1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "clang/CodeGen/SwiftCallingConv.h"
25 #include "llvm/ADT/SmallBitVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/IntrinsicsNVPTX.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm> // std::sort
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 // Helper for coercing an aggregate argument or return value into an integer
40 // array of the same size (including padding) and alignment.  This alternate
41 // coercion happens only for the RenderScript ABI and can be removed after
42 // runtimes that rely on it are no longer supported.
43 //
44 // RenderScript assumes that the size of the argument / return value in the IR
45 // is the same as the size of the corresponding qualified type. This helper
46 // coerces the aggregate type into an array of the same size (including
47 // padding).  This coercion is used in lieu of expansion of struct members or
48 // other canonical coercions that return a coerced-type of larger size.
49 //
50 // Ty          - The argument / return value type
51 // Context     - The associated ASTContext
52 // LLVMContext - The associated LLVMContext
53 static ABIArgInfo coerceToIntArray(QualType Ty,
54                                    ASTContext &Context,
55                                    llvm::LLVMContext &LLVMContext) {
56   // Alignment and Size are measured in bits.
57   const uint64_t Size = Context.getTypeSize(Ty);
58   const uint64_t Alignment = Context.getTypeAlign(Ty);
59   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
60   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
61   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
62 }
63 
64 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
65                                llvm::Value *Array,
66                                llvm::Value *Value,
67                                unsigned FirstIndex,
68                                unsigned LastIndex) {
69   // Alternatively, we could emit this as a loop in the source.
70   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
71     llvm::Value *Cell =
72         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
73     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
74   }
75 }
76 
77 static bool isAggregateTypeForABI(QualType T) {
78   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
79          T->isMemberFunctionPointerType();
80 }
81 
82 ABIArgInfo
83 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
84                                  llvm::Type *Padding) const {
85   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
86                                  ByRef, Realign, Padding);
87 }
88 
89 ABIArgInfo
90 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
91   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
92                                       /*ByRef*/ false, Realign);
93 }
94 
95 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
96                              QualType Ty) const {
97   return Address::invalid();
98 }
99 
100 ABIInfo::~ABIInfo() {}
101 
102 /// Does the given lowering require more than the given number of
103 /// registers when expanded?
104 ///
105 /// This is intended to be the basis of a reasonable basic implementation
106 /// of should{Pass,Return}IndirectlyForSwift.
107 ///
108 /// For most targets, a limit of four total registers is reasonable; this
109 /// limits the amount of code required in order to move around the value
110 /// in case it wasn't produced immediately prior to the call by the caller
111 /// (or wasn't produced in exactly the right registers) or isn't used
112 /// immediately within the callee.  But some targets may need to further
113 /// limit the register count due to an inability to support that many
114 /// return registers.
115 static bool occupiesMoreThan(CodeGenTypes &cgt,
116                              ArrayRef<llvm::Type*> scalarTypes,
117                              unsigned maxAllRegisters) {
118   unsigned intCount = 0, fpCount = 0;
119   for (llvm::Type *type : scalarTypes) {
120     if (type->isPointerTy()) {
121       intCount++;
122     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
123       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
124       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
125     } else {
126       assert(type->isVectorTy() || type->isFloatingPointTy());
127       fpCount++;
128     }
129   }
130 
131   return (intCount + fpCount > maxAllRegisters);
132 }
133 
134 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
135                                              llvm::Type *eltTy,
136                                              unsigned numElts) const {
137   // The default implementation of this assumes that the target guarantees
138   // 128-bit SIMD support but nothing more.
139   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
140 }
141 
142 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
143                                               CGCXXABI &CXXABI) {
144   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
145   if (!RD) {
146     if (!RT->getDecl()->canPassInRegisters())
147       return CGCXXABI::RAA_Indirect;
148     return CGCXXABI::RAA_Default;
149   }
150   return CXXABI.getRecordArgABI(RD);
151 }
152 
153 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
154                                               CGCXXABI &CXXABI) {
155   const RecordType *RT = T->getAs<RecordType>();
156   if (!RT)
157     return CGCXXABI::RAA_Default;
158   return getRecordArgABI(RT, CXXABI);
159 }
160 
161 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
162                                const ABIInfo &Info) {
163   QualType Ty = FI.getReturnType();
164 
165   if (const auto *RT = Ty->getAs<RecordType>())
166     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
167         !RT->getDecl()->canPassInRegisters()) {
168       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
169       return true;
170     }
171 
172   return CXXABI.classifyReturnType(FI);
173 }
174 
175 /// Pass transparent unions as if they were the type of the first element. Sema
176 /// should ensure that all elements of the union have the same "machine type".
177 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
178   if (const RecordType *UT = Ty->getAsUnionType()) {
179     const RecordDecl *UD = UT->getDecl();
180     if (UD->hasAttr<TransparentUnionAttr>()) {
181       assert(!UD->field_empty() && "sema created an empty transparent union");
182       return UD->field_begin()->getType();
183     }
184   }
185   return Ty;
186 }
187 
188 CGCXXABI &ABIInfo::getCXXABI() const {
189   return CGT.getCXXABI();
190 }
191 
192 ASTContext &ABIInfo::getContext() const {
193   return CGT.getContext();
194 }
195 
196 llvm::LLVMContext &ABIInfo::getVMContext() const {
197   return CGT.getLLVMContext();
198 }
199 
200 const llvm::DataLayout &ABIInfo::getDataLayout() const {
201   return CGT.getDataLayout();
202 }
203 
204 const TargetInfo &ABIInfo::getTarget() const {
205   return CGT.getTarget();
206 }
207 
208 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
209   return CGT.getCodeGenOpts();
210 }
211 
212 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
213 
214 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
215   return false;
216 }
217 
218 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
219                                                 uint64_t Members) const {
220   return false;
221 }
222 
223 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
224   raw_ostream &OS = llvm::errs();
225   OS << "(ABIArgInfo Kind=";
226   switch (TheKind) {
227   case Direct:
228     OS << "Direct Type=";
229     if (llvm::Type *Ty = getCoerceToType())
230       Ty->print(OS);
231     else
232       OS << "null";
233     break;
234   case Extend:
235     OS << "Extend";
236     break;
237   case Ignore:
238     OS << "Ignore";
239     break;
240   case InAlloca:
241     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
242     break;
243   case Indirect:
244     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
245        << " ByVal=" << getIndirectByVal()
246        << " Realign=" << getIndirectRealign();
247     break;
248   case Expand:
249     OS << "Expand";
250     break;
251   case CoerceAndExpand:
252     OS << "CoerceAndExpand Type=";
253     getCoerceAndExpandType()->print(OS);
254     break;
255   }
256   OS << ")\n";
257 }
258 
259 // Dynamically round a pointer up to a multiple of the given alignment.
260 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
261                                                   llvm::Value *Ptr,
262                                                   CharUnits Align) {
263   llvm::Value *PtrAsInt = Ptr;
264   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
265   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
266   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
267         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
268   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
269            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
270   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
271                                         Ptr->getType(),
272                                         Ptr->getName() + ".aligned");
273   return PtrAsInt;
274 }
275 
276 /// Emit va_arg for a platform using the common void* representation,
277 /// where arguments are simply emitted in an array of slots on the stack.
278 ///
279 /// This version implements the core direct-value passing rules.
280 ///
281 /// \param SlotSize - The size and alignment of a stack slot.
282 ///   Each argument will be allocated to a multiple of this number of
283 ///   slots, and all the slots will be aligned to this value.
284 /// \param AllowHigherAlign - The slot alignment is not a cap;
285 ///   an argument type with an alignment greater than the slot size
286 ///   will be emitted on a higher-alignment address, potentially
287 ///   leaving one or more empty slots behind as padding.  If this
288 ///   is false, the returned address might be less-aligned than
289 ///   DirectAlign.
290 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
291                                       Address VAListAddr,
292                                       llvm::Type *DirectTy,
293                                       CharUnits DirectSize,
294                                       CharUnits DirectAlign,
295                                       CharUnits SlotSize,
296                                       bool AllowHigherAlign) {
297   // Cast the element type to i8* if necessary.  Some platforms define
298   // va_list as a struct containing an i8* instead of just an i8*.
299   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
300     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
301 
302   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
303 
304   // If the CC aligns values higher than the slot size, do so if needed.
305   Address Addr = Address::invalid();
306   if (AllowHigherAlign && DirectAlign > SlotSize) {
307     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
308                                                  DirectAlign);
309   } else {
310     Addr = Address(Ptr, SlotSize);
311   }
312 
313   // Advance the pointer past the argument, then store that back.
314   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
315   Address NextPtr =
316       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
317   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
318 
319   // If the argument is smaller than a slot, and this is a big-endian
320   // target, the argument will be right-adjusted in its slot.
321   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
322       !DirectTy->isStructTy()) {
323     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
324   }
325 
326   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
327   return Addr;
328 }
329 
330 /// Emit va_arg for a platform using the common void* representation,
331 /// where arguments are simply emitted in an array of slots on the stack.
332 ///
333 /// \param IsIndirect - Values of this type are passed indirectly.
334 /// \param ValueInfo - The size and alignment of this type, generally
335 ///   computed with getContext().getTypeInfoInChars(ValueTy).
336 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
337 ///   Each argument will be allocated to a multiple of this number of
338 ///   slots, and all the slots will be aligned to this value.
339 /// \param AllowHigherAlign - The slot alignment is not a cap;
340 ///   an argument type with an alignment greater than the slot size
341 ///   will be emitted on a higher-alignment address, potentially
342 ///   leaving one or more empty slots behind as padding.
343 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
344                                 QualType ValueTy, bool IsIndirect,
345                                 std::pair<CharUnits, CharUnits> ValueInfo,
346                                 CharUnits SlotSizeAndAlign,
347                                 bool AllowHigherAlign) {
348   // The size and alignment of the value that was passed directly.
349   CharUnits DirectSize, DirectAlign;
350   if (IsIndirect) {
351     DirectSize = CGF.getPointerSize();
352     DirectAlign = CGF.getPointerAlign();
353   } else {
354     DirectSize = ValueInfo.first;
355     DirectAlign = ValueInfo.second;
356   }
357 
358   // Cast the address we've calculated to the right type.
359   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
360   if (IsIndirect)
361     DirectTy = DirectTy->getPointerTo(0);
362 
363   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
364                                         DirectSize, DirectAlign,
365                                         SlotSizeAndAlign,
366                                         AllowHigherAlign);
367 
368   if (IsIndirect) {
369     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
370   }
371 
372   return Addr;
373 
374 }
375 
376 static Address emitMergePHI(CodeGenFunction &CGF,
377                             Address Addr1, llvm::BasicBlock *Block1,
378                             Address Addr2, llvm::BasicBlock *Block2,
379                             const llvm::Twine &Name = "") {
380   assert(Addr1.getType() == Addr2.getType());
381   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
382   PHI->addIncoming(Addr1.getPointer(), Block1);
383   PHI->addIncoming(Addr2.getPointer(), Block2);
384   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
385   return Address(PHI, Align);
386 }
387 
388 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
389 
390 // If someone can figure out a general rule for this, that would be great.
391 // It's probably just doomed to be platform-dependent, though.
392 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
393   // Verified for:
394   //   x86-64     FreeBSD, Linux, Darwin
395   //   x86-32     FreeBSD, Linux, Darwin
396   //   PowerPC    Linux, Darwin
397   //   ARM        Darwin (*not* EABI)
398   //   AArch64    Linux
399   return 32;
400 }
401 
402 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
403                                      const FunctionNoProtoType *fnType) const {
404   // The following conventions are known to require this to be false:
405   //   x86_stdcall
406   //   MIPS
407   // For everything else, we just prefer false unless we opt out.
408   return false;
409 }
410 
411 void
412 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
413                                              llvm::SmallString<24> &Opt) const {
414   // This assumes the user is passing a library name like "rt" instead of a
415   // filename like "librt.a/so", and that they don't care whether it's static or
416   // dynamic.
417   Opt = "-l";
418   Opt += Lib;
419 }
420 
421 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
422   // OpenCL kernels are called via an explicit runtime API with arguments
423   // set with clSetKernelArg(), not as normal sub-functions.
