltSize*EltSize;
3460     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3461                                   SourceOffset);
3462   }
3463 
3464   // Okay, we don't have any better idea of what to pass, so we pass this in an
3465   // integer register that isn't too big to fit the rest of the struct.
3466   unsigned TySizeInBytes =
3467     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3468 
3469   assert(TySizeInBytes != SourceOffset && "Empty field?");
3470 
3471   // It is always safe to classify this as an integer type up to i64 that
3472   // isn't larger than the structure.
3473   return llvm::IntegerType::get(getVMContext(),
3474                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3475 }
3476 
3477 
3478 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3479 /// be used as elements of a two register pair to pass or return, return a
3480 /// first class aggregate to represent them.  For example, if the low part of
3481 /// a by-value argument should be passed as i32* and the high part as float,
3482 /// return {i32*, float}.
3483 static llvm::Type *
3484 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3485                            const llvm::DataLayout &TD) {
3486   // In order to correctly satisfy the ABI, we need to the high part to start
3487   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3488   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3489   // the second element at offset 8.  Check for this:
3490   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3491   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3492   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3493   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3494 
3495   // To handle this, we have to increase the size of the low part so that the
3496   // second element will start at an 8 byte offset.  We can't increase the size
3497   // of the second element because it might make us access off the end of the
3498   // struct.
3499   if (HiStart != 8) {
3500     // There are usually two sorts of types the ABI generation code can produce
3501     // for the low part of a pair that aren't 8 bytes in size: float or
3502     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3503     // NaCl).
3504     // Promote these to a larger type.
3505     if (Lo->isFloatTy())
3506       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3507     else {
3508       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3509              && "Invalid/unknown lo type");
3510       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3511     }
3512   }
3513 
3514   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3515 
3516   // Verify that the second element is at an 8-byte offset.
3517   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3518          "Invalid x86-64 argument pair!");
3519   return Result;
3520 }
3521 
3522 ABIArgInfo X86_64ABIInfo::
3523 classifyReturnType(QualType RetTy) const {
3524   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3525   // classification algorithm.
3526   X86_64ABIInfo::Class Lo, Hi;
3527   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3528 
3529   // Check some invariants.
3530   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3531   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3532 
3533   llvm::Type *ResType = nullptr;
3534   switch (Lo) {
3535   case NoClass:
3536     if (Hi == NoClass)
3537       return ABIArgInfo::getIgnore();
3538     // If the low part is just padding, it takes no register, leave ResType
3539     // null.
3540     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3541            "Unknown missing lo part");
3542     break;
3543 
3544   case SSEUp:
3545   case X87Up:
3546     llvm_unreachable("Invalid classification for lo word.");
3547 
3548     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3549     // hidden argument.
3550   case Memory:
3551     return getIndirectReturnResult(RetTy);
3552 
3553     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3554     // available register of the sequence %rax, %rdx is used.
3555   case Integer:
3556     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3557 
3558     // If we have a sign or zero extended integer, make sure to return Extend
3559     // so that the parameter gets the right LLVM IR attributes.
3560     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3561       // Treat an enum type as its underlying type.
3562       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3563         RetTy = EnumTy->getDecl()->getIntegerType();
3564 
3565       if (RetTy->isIntegralOrEnumerationType() &&
3566           isPromotableIntegerTypeForABI(RetTy))
3567         return ABIArgInfo::getExtend(RetTy);
3568     }
3569     break;
3570 
3571     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3572     // available SSE register of the sequence %xmm0, %xmm1 is used.
3573   case SSE:
3574     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3575     break;
3576 
3577     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3578     // returned on the X87 stack in %st0 as 80-bit x87 number.
3579   case X87:
3580     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3581     break;
3582 
3583     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3584     // part of the value is returned in %st0 and the imaginary part in
3585     // %st1.
3586   case ComplexX87:
3587     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3588     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3589                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3590     break;
3591   }
3592 
3593   llvm::Type *HighPart = nullptr;
3594   switch (Hi) {
3595     // Memory was handled previously and X87 should
3596     // never occur as a hi class.
3597   case Memory:
3598   case X87:
3599     llvm_unreachable("Invalid classification for hi word.");
3600 
3601   case ComplexX87: // Previously handled.
3602   case NoClass:
3603     break;
3604 
3605   case Integer:
3606     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3607     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3608       return ABIArgInfo::getDirect(HighPart, 8);
3609     break;
3610   case SSE:
3611     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3612     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3613       return ABIArgInfo::getDirect(HighPart, 8);
3614     break;
3615 
3616     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3617     // is passed in the next available eightbyte chunk if the last used
3618     // vector register.
3619     //
3620     // SSEUP should always be preceded by SSE, just widen.
3621   case SSEUp:
3622     assert(Lo == SSE && "Unexpected SSEUp classification.");
3623     ResType = GetByteVectorType(RetTy);
3624     break;
3625 
3626     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3627     // returned together with the previous X87 value in %st0.
3628   case X87Up:
3629     // If X87Up is preceded by X87, we don't need to do
3630     // anything. However, in some cases with unions it may not be
3631     // preceded by X87. In such situations we follow gcc and pass the
3632     // extra bits in an SSE reg.
3633     if (Lo != X87) {
3634       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3635       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3636         return ABIArgInfo::getDirect(HighPart, 8);
3637     }
3638     break;
3639   }
3640 
3641   // If a high part was specified, merge it together with the low part.  It is
3642   // known to pass in the high eightbyte of the result.  We do this by forming a
3643   // first class struct aggregate with the high and low part: {low, high}
3644   if (HighPart)
3645     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3646 
3647   return ABIArgInfo::getDirect(ResType);
3648 }
3649 
3650 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3651   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3652   bool isNamedArg)
3653   const
3654 {
3655   Ty = useFirstFieldIfTransparentUnion(Ty);
3656 
3657   X86_64ABIInfo::Class Lo, Hi;
3658   classify(Ty, 0, Lo, Hi, isNamedArg);
3659 
3660   // Check some invariants.
3661   // FIXME: Enforce these by construction.
3662   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3663   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3664 
3665   neededInt = 0;
3666   neededSSE = 0;
3667   llvm::Type *ResType = nullptr;
3668   switch (Lo) {
3669   case NoClass:
3670     if (Hi == NoClass)
3671       return ABIArgInfo::getIgnore();
3672     // If the low part is just padding, it takes no register, leave ResType
3673     // null.
3674     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3675            "Unknown missing lo part");
3676     break;
3677 
3678     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3679     // on the stack.
3680   case Memory:
3681 
3682     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3683     // COMPLEX_X87, it is passed in memory.
3684   case X87:
3685   case ComplexX87:
3686     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3687       ++neededInt;
3688     return getIndirectResult(Ty, freeIntRegs);
3689 
3690   case SSEUp:
3691   case X87Up:
3692     llvm_unreachable("Invalid classification for lo word.");
3693 
3694     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3695     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3696     // and %r9 is used.
3697   case Integer:
3698     ++neededInt;
3699 
3700     // Pick an 8-byte type based on the preferred type.
3701     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3702 
3703     // If we have a sign or zero extended integer, make sure to return Extend
3704     // so that the parameter gets the right LLVM IR attributes.
3705     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3706       // Treat an enum type as its underlying type.
3707       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3708         Ty = EnumTy->getDecl()->getIntegerType();
3709 
3710       if (Ty->isIntegralOrEnumerationType() &&
3711           isPromotableIntegerTypeForABI(Ty))
3712         return ABIArgInfo::getExtend(Ty);
3713     }
3714 
3715     break;
3716 
3717     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3718     // available SSE register is used, the registers are taken in the
3719     // order from %xmm0 to %xmm7.
3720   case SSE: {
3721     llvm::Type *IRType = CGT.ConvertType(Ty);
3722     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3723     ++neededSSE;
3724     break;
3725   }
3726   }
3727 
3728   llvm::Type *HighPart = nullptr;
3729   switch (Hi) {
3730     // Memory was handled previously, ComplexX87 and X87 should
3731     // never occur as hi classes, and X87Up must be preceded by X87,
3732     // which is passed in memory.
3733   case Memory:
3734   case X87:
3735   case ComplexX87:
3736     llvm_unreachable("Invalid classification for hi word.");
3737 
3738   case NoClass: break;
3739 
3740   case Integer:
3741     ++neededInt;
3742     // Pick an 8-byte type based on the preferred type.
3743     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3744 
3745     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3746       return ABIArgInfo::getDirect(HighPart, 8);
3747     break;
3748 
3749     // X87Up generally doesn't occur here (long double is passed in
3750     // memory), except in situations involving unions.
3751   case X87Up:
3752   case SSE:
3753     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3754 
3755     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3756       return ABIArgInfo::getDirect(HighPart, 8);
3757 
3758     ++neededSSE;
3759     break;
3760 
3761     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3762     // eightbyte is passed in the upper half of the last used SSE
3763     // register.  This only happens when 128-bit vectors are passed.
3764   case SSEUp:
3765     assert(Lo == SSE && "Unexpected SSEUp classification");
3766     ResType = GetByteVectorType(Ty);
3767     break;
3768   }
3769 
3770   // If a high part was specified, merge it together with the low part.  It is
3771   // known to pass in the high eightbyte of the result.  We do this by forming a
3772   // first class struct aggregate with the high and low part: {low, high}
3773   if (HighPart)
3774     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3775 
3776   return ABIArgInfo::getDirect(ResType);
3777 }
3778 
3779 ABIArgInfo
3780 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3781                                              unsigned &NeededSSE) const {
3782   auto RT = Ty->getAs<RecordType>();
3783   assert(RT && "classifyRegCallStructType only valid with struct types");
3784 
3785   if (RT->getDecl()->hasFlexibleArrayMember())
3786     return getIndirectReturnResult(Ty);
3787 
3788   // Sum up bases
3789   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3790     if (CXXRD->isDynamicClass()) {
3791       NeededInt = NeededSSE = 0;
3792       return getIndirectReturnResult(Ty);
3793     }
3794 
3795     for (const auto &I : CXXRD->bases())
3796       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3797               .isIndirect()) {
3798         NeededInt = NeededSSE = 0;
3799         return getIndirectReturnResult(Ty);
3800       }
3801   }
3802 
3803   // Sum up members
3804   for (const auto *FD : RT->getDecl()->fields()) {
3805     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3806       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3807               .isIndirect()) {
3808         NeededInt = NeededSSE = 0;
3809         return getIndirectReturnResult(Ty);
3810       }
3811     } else {
3812       unsigned LocalNeededInt, LocalNeededSSE;
3813       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3814                                LocalNeededSSE, true)
3815               .isIndirect()) {
3816         NeededInt = NeededSSE = 0;
3817         return getIndirectReturnResult(Ty);
3818       }
3819       NeededInt += LocalNeededInt;
3820       NeededSSE += LocalNeededSSE;
3821     }
3822   }
3823 
3824   return ABIArgInfo::getDirect();
3825 }
3826 
3827 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3828                                                     unsigned &NeededInt,
3829                                                     unsigned &NeededSSE) const {
3830 
3831   NeededInt = 0;
3832   NeededSSE = 0;
3833 
3834   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3835 }
3836 
3837 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3838 
3839   const unsigned CallingConv = FI.getCallingConvention();
3840   // It is possible to force Win64 calling convention on any x86_64 target by
3841   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3842   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3843   if (CallingConv == llvm::CallingConv::Win64) {
3844     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3845     Win64ABIInfo.computeInfo(FI);
3846     return;
3847   }
3848 
3849   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3850 
3851   // Keep track of the number of assigned registers.
3852   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3853   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3854   unsigned NeededInt, NeededSSE;
3855 
3856   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3857     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3858         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3859       FI.getReturnInfo() =
3860           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3861       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3862         FreeIntRegs -= NeededInt;
3863         FreeSSERegs -= NeededSSE;
3864       } else {
3865         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3866       }
3867     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3868                getContext().getCanonicalType(FI.getReturnType()
3869                                                  ->getAs<ComplexType>()
3870                                                  ->getElementType()) ==
3871                    getContext().LongDoubleTy)
3872       // Complex Long Double Type is passed in Memory when Regcall
3873       // calling convention is used.
3874       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3875     else
3876       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3877   }
3878 
3879   // If the return value is indirect, then the hidden argument is consuming one
3880   // integer register.
3881   if (FI.getReturnInfo().isIndirect())
3882     --FreeIntRegs;
3883 
3884   // The chain argument effectively gives us another free register.
3885   if (FI.isChainCall())
3886     ++FreeIntRegs;
3887 
3888   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3889   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3890   // get assigned (in left-to-right order) for passing as follows...
3891   unsigned ArgNo = 0;
3892   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3893        it != ie; ++it, ++ArgNo) {
3894     bool IsNamedArg = ArgNo < NumRequiredArgs;
3895 
3896     if (IsRegCall && it->type->isStructureOrClassType())
3897       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3898     else
3899       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3900                                       NeededSSE, IsNamedArg);
3901 
3902     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3903     // eightbyte of an argument, the whole argument is passed on the
3904     // stack. If registers have already been assigned for some
3905     // eightbytes of such an argument, the assignments get reverted.
3906     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3907       FreeIntRegs -= NeededInt;
3908       FreeSSERegs -= NeededSSE;
3909     } else {
3910       it->info = getIndirectResult(it->type, FreeIntRegs);
3911     }
3912   }
3913 }
3914 
3915 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3916                                          Address VAListAddr, QualType Ty) {
3917   Address overflow_arg_area_p =
3918       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3919   llvm::Value *overflow_arg_area =
3920     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3921 
3922   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3923   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3924   // It isn't stated explicitly in the standard, but in practice we use
3925   // alignment greater than 16 where necessary.
3926   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3927   if (Align > CharUnits::fromQuantity(8)) {
3928     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3929                                                       Align);
3930   }
3931 
3932   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3933   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3934   llvm::Value *Res =
3935     CGF.Builder.CreateBitCast(overflow_arg_area,
3936                               llvm::PointerType::getUnqual(LTy));
3937 
3938   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3939   // l->overflow_arg_area + sizeof(type).
3940   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3941   // an 8 byte boundary.
3942 
3943   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3944   llvm::Value *Offset =
3945       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3946   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3947                                             "overflow_arg_area.next");
3948   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3949 
3950   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3951   return Address(Res, Align);
3952 }
3953 
3954 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3955                                  QualType Ty) const {
3956   // Assume that va_list type is correct; should be pointer to LLVM type:
3957   // struct {
3958   //   i32 gp_offset;
3959   //   i32 fp_offset;
3960   //   i8* overflow_arg_area;
3961   //   i8* reg_save_area;
3962   // };
3963   unsigned neededInt, neededSSE;
3964 
3965   Ty = getContext().getCanonicalType(Ty);
3966   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3967                                        /*isNamedArg*/false);
3968 
3969   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3970   // in the registers. If not go to step 7.
3971   if (!neededInt && !neededSSE)
3972     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3973 
3974   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3975   // general purpose registers needed to pass type and num_fp to hold
3976   // the number of floating point registers needed.
3977 
3978   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3979   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3980   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3981   //
3982   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3983   // register save space).
3984 
3985   llvm::Value *InRegs = nullptr;
3986   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3987   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3988   if (neededInt) {
3989     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3990     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3991     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3992     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3993   }
3994 
3995   if (neededSSE) {
3996     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3997     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3998     llvm::Value *FitsInFP =
3999       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4000     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4001     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4002   }
4003 
4004   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4005   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4006   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4007   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4008 
4009   // Emit code to load the value if it was passed in registers.
4010 
4011   CGF.EmitBlock(InRegBlock);
4012 
4013   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4014   // an offset of l->gp_offset and/or l->fp_offset. This may require
4015   // copying to a temporary location in case the parameter is passed
4016   // in different register classes or requires an alignment greater
4017   // than 8 for general purpose registers and 16 for XMM registers.
4018   //
4019   // FIXME: This really results in shameful code when we end up needing to
4020   // collect arguments from different places; often what should result in a
4021   // simple assembling of a structure from scattered addresses has many more
4022   // loads than necessary. Can we clean this up?
4023   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4024   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4025       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4026 
4027   Address RegAddr = Address::invalid();
4028   if (neededInt && neededSSE) {
4029     // FIXME: Cleanup.
4030     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4031     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4032     Address Tmp = CGF.CreateMemTemp(Ty);
4033     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4034     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4035     llvm::Type *TyLo = ST->getElementType(0);
4036     llvm::Type *TyHi = ST->getElementType(1);
4037     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4038            "Unexpected ABI info for mixed regs");
4039     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4040     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4041     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
4042     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
4043     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4044     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4045 
4046     // Copy the first element.
4047     // FIXME: Our choice of alignment here and below is probably pessimistic.
4048     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4049         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4050         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4051     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4052 
4053     // Copy the second element.
4054     V = CGF.Builder.CreateAlignedLoad(
4055         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4056         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4057     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4058 
4059     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4060   } else if (neededInt) {
4061     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
4062                       CharUnits::fromQuantity(8));
4063     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4064 
4065     // Copy to a temporary if necessary to ensure the appropriate alignment.
4066     std::pair<CharUnits, CharUnits> SizeAlign =
4067         getContext().getTypeInfoInChars(Ty);
4068     uint64_t TySize = SizeAlign.first.getQuantity();
4069     CharUnits TyAlign = SizeAlign.second;
4070 
4071     // Copy into a temporary if the type is more aligned than the
4072     // register save area.
4073     if (TyAlign.getQuantity() > 8) {
4074       Address Tmp = CGF.CreateMemTemp(Ty);
4075       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4076       RegAddr = Tmp;
4077     }
4078 
4079   } else if (neededSSE == 1) {
4080     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4081                       CharUnits::fromQuantity(16));
4082     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4083   } else {
4084     assert(neededSSE == 2 && "Invalid number of needed registers!");
4085     // SSE registers are spaced 16 bytes apart in the register save
4086     // area, we need to collect the two eightbytes together.
4087     // The ABI isn't explicit about this, but it seems reasonable
4088     // to assume that the slots are 16-byte aligned, since the stack is
4089     // naturally 16-byte aligned and the prologue is expected to store
4090     // all the SSE registers to the RSA.
4091     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4092                                 CharUnits::fromQuantity(16));
4093     Address RegAddrHi =
4094       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4095                                              CharUnits::fromQuantity(16));
4096     llvm::Type *ST = AI.canHaveCoerceToType()
4097                          ? AI.getCoerceToType()
4098                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4099     llvm::Value *V;
4100     Address Tmp = CGF.CreateMemTemp(Ty);
4101     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4102     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4103         RegAddrLo, ST->getStructElementType(0)));
4104     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4105     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4106         RegAddrHi, ST->getStructElementType(1)));
4107     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4108 
4109     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4110   }
4111 
4112   // AMD64-ABI 3.5.7p5: Step 5. Set:
4113   // l->gp_offset = l->gp_offset + num_gp * 8
4114   // l->fp_offset = l->fp_offset + num_fp * 16.
4115   if (neededInt) {
4116     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4117     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4118                             gp_offset_p);
4119   }
4120   if (neededSSE) {
4121     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4122     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4123                             fp_offset_p);
4124   }
4125   CGF.EmitBranch(ContBlock);
4126 
4127   // Emit code to load the value if it was passed in memory.
4128 
4129   CGF.EmitBlock(InMemBlock);
4130   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4131 
4132   // Return the appropriate result.
4133 
4134   CGF.EmitBlock(ContBlock);
4135   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4136                                  "vaarg.addr");
4137   return ResAddr;
4138 }
4139 
4140 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4141                                    QualType Ty) const {
4142   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4143                           CGF.getContext().getTypeInfoInChars(Ty),
4144                           CharUnits::fromQuantity(8),
4145                           /*allowHigherAlign*/ false);
4146 }
4147 
4148 ABIArgInfo
4149 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
4150                                     const ABIArgInfo &current) const {
4151   // Assumes vectorCall calling convention.
4152   const Type *Base = nullptr;
4153   uint64_t NumElts = 0;
4154 
4155   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4156       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4157     FreeSSERegs -= NumElts;
4158     return getDirectX86Hva();
4159   }
4160   return current;
4161 }
4162 
4163 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4164                                       bool IsReturnType, bool IsVectorCall,
4165                                       bool IsRegCall) const {
4166 
4167   if (Ty->isVoidType())
4168     return ABIArgInfo::getIgnore();
4169 
4170   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4171     Ty = EnumTy->getDecl()->getIntegerType();
4172 
4173   TypeInfo Info = getContext().getTypeInfo(Ty);
4174   uint64_t Width = Info.Width;
4175   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4176 
4177   const RecordType *RT = Ty->getAs<RecordType>();
4178   if (RT) {
4179     if (!IsReturnType) {
4180       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4181         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4182     }
4183 
4184     if (RT->getDecl()->hasFlexibleArrayMember())
4185       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4186 
4187   }
4188 
4189   const Type *Base = nullptr;
4190   uint64_t NumElts = 0;
4191   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4192   // other targets.
4193   if ((IsVectorCall || IsRegCall) &&
4194       isHomogeneousAggregate(Ty, Base, NumElts)) {
4195     if (IsRegCall) {
4196       if (FreeSSERegs >= NumElts) {
4197         FreeSSERegs -= NumElts;
4198         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4199           return ABIArgInfo::getDirect();
4200         return ABIArgInfo::getExpand();
4201       }
4202       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4203     } else if (IsVectorCall) {
4204       if (FreeSSERegs >= NumElts &&
4205           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4206         FreeSSERegs -= NumElts;
4207         return ABIArgInfo::getDirect();
4208       } else if (IsReturnType) {
4209         return ABIArgInfo::getExpand();
4210       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4211         // HVAs are delayed and reclassified in the 2nd step.
4212         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4213       }
4214     }
4215   }
4216 
4217   if (Ty->isMemberPointerType()) {
4218     // If the member pointer is represented by an LLVM int or ptr, pass it
4219     // directly.
4220     llvm::Type *LLTy = CGT.ConvertType(Ty);
4221     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4222       return ABIArgInfo::getDirect();
4223   }
4224 
4225   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4226     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4227     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4228     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4229       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4230 
4231     // Otherwise, coerce it to a small integer.
4232     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4233   }
4234 
4235   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4236     switch (BT->getKind()) {
4237     case BuiltinType::Bool:
4238       // Bool type is always extended to the ABI, other builtin types are not
4239       // extended.
4240       return ABIArgInfo::getExtend(Ty);
4241 
4242     case BuiltinType::LongDouble:
4243       // Mingw64 GCC uses the old 80 bit extended precision floating point
4244       // unit. It passes them indirectly through memory.
4245       if (IsMingw64) {
4246         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4247         if (LDF == &llvm::APFloat::x87DoubleExtended())
4248           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4249       }
4250       break;
4251 
4252     case BuiltinType::Int128:
4253     case BuiltinType::UInt128:
4254       // If it's a parameter type, the normal ABI rule is that arguments larger
4255       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4256       // even though it isn't particularly efficient.
4257       if (!IsReturnType)
4258         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4259 
4260       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4261       // Clang matches them for compatibility.
4262       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4263           llvm::Type::getInt64Ty(getVMContext()), 2));
4264 
4265     default:
4266       break;
4267     }
4268   }
4269 
4270   if (Ty->isExtIntType()) {
4271     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4272     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4273     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4274     // anyway as long is it fits in them, so we don't have to check the power of
4275     // 2.
4276     if (Width <= 64)
4277       return ABIArgInfo::getDirect();
4278     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4279   }
4280 
4281   return ABIArgInfo::getDirect();
4282 }
4283 
4284 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4285                                              unsigned FreeSSERegs,
4286                                              bool IsVectorCall,
4287                                              bool IsRegCall) const {
4288   unsigned Count = 0;
4289   for (auto &I : FI.arguments()) {
4290     // Vectorcall in x64 only permits the first 6 arguments to be passed
4291     // as XMM/YMM registers.
4292     if (Count < VectorcallMaxParamNumAsReg)
4293       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4294     else {
4295       // Since these cannot be passed in registers, pretend no registers
4296       // are left.
4297       unsigned ZeroSSERegsAvail = 0;
4298       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4299                         IsVectorCall, IsRegCall);
4300     }
4301     ++Count;
4302   }
4303 
4304   for (auto &I : FI.arguments()) {
4305     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4306   }
4307 }
4308 
4309 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4310   const unsigned CC = FI.getCallingConvention();
4311   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4312   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4313 
4314   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4315   // classification rules.
4316   if (CC == llvm::CallingConv::X86_64_SysV) {
4317     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4318     SysVABIInfo.computeInfo(FI);
4319     return;
4320   }
4321 
4322   unsigned FreeSSERegs = 0;
4323   if (IsVectorCall) {
4324     // We can use up to 4 SSE return registers with vectorcall.
4325     FreeSSERegs = 4;
4326   } else if (IsRegCall) {
4327     // RegCall gives us 16 SSE registers.
4328     FreeSSERegs = 16;
4329   }
4330 
4331   if (!getCXXABI().classifyReturnType(FI))
4332     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4333                                   IsVectorCall, IsRegCall);
4334 
4335   if (IsVectorCall) {
4336     // We can use up to 6 SSE register parameters with vectorcall.
4337     FreeSSERegs = 6;
4338   } else if (IsRegCall) {
4339     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4340     FreeSSERegs = 16;
4341   }
4342 
4343   if (IsVectorCall) {
4344     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4345   } else {
4346     for (auto &I : FI.arguments())
4347       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4348   }
4349 
4350 }
4351 
4352 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4353                                     QualType Ty) const {
4354 
4355   bool IsIndirect = false;
4356 
4357   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4358   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4359   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4360     uint64_t Width = getContext().getTypeSize(Ty);
4361     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4362   }
4363 
4364   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4365                           CGF.getContext().getTypeInfoInChars(Ty),
4366                           CharUnits::fromQuantity(8),
4367                           /*allowHigherAlign*/ false);
4368 }
4369 
4370 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4371                                         llvm::Value *Address, bool Is64Bit,
4372                                         bool IsAIX) {
4373   // This is calculated from the LLVM and GCC tables and verified
4374   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4375 
4376   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4377 
4378   llvm::IntegerType *i8 = CGF.Int8Ty;
4379   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4380   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4381   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4382 
4383   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4384   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4385 
4386   // 32-63: fp0-31, the 8-byte floating-point registers
4387   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4388 
4389   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4390   // 64: mq
4391   // 65: lr
4392   // 66: ctr
4393   // 67: ap
4394   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4395 
4396   // 68-76 are various 4-byte special-purpose registers:
4397   // 68-75 cr0-7
4398   // 76: xer
4399   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4400 
4401   // 77-108: v0-31, the 16-byte vector registers
4402   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4403 
4404   // 109: vrsave
4405   // 110: vscr
4406   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4407 
4408   // AIX does not utilize the rest of the registers.
4409   if (IsAIX)
4410     return false;
4411 
4412   // 111: spe_acc
4413   // 112: spefscr
4414   // 113: sfp
4415   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4416 
4417   if (!Is64Bit)
4418     return false;
4419 
4420   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4421   // or above CPU.
4422   // 64-bit only registers:
4423   // 114: tfhar
4424   // 115: tfiar
4425   // 116: texasr
4426   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4427 
4428   return false;
4429 }
4430 
4431 // AIX
4432 namespace {
4433 /// AIXABIInfo - The AIX XCOFF ABI information.
4434 class AIXABIInfo : public ABIInfo {
4435   const bool Is64Bit;
4436   const unsigned PtrByteSize;
4437   CharUnits getParamTypeAlignment(QualType Ty) const;
4438 
4439 public:
4440   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4441       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4442 
4443   bool isPromotableTypeForABI(QualType Ty) const;
4444 
4445   ABIArgInfo classifyReturnType(QualType RetTy) const;
4446   ABIArgInfo classifyArgumentType(QualType Ty) const;
4447 
4448   void computeInfo(CGFunctionInfo &FI) const override {
4449     if (!getCXXABI().classifyReturnType(FI))
4450       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4451 
4452     for (auto &I : FI.arguments())
4453       I.info = classifyArgumentType(I.type);
4454   }
4455 
4456   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4457                     QualType Ty) const override;
4458 };
4459 
4460 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4461   const bool Is64Bit;
4462 
4463 public:
4464   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4465       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4466         Is64Bit(Is64Bit) {}
4467   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4468     return 1; // r1 is the dedicated stack pointer
4469   }
4470 
4471   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4472                                llvm::Value *Address) const override;
4473 };
4474 } // namespace
4475 
4476 // Return true if the ABI requires Ty to be passed sign- or zero-
4477 // extended to 32/64 bits.