424   // Return SPIR_KERNEL by default as the kernel calling convention to
425   // ensure the fingerprint is fixed such way that each OpenCL argument
426   // gets one matching argument in the produced kernel function argument
427   // list to enable feasible implementation of clSetKernelArg() with
428   // aggregates etc. In case we would use the default C calling conv here,
429   // clSetKernelArg() might break depending on the target-specific
430   // conventions; different targets might split structs passed as values
431   // to multiple function arguments etc.
432   return llvm::CallingConv::SPIR_KERNEL;
433 }
434 
435 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
436     llvm::PointerType *T, QualType QT) const {
437   return llvm::ConstantPointerNull::get(T);
438 }
439 
440 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
441                                                    const VarDecl *D) const {
442   assert(!CGM.getLangOpts().OpenCL &&
443          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
444          "Address space agnostic languages only");
445   return D ? D->getType().getAddressSpace() : LangAS::Default;
446 }
447 
448 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
449     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
450     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
451   // Since target may map different address spaces in AST to the same address
452   // space, an address space conversion may end up as a bitcast.
453   if (auto *C = dyn_cast<llvm::Constant>(Src))
454     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
455   // Try to preserve the source's name to make IR more readable.
456   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
457       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
458 }
459 
460 llvm::Constant *
461 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
462                                         LangAS SrcAddr, LangAS DestAddr,
463                                         llvm::Type *DestTy) const {
464   // Since target may map different address spaces in AST to the same address
465   // space, an address space conversion may end up as a bitcast.
466   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
467 }
468 
469 llvm::SyncScope::ID
470 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
471                                       SyncScope Scope,
472                                       llvm::AtomicOrdering Ordering,
473                                       llvm::LLVMContext &Ctx) const {
474   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
475 }
476 
477 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
478 
479 /// isEmptyField - Return true iff a the field is "empty", that is it
480 /// is an unnamed bit-field or an (array of) empty record(s).
481 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
482                          bool AllowArrays) {
483   if (FD->isUnnamedBitfield())
484     return true;
485 
486   QualType FT = FD->getType();
487 
488   // Constant arrays of empty records count as empty, strip them off.
489   // Constant arrays of zero length always count as empty.
490   if (AllowArrays)
491     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
492       if (AT->getSize() == 0)
493         return true;
494       FT = AT->getElementType();
495     }
496 
497   const RecordType *RT = FT->getAs<RecordType>();
498   if (!RT)
499     return false;
500 
501   // C++ record fields are never empty, at least in the Itanium ABI.
502   //
503   // FIXME: We should use a predicate for whether this behavior is true in the
504   // current ABI.
505   if (isa<CXXRecordDecl>(RT->getDecl()))
506     return false;
507 
508   return isEmptyRecord(Context, FT, AllowArrays);
509 }
510 
511 /// isEmptyRecord - Return true iff a structure contains only empty
512 /// fields. Note that a structure with a flexible array member is not
513 /// considered empty.
514 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
515   const RecordType *RT = T->getAs<RecordType>();
516   if (!RT)
517     return false;
518   const RecordDecl *RD = RT->getDecl();
519   if (RD->hasFlexibleArrayMember())
520     return false;
521 
522   // If this is a C++ record, check the bases first.
523   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
524     for (const auto &I : CXXRD->bases())
525       if (!isEmptyRecord(Context, I.getType(), true))
526         return false;
527 
528   for (const auto *I : RD->fields())
529     if (!isEmptyField(Context, I, AllowArrays))
530       return false;
531   return true;
532 }
533 
534 /// isSingleElementStruct - Determine if a structure is a "single
535 /// element struct", i.e. it has exactly one non-empty field or
536 /// exactly one field which is itself a single element
537 /// struct. Structures with flexible array members are never
538 /// considered single element structs.
539 ///
540 /// \return The field declaration for the single non-empty field, if
541 /// it exists.
542 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
543   const RecordType *RT = T->getAs<RecordType>();
544   if (!RT)
545     return nullptr;
546 
547   const RecordDecl *RD = RT->getDecl();
548   if (RD->hasFlexibleArrayMember())
549     return nullptr;
550 
551   const Type *Found = nullptr;
552 
553   // If this is a C++ record, check the bases first.
554   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
555     for (const auto &I : CXXRD->bases()) {
556       // Ignore empty records.
557       if (isEmptyRecord(Context, I.getType(), true))
558         continue;
559 
560       // If we already found an element then this isn't a single-element struct.
561       if (Found)
562         return nullptr;
563 
564       // If this is non-empty and not a single element struct, the composite
565       // cannot be a single element struct.
566       Found = isSingleElementStruct(I.getType(), Context);
567       if (!Found)
568         return nullptr;
569     }
570   }
571 
572   // Check for single element.
573   for (const auto *FD : RD->fields()) {
574     QualType FT = FD->getType();
575 
576     // Ignore empty fields.
577     if (isEmptyField(Context, FD, true))
578       continue;
579 
580     // If we already found an element then this isn't a single-element
581     // struct.
582     if (Found)
583       return nullptr;
584 
585     // Treat single element arrays as the element.
586     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
587       if (AT->getSize().getZExtValue() != 1)
588         break;
589       FT = AT->getElementType();
590     }
591 
592     if (!isAggregateTypeForABI(FT)) {
593       Found = FT.getTypePtr();
594     } else {
595       Found = isSingleElementStruct(FT, Context);
596       if (!Found)
597         return nullptr;
598     }
599   }
600 
601   // We don't consider a struct a single-element struct if it has
602   // padding beyond the element type.
603   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
604     return nullptr;
605 
606   return Found;
607 }
608 
609 namespace {
610 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
611                        const ABIArgInfo &AI) {
612   // This default implementation defers to the llvm backend's va_arg
613   // instruction. It can handle only passing arguments directly
614   // (typically only handled in the backend for primitive types), or
615   // aggregates passed indirectly by pointer (NOTE: if the "byval"
616   // flag has ABI impact in the callee, this implementation cannot
617   // work.)
618 
619   // Only a few cases are covered here at the moment -- those needed
620   // by the default abi.
621   llvm::Value *Val;
622 
623   if (AI.isIndirect()) {
624     assert(!AI.getPaddingType() &&
625            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
626     assert(
627         !AI.getIndirectRealign() &&
628         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
629 
630     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
631     CharUnits TyAlignForABI = TyInfo.second;
632 
633     llvm::Type *BaseTy =
634         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
635     llvm::Value *Addr =
636         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
637     return Address(Addr, TyAlignForABI);
638   } else {
639     assert((AI.isDirect() || AI.isExtend()) &&
640            "Unexpected ArgInfo Kind in generic VAArg emitter!");
641 
642     assert(!AI.getInReg() &&
643            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
644     assert(!AI.getPaddingType() &&
645            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
646     assert(!AI.getDirectOffset() &&
647            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
648     assert(!AI.getCoerceToType() &&
649            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
650 
651     Address Temp = CGF.CreateMemTemp(Ty, "varet");
652     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
653     CGF.Builder.CreateStore(Val, Temp);
654     return Temp;
655   }
656 }
657 
658 /// DefaultABIInfo - The default implementation for ABI specific
659 /// details. This implementation provides information which results in
660 /// self-consistent and sensible LLVM IR generation, but does not
661 /// conform to any particular ABI.
662 class DefaultABIInfo : public ABIInfo {
663 public:
664   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
665 
666   ABIArgInfo classifyReturnType(QualType RetTy) const;
667   ABIArgInfo classifyArgumentType(QualType RetTy) const;
668 
669   void computeInfo(CGFunctionInfo &FI) const override {
670     if (!getCXXABI().classifyReturnType(FI))
671       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
672     for (auto &I : FI.arguments())
673       I.info = classifyArgumentType(I.type);
674   }
675 
676   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
677                     QualType Ty) const override {
678     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
679   }
680 };
681 
682 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
683 public:
684   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
685     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
686 };
687 
688 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
689   Ty = useFirstFieldIfTransparentUnion(Ty);
690 
691   if (isAggregateTypeForABI(Ty)) {
692     // Records with non-trivial destructors/copy-constructors should not be
693     // passed by value.
694     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
695       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
696 
697     return getNaturalAlignIndirect(Ty);
698   }
699 
700   // Treat an enum type as its underlying type.
701   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
702     Ty = EnumTy->getDecl()->getIntegerType();
703 
704   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
705                                         : ABIArgInfo::getDirect());
706 }
707 
708 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
709   if (RetTy->isVoidType())
710     return ABIArgInfo::getIgnore();
711 
712   if (isAggregateTypeForABI(RetTy))
713     return getNaturalAlignIndirect(RetTy);
714 
715   // Treat an enum type as its underlying type.
716   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
717     RetTy = EnumTy->getDecl()->getIntegerType();
718 
719   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
720                                            : ABIArgInfo::getDirect());
721 }
722 
723 //===----------------------------------------------------------------------===//
724 // WebAssembly ABI Implementation
725 //
726 // This is a very simple ABI that relies a lot on DefaultABIInfo.
727 //===----------------------------------------------------------------------===//
728 
729 class WebAssemblyABIInfo final : public SwiftABIInfo {
730 public:
731   enum ABIKind {
732     MVP = 0,
733     ExperimentalMV = 1,
734   };
735 
736 private:
737   DefaultABIInfo defaultInfo;
738   ABIKind Kind;
739 
740 public:
741   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
742       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
743 
744 private:
745   ABIArgInfo classifyReturnType(QualType RetTy) const;
746   ABIArgInfo classifyArgumentType(QualType Ty) const;
747 
748   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
749   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
750   // overload them.
751   void computeInfo(CGFunctionInfo &FI) const override {
752     if (!getCXXABI().classifyReturnType(FI))
753       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
754     for (auto &Arg : FI.arguments())
755       Arg.info = classifyArgumentType(Arg.type);
756   }
757 
758   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
759                     QualType Ty) const override;
760 
761   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
762                                     bool asReturnValue) const override {
763     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
764   }
765 
766   bool isSwiftErrorInRegister() const override {
767     return false;
768   }
769 };
770 
771 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
772 public:
773   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
774                                         WebAssemblyABIInfo::ABIKind K)
775       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT, K)) {}
776 
777   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
778                            CodeGen::CodeGenModule &CGM) const override {
779     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
780     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
781       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
782         llvm::Function *Fn = cast<llvm::Function>(GV);
783         llvm::AttrBuilder B;
784         B.addAttribute("wasm-import-module", Attr->getImportModule());
785         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
786       }
787       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
788         llvm::Function *Fn = cast<llvm::Function>(GV);
789         llvm::AttrBuilder B;
790         B.addAttribute("wasm-import-name", Attr->getImportName());
791         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
792       }
793       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
794         llvm::Function *Fn = cast<llvm::Function>(GV);
795         llvm::AttrBuilder B;
796         B.addAttribute("wasm-export-name", Attr->getExportName());
797         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
798       }
799     }
800 
801     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
802       llvm::Function *Fn = cast<llvm::Function>(GV);
803       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
804         Fn->addFnAttr("no-prototype");
805     }
806   }
807 };
808 
809 /// Classify argument of given type \p Ty.
810 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
811   Ty = useFirstFieldIfTransparentUnion(Ty);
812 
813   if (isAggregateTypeForABI(Ty)) {
814     // Records with non-trivial destructors/copy-constructors should not be
815     // passed by value.
816     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
817       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
818     // Ignore empty structs/unions.
819     if (isEmptyRecord(getContext(), Ty, true))
820       return ABIArgInfo::getIgnore();
821     // Lower single-element structs to just pass a regular value. TODO: We
822     // could do reasonable-size multiple-element structs too, using getExpand(),
823     // though watch out for things like bitfields.
824     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
825       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
826     // For the experimental multivalue ABI, fully expand all other aggregates
827     if (Kind == ABIKind::ExperimentalMV) {
828       const RecordType *RT = Ty->getAs<RecordType>();
829       assert(RT);
830       bool HasBitField = false;
831       for (auto *Field : RT->getDecl()->fields()) {
832         if (Field->isBitField()) {
833           HasBitField = true;
834           break;
835         }
836       }
837       if (!HasBitField)
838         return ABIArgInfo::getExpand();
839     }
840   }
841 
842   // Otherwise just do the default thing.
843   return defaultInfo.classifyArgumentType(Ty);
844 }
845 
846 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
847   if (isAggregateTypeForABI(RetTy)) {
848     // Records with non-trivial destructors/copy-constructors should not be
849     // returned by value.
850     if (!getRecordArgABI(RetTy, getCXXABI())) {
851       // Ignore empty structs/unions.
852       if (isEmptyRecord(getContext(), RetTy, true))
853         return ABIArgInfo::getIgnore();
854       // Lower single-element structs to just return a regular value. TODO: We
855       // could do reasonable-size multiple-element structs too, using
856       // ABIArgInfo::getDirect().
857       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
858         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
859       // For the experimental multivalue ABI, return all other aggregates
860       if (Kind == ABIKind::ExperimentalMV)
861         return ABIArgInfo::getDirect();
862     }
863   }
864 
865   // Otherwise just do the default thing.
866   return defaultInfo.classifyReturnType(RetTy);
867 }
868 
869 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
870                                       QualType Ty) const {
871   bool IsIndirect = isAggregateTypeForABI(Ty) &&
872                     !isEmptyRecord(getContext(), Ty, true) &&
873                     !isSingleElementStruct(Ty, getContext());
874   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
875                           getContext().getTypeInfoInChars(Ty),
876                           CharUnits::fromQuantity(4),
877                           /*AllowHigherAlign=*/true);
878 }
879 
880 //===----------------------------------------------------------------------===//
881 // le32/PNaCl bitcode ABI Implementation
882 //
883 // This is a simplified version of the x86_32 ABI.  Arguments and return values
884 // are always passed on the stack.
885 //===----------------------------------------------------------------------===//
886 
887 class PNaClABIInfo : public ABIInfo {
888  public:
889   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
890 
891   ABIArgInfo classifyReturnType(QualType RetTy) const;
892   ABIArgInfo classifyArgumentType(QualType RetTy) const;
893 
894   void computeInfo(CGFunctionInfo &FI) const override;
895   Address EmitVAArg(CodeGenFunction &CGF,
896                     Address VAListAddr, QualType Ty) const override;
897 };
898 
899 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
900  public:
901   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
902     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
903 };
904 
905 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
906   if (!getCXXABI().classifyReturnType(FI))
907     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
908 
909   for (auto &I : FI.arguments())
910     I.info = classifyArgumentType(I.type);
911 }
912 
913 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
914                                 QualType Ty) const {
915   // The PNaCL ABI is a bit odd, in that varargs don't use normal
916   // function classification. Structs get passed directly for varargs
917   // functions, through a rewriting transform in
918   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
919   // this target to actually support a va_arg instructions with an
920   // aggregate type, unlike other targets.
921   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
922 }
923 
924 /// Classify argument of given type \p Ty.
925 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
926   if (isAggregateTypeForABI(Ty)) {
927     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
928       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
929     return getNaturalAlignIndirect(Ty);
930   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
931     // Treat an enum type as its underlying type.
932     Ty = EnumTy->getDecl()->getIntegerType();
933   } else if (Ty->isFloatingType()) {
934     // Floating-point types don't go inreg.
935     return ABIArgInfo::getDirect();
936   }
937 
938   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
939                                         : ABIArgInfo::getDirect());
940 }
941 
942 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
943   if (RetTy->isVoidType())
944     return ABIArgInfo::getIgnore();
945 
946   // In the PNaCl ABI we always return records/structures on the stack.
947   if (isAggregateTypeForABI(RetTy))
948     return getNaturalAlignIndirect(RetTy);
949 
950   // Treat an enum type as its underlying type.
951   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
952     RetTy = EnumTy->getDecl()->getIntegerType();
953 
954   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
955                                            : ABIArgInfo::getDirect());
956 }
957 
958 /// IsX86_MMXType - Return true if this is an MMX type.
959 bool IsX86_MMXType(llvm::Type *IRType) {
960   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
961   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
962     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
963     IRType->getScalarSizeInBits() != 64;
964 }
965 
966 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
967                                           StringRef Constraint,
968                                           llvm::Type* Ty) {
969   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
970                      .Cases("y", "&y", "^Ym", true)
971                      .Default(false);
972   if (IsMMXCons && Ty->isVectorTy()) {
973     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
974       // Invalid MMX constraint
975       return nullptr;
976     }
977 
978     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
979   }
980 
981   // No operation needed
982   return Ty;
983 }
984 
985 /// Returns true if this type can be passed in SSE registers with the
986 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
987 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
988   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
989     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
990       if (BT->getKind() == BuiltinType::LongDouble) {
991         if (&Context.getTargetInfo().getLongDoubleFormat() ==
992             &llvm::APFloat::x87DoubleExtended())
993           return false;
994       }
995       return true;
996     }
997   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
998     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
999     // registers specially.
1000     unsigned VecSize = Context.getTypeSize(VT);
1001     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1002       return true;
1003   }
1004   return false;
1005 }
1006 
1007 /// Returns true if this aggregate is small enough to be passed in SSE registers
1008 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1009 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1010   return NumMembers <= 4;
1011 }
1012 
1013 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1014 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1015   auto AI = ABIArgInfo::getDirect(T);
1016   AI.setInReg(true);
1017   AI.setCanBeFlattened(false);
1018   return AI;
1019 }
1020 
1021 //===----------------------------------------------------------------------===//
1022 // X86-32 ABI Implementation
1023 //===----------------------------------------------------------------------===//
1024 
1025 /// Similar to llvm::CCState, but for Clang.
1026 struct CCState {
1027   CCState(CGFunctionInfo &FI)
1028       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1029 
1030   llvm::SmallBitVector IsPreassigned;
1031   unsigned CC = CallingConv::CC_C;
1032   unsigned FreeRegs = 0;
1033   unsigned FreeSSERegs = 0;
1034 };
1035 
1036 enum {
1037   // Vectorcall only allows the first 6 parameters to be passed in registers.
1038   VectorcallMaxParamNumAsReg = 6
1039 };
1040 
1041 /// X86_32ABIInfo - The X86-32 ABI information.
1042 class X86_32ABIInfo : public SwiftABIInfo {
1043   enum Class {
1044     Integer,
1045     Float
1046   };
1047 
1048   static const unsigned MinABIStackAlignInBytes = 4;
1049 
1050   bool IsDarwinVectorABI;
1051   bool IsRetSmallStructInRegABI;
1052   bool IsWin32StructABI;
1053   bool IsSoftFloatABI;
1054   bool IsMCUABI;
1055   unsigned DefaultNumRegisterParameters;
1056 
1057   static bool isRegisterSize(unsigned Size) {
1058     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1059   }
1060 
1061   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1062     // FIXME: Assumes vectorcall is in use.
1063     return isX86VectorTypeForVectorCall(getContext(), Ty);
1064   }
1065 
1066   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1067                                          uint64_t NumMembers) const override {
1068     // FIXME: Assumes vectorcall is in use.
1069     return isX86VectorCallAggregateSmallEnough(NumMembers);
1070   }
1071 
1072   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1073 
1074   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1075   /// such that the argument will be passed in memory.
1076   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1077 
1078   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1079 
1080   /// Return the alignment to use for the given type on the stack.
1081   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1082 
1083   Class classify(QualType Ty) const;
1084   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1085   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1086 
1087   /// Updates the number of available free registers, returns
1088   /// true if any registers were allocated.
1089   bool updateFreeRegs(QualType Ty, CCState &State) const;
1090 
1091   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1092                                 bool &NeedsPadding) const;
1093   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1094 
1095   bool canExpandIndirectArgument(QualType Ty) const;
1096 
1097   /// Rewrite the function info so that all memory arguments use
1098   /// inalloca.
1099   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1100 
1101   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1102                            CharUnits &StackOffset, ABIArgInfo &Info,
1103                            QualType Type) const;
1104   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1105 
1106 public:
1107 
1108   void computeInfo(CGFunctionInfo &FI) const override;
1109   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1110                     QualType Ty) const override;
1111 
1112   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1113                 bool RetSmallStructInRegABI, bool Win32StructABI,
1114                 unsigned NumRegisterParameters, bool SoftFloatABI)
1115     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1116       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1117       IsWin32StructABI(Win32StructABI),
1118       IsSoftFloatABI(SoftFloatABI),
1119       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1120       DefaultNumRegisterParameters(NumRegisterParameters) {}
1121 
1122   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1123                                     bool asReturnValue) const override {
1124     // LLVM's x86-32 lowering currently only assigns up to three
1125     // integer registers and three fp registers.  Oddly, it'll use up to
1126     // four vector registers for vectors, but those can overlap with the
1127     // scalar registers.
1128     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1129   }
1130 
1131   bool isSwiftErrorInRegister() const override {
1132     // x86-32 lowering does not support passing swifterror in a register.
1133     return false;
1134   }
1135 };
1136 
1137 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1138 public:
1139   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1140                           bool RetSmallStructInRegABI, bool Win32StructABI,
1141                           unsigned NumRegisterParameters, bool SoftFloatABI)
1142       : TargetCodeGenInfo(new X86_32ABIInfo(
1143             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1144             NumRegisterParameters, SoftFloatABI)) {}
1145 
1146   static bool isStructReturnInRegABI(
1147       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1148 
1149   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1150                            CodeGen::CodeGenModule &CGM) const override;
1151 
1152   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1153     // Darwin uses different dwarf register numbers for EH.
1154     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1155     return 4;
1156   }
1157 
1158   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1159                                llvm::Value *Address) const override;
1160 
1161   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1162                                   StringRef Constraint,
1163                                   llvm::Type* Ty) const override {
1164     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1165   }
1166 
1167   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1168                                 std::string &Constraints,
1169                                 std::vector<llvm::Type *> &ResultRegTypes,
1170                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1171                                 std::vector<LValue> &ResultRegDests,
1172                                 std::string &AsmString,
1173                                 unsigned NumOutputs) const override;
1174 
1175   llvm::Constant *
1176   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1177     unsigned Sig = (0xeb << 0) |  // jmp rel8
1178                    (0x06 << 8) |  //           .+0x08
1179                    ('v' << 16) |
1180                    ('2' << 24);
1181     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1182   }
1183 
1184   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1185     return "movl\t%ebp, %ebp"
1186            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1187   }
1188 };
1189 
1190 }
1191 
1192 /// Rewrite input constraint references after adding some output constraints.
1193 /// In the case where there is one output and one input and we add one output,
1194 /// we need to replace all operand references greater than or equal to 1:
1195 ///     mov $0, $1
1196 ///     mov eax, $1
1197 /// The result will be:
1198 ///     mov $0, $2
1199 ///     mov eax, $2
1200 static void rewriteInputConstraintReferences(unsigned FirstIn,
1201                                              unsigned NumNewOuts,
1202                                              std::string &AsmString) {
1203   std::string Buf;
1204   llvm::raw_string_ostream OS(Buf);
1205   size_t Pos = 0;
1206   while (Pos < AsmString.size()) {
1207     size_t DollarStart = AsmString.find('$', Pos);
1208     if (DollarStart == std::string::npos)
1209       DollarStart = AsmString.size();
1210     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1211     if (DollarEnd == std::string::npos)
1212       DollarEnd = AsmString.size();
1213     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1214     Pos = DollarEnd;
1215     size_t NumDollars = DollarEnd - DollarStart;
1216     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1217       // We have an operand reference.
1218       size_t DigitStart = Pos;
1219       if (AsmString[DigitStart] == '{') {
1220         OS << '{';
1221         ++DigitStart;
1222       }
1223       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1224       if (DigitEnd == std::string::npos)
1225         DigitEnd = AsmString.size();
1226       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1227       unsigned OperandIndex;
1228       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1229         if (OperandIndex >= FirstIn)
1230           OperandIndex += NumNewOuts;
1231         OS << OperandIndex;
1232       } else {
1233         OS << OperandStr;
1234       }
1235       Pos = DigitEnd;
1236     }
1237   }
1238   AsmString = std::move(OS.str());
1239 }
1240 
1241 /// Add output constraints for EAX:EDX because they are return registers.