4478 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4479   // Treat an enum type as its underlying type.
4480   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4481     Ty = EnumTy->getDecl()->getIntegerType();
4482 
4483   // Promotable integer types are required to be promoted by the ABI.
4484   if (Ty->isPromotableIntegerType())
4485     return true;
4486 
4487   if (!Is64Bit)
4488     return false;
4489 
4490   // For 64 bit mode, in addition to the usual promotable integer types, we also
4491   // need to extend all 32-bit types, since the ABI requires promotion to 64
4492   // bits.
4493   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4494     switch (BT->getKind()) {
4495     case BuiltinType::Int:
4496     case BuiltinType::UInt:
4497       return true;
4498     default:
4499       break;
4500     }
4501 
4502   return false;
4503 }
4504 
4505 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4506   if (RetTy->isAnyComplexType())
4507     return ABIArgInfo::getDirect();
4508 
4509   if (RetTy->isVectorType())
4510     llvm::report_fatal_error("vector type is not supported on AIX yet");
4511 
4512   if (RetTy->isVoidType())
4513     return ABIArgInfo::getIgnore();
4514 
4515   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4516   // alignment here.
4517   if (isAggregateTypeForABI(RetTy))
4518     return getNaturalAlignIndirect(RetTy);
4519 
4520   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4521                                         : ABIArgInfo::getDirect());
4522 }
4523 
4524 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4525   Ty = useFirstFieldIfTransparentUnion(Ty);
4526 
4527   if (Ty->isAnyComplexType())
4528     return ABIArgInfo::getDirect();
4529 
4530   if (Ty->isVectorType())
4531     llvm::report_fatal_error("vector type is not supported on AIX yet");
4532 
4533   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4534   // alignment here.
4535   if (isAggregateTypeForABI(Ty)) {
4536     // Records with non-trivial destructors/copy-constructors should not be
4537     // passed by value.
4538     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4539       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4540 
4541     CharUnits CCAlign = getParamTypeAlignment(Ty);
4542     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4543 
4544     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4545                                    /*Realign*/ TyAlign > CCAlign);
4546   }
4547 
4548   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4549                                      : ABIArgInfo::getDirect());
4550 }
4551 
4552 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4553   // Complex types are passed just like their elements.
4554   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4555     Ty = CTy->getElementType();
4556 
4557   if (Ty->isVectorType())
4558     llvm::report_fatal_error("vector type is not supported on AIX yet");
4559 
4560   // If the structure contains a vector type, the alignment is 16.
4561   if (isRecordWithSIMDVectorType(getContext(), Ty))
4562     return CharUnits::fromQuantity(16);
4563 
4564   return CharUnits::fromQuantity(PtrByteSize);
4565 }
4566 
4567 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4568                               QualType Ty) const {
4569   if (Ty->isAnyComplexType())
4570     llvm::report_fatal_error("complex type is not supported on AIX yet");
4571 
4572   if (Ty->isVectorType())
4573     llvm::report_fatal_error("vector type is not supported on AIX yet");
4574 
4575   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4576   TypeInfo.second = getParamTypeAlignment(Ty);
4577 
4578   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4579 
4580   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4581                           SlotSize, /*AllowHigher*/ true);
4582 }
4583 
4584 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4585     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4586   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4587 }
4588 
4589 // PowerPC-32
4590 namespace {
4591 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4592 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4593   bool IsSoftFloatABI;
4594   bool IsRetSmallStructInRegABI;
4595 
4596   CharUnits getParamTypeAlignment(QualType Ty) const;
4597 
4598 public:
4599   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4600                      bool RetSmallStructInRegABI)
4601       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4602         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4603 
4604   ABIArgInfo classifyReturnType(QualType RetTy) const;
4605 
4606   void computeInfo(CGFunctionInfo &FI) const override {
4607     if (!getCXXABI().classifyReturnType(FI))
4608       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4609     for (auto &I : FI.arguments())
4610       I.info = classifyArgumentType(I.type);
4611   }
4612 
4613   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4614                     QualType Ty) const override;
4615 };
4616 
4617 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4618 public:
4619   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4620                          bool RetSmallStructInRegABI)
4621       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4622             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4623 
4624   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4625                                      const CodeGenOptions &Opts);
4626 
4627   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4628     // This is recovered from gcc output.
4629     return 1; // r1 is the dedicated stack pointer
4630   }
4631 
4632   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4633                                llvm::Value *Address) const override;
4634 };
4635 }
4636 
4637 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4638   // Complex types are passed just like their elements.
4639   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4640     Ty = CTy->getElementType();
4641 
4642   if (Ty->isVectorType())
4643     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4644                                                                        : 4);
4645 
4646   // For single-element float/vector structs, we consider the whole type
4647   // to have the same alignment requirements as its single element.
4648   const Type *AlignTy = nullptr;
4649   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4650     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4651     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4652         (BT && BT->isFloatingPoint()))
4653       AlignTy = EltType;
4654   }
4655 
4656   if (AlignTy)
4657     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4658   return CharUnits::fromQuantity(4);
4659 }
4660 
4661 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4662   uint64_t Size;
4663 
4664   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4665   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4666       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4667     // System V ABI (1995), page 3-22, specified:
4668     // > A structure or union whose size is less than or equal to 8 bytes
4669     // > shall be returned in r3 and r4, as if it were first stored in the
4670     // > 8-byte aligned memory area and then the low addressed word were
4671     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4672     // > the last member of the structure or union are not defined.
4673     //
4674     // GCC for big-endian PPC32 inserts the pad before the first member,
4675     // not "beyond the last member" of the struct.  To stay compatible
4676     // with GCC, we coerce the struct to an integer of the same size.
4677     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4678     if (Size == 0)
4679       return ABIArgInfo::getIgnore();
4680     else {
4681       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4682       return ABIArgInfo::getDirect(CoerceTy);
4683     }
4684   }
4685 
4686   return DefaultABIInfo::classifyReturnType(RetTy);
4687 }
4688 
4689 // TODO: this implementation is now likely redundant with
4690 // DefaultABIInfo::EmitVAArg.
4691 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4692                                       QualType Ty) const {
4693   if (getTarget().getTriple().isOSDarwin()) {
4694     auto TI = getContext().getTypeInfoInChars(Ty);
4695     TI.second = getParamTypeAlignment(Ty);
4696 
4697     CharUnits SlotSize = CharUnits::fromQuantity(4);
4698     return emitVoidPtrVAArg(CGF, VAList, Ty,
4699                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4700                             /*AllowHigherAlign=*/true);
4701   }
4702 
4703   const unsigned OverflowLimit = 8;
4704   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4705     // TODO: Implement this. For now ignore.
4706     (void)CTy;
4707     return Address::invalid(); // FIXME?
4708   }
4709 
4710   // struct __va_list_tag {
4711   //   unsigned char gpr;
4712   //   unsigned char fpr;
4713   //   unsigned short reserved;
4714   //   void *overflow_arg_area;
4715   //   void *reg_save_area;
4716   // };
4717 
4718   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4719   bool isInt =
4720       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4721   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4722 
4723   // All aggregates are passed indirectly?  That doesn't seem consistent
4724   // with the argument-lowering code.
4725   bool isIndirect = Ty->isAggregateType();
4726 
4727   CGBuilderTy &Builder = CGF.Builder;
4728 
4729   // The calling convention either uses 1-2 GPRs or 1 FPR.
4730   Address NumRegsAddr = Address::invalid();
4731   if (isInt || IsSoftFloatABI) {
4732     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4733   } else {
4734     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4735   }
4736 
4737   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4738 
4739   // "Align" the register count when TY is i64.
4740   if (isI64 || (isF64 && IsSoftFloatABI)) {
4741     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4742     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4743   }
4744 
4745   llvm::Value *CC =
4746       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4747 
4748   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4749   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4750   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4751 
4752   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4753 
4754   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4755   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4756 
4757   // Case 1: consume registers.
4758   Address RegAddr = Address::invalid();
4759   {
4760     CGF.EmitBlock(UsingRegs);
4761 
4762     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4763     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4764                       CharUnits::fromQuantity(8));
4765     assert(RegAddr.getElementType() == CGF.Int8Ty);
4766 
4767     // Floating-point registers start after the general-purpose registers.
4768     if (!(isInt || IsSoftFloatABI)) {
4769       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4770                                                    CharUnits::fromQuantity(32));
4771     }
4772 
4773     // Get the address of the saved value by scaling the number of
4774     // registers we've used by the number of
4775     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4776     llvm::Value *RegOffset =
4777       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4778     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4779                                             RegAddr.getPointer(), RegOffset),
4780                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4781     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4782 
4783     // Increase the used-register count.
4784     NumRegs =
4785       Builder.CreateAdd(NumRegs,
4786                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4787     Builder.CreateStore(NumRegs, NumRegsAddr);
4788 
4789     CGF.EmitBranch(Cont);
4790   }
4791 
4792   // Case 2: consume space in the overflow area.
4793   Address MemAddr = Address::invalid();
4794   {
4795     CGF.EmitBlock(UsingOverflow);
4796 
4797     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4798 
4799     // Everything in the overflow area is rounded up to a size of at least 4.
4800     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4801 
4802     CharUnits Size;
4803     if (!isIndirect) {
4804       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4805       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4806     } else {
4807       Size = CGF.getPointerSize();
4808     }
4809 
4810     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4811     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4812                          OverflowAreaAlign);
4813     // Round up address of argument to alignment
4814     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4815     if (Align > OverflowAreaAlign) {
4816       llvm::Value *Ptr = OverflowArea.getPointer();
4817       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4818                                                            Align);
4819     }
4820 
4821     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4822 
4823     // Increase the overflow area.
4824     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4825     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4826     CGF.EmitBranch(Cont);
4827   }
4828 
4829   CGF.EmitBlock(Cont);
4830 
4831   // Merge the cases with a phi.
4832   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4833                                 "vaarg.addr");
4834 
4835   // Load the pointer if the argument was passed indirectly.
4836   if (isIndirect) {
4837     Result = Address(Builder.CreateLoad(Result, "aggr"),
4838                      getContext().getTypeAlignInChars(Ty));
4839   }
4840 
4841   return Result;
4842 }
4843 
4844 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4845     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4846   assert(Triple.getArch() == llvm::Triple::ppc);
4847 
4848   switch (Opts.getStructReturnConvention()) {
4849   case CodeGenOptions::SRCK_Default:
4850     break;
4851   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4852     return false;
4853   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4854     return true;
4855   }
4856 
4857   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4858     return true;
4859 
4860   return false;
4861 }
4862 
4863 bool
4864 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4865                                                 llvm::Value *Address) const {
4866   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4867                                      /*IsAIX*/ false);
4868 }
4869 
4870 // PowerPC-64
4871 
4872 namespace {
4873 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4874 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4875 public:
4876   enum ABIKind {
4877     ELFv1 = 0,
4878     ELFv2
4879   };
4880 
4881 private:
4882   static const unsigned GPRBits = 64;
4883   ABIKind Kind;
4884   bool HasQPX;
4885   bool IsSoftFloatABI;
4886 
4887   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4888   // will be passed in a QPX register.
4889   bool IsQPXVectorTy(const Type *Ty) const {
4890     if (!HasQPX)
4891       return false;
4892 
4893     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4894       unsigned NumElements = VT->getNumElements();
4895       if (NumElements == 1)
4896         return false;
4897 
4898       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4899         if (getContext().getTypeSize(Ty) <= 256)
4900           return true;
4901       } else if (VT->getElementType()->
4902                    isSpecificBuiltinType(BuiltinType::Float)) {
4903         if (getContext().getTypeSize(Ty) <= 128)
4904           return true;
4905       }
4906     }
4907 
4908     return false;
4909   }
4910 
4911   bool IsQPXVectorTy(QualType Ty) const {
4912     return IsQPXVectorTy(Ty.getTypePtr());
4913   }
4914 
4915 public:
4916   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4917                      bool SoftFloatABI)
4918       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4919         IsSoftFloatABI(SoftFloatABI) {}
4920 
4921   bool isPromotableTypeForABI(QualType Ty) const;
4922   CharUnits getParamTypeAlignment(QualType Ty) const;
4923 
4924   ABIArgInfo classifyReturnType(QualType RetTy) const;
4925   ABIArgInfo classifyArgumentType(QualType Ty) const;
4926 
4927   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4928   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4929                                          uint64_t Members) const override;
4930 
4931   // TODO: We can add more logic to computeInfo to improve performance.
4932   // Example: For aggregate arguments that fit in a register, we could
4933   // use getDirectInReg (as is done below for structs containing a single
4934   // floating-point value) to avoid pushing them to memory on function
4935   // entry.  This would require changing the logic in PPCISelLowering
4936   // when lowering the parameters in the caller and args in the callee.
4937   void computeInfo(CGFunctionInfo &FI) const override {
4938     if (!getCXXABI().classifyReturnType(FI))
4939       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4940     for (auto &I : FI.arguments()) {
4941       // We rely on the default argument classification for the most part.
4942       // One exception:  An aggregate containing a single floating-point
4943       // or vector item must be passed in a register if one is available.
4944       const Type *T = isSingleElementStruct(I.type, getContext());
4945       if (T) {
4946         const BuiltinType *BT = T->getAs<BuiltinType>();
4947         if (IsQPXVectorTy(T) ||
4948             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4949             (BT && BT->isFloatingPoint())) {
4950           QualType QT(T, 0);
4951           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4952           continue;
4953         }
4954       }
4955       I.info = classifyArgumentType(I.type);
4956     }
4957   }
4958 
4959   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4960                     QualType Ty) const override;
4961 
4962   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4963                                     bool asReturnValue) const override {
4964     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4965   }
4966 
4967   bool isSwiftErrorInRegister() const override {
4968     return false;
4969   }
4970 };
4971 
4972 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4973 
4974 public:
4975   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4976                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4977                                bool SoftFloatABI)
4978       : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>(
4979             CGT, Kind, HasQPX, SoftFloatABI)) {}
4980 
4981   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4982     // This is recovered from gcc output.
4983     return 1; // r1 is the dedicated stack pointer
4984   }
4985 
4986   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4987                                llvm::Value *Address) const override;
4988 };
4989 
4990 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4991 public:
4992   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4993 
4994   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4995     // This is recovered from gcc output.
4996     return 1; // r1 is the dedicated stack pointer
4997   }
4998 
4999   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5000                                llvm::Value *Address) const override;
5001 };
5002 
5003 }
5004 
5005 // Return true if the ABI requires Ty to be passed sign- or zero-
5006 // extended to 64 bits.
5007 bool
5008 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5009   // Treat an enum type as its underlying type.
5010   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5011     Ty = EnumTy->getDecl()->getIntegerType();
5012 
5013   // Promotable integer types are required to be promoted by the ABI.
5014   if (isPromotableIntegerTypeForABI(Ty))
5015     return true;
5016 
5017   // In addition to the usual promotable integer types, we also need to
5018   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5019   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5020     switch (BT->getKind()) {
5021     case BuiltinType::Int:
5022     case BuiltinType::UInt:
5023       return true;
5024     default:
5025       break;
5026     }
5027 
5028   if (const auto *EIT = Ty->getAs<ExtIntType>())
5029     if (EIT->getNumBits() < 64)
5030       return true;
5031 
5032   return false;
5033 }
5034 
5035 /// isAlignedParamType - Determine whether a type requires 16-byte or
5036 /// higher alignment in the parameter area.  Always returns at least 8.
5037 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5038   // Complex types are passed just like their elements.
5039   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5040     Ty = CTy->getElementType();
5041 
5042   // Only vector types of size 16 bytes need alignment (larger types are
5043   // passed via reference, smaller types are not aligned).
5044   if (IsQPXVectorTy(Ty)) {
5045     if (getContext().getTypeSize(Ty) > 128)
5046       return CharUnits::fromQuantity(32);
5047 
5048     return CharUnits::fromQuantity(16);
5049   } else if (Ty->isVectorType()) {
5050     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5051   }
5052 
5053   // For single-element float/vector structs, we consider the whole type
5054   // to have the same alignment requirements as its single element.
5055   const Type *AlignAsType = nullptr;
5056   const Type *EltType = isSingleElementStruct(Ty, getContext());
5057   if (EltType) {
5058     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5059     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
5060          getContext().getTypeSize(EltType) == 128) ||
5061         (BT && BT->isFloatingPoint()))
5062       AlignAsType = EltType;
5063   }
5064 
5065   // Likewise for ELFv2 homogeneous aggregates.
5066   const Type *Base = nullptr;
5067   uint64_t Members = 0;
5068   if (!AlignAsType && Kind == ELFv2 &&
5069       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5070     AlignAsType = Base;
5071 
5072   // With special case aggregates, only vector base types need alignment.
5073   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
5074     if (getContext().getTypeSize(AlignAsType) > 128)
5075       return CharUnits::fromQuantity(32);
5076 
5077     return CharUnits::fromQuantity(16);
5078   } else if (AlignAsType) {
5079     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5080   }
5081 
5082   // Otherwise, we only need alignment for any aggregate type that
5083   // has an alignment requirement of >= 16 bytes.
5084   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5085     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
5086       return CharUnits::fromQuantity(32);
5087     return CharUnits::fromQuantity(16);
5088   }
5089 
5090   return CharUnits::fromQuantity(8);
5091 }
5092 
5093 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5094 /// aggregate.  Base is set to the base element type, and Members is set
5095 /// to the number of base elements.
5096 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5097                                      uint64_t &Members) const {
5098   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5099     uint64_t NElements = AT->getSize().getZExtValue();
5100     if (NElements == 0)
5101       return false;
5102     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5103       return false;
5104     Members *= NElements;
5105   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5106     const RecordDecl *RD = RT->getDecl();
5107     if (RD->hasFlexibleArrayMember())
5108       return false;
5109 
5110     Members = 0;
5111 
5112     // If this is a C++ record, check the bases first.
5113     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5114       for (const auto &I : CXXRD->bases()) {
5115         // Ignore empty records.
5116         if (isEmptyRecord(getContext(), I.getType(), true))
5117           continue;
5118 
5119         uint64_t FldMembers;
5120         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5121           return false;
5122 
5123         Members += FldMembers;
5124       }
5125     }
5126 
5127     for (const auto *FD : RD->fields()) {
5128       // Ignore (non-zero arrays of) empty records.
5129       QualType FT = FD->getType();
5130       while (const ConstantArrayType *AT =
5131              getContext().getAsConstantArrayType(FT)) {
5132         if (AT->getSize().getZExtValue() == 0)
5133           return false;
5134         FT = AT->getElementType();
5135       }
5136       if (isEmptyRecord(getContext(), FT, true))
5137         continue;
5138 
5139       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5140       if (getContext().getLangOpts().CPlusPlus &&
5141           FD->isZeroLengthBitField(getContext()))
5142         continue;
5143 
5144       uint64_t FldMembers;
5145       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5146         return false;
5147 
5148       Members = (RD->isUnion() ?
5149                  std::max(Members, FldMembers) : Members + FldMembers);
5150     }
5151 
5152     if (!Base)
5153       return false;
5154 
5155     // Ensure there is no padding.
5156     if (getContext().getTypeSize(Base) * Members !=
5157         getContext().getTypeSize(Ty))
5158       return false;
5159   } else {
5160     Members = 1;
5161     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5162       Members = 2;
5163       Ty = CT->getElementType();
5164     }
5165 
5166     // Most ABIs only support float, double, and some vector type widths.
5167     if (!isHomogeneousAggregateBaseType(Ty))
5168       return false;
5169 
5170     // The base type must be the same for all members.  Types that
5171     // agree in both total size and mode (float vs. vector) are
5172     // treated as being equivalent here.
5173     const Type *TyPtr = Ty.getTypePtr();
5174     if (!Base) {
5175       Base = TyPtr;
5176       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5177       // so make sure to widen it explicitly.
5178       if (const VectorType *VT = Base->getAs<VectorType>()) {
5179         QualType EltTy = VT->getElementType();
5180         unsigned NumElements =
5181             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5182         Base = getContext()
5183                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5184                    .getTypePtr();
5185       }
5186     }
5187 
5188     if (Base->isVectorType() != TyPtr->isVectorType() ||
5189         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5190       return false;
5191   }
5192   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5193 }
5194 
5195 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5196   // Homogeneous aggregates for ELFv2 must have base types of float,
5197   // double, long double, or 128-bit vectors.
5198   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5199     if (BT->getKind() == BuiltinType::Float ||
5200         BT->getKind() == BuiltinType::Double ||
5201         BT->getKind() == BuiltinType::LongDouble ||
5202         (getContext().getTargetInfo().hasFloat128Type() &&
5203           (BT->getKind() == BuiltinType::Float128))) {
5204       if (IsSoftFloatABI)
5205         return false;
5206       return true;
5207     }
5208   }
5209   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5210     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
5211       return true;
5212   }
5213   return false;
5214 }
5215 
5216 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5217     const Type *Base, uint64_t Members) const {
5218   // Vector and fp128 types require one register, other floating point types
5219   // require one or two registers depending on their size.
5220   uint32_t NumRegs =
5221       ((getContext().getTargetInfo().hasFloat128Type() &&
5222           Base->isFloat128Type()) ||
5223         Base->isVectorType()) ? 1
5224                               : (getContext().getTypeSize(Base) + 63) / 64;
5225 
5226   // Homogeneous Aggregates may occupy at most 8 registers.
5227   return Members * NumRegs <= 8;
5228 }
5229 
5230 ABIArgInfo
5231 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5232   Ty = useFirstFieldIfTransparentUnion(Ty);
5233 
5234   if (Ty->isAnyComplexType())
5235     return ABIArgInfo::getDirect();
5236 
5237   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5238   // or via reference (larger than 16 bytes).
5239   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
5240     uint64_t Size = getContext().getTypeSize(Ty);
5241     if (Size > 128)
5242       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5243     else if (Size < 128) {
5244       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5245       return ABIArgInfo::getDirect(CoerceTy);
5246     }
5247   }
5248 
5249   if (const auto *EIT = Ty->getAs<ExtIntType>())
5250     if (EIT->getNumBits() > 128)
5251       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5252 
5253   if (isAggregateTypeForABI(Ty)) {
5254     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5255       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5256 
5257     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5258     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5259 
5260     // ELFv2 homogeneous aggregates are passed as array types.
5261     const Type *Base = nullptr;
5262     uint64_t Members = 0;
5263     if (Kind == ELFv2 &&
5264         isHomogeneousAggregate(Ty, Base, Members)) {
5265       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5266       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5267       return ABIArgInfo::getDirect(CoerceTy);
5268     }
5269 
5270     // If an aggregate may end up fully in registers, we do not
5271     // use the ByVal method, but pass the aggregate as array.
5272     // This is usually beneficial since we avoid forcing the
5273     // back-end to store the argument to memory.
5274     uint64_t Bits = getContext().getTypeSize(Ty);
5275     if (Bits > 0 && Bits <= 8 * GPRBits) {
5276       llvm::Type *CoerceTy;
5277 
5278       // Types up to 8 bytes are passed as integer type (which will be
5279       // properly aligned in the argument save area doubleword).
5280       if (Bits <= GPRBits)
5281         CoerceTy =
5282             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5283       // Larger types are passed as arrays, with the base type selected
5284       // according to the required alignment in the save area.
5285       else {
5286         uint64_t RegBits = ABIAlign * 8;
5287         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5288         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5289         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5290       }
5291 
5292       return ABIArgInfo::getDirect(CoerceTy);
5293     }
5294 
5295     // All other aggregates are passed ByVal.
5296     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5297                                    /*ByVal=*/true,
5298                                    /*Realign=*/TyAlign > ABIAlign);
5299   }
5300 
5301   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5302                                      : ABIArgInfo::getDirect());
5303 }
5304 
5305 ABIArgInfo
5306 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5307   if (RetTy->isVoidType())
5308     return ABIArgInfo::getIgnore();
5309 
5310   if (RetTy->isAnyComplexType())
5311     return ABIArgInfo::getDirect();
5312 
5313   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5314   // or via reference (larger than 16 bytes).
5315   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
5316     uint64_t Size = getContext().getTypeSize(RetTy);
5317     if (Size > 128)
5318       return getNaturalAlignIndirect(RetTy);
5319     else if (Size < 128) {
5320       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5321       return ABIArgInfo::getDirect(CoerceTy);
5322     }
5323   }
5324 
5325   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5326     if (EIT->getNumBits() > 128)
5327       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5328 
5329   if (isAggregateTypeForABI(RetTy)) {
5330     // ELFv2 homogeneous aggregates are returned as array types.
5331     const Type *Base = nullptr;
5332     uint64_t Members = 0;
5333     if (Kind == ELFv2 &&
5334         isHomogeneousAggregate(RetTy, Base, Members)) {
5335       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5336       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5337       return ABIArgInfo::getDirect(CoerceTy);
5338     }
5339 
5340     // ELFv2 small aggregates are returned in up to two registers.
5341     uint64_t Bits = getContext().getTypeSize(RetTy);
5342     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5343       if (Bits == 0)
5344         return ABIArgInfo::getIgnore();
5345 
5346       llvm::Type *CoerceTy;
5347       if (Bits > GPRBits) {
5348         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5349         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5350       } else
5351         CoerceTy =
5352             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5353       return ABIArgInfo::getDirect(CoerceTy);
5354     }
5355 
5356     // All other aggregates are returned indirectly.
5357     return getNaturalAlignIndirect(RetTy);
5358   }
5359 
5360   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5361                                         : ABIArgInfo::getDirect());
5362 }
5363 
5364 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5365 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5366                                       QualType Ty) const {
5367   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5368   TypeInfo.second = getParamTypeAlignment(Ty);
5369 
5370   CharUnits SlotSize = CharUnits::fromQuantity(8);
5371 
5372   // If we have a complex type and the base type is smaller than 8 bytes,
5373   // the ABI calls for the real and imaginary parts to be right-adjusted
5374   // in separate doublewords.  However, Clang expects us to produce a
5375   // pointer to a structure with the two parts packed tightly.  So generate
5376   // loads of the real and imaginary parts relative to the va_list pointer,
5377   // and store them to a temporary structure.
5378   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5379     CharUnits EltSize = TypeInfo.first / 2;
5380     if (EltSize < SlotSize) {
5381       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5382                                             SlotSize * 2, SlotSize,
5383                                             SlotSize, /*AllowHigher*/ true);
5384 
5385       Address RealAddr = Addr;
5386       Address ImagAddr = RealAddr;
5387       if (CGF.CGM.getDataLayout().isBigEndian()) {
5388         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5389                                                           SlotSize - EltSize);
5390         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5391                                                       2 * SlotSize - EltSize);
5392       } else {
5393         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5394       }
5395 
5396       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5397       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5398       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5399       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5400       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5401 
5402       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5403       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5404                              /*init*/ true);
5405       return Temp;
5406     }
5407   }
5408 
5409   // Otherwise, just use the general rule.
5410   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5411                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5412 }
5413 
5414 bool
5415 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5416   CodeGen::CodeGenFunction &CGF,
5417   llvm::Value *Address) const {
5418   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5419                                      /*IsAIX*/ false);
5420 }
5421 
5422 bool
5423 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5424                                                 llvm::Value *Address) const {
5425   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5426                                      /*IsAIX*/ false);
5427 }
5428 
5429 //===----------------------------------------------------------------------===//
5430 // AArch64 ABI Implementation
5431 //===----------------------------------------------------------------------===//
5432 
5433 namespace {
5434 
5435 class AArch64ABIInfo : public SwiftABIInfo {
5436 public:
5437   enum ABIKind {
5438     AAPCS = 0,
5439     DarwinPCS,
5440     Win64
5441   };
5442 
5443 private:
5444   ABIKind Kind;
5445 
5446 public:
5447   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5448     : SwiftABIInfo(CGT), Kind(Kind) {}
5449 
5450 private:
5451   ABIKind getABIKind() const { return Kind; }
5452   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5453 
5454   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5455   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5456   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5457   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5458   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5459                                          uint64_t Members) const override;
5460 
5461   bool isIllegalVectorType(QualType Ty) const;
5462 
5463   void computeInfo(CGFunctionInfo &FI) const override {
5464     if (!::classifyReturnType(getCXXABI(), FI, *this))
5465       FI.getReturnInfo() =
5466           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5467 
5468     for (auto &it : FI.arguments())
5469       it.info = classifyArgumentType(it.type);
5470   }
5471 
5472   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5473                           CodeGenFunction &CGF) const;
5474 
5475   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5476                          CodeGenFunction &CGF) const;
5477 
5478   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5479                     QualType Ty) const override {
5480     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5481                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5482                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5483   }
5484 
5485   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5486                       QualType Ty) const override;
5487 
5488   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5489                                     bool asReturnValue) const override {
5490     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5491   }
5492   bool isSwiftErrorInRegister() const override {
5493     return true;
5494   }
5495 
5496   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5497                                  unsigned elts) const override;
5498 
5499   bool allowBFloatArgsAndRet() const override {
5500     return getTarget().hasBFloat16Type();
5501   }
5502 };
5503 
5504 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5505 public:
5506   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5507       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5508 
5509   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5510     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5511   }
5512 
5513   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5514     return 31;
5515   }
5516 
5517   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5518 
5519   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5520                            CodeGen::CodeGenModule &CGM) const override {
5521     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5522     if (!FD)
5523       return;
5524 
5525     const auto *TA = FD->getAttr<TargetAttr>();
5526     if (TA == nullptr)
5527       return;
5528 
5529     ParsedTargetAttr Attr = TA->parse();
5530     if (Attr.BranchProtection.empty())
5531       return;
5532 
5533     TargetInfo::BranchProtectionInfo BPI;
5534     StringRef Error;
5535     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5536                                                    BPI, Error);
5537     assert(Error.empty());
5538 
5539     auto *Fn = cast<llvm::Function>(GV);
5540     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5541     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5542 
5543     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5544       Fn->addFnAttr("sign-return-address-key",
5545                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5546                         ? "a_key"
5547                         : "b_key");
5548     }
5549 
5550     Fn->addFnAttr("branch-target-enforcement",
5551                   BPI.BranchTargetEnforcement ? "true" : "false");
5552   }
5553 };
5554 
5555 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5556 public:
5557   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5558       : AArch64TargetCodeGenInfo(CGT, K) {}
5559 
5560   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5561                            CodeGen::CodeGenModule &CGM) const override;
5562 
5563   void getDependentLibraryOption(llvm::StringRef Lib,
5564                                  llvm::SmallString<24> &Opt) const override {
5565     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5566   }
5567 
5568   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5569                                llvm::SmallString<32> &Opt) const override {
5570     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5571   }
5572 };
5573 
5574 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5575     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5576   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5577   if (GV->isDeclaration())
5578     return;
5579   addStackProbeTargetAttributes(D, GV, CGM);
5580 }
5581 }
5582 
5583 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5584   assert(Ty->isVectorType() && "expected vector type!");
5585 
5586   const auto *VT = Ty->castAs<VectorType>();
5587   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5588     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5589     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5590                BuiltinType::UChar &&
5591            "unexpected builtin type for SVE predicate!");
5592     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5593         llvm::Type::getInt1Ty(getVMContext()), 16));
5594   }
5595 
5596   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5597     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5598 
5599     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5600     llvm::ScalableVectorType *ResType = nullptr;
5601     switch (BT->getKind()) {
5602     default:
5603       llvm_unreachable("unexpected builtin type for SVE vector!");
5604     case BuiltinType::SChar:
5605     case BuiltinType::UChar:
5606       ResType = llvm::ScalableVectorType::get(
5607           llvm::Type::getInt8Ty(getVMContext()), 16);
5608       break;
5609     case BuiltinType::Short:
5610     case BuiltinType::UShort:
5611       ResType = llvm::ScalableVectorType::get(
5612           llvm::Type::getInt16Ty(getVMContext()), 8);
5613       break;
5614     case BuiltinType::Int:
5615     case BuiltinType::UInt:
5616       ResType = llvm::ScalableVectorType::get(
5617           llvm::Type::getInt32Ty(getVMContext()), 4);
5618       break;
5619     case BuiltinType::Long:
5620     case BuiltinType::ULong:
5621       ResType = llvm::ScalableVectorType::get(
5622           llvm::Type::getInt64Ty(getVMContext()), 2);
5623       break;
5624     case BuiltinType::Half:
5625       ResType = llvm::ScalableVectorType::get(
5626           llvm::Type::getHalfTy(getVMContext()), 8);
5627       break;
5628     case BuiltinType::Float:
5629       ResType = llvm::ScalableVectorType::get(
5630           llvm::Type::getFloatTy(getVMContext()), 4);
5631       break;
5632     case BuiltinType::Double:
5633       ResType = llvm::ScalableVectorType::get(
5634           llvm::Type::getDoubleTy(getVMContext()), 2);
5635       break;
5636     case BuiltinType::BFloat16:
5637       ResType = llvm::ScalableVectorType::get(
5638           llvm::Type::getBFloatTy(getVMContext()), 8);
5639       break;
5640     }
5641     return ABIArgInfo::getDirect(ResType);
5642   }
5643 
5644   uint64_t Size = getContext().getTypeSize(Ty);
5645   // Android promotes <2 x i8> to i16, not i32
5646   if (isAndroid() && (Size <= 16)) {
5647     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5648     return ABIArgInfo::getDirect(ResType);
5649   }
5650   if (Size <= 32) {
5651     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5652     return ABIArgInfo::getDirect(ResType);
5653   }
5654   if (Size == 64) {
5655     auto *ResType =
5656         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5657     return ABIArgInfo::getDirect(ResType);
5658   }
5659   if (Size == 128) {
5660     auto *ResType =
5661         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5662     return ABIArgInfo::getDirect(ResType);
5663   }
5664   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5665 }
5666 
5667 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5668   Ty = useFirstFieldIfTransparentUnion(Ty);
5669 
5670   // Handle illegal vector types here.
5671   if (isIllegalVectorType(Ty))
5672     return coerceIllegalVector(Ty);
5673 
5674   if (!isAggregateTypeForABI(Ty)) {
5675     // Treat an enum type as its underlying type.
5676     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5677       Ty = EnumTy->getDecl()->getIntegerType();
5678 
5679     if (const auto *EIT = Ty->getAs<ExtIntType>())
5680       if (EIT->getNumBits() > 128)
5681         return getNaturalAlignIndirect(Ty);
5682 
5683     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5684                 ? ABIArgInfo::getExtend(Ty)
5685                 : ABIArgInfo::getDirect());
5686   }
5687 
5688   // Structures with either a non-trivial destructor or a non-trivial
5689   // copy constructor are always indirect.
5690   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5691     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5692                                      CGCXXABI::RAA_DirectInMemory);
5693   }
5694 
5695   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5696   // elsewhere for GNU compatibility.
5697   uint64_t Size = getContext().getTypeSize(Ty);
5698   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5699   if (IsEmpty || Size == 0) {
5700     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5701       return ABIArgInfo::getIgnore();
5702 
5703     // GNU C mode. The only argument that gets ignored is an empty one with size
5704     // 0.
5705     if (IsEmpty && Size == 0)
5706       return ABIArgInfo::getIgnore();
5707     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5708   }
5709 
5710   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5711   const Type *Base = nullptr;
5712   uint64_t Members = 0;
5713   if (isHomogeneousAggregate(Ty, Base, Members)) {
5714     return ABIArgInfo::getDirect(
5715         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5716   }
5717 
5718   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5719   if (Size <= 128) {
5720     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5721     // same size and alignment.
5722     if (getTarget().isRenderScriptTarget()) {
5723       return coerceToIntArray(Ty, getContext(), getVMContext());
5724     }
5725     unsigned Alignment;
5726     if (Kind == AArch64ABIInfo::AAPCS) {
5727       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5728       Alignment = Alignment < 128 ? 64 : 128;
5729     } else {
5730       Alignment = std::max(getContext().getTypeAlign(Ty),
5731                            (unsigned)getTarget().getPointerWidth(0));
5732     }
5733     Size = llvm::alignTo(Size, Alignment);
5734 
5735     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5736     // For aggregates with 16-byte alignment, we use i128.
5737     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5738     return ABIArgInfo::getDirect(
5739         Size == Alignment ? BaseTy
5740                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5741   }
5742 
5743   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5744 }
5745 
5746 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5747                                               bool IsVariadic) const {
5748   if (RetTy->isVoidType())
5749     return ABIArgInfo::getIgnore();
5750 
5751   if (const auto *VT = RetTy->getAs<VectorType>()) {
5752     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5753         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5754       return coerceIllegalVector(RetTy);
5755   }
5756 
5757   // Large vector types should be returned via memory.
5758   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5759     return getNaturalAlignIndirect(RetTy);
5760 
5761   if (!isAggregateTypeForABI(RetTy)) {
5762     // Treat an enum type as its underlying type.
5763     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5764       RetTy = EnumTy->getDecl()->getIntegerType();
5765 
5766     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5767       if (EIT->getNumBits() > 128)
5768         return getNaturalAlignIndirect(RetTy);
5769 
5770     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5771                 ? ABIArgInfo::getExtend(RetTy)
5772                 : ABIArgInfo::getDirect());
5773   }
5774 
5775   uint64_t Size = getContext().getTypeSize(RetTy);
5776   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5777     return ABIArgInfo::getIgnore();
5778 
5779   const Type *Base = nullptr;
5780   uint64_t Members = 0;
5781   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5782       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5783         IsVariadic))
5784     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5785     return ABIArgInfo::getDirect();
5786 
5787   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5788   if (Size <= 128) {
5789     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5790     // same size and alignment.
5791     if (getTarget().isRenderScriptTarget()) {
5792       return coerceToIntArray(RetTy, getContext(), getVMContext());
5793     }
5794     unsigned Alignment = getContext().getTypeAlign(RetTy);
5795     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5796 
5797     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5798     // For aggregates with 16-byte alignment, we use i128.
5799     if (Alignment < 128 && Size == 128) {
5800       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5801       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5802     }
5803     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5804   }
5805 
5806   return getNaturalAlignIndirect(RetTy);
5807 }
5808 
5809 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5810 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5811   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5812     // Check whether VT is a fixed-length SVE vector. These types are
5813     // represented as scalable vectors in function args/return and must be
5814     // coerced from fixed vectors.
5815     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5816         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5817       return true;
5818 
5819     // Check whether VT is legal.
5820     unsigned NumElements = VT->getNumElements();
5821     uint64_t Size = getContext().getTypeSize(VT);
5822     // NumElements should be power of 2.
5823     if (!llvm::isPowerOf2_32(NumElements))
5824       return true;
5825 
5826     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5827     // vectors for some reason.
5828     llvm::Triple Triple = getTarget().getTriple();
5829     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5830         Triple.isOSBinFormatMachO())
5831       return Size <= 32;
5832 
5833     return Size != 64 && (Size != 128 || NumElements == 1);
5834   }
5835   return false;
5836 }
5837 
5838 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5839                                                llvm::Type *eltTy,
5840                                                unsigned elts) const {
5841   if (!llvm::isPowerOf2_32(elts))
5842     return false;
5843   if (totalSize.getQuantity() != 8 &&
5844       (totalSize.getQuantity() != 16 || elts == 1))
5845     return false;
5846   return true;
5847 }
5848 
5849 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5850   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5851   // point type or a short-vector type. This is the same as the 32-bit ABI,
5852   // but with the difference that any floating-point type is allowed,
5853   // including __fp16.
5854   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5855     if (BT->isFloatingPoint())
5856       return true;
5857   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5858     unsigned VecSize = getContext().getTypeSize(VT);
5859     if (VecSize == 64 || VecSize == 128)
5860       return true;
5861   }
5862   return false;
5863 }
5864 
5865 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5866                                                        uint64_t Members) const {
5867   return Members <= 4;
5868 }
5869 
5870 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5871                                             QualType Ty,
5872                                             CodeGenFunction &CGF) const {
5873   ABIArgInfo AI = classifyArgumentType(Ty);
5874   bool IsIndirect = AI.isIndirect();
5875 
5876   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5877   if (IsIndirect)
5878     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5879   else if (AI.getCoerceToType())
5880     BaseTy = AI.getCoerceToType();
5881 
5882   unsigned NumRegs = 1;
5883   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5884     BaseTy = ArrTy->getElementType();
5885     NumRegs = ArrTy->getNumElements();
5886   }
5887   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5888 
5889   // The AArch64 va_list type and handling is specified in the Procedure Call
5890   // Standard, section B.4:
5891   //
5892   // struct {
5893   //   void *__stack;
5894   //   void *__gr_top;
5895   //   void *__vr_top;
5896   //   int __gr_offs;
5897   //   int __vr_offs;
5898   // };
5899 
5900   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5901   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5902   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5903   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5904 
5905   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5906   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5907 
5908   Address reg_offs_p = Address::invalid();
5909   llvm::Value *reg_offs = nullptr;
5910   int reg_top_index;
5911   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5912   if (!IsFPR) {
5913     // 3 is the field number of __gr_offs
5914     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5915     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5916     reg_top_index = 1; // field number for __gr_top
5917     RegSize = llvm::alignTo(RegSize, 8);
5918   } else {
5919     // 4 is the field number of __vr_offs.
5920     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5921     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5922     reg_top_index = 2; // field number for __vr_top
5923     RegSize = 16 * NumRegs;
5924   }
5925 
5926   //=======================================
5927   // Find out where argument was passed
5928   //=======================================
5929 
5930   // If reg_offs >= 0 we're already using the stack for this type of
5931   // argument. We don't want to keep updating reg_offs (in case it overflows,
5932   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5933   // whatever they get).
5934   llvm::Value *UsingStack = nullptr;
5935   UsingStack = CGF.Builder.CreateICmpSGE(
5936       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5937 
5938   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5939 
5940   // Otherwise, at least some kind of argument could go in these registers, the
5941   // question is whether this particular type is too big.
5942   CGF.EmitBlock(MaybeRegBlock);
5943 
5944   // Integer arguments may need to correct register alignment (for example a
5945   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5946   // align __gr_offs to calculate the potential address.
5947   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5948     int Align = TyAlign.getQuantity();
5949 
5950     reg_offs = CGF.Builder.CreateAdd(
5951         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5952         "align_regoffs");
5953     reg_offs = CGF.Builder.CreateAnd(
5954         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5955         "aligned_regoffs");
5956   }
5957 
5958   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5959   // The fact that this is done unconditionally reflects the fact that
5960   // allocating an argument to the stack also uses up all the remaining
5961   // registers of the appropriate kind.
5962   llvm::Value *NewOffset = nullptr;
5963   NewOffset = CGF.Builder.CreateAdd(
5964       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5965   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5966 
5967   // Now we're in a position to decide whether this argument really was in
5968   // registers or not.
5969   llvm::Value *InRegs = nullptr;
5970   InRegs = CGF.Builder.CreateICmpSLE(
5971       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5972 
5973   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5974 
5975   //=======================================
5976   // Argument was in registers
5977   //=======================================
5978 
5979   // Now we emit the code for if the argument was originally passed in
5980   // registers. First start the appropriate block:
5981   CGF.EmitBlock(InRegBlock);
5982 
5983   llvm::Value *reg_top = nullptr;
5984   Address reg_top_p =
5985       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5986   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5987   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5988                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5989   Address RegAddr = Address::invalid();
5990   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5991 
5992   if (IsIndirect) {
5993     // If it's been passed indirectly (actually a struct), whatever we find from
5994     // stored registers or on the stack will actually be a struct **.
5995     MemTy = llvm::PointerType::getUnqual(MemTy);
5996   }
5997 
5998   const Type *Base = nullptr;
5999   uint64_t NumMembers = 0;
6000   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6001   if (IsHFA && NumMembers > 1) {
6002     // Homogeneous aggregates passed in registers will have their elements split
6003     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6004     // qN+1, ...). We reload and store into a temporary local variable
6005     // contiguously.
6006     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6007     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6008     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6009     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6010     Address Tmp = CGF.CreateTempAlloca(HFATy,
6011                                        std::max(TyAlign, BaseTyInfo.second));
6012 
6013     // On big-endian platforms, the value will be right-aligned in its slot.
6014     int Offset = 0;
6015     if (CGF.CGM.getDataLayout().isBigEndian() &&
6016         BaseTyInfo.first.getQuantity() < 16)
6017       Offset = 16 - BaseTyInfo.first.getQuantity();
6018 
6019     for (unsigned i = 0; i < NumMembers; ++i) {
6020       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6021       Address LoadAddr =
6022         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6023       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6024 
6025       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6026 
6027       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6028       CGF.Builder.CreateStore(Elem, StoreAddr);
6029     }
6030 
6031     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6032   } else {
6033     // Otherwise the object is contiguous in memory.
6034 
6035     // It might be right-aligned in its slot.
6036     CharUnits SlotSize = BaseAddr.getAlignment();
6037     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6038         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6039         TySize < SlotSize) {
6040       CharUnits Offset = SlotSize - TySize;
6041       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6042     }
6043 
6044     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6045   }
6046 
6047   CGF.EmitBranch(ContBlock);
6048 
6049   //=======================================
6050   // Argument was on the stack
6051   //=======================================
6052   CGF.EmitBlock(OnStackBlock);
6053 
6054   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6055   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6056 
6057   // Again, stack arguments may need realignment. In this case both integer and
6058   // floating-point ones might be affected.
6059   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6060     int Align = TyAlign.getQuantity();
6061 
6062     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6063 
6064     OnStackPtr = CGF.Builder.CreateAdd(
6065         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6066         "align_stack");
6067     OnStackPtr = CGF.Builder.CreateAnd(
6068         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6069         "align_stack");
6070 
6071     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6072   }
6073   Address OnStackAddr(OnStackPtr,
6074                       std::max(CharUnits::fromQuantity(8), TyAlign));
6075 
6076   // All stack slots are multiples of 8 bytes.
6077   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6078   CharUnits StackSize;
6079   if (IsIndirect)
6080     StackSize = StackSlotSize;
6081   else
6082     StackSize = TySize.alignTo(StackSlotSize);
6083 
6084   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6085   llvm::Value *NewStack =
6086       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
6087 
6088   // Write the new value of __stack for the next call to va_arg
6089   CGF.Builder.CreateStore(NewStack, stack_p);
6090 
6091   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6092       TySize < StackSlotSize) {
6093     CharUnits Offset = StackSlotSize - TySize;
6094     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6095   }
6096 
6097   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6098 
6099   CGF.EmitBranch(ContBlock);
6100 
6101   //=======================================
6102   // Tidy up
6103   //=======================================
6104   CGF.EmitBlock(ContBlock);
6105 
6106   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6107                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6108 
6109   if (IsIndirect)
6110     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6111                    TyAlign);
6112 
6113   return ResAddr;
6114 }
6115 
6116 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6117                                         CodeGenFunction &CGF) const {
6118   // The backend's lowering doesn't support va_arg for aggregates or
6119   // illegal vector types.  Lower VAArg here for these cases and use
6120   // the LLVM va_arg instruction for everything else.
6121   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6122     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6123 
6124   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6125   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6126 
6127   // Empty records are ignored for parameter passing purposes.
6128   if (isEmptyRecord(getContext(), Ty, true)) {
6129     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6130     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6131     return Addr;
6132   }
6133 
6134   // The size of the actual thing passed, which might end up just
6135   // being a pointer for indirect types.
6136   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6137 
6138   // Arguments bigger than 16 bytes which aren't homogeneous
6139   // aggregates should be passed indirectly.
6140   bool IsIndirect = false;
6141   if (TyInfo.first.getQuantity() > 16) {
6142     const Type *Base = nullptr;
6143     uint64_t Members = 0;
6144     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6145   }
6146 
6147   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6148                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6149 }
6150 
6151 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6152                                     QualType Ty) const {
6153   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6154                           CGF.getContext().getTypeInfoInChars(Ty),
6155                           CharUnits::fromQuantity(8),
6156                           /*allowHigherAlign*/ false);
6157 }
6158 
6159 //===----------------------------------------------------------------------===//
6160 // ARM ABI Implementation
6161 //===----------------------------------------------------------------------===//
6162 
6163 namespace {
6164 
6165 class ARMABIInfo : public SwiftABIInfo {
6166 public:
6167   enum ABIKind {
6168     APCS = 0,
6169     AAPCS = 1,
6170     AAPCS_VFP = 2,
6171     AAPCS16_VFP = 3,
6172   };
6173 
6174 private:
6175   ABIKind Kind;
6176   bool IsFloatABISoftFP;
6177 
6178 public:
6179   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6180       : SwiftABIInfo(CGT), Kind(_Kind) {
6181     setCCs();
6182     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6183         CGT.getCodeGenOpts().FloatABI == ""; // default
6184   }
6185 
6186   bool isEABI() const {
6187     switch (getTarget().getTriple().getEnvironment()) {
6188     case llvm::Triple::Android:
6189     case llvm::Triple::EABI:
6190     case llvm::Triple::EABIHF:
6191     case llvm::Triple::GNUEABI:
6192     case llvm::Triple::GNUEABIHF:
6193     case llvm::Triple::MuslEABI:
6194     case llvm::Triple::MuslEABIHF:
6195       return true;
6196     default:
6197       return false;
6198     }
6199   }
6200 
6201   bool isEABIHF() const {
6202     switch (getTarget().getTriple().getEnvironment()) {
6203     case llvm::Triple::EABIHF:
6204     case llvm::Triple::GNUEABIHF:
6205     case llvm::Triple::MuslEABIHF:
6206       return true;
6207     default:
6208       return false;
6209     }
6210   }
6211 
6212   ABIKind getABIKind() const { return Kind; }
6213 
6214   bool allowBFloatArgsAndRet() const override {
6215     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6216   }
6217 
6218 private:
6219   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6220                                 unsigned functionCallConv) const;
6221   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6222                                   unsigned functionCallConv) const;
6223   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6224                                           uint64_t Members) const;
6225   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6226   bool isIllegalVectorType(QualType Ty) const;
6227   bool containsAnyFP16Vectors(QualType Ty) const;
6228 
6229   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6230   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6231                                          uint64_t Members) const override;
6232 
6233   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6234 
6235   void computeInfo(CGFunctionInfo &FI) const override;
6236 
6237   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6238                     QualType Ty) const override;
6239 
6240   llvm::CallingConv::ID getLLVMDefaultCC() const;
6241   llvm::CallingConv::ID getABIDefaultCC() const;
6242   void setCCs();
6243 
6244   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6245                                     bool asReturnValue) const override {
6246     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6247   }
6248   bool isSwiftErrorInRegister() const override {
6249     return true;
6250   }
6251   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6252                                  unsigned elts) const override;
6253 };
6254 
6255 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6256 public:
6257   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6258       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6259 
6260   const ARMABIInfo &getABIInfo() const {
6261     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6262   }
6263 
6264   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6265     return 13;
6266   }
6267 
6268   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6269     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6270   }
6271 
6272   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6273                                llvm::Value *Address) const override {
6274     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6275 
6276     // 0-15 are the 16 integer registers.
6277     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6278     return false;
6279   }
6280 
6281   unsigned getSizeOfUnwindException() const override {
6282     if (getABIInfo().isEABI()) return 88;
6283     return TargetCodeGenInfo::getSizeOfUnwindException();
6284   }
6285 
6286   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6287                            CodeGen::CodeGenModule &CGM) const override {
6288     if (GV->isDeclaration())
6289       return;
6290     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6291     if (!FD)
6292       return;
6293 
6294     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6295     if (!Attr)
6296       return;
6297 
6298     const char *Kind;
6299     switch (Attr->getInterrupt()) {
6300     case ARMInterruptAttr::Generic: Kind = ""; break;
6301     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6302     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6303     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6304     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6305     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6306     }
6307 
6308     llvm::Function *Fn = cast<llvm::Function>(GV);
6309 
6310     Fn->addFnAttr("interrupt", Kind);
6311 
6312     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6313     if (ABI == ARMABIInfo::APCS)
6314       return;
6315 
6316     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6317     // however this is not necessarily true on taking any interrupt. Instruct
6318     // the backend to perform a realignment as part of the function prologue.
6319     llvm::AttrBuilder B;
6320     B.addStackAlignmentAttr(8);
6321     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6322   }
6323 };
6324 
6325 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6326 public:
6327   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6328       : ARMTargetCodeGenInfo(CGT, K) {}
6329 
6330   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6331                            CodeGen::CodeGenModule &CGM) const override;
6332 
6333   void getDependentLibraryOption(llvm::StringRef Lib,
6334                                  llvm::SmallString<24> &Opt) const override {
6335     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6336   }
6337 
6338   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6339                                llvm::SmallString<32> &Opt) const override {
6340     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6341   }
6342 };
6343 
6344 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6345     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6346   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6347   if (GV->isDeclaration())
6348     return;
6349   addStackProbeTargetAttributes(D, GV, CGM);
6350 }
6351 }
6352 
6353 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6354   if (!::classifyReturnType(getCXXABI(), FI, *this))
6355     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6356                                             FI.getCallingConvention());
6357 
6358   for (auto &I : FI.arguments())
6359     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6360                                   FI.getCallingConvention());
6361 
6362 
6363   // Always honor user-specified calling convention.
6364   if (FI.getCallingConvention() != llvm::CallingConv::C)
6365     return;
6366 
6367   llvm::CallingConv::ID cc = getRuntimeCC();
6368   if (cc != llvm::CallingConv::C)
6369     FI.setEffectiveCallingConvention(cc);
6370 }
6371 
6372 /// Return the default calling convention that LLVM will use.
6373 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6374   // The default calling convention that LLVM will infer.
6375   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6376     return llvm::CallingConv::ARM_AAPCS_VFP;
6377   else if (isEABI())
6378     return llvm::CallingConv::ARM_AAPCS;
6379   else
6380     return llvm::CallingConv::ARM_APCS;
6381 }
6382 
6383 /// Return the calling convention that our ABI would like us to use
6384 /// as the C calling convention.
6385 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6386   switch (getABIKind()) {
6387   case APCS: return llvm::CallingConv::ARM_APCS;
6388   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6389   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6390   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6391   }
6392   llvm_unreachable("bad ABI kind");
6393 }
6394 
6395 void ARMABIInfo::setCCs() {
6396   assert(getRuntimeCC() == llvm::CallingConv::C);
6397 
6398   // Don't muddy up the IR with a ton of explicit annotations if
6399   // they'd just match what LLVM will infer from the triple.
6400   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6401   if (abiCC != getLLVMDefaultCC())
6402     RuntimeCC = abiCC;
6403 }
6404 
6405 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6406   uint64_t Size = getContext().getTypeSize(Ty);
6407   if (Size <= 32) {
6408     llvm::Type *ResType =
6409         llvm::Type::getInt32Ty(getVMContext());
6410     return ABIArgInfo::getDirect(ResType);
6411   }
6412   if (Size == 64 || Size == 128) {
6413     auto *ResType = llvm::FixedVectorType::get(
6414         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6415     return ABIArgInfo::getDirect(ResType);
6416   }
6417   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6418 }
6419 
6420 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6421                                                     const Type *Base,
6422                                                     uint64_t Members) const {
6423   assert(Base && "Base class should be set for homogeneous aggregate");
6424   // Base can be a floating-point or a vector.
6425   if (const VectorType *VT = Base->getAs<VectorType>()) {
6426     // FP16 vectors should be converted to integer vectors
6427     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6428       uint64_t Size = getContext().getTypeSize(VT);
6429       auto *NewVecTy = llvm::FixedVectorType::get(
6430           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6431       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6432       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6433     }
6434   }
6435   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6436 }
6437 
6438 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6439                                             unsigned functionCallConv) const {
6440   // 6.1.2.1 The following argument types are VFP CPRCs:
6441   //   A single-precision floating-point type (including promoted
6442   //   half-precision types); A double-precision floating-point type;
6443   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6444   //   with a Base Type of a single- or double-precision floating-point type,
6445   //   64-bit containerized vectors or 128-bit containerized vectors with one
6446   //   to four Elements.
6447   // Variadic functions should always marshal to the base standard.