1242 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1243     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1244     std::vector<llvm::Type *> &ResultRegTypes,
1245     std::vector<llvm::Type *> &ResultTruncRegTypes,
1246     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1247     unsigned NumOutputs) const {
1248   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1249 
1250   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1251   // larger.
1252   if (!Constraints.empty())
1253     Constraints += ',';
1254   if (RetWidth <= 32) {
1255     Constraints += "={eax}";
1256     ResultRegTypes.push_back(CGF.Int32Ty);
1257   } else {
1258     // Use the 'A' constraint for EAX:EDX.
1259     Constraints += "=A";
1260     ResultRegTypes.push_back(CGF.Int64Ty);
1261   }
1262 
1263   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1264   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1265   ResultTruncRegTypes.push_back(CoerceTy);
1266 
1267   // Coerce the integer by bitcasting the return slot pointer.
1268   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1269                                                   CoerceTy->getPointerTo()));
1270   ResultRegDests.push_back(ReturnSlot);
1271 
1272   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1273 }
1274 
1275 /// shouldReturnTypeInRegister - Determine if the given type should be
1276 /// returned in a register (for the Darwin and MCU ABI).
1277 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1278                                                ASTContext &Context) const {
1279   uint64_t Size = Context.getTypeSize(Ty);
1280 
1281   // For i386, type must be register sized.
1282   // For the MCU ABI, it only needs to be <= 8-byte
1283   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1284    return false;
1285 
1286   if (Ty->isVectorType()) {
1287     // 64- and 128- bit vectors inside structures are not returned in
1288     // registers.
1289     if (Size == 64 || Size == 128)
1290       return false;
1291 
1292     return true;
1293   }
1294 
1295   // If this is a builtin, pointer, enum, complex type, member pointer, or
1296   // member function pointer it is ok.
1297   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1298       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1299       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1300     return true;
1301 
1302   // Arrays are treated like records.
1303   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1304     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1305 
1306   // Otherwise, it must be a record type.
1307   const RecordType *RT = Ty->getAs<RecordType>();
1308   if (!RT) return false;
1309 
1310   // FIXME: Traverse bases here too.
1311 
1312   // Structure types are passed in register if all fields would be
1313   // passed in a register.
1314   for (const auto *FD : RT->getDecl()->fields()) {
1315     // Empty fields are ignored.
1316     if (isEmptyField(Context, FD, true))
1317       continue;
1318 
1319     // Check fields recursively.
1320     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1321       return false;
1322   }
1323   return true;
1324 }
1325 
1326 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1327   // Treat complex types as the element type.
1328   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1329     Ty = CTy->getElementType();
1330 
1331   // Check for a type which we know has a simple scalar argument-passing
1332   // convention without any padding.  (We're specifically looking for 32
1333   // and 64-bit integer and integer-equivalents, float, and double.)
1334   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1335       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1336     return false;
1337 
1338   uint64_t Size = Context.getTypeSize(Ty);
1339   return Size == 32 || Size == 64;
1340 }
1341 
1342 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1343                           uint64_t &Size) {
1344   for (const auto *FD : RD->fields()) {
1345     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1346     // argument is smaller than 32-bits, expanding the struct will create
1347     // alignment padding.
1348     if (!is32Or64BitBasicType(FD->getType(), Context))
1349       return false;
1350 
1351     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1352     // how to expand them yet, and the predicate for telling if a bitfield still
1353     // counts as "basic" is more complicated than what we were doing previously.
1354     if (FD->isBitField())
1355       return false;
1356 
1357     Size += Context.getTypeSize(FD->getType());
1358   }
1359   return true;
1360 }
1361 
1362 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1363                                  uint64_t &Size) {
1364   // Don't do this if there are any non-empty bases.
1365   for (const CXXBaseSpecifier &Base : RD->bases()) {
1366     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1367                               Size))
1368       return false;
1369   }
1370   if (!addFieldSizes(Context, RD, Size))
1371     return false;
1372   return true;
1373 }
1374 
1375 /// Test whether an argument type which is to be passed indirectly (on the
1376 /// stack) would have the equivalent layout if it was expanded into separate
1377 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1378 /// optimizations.
1379 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1380   // We can only expand structure types.
1381   const RecordType *RT = Ty->getAs<RecordType>();
1382   if (!RT)
1383     return false;
1384   const RecordDecl *RD = RT->getDecl();
1385   uint64_t Size = 0;
1386   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1387     if (!IsWin32StructABI) {
1388       // On non-Windows, we have to conservatively match our old bitcode
1389       // prototypes in order to be ABI-compatible at the bitcode level.
1390       if (!CXXRD->isCLike())
1391         return false;
1392     } else {
1393       // Don't do this for dynamic classes.
1394       if (CXXRD->isDynamicClass())
1395         return false;
1396     }
1397     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1398       return false;
1399   } else {
1400     if (!addFieldSizes(getContext(), RD, Size))
1401       return false;
1402   }
1403 
1404   // We can do this if there was no alignment padding.
1405   return Size == getContext().getTypeSize(Ty);
1406 }
1407 
1408 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1409   // If the return value is indirect, then the hidden argument is consuming one
1410   // integer register.
1411   if (State.FreeRegs) {
1412     --State.FreeRegs;
1413     if (!IsMCUABI)
1414       return getNaturalAlignIndirectInReg(RetTy);
1415   }
1416   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1417 }
1418 
1419 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1420                                              CCState &State) const {
1421   if (RetTy->isVoidType())
1422     return ABIArgInfo::getIgnore();
1423 
1424   const Type *Base = nullptr;
1425   uint64_t NumElts = 0;
1426   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1427        State.CC == llvm::CallingConv::X86_RegCall) &&
1428       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1429     // The LLVM struct type for such an aggregate should lower properly.
1430     return ABIArgInfo::getDirect();
1431   }
1432 
1433   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1434     // On Darwin, some vectors are returned in registers.
1435     if (IsDarwinVectorABI) {
1436       uint64_t Size = getContext().getTypeSize(RetTy);
1437 
1438       // 128-bit vectors are a special case; they are returned in
1439       // registers and we need to make sure to pick a type the LLVM
1440       // backend will like.
1441       if (Size == 128)
1442         return ABIArgInfo::getDirect(llvm::VectorType::get(
1443                   llvm::Type::getInt64Ty(getVMContext()), 2));
1444 
1445       // Always return in register if it fits in a general purpose
1446       // register, or if it is 64 bits and has a single element.
1447       if ((Size == 8 || Size == 16 || Size == 32) ||
1448           (Size == 64 && VT->getNumElements() == 1))
1449         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1450                                                             Size));
1451 
1452       return getIndirectReturnResult(RetTy, State);
1453     }
1454 
1455     return ABIArgInfo::getDirect();
1456   }
1457 
1458   if (isAggregateTypeForABI(RetTy)) {
1459     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1460       // Structures with flexible arrays are always indirect.
1461       if (RT->getDecl()->hasFlexibleArrayMember())
1462         return getIndirectReturnResult(RetTy, State);
1463     }
1464 
1465     // If specified, structs and unions are always indirect.
1466     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1467       return getIndirectReturnResult(RetTy, State);
1468 
1469     // Ignore empty structs/unions.
1470     if (isEmptyRecord(getContext(), RetTy, true))
1471       return ABIArgInfo::getIgnore();
1472 
1473     // Small structures which are register sized are generally returned
1474     // in a register.
1475     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1476       uint64_t Size = getContext().getTypeSize(RetTy);
1477 
1478       // As a special-case, if the struct is a "single-element" struct, and
1479       // the field is of type "float" or "double", return it in a
1480       // floating-point register. (MSVC does not apply this special case.)
1481       // We apply a similar transformation for pointer types to improve the
1482       // quality of the generated IR.
1483       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1484         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1485             || SeltTy->hasPointerRepresentation())
1486           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1487 
1488       // FIXME: We should be able to narrow this integer in cases with dead
1489       // padding.
1490       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1491     }
1492 
1493     return getIndirectReturnResult(RetTy, State);
1494   }
1495 
1496   // Treat an enum type as its underlying type.
1497   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1498     RetTy = EnumTy->getDecl()->getIntegerType();
1499 
1500   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1501                                            : ABIArgInfo::getDirect());
1502 }
1503 
1504 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1505   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1506 }
1507 
1508 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1509   const RecordType *RT = Ty->getAs<RecordType>();
1510   if (!RT)
1511     return 0;
1512   const RecordDecl *RD = RT->getDecl();
1513 
1514   // If this is a C++ record, check the bases first.
1515   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1516     for (const auto &I : CXXRD->bases())
1517       if (!isRecordWithSSEVectorType(Context, I.getType()))
1518         return false;
1519 
1520   for (const auto *i : RD->fields()) {
1521     QualType FT = i->getType();
1522 
1523     if (isSSEVectorType(Context, FT))
1524       return true;
1525 
1526     if (isRecordWithSSEVectorType(Context, FT))
1527       return true;
1528   }
1529 
1530   return false;
1531 }
1532 
1533 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1534                                                  unsigned Align) const {
1535   // Otherwise, if the alignment is less than or equal to the minimum ABI
1536   // alignment, just use the default; the backend will handle this.
1537   if (Align <= MinABIStackAlignInBytes)
1538     return 0; // Use default alignment.
1539 
1540   // On non-Darwin, the stack type alignment is always 4.
1541   if (!IsDarwinVectorABI) {
1542     // Set explicit alignment, since we may need to realign the top.
1543     return MinABIStackAlignInBytes;
1544   }
1545 
1546   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1547   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1548                       isRecordWithSSEVectorType(getContext(), Ty)))
1549     return 16;
1550 
1551   return MinABIStackAlignInBytes;
1552 }
1553 
1554 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1555                                             CCState &State) const {
1556   if (!ByVal) {
1557     if (State.FreeRegs) {
1558       --State.FreeRegs; // Non-byval indirects just use one pointer.
1559       if (!IsMCUABI)
1560         return getNaturalAlignIndirectInReg(Ty);
1561     }
1562     return getNaturalAlignIndirect(Ty, false);
1563   }
1564 
1565   // Compute the byval alignment.
1566   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1567   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1568   if (StackAlign == 0)
1569     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1570 
1571   // If the stack alignment is less than the type alignment, realign the
1572   // argument.
1573   bool Realign = TypeAlign > StackAlign;
1574   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1575                                  /*ByVal=*/true, Realign);
1576 }
1577 
1578 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1579   const Type *T = isSingleElementStruct(Ty, getContext());
1580   if (!T)
1581     T = Ty.getTypePtr();
1582 
1583   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1584     BuiltinType::Kind K = BT->getKind();
1585     if (K == BuiltinType::Float || K == BuiltinType::Double)
1586       return Float;
1587   }
1588   return Integer;
1589 }
1590 
1591 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1592   if (!IsSoftFloatABI) {
1593     Class C = classify(Ty);
1594     if (C == Float)
1595       return false;
1596   }
1597 
1598   unsigned Size = getContext().getTypeSize(Ty);
1599   unsigned SizeInRegs = (Size + 31) / 32;
1600 
1601   if (SizeInRegs == 0)
1602     return false;
1603 
1604   if (!IsMCUABI) {
1605     if (SizeInRegs > State.FreeRegs) {
1606       State.FreeRegs = 0;
1607       return false;
1608     }
1609   } else {
1610     // The MCU psABI allows passing parameters in-reg even if there are
1611     // earlier parameters that are passed on the stack. Also,
1612     // it does not allow passing >8-byte structs in-register,
1613     // even if there are 3 free registers available.
1614     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1615       return false;
1616   }
1617 
1618   State.FreeRegs -= SizeInRegs;
1619   return true;
1620 }
1621 
1622 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1623                                              bool &InReg,
1624                                              bool &NeedsPadding) const {
1625   // On Windows, aggregates other than HFAs are never passed in registers, and
1626   // they do not consume register slots. Homogenous floating-point aggregates
1627   // (HFAs) have already been dealt with at this point.