6448   bool IsAAPCS_VFP =
6449       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6450 
6451   Ty = useFirstFieldIfTransparentUnion(Ty);
6452 
6453   // Handle illegal vector types here.
6454   if (isIllegalVectorType(Ty))
6455     return coerceIllegalVector(Ty);
6456 
6457   if (!isAggregateTypeForABI(Ty)) {
6458     // Treat an enum type as its underlying type.
6459     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6460       Ty = EnumTy->getDecl()->getIntegerType();
6461     }
6462 
6463     if (const auto *EIT = Ty->getAs<ExtIntType>())
6464       if (EIT->getNumBits() > 64)
6465         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6466 
6467     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6468                                               : ABIArgInfo::getDirect());
6469   }
6470 
6471   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6472     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6473   }
6474 
6475   // Ignore empty records.
6476   if (isEmptyRecord(getContext(), Ty, true))
6477     return ABIArgInfo::getIgnore();
6478 
6479   if (IsAAPCS_VFP) {
6480     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6481     // into VFP registers.
6482     const Type *Base = nullptr;
6483     uint64_t Members = 0;
6484     if (isHomogeneousAggregate(Ty, Base, Members))
6485       return classifyHomogeneousAggregate(Ty, Base, Members);
6486   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6487     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6488     // this convention even for a variadic function: the backend will use GPRs
6489     // if needed.
6490     const Type *Base = nullptr;
6491     uint64_t Members = 0;
6492     if (isHomogeneousAggregate(Ty, Base, Members)) {
6493       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6494       llvm::Type *Ty =
6495         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6496       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6497     }
6498   }
6499 
6500   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6501       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6502     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6503     // bigger than 128-bits, they get placed in space allocated by the caller,
6504     // and a pointer is passed.
6505     return ABIArgInfo::getIndirect(
6506         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6507   }
6508 
6509   // Support byval for ARM.
6510   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6511   // most 8-byte. We realign the indirect argument if type alignment is bigger
6512   // than ABI alignment.
6513   uint64_t ABIAlign = 4;
6514   uint64_t TyAlign;
6515   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6516       getABIKind() == ARMABIInfo::AAPCS) {
6517     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6518     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6519   } else {
6520     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6521   }
6522   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6523     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6524     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6525                                    /*ByVal=*/true,
6526                                    /*Realign=*/TyAlign > ABIAlign);
6527   }
6528 
6529   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6530   // same size and alignment.
6531   if (getTarget().isRenderScriptTarget()) {
6532     return coerceToIntArray(Ty, getContext(), getVMContext());
6533   }
6534 
6535   // Otherwise, pass by coercing to a structure of the appropriate size.
6536   llvm::Type* ElemTy;
6537   unsigned SizeRegs;
6538   // FIXME: Try to match the types of the arguments more accurately where
6539   // we can.
6540   if (TyAlign <= 4) {
6541     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6542     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6543   } else {
6544     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6545     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6546   }
6547 
6548   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6549 }
6550 
6551 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6552                               llvm::LLVMContext &VMContext) {
6553   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6554   // is called integer-like if its size is less than or equal to one word, and
6555   // the offset of each of its addressable sub-fields is zero.
6556 
6557   uint64_t Size = Context.getTypeSize(Ty);
6558 
6559   // Check that the type fits in a word.
6560   if (Size > 32)
6561     return false;
6562 
6563   // FIXME: Handle vector types!
6564   if (Ty->isVectorType())
6565     return false;
6566 
6567   // Float types are never treated as "integer like".
6568   if (Ty->isRealFloatingType())
6569     return false;
6570 
6571   // If this is a builtin or pointer type then it is ok.
6572   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6573     return true;
6574 
6575   // Small complex integer types are "integer like".
6576   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6577     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6578 
6579   // Single element and zero sized arrays should be allowed, by the definition
6580   // above, but they are not.
6581 
6582   // Otherwise, it must be a record type.
6583   const RecordType *RT = Ty->getAs<RecordType>();
6584   if (!RT) return false;
6585 
6586   // Ignore records with flexible arrays.
6587   const RecordDecl *RD = RT->getDecl();
6588   if (RD->hasFlexibleArrayMember())
6589     return false;
6590 
6591   // Check that all sub-fields are at offset 0, and are themselves "integer
6592   // like".
6593   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6594 
6595   bool HadField = false;
6596   unsigned idx = 0;
6597   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6598        i != e; ++i, ++idx) {
6599     const FieldDecl *FD = *i;
6600 
6601     // Bit-fields are not addressable, we only need to verify they are "integer
6602     // like". We still have to disallow a subsequent non-bitfield, for example:
6603     //   struct { int : 0; int x }
6604     // is non-integer like according to gcc.
6605     if (FD->isBitField()) {
6606       if (!RD->isUnion())
6607         HadField = true;
6608 
6609       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6610         return false;
6611 
6612       continue;
6613     }
6614 
6615     // Check if this field is at offset 0.
6616     if (Layout.getFieldOffset(idx) != 0)
6617       return false;
6618 
6619     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6620       return false;
6621 
6622     // Only allow at most one field in a structure. This doesn't match the
6623     // wording above, but follows gcc in situations with a field following an
6624     // empty structure.
6625     if (!RD->isUnion()) {
6626       if (HadField)
6627         return false;
6628 
6629       HadField = true;
6630     }
6631   }
6632 
6633   return true;
6634 }
6635 
6636 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6637                                           unsigned functionCallConv) const {
6638 
6639   // Variadic functions should always marshal to the base standard.
6640   bool IsAAPCS_VFP =
6641       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6642 
6643   if (RetTy->isVoidType())
6644     return ABIArgInfo::getIgnore();
6645 
6646   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6647     // Large vector types should be returned via memory.
6648     if (getContext().getTypeSize(RetTy) > 128)
6649       return getNaturalAlignIndirect(RetTy);
6650     // TODO: FP16/BF16 vectors should be converted to integer vectors
6651     // This check is similar  to isIllegalVectorType - refactor?
6652     if ((!getTarget().hasLegalHalfType() &&
6653         (VT->getElementType()->isFloat16Type() ||
6654          VT->getElementType()->isHalfType())) ||
6655         (IsFloatABISoftFP &&
6656          VT->getElementType()->isBFloat16Type()))
6657       return coerceIllegalVector(RetTy);
6658   }
6659 
6660   if (!isAggregateTypeForABI(RetTy)) {
6661     // Treat an enum type as its underlying type.
6662     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6663       RetTy = EnumTy->getDecl()->getIntegerType();
6664 
6665     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6666       if (EIT->getNumBits() > 64)
6667         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6668 
6669     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6670                                                 : ABIArgInfo::getDirect();
6671   }
6672 
6673   // Are we following APCS?
6674   if (getABIKind() == APCS) {
6675     if (isEmptyRecord(getContext(), RetTy, false))
6676       return ABIArgInfo::getIgnore();
6677 
6678     // Complex types are all returned as packed integers.
6679     //
6680     // FIXME: Consider using 2 x vector types if the back end handles them
6681     // correctly.
6682     if (RetTy->isAnyComplexType())
6683       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6684           getVMContext(), getContext().getTypeSize(RetTy)));
6685 
6686     // Integer like structures are returned in r0.
6687     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6688       // Return in the smallest viable integer type.
6689       uint64_t Size = getContext().getTypeSize(RetTy);
6690       if (Size <= 8)
6691         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6692       if (Size <= 16)
6693         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6694       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6695     }
6696 
6697     // Otherwise return in memory.
6698     return getNaturalAlignIndirect(RetTy);
6699   }
6700 
6701   // Otherwise this is an AAPCS variant.
6702 
6703   if (isEmptyRecord(getContext(), RetTy, true))
6704     return ABIArgInfo::getIgnore();
6705 
6706   // Check for homogeneous aggregates with AAPCS-VFP.
6707   if (IsAAPCS_VFP) {
6708     const Type *Base = nullptr;
6709     uint64_t Members = 0;
6710     if (isHomogeneousAggregate(RetTy, Base, Members))
6711       return classifyHomogeneousAggregate(RetTy, Base, Members);
6712   }
6713 
6714   // Aggregates <= 4 bytes are returned in r0; other aggregates
6715   // are returned indirectly.
6716   uint64_t Size = getContext().getTypeSize(RetTy);
6717   if (Size <= 32) {
6718     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6719     // same size and alignment.
6720     if (getTarget().isRenderScriptTarget()) {
6721       return coerceToIntArray(RetTy, getContext(), getVMContext());
6722     }
6723     if (getDataLayout().isBigEndian())
6724       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6725       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6726 
6727     // Return in the smallest viable integer type.
6728     if (Size <= 8)
6729       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6730     if (Size <= 16)
6731       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6732     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6733   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6734     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6735     llvm::Type *CoerceTy =
6736         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6737     return ABIArgInfo::getDirect(CoerceTy);
6738   }
6739 
6740   return getNaturalAlignIndirect(RetTy);
6741 }
6742 
6743 /// isIllegalVector - check whether Ty is an illegal vector type.
6744 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6745   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6746     // On targets that don't support half, fp16 or bfloat, they are expanded
6747     // into float, and we don't want the ABI to depend on whether or not they
6748     // are supported in hardware. Thus return false to coerce vectors of these
6749     // types into integer vectors.
6750     // We do not depend on hasLegalHalfType for bfloat as it is a
6751     // separate IR type.
6752     if ((!getTarget().hasLegalHalfType() &&
6753         (VT->getElementType()->isFloat16Type() ||
6754          VT->getElementType()->isHalfType())) ||
6755         (IsFloatABISoftFP &&
6756          VT->getElementType()->isBFloat16Type()))
6757       return true;
6758     if (isAndroid()) {
6759       // Android shipped using Clang 3.1, which supported a slightly different
6760       // vector ABI. The primary differences were that 3-element vector types
6761       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6762       // accepts that legacy behavior for Android only.
6763       // Check whether VT is legal.
6764       unsigned NumElements = VT->getNumElements();
6765       // NumElements should be power of 2 or equal to 3.
6766       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6767         return true;
6768     } else {
6769       // Check whether VT is legal.
6770       unsigned NumElements = VT->getNumElements();
6771       uint64_t Size = getContext().getTypeSize(VT);
6772       // NumElements should be power of 2.
6773       if (!llvm::isPowerOf2_32(NumElements))
6774         return true;
6775       // Size should be greater than 32 bits.
6776       return Size <= 32;
6777     }
6778   }
6779   return false;
6780 }
6781 
6782 /// Return true if a type contains any 16-bit floating point vectors
6783 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6784   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6785     uint64_t NElements = AT->getSize().getZExtValue();
6786     if (NElements == 0)
6787       return false;
6788     return containsAnyFP16Vectors(AT->getElementType());
6789   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6790     const RecordDecl *RD = RT->getDecl();
6791 
6792     // If this is a C++ record, check the bases first.
6793     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6794       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6795             return containsAnyFP16Vectors(B.getType());
6796           }))
6797         return true;
6798 
6799     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6800           return FD && containsAnyFP16Vectors(FD->getType());
6801         }))
6802       return true;
6803 
6804     return false;
6805   } else {
6806     if (const VectorType *VT = Ty->getAs<VectorType>())
6807       return (VT->getElementType()->isFloat16Type() ||
6808               VT->getElementType()->isBFloat16Type() ||
6809               VT->getElementType()->isHalfType());
6810     return false;
6811   }
6812 }
6813 
6814 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6815                                            llvm::Type *eltTy,
6816                                            unsigned numElts) const {
6817   if (!llvm::isPowerOf2_32(numElts))
6818     return false;
6819   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6820   if (size > 64)
6821     return false;
6822   if (vectorSize.getQuantity() != 8 &&
6823       (vectorSize.getQuantity() != 16 || numElts == 1))
6824     return false;
6825   return true;
6826 }
6827 
6828 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6829   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6830   // double, or 64-bit or 128-bit vectors.
6831   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6832     if (BT->getKind() == BuiltinType::Float ||
6833         BT->getKind() == BuiltinType::Double ||
6834         BT->getKind() == BuiltinType::LongDouble)
6835       return true;
6836   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6837     unsigned VecSize = getContext().getTypeSize(VT);
6838     if (VecSize == 64 || VecSize == 128)
6839       return true;
6840   }
6841   return false;
6842 }
6843 
6844 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6845                                                    uint64_t Members) const {
6846   return Members <= 4;
6847 }
6848 
6849 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6850                                         bool acceptHalf) const {
6851   // Give precedence to user-specified calling conventions.
6852   if (callConvention != llvm::CallingConv::C)
6853     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6854   else
6855     return (getABIKind() == AAPCS_VFP) ||
6856            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6857 }
6858 
6859 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6860                               QualType Ty) const {
6861   CharUnits SlotSize = CharUnits::fromQuantity(4);
6862 
6863   // Empty records are ignored for parameter passing purposes.
6864   if (isEmptyRecord(getContext(), Ty, true)) {
6865     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6866     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6867     return Addr;
6868   }
6869 
6870   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6871   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6872 
6873   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6874   bool IsIndirect = false;
6875   const Type *Base = nullptr;
6876   uint64_t Members = 0;
6877   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6878     IsIndirect = true;
6879 
6880   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6881   // allocated by the caller.
6882   } else if (TySize > CharUnits::fromQuantity(16) &&
6883              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6884              !isHomogeneousAggregate(Ty, Base, Members)) {
6885     IsIndirect = true;
6886 
6887   // Otherwise, bound the type's ABI alignment.
6888   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6889   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6890   // Our callers should be prepared to handle an under-aligned address.
6891   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6892              getABIKind() == ARMABIInfo::AAPCS) {
6893     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6894     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6895   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6896     // ARMv7k allows type alignment up to 16 bytes.
6897     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6898     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6899   } else {
6900     TyAlignForABI = CharUnits::fromQuantity(4);
6901   }
6902 
6903   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6904   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6905                           SlotSize, /*AllowHigherAlign*/ true);
6906 }
6907 
6908 //===----------------------------------------------------------------------===//
6909 // NVPTX ABI Implementation
6910 //===----------------------------------------------------------------------===//
6911 
6912 namespace {
6913 
6914 class NVPTXTargetCodeGenInfo;
6915 
6916 class NVPTXABIInfo : public ABIInfo {
6917   NVPTXTargetCodeGenInfo &CGInfo;
6918 
6919 public:
6920   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6921       : ABIInfo(CGT), CGInfo(Info) {}
6922 
6923   ABIArgInfo classifyReturnType(QualType RetTy) const;
6924   ABIArgInfo classifyArgumentType(QualType Ty) const;
6925 
6926   void computeInfo(CGFunctionInfo &FI) const override;
6927   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6928                     QualType Ty) const override;
6929   bool isUnsupportedType(QualType T) const;
6930   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6931 };
6932 
6933 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6934 public:
6935   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6936       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6937 
6938   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6939                            CodeGen::CodeGenModule &M) const override;
6940   bool shouldEmitStaticExternCAliases() const override;
6941 
6942   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6943     // On the device side, surface reference is represented as an object handle
6944     // in 64-bit integer.
6945     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6946   }
6947 
6948   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6949     // On the device side, texture reference is represented as an object handle
6950     // in 64-bit integer.
6951     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6952   }
6953 
6954   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6955                                               LValue Src) const override {
6956     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6957     return true;
6958   }
6959 
6960   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6961                                               LValue Src) const override {
6962     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6963     return true;
6964   }
6965 
6966 private:
6967   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6968   // resulting MDNode to the nvvm.annotations MDNode.
6969   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6970                               int Operand);
6971 
6972   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6973                                            LValue Src) {
6974     llvm::Value *Handle = nullptr;
6975     llvm::Constant *C =
6976         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6977     // Lookup `addrspacecast` through the constant pointer if any.
6978     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6979       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6980     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6981       // Load the handle from the specific global variable using
6982       // `nvvm.texsurf.handle.internal` intrinsic.
6983       Handle = CGF.EmitRuntimeCall(
6984           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6985                                {GV->getType()}),
6986           {GV}, "texsurf_handle");
6987     } else
6988       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6989     CGF.EmitStoreOfScalar(Handle, Dst);
6990   }
6991 };
6992 
6993 /// Checks if the type is unsupported directly by the current target.
6994 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
6995   ASTContext &Context = getContext();
6996   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6997     return true;
6998   if (!Context.getTargetInfo().hasFloat128Type() &&
6999       (T->isFloat128Type() ||
7000        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7001     return true;
7002   if (const auto *EIT = T->getAs<ExtIntType>())
7003     return EIT->getNumBits() >
7004            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7005   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7006       Context.getTypeSize(T) > 64U)
7007     return true;
7008   if (const auto *AT = T->getAsArrayTypeUnsafe())
7009     return isUnsupportedType(AT->getElementType());
7010   const auto *RT = T->getAs<RecordType>();
7011   if (!RT)
7012     return false;
7013   const RecordDecl *RD = RT->getDecl();
7014 
7015   // If this is a C++ record, check the bases first.
7016   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7017     for (const CXXBaseSpecifier &I : CXXRD->bases())
7018       if (isUnsupportedType(I.getType()))
7019         return true;
7020 
7021   for (const FieldDecl *I : RD->fields())
7022     if (isUnsupportedType(I->getType()))
7023       return true;
7024   return false;
7025 }
7026 
7027 /// Coerce the given type into an array with maximum allowed size of elements.
7028 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7029                                                    unsigned MaxSize) const {
7030   // Alignment and Size are measured in bits.
7031   const uint64_t Size = getContext().getTypeSize(Ty);
7032   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7033   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7034   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7035   const uint64_t NumElements = (Size + Div - 1) / Div;
7036   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7037 }
7038 
7039 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7040   if (RetTy->isVoidType())
7041     return ABIArgInfo::getIgnore();
7042 
7043   if (getContext().getLangOpts().OpenMP &&
7044       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7045     return coerceToIntArrayWithLimit(RetTy, 64);
7046 
7047   // note: this is different from default ABI
7048   if (!RetTy->isScalarType())
7049     return ABIArgInfo::getDirect();
7050 
7051   // Treat an enum type as its underlying type.
7052   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7053     RetTy = EnumTy->getDecl()->getIntegerType();
7054 
7055   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7056                                                : ABIArgInfo::getDirect());
7057 }
7058 
7059 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7060   // Treat an enum type as its underlying type.
7061   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7062     Ty = EnumTy->getDecl()->getIntegerType();
7063 
7064   // Return aggregates type as indirect by value
7065   if (isAggregateTypeForABI(Ty)) {
7066     // Under CUDA device compilation, tex/surf builtin types are replaced with
7067     // object types and passed directly.
7068     if (getContext().getLangOpts().CUDAIsDevice) {
7069       if (Ty->isCUDADeviceBuiltinSurfaceType())
7070         return ABIArgInfo::getDirect(
7071             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7072       if (Ty->isCUDADeviceBuiltinTextureType())
7073         return ABIArgInfo::getDirect(
7074             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7075     }
7076     return getNaturalAlignIndirect(Ty, /* byval */ true);
7077   }
7078 
7079   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7080     if ((EIT->getNumBits() > 128) ||
7081         (!getContext().getTargetInfo().hasInt128Type() &&
7082          EIT->getNumBits() > 64))
7083       return getNaturalAlignIndirect(Ty, /* byval */ true);
7084   }
7085 
7086   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7087                                             : ABIArgInfo::getDirect());
7088 }
7089 
7090 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7091   if (!getCXXABI().classifyReturnType(FI))
7092     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7093   for (auto &I : FI.arguments())
7094     I.info = classifyArgumentType(I.type);
7095 
7096   // Always honor user-specified calling convention.
7097   if (FI.getCallingConvention() != llvm::CallingConv::C)
7098     return;
7099 
7100   FI.setEffectiveCallingConvention(getRuntimeCC());
7101 }
7102 
7103 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7104                                 QualType Ty) const {
7105   llvm_unreachable("NVPTX does not support varargs");
7106 }
7107 
7108 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7109     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7110   if (GV->isDeclaration())
7111     return;
7112   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7113   if (VD) {
7114     if (M.getLangOpts().CUDA) {
7115       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7116         addNVVMMetadata(GV, "surface", 1);
7117       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7118         addNVVMMetadata(GV, "texture", 1);
7119       return;
7120     }
7121   }
7122 
7123   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7124   if (!FD) return;
7125 
7126   llvm::Function *F = cast<llvm::Function>(GV);
7127 
7128   // Perform special handling in OpenCL mode
7129   if (M.getLangOpts().OpenCL) {
7130     // Use OpenCL function attributes to check for kernel functions
7131     // By default, all functions are device functions
7132     if (FD->hasAttr<OpenCLKernelAttr>()) {
7133       // OpenCL __kernel functions get kernel metadata
7134       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7135       addNVVMMetadata(F, "kernel", 1);
7136       // And kernel functions are not subject to inlining
7137       F->addFnAttr(llvm::Attribute::NoInline);
7138     }
7139   }
7140 
7141   // Perform special handling in CUDA mode.
7142   if (M.getLangOpts().CUDA) {
7143     // CUDA __global__ functions get a kernel metadata entry.  Since
7144     // __global__ functions cannot be called from the device, we do not
7145     // need to set the noinline attribute.
7146     if (FD->hasAttr<CUDAGlobalAttr>()) {
7147       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7148       addNVVMMetadata(F, "kernel", 1);
7149     }
7150     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7151       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7152       llvm::APSInt MaxThreads(32);
7153       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7154       if (MaxThreads > 0)
7155         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7156 
7157       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7158       // not specified in __launch_bounds__ or if the user specified a 0 value,
7159       // we don't have to add a PTX directive.
7160       if (Attr->getMinBlocks()) {
7161         llvm::APSInt MinBlocks(32);
7162         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7163         if (MinBlocks > 0)
7164           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7165           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7166       }
7167     }
7168   }
7169 }
7170 
7171 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7172                                              StringRef Name, int Operand) {
7173   llvm::Module *M = GV->getParent();
7174   llvm::LLVMContext &Ctx = M->getContext();
7175 
7176   // Get "nvvm.annotations" metadata node
7177   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7178 
7179   llvm::Metadata *MDVals[] = {
7180       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7181       llvm::ConstantAsMetadata::get(
7182           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7183   // Append metadata to nvvm.annotations
7184   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7185 }
7186 
7187 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7188   return false;
7189 }
7190 }
7191 
7192 //===----------------------------------------------------------------------===//
7193 // SystemZ ABI Implementation
7194 //===----------------------------------------------------------------------===//
7195 
7196 namespace {
7197 
7198 class SystemZABIInfo : public SwiftABIInfo {
7199   bool HasVector;
7200   bool IsSoftFloatABI;
7201 
7202 public:
7203   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7204     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7205 
7206   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7207   bool isCompoundType(QualType Ty) const;
7208   bool isVectorArgumentType(QualType Ty) const;
7209   bool isFPArgumentType(QualType Ty) const;
7210   QualType GetSingleElementType(QualType Ty) const;
7211 
7212   ABIArgInfo classifyReturnType(QualType RetTy) const;
7213   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7214 
7215   void computeInfo(CGFunctionInfo &FI) const override {
7216     if (!getCXXABI().classifyReturnType(FI))
7217       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7218     for (auto &I : FI.arguments())
7219       I.info = classifyArgumentType(I.type);
7220   }
7221 
7222   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7223                     QualType Ty) const override;
7224 
7225   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7226                                     bool asReturnValue) const override {
7227     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7228   }
7229   bool isSwiftErrorInRegister() const override {
7230     return false;
7231   }
7232 };
7233 
7234 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7235 public:
7236   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7237       : TargetCodeGenInfo(
7238             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7239 };
7240 
7241 }
7242 
7243 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7244   // Treat an enum type as its underlying type.
7245   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7246     Ty = EnumTy->getDecl()->getIntegerType();
7247 
7248   // Promotable integer types are required to be promoted by the ABI.
7249   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7250     return true;
7251 
7252   if (const auto *EIT = Ty->getAs<ExtIntType>())
7253     if (EIT->getNumBits() < 64)
7254       return true;
7255 
7256   // 32-bit values must also be promoted.
7257   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7258     switch (BT->getKind()) {
7259     case BuiltinType::Int:
7260     case BuiltinType::UInt:
7261       return true;
7262     default:
7263       return false;
7264     }
7265   return false;
7266 }
7267 
7268 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7269   return (Ty->isAnyComplexType() ||
7270           Ty->isVectorType() ||
7271           isAggregateTypeForABI(Ty));
7272 }
7273 
7274 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7275   return (HasVector &&
7276           Ty->isVectorType() &&
7277           getContext().getTypeSize(Ty) <= 128);
7278 }
7279 
7280 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7281   if (IsSoftFloatABI)
7282     return false;
7283 
7284   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7285     switch (BT->getKind()) {
7286     case BuiltinType::Float:
7287     case BuiltinType::Double:
7288       return true;
7289     default:
7290       return false;
7291     }
7292 
7293   return false;
7294 }
7295 
7296 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7297   const RecordType *RT = Ty->getAs<RecordType>();
7298 
7299   if (RT && RT->isStructureOrClassType()) {
7300     const RecordDecl *RD = RT->getDecl();
7301     QualType Found;
7302 
7303     // If this is a C++ record, check the bases first.
7304     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7305       for (const auto &I : CXXRD->bases()) {
7306         QualType Base = I.getType();
7307 
7308         // Empty bases don't affect things either way.
7309         if (isEmptyRecord(getContext(), Base, true))
7310           continue;
7311 
7312         if (!Found.isNull())
7313           return Ty;
7314         Found = GetSingleElementType(Base);
7315       }
7316 
7317     // Check the fields.
7318     for (const auto *FD : RD->fields()) {
7319       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7320       // Unlike isSingleElementStruct(), empty structure and array fields
7321       // do count.  So do anonymous bitfields that aren't zero-sized.
7322       if (getContext().getLangOpts().CPlusPlus &&
7323           FD->isZeroLengthBitField(getContext()))
7324         continue;
7325       // Like isSingleElementStruct(), ignore C++20 empty data members.
7326       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7327           isEmptyRecord(getContext(), FD->getType(), true))
7328         continue;
7329 
7330       // Unlike isSingleElementStruct(), arrays do not count.
7331       // Nested structures still do though.
7332       if (!Found.isNull())
7333         return Ty;
7334       Found = GetSingleElementType(FD->getType());
7335     }
7336 
7337     // Unlike isSingleElementStruct(), trailing padding is allowed.
7338     // An 8-byte aligned struct s { float f; } is passed as a double.
7339     if (!Found.isNull())
7340       return Found;
7341   }
7342 
7343   return Ty;
7344 }
7345 
7346 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7347                                   QualType Ty) const {
7348   // Assume that va_list type is correct; should be pointer to LLVM type:
7349   // struct {
7350   //   i64 __gpr;
7351   //   i64 __fpr;
7352   //   i8 *__overflow_arg_area;
7353   //   i8 *__reg_save_area;
7354   // };
7355 
7356   // Every non-vector argument occupies 8 bytes and is passed by preference
7357   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7358   // always passed on the stack.
7359   Ty = getContext().getCanonicalType(Ty);
7360   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7361   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7362   llvm::Type *DirectTy = ArgTy;
7363   ABIArgInfo AI = classifyArgumentType(Ty);
7364   bool IsIndirect = AI.isIndirect();
7365   bool InFPRs = false;
7366   bool IsVector = false;
7367   CharUnits UnpaddedSize;
7368   CharUnits DirectAlign;
7369   if (IsIndirect) {
7370     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7371     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7372   } else {
7373     if (AI.getCoerceToType())
7374       ArgTy = AI.getCoerceToType();
7375     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7376     IsVector = ArgTy->isVectorTy();
7377     UnpaddedSize = TyInfo.first;
7378     DirectAlign = TyInfo.second;
7379   }
7380   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7381   if (IsVector && UnpaddedSize > PaddedSize)
7382     PaddedSize = CharUnits::fromQuantity(16);
7383   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7384 
7385   CharUnits Padding = (PaddedSize - UnpaddedSize);
7386 
7387   llvm::Type *IndexTy = CGF.Int64Ty;
7388   llvm::Value *PaddedSizeV =
7389     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7390 
7391   if (IsVector) {
7392     // Work out the address of a vector argument on the stack.
7393     // Vector arguments are always passed in the high bits of a
7394     // single (8 byte) or double (16 byte) stack slot.
7395     Address OverflowArgAreaPtr =
7396         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7397     Address OverflowArgArea =
7398       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7399               TyInfo.second);
7400     Address MemAddr =
7401       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7402 
7403     // Update overflow_arg_area_ptr pointer
7404     llvm::Value *NewOverflowArgArea =
7405       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7406                             "overflow_arg_area");
7407     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7408 
7409     return MemAddr;
7410   }
7411 
7412   assert(PaddedSize.getQuantity() == 8);
7413 
7414   unsigned MaxRegs, RegCountField, RegSaveIndex;
7415   CharUnits RegPadding;
7416   if (InFPRs) {
7417     MaxRegs = 4; // Maximum of 4 FPR arguments
7418     RegCountField = 1; // __fpr
7419     RegSaveIndex = 16; // save offset for f0
7420     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7421   } else {
7422     MaxRegs = 5; // Maximum of 5 GPR arguments
7423     RegCountField = 0; // __gpr
7424     RegSaveIndex = 2; // save offset for r2
7425     RegPadding = Padding; // values are passed in the low bits of a GPR
7426   }
7427 
7428   Address RegCountPtr =
7429       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7430   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7431   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7432   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7433                                                  "fits_in_regs");
7434 
7435   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7436   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7437   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7438   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7439 
7440   // Emit code to load the value if it was passed in registers.
7441   CGF.EmitBlock(InRegBlock);
7442 
7443   // Work out the address of an argument register.
7444   llvm::Value *ScaledRegCount =
7445     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7446   llvm::Value *RegBase =
7447     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7448                                       + RegPadding.getQuantity());
7449   llvm::Value *RegOffset =
7450     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7451   Address RegSaveAreaPtr =
7452       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7453   llvm::Value *RegSaveArea =
7454     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7455   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7456                                            "raw_reg_addr"),
7457                      PaddedSize);
7458   Address RegAddr =
7459     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7460 
7461   // Update the register count
7462   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7463   llvm::Value *NewRegCount =
7464     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7465   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7466   CGF.EmitBranch(ContBlock);
7467 
7468   // Emit code to load the value if it was passed in memory.
7469   CGF.EmitBlock(InMemBlock);
7470 
7471   // Work out the address of a stack argument.
7472   Address OverflowArgAreaPtr =
7473       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7474   Address OverflowArgArea =
7475     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7476             PaddedSize);
7477   Address RawMemAddr =
7478     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7479   Address MemAddr =
7480     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7481 
7482   // Update overflow_arg_area_ptr pointer
7483   llvm::Value *NewOverflowArgArea =
7484     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7485                           "overflow_arg_area");
7486   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7487   CGF.EmitBranch(ContBlock);
7488 
7489   // Return the appropriate result.
7490   CGF.EmitBlock(ContBlock);
7491   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7492                                  MemAddr, InMemBlock, "va_arg.addr");
7493 
7494   if (IsIndirect)
7495     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7496                       TyInfo.second);
7497 
7498   return ResAddr;
7499 }
7500 
7501 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7502   if (RetTy->isVoidType())
7503     return ABIArgInfo::getIgnore();
7504   if (isVectorArgumentType(RetTy))
7505     return ABIArgInfo::getDirect();
7506   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7507     return getNaturalAlignIndirect(RetTy);
7508   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7509                                                : ABIArgInfo::getDirect());
7510 }
7511 
7512 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7513   // Handle the generic C++ ABI.
7514   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7515     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7516 
7517   // Integers and enums are extended to full register width.
7518   if (isPromotableIntegerTypeForABI(Ty))
7519     return ABIArgInfo::getExtend(Ty);
7520 
7521   // Handle vector types and vector-like structure types.  Note that
7522   // as opposed to float-like structure types, we do not allow any
7523   // padding for vector-like structures, so verify the sizes match.
7524   uint64_t Size = getContext().getTypeSize(Ty);
7525   QualType SingleElementTy = GetSingleElementType(Ty);
7526   if (isVectorArgumentType(SingleElementTy) &&
7527       getContext().getTypeSize(SingleElementTy) == Size)
7528     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7529 
7530   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7531   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7532     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7533 
7534   // Handle small structures.
7535   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7536     // Structures with flexible arrays have variable length, so really
7537     // fail the size test above.
7538     const RecordDecl *RD = RT->getDecl();
7539     if (RD->hasFlexibleArrayMember())
7540       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7541 
7542     // The structure is passed as an unextended integer, a float, or a double.
7543     llvm::Type *PassTy;
7544     if (isFPArgumentType(SingleElementTy)) {
7545       assert(Size == 32 || Size == 64);
7546       if (Size == 32)
7547         PassTy = llvm::Type::getFloatTy(getVMContext());
7548       else
7549         PassTy = llvm::Type::getDoubleTy(getVMContext());
7550     } else
7551       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7552     return ABIArgInfo::getDirect(PassTy);
7553   }
7554 
7555   // Non-structure compounds are passed indirectly.
7556   if (isCompoundType(Ty))
7557     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7558 
7559   return ABIArgInfo::getDirect(nullptr);
7560 }
7561 
7562 //===----------------------------------------------------------------------===//
7563 // MSP430 ABI Implementation
7564 //===----------------------------------------------------------------------===//
7565 
7566 namespace {
7567 
7568 class MSP430ABIInfo : public DefaultABIInfo {
7569   static ABIArgInfo complexArgInfo() {
7570     ABIArgInfo Info = ABIArgInfo::getDirect();
7571     Info.setCanBeFlattened(false);
7572     return Info;
7573   }
7574 
7575 public:
7576   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7577 
7578   ABIArgInfo classifyReturnType(QualType RetTy) const {
7579     if (RetTy->isAnyComplexType())
7580       return complexArgInfo();
7581 
7582     return DefaultABIInfo::classifyReturnType(RetTy);
7583   }
7584 
7585   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7586     if (RetTy->isAnyComplexType())
7587       return complexArgInfo();
7588 
7589     return DefaultABIInfo::classifyArgumentType(RetTy);
7590   }
7591 
7592   // Just copy the original implementations because
7593   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7594   void computeInfo(CGFunctionInfo &FI) const override {
7595     if (!getCXXABI().classifyReturnType(FI))
7596       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7597     for (auto &I : FI.arguments())
7598       I.info = classifyArgumentType(I.type);
7599   }
7600 
7601   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7602                     QualType Ty) const override {
7603     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7604   }
7605 };
7606 
7607 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7608 public:
7609   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7610       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7611   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7612                            CodeGen::CodeGenModule &M) const override;
7613 };
7614 
7615 }
7616 
7617 void MSP430TargetCodeGenInfo::setTargetAttributes(
7618     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7619   if (GV->isDeclaration())
7620     return;
7621   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7622     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7623     if (!InterruptAttr)
7624       return;
7625 
7626     // Handle 'interrupt' attribute:
7627     llvm::Function *F = cast<llvm::Function>(GV);
7628 
7629     // Step 1: Set ISR calling convention.
7630     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7631 
7632     // Step 2: Add attributes goodness.
7633     F->addFnAttr(llvm::Attribute::NoInline);
7634     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7635   }
7636 }
7637 
7638 //===----------------------------------------------------------------------===//
7639 // MIPS ABI Implementation.  This works for both little-endian and
7640 // big-endian variants.
7641 //===----------------------------------------------------------------------===//
7642 
7643 namespace {
7644 class MipsABIInfo : public ABIInfo {
7645   bool IsO32;
7646   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7647   void CoerceToIntArgs(uint64_t TySize,
7648                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7649   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7650   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7651   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7652 public:
7653   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7654     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7655     StackAlignInBytes(IsO32 ? 8 : 16) {}
7656 
7657   ABIArgInfo classifyReturnType(QualType RetTy) const;
7658   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7659   void computeInfo(CGFunctionInfo &FI) const override;
7660   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7661                     QualType Ty) const override;
7662   ABIArgInfo extendType(QualType Ty) const;
7663 };
7664 
7665 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7666   unsigned SizeOfUnwindException;
7667 public:
7668   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7669       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7670         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7671 
7672   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7673     return 29;
7674   }
7675 
7676   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7677                            CodeGen::CodeGenModule &CGM) const override {
7678     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7679     if (!FD) return;
7680     llvm::Function *Fn = cast<llvm::Function>(GV);
7681 
7682     if (FD->hasAttr<MipsLongCallAttr>())
7683       Fn->addFnAttr("long-call");
7684     else if (FD->hasAttr<MipsShortCallAttr>())
7685       Fn->addFnAttr("short-call");
7686 
7687     // Other attributes do not have a meaning for declarations.
7688     if (GV->isDeclaration())
7689       return;
7690 
7691     if (FD->hasAttr<Mips16Attr>()) {
7692       Fn->addFnAttr("mips16");
7693     }
7694     else if (FD->hasAttr<NoMips16Attr>()) {
7695       Fn->addFnAttr("nomips16");
7696     }
7697 
7698     if (FD->hasAttr<MicroMipsAttr>())
7699       Fn->addFnAttr("micromips");
7700     else if (FD->hasAttr<NoMicroMipsAttr>())
7701       Fn->addFnAttr("nomicromips");
7702 
7703     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7704     if (!Attr)
7705       return;
7706 
7707     const char *Kind;
7708     switch (Attr->getInterrupt()) {
7709     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7710     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7711     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7712     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7713     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7714     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7715     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7716     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7717     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7718     }
7719 
7720     Fn->addFnAttr("interrupt", Kind);
7721 
7722   }
7723 
7724   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7725                                llvm::Value *Address) const override;
7726 
7727   unsigned getSizeOfUnwindException() const override {
7728     return SizeOfUnwindException;
7729   }
7730 };
7731 }
7732 
7733 void MipsABIInfo::CoerceToIntArgs(
7734     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7735   llvm::IntegerType *IntTy =
7736     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7737 
7738   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7739   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7740     ArgList.push_back(IntTy);
7741 
7742   // If necessary, add one more integer type to ArgList.
7743   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7744 
7745   if (R)
7746     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7747 }
7748 
7749 // In N32/64, an aligned double precision floating point field is passed in
7750 // a register.
7751 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7752   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7753 
7754   if (IsO32) {
7755     CoerceToIntArgs(TySize, ArgList);
7756     return llvm::StructType::get(getVMContext(), ArgList);
7757   }
7758 
7759   if (Ty->isComplexType())
7760     return CGT.ConvertType(Ty);
7761 
7762   const RecordType *RT = Ty->getAs<RecordType>();
7763 
7764   // Unions/vectors are passed in integer registers.
7765   if (!RT || !RT->isStructureOrClassType()) {
7766     CoerceToIntArgs(TySize, ArgList);
7767     return llvm::StructType::get(getVMContext(), ArgList);
7768   }
7769 
7770   const RecordDecl *RD = RT->getDecl();
7771   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7772   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7773 
7774   uint64_t LastOffset = 0;
7775   unsigned idx = 0;
7776   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7777 
7778   // Iterate over fields in the struct/class and check if there are any aligned
7779   // double fields.
7780   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7781        i != e; ++i, ++idx) {
7782     const QualType Ty = i->getType();
7783     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7784 
7785     if (!BT || BT->getKind() != BuiltinType::Double)
7786       continue;
7787 
7788     uint64_t Offset = Layout.getFieldOffset(idx);
7789     if (Offset % 64) // Ignore doubles that are not aligned.
7790       continue;
7791 
7792     // Add ((Offset - LastOffset) / 64) args of type i64.
7793     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7794       ArgList.push_back(I64);
7795 
7796     // Add double type.
7797     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7798     LastOffset = Offset + 64;
7799   }
7800 
7801   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7802   ArgList.append(IntArgList.begin(), IntArgList.end());
7803 
7804   return llvm::StructType::get(getVMContext(), ArgList);
7805 }
7806 
7807 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7808                                         uint64_t Offset) const {
7809   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7810     return nullptr;
7811 
7812   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7813 }
7814 
7815 ABIArgInfo
7816 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7817   Ty = useFirstFieldIfTransparentUnion(Ty);
7818 
7819   uint64_t OrigOffset = Offset;
7820   uint64_t TySize = getContext().getTypeSize(Ty);
7821   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7822 
7823   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7824                    (uint64_t)StackAlignInBytes);
7825   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7826   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7827 
7828   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7829     // Ignore empty aggregates.
7830     if (TySize == 0)
7831       return ABIArgInfo::getIgnore();
7832 
7833     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7834       Offset = OrigOffset + MinABIStackAlignInBytes;
7835       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7836     }
7837 
7838     // If we have reached here, aggregates are passed directly by coercing to
7839     // another structure type. Padding is inserted if the offset of the
7840     // aggregate is unaligned.
7841     ABIArgInfo ArgInfo =
7842         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7843                               getPaddingType(OrigOffset, CurrOffset));
7844     ArgInfo.setInReg(true);
7845     return ArgInfo;
7846   }
7847 
7848   // Treat an enum type as its underlying type.
7849   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7850     Ty = EnumTy->getDecl()->getIntegerType();
7851 
7852   // Make sure we pass indirectly things that are too large.
7853   if (const auto *EIT = Ty->getAs<ExtIntType>())
7854     if (EIT->getNumBits() > 128 ||
7855         (EIT->getNumBits() > 64 &&
7856          !getContext().getTargetInfo().hasInt128Type()))
7857       return getNaturalAlignIndirect(Ty);
7858 
7859   // All integral types are promoted to the GPR width.
7860   if (Ty->isIntegralOrEnumerationType())
7861     return extendType(Ty);
7862 
7863   return ABIArgInfo::getDirect(
7864       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7865 }
7866 
7867 llvm::Type*
7868 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7869   const RecordType *RT = RetTy->getAs<RecordType>();
7870   SmallVector<llvm::Type*, 8> RTList;
7871 
7872   if (RT && RT->isStructureOrClassType()) {
7873     const RecordDecl *RD = RT->getDecl();
7874     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7875     unsigned FieldCnt = Layout.getFieldCount();
7876 
7877     // N32/64 returns struct/classes in floating point registers if the
7878     // following conditions are met:
7879     // 1. The size of the struct/class is no larger than 128-bit.
7880     // 2. The struct/class has one or two fields all of which are floating
7881     //    point types.
7882     // 3. The offset of the first field is zero (this follows what gcc does).
7883     //
7884     // Any other composite results are returned in integer registers.
7885     //
7886     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7887       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7888       for (; b != e; ++b) {
7889         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7890 
7891         if (!BT || !BT->isFloatingPoint())
7892           break;
7893 
7894         RTList.push_back(CGT.ConvertType(b->getType()));
7895       }
7896 
7897       if (b == e)
7898         return llvm::StructType::get(getVMContext(), RTList,
7899                                      RD->hasAttr<PackedAttr>());
7900 
7901       RTList.clear();
7902     }
7903   }
7904 
7905   CoerceToIntArgs(Size, RTList);
7906   return llvm::StructType::get(getVMContext(), RTList);
7907 }
7908 
7909 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7910   uint64_t Size = getContext().getTypeSize(RetTy);
7911 
7912   if (RetTy->isVoidType())
7913     return ABIArgInfo::getIgnore();
7914 
7915   // O32 doesn't treat zero-sized structs differently from other structs.
7916   // However, N32/N64 ignores zero sized return values.
7917   if (!IsO32 && Size == 0)
7918     return ABIArgInfo::getIgnore();
7919 
7920   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7921     if (Size <= 128) {
7922       if (RetTy->isAnyComplexType())
7923         return ABIArgInfo::getDirect();
7924 
7925       // O32 returns integer vectors in registers and N32/N64 returns all small
7926       // aggregates in registers.
7927       if (!IsO32 ||
7928           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7929         ABIArgInfo ArgInfo =
7930             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7931         ArgInfo.setInReg(true);
7932         return ArgInfo;
7933       }
7934     }
7935 
7936     return getNaturalAlignIndirect(RetTy);
7937   }
7938 
7939   // Treat an enum type as its underlying type.
7940   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7941     RetTy = EnumTy->getDecl()->getIntegerType();
7942 
7943   // Make sure we pass indirectly things that are too large.
7944   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7945     if (EIT->getNumBits() > 128 ||
7946         (EIT->getNumBits() > 64 &&
7947          !getContext().getTargetInfo().hasInt128Type()))
7948       return getNaturalAlignIndirect(RetTy);
7949 
7950   if (isPromotableIntegerTypeForABI(RetTy))
7951     return ABIArgInfo::getExtend(RetTy);
7952 
7953   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7954       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7955     return ABIArgInfo::getSignExtend(RetTy);
7956 
7957   return ABIArgInfo::getDirect();
7958 }
7959 
7960 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7961   ABIArgInfo &RetInfo = FI.getReturnInfo();
7962   if (!getCXXABI().classifyReturnType(FI))
7963     RetInfo = classifyReturnType(FI.getReturnType());
7964 
7965   // Check if a pointer to an aggregate is passed as a hidden argument.
7966   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7967 
7968   for (auto &I : FI.arguments())
7969     I.info = classifyArgumentType(I.type, Offset);
7970 }
7971 
7972 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7973                                QualType OrigTy) const {
7974   QualType Ty = OrigTy;
7975 
7976   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7977   // Pointers are also promoted in the same way but this only matters for N32.
7978   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7979   unsigned PtrWidth = getTarget().getPointerWidth(0);
7980   bool DidPromote = false;
7981   if ((Ty->isIntegerType() &&
7982           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7983       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7984     DidPromote = true;
7985     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7986                                             Ty->isSignedIntegerType());
7987   }
7988 
7989   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7990 
7991   // The alignment of things in the argument area is never larger than
7992   // StackAlignInBytes.
7993   TyInfo.second =
7994     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7995 
7996   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7997   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7998 
7999   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8000                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8001 
8002 
8003   // If there was a promotion, "unpromote" into a temporary.
8004   // TODO: can we just use a pointer into a subset of the original slot?
8005   if (DidPromote) {
8006     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8007     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8008 
8009     // Truncate down to the right width.
8010     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8011                                                  : CGF.IntPtrTy);
8012     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8013     if (OrigTy->isPointerType())
8014       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8015 
8016     CGF.Builder.CreateStore(V, Temp);
8017     Addr = Temp;
8018   }
8019 
8020   return Addr;
8021 }
8022 
8023 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8024   int TySize = getContext().getTypeSize(Ty);
8025 
8026   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8027   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8028     return ABIArgInfo::getSignExtend(Ty);
8029 
8030   return ABIArgInfo::getExtend(Ty);
8031 }
8032 
8033 bool
8034 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8035                                                llvm::Value *Address) const {
8036   // This information comes from gcc's implementation, which seems to
8037   // as canonical as it gets.
8038 
8039   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8040   // are aliased to pairs of single-precision FP registers.
8041   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8042 
8043   // 0-31 are the general purpose registers, $0 - $31.
8044   // 32-63 are the floating-point registers, $f0 - $f31.
8045   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8046   // 66 is the (notional, I think) register for signal-handler return.
8047   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8048 
8049   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8050   // They are one bit wide and ignored here.
8051 
8052   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8053   // (coprocessor 1 is the FP unit)
8054   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8055   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8056   // 176-181 are the DSP accumulator registers.
8057   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8058   return false;
8059 }
8060 
8061 //===----------------------------------------------------------------------===//
8062 // AVR ABI Implementation.
8063 //===----------------------------------------------------------------------===//
8064 
8065 namespace {
8066 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8067 public:
8068   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8069       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8070 
8071   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8072                            CodeGen::CodeGenModule &CGM) const override {
8073     if (GV->isDeclaration())
8074       return;
8075     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8076     if (!FD) return;
8077     auto *Fn = cast<llvm::Function>(GV);
8078 
8079     if (FD->getAttr<AVRInterruptAttr>())
8080       Fn->addFnAttr("interrupt");
8081 
8082     if (FD->getAttr<AVRSignalAttr>())
8083       Fn->addFnAttr("signal");
8084   }
8085 };
8086 }
8087 
8088 //===----------------------------------------------------------------------===//
8089 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8090 // Currently subclassed only to implement custom OpenCL C function attribute
8091 // handling.
8092 //===----------------------------------------------------------------------===//
8093 
8094 namespace {
8095 
8096 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8097 public:
8098   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8099     : DefaultTargetCodeGenInfo(CGT) {}
8100 
8101   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8102                            CodeGen::CodeGenModule &M) const override;
8103 };
8104 
8105 void TCETargetCodeGenInfo::setTargetAttributes(
8106     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8107   if (GV->isDeclaration())
8108     return;
8109   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8110   if (!FD) return;
8111 
8112   llvm::Function *F = cast<llvm::Function>(GV);
8113 
8114   if (M.getLangOpts().OpenCL) {
8115     if (FD->hasAttr<OpenCLKernelAttr>()) {
8116       // OpenCL C Kernel functions are not subject to inlining
8117       F->addFnAttr(llvm::Attribute::NoInline);
8118       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8119       if (Attr) {
8120         // Convert the reqd_work_group_size() attributes to metadata.
8121         llvm::LLVMContext &Context = F->getContext();
8122         llvm::NamedMDNode *OpenCLMetadata =
8123             M.getModule().getOrInsertNamedMetadata(
8124                 "opencl.kernel_wg_size_info");
8125 
8126         SmallVector<llvm::Metadata *, 5> Operands;
8127         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8128 
8129         Operands.push_back(
8130             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8131                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8132         Operands.push_back(
8133             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8134                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8135         Operands.push_back(
8136             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8137                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8138 
8139         // Add a boolean constant operand for "required" (true) or "hint"
8140         // (false) for implementing the work_group_size_hint attr later.
8141         // Currently always true as the hint is not yet implemented.
8142         Operands.push_back(
8143             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8144         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8145       }
8146     }
8147   }
8148 }
8149 
8150 }
8151 
8152 //===----------------------------------------------------------------------===//
8153 // Hexagon ABI Implementation
8154 //===----------------------------------------------------------------------===//
8155 
8156 namespace {
8157 
8158 class HexagonABIInfo : public DefaultABIInfo {
8159 public:
8160   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8161 
8162 private:
8163   ABIArgInfo classifyReturnType(QualType RetTy) const;
8164   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8165   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8166 
8167   void computeInfo(CGFunctionInfo &FI) const override;
8168 
8169   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8170                     QualType Ty) const override;
8171   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8172                               QualType Ty) const;
8173   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8174                               QualType Ty) const;
8175   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8176                                    QualType Ty) const;
8177 };
8178 
8179 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8180 public:
8181   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8182       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8183 
8184   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8185     return 29;
8186   }
8187 
8188   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8189                            CodeGen::CodeGenModule &GCM) const override {
8190     if (GV->isDeclaration())
8191       return;
8192     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8193     if (!FD)
8194       return;
8195   }
8196 };
8197 
8198 } // namespace
8199 
8200 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8201   unsigned RegsLeft = 6;
8202   if (!getCXXABI().classifyReturnType(FI))
8203     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8204   for (auto &I : FI.arguments())
8205     I.info = classifyArgumentType(I.type, &RegsLeft);
8206 }
8207 
8208 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8209   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8210                        " through registers");
8211 
8212   if (*RegsLeft == 0)
8213     return false;
8214 
8215   if (Size <= 32) {
8216     (*RegsLeft)--;
8217     return true;
8218   }
8219 
8220   if (2 <= (*RegsLeft & (~1U))) {
8221     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8222     return true;
8223   }
8224 
8225   // Next available register was r5 but candidate was greater than 32-bits so it
8226   // has to go on the stack. However we still consume r5
8227   if (*RegsLeft == 1)
8228     *RegsLeft = 0;
8229 
8230   return false;
8231 }
8232 
8233 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8234                                                 unsigned *RegsLeft) const {
8235   if (!isAggregateTypeForABI(Ty)) {
8236     // Treat an enum type as its underlying type.
8237     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8238       Ty = EnumTy->getDecl()->getIntegerType();
8239 
8240     uint64_t Size = getContext().getTypeSize(Ty);
8241     if (Size <= 64)
8242       HexagonAdjustRegsLeft(Size, RegsLeft);
8243 
8244     if (Size > 64 && Ty->isExtIntType())
8245       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8246 
8247     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8248                                              : ABIArgInfo::getDirect();
8249   }
8250 
8251   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8252     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8253 
8254   // Ignore empty records.
8255   if (isEmptyRecord(getContext(), Ty, true))
8256     return ABIArgInfo::getIgnore();
8257 
8258   uint64_t Size = getContext().getTypeSize(Ty);
8259   unsigned Align = getContext().getTypeAlign(Ty);
8260 
8261   if (Size > 64)
8262     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8263 
8264   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8265     Align = Size <= 32 ? 32 : 64;
8266   if (Size <= Align) {
8267     // Pass in the smallest viable integer type.
8268     if (!llvm::isPowerOf2_64(Size))
8269       Size = llvm::NextPowerOf2(Size);
8270     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8271   }
8272   return DefaultABIInfo::classifyArgumentType(Ty);
8273 }
8274 
8275 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8276   if (RetTy->isVoidType())
8277     return ABIArgInfo::getIgnore();
8278 
8279   const TargetInfo &T = CGT.getTarget();
8280   uint64_t Size = getContext().getTypeSize(RetTy);
8281 
8282   if (RetTy->getAs<VectorType>()) {
8283     // HVX vectors are returned in vector registers or register pairs.
8284     if (T.hasFeature("hvx")) {
8285       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8286       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8287       if (Size == VecSize || Size == 2*VecSize)
8288         return ABIArgInfo::getDirectInReg();
8289     }
8290     // Large vector types should be returned via memory.
8291     if (Size > 64)
8292       return getNaturalAlignIndirect(RetTy);
8293   }
8294 
8295   if (!isAggregateTypeForABI(RetTy)) {
8296     // Treat an enum type as its underlying type.
8297     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8298       RetTy = EnumTy->getDecl()->getIntegerType();
8299 
8300     if (Size > 64 && RetTy->isExtIntType())
8301       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8302 
8303     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8304                                                 : ABIArgInfo::getDirect();
8305   }
8306 
8307   if (isEmptyRecord(getContext(), RetTy, true))
8308     return ABIArgInfo::getIgnore();
8309 
8310   // Aggregates <= 8 bytes are returned in registers, other aggregates
8311   // are returned indirectly.
8312   if (Size <= 64) {
8313     // Return in the smallest viable integer type.
8314     if (!llvm::isPowerOf2_64(Size))
8315       Size = llvm::NextPowerOf2(Size);
8316     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8317   }
8318   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8319 }
8320 
8321 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8322                                             Address VAListAddr,
8323                                             QualType Ty) const {
8324   // Load the overflow area pointer.
8325   Address __overflow_area_pointer_p =
8326       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8327   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8328       __overflow_area_pointer_p, "__overflow_area_pointer");
8329 
8330   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8331   if (Align > 4) {
8332     // Alignment should be a power of 2.
8333     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8334 
8335     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8336     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8337 
8338     // Add offset to the current pointer to access the argument.
8339     __overflow_area_pointer =
8340         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8341     llvm::Value *AsInt =
8342         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8343 
8344     // Create a mask which should be "AND"ed
8345     // with (overflow_arg_area + align - 1)
8346     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8347     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8348         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8349         "__overflow_area_pointer.align");
8350   }
8351 
8352   // Get the type of the argument from memory and bitcast
8353   // overflow area pointer to the argument type.
8354   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8355   Address AddrTyped = CGF.Builder.CreateBitCast(
8356       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8357       llvm::PointerType::getUnqual(PTy));
8358 
8359   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8360   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8361 
8362   __overflow_area_pointer = CGF.Builder.CreateGEP(
8363       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8364       "__overflow_area_pointer.next");
8365   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8366 
8367   return AddrTyped;
8368 }
8369 
8370 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8371                                             Address VAListAddr,
8372                                             QualType Ty) const {
8373   // FIXME: Need to handle alignment
8374   llvm::Type *BP = CGF.Int8PtrTy;
8375   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8376   CGBuilderTy &Builder = CGF.Builder;
8377   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8378   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8379   // Handle address alignment for type alignment > 32 bits
8380   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8381   if (TyAlign > 4) {
8382     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8383     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8384     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8385     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8386     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8387   }
8388   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8389   Address AddrTyped = Builder.CreateBitCast(
8390       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8391 
8392   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8393   llvm::Value *NextAddr = Builder.CreateGEP(
8394       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8395   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8396 
8397   return AddrTyped;
8398 }
8399 
8400 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8401                                                  Address VAListAddr,
8402                                                  QualType Ty) const {
8403   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8404 
8405   if (ArgSize > 8)
8406     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8407 
8408   // Here we have check if the argument is in register area or
8409   // in overflow area.