1628   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1629     return false;
1630 
1631   NeedsPadding = false;
1632   InReg = !IsMCUABI;
1633 
1634   if (!updateFreeRegs(Ty, State))
1635     return false;
1636 
1637   if (IsMCUABI)
1638     return true;
1639 
1640   if (State.CC == llvm::CallingConv::X86_FastCall ||
1641       State.CC == llvm::CallingConv::X86_VectorCall ||
1642       State.CC == llvm::CallingConv::X86_RegCall) {
1643     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1644       NeedsPadding = true;
1645 
1646     return false;
1647   }
1648 
1649   return true;
1650 }
1651 
1652 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1653   if (!updateFreeRegs(Ty, State))
1654     return false;
1655 
1656   if (IsMCUABI)
1657     return false;
1658 
1659   if (State.CC == llvm::CallingConv::X86_FastCall ||
1660       State.CC == llvm::CallingConv::X86_VectorCall ||
1661       State.CC == llvm::CallingConv::X86_RegCall) {
1662     if (getContext().getTypeSize(Ty) > 32)
1663       return false;
1664 
1665     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1666         Ty->isReferenceType());
1667   }
1668 
1669   return true;
1670 }
1671 
1672 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1673   // Vectorcall x86 works subtly different than in x64, so the format is
1674   // a bit different than the x64 version.  First, all vector types (not HVAs)
1675   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1676   // This differs from the x64 implementation, where the first 6 by INDEX get
1677   // registers.
1678   // In the second pass over the arguments, HVAs are passed in the remaining
1679   // vector registers if possible, or indirectly by address. The address will be
1680   // passed in ECX/EDX if available. Any other arguments are passed according to
1681   // the usual fastcall rules.
1682   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1683   for (int I = 0, E = Args.size(); I < E; ++I) {
1684     const Type *Base = nullptr;
1685     uint64_t NumElts = 0;
1686     const QualType &Ty = Args[I].type;
1687     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1688         isHomogeneousAggregate(Ty, Base, NumElts)) {
1689       if (State.FreeSSERegs >= NumElts) {
1690         State.FreeSSERegs -= NumElts;
1691         Args[I].info = ABIArgInfo::getDirectInReg();
1692         State.IsPreassigned.set(I);
1693       }
1694     }
1695   }
1696 }
1697 
1698 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1699                                                CCState &State) const {
1700   // FIXME: Set alignment on indirect arguments.
1701   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1702   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1703   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1704 
1705   Ty = useFirstFieldIfTransparentUnion(Ty);
1706   TypeInfo TI = getContext().getTypeInfo(Ty);
1707 
1708   // Check with the C++ ABI first.
1709   const RecordType *RT = Ty->getAs<RecordType>();
1710   if (RT) {
1711     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1712     if (RAA == CGCXXABI::RAA_Indirect) {
1713       return getIndirectResult(Ty, false, State);
1714     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1715       // The field index doesn't matter, we'll fix it up later.
1716       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1717     }
1718   }
1719 
1720   // Regcall uses the concept of a homogenous vector aggregate, similar
1721   // to other targets.
1722   const Type *Base = nullptr;
1723   uint64_t NumElts = 0;
1724   if ((IsRegCall || IsVectorCall) &&
1725       isHomogeneousAggregate(Ty, Base, NumElts)) {
1726     if (State.FreeSSERegs >= NumElts) {
1727       State.FreeSSERegs -= NumElts;
1728 
1729       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1730       // does.
1731       if (IsVectorCall)
1732         return getDirectX86Hva();
1733 
1734       if (Ty->isBuiltinType() || Ty->isVectorType())
1735         return ABIArgInfo::getDirect();
1736       return ABIArgInfo::getExpand();
1737     }
1738     return getIndirectResult(Ty, /*ByVal=*/false, State);
1739   }
1740 
1741   if (isAggregateTypeForABI(Ty)) {
1742     // Structures with flexible arrays are always indirect.
1743     // FIXME: This should not be byval!
1744     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1745       return getIndirectResult(Ty, true, State);
1746 
1747     // Ignore empty structs/unions on non-Windows.
1748     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1749       return ABIArgInfo::getIgnore();
1750 
1751     llvm::LLVMContext &LLVMContext = getVMContext();
1752     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1753     bool NeedsPadding = false;
1754     bool InReg;
1755     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1756       unsigned SizeInRegs = (TI.Width + 31) / 32;
1757       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1758       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1759       if (InReg)
1760         return ABIArgInfo::getDirectInReg(Result);
1761       else
1762         return ABIArgInfo::getDirect(Result);
1763     }
1764     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1765 
1766     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1767     // added in MSVC 2015.
1768     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1769       return getIndirectResult(Ty, /*ByVal=*/false, State);
1770 
1771     // Expand small (<= 128-bit) record types when we know that the stack layout
1772     // of those arguments will match the struct. This is important because the
1773     // LLVM backend isn't smart enough to remove byval, which inhibits many
1774     // optimizations.
1775     // Don't do this for the MCU if there are still free integer registers
1776     // (see X86_64 ABI for full explanation).
1777     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1778         canExpandIndirectArgument(Ty))
1779       return ABIArgInfo::getExpandWithPadding(
1780           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1781 
1782     return getIndirectResult(Ty, true, State);
1783   }
1784 
1785   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1786     // On Windows, vectors are passed directly if registers are available, or
1787     // indirectly if not. This avoids the need to align argument memory. Pass
1788     // user-defined vector types larger than 512 bits indirectly for simplicity.
1789     if (IsWin32StructABI) {
1790       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1791         --State.FreeSSERegs;
1792         return ABIArgInfo::getDirectInReg();
1793       }
1794       return getIndirectResult(Ty, /*ByVal=*/false, State);
1795     }
1796 
1797     // On Darwin, some vectors are passed in memory, we handle this by passing
1798     // it as an i8/i16/i32/i64.
1799     if (IsDarwinVectorABI) {
1800       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1801           (TI.Width == 64 && VT->getNumElements() == 1))
1802         return ABIArgInfo::getDirect(
1803             llvm::IntegerType::get(getVMContext(), TI.Width));
1804     }
1805 
1806     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1807       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1808 
1809     return ABIArgInfo::getDirect();
1810   }
1811 
1812 
1813   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1814     Ty = EnumTy->getDecl()->getIntegerType();
1815 
1816   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1817 
1818   if (Ty->isPromotableIntegerType()) {
1819     if (InReg)
1820       return ABIArgInfo::getExtendInReg(Ty);
1821     return ABIArgInfo::getExtend(Ty);
1822   }
1823 
1824   if (InReg)
1825     return ABIArgInfo::getDirectInReg();
1826   return ABIArgInfo::getDirect();
1827 }
1828 
1829 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1830   CCState State(FI);
1831   if (IsMCUABI)
1832     State.FreeRegs = 3;
1833   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1834     State.FreeRegs = 2;
1835     State.FreeSSERegs = 3;
1836   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1837     State.FreeRegs = 2;
1838     State.FreeSSERegs = 6;
1839   } else if (FI.getHasRegParm())
1840     State.FreeRegs = FI.getRegParm();
1841   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1842     State.FreeRegs = 5;
1843     State.FreeSSERegs = 8;
1844   } else if (IsWin32StructABI) {
1845     // Since MSVC 2015, the first three SSE vectors have been passed in
1846     // registers. The rest are passed indirectly.
1847     State.FreeRegs = DefaultNumRegisterParameters;
1848     State.FreeSSERegs = 3;
1849   } else
1850     State.FreeRegs = DefaultNumRegisterParameters;
1851 
1852   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1853     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1854   } else if (FI.getReturnInfo().isIndirect()) {
1855     // The C++ ABI is not aware of register usage, so we have to check if the
1856     // return value was sret and put it in a register ourselves if appropriate.
1857     if (State.FreeRegs) {
1858       --State.FreeRegs;  // The sret parameter consumes a register.
1859       if (!IsMCUABI)
1860         FI.getReturnInfo().setInReg(true);
1861     }
1862   }
1863 
1864   // The chain argument effectively gives us another free register.
1865   if (FI.isChainCall())
1866     ++State.FreeRegs;
1867 
1868   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1869   // arguments to XMM registers as available.
1870   if (State.CC == llvm::CallingConv::X86_VectorCall)
1871     runVectorCallFirstPass(FI, State);
1872 
1873   bool UsedInAlloca = false;
1874   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1875   for (int I = 0, E = Args.size(); I < E; ++I) {
1876     // Skip arguments that have already been assigned.
1877     if (State.IsPreassigned.test(I))
1878       continue;
1879 
1880     Args[I].info = classifyArgumentType(Args[I].type, State);
1881     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1882   }
1883 
1884   // If we needed to use inalloca for any argument, do a second pass and rewrite
1885   // all the memory arguments to use inalloca.
1886   if (UsedInAlloca)
1887     rewriteWithInAlloca(FI);
1888 }
1889 
1890 void
1891 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1892                                    CharUnits &StackOffset, ABIArgInfo &Info,
1893                                    QualType Type) const {
1894   // Arguments are always 4-byte-aligned.
1895   CharUnits WordSize = CharUnits::fromQuantity(4);
1896   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1897 
1898   // sret pointers and indirect things will require an extra pointer
1899   // indirection, unless they are byval. Most things are byval, and will not
1900   // require this indirection.
1901   bool IsIndirect = false;
1902   if (Info.isIndirect() && !Info.getIndirectByVal())
1903     IsIndirect = true;
1904   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1905   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1906   if (IsIndirect)
1907     LLTy = LLTy->getPointerTo(0);
1908   FrameFields.push_back(LLTy);
1909   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1910 
1911   // Insert padding bytes to respect alignment.
1912   CharUnits FieldEnd = StackOffset;
1913   StackOffset = FieldEnd.alignTo(WordSize);
1914   if (StackOffset != FieldEnd) {
1915     CharUnits NumBytes = StackOffset - FieldEnd;
1916     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1917     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1918     FrameFields.push_back(Ty);
1919   }
1920 }
1921 
1922 static bool isArgInAlloca(const ABIArgInfo &Info) {
1923   // Leave ignored and inreg arguments alone.
1924   switch (Info.getKind()) {
1925   case ABIArgInfo::InAlloca:
1926     return true;
1927   case ABIArgInfo::Ignore:
1928     return false;
1929   case ABIArgInfo::Indirect:
1930   case ABIArgInfo::Direct:
1931   case ABIArgInfo::Extend:
1932     return !Info.getInReg();
1933   case ABIArgInfo::Expand:
1934   case ABIArgInfo::CoerceAndExpand:
1935     // These are aggregate types which are never passed in registers when
1936     // inalloca is involved.
1937     return true;
1938   }
1939   llvm_unreachable("invalid enum");
1940 }
1941 
1942 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1943   assert(IsWin32StructABI && "inalloca only supported on win32");
1944 
1945   // Build a packed struct type for all of the arguments in memory.
1946   SmallVector<llvm::Type *, 6> FrameFields;
1947 
1948   // The stack alignment is always 4.
1949   CharUnits StackAlign = CharUnits::fromQuantity(4);
1950 
1951   CharUnits StackOffset;
1952   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1953 
1954   // Put 'this' into the struct before 'sret', if necessary.
1955   bool IsThisCall =
1956       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1957   ABIArgInfo &Ret = FI.getReturnInfo();
1958   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1959       isArgInAlloca(I->info)) {
1960     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1961     ++I;
1962   }
1963 
1964   // Put the sret parameter into the inalloca struct if it's in memory.
1965   if (Ret.isIndirect() && !Ret.getInReg()) {
1966     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
1967     // On Windows, the hidden sret parameter is always returned in eax.
1968     Ret.setInAllocaSRet(IsWin32StructABI);
1969   }
1970 
1971   // Skip the 'this' parameter in ecx.
1972   if (IsThisCall)
1973     ++I;
1974 
1975   // Put arguments passed in memory into the struct.
1976   for (; I != E; ++I) {
1977     if (isArgInAlloca(I->info))
1978       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1979   }
1980 
1981   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1982                                         /*isPacked=*/true),
1983                   StackAlign);
1984 }
1985 
1986 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1987                                  Address VAListAddr, QualType Ty) const {
1988 
1989   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1990 
1991   // x86-32 changes the alignment of certain arguments on the stack.
1992   //
1993   // Just messing with TypeInfo like this works because we never pass
1994   // anything indirectly.