8410   // If the saved register area pointer + argsize rounded up to alignment >
8411   // saved register area end pointer, argument is in overflow area.
8412   unsigned RegsLeft = 6;
8413   Ty = CGF.getContext().getCanonicalType(Ty);
8414   (void)classifyArgumentType(Ty, &RegsLeft);
8415 
8416   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8417   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8418   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8419   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8420 
8421   // Get rounded size of the argument.GCC does not allow vararg of
8422   // size < 4 bytes. We follow the same logic here.
8423   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8424   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8425 
8426   // Argument may be in saved register area
8427   CGF.EmitBlock(MaybeRegBlock);
8428 
8429   // Load the current saved register area pointer.
8430   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8431       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8432   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8433       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8434 
8435   // Load the saved register area end pointer.
8436   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8437       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8438   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8439       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8440 
8441   // If the size of argument is > 4 bytes, check if the stack
8442   // location is aligned to 8 bytes
8443   if (ArgAlign > 4) {
8444 
8445     llvm::Value *__current_saved_reg_area_pointer_int =
8446         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8447                                    CGF.Int32Ty);
8448 
8449     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8450         __current_saved_reg_area_pointer_int,
8451         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8452         "align_current_saved_reg_area_pointer");
8453 
8454     __current_saved_reg_area_pointer_int =
8455         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8456                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8457                               "align_current_saved_reg_area_pointer");
8458 
8459     __current_saved_reg_area_pointer =
8460         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8461                                    __current_saved_reg_area_pointer->getType(),
8462                                    "align_current_saved_reg_area_pointer");
8463   }
8464 
8465   llvm::Value *__new_saved_reg_area_pointer =
8466       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8467                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8468                             "__new_saved_reg_area_pointer");
8469 
8470   llvm::Value *UsingStack = 0;
8471   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8472                                          __saved_reg_area_end_pointer);
8473 
8474   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8475 
8476   // Argument in saved register area
8477   // Implement the block where argument is in register saved area
8478   CGF.EmitBlock(InRegBlock);
8479 
8480   llvm::Type *PTy = CGF.ConvertType(Ty);
8481   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8482       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8483 
8484   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8485                           __current_saved_reg_area_pointer_p);
8486 
8487   CGF.EmitBranch(ContBlock);
8488 
8489   // Argument in overflow area
8490   // Implement the block where the argument is in overflow area.
8491   CGF.EmitBlock(OnStackBlock);
8492 
8493   // Load the overflow area pointer
8494   Address __overflow_area_pointer_p =
8495       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8496   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8497       __overflow_area_pointer_p, "__overflow_area_pointer");
8498 
8499   // Align the overflow area pointer according to the alignment of the argument
8500   if (ArgAlign > 4) {
8501     llvm::Value *__overflow_area_pointer_int =
8502         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8503 
8504     __overflow_area_pointer_int =
8505         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8506                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8507                               "align_overflow_area_pointer");
8508 
8509     __overflow_area_pointer_int =
8510         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8511                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8512                               "align_overflow_area_pointer");
8513 
8514     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8515         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8516         "align_overflow_area_pointer");
8517   }
8518 
8519   // Get the pointer for next argument in overflow area and store it
8520   // to overflow area pointer.
8521   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8522       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8523       "__overflow_area_pointer.next");
8524 
8525   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8526                           __overflow_area_pointer_p);
8527 
8528   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8529                           __current_saved_reg_area_pointer_p);
8530 
8531   // Bitcast the overflow area pointer to the type of argument.
8532   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8533   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8534       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8535 
8536   CGF.EmitBranch(ContBlock);
8537 
8538   // Get the correct pointer to load the variable argument
8539   // Implement the ContBlock
8540   CGF.EmitBlock(ContBlock);
8541 
8542   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8543   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8544   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8545   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8546 
8547   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8548 }
8549 
8550 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8551                                   QualType Ty) const {
8552 
8553   if (getTarget().getTriple().isMusl())
8554     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8555 
8556   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8557 }
8558 
8559 //===----------------------------------------------------------------------===//
8560 // Lanai ABI Implementation
8561 //===----------------------------------------------------------------------===//
8562 
8563 namespace {
8564 class LanaiABIInfo : public DefaultABIInfo {
8565 public:
8566   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8567 
8568   bool shouldUseInReg(QualType Ty, CCState &State) const;
8569 
8570   void computeInfo(CGFunctionInfo &FI) const override {
8571     CCState State(FI);
8572     // Lanai uses 4 registers to pass arguments unless the function has the
8573     // regparm attribute set.
8574     if (FI.getHasRegParm()) {
8575       State.FreeRegs = FI.getRegParm();
8576     } else {
8577       State.FreeRegs = 4;
8578     }
8579 
8580     if (!getCXXABI().classifyReturnType(FI))
8581       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8582     for (auto &I : FI.arguments())
8583       I.info = classifyArgumentType(I.type, State);
8584   }
8585 
8586   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8587   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8588 };
8589 } // end anonymous namespace
8590 
8591 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8592   unsigned Size = getContext().getTypeSize(Ty);
8593   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8594 
8595   if (SizeInRegs == 0)
8596     return false;
8597 
8598   if (SizeInRegs > State.FreeRegs) {
8599     State.FreeRegs = 0;
8600     return false;
8601   }
8602 
8603   State.FreeRegs -= SizeInRegs;
8604 
8605   return true;
8606 }
8607 
8608 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8609                                            CCState &State) const {
8610   if (!ByVal) {
8611     if (State.FreeRegs) {
8612       --State.FreeRegs; // Non-byval indirects just use one pointer.
8613       return getNaturalAlignIndirectInReg(Ty);
8614     }
8615     return getNaturalAlignIndirect(Ty, false);
8616   }
8617 
8618   // Compute the byval alignment.
8619   const unsigned MinABIStackAlignInBytes = 4;
8620   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8621   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8622                                  /*Realign=*/TypeAlign >
8623                                      MinABIStackAlignInBytes);
8624 }
8625 
8626 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8627                                               CCState &State) const {
8628   // Check with the C++ ABI first.
8629   const RecordType *RT = Ty->getAs<RecordType>();
8630   if (RT) {
8631     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8632     if (RAA == CGCXXABI::RAA_Indirect) {
8633       return getIndirectResult(Ty, /*ByVal=*/false, State);
8634     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8635       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8636     }
8637   }
8638 
8639   if (isAggregateTypeForABI(Ty)) {
8640     // Structures with flexible arrays are always indirect.
8641     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8642       return getIndirectResult(Ty, /*ByVal=*/true, State);
8643 
8644     // Ignore empty structs/unions.
8645     if (isEmptyRecord(getContext(), Ty, true))
8646       return ABIArgInfo::getIgnore();
8647 
8648     llvm::LLVMContext &LLVMContext = getVMContext();
8649     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8650     if (SizeInRegs <= State.FreeRegs) {
8651       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8652       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8653       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8654       State.FreeRegs -= SizeInRegs;
8655       return ABIArgInfo::getDirectInReg(Result);
8656     } else {
8657       State.FreeRegs = 0;
8658     }
8659     return getIndirectResult(Ty, true, State);
8660   }
8661 
8662   // Treat an enum type as its underlying type.
8663   if (const auto *EnumTy = Ty->getAs<EnumType>())
8664     Ty = EnumTy->getDecl()->getIntegerType();
8665 
8666   bool InReg = shouldUseInReg(Ty, State);
8667 
8668   // Don't pass >64 bit integers in registers.
8669   if (const auto *EIT = Ty->getAs<ExtIntType>())
8670     if (EIT->getNumBits() > 64)
8671       return getIndirectResult(Ty, /*ByVal=*/true, State);
8672 
8673   if (isPromotableIntegerTypeForABI(Ty)) {
8674     if (InReg)
8675       return ABIArgInfo::getDirectInReg();
8676     return ABIArgInfo::getExtend(Ty);
8677   }
8678   if (InReg)
8679     return ABIArgInfo::getDirectInReg();
8680   return ABIArgInfo::getDirect();
8681 }
8682 
8683 namespace {
8684 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8685 public:
8686   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8687       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8688 };
8689 }
8690 
8691 //===----------------------------------------------------------------------===//
8692 // AMDGPU ABI Implementation
8693 //===----------------------------------------------------------------------===//
8694 
8695 namespace {
8696 
8697 class AMDGPUABIInfo final : public DefaultABIInfo {
8698 private:
8699   static const unsigned MaxNumRegsForArgsRet = 16;
8700 
8701   unsigned numRegsForType(QualType Ty) const;
8702 
8703   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8704   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8705                                          uint64_t Members) const override;
8706 
8707   // Coerce HIP pointer arguments from generic pointers to global ones.
8708   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8709                                        unsigned ToAS) const {
8710     // Structure types.
8711     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
8712       SmallVector<llvm::Type *, 8> EltTys;
8713       bool Changed = false;
8714       for (auto T : STy->elements()) {
8715         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8716         EltTys.push_back(NT);
8717         Changed |= (NT != T);
8718       }
8719       // Skip if there is no change in element types.
8720       if (!Changed)
8721         return STy;
8722       if (STy->hasName())
8723         return llvm::StructType::create(
8724             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
8725       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
8726     }
8727     // Array types.
8728     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
8729       auto T = ATy->getElementType();
8730       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8731       // Skip if there is no change in that element type.
8732       if (NT == T)
8733         return ATy;
8734       return llvm::ArrayType::get(NT, ATy->getNumElements());
8735     }
8736     // Single value types.
8737     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8738       return llvm::PointerType::get(
8739           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8740     return Ty;
8741   }
8742 
8743 public:
8744   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8745     DefaultABIInfo(CGT) {}
8746 
8747   ABIArgInfo classifyReturnType(QualType RetTy) const;
8748   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8749   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8750 
8751   void computeInfo(CGFunctionInfo &FI) const override;
8752   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8753                     QualType Ty) const override;
8754 };
8755 
8756 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8757   return true;
8758 }
8759 
8760 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8761   const Type *Base, uint64_t Members) const {
8762   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8763 
8764   // Homogeneous Aggregates may occupy at most 16 registers.
8765   return Members * NumRegs <= MaxNumRegsForArgsRet;
8766 }
8767 
8768 /// Estimate number of registers the type will use when passed in registers.
8769 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8770   unsigned NumRegs = 0;
8771 
8772   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8773     // Compute from the number of elements. The reported size is based on the
8774     // in-memory size, which includes the padding 4th element for 3-vectors.
8775     QualType EltTy = VT->getElementType();
8776     unsigned EltSize = getContext().getTypeSize(EltTy);
8777 
8778     // 16-bit element vectors should be passed as packed.
8779     if (EltSize == 16)
8780       return (VT->getNumElements() + 1) / 2;
8781 
8782     unsigned EltNumRegs = (EltSize + 31) / 32;
8783     return EltNumRegs * VT->getNumElements();
8784   }
8785 
8786   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8787     const RecordDecl *RD = RT->getDecl();
8788     assert(!RD->hasFlexibleArrayMember());
8789 
8790     for (const FieldDecl *Field : RD->fields()) {
8791       QualType FieldTy = Field->getType();
8792       NumRegs += numRegsForType(FieldTy);
8793     }
8794 
8795     return NumRegs;
8796   }
8797 
8798   return (getContext().getTypeSize(Ty) + 31) / 32;
8799 }
8800 
8801 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8802   llvm::CallingConv::ID CC = FI.getCallingConvention();
8803 
8804   if (!getCXXABI().classifyReturnType(FI))
8805     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8806 
8807   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8808   for (auto &Arg : FI.arguments()) {
8809     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8810       Arg.info = classifyKernelArgumentType(Arg.type);
8811     } else {
8812       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8813     }
8814   }
8815 }
8816 
8817 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8818                                  QualType Ty) const {
8819   llvm_unreachable("AMDGPU does not support varargs");
8820 }
8821 
8822 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8823   if (isAggregateTypeForABI(RetTy)) {
8824     // Records with non-trivial destructors/copy-constructors should not be
8825     // returned by value.
8826     if (!getRecordArgABI(RetTy, getCXXABI())) {
8827       // Ignore empty structs/unions.
8828       if (isEmptyRecord(getContext(), RetTy, true))
8829         return ABIArgInfo::getIgnore();
8830 
8831       // Lower single-element structs to just return a regular value.
8832       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8833         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8834 
8835       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8836         const RecordDecl *RD = RT->getDecl();
8837         if (RD->hasFlexibleArrayMember())
8838           return DefaultABIInfo::classifyReturnType(RetTy);
8839       }
8840 
8841       // Pack aggregates <= 4 bytes into single VGPR or pair.
8842       uint64_t Size = getContext().getTypeSize(RetTy);
8843       if (Size <= 16)
8844         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8845 
8846       if (Size <= 32)
8847         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8848 
8849       if (Size <= 64) {
8850         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8851         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8852       }
8853 
8854       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8855         return ABIArgInfo::getDirect();
8856     }
8857   }
8858 
8859   // Otherwise just do the default thing.
8860   return DefaultABIInfo::classifyReturnType(RetTy);
8861 }
8862 
8863 /// For kernels all parameters are really passed in a special buffer. It doesn't
8864 /// make sense to pass anything byval, so everything must be direct.
8865 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8866   Ty = useFirstFieldIfTransparentUnion(Ty);
8867 
8868   // TODO: Can we omit empty structs?
8869 
8870   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8871     Ty = QualType(SeltTy, 0);
8872 
8873   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
8874   llvm::Type *LTy = OrigLTy;
8875   if (getContext().getLangOpts().HIP) {
8876     LTy = coerceKernelArgumentType(
8877         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8878         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8879   }
8880 
8881   // FIXME: Should also use this for OpenCL, but it requires addressing the
8882   // problem of kernels being called.
8883   //
8884   // FIXME: This doesn't apply the optimization of coercing pointers in structs
8885   // to global address space when using byref. This would require implementing a
8886   // new kind of coercion of the in-memory type when for indirect arguments.
8887   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
8888       isAggregateTypeForABI(Ty)) {
8889     return ABIArgInfo::getIndirectAliased(
8890         getContext().getTypeAlignInChars(Ty),
8891         getContext().getTargetAddressSpace(LangAS::opencl_constant),
8892         false /*Realign*/, nullptr /*Padding*/);
8893   }
8894 
8895   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8896   // individual elements, which confuses the Clover OpenCL backend; therefore we
8897   // have to set it to false here. Other args of getDirect() are just defaults.
8898   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8899 }
8900 
8901 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8902                                                unsigned &NumRegsLeft) const {
8903   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8904 
8905   Ty = useFirstFieldIfTransparentUnion(Ty);
8906 
8907   if (isAggregateTypeForABI(Ty)) {
8908     // Records with non-trivial destructors/copy-constructors should not be
8909     // passed by value.
8910     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8911       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8912 
8913     // Ignore empty structs/unions.
8914     if (isEmptyRecord(getContext(), Ty, true))
8915       return ABIArgInfo::getIgnore();
8916 
8917     // Lower single-element structs to just pass a regular value. TODO: We
8918     // could do reasonable-size multiple-element structs too, using getExpand(),
8919     // though watch out for things like bitfields.
8920     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8921       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8922 
8923     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8924       const RecordDecl *RD = RT->getDecl();
8925       if (RD->hasFlexibleArrayMember())
8926         return DefaultABIInfo::classifyArgumentType(Ty);
8927     }
8928 
8929     // Pack aggregates <= 8 bytes into single VGPR or pair.
8930     uint64_t Size = getContext().getTypeSize(Ty);
8931     if (Size <= 64) {
8932       unsigned NumRegs = (Size + 31) / 32;
8933       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8934 
8935       if (Size <= 16)
8936         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8937 
8938       if (Size <= 32)
8939         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8940 
8941       // XXX: Should this be i64 instead, and should the limit increase?
8942       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8943       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8944     }
8945 
8946     if (NumRegsLeft > 0) {
8947       unsigned NumRegs = numRegsForType(Ty);
8948       if (NumRegsLeft >= NumRegs) {
8949         NumRegsLeft -= NumRegs;
8950         return ABIArgInfo::getDirect();
8951       }
8952     }
8953   }
8954 
8955   // Otherwise just do the default thing.
8956   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8957   if (!ArgInfo.isIndirect()) {
8958     unsigned NumRegs = numRegsForType(Ty);
8959     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8960   }
8961 
8962   return ArgInfo;
8963 }
8964 
8965 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8966 public:
8967   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8968       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8969   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8970                            CodeGen::CodeGenModule &M) const override;
8971   unsigned getOpenCLKernelCallingConv() const override;
8972 
8973   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8974       llvm::PointerType *T, QualType QT) const override;
8975 
8976   LangAS getASTAllocaAddressSpace() const override {
8977     return getLangASFromTargetAS(
8978         getABIInfo().getDataLayout().getAllocaAddrSpace());
8979   }
8980   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8981                                   const VarDecl *D) const override;
8982   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8983                                          SyncScope Scope,
8984                                          llvm::AtomicOrdering Ordering,
8985                                          llvm::LLVMContext &Ctx) const override;
8986   llvm::Function *
8987   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8988                             llvm::Function *BlockInvokeFunc,
8989                             llvm::Value *BlockLiteral) const override;
8990   bool shouldEmitStaticExternCAliases() const override;
8991   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8992 };
8993 }
8994 
8995 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8996                                               llvm::GlobalValue *GV) {
8997   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8998     return false;
8999 
9000   return D->hasAttr<OpenCLKernelAttr>() ||
9001          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9002          (isa<VarDecl>(D) &&
9003           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9004            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9005            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9006 }
9007 
9008 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9009     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9010   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9011     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9012     GV->setDSOLocal(true);
9013   }
9014 
9015   if (GV->isDeclaration())
9016     return;
9017   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9018   if (!FD)
9019     return;
9020 
9021   llvm::Function *F = cast<llvm::Function>(GV);
9022 
9023   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9024     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9025 
9026 
9027   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9028                               FD->hasAttr<OpenCLKernelAttr>();
9029   const bool IsHIPKernel = M.getLangOpts().HIP &&
9030                            FD->hasAttr<CUDAGlobalAttr>();
9031   if ((IsOpenCLKernel || IsHIPKernel) &&
9032       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9033     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9034 
9035   if (IsHIPKernel)
9036     F->addFnAttr("uniform-work-group-size", "true");
9037 
9038 
9039   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9040   if (ReqdWGS || FlatWGS) {
9041     unsigned Min = 0;
9042     unsigned Max = 0;
9043     if (FlatWGS) {
9044       Min = FlatWGS->getMin()
9045                 ->EvaluateKnownConstInt(M.getContext())
9046                 .getExtValue();
9047       Max = FlatWGS->getMax()
9048                 ->EvaluateKnownConstInt(M.getContext())
9049                 .getExtValue();
9050     }
9051     if (ReqdWGS && Min == 0 && Max == 0)
9052       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9053 
9054     if (Min != 0) {
9055       assert(Min <= Max && "Min must be less than or equal Max");
9056 
9057       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9058       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9059     } else
9060       assert(Max == 0 && "Max must be zero");
9061   } else if (IsOpenCLKernel || IsHIPKernel) {
9062     // By default, restrict the maximum size to a value specified by
9063     // --gpu-max-threads-per-block=n or its default value.
9064     std::string AttrVal =
9065         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
9066     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9067   }
9068 
9069   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9070     unsigned Min =
9071         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9072     unsigned Max = Attr->getMax() ? Attr->getMax()
9073                                         ->EvaluateKnownConstInt(M.getContext())
9074                                         .getExtValue()
9075                                   : 0;
9076 
9077     if (Min != 0) {
9078       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9079 
9080       std::string AttrVal = llvm::utostr(Min);
9081       if (Max != 0)
9082         AttrVal = AttrVal + "," + llvm::utostr(Max);
9083       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9084     } else
9085       assert(Max == 0 && "Max must be zero");
9086   }
9087 
9088   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9089     unsigned NumSGPR = Attr->getNumSGPR();
9090 
9091     if (NumSGPR != 0)
9092       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9093   }
9094 
9095   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9096     uint32_t NumVGPR = Attr->getNumVGPR();
9097 
9098     if (NumVGPR != 0)
9099       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9100   }
9101 }
9102 
9103 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9104   return llvm::CallingConv::AMDGPU_KERNEL;
9105 }
9106 
9107 // Currently LLVM assumes null pointers always have value 0,
9108 // which results in incorrectly transformed IR. Therefore, instead of
9109 // emitting null pointers in private and local address spaces, a null
9110 // pointer in generic address space is emitted which is casted to a
9111 // pointer in local or private address space.
9112 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9113     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9114     QualType QT) const {
9115   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9116     return llvm::ConstantPointerNull::get(PT);
9117 
9118   auto &Ctx = CGM.getContext();
9119   auto NPT = llvm::PointerType::get(PT->getElementType(),
9120       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9121   return llvm::ConstantExpr::getAddrSpaceCast(
9122       llvm::ConstantPointerNull::get(NPT), PT);
9123 }
9124 
9125 LangAS
9126 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9127                                                   const VarDecl *D) const {
9128   assert(!CGM.getLangOpts().OpenCL &&
9129          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9130          "Address space agnostic languages only");
9131   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9132       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9133   if (!D)
9134     return DefaultGlobalAS;
9135 
9136   LangAS AddrSpace = D->getType().getAddressSpace();
9137   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9138   if (AddrSpace != LangAS::Default)
9139     return AddrSpace;
9140 
9141   if (CGM.isTypeConstant(D->getType(), false)) {
9142     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9143       return ConstAS.getValue();
9144   }
9145   return DefaultGlobalAS;
9146 }
9147 
9148 llvm::SyncScope::ID
9149 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9150                                             SyncScope Scope,
9151                                             llvm::AtomicOrdering Ordering,
9152                                             llvm::LLVMContext &Ctx) const {
9153   std::string Name;
9154   switch (Scope) {
9155   case SyncScope::OpenCLWorkGroup:
9156     Name = "workgroup";
9157     break;
9158   case SyncScope::OpenCLDevice:
9159     Name = "agent";
9160     break;
9161   case SyncScope::OpenCLAllSVMDevices:
9162     Name = "";
9163     break;
9164   case SyncScope::OpenCLSubGroup:
9165     Name = "wavefront";
9166   }
9167 
9168   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9169     if (!Name.empty())
9170       Name = Twine(Twine(Name) + Twine("-")).str();
9171 
9172     Name = Twine(Twine(Name) + Twine("one-as")).str();
9173   }
9174 
9175   return Ctx.getOrInsertSyncScopeID(Name);
9176 }
9177 
9178 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9179   return false;
9180 }
9181 
9182 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9183     const FunctionType *&FT) const {
9184   FT = getABIInfo().getContext().adjustFunctionType(
9185       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9186 }
9187 
9188 //===----------------------------------------------------------------------===//
9189 // SPARC v8 ABI Implementation.
9190 // Based on the SPARC Compliance Definition version 2.4.1.
9191 //
9192 // Ensures that complex values are passed in registers.
9193 //
9194 namespace {
9195 class SparcV8ABIInfo : public DefaultABIInfo {
9196 public:
9197   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9198 
9199 private:
9200   ABIArgInfo classifyReturnType(QualType RetTy) const;
9201   void computeInfo(CGFunctionInfo &FI) const override;
9202 };
9203 } // end anonymous namespace
9204 
9205 
9206 ABIArgInfo
9207 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9208   if (Ty->isAnyComplexType()) {
9209     return ABIArgInfo::getDirect();
9210   }
9211   else {
9212     return DefaultABIInfo::classifyReturnType(Ty);
9213   }
9214 }
9215 
9216 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9217 
9218   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9219   for (auto &Arg : FI.arguments())
9220     Arg.info = classifyArgumentType(Arg.type);
9221 }
9222 
9223 namespace {
9224 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9225 public:
9226   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9227       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9228 };
9229 } // end anonymous namespace
9230 
9231 //===----------------------------------------------------------------------===//
9232 // SPARC v9 ABI Implementation.
9233 // Based on the SPARC Compliance Definition version 2.4.1.
9234 //
9235 // Function arguments a mapped to a nominal "parameter array" and promoted to
9236 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9237 // the array, structs larger than 16 bytes are passed indirectly.
9238 //
9239 // One case requires special care:
9240 //
9241 //   struct mixed {
9242 //     int i;
9243 //     float f;
9244 //   };
9245 //
9246 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9247 // parameter array, but the int is passed in an integer register, and the float
9248 // is passed in a floating point register. This is represented as two arguments
9249 // with the LLVM IR inreg attribute:
9250 //
9251 //   declare void f(i32 inreg %i, float inreg %f)
9252 //
9253 // The code generator will only allocate 4 bytes from the parameter array for
9254 // the inreg arguments. All other arguments are allocated a multiple of 8
9255 // bytes.
9256 //
9257 namespace {
9258 class SparcV9ABIInfo : public ABIInfo {
9259 public:
9260   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9261 
9262 private:
9263   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9264   void computeInfo(CGFunctionInfo &FI) const override;
9265   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9266                     QualType Ty) const override;
9267 
9268   // Coercion type builder for structs passed in registers. The coercion type
9269   // serves two purposes:
9270   //
9271   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9272   //    in registers.
9273   // 2. Expose aligned floating point elements as first-level elements, so the
9274   //    code generator knows to pass them in floating point registers.
9275   //
9276   // We also compute the InReg flag which indicates that the struct contains
9277   // aligned 32-bit floats.
9278   //
9279   struct CoerceBuilder {
9280     llvm::LLVMContext &Context;
9281     const llvm::DataLayout &DL;
9282     SmallVector<llvm::Type*, 8> Elems;
9283     uint64_t Size;
9284     bool InReg;
9285 
9286     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9287       : Context(c), DL(dl), Size(0), InReg(false) {}
9288 
9289     // Pad Elems with integers until Size is ToSize.
9290     void pad(uint64_t ToSize) {
9291       assert(ToSize >= Size && "Cannot remove elements");
9292       if (ToSize == Size)
9293         return;
9294 
9295       // Finish the current 64-bit word.
9296       uint64_t Aligned = llvm::alignTo(Size, 64);
9297       if (Aligned > Size && Aligned <= ToSize) {
9298         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9299         Size = Aligned;
9300       }
9301 
9302       // Add whole 64-bit words.
9303       while (Size + 64 <= ToSize) {
9304         Elems.push_back(llvm::Type::getInt64Ty(Context));
9305         Size += 64;
9306       }
9307 
9308       // Final in-word padding.
9309       if (Size < ToSize) {
9310         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9311         Size = ToSize;
9312       }
9313     }
9314 
9315     // Add a floating point element at Offset.
9316     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9317       // Unaligned floats are treated as integers.
9318       if (Offset % Bits)
9319         return;
9320       // The InReg flag is only required if there are any floats < 64 bits.
9321       if (Bits < 64)
9322         InReg = true;
9323       pad(Offset);
9324       Elems.push_back(Ty);
9325       Size = Offset + Bits;
9326     }
9327 
9328     // Add a struct type to the coercion type, starting at Offset (in bits).
9329     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9330       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9331       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9332         llvm::Type *ElemTy = StrTy->getElementType(i);
9333         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9334         switch (ElemTy->getTypeID()) {
9335         case llvm::Type::StructTyID:
9336           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9337           break;
9338         case llvm::Type::FloatTyID:
9339           addFloat(ElemOffset, ElemTy, 32);
9340           break;
9341         case llvm::Type::DoubleTyID:
9342           addFloat(ElemOffset, ElemTy, 64);
9343           break;
9344         case llvm::Type::FP128TyID:
9345           addFloat(ElemOffset, ElemTy, 128);
9346           break;
9347         case llvm::Type::PointerTyID:
9348           if (ElemOffset % 64 == 0) {
9349             pad(ElemOffset);
9350             Elems.push_back(ElemTy);
9351             Size += 64;
9352           }
9353           break;
9354         default:
9355           break;
9356         }
9357       }
9358     }
9359 
9360     // Check if Ty is a usable substitute for the coercion type.