1995   TypeInfo.second = CharUnits::fromQuantity(
1996                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1997 
1998   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1999                           TypeInfo, CharUnits::fromQuantity(4),
2000                           /*AllowHigherAlign*/ true);
2001 }
2002 
2003 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2004     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2005   assert(Triple.getArch() == llvm::Triple::x86);
2006 
2007   switch (Opts.getStructReturnConvention()) {
2008   case CodeGenOptions::SRCK_Default:
2009     break;
2010   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2011     return false;
2012   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2013     return true;
2014   }
2015 
2016   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2017     return true;
2018 
2019   switch (Triple.getOS()) {
2020   case llvm::Triple::DragonFly:
2021   case llvm::Triple::FreeBSD:
2022   case llvm::Triple::OpenBSD:
2023   case llvm::Triple::Win32:
2024     return true;
2025   default:
2026     return false;
2027   }
2028 }
2029 
2030 void X86_32TargetCodeGenInfo::setTargetAttributes(
2031     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2032   if (GV->isDeclaration())
2033     return;
2034   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2035     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2036       llvm::Function *Fn = cast<llvm::Function>(GV);
2037       Fn->addFnAttr("stackrealign");
2038     }
2039     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2040       llvm::Function *Fn = cast<llvm::Function>(GV);
2041       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2042     }
2043   }
2044 }
2045 
2046 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2047                                                CodeGen::CodeGenFunction &CGF,
2048                                                llvm::Value *Address) const {
2049   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2050 
2051   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2052 
2053   // 0-7 are the eight integer registers;  the order is different
2054   //   on Darwin (for EH), but the range is the same.
2055   // 8 is %eip.
2056   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2057 
2058   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2059     // 12-16 are st(0..4).  Not sure why we stop at 4.
2060     // These have size 16, which is sizeof(long double) on
2061     // platforms with 8-byte alignment for that type.
2062     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2063     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2064 
2065   } else {
2066     // 9 is %eflags, which doesn't get a size on Darwin for some
2067     // reason.
2068     Builder.CreateAlignedStore(
2069         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2070                                CharUnits::One());
2071 
2072     // 11-16 are st(0..5).  Not sure why we stop at 5.
2073     // These have size 12, which is sizeof(long double) on
2074     // platforms with 4-byte alignment for that type.
2075     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2076     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2077   }
2078 
2079   return false;
2080 }
2081 
2082 //===----------------------------------------------------------------------===//
2083 // X86-64 ABI Implementation
2084 //===----------------------------------------------------------------------===//
2085 
2086 
2087 namespace {
2088 /// The AVX ABI level for X86 targets.
2089 enum class X86AVXABILevel {
2090   None,
2091   AVX,
2092   AVX512
2093 };
2094 
2095 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2096 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2097   switch (AVXLevel) {
2098   case X86AVXABILevel::AVX512:
2099     return 512;
2100   case X86AVXABILevel::AVX:
2101     return 256;
2102   case X86AVXABILevel::None:
2103     return 128;
2104   }
2105   llvm_unreachable("Unknown AVXLevel");
2106 }
2107 
2108 /// X86_64ABIInfo - The X86_64 ABI information.
2109 class X86_64ABIInfo : public SwiftABIInfo {
2110   enum Class {
2111     Integer = 0,
2112     SSE,
2113     SSEUp,
2114     X87,
2115     X87Up,
2116     ComplexX87,
2117     NoClass,
2118     Memory
2119   };
2120 
2121   /// merge - Implement the X86_64 ABI merging algorithm.
2122   ///
2123   /// Merge an accumulating classification \arg Accum with a field
2124   /// classification \arg Field.
2125   ///
2126   /// \param Accum - The accumulating classification. This should
2127   /// always be either NoClass or the result of a previous merge
2128   /// call. In addition, this should never be Memory (the caller
2129   /// should just return Memory for the aggregate).
2130   static Class merge(Class Accum, Class Field);
2131 
2132   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2133   ///
2134   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2135   /// final MEMORY or SSE classes when necessary.
2136   ///
2137   /// \param AggregateSize - The size of the current aggregate in
2138   /// the classification process.
2139   ///
2140   /// \param Lo - The classification for the parts of the type
2141   /// residing in the low word of the containing object.
2142   ///
2143   /// \param Hi - The classification for the parts of the type
2144   /// residing in the higher words of the containing object.
2145   ///
2146   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2147 
2148   /// classify - Determine the x86_64 register classes in which the
2149   /// given type T should be passed.
2150   ///
2151   /// \param Lo - The classification for the parts of the type
2152   /// residing in the low word of the containing object.
2153   ///
2154   /// \param Hi - The classification for the parts of the type
2155   /// residing in the high word of the containing object.
2156   ///
2157   /// \param OffsetBase - The bit offset of this type in the
2158   /// containing object.  Some parameters are classified different
2159   /// depending on whether they straddle an eightbyte boundary.
2160   ///
2161   /// \param isNamedArg - Whether the argument in question is a "named"
2162   /// argument, as used in AMD64-ABI 3.5.7.
2163   ///
2164   /// If a word is unused its result will be NoClass; if a type should
2165   /// be passed in Memory then at least the classification of \arg Lo
2166   /// will be Memory.
2167   ///
2168   /// The \arg Lo class will be NoClass iff the argument is ignored.
2169   ///
2170   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2171   /// also be ComplexX87.
2172   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2173                 bool isNamedArg) const;
2174 
2175   llvm::Type *GetByteVectorType(QualType Ty) const;
2176   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2177                                  unsigned IROffset, QualType SourceTy,
2178                                  unsigned SourceOffset) const;
2179   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2180                                      unsigned IROffset, QualType SourceTy,
2181                                      unsigned SourceOffset) const;
2182 
2183   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2184   /// such that the argument will be returned in memory.
2185   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2186 
2187   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2188   /// such that the argument will be passed in memory.
2189   ///
2190   /// \param freeIntRegs - The number of free integer registers remaining
2191   /// available.
2192   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2193 
2194   ABIArgInfo classifyReturnType(QualType RetTy) const;
2195 
2196   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2197                                   unsigned &neededInt, unsigned &neededSSE,
2198                                   bool isNamedArg) const;
2199 
2200   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2201                                        unsigned &NeededSSE) const;
2202 
2203   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2204                                            unsigned &NeededSSE) const;
2205 
2206   bool IsIllegalVectorType(QualType Ty) const;
2207 
2208   /// The 0.98 ABI revision clarified a lot of ambiguities,
2209   /// unfortunately in ways that were not always consistent with
2210   /// certain previous compilers.  In particular, platforms which
2211   /// required strict binary compatibility with older versions of GCC
2212   /// may need to exempt themselves.
2213   bool honorsRevision0_98() const {
2214     return !getTarget().getTriple().isOSDarwin();
2215   }
2216 
2217   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2218   /// classify it as INTEGER (for compatibility with older clang compilers).
2219   bool classifyIntegerMMXAsSSE() const {
2220     // Clang <= 3.8 did not do this.
2221     if (getContext().getLangOpts().getClangABICompat() <=
2222         LangOptions::ClangABI::Ver3_8)
2223       return false;
2224 
2225     const llvm::Triple &Triple = getTarget().getTriple();
2226     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2227       return false;
2228     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2229       return false;
2230     return true;
2231   }
2232 
2233   // GCC classifies vectors of __int128 as memory.
2234   bool passInt128VectorsInMem() const {
2235     // Clang <= 9.0 did not do this.
2236     if (getContext().getLangOpts().getClangABICompat() <=
2237         LangOptions::ClangABI::Ver9)
2238       return false;
2239 
2240     const llvm::Triple &T = getTarget().getTriple();
2241     return T.isOSLinux() || T.isOSNetBSD();
2242   }
2243 
2244   X86AVXABILevel AVXLevel;
2245   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2246   // 64-bit hardware.
2247   bool Has64BitPointers;
2248 
2249 public:
2250   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2251       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2252       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2253   }
2254 
2255   bool isPassedUsingAVXType(QualType type) const {
2256     unsigned neededInt, neededSSE;
2257     // The freeIntRegs argument doesn't matter here.
2258     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2259                                            /*isNamedArg*/true);
2260     if (info.isDirect()) {
2261       llvm::Type *ty = info.getCoerceToType();
2262       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2263         return (vectorTy->getBitWidth() > 128);
2264     }
2265     return false;
2266   }
2267 
2268   void computeInfo(CGFunctionInfo &FI) const override;
2269 
2270   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2271                     QualType Ty) const override;
2272   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2273                       QualType Ty) const override;
2274 
2275   bool has64BitPointers() const {
2276     return Has64BitPointers;
2277   }
2278 
2279   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2280                                     bool asReturnValue) const override {
2281     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2282   }
2283   bool isSwiftErrorInRegister() const override {
2284     return true;
2285   }
2286 };
2287 
2288 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2289 class WinX86_64ABIInfo : public SwiftABIInfo {
2290 public:
2291   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2292       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2293         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2294 
2295   void computeInfo(CGFunctionInfo &FI) const override;
2296 
2297   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2298                     QualType Ty) const override;
2299 
2300   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2301     // FIXME: Assumes vectorcall is in use.
2302     return isX86VectorTypeForVectorCall(getContext(), Ty);
2303   }
2304 
2305   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2306                                          uint64_t NumMembers) const override {
2307     // FIXME: Assumes vectorcall is in use.
2308     return isX86VectorCallAggregateSmallEnough(NumMembers);
2309   }
2310 
2311   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2312                                     bool asReturnValue) const override {
2313     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2314   }
2315 
2316   bool isSwiftErrorInRegister() const override {
2317     return true;
2318   }
2319 
2320 private:
2321   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2322                       bool IsVectorCall, bool IsRegCall) const;
2323   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2324                                       const ABIArgInfo &current) const;
2325   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2326                              bool IsVectorCall, bool IsRegCall) const;
2327 
2328   X86AVXABILevel AVXLevel;
2329 
2330   bool IsMingw64;
2331 };
2332 
2333 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2334 public:
2335   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2336       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2337 
2338   const X86_64ABIInfo &getABIInfo() const {
2339     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2340   }
2341 
2342   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2343   /// the autoreleaseRV/retainRV optimization.
2344   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2345     return true;
2346   }
2347 
2348   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2349     return 7;
2350   }
2351 
2352   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2353                                llvm::Value *Address) const override {
2354     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2355 
2356     // 0-15 are the 16 integer registers.
2357     // 16 is %rip.
2358     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2359     return false;
2360   }
2361 
2362   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2363                                   StringRef Constraint,
2364                                   llvm::Type* Ty) const override {
2365     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2366   }
2367 
2368   bool isNoProtoCallVariadic(const CallArgList &args,
2369                              const FunctionNoProtoType *fnType) const override {
2370     // The default CC on x86-64 sets %al to the number of SSA
2371     // registers used, and GCC sets this when calling an unprototyped
2372     // function, so we override the default behavior.  However, don't do
2373     // that when AVX types are involved: the ABI explicitly states it is
2374     // undefined, and it doesn't work in practice because of how the ABI
2375     // defines varargs anyway.
2376     if (fnType->getCallConv() == CC_C) {
2377       bool HasAVXType = false;
2378       for (CallArgList::const_iterator
2379              it = args.begin(), ie = args.end(); it != ie; ++it) {
2380         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2381           HasAVXType = true;
2382           break;
2383         }
2384       }
2385 
2386       if (!HasAVXType)
2387         return true;
2388     }
2389 
2390     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2391   }
2392 
2393   llvm::Constant *
2394   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2395     unsigned Sig = (0xeb << 0) | // jmp rel8
2396                    (0x06 << 8) | //           .+0x08
2397                    ('v' << 16) |
2398                    ('2' << 24);
2399     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2400   }
2401 
2402   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2403                            CodeGen::CodeGenModule &CGM) const override {
2404     if (GV->isDeclaration())
2405       return;
2406     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2407       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2408         llvm::Function *Fn = cast<llvm::Function>(GV);
2409         Fn->addFnAttr("stackrealign");
2410       }
2411       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2412         llvm::Function *Fn = cast<llvm::Function>(GV);
2413         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2414       }
2415     }
2416   }
2417 };
2418 
2419 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2420   // If the argument does not end in .lib, automatically add the suffix.
2421   // If the argument contains a space, enclose it in quotes.
2422   // This matches the behavior of MSVC.
2423   bool Quote = (Lib.find(" ") != StringRef::npos);
2424   std::string ArgStr = Quote ? "\"" : "";
2425   ArgStr += Lib;
2426   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2427     ArgStr += ".lib";
2428   ArgStr += Quote ? "\"" : "";
2429   return ArgStr;
2430 }
2431 
2432 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2433 public:
2434   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2435         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2436         unsigned NumRegisterParameters)
2437     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2438         Win32StructABI, NumRegisterParameters, false) {}
2439 
2440   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2441                            CodeGen::CodeGenModule &CGM) const override;
2442 
2443   void getDependentLibraryOption(llvm::StringRef Lib,
2444                                  llvm::SmallString<24> &Opt) const override {
2445     Opt = "/DEFAULTLIB:";
2446     Opt += qualifyWindowsLibrary(Lib);
2447   }
2448 
2449   void getDetectMismatchOption(llvm::StringRef Name,
2450                                llvm::StringRef Value,
2451                                llvm::SmallString<32> &Opt) const override {
2452     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2453   }
2454 };
2455 
2456 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2457                                           CodeGen::CodeGenModule &CGM) {
2458   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2459 
2460     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2461       Fn->addFnAttr("stack-probe-size",
2462                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2463     if (CGM.getCodeGenOpts().NoStackArgProbe)
2464       Fn->addFnAttr("no-stack-arg-probe");
2465   }
2466 }
2467 
2468 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2469     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2470   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2471   if (GV->isDeclaration())
2472     return;
2473   addStackProbeTargetAttributes(D, GV, CGM);
2474 }
2475 
2476 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2477 public:
2478   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2479                              X86AVXABILevel AVXLevel)
2480       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {}
2481 
2482   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2483                            CodeGen::CodeGenModule &CGM) const override;
2484 
2485   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2486     return 7;
2487   }
2488 
2489   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2490                                llvm::Value *Address) const override {
2491     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2492 
2493     // 0-15 are the 16 integer registers.
2494     // 16 is %rip.
2495     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2496     return false;
2497   }
2498 
2499   void getDependentLibraryOption(llvm::StringRef Lib,
2500                                  llvm::SmallString<24> &Opt) const override {
2501     Opt = "/DEFAULTLIB:";
2502     Opt += qualifyWindowsLibrary(Lib);
2503   }
2504 
2505   void getDetectMismatchOption(llvm::StringRef Name,
2506                                llvm::StringRef Value,
2507                                llvm::SmallString<32> &Opt) const override {
2508     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2509   }
2510 };
2511 
2512 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2513     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2514   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2515   if (GV->isDeclaration())
2516     return;
2517   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2518     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2519       llvm::Function *Fn = cast<llvm::Function>(GV);
2520       Fn->addFnAttr("stackrealign");
2521     }
2522     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2523       llvm::Function *Fn = cast<llvm::Function>(GV);
2524       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2525     }
2526   }
2527 
2528   addStackProbeTargetAttributes(D, GV, CGM);
2529 }
2530 }
2531 
2532 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2533                               Class &Hi) const {
2534   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2535   //
2536   // (a) If one of the classes is Memory, the whole argument is passed in
2537   //     memory.
2538   //
2539   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2540   //     memory.
2541   //
2542   // (c) If the size of the aggregate exceeds two eightbytes and the first
2543   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2544   //     argument is passed in memory. NOTE: This is necessary to keep the
2545   //     ABI working for processors that don't support the __m256 type.
2546   //
2547   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2548   //
2549   // Some of these are enforced by the merging logic.  Others can arise
2550   // only with unions; for example:
2551   //   union { _Complex double; unsigned; }
2552   //
2553   // Note that clauses (b) and (c) were added in 0.98.
2554   //
2555   if (Hi == Memory)
2556     Lo = Memory;
2557   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2558     Lo = Memory;
2559   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2560     Lo = Memory;
2561   if (Hi == SSEUp && Lo != SSE)
2562     Hi = SSE;
2563 }
2564 
2565 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2566   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2567   // classified recursively so that always two fields are
2568   // considered. The resulting class is calculated according to
2569   // the classes of the fields in the eightbyte:
2570   //
2571   // (a) If both classes are equal, this is the resulting class.
2572   //
2573   // (b) If one of the classes is NO_CLASS, the resulting class is
2574   // the other class.
2575   //
2576   // (c) If one of the classes is MEMORY, the result is the MEMORY
2577   // class.
2578   //
2579   // (d) If one of the classes is INTEGER, the result is the
2580   // INTEGER.
2581   //
2582   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2583   // MEMORY is used as class.
2584   //
2585   // (f) Otherwise class SSE is used.
2586 
2587   // Accum should never be memory (we should have returned) or
2588   // ComplexX87 (because this cannot be passed in a structure).
2589   assert((Accum != Memory && Accum != ComplexX87) &&
2590          "Invalid accumulated classification during merge.");
2591   if (Accum == Field || Field == NoClass)
2592     return Accum;
2593   if (Field == Memory)
2594     return Memory;
2595   if (Accum == NoClass)
2596     return Field;
2597   if (Accum == Integer || Field == Integer)
2598     return Integer;
2599   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2600       Accum == X87 || Accum == X87Up)
2601     return Memory;
2602   return SSE;
2603 }
2604 
2605 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2606                              Class &Lo, Class &Hi, bool isNamedArg) const {
2607   // FIXME: This code can be simplified by introducing a simple value class for
2608   // Class pairs with appropriate constructor methods for the various
2609   // situations.
2610 
2611   // FIXME: Some of the split computations are wrong; unaligned vectors
2612   // shouldn't be passed in registers for example, so there is no chance they
2613   // can straddle an eightbyte. Verify & simplify.
2614 
2615   Lo = Hi = NoClass;
2616 
2617   Class &Current = OffsetBase < 64 ? Lo : Hi;
2618   Current = Memory;
2619 
2620   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2621     BuiltinType::Kind k = BT->getKind();
2622 
2623     if (k == BuiltinType::Void) {
2624       Current = NoClass;
2625     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2626       Lo = Integer;
2627       Hi = Integer;
2628     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2629       Current = Integer;
2630     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2631       Current = SSE;
2632     } else if (k == BuiltinType::LongDouble) {
2633       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2634       if (LDF == &llvm::APFloat::IEEEquad()) {
2635         Lo = SSE;
2636         Hi = SSEUp;
2637       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2638         Lo = X87;
2639         Hi = X87Up;
2640       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2641         Current = SSE;
2642       } else
2643         llvm_unreachable("unexpected long double representation!");
2644     }
2645     // FIXME: _Decimal32 and _Decimal64 are SSE.
2646     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2647     return;
2648   }
2649 
2650   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2651     // Classify the underlying integer type.
2652     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2653     return;
2654   }
2655 
2656   if (Ty->hasPointerRepresentation()) {
2657     Current = Integer;
2658     return;
2659   }
2660 
2661   if (Ty->isMemberPointerType()) {
2662     if (Ty->isMemberFunctionPointerType()) {
2663       if (Has64BitPointers) {
2664         // If Has64BitPointers, this is an {i64, i64}, so classify both
2665         // Lo and Hi now.
2666         Lo = Hi = Integer;
2667       } else {
2668         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2669         // straddles an eightbyte boundary, Hi should be classified as well.
2670         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2671         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2672         if (EB_FuncPtr != EB_ThisAdj) {
2673           Lo = Hi = Integer;
2674         } else {
2675           Current = Integer;
2676         }
2677       }
2678     } else {
2679       Current = Integer;
2680     }
2681     return;
2682   }
2683 
2684   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2685     uint64_t Size = getContext().getTypeSize(VT);
2686     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2687       // gcc passes the following as integer:
2688       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2689       // 2 bytes - <2 x char>, <1 x short>
2690       // 1 byte  - <1 x char>
2691       Current = Integer;
2692 
2693       // If this type crosses an eightbyte boundary, it should be
2694       // split.
2695       uint64_t EB_Lo = (OffsetBase) / 64;
2696       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2697       if (EB_Lo != EB_Hi)
2698         Hi = Lo;
2699     } else if (Size == 64) {
2700       QualType ElementType = VT->getElementType();
2701 
2702       // gcc passes <1 x double> in memory. :(
2703       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2704         return;
2705 
2706       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2707       // pass them as integer.  For platforms where clang is the de facto
2708       // platform compiler, we must continue to use integer.
2709       if (!classifyIntegerMMXAsSSE() &&
2710           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2711            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2712            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2713            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2714         Current = Integer;
2715       else
2716         Current = SSE;
2717 
2718       // If this type crosses an eightbyte boundary, it should be
2719       // split.
2720       if (OffsetBase && OffsetBase != 64)
2721         Hi = Lo;
2722     } else if (Size == 128 ||
2723                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2724       QualType ElementType = VT->getElementType();
2725 
2726       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2727       if (passInt128VectorsInMem() && Size != 128 &&
2728           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2729            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2730         return;
2731 
2732       // Arguments of 256-bits are split into four eightbyte chunks. The
2733       // least significant one belongs to class SSE and all the others to class
2734       // SSEUP. The original Lo and Hi design considers that types can't be
2735       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2736       // This design isn't correct for 256-bits, but since there're no cases
2737       // where the upper parts would need to be inspected, avoid adding
2738       // complexity and just consider Hi to match the 64-256 part.
2739       //
2740       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2741       // registers if they are "named", i.e. not part of the "..." of a
2742       // variadic function.
2743       //
2744       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2745       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2746       Lo = SSE;
2747       Hi = SSEUp;
2748     }
2749     return;
2750   }
2751 
2752   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2753     QualType ET = getContext().getCanonicalType(CT->getElementType());
2754 
2755     uint64_t Size = getContext().getTypeSize(Ty);
2756     if (ET->isIntegralOrEnumerationType()) {
2757       if (Size <= 64)
2758         Current = Integer;
2759       else if (Size <= 128)
2760         Lo = Hi = Integer;
2761     } else if (ET == getContext().FloatTy) {
2762       Current = SSE;
2763     } else if (ET == getContext().DoubleTy) {
2764       Lo = Hi = SSE;
2765     } else if (ET == getContext().LongDoubleTy) {
2766       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2767       if (LDF == &llvm::APFloat::IEEEquad())
2768         Current = Memory;
2769       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2770         Current = ComplexX87;
2771       else if (LDF == &llvm::APFloat::IEEEdouble())
2772         Lo = Hi = SSE;
2773       else
2774         llvm_unreachable("unexpected long double representation!");
2775     }
2776 
2777     // If this complex type crosses an eightbyte boundary then it
2778     // should be split.
2779     uint64_t EB_Real = (OffsetBase) / 64;
2780     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2781     if (Hi == NoClass && EB_Real != EB_Imag)
2782       Hi = Lo;
2783 
2784     return;
2785   }
2786 
2787   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2788     // Arrays are treated like structures.
2789 
2790     uint64_t Size = getContext().getTypeSize(Ty);
2791 
2792     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2793     // than eight eightbytes, ..., it has class MEMORY.
2794     if (Size > 512)
2795       return;
2796 
2797     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2798     // fields, it has class MEMORY.
2799     //
2800     // Only need to check alignment of array base.
2801     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2802       return;
2803 
2804     // Otherwise implement simplified merge. We could be smarter about
2805     // this, but it isn't worth it and would be harder to verify.
2806     Current = NoClass;
2807     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2808     uint64_t ArraySize = AT->getSize().getZExtValue();
2809 
2810     // The only case a 256-bit wide vector could be used is when the array
2811     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2812     // to work for sizes wider than 128, early check and fallback to memory.
2813     //
2814     if (Size > 128 &&
2815         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2816       return;
2817 
2818     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2819       Class FieldLo, FieldHi;
2820       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2821       Lo = merge(Lo, FieldLo);
2822       Hi = merge(Hi, FieldHi);
2823       if (Lo == Memory || Hi == Memory)
2824         break;
2825     }
2826 
2827     postMerge(Size, Lo, Hi);
2828     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2829     return;
2830   }
2831 
2832   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2833     uint64_t Size = getContext().getTypeSize(Ty);
2834 
2835     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2836     // than eight eightbytes, ..., it has class MEMORY.