9361     bool isUsableType(llvm::StructType *Ty) const {
9362       return llvm::makeArrayRef(Elems) == Ty->elements();
9363     }
9364 
9365     // Get the coercion type as a literal struct type.
9366     llvm::Type *getType() const {
9367       if (Elems.size() == 1)
9368         return Elems.front();
9369       else
9370         return llvm::StructType::get(Context, Elems);
9371     }
9372   };
9373 };
9374 } // end anonymous namespace
9375 
9376 ABIArgInfo
9377 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9378   if (Ty->isVoidType())
9379     return ABIArgInfo::getIgnore();
9380 
9381   uint64_t Size = getContext().getTypeSize(Ty);
9382 
9383   // Anything too big to fit in registers is passed with an explicit indirect
9384   // pointer / sret pointer.
9385   if (Size > SizeLimit)
9386     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9387 
9388   // Treat an enum type as its underlying type.
9389   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9390     Ty = EnumTy->getDecl()->getIntegerType();
9391 
9392   // Integer types smaller than a register are extended.
9393   if (Size < 64 && Ty->isIntegerType())
9394     return ABIArgInfo::getExtend(Ty);
9395 
9396   if (const auto *EIT = Ty->getAs<ExtIntType>())
9397     if (EIT->getNumBits() < 64)
9398       return ABIArgInfo::getExtend(Ty);
9399 
9400   // Other non-aggregates go in registers.
9401   if (!isAggregateTypeForABI(Ty))
9402     return ABIArgInfo::getDirect();
9403 
9404   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9405   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9406   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9407     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9408 
9409   // This is a small aggregate type that should be passed in registers.
9410   // Build a coercion type from the LLVM struct type.
9411   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9412   if (!StrTy)
9413     return ABIArgInfo::getDirect();
9414 
9415   CoerceBuilder CB(getVMContext(), getDataLayout());
9416   CB.addStruct(0, StrTy);
9417   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9418 
9419   // Try to use the original type for coercion.
9420   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9421 
9422   if (CB.InReg)
9423     return ABIArgInfo::getDirectInReg(CoerceTy);
9424   else
9425     return ABIArgInfo::getDirect(CoerceTy);
9426 }
9427 
9428 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9429                                   QualType Ty) const {
9430   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9431   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9432   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9433     AI.setCoerceToType(ArgTy);
9434 
9435   CharUnits SlotSize = CharUnits::fromQuantity(8);
9436 
9437   CGBuilderTy &Builder = CGF.Builder;
9438   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9439   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9440 
9441   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9442 
9443   Address ArgAddr = Address::invalid();
9444   CharUnits Stride;
9445   switch (AI.getKind()) {
9446   case ABIArgInfo::Expand:
9447   case ABIArgInfo::CoerceAndExpand:
9448   case ABIArgInfo::InAlloca:
9449     llvm_unreachable("Unsupported ABI kind for va_arg");
9450 
9451   case ABIArgInfo::Extend: {
9452     Stride = SlotSize;
9453     CharUnits Offset = SlotSize - TypeInfo.first;
9454     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9455     break;
9456   }
9457 
9458   case ABIArgInfo::Direct: {
9459     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9460     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9461     ArgAddr = Addr;
9462     break;
9463   }
9464 
9465   case ABIArgInfo::Indirect:
9466   case ABIArgInfo::IndirectAliased:
9467     Stride = SlotSize;
9468     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9469     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9470                       TypeInfo.second);
9471     break;
9472 
9473   case ABIArgInfo::Ignore:
9474     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
9475   }
9476 
9477   // Update VAList.
9478   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9479   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9480 
9481   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9482 }
9483 
9484 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9485   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9486   for (auto &I : FI.arguments())
9487     I.info = classifyType(I.type, 16 * 8);
9488 }
9489 
9490 namespace {
9491 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9492 public:
9493   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9494       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9495 
9496   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9497     return 14;
9498   }
9499 
9500   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9501                                llvm::Value *Address) const override;
9502 };
9503 } // end anonymous namespace
9504 
9505 bool
9506 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9507                                                 llvm::Value *Address) const {
9508   // This is calculated from the LLVM and GCC tables and verified
9509   // against gcc output.  AFAIK all ABIs use the same encoding.
9510 
9511   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9512 
9513   llvm::IntegerType *i8 = CGF.Int8Ty;
9514   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9515   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9516 
9517   // 0-31: the 8-byte general-purpose registers
9518   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9519 
9520   // 32-63: f0-31, the 4-byte floating-point registers
9521   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9522 
9523   //   Y   = 64
9524   //   PSR = 65
9525   //   WIM = 66
9526   //   TBR = 67
9527   //   PC  = 68
9528   //   NPC = 69
9529   //   FSR = 70
9530   //   CSR = 71
9531   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9532 
9533   // 72-87: d0-15, the 8-byte floating-point registers
9534   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9535 
9536   return false;
9537 }
9538 
9539 // ARC ABI implementation.
9540 namespace {
9541 
9542 class ARCABIInfo : public DefaultABIInfo {
9543 public:
9544   using DefaultABIInfo::DefaultABIInfo;
9545 
9546 private:
9547   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9548                     QualType Ty) const override;
9549 
9550   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9551     if (!State.FreeRegs)
9552       return;
9553     if (Info.isIndirect() && Info.getInReg())
9554       State.FreeRegs--;
9555     else if (Info.isDirect() && Info.getInReg()) {
9556       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9557       if (sz < State.FreeRegs)
9558         State.FreeRegs -= sz;
9559       else
9560         State.FreeRegs = 0;
9561     }
9562   }
9563 
9564   void computeInfo(CGFunctionInfo &FI) const override {
9565     CCState State(FI);
9566     // ARC uses 8 registers to pass arguments.
9567     State.FreeRegs = 8;
9568 
9569     if (!getCXXABI().classifyReturnType(FI))
9570       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9571     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9572     for (auto &I : FI.arguments()) {
9573       I.info = classifyArgumentType(I.type, State.FreeRegs);
9574       updateState(I.info, I.type, State);
9575     }
9576   }
9577 
9578   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9579   ABIArgInfo getIndirectByValue(QualType Ty) const;
9580   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9581   ABIArgInfo classifyReturnType(QualType RetTy) const;
9582 };
9583 
9584 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9585 public:
9586   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9587       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9588 };
9589 
9590 
9591 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9592   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9593                        getNaturalAlignIndirect(Ty, false);
9594 }
9595 
9596 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9597   // Compute the byval alignment.
9598   const unsigned MinABIStackAlignInBytes = 4;
9599   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9600   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9601                                  TypeAlign > MinABIStackAlignInBytes);
9602 }
9603 
9604 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9605                               QualType Ty) const {
9606   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9607                           getContext().getTypeInfoInChars(Ty),
9608                           CharUnits::fromQuantity(4), true);
9609 }
9610 
9611 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9612                                             uint8_t FreeRegs) const {
9613   // Handle the generic C++ ABI.
9614   const RecordType *RT = Ty->getAs<RecordType>();
9615   if (RT) {
9616     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9617     if (RAA == CGCXXABI::RAA_Indirect)
9618       return getIndirectByRef(Ty, FreeRegs > 0);
9619 
9620     if (RAA == CGCXXABI::RAA_DirectInMemory)
9621       return getIndirectByValue(Ty);
9622   }
9623 
9624   // Treat an enum type as its underlying type.
9625   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9626     Ty = EnumTy->getDecl()->getIntegerType();
9627 
9628   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9629 
9630   if (isAggregateTypeForABI(Ty)) {
9631     // Structures with flexible arrays are always indirect.
9632     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9633       return getIndirectByValue(Ty);
9634 
9635     // Ignore empty structs/unions.
9636     if (isEmptyRecord(getContext(), Ty, true))
9637       return ABIArgInfo::getIgnore();
9638 
9639     llvm::LLVMContext &LLVMContext = getVMContext();
9640 
9641     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9642     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9643     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9644 
9645     return FreeRegs >= SizeInRegs ?
9646         ABIArgInfo::getDirectInReg(Result) :
9647         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9648   }
9649 
9650   if (const auto *EIT = Ty->getAs<ExtIntType>())
9651     if (EIT->getNumBits() > 64)
9652       return getIndirectByValue(Ty);
9653 
9654   return isPromotableIntegerTypeForABI(Ty)
9655              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9656                                        : ABIArgInfo::getExtend(Ty))
9657              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9658                                        : ABIArgInfo::getDirect());
9659 }
9660 
9661 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9662   if (RetTy->isAnyComplexType())
9663     return ABIArgInfo::getDirectInReg();
9664 
9665   // Arguments of size > 4 registers are indirect.
9666   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9667   if (RetSize > 4)
9668     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9669 
9670   return DefaultABIInfo::classifyReturnType(RetTy);
9671 }
9672 
9673 } // End anonymous namespace.
9674 
9675 //===----------------------------------------------------------------------===//
9676 // XCore ABI Implementation
9677 //===----------------------------------------------------------------------===//
9678 
9679 namespace {
9680 
9681 /// A SmallStringEnc instance is used to build up the TypeString by passing
9682 /// it by reference between functions that append to it.
9683 typedef llvm::SmallString<128> SmallStringEnc;
9684 
9685 /// TypeStringCache caches the meta encodings of Types.
9686 ///
9687 /// The reason for caching TypeStrings is two fold:
9688 ///   1. To cache a type's encoding for later uses;
9689 ///   2. As a means to break recursive member type inclusion.
9690 ///
9691 /// A cache Entry can have a Status of:
9692 ///   NonRecursive:   The type encoding is not recursive;
9693 ///   Recursive:      The type encoding is recursive;
9694 ///   Incomplete:     An incomplete TypeString;
9695 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9696 ///                   Recursive type encoding.
9697 ///
9698 /// A NonRecursive entry will have all of its sub-members expanded as fully
9699 /// as possible. Whilst it may contain types which are recursive, the type
9700 /// itself is not recursive and thus its encoding may be safely used whenever
9701 /// the type is encountered.
9702 ///
9703 /// A Recursive entry will have all of its sub-members expanded as fully as
9704 /// possible. The type itself is recursive and it may contain other types which
9705 /// are recursive. The Recursive encoding must not be used during the expansion
9706 /// of a recursive type's recursive branch. For simplicity the code uses
9707 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9708 ///
9709 /// An Incomplete entry is always a RecordType and only encodes its
9710 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9711 /// are placed into the cache during type expansion as a means to identify and
9712 /// handle recursive inclusion of types as sub-members. If there is recursion
9713 /// the entry becomes IncompleteUsed.
9714 ///
9715 /// During the expansion of a RecordType's members:
9716 ///
9717 ///   If the cache contains a NonRecursive encoding for the member type, the
9718 ///   cached encoding is used;
9719 ///
9720 ///   If the cache contains a Recursive encoding for the member type, the
9721 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9722 ///
9723 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9724 ///   cache to break potential recursive inclusion of itself as a sub-member;
9725 ///
9726 ///   Once a member RecordType has been expanded, its temporary incomplete
9727 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9728 ///   it is swapped back in;
9729 ///
9730 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9731 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9732 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9733 ///
9734 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9735 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9736 ///   Else the member is part of a recursive type and thus the recursion has
9737 ///   been exited too soon for the encoding to be correct for the member.
9738 ///
9739 class TypeStringCache {
9740   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9741   struct Entry {
9742     std::string Str;     // The encoded TypeString for the type.
9743     enum Status State;   // Information about the encoding in 'Str'.
9744     std::string Swapped; // A temporary place holder for a Recursive encoding
9745                          // during the expansion of RecordType's members.
9746   };
9747   std::map<const IdentifierInfo *, struct Entry> Map;
9748   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9749   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9750 public:
9751   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9752   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9753   bool removeIncomplete(const IdentifierInfo *ID);
9754   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9755                      bool IsRecursive);
9756   StringRef lookupStr(const IdentifierInfo *ID);
9757 };
9758 
9759 /// TypeString encodings for enum & union fields must be order.
9760 /// FieldEncoding is a helper for this ordering process.
9761 class FieldEncoding {
9762   bool HasName;
9763   std::string Enc;
9764 public:
9765   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9766   StringRef str() { return Enc; }
9767   bool operator<(const FieldEncoding &rhs) const {
9768     if (HasName != rhs.HasName) return HasName;
9769     return Enc < rhs.Enc;
9770   }
9771 };
9772 
9773 class XCoreABIInfo : public DefaultABIInfo {
9774 public:
9775   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9776   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9777                     QualType Ty) const override;
9778 };
9779 
9780 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9781   mutable TypeStringCache TSC;
9782   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9783                     const CodeGen::CodeGenModule &M) const;
9784 
9785 public:
9786   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9787       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9788   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9789                           const llvm::MapVector<GlobalDecl, StringRef>
9790                               &MangledDeclNames) const override;
9791 };
9792 
9793 } // End anonymous namespace.
9794 
9795 // TODO: this implementation is likely now redundant with the default
9796 // EmitVAArg.
9797 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9798                                 QualType Ty) const {
9799   CGBuilderTy &Builder = CGF.Builder;
9800 
9801   // Get the VAList.
9802   CharUnits SlotSize = CharUnits::fromQuantity(4);
9803   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9804 
9805   // Handle the argument.
9806   ABIArgInfo AI = classifyArgumentType(Ty);
9807   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9808   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9809   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9810     AI.setCoerceToType(ArgTy);
9811   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9812 
9813   Address Val = Address::invalid();
9814   CharUnits ArgSize = CharUnits::Zero();
9815   switch (AI.getKind()) {
9816   case ABIArgInfo::Expand:
9817   case ABIArgInfo::CoerceAndExpand:
9818   case ABIArgInfo::InAlloca:
9819     llvm_unreachable("Unsupported ABI kind for va_arg");
9820   case ABIArgInfo::Ignore:
9821     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9822     ArgSize = CharUnits::Zero();
9823     break;
9824   case ABIArgInfo::Extend:
9825   case ABIArgInfo::Direct:
9826     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9827     ArgSize = CharUnits::fromQuantity(
9828                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9829     ArgSize = ArgSize.alignTo(SlotSize);
9830     break;
9831   case ABIArgInfo::Indirect:
9832   case ABIArgInfo::IndirectAliased:
9833     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9834     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9835     ArgSize = SlotSize;
9836     break;
9837   }
9838 
9839   // Increment the VAList.
9840   if (!ArgSize.isZero()) {
9841     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9842     Builder.CreateStore(APN.getPointer(), VAListAddr);
9843   }
9844 
9845   return Val;
9846 }
9847 
9848 /// During the expansion of a RecordType, an incomplete TypeString is placed
9849 /// into the cache as a means to identify and break recursion.
9850 /// If there is a Recursive encoding in the cache, it is swapped out and will
9851 /// be reinserted by removeIncomplete().
9852 /// All other types of encoding should have been used rather than arriving here.
9853 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9854                                     std::string StubEnc) {
9855   if (!ID)
9856     return;
9857   Entry &E = Map[ID];
9858   assert( (E.Str.empty() || E.State == Recursive) &&
9859          "Incorrectly use of addIncomplete");
9860   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9861   E.Swapped.swap(E.Str); // swap out the Recursive
9862   E.Str.swap(StubEnc);
9863   E.State = Incomplete;
9864   ++IncompleteCount;
9865 }
9866 
9867 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9868 /// must be removed from the cache.
9869 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9870 /// Returns true if the RecordType was defined recursively.
9871 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9872   if (!ID)
9873     return false;
9874   auto I = Map.find(ID);
9875   assert(I != Map.end() && "Entry not present");
9876   Entry &E = I->second;
9877   assert( (E.State == Incomplete ||
9878            E.State == IncompleteUsed) &&
9879          "Entry must be an incomplete type");
9880   bool IsRecursive = false;
9881   if (E.State == IncompleteUsed) {
9882     // We made use of our Incomplete encoding, thus we are recursive.
9883     IsRecursive = true;
9884     --IncompleteUsedCount;
9885   }
9886   if (E.Swapped.empty())
9887     Map.erase(I);
9888   else {
9889     // Swap the Recursive back.
9890     E.Swapped.swap(E.Str);
9891     E.Swapped.clear();
9892     E.State = Recursive;
9893   }
9894   --IncompleteCount;
9895   return IsRecursive;
9896 }
9897 
9898 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9899 /// Recursive (viz: all sub-members were expanded as fully as possible).
9900 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9901                                     bool IsRecursive) {
9902   if (!ID || IncompleteUsedCount)
9903     return; // No key or it is is an incomplete sub-type so don't add.
9904   Entry &E = Map[ID];
9905   if (IsRecursive && !E.Str.empty()) {
9906     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9907            "This is not the same Recursive entry");
9908     // The parent container was not recursive after all, so we could have used
9909     // this Recursive sub-member entry after all, but we assumed the worse when
9910     // we started viz: IncompleteCount!=0.
9911     return;
9912   }
9913   assert(E.Str.empty() && "Entry already present");
9914   E.Str = Str.str();
9915   E.State = IsRecursive? Recursive : NonRecursive;
9916 }
9917 
9918 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9919 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9920 /// encoding is Recursive, return an empty StringRef.
9921 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9922   if (!ID)
9923     return StringRef();   // We have no key.
9924   auto I = Map.find(ID);
9925   if (I == Map.end())
9926     return StringRef();   // We have no encoding.
9927   Entry &E = I->second;
9928   if (E.State == Recursive && IncompleteCount)
9929     return StringRef();   // We don't use Recursive encodings for member types.
9930 
9931   if (E.State == Incomplete) {
9932     // The incomplete type is being used to break out of recursion.
9933     E.State = IncompleteUsed;
9934     ++IncompleteUsedCount;
9935   }
9936   return E.Str;
9937 }
9938 
9939 /// The XCore ABI includes a type information section that communicates symbol
9940 /// type information to the linker. The linker uses this information to verify
9941 /// safety/correctness of things such as array bound and pointers et al.
9942 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9943 /// This type information (TypeString) is emitted into meta data for all global
9944 /// symbols: definitions, declarations, functions & variables.
9945 ///
9946 /// The TypeString carries type, qualifier, name, size & value details.
9947 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9948 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9949 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9950 ///
9951 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9952                           const CodeGen::CodeGenModule &CGM,
9953                           TypeStringCache &TSC);
9954 
9955 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9956 void XCoreTargetCodeGenInfo::emitTargetMD(
9957     const Decl *D, llvm::GlobalValue *GV,
9958     const CodeGen::CodeGenModule &CGM) const {
9959   SmallStringEnc Enc;
9960   if (getTypeString(Enc, D, CGM, TSC)) {
9961     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9962     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9963                                 llvm::MDString::get(Ctx, Enc.str())};
9964     llvm::NamedMDNode *MD =
9965       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9966     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9967   }
9968 }
9969 
9970 void XCoreTargetCodeGenInfo::emitTargetMetadata(
9971     CodeGen::CodeGenModule &CGM,
9972     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
9973   // Warning, new MangledDeclNames may be appended within this loop.
9974   // We rely on MapVector insertions adding new elements to the end
9975   // of the container.
9976   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
9977     auto Val = *(MangledDeclNames.begin() + I);
9978     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
9979     if (GV) {
9980       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
9981       emitTargetMD(D, GV, CGM);
9982     }
9983   }
9984 }
9985 //===----------------------------------------------------------------------===//
9986 // SPIR ABI Implementation
9987 //===----------------------------------------------------------------------===//
9988 
9989 namespace {
9990 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9991 public:
9992   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9993       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
9994   unsigned getOpenCLKernelCallingConv() const override;
9995 };
9996 
9997 } // End anonymous namespace.
9998 
9999 namespace clang {
10000 namespace CodeGen {
10001 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10002   DefaultABIInfo SPIRABI(CGM.getTypes());
10003   SPIRABI.computeInfo(FI);
10004 }
10005 }
10006 }
10007 
10008 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10009   return llvm::CallingConv::SPIR_KERNEL;
10010 }
10011 
10012 static bool appendType(SmallStringEnc &Enc, QualType QType,
10013                        const CodeGen::CodeGenModule &CGM,
10014                        TypeStringCache &TSC);
10015 
10016 /// Helper function for appendRecordType().
10017 /// Builds a SmallVector containing the encoded field types in declaration
10018 /// order.
10019 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10020                              const RecordDecl *RD,
10021                              const CodeGen::CodeGenModule &CGM,
10022                              TypeStringCache &TSC) {
10023   for (const auto *Field : RD->fields()) {
10024     SmallStringEnc Enc;
10025     Enc += "m(";
10026     Enc += Field->getName();
10027     Enc += "){";
10028     if (Field->isBitField()) {
10029       Enc += "b(";
10030       llvm::raw_svector_ostream OS(Enc);
10031       OS << Field->getBitWidthValue(CGM.getContext());
10032       Enc += ':';
10033     }
10034     if (!appendType(Enc, Field->getType(), CGM, TSC))
10035       return false;
10036     if (Field->isBitField())
10037       Enc += ')';
10038     Enc += '}';
10039     FE.emplace_back(!Field->getName().empty(), Enc);
10040   }
10041   return true;
10042 }
10043 
10044 /// Appends structure and union types to Enc and adds encoding to cache.
10045 /// Recursively calls appendType (via extractFieldType) for each field.
10046 /// Union types have their fields ordered according to the ABI.
10047 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10048                              const CodeGen::CodeGenModule &CGM,
10049                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10050   // Append the cached TypeString if we have one.
10051   StringRef TypeString = TSC.lookupStr(ID);
10052   if (!TypeString.empty()) {
10053     Enc += TypeString;
10054     return true;
10055   }
10056 
10057   // Start to emit an incomplete TypeString.
10058   size_t Start = Enc.size();
10059   Enc += (RT->isUnionType()? 'u' : 's');
10060   Enc += '(';
10061   if (ID)
10062     Enc += ID->getName();
10063   Enc += "){";
10064 
10065   // We collect all encoded fields and order as necessary.
10066   bool IsRecursive = false;
10067   const RecordDecl *RD = RT->getDecl()->getDefinition();
10068   if (RD && !RD->field_empty()) {
10069     // An incomplete TypeString stub is placed in the cache for this RecordType
10070     // so that recursive calls to this RecordType will use it whilst building a
10071     // complete TypeString for this RecordType.
10072     SmallVector<FieldEncoding, 16> FE;
10073     std::string StubEnc(Enc.substr(Start).str());
10074     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10075     TSC.addIncomplete(ID, std::move(StubEnc));
10076     if (!extractFieldType(FE, RD, CGM, TSC)) {
10077       (void) TSC.removeIncomplete(ID);
10078       return false;
10079     }
10080     IsRecursive = TSC.removeIncomplete(ID);
10081     // The ABI requires unions to be sorted but not structures.
10082     // See FieldEncoding::operator< for sort algorithm.
10083     if (RT->isUnionType())
10084       llvm::sort(FE);
10085     // We can now complete the TypeString.
10086     unsigned E = FE.size();
10087     for (unsigned I = 0; I != E; ++I) {
10088       if (I)
10089         Enc += ',';
10090       Enc += FE[I].str();
10091     }
10092   }
10093   Enc += '}';
10094   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10095   return true;
10096 }
10097 
10098 /// Appends enum types to Enc and adds the encoding to the cache.
10099 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10100                            TypeStringCache &TSC,
10101                            const IdentifierInfo *ID) {
10102   // Append the cached TypeString if we have one.
10103   StringRef TypeString = TSC.lookupStr(ID);
10104   if (!TypeString.empty()) {
10105     Enc += TypeString;
10106     return true;
10107   }
10108 
10109   size_t Start = Enc.size();
10110   Enc += "e(";
10111   if (ID)
10112     Enc += ID->getName();
10113   Enc += "){";
10114 
10115   // We collect all encoded enumerations and order them alphanumerically.
10116   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10117     SmallVector<FieldEncoding, 16> FE;
10118     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10119          ++I) {
10120       SmallStringEnc EnumEnc;
10121       EnumEnc += "m(";
10122       EnumEnc += I->getName();
10123       EnumEnc += "){";
10124       I->getInitVal().toString(EnumEnc);
10125       EnumEnc += '}';
10126       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10127     }
10128     llvm::sort(FE);
10129     unsigned E = FE.size();
10130     for (unsigned I = 0; I != E; ++I) {
10131       if (I)
10132         Enc += ',';
10133       Enc += FE[I].str();
10134     }
10135   }
10136   Enc += '}';
10137   TSC.addIfComplete(ID, Enc.substr(Start), false);
10138   return true;
10139 }
10140 
10141 /// Appends type's qualifier to Enc.
10142 /// This is done prior to appending the type's encoding.
10143 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10144   // Qualifiers are emitted in alphabetical order.
10145   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10146   int Lookup = 0;
10147   if (QT.isConstQualified())
10148     Lookup += 1<<0;
10149   if (QT.isRestrictQualified())
10150     Lookup += 1<<1;
10151   if (QT.isVolatileQualified())
10152     Lookup += 1<<2;
10153   Enc += Table[Lookup];
10154 }
10155 
10156 /// Appends built-in types to Enc.
10157 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10158   const char *EncType;
10159   switch (BT->getKind()) {
10160     case BuiltinType::Void:
10161       EncType = "0";
10162       break;
10163     case BuiltinType::Bool:
10164       EncType = "b";
10165       break;
10166     case BuiltinType::Char_U:
10167       EncType = "uc";
10168       break;
10169     case BuiltinType::UChar:
10170       EncType = "uc";
10171       break;
10172     case BuiltinType::SChar:
10173       EncType = "sc";
10174       break;
10175     case BuiltinType::UShort:
10176       EncType = "us";
10177       break;
10178     case BuiltinType::Short:
10179       EncType = "ss";
10180       break;
10181     case BuiltinType::UInt:
10182       EncType = "ui";
10183       break;
10184     case BuiltinType::Int:
10185       EncType = "si";
10186       break;
10187     case BuiltinType::ULong:
10188       EncType = "ul";
10189       break;
10190     case BuiltinType::Long:
10191       EncType = "sl";
10192       break;
10193     case BuiltinType::ULongLong:
10194       EncType = "ull";
10195       break;
10196     case BuiltinType::LongLong:
10197       EncType = "sll";
10198       break;
10199     case BuiltinType::Float:
10200       EncType = "ft";
10201       break;
10202     case BuiltinType::Double:
10203       EncType = "d";
10204       break;
10205     case BuiltinType::LongDouble:
10206       EncType = "ld";
10207       break;
10208     default:
10209       return false;
10210   }
10211   Enc += EncType;
10212   return true;
10213 }
10214 
10215 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10216 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10217                               const CodeGen::CodeGenModule &CGM,
10218                               TypeStringCache &TSC) {
10219   Enc += "p(";
10220   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10221     return false;
10222   Enc += ')';
10223   return true;
10224 }
10225 
10226 /// Appends array encoding to Enc before calling appendType for the element.
10227 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10228                             const ArrayType *AT,
10229                             const CodeGen::CodeGenModule &CGM,
10230                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10231   if (AT->getSizeModifier() != ArrayType::Normal)
10232     return false;
10233   Enc += "a(";
10234   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10235     CAT->getSize().toStringUnsigned(Enc);
10236   else
10237     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10238   Enc += ':';
10239   // The Qualifiers should be attached to the type rather than the array.
10240   appendQualifier(Enc, QT);
10241   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10242     return false;
10243   Enc += ')';
10244   return true;
10245 }
10246 
10247 /// Appends a function encoding to Enc, calling appendType for the return type
10248 /// and the arguments.
10249 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10250                              const CodeGen::CodeGenModule &CGM,
10251                              TypeStringCache &TSC) {
10252   Enc += "f{";
10253   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10254     return false;
10255   Enc += "}(";
10256   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10257     // N.B. we are only interested in the adjusted param types.
10258     auto I = FPT->param_type_begin();
10259     auto E = FPT->param_type_end();
10260     if (I != E) {
10261       do {
10262         if (!appendType(Enc, *I, CGM, TSC))
10263           return false;
10264         ++I;
10265         if (I != E)
10266           Enc += ',';
10267       } while (I != E);
10268       if (FPT->isVariadic())
10269         Enc += ",va";
10270     } else {
10271       if (FPT->isVariadic())
10272         Enc += "va";
10273       else
10274         Enc += '0';
10275     }
10276   }
10277   Enc += ')';
10278   return true;
10279 }
10280 
10281 /// Handles the type's qualifier before dispatching a call to handle specific
10282 /// type encodings.