2837     if (Size > 512)
2838       return;
2839 
2840     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2841     // copy constructor or a non-trivial destructor, it is passed by invisible
2842     // reference.
2843     if (getRecordArgABI(RT, getCXXABI()))
2844       return;
2845 
2846     const RecordDecl *RD = RT->getDecl();
2847 
2848     // Assume variable sized types are passed in memory.
2849     if (RD->hasFlexibleArrayMember())
2850       return;
2851 
2852     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2853 
2854     // Reset Lo class, this will be recomputed.
2855     Current = NoClass;
2856 
2857     // If this is a C++ record, classify the bases first.
2858     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2859       for (const auto &I : CXXRD->bases()) {
2860         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2861                "Unexpected base class!");
2862         const auto *Base =
2863             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2864 
2865         // Classify this field.
2866         //
2867         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2868         // single eightbyte, each is classified separately. Each eightbyte gets
2869         // initialized to class NO_CLASS.
2870         Class FieldLo, FieldHi;
2871         uint64_t Offset =
2872           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2873         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2874         Lo = merge(Lo, FieldLo);
2875         Hi = merge(Hi, FieldHi);
2876         if (Lo == Memory || Hi == Memory) {
2877           postMerge(Size, Lo, Hi);
2878           return;
2879         }
2880       }
2881     }
2882 
2883     // Classify the fields one at a time, merging the results.
2884     unsigned idx = 0;
2885     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2886            i != e; ++i, ++idx) {
2887       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2888       bool BitField = i->isBitField();
2889 
2890       // Ignore padding bit-fields.
2891       if (BitField && i->isUnnamedBitfield())
2892         continue;
2893 
2894       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2895       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2896       //
2897       // The only case a 256-bit wide vector could be used is when the struct
2898       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2899       // to work for sizes wider than 128, early check and fallback to memory.
2900       //
2901       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2902                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2903         Lo = Memory;
2904         postMerge(Size, Lo, Hi);
2905         return;
2906       }
2907       // Note, skip this test for bit-fields, see below.
2908       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2909         Lo = Memory;
2910         postMerge(Size, Lo, Hi);
2911         return;
2912       }
2913 
2914       // Classify this field.
2915       //
2916       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2917       // exceeds a single eightbyte, each is classified
2918       // separately. Each eightbyte gets initialized to class
2919       // NO_CLASS.
2920       Class FieldLo, FieldHi;
2921 
2922       // Bit-fields require special handling, they do not force the
2923       // structure to be passed in memory even if unaligned, and
2924       // therefore they can straddle an eightbyte.
2925       if (BitField) {
2926         assert(!i->isUnnamedBitfield());
2927         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2928         uint64_t Size = i->getBitWidthValue(getContext());
2929 
2930         uint64_t EB_Lo = Offset / 64;
2931         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2932 
2933         if (EB_Lo) {
2934           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2935           FieldLo = NoClass;
2936           FieldHi = Integer;
2937         } else {
2938           FieldLo = Integer;
2939           FieldHi = EB_Hi ? Integer : NoClass;
2940         }
2941       } else
2942         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2943       Lo = merge(Lo, FieldLo);
2944       Hi = merge(Hi, FieldHi);
2945       if (Lo == Memory || Hi == Memory)
2946         break;
2947     }
2948 
2949     postMerge(Size, Lo, Hi);
2950   }
2951 }
2952 
2953 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2954   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2955   // place naturally.
2956   if (!isAggregateTypeForABI(Ty)) {
2957     // Treat an enum type as its underlying type.
2958     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2959       Ty = EnumTy->getDecl()->getIntegerType();
2960 
2961     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2962                                           : ABIArgInfo::getDirect());
2963   }
2964 
2965   return getNaturalAlignIndirect(Ty);
2966 }
2967 
2968 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2969   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2970     uint64_t Size = getContext().getTypeSize(VecTy);
2971     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2972     if (Size <= 64 || Size > LargestVector)
2973       return true;
2974     QualType EltTy = VecTy->getElementType();
2975     if (passInt128VectorsInMem() &&
2976         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2977          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2978       return true;
2979   }
2980 
2981   return false;
2982 }
2983 
2984 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2985                                             unsigned freeIntRegs) const {
2986   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2987   // place naturally.
2988   //
2989   // This assumption is optimistic, as there could be free registers available
2990   // when we need to pass this argument in memory, and LLVM could try to pass
2991   // the argument in the free register. This does not seem to happen currently,
2992   // but this code would be much safer if we could mark the argument with
2993   // 'onstack'. See PR12193.
2994   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2995     // Treat an enum type as its underlying type.
2996     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2997       Ty = EnumTy->getDecl()->getIntegerType();
2998 
2999     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
3000                                           : ABIArgInfo::getDirect());
3001   }
3002 
3003   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3004     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3005 
3006   // Compute the byval alignment. We specify the alignment of the byval in all
3007   // cases so that the mid-level optimizer knows the alignment of the byval.
3008   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3009 
3010   // Attempt to avoid passing indirect results using byval when possible. This
3011   // is important for good codegen.
3012   //
3013   // We do this by coercing the value into a scalar type which the backend can
3014   // handle naturally (i.e., without using byval).
3015   //
3016   // For simplicity, we currently only do this when we have exhausted all of the
3017   // free integer registers. Doing this when there are free integer registers
3018   // would require more care, as we would have to ensure that the coerced value
3019   // did not claim the unused register. That would require either reording the
3020   // arguments to the function (so that any subsequent inreg values came first),
3021   // or only doing this optimization when there were no following arguments that
3022   // might be inreg.
3023   //
3024   // We currently expect it to be rare (particularly in well written code) for
3025   // arguments to be passed on the stack when there are still free integer
3026   // registers available (this would typically imply large structs being passed
3027   // by value), so this seems like a fair tradeoff for now.
3028   //
3029   // We can revisit this if the backend grows support for 'onstack' parameter
3030   // attributes. See PR12193.
3031   if (freeIntRegs == 0) {
3032     uint64_t Size = getContext().getTypeSize(Ty);
3033 
3034     // If this type fits in an eightbyte, coerce it into the matching integral
3035     // type, which will end up on the stack (with alignment 8).
3036     if (Align == 8 && Size <= 64)
3037       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3038                                                           Size));
3039   }
3040 
3041   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3042 }
3043 
3044 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3045 /// register. Pick an LLVM IR type that will be passed as a vector register.
3046 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3047   // Wrapper structs/arrays that only contain vectors are passed just like
3048   // vectors; strip them off if present.
3049   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3050     Ty = QualType(InnerTy, 0);
3051 
3052   llvm::Type *IRType = CGT.ConvertType(Ty);
3053   if (isa<llvm::VectorType>(IRType)) {
3054     // Don't pass vXi128 vectors in their native type, the backend can't
3055     // legalize them.
3056     if (passInt128VectorsInMem() &&
3057         IRType->getVectorElementType()->isIntegerTy(128)) {
3058       // Use a vXi64 vector.
3059       uint64_t Size = getContext().getTypeSize(Ty);
3060       return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3061                                    Size / 64);
3062     }
3063 
3064     return IRType;
3065   }
3066 
3067   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3068     return IRType;
3069 
3070   // We couldn't find the preferred IR vector type for 'Ty'.
3071   uint64_t Size = getContext().getTypeSize(Ty);
3072   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3073 
3074 
3075   // Return a LLVM IR vector type based on the size of 'Ty'.
3076   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3077                                Size / 64);
3078 }
3079 
3080 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3081 /// is known to either be off the end of the specified type or being in
3082 /// alignment padding.  The user type specified is known to be at most 128 bits
3083 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3084 /// classification that put one of the two halves in the INTEGER class.
3085 ///
3086 /// It is conservatively correct to return false.
3087 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3088                                   unsigned EndBit, ASTContext &Context) {
3089   // If the bytes being queried are off the end of the type, there is no user
3090   // data hiding here.  This handles analysis of builtins, vectors and other
3091   // types that don't contain interesting padding.
3092   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3093   if (TySize <= StartBit)
3094     return true;
3095 
3096   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3097     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3098     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3099 
3100     // Check each element to see if the element overlaps with the queried range.
3101     for (unsigned i = 0; i != NumElts; ++i) {
3102       // If the element is after the span we care about, then we're done..
3103       unsigned EltOffset = i*EltSize;
3104       if (EltOffset >= EndBit) break;
3105 
3106       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3107       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3108                                  EndBit-EltOffset, Context))
3109         return false;
3110     }
3111     // If it overlaps no elements, then it is safe to process as padding.
3112     return true;
3113   }
3114 
3115   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3116     const RecordDecl *RD = RT->getDecl();
3117     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3118 
3119     // If this is a C++ record, check the bases first.
3120     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3121       for (const auto &I : CXXRD->bases()) {
3122         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3123                "Unexpected base class!");
3124         const auto *Base =
3125             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3126 
3127         // If the base is after the span we care about, ignore it.
3128         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3129         if (BaseOffset >= EndBit) continue;
3130 
3131         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3132         if (!BitsContainNoUserData(I.getType(), BaseStart,
3133                                    EndBit-BaseOffset, Context))
3134           return false;
3135       }
3136     }
3137 
3138     // Verify that no field has data that overlaps the region of interest.  Yes
3139     // this could be sped up a lot by being smarter about queried fields,
3140     // however we're only looking at structs up to 16 bytes, so we don't care
3141     // much.
3142     unsigned idx = 0;
3143     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3144          i != e; ++i, ++idx) {
3145       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3146 
3147       // If we found a field after the region we care about, then we're done.
3148       if (FieldOffset >= EndBit) break;
3149 
3150       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3151       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3152                                  Context))
3153         return false;
3154     }
3155 
3156     // If nothing in this record overlapped the area of interest, then we're
3157     // clean.
3158     return true;
3159   }
3160 
3161   return false;
3162 }
3163 
3164 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3165 /// float member at the specified offset.  For example, {int,{float}} has a
3166 /// float at offset 4.  It is conservatively correct for this routine to return
3167 /// false.
3168 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3169                                   const llvm::DataLayout &TD) {
3170   // Base case if we find a float.
3171   if (IROffset == 0 && IRType->isFloatTy())
3172     return true;
3173 
3174   // If this is a struct, recurse into the field at the specified offset.
3175   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3176     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3177     unsigned Elt = SL->getElementContainingOffset(IROffset);
3178     IROffset -= SL->getElementOffset(Elt);
3179     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3180   }
3181 
3182   // If this is an array, recurse into the field at the specified offset.
3183   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3184     llvm::Type *EltTy = ATy->getElementType();
3185     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3186     IROffset -= IROffset/EltSize*EltSize;
3187     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3188   }
3189 
3190   return false;
3191 }
3192 
3193 
3194 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3195 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3196 llvm::Type *X86_64ABIInfo::
3197 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3198                    QualType SourceTy, unsigned SourceOffset) const {
3199   // The only three choices we have are either double, <2 x float>, or float. We
3200   // pass as float if the last 4 bytes is just padding.  This happens for
3201   // structs that contain 3 floats.
3202   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3203                             SourceOffset*8+64, getContext()))
3204     return llvm::Type::getFloatTy(getVMContext());
3205 
3206   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3207   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3208   // case.
3209   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3210       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3211     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3212 
3213   return llvm::Type::getDoubleTy(getVMContext());
3214 }
3215 
3216 
3217 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3218 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3219 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3220 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3221 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3222 /// etc).
3223 ///
3224 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3225 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3226 /// the 8-byte value references.  PrefType may be null.
3227 ///
3228 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3229 /// an offset into this that we're processing (which is always either 0 or 8).
3230 ///
3231 llvm::Type *X86_64ABIInfo::
3232 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3233                        QualType SourceTy, unsigned SourceOffset) const {
3234   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3235   // returning an 8-byte unit starting with it.  See if we can safely use it.
3236   if (IROffset == 0) {
3237     // Pointers and int64's always fill the 8-byte unit.
3238     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3239         IRType->isIntegerTy(64))
3240       return IRType;
3241 
3242     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3243     // goodness in the source type is just tail padding.  This is allowed to
3244     // kick in for struct {double,int} on