10283 static bool appendType(SmallStringEnc &Enc, QualType QType,
10284                        const CodeGen::CodeGenModule &CGM,
10285                        TypeStringCache &TSC) {
10286 
10287   QualType QT = QType.getCanonicalType();
10288 
10289   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10290     // The Qualifiers should be attached to the type rather than the array.
10291     // Thus we don't call appendQualifier() here.
10292     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10293 
10294   appendQualifier(Enc, QT);
10295 
10296   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10297     return appendBuiltinType(Enc, BT);
10298 
10299   if (const PointerType *PT = QT->getAs<PointerType>())
10300     return appendPointerType(Enc, PT, CGM, TSC);
10301 
10302   if (const EnumType *ET = QT->getAs<EnumType>())
10303     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10304 
10305   if (const RecordType *RT = QT->getAsStructureType())
10306     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10307 
10308   if (const RecordType *RT = QT->getAsUnionType())
10309     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10310 
10311   if (const FunctionType *FT = QT->getAs<FunctionType>())
10312     return appendFunctionType(Enc, FT, CGM, TSC);
10313 
10314   return false;
10315 }
10316 
10317 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10318                           const CodeGen::CodeGenModule &CGM,
10319                           TypeStringCache &TSC) {
10320   if (!D)
10321     return false;
10322 
10323   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10324     if (FD->getLanguageLinkage() != CLanguageLinkage)
10325       return false;
10326     return appendType(Enc, FD->getType(), CGM, TSC);
10327   }
10328 
10329   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10330     if (VD->getLanguageLinkage() != CLanguageLinkage)
10331       return false;
10332     QualType QT = VD->getType().getCanonicalType();
10333     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10334       // Global ArrayTypes are given a size of '*' if the size is unknown.
10335       // The Qualifiers should be attached to the type rather than the array.
10336       // Thus we don't call appendQualifier() here.
10337       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10338     }
10339     return appendType(Enc, QT, CGM, TSC);
10340   }
10341   return false;
10342 }
10343 
10344 //===----------------------------------------------------------------------===//
10345 // RISCV ABI Implementation
10346 //===----------------------------------------------------------------------===//
10347 
10348 namespace {
10349 class RISCVABIInfo : public DefaultABIInfo {
10350 private:
10351   // Size of the integer ('x') registers in bits.
10352   unsigned XLen;
10353   // Size of the floating point ('f') registers in bits. Note that the target
10354   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10355   // with soft float ABI has FLen==0).
10356   unsigned FLen;
10357   static const int NumArgGPRs = 8;
10358   static const int NumArgFPRs = 8;
10359   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10360                                       llvm::Type *&Field1Ty,
10361                                       CharUnits &Field1Off,
10362                                       llvm::Type *&Field2Ty,
10363                                       CharUnits &Field2Off) const;
10364 
10365 public:
10366   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10367       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10368 
10369   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10370   // non-virtual, but computeInfo is virtual, so we overload it.
10371   void computeInfo(CGFunctionInfo &FI) const override;
10372 
10373   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10374                                   int &ArgFPRsLeft) const;
10375   ABIArgInfo classifyReturnType(QualType RetTy) const;
10376 
10377   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10378                     QualType Ty) const override;
10379 
10380   ABIArgInfo extendType(QualType Ty) const;
10381 
10382   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10383                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10384                                 CharUnits &Field2Off, int &NeededArgGPRs,
10385                                 int &NeededArgFPRs) const;
10386   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10387                                                CharUnits Field1Off,
10388                                                llvm::Type *Field2Ty,
10389                                                CharUnits Field2Off) const;
10390 };
10391 } // end anonymous namespace
10392 
10393 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10394   QualType RetTy = FI.getReturnType();
10395   if (!getCXXABI().classifyReturnType(FI))
10396     FI.getReturnInfo() = classifyReturnType(RetTy);
10397 
10398   // IsRetIndirect is true if classifyArgumentType indicated the value should
10399   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10400   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10401   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10402   // list and pass indirectly on RV32.
10403   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10404   if (!IsRetIndirect && RetTy->isScalarType() &&
10405       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10406     if (RetTy->isComplexType() && FLen) {
10407       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
10408       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10409     } else {
10410       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10411       IsRetIndirect = true;
10412     }
10413   }
10414 
10415   // We must track the number of GPRs used in order to conform to the RISC-V
10416   // ABI, as integer scalars passed in registers should have signext/zeroext
10417   // when promoted, but are anyext if passed on the stack. As GPR usage is
10418   // different for variadic arguments, we must also track whether we are
10419   // examining a vararg or not.
10420   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10421   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10422   int NumFixedArgs = FI.getNumRequiredArgs();
10423 
10424   int ArgNum = 0;
10425   for (auto &ArgInfo : FI.arguments()) {
10426     bool IsFixed = ArgNum < NumFixedArgs;
10427     ArgInfo.info =
10428         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10429     ArgNum++;
10430   }
10431 }
10432 
10433 // Returns true if the struct is a potential candidate for the floating point
10434 // calling convention. If this function returns true, the caller is
10435 // responsible for checking that if there is only a single field then that
10436 // field is a float.
10437 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10438                                                   llvm::Type *&Field1Ty,
10439                                                   CharUnits &Field1Off,
10440                                                   llvm::Type *&Field2Ty,
10441                                                   CharUnits &Field2Off) const {
10442   bool IsInt = Ty->isIntegralOrEnumerationType();
10443   bool IsFloat = Ty->isRealFloatingType();
10444 
10445   if (IsInt || IsFloat) {
10446     uint64_t Size = getContext().getTypeSize(Ty);
10447     if (IsInt && Size > XLen)
10448       return false;
10449     // Can't be eligible if larger than the FP registers. Half precision isn't
10450     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10451     // default to the integer ABI in that case.
10452     if (IsFloat && (Size > FLen || Size < 32))
10453       return false;
10454     // Can't be eligible if an integer type was already found (int+int pairs
10455     // are not eligible).
10456     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10457       return false;
10458     if (!Field1Ty) {
10459       Field1Ty = CGT.ConvertType(Ty);
10460       Field1Off = CurOff;
10461       return true;
10462     }
10463     if (!Field2Ty) {
10464       Field2Ty = CGT.ConvertType(Ty);
10465       Field2Off = CurOff;
10466       return true;
10467     }
10468     return false;
10469   }
10470 
10471   if (auto CTy = Ty->getAs<ComplexType>()) {
10472     if (Field1Ty)
10473       return false;
10474     QualType EltTy = CTy->getElementType();
10475     if (getContext().getTypeSize(EltTy) > FLen)
10476       return false;
10477     Field1Ty = CGT.ConvertType(EltTy);
10478     Field1Off = CurOff;
10479     assert(CurOff.isZero() && "Unexpected offset for first field");
10480     Field2Ty = Field1Ty;
10481     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10482     return true;
10483   }
10484 
10485   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10486     uint64_t ArraySize = ATy->getSize().getZExtValue();
10487     QualType EltTy = ATy->getElementType();
10488     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10489     for (uint64_t i = 0; i < ArraySize; ++i) {
10490       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10491                                                 Field1Off, Field2Ty, Field2Off);
10492       if (!Ret)
10493         return false;
10494       CurOff += EltSize;
10495     }
10496     return true;
10497   }
10498 
10499   if (const auto *RTy = Ty->getAs<RecordType>()) {
10500     // Structures with either a non-trivial destructor or a non-trivial
10501     // copy constructor are not eligible for the FP calling convention.
10502     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10503       return false;
10504     if (isEmptyRecord(getContext(), Ty, true))
10505       return true;
10506     const RecordDecl *RD = RTy->getDecl();
10507     // Unions aren't eligible unless they're empty (which is caught above).
10508     if (RD->isUnion())
10509       return false;
10510     int ZeroWidthBitFieldCount = 0;
10511     for (const FieldDecl *FD : RD->fields()) {
10512       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10513       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10514       QualType QTy = FD->getType();
10515       if (FD->isBitField()) {
10516         unsigned BitWidth = FD->getBitWidthValue(getContext());
10517         // Allow a bitfield with a type greater than XLen as long as the
10518         // bitwidth is XLen or less.
10519         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10520           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10521         if (BitWidth == 0) {
10522           ZeroWidthBitFieldCount++;
10523           continue;
10524         }
10525       }
10526 
10527       bool Ret = detectFPCCEligibleStructHelper(
10528           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10529           Field1Ty, Field1Off, Field2Ty, Field2Off);
10530       if (!Ret)
10531         return false;
10532 
10533       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10534       // or int+fp structs, but are ignored for a struct with an fp field and
10535       // any number of zero-width bitfields.
10536       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10537         return false;
10538     }
10539     return Field1Ty != nullptr;
10540   }
10541 
10542   return false;
10543 }
10544 
10545 // Determine if a struct is eligible for passing according to the floating
10546 // point calling convention (i.e., when flattened it contains a single fp
10547 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10548 // NeededArgGPRs are incremented appropriately.
10549 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10550                                             CharUnits &Field1Off,
10551                                             llvm::Type *&Field2Ty,
10552                                             CharUnits &Field2Off,
10553                                             int &NeededArgGPRs,
10554                                             int &NeededArgFPRs) const {
10555   Field1Ty = nullptr;
10556   Field2Ty = nullptr;
10557   NeededArgGPRs = 0;
10558   NeededArgFPRs = 0;
10559   bool IsCandidate = detectFPCCEligibleStructHelper(
10560       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10561   // Not really a candidate if we have a single int but no float.
10562   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10563     return false;
10564   if (!IsCandidate)
10565     return false;
10566   if (Field1Ty && Field1Ty->isFloatingPointTy())
10567     NeededArgFPRs++;
10568   else if (Field1Ty)
10569     NeededArgGPRs++;
10570   if (Field2Ty && Field2Ty->isFloatingPointTy())
10571     NeededArgFPRs++;
10572   else if (Field2Ty)
10573     NeededArgGPRs++;
10574   return IsCandidate;
10575 }
10576 
10577 // Call getCoerceAndExpand for the two-element flattened struct described by
10578 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10579 // appropriate coerceToType and unpaddedCoerceToType.
10580 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10581     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10582     CharUnits Field2Off) const {
10583   SmallVector<llvm::Type *, 3> CoerceElts;
10584   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10585   if (!Field1Off.isZero())
10586     CoerceElts.push_back(llvm::ArrayType::get(
10587         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10588 
10589   CoerceElts.push_back(Field1Ty);
10590   UnpaddedCoerceElts.push_back(Field1Ty);
10591 
10592   if (!Field2Ty) {
10593     return ABIArgInfo::getCoerceAndExpand(
10594         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10595         UnpaddedCoerceElts[0]);
10596   }
10597 
10598   CharUnits Field2Align =
10599       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10600   CharUnits Field1Size =
10601       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10602   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
10603 
10604   CharUnits Padding = CharUnits::Zero();
10605   if (Field2Off > Field2OffNoPadNoPack)
10606     Padding = Field2Off - Field2OffNoPadNoPack;
10607   else if (Field2Off != Field2Align && Field2Off > Field1Size)
10608     Padding = Field2Off - Field1Size;
10609 
10610   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10611 
10612   if (!Padding.isZero())
10613     CoerceElts.push_back(llvm::ArrayType::get(
10614         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10615 
10616   CoerceElts.push_back(Field2Ty);
10617   UnpaddedCoerceElts.push_back(Field2Ty);
10618 
10619   auto CoerceToType =
10620       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10621   auto UnpaddedCoerceToType =
10622       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10623 
10624   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10625 }
10626 
10627 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10628                                               int &ArgGPRsLeft,
10629                                               int &ArgFPRsLeft) const {
10630   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10631   Ty = useFirstFieldIfTransparentUnion(Ty);
10632 
10633   // Structures with either a non-trivial destructor or a non-trivial
10634   // copy constructor are always passed indirectly.
10635   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10636     if (ArgGPRsLeft)
10637       ArgGPRsLeft -= 1;
10638     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10639                                            CGCXXABI::RAA_DirectInMemory);
10640   }
10641 
10642   // Ignore empty structs/unions.
10643   if (isEmptyRecord(getContext(), Ty, true))
10644     return ABIArgInfo::getIgnore();
10645 
10646   uint64_t Size = getContext().getTypeSize(Ty);
10647 
10648   // Pass floating point values via FPRs if possible.
10649   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10650       FLen >= Size && ArgFPRsLeft) {
10651     ArgFPRsLeft--;
10652     return ABIArgInfo::getDirect();
10653   }
10654 
10655   // Complex types for the hard float ABI must be passed direct rather than
10656   // using CoerceAndExpand.
10657   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10658     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10659     if (getContext().getTypeSize(EltTy) <= FLen) {
10660       ArgFPRsLeft -= 2;
10661       return ABIArgInfo::getDirect();
10662     }
10663   }
10664 
10665   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10666     llvm::Type *Field1Ty = nullptr;
10667     llvm::Type *Field2Ty = nullptr;
10668     CharUnits Field1Off = CharUnits::Zero();
10669     CharUnits Field2Off = CharUnits::Zero();
10670     int NeededArgGPRs;
10671     int NeededArgFPRs;
10672     bool IsCandidate =
10673         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10674                                  NeededArgGPRs, NeededArgFPRs);
10675     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10676         NeededArgFPRs <= ArgFPRsLeft) {
10677       ArgGPRsLeft -= NeededArgGPRs;
10678       ArgFPRsLeft -= NeededArgFPRs;
10679       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10680                                                Field2Off);
10681     }
10682   }
10683 
10684   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10685   bool MustUseStack = false;
10686   // Determine the number of GPRs needed to pass the current argument
10687   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10688   // register pairs, so may consume 3 registers.
10689   int NeededArgGPRs = 1;
10690   if (!IsFixed && NeededAlign == 2 * XLen)
10691     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10692   else if (Size > XLen && Size <= 2 * XLen)
10693     NeededArgGPRs = 2;
10694 
10695   if (NeededArgGPRs > ArgGPRsLeft) {
10696     MustUseStack = true;
10697     NeededArgGPRs = ArgGPRsLeft;
10698   }
10699 
10700   ArgGPRsLeft -= NeededArgGPRs;
10701 
10702   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10703     // Treat an enum type as its underlying type.
10704     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10705       Ty = EnumTy->getDecl()->getIntegerType();
10706 
10707     // All integral types are promoted to XLen width, unless passed on the
10708     // stack.
10709     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10710       return extendType(Ty);
10711     }
10712 
10713     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10714       if (EIT->getNumBits() < XLen && !MustUseStack)
10715         return extendType(Ty);
10716       if (EIT->getNumBits() > 128 ||
10717           (!getContext().getTargetInfo().hasInt128Type() &&
10718            EIT->getNumBits() > 64))
10719         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10720     }
10721 
10722     return ABIArgInfo::getDirect();
10723   }
10724 
10725   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10726   // so coerce to integers.
10727   if (Size <= 2 * XLen) {
10728     unsigned Alignment = getContext().getTypeAlign(Ty);
10729 
10730     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10731     // required, and a 2-element XLen array if only XLen alignment is required.
10732     if (Size <= XLen) {
10733       return ABIArgInfo::getDirect(
10734           llvm::IntegerType::get(getVMContext(), XLen));
10735     } else if (Alignment == 2 * XLen) {
10736       return ABIArgInfo::getDirect(
10737           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10738     } else {
10739       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10740           llvm::IntegerType::get(getVMContext(), XLen), 2));
10741     }
10742   }
10743   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10744 }
10745 
10746 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10747   if (RetTy->isVoidType())
10748     return ABIArgInfo::getIgnore();
10749 
10750   int ArgGPRsLeft = 2;
10751   int ArgFPRsLeft = FLen ? 2 : 0;
10752 
10753   // The rules for return and argument types are the same, so defer to
10754   // classifyArgumentType.
10755   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10756                               ArgFPRsLeft);
10757 }
10758 
10759 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10760                                 QualType Ty) const {
10761   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10762 
10763   // Empty records are ignored for parameter passing purposes.
10764   if (isEmptyRecord(getContext(), Ty, true)) {
10765     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10766     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10767     return Addr;
10768   }
10769 
10770   std::pair<CharUnits, CharUnits> SizeAndAlign =
10771       getContext().getTypeInfoInChars(Ty);
10772 
10773   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10774   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
10775 
10776   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
10777                           SlotSize, /*AllowHigherAlign=*/true);
10778 }
10779 
10780 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10781   int TySize = getContext().getTypeSize(Ty);
10782   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10783   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10784     return ABIArgInfo::getSignExtend(Ty);
10785   return ABIArgInfo::getExtend(Ty);
10786 }
10787 
10788 namespace {
10789 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10790 public:
10791   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10792                          unsigned FLen)
10793       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10794 
10795   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10796                            CodeGen::CodeGenModule &CGM) const override {
10797     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10798     if (!FD) return;
10799 
10800     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10801     if (!Attr)
10802       return;
10803 
10804     const char *Kind;
10805     switch (Attr->getInterrupt()) {
10806     case RISCVInterruptAttr::user: Kind = "user"; break;
10807     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10808     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10809     }
10810 
10811     auto *Fn = cast<llvm::Function>(GV);
10812 
10813     Fn->addFnAttr("interrupt", Kind);
10814   }
10815 };
10816 } // namespace
10817 
10818 //===----------------------------------------------------------------------===//
10819 // VE ABI Implementation.
10820 //
10821 namespace {
10822 class VEABIInfo : public DefaultABIInfo {
10823 public:
10824   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10825 
10826 private:
10827   ABIArgInfo classifyReturnType(QualType RetTy) const;
10828   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10829   void computeInfo(CGFunctionInfo &FI) const override;
10830 };
10831 } // end anonymous namespace
10832 
10833 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10834   if (Ty->isAnyComplexType())
10835     return ABIArgInfo::getDirect();
10836   uint64_t Size = getContext().getTypeSize(Ty);
10837   if (Size < 64 && Ty->isIntegerType())
10838     return ABIArgInfo::getExtend(Ty);
10839   return DefaultABIInfo::classifyReturnType(Ty);
10840 }
10841 
10842 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10843   if (Ty->isAnyComplexType())
10844     return ABIArgInfo::getDirect();
10845   uint64_t Size = getContext().getTypeSize(Ty);
10846   if (Size < 64 && Ty->isIntegerType())
10847     return ABIArgInfo::getExtend(Ty);
10848   return DefaultABIInfo::classifyArgumentType(Ty);
10849 }
10850 
10851 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10852   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10853   for (auto &Arg : FI.arguments())
10854     Arg.info = classifyArgumentType(Arg.type);
10855 }
10856 
10857 namespace {
10858 class VETargetCodeGenInfo : public TargetCodeGenInfo {
10859 public:
10860   VETargetCodeGenInfo(CodeGenTypes &CGT)
10861       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
10862   // VE ABI requires the arguments of variadic and prototype-less functions
10863   // are passed in both registers and memory.
10864   bool isNoProtoCallVariadic(const CallArgList &args,
10865                              const FunctionNoProtoType *fnType) const override {
10866     return true;
10867   }
10868 };
10869 } // end anonymous namespace
10870 
10871 //===----------------------------------------------------------------------===//
10872 // Driver code
10873 //===----------------------------------------------------------------------===//
10874 
10875 bool CodeGenModule::supportsCOMDAT() const {
10876   return getTriple().supportsCOMDAT();
10877 }
10878 
10879 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10880   if (TheTargetCodeGenInfo)
10881     return *TheTargetCodeGenInfo;
10882 
10883   // Helper to set the unique_ptr while still keeping the return value.
10884   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10885     this->TheTargetCodeGenInfo.reset(P);
10886     return *P;
10887   };
10888 
10889   const llvm::Triple &Triple = getTarget().getTriple();
10890   switch (Triple.getArch()) {
10891   default:
10892     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10893 
10894   case llvm::Triple::le32:
10895     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10896   case llvm::Triple::mips:
10897   case llvm::Triple::mipsel:
10898     if (Triple.getOS() == llvm::Triple::NaCl)
10899       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10900     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10901 
10902   case llvm::Triple::mips64:
10903   case llvm::Triple::mips64el:
10904     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10905 
10906   case llvm::Triple::avr:
10907     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10908 
10909   case llvm::Triple::aarch64:
10910   case llvm::Triple::aarch64_32:
10911   case llvm::Triple::aarch64_be: {
10912     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10913     if (getTarget().getABI() == "darwinpcs")
10914       Kind = AArch64ABIInfo::DarwinPCS;
10915     else if (Triple.isOSWindows())
10916       return SetCGInfo(
10917           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10918 
10919     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10920   }
10921 
10922   case llvm::Triple::wasm32:
10923   case llvm::Triple::wasm64: {
10924     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10925     if (getTarget().getABI() == "experimental-mv")
10926       Kind = WebAssemblyABIInfo::ExperimentalMV;
10927     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10928   }
10929 
10930   case llvm::Triple::arm:
10931   case llvm::Triple::armeb:
10932   case llvm::Triple::thumb:
10933   case llvm::Triple::thumbeb: {
10934     if (Triple.getOS() == llvm::Triple::Win32) {
10935       return SetCGInfo(
10936           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10937     }
10938 
10939     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10940     StringRef ABIStr = getTarget().getABI();
10941     if (ABIStr == "apcs-gnu")
10942       Kind = ARMABIInfo::APCS;
10943     else if (ABIStr == "aapcs16")
10944       Kind = ARMABIInfo::AAPCS16_VFP;
10945     else if (CodeGenOpts.FloatABI == "hard" ||
10946              (CodeGenOpts.FloatABI != "soft" &&
10947               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10948                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10949                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10950       Kind = ARMABIInfo::AAPCS_VFP;
10951 
10952     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10953   }
10954 
10955   case llvm::Triple::ppc: {
10956     if (Triple.isOSAIX())
10957       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10958 
10959     bool IsSoftFloat =
10960         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10961     bool RetSmallStructInRegABI =
10962         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10963     return SetCGInfo(
10964         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10965   }
10966   case llvm::Triple::ppc64:
10967     if (Triple.isOSAIX())
10968       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10969 
10970     if (Triple.isOSBinFormatELF()) {
10971       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10972       if (getTarget().getABI() == "elfv2")
10973         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10974       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10975       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10976 
10977       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10978                                                         IsSoftFloat));
10979     }
10980     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10981   case llvm::Triple::ppc64le: {
10982     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10983     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10984     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10985       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10986     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10987     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10988 
10989     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10990                                                       IsSoftFloat));
10991   }
10992 
10993   case llvm::Triple::nvptx:
10994   case llvm::Triple::nvptx64:
10995     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10996 
10997   case llvm::Triple::msp430:
10998     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10999 
11000   case llvm::Triple::riscv32:
11001   case llvm::Triple::riscv64: {
11002     StringRef ABIStr = getTarget().getABI();
11003     unsigned XLen = getTarget().getPointerWidth(0);
11004     unsigned ABIFLen = 0;
11005     if (ABIStr.endswith("f"))
11006       ABIFLen = 32;
11007     else if (ABIStr.endswith("d"))
11008       ABIFLen = 64;
11009     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11010   }
11011 
11012   case llvm::Triple::systemz: {
11013     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11014     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11015     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11016   }
11017 
11018   case llvm::Triple::tce:
11019   case llvm::Triple::tcele:
11020     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11021 
11022   case llvm::Triple::x86: {
11023     bool IsDarwinVectorABI = Triple.isOSDarwin();
11024     bool RetSmallStructInRegABI =
11025         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11026     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11027 
11028     if (Triple.getOS() == llvm::Triple::Win32) {
11029       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11030           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11031           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11032     } else {
11033       return SetCGInfo(new X86_32TargetCodeGenInfo(
11034           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11035           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11036           CodeGenOpts.FloatABI == "soft"));
11037     }
11038   }
11039 
11040   case llvm::Triple::x86_64: {
11041     StringRef ABI = getTarget().getABI();
11042     X86AVXABILevel AVXLevel =
11043         (ABI == "avx512"
11044              ? X86AVXABILevel::AVX512
11045              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11046 
11047     switch (Triple.getOS()) {
11048     case llvm::Triple::Win32:
11049       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11050     default:
11051       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11052     }
11053   }
11054   case llvm::Triple::hexagon:
11055     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11056   case llvm::Triple::lanai:
11057     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11058   case llvm::Triple::r600:
11059     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11060   case llvm::Triple::amdgcn:
11061     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11062   case llvm::Triple::sparc:
11063     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11064   case llvm::Triple::sparcv9:
11065     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11066   case llvm::Triple::xcore:
11067     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11068   case llvm::Triple::arc:
11069     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11070   case llvm::Triple::spir:
11071   case llvm::Triple::spir64:
11072     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11073   case llvm::Triple::ve:
11074     return SetCGInfo(new VETargetCodeGenInfo(Types));
11075   }
11076 }
11077 
11078 /// Create an OpenCL kernel for an enqueued block.
11079 ///
11080 /// The kernel has the same function type as the block invoke function. Its
11081 /// name is the name of the block invoke function postfixed with "_kernel".
11082 /// It simply calls the block invoke function then returns.
11083 llvm::Function *
11084 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11085                                              llvm::Function *Invoke,
11086                                              llvm::Value *BlockLiteral) const {
11087   auto *InvokeFT = Invoke->getFunctionType();
11088   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11089   for (auto &P : InvokeFT->params())
11090     ArgTys.push_back(P);
11091   auto &C = CGF.getLLVMContext();
11092   std::string Name = Invoke->getName().str() + "_kernel";
11093   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11094   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11095                                    &CGF.CGM.getModule());
11096   auto IP = CGF.Builder.saveIP();
11097   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11098   auto &Builder = CGF.Builder;
11099   Builder.SetInsertPoint(BB);
11100   llvm::SmallVector<llvm::Value *, 2> Args;
11101   for (auto &A : F->args())
11102     Args.push_back(&A);
11103   Builder.CreateCall(Invoke, Args);
11104   Builder.CreateRetVoid();
11105   Builder.restoreIP(IP);
11106   return F;
11107 }
11108 
11109 /// Create an OpenCL kernel for an enqueued block.
11110 ///
11111 /// The type of the first argument (the block literal) is the struct type
11112 /// of the block literal instead of a pointer type. The first argument
11113 /// (block literal) is passed directly by value to the kernel. The kernel
11114 /// allocates the same type of struct on stack and stores the block literal
11115 /// to it and passes its pointer to the block invoke function. The kernel
11116 /// has "enqueued-block" function attribute and kernel argument metadata.
11117 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11118     CodeGenFunction &CGF, llvm::Function *Invoke,
11119     llvm::Value *BlockLiteral) const {
11120   auto &Builder = CGF.Builder;
11121   auto &C = CGF.getLLVMContext();
11122 
11123   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11124   auto *InvokeFT = Invoke->getFunctionType();
11125   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11126   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11127   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11128   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11129   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11130   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11131   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11132 
11133   ArgTys.push_back(BlockTy);
11134   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11135   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11136   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11137   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11138   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11139   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11140   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11141     ArgTys.push_back(InvokeFT->getParamType(I));
11142     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11143     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11144     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11145     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11146     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11147     ArgNames.push_back(
11148         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11149   }
11150   std::string Name = Invoke->getName().str() + "_kernel";
11151   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11152   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11153                                    &CGF.CGM.getModule());
11154   F->addFnAttr("enqueued-block");
11155   auto IP = CGF.Builder.saveIP();
11156   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11157   Builder.SetInsertPoint(BB);
11158   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11159   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11160   BlockPtr->setAlignment(BlockAlign);
11161   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11162   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11163   llvm::SmallVector<llvm::Value *, 2> Args;
11164   Args.push_back(Cast);
11165   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11166     Args.push_back(I);
11167   Builder.CreateCall(Invoke, Args);
11168   Builder.CreateRetVoid();
11169   Builder.restoreIP(IP);
11170 
11171   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11172   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11173   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11174   F->setMetadata("kernel_arg_base_type",
11175                  llvm::MDNode::get(C, ArgBaseTypeNames));
11176   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11177   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11178     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11179 
11180   return F;
11181 }
11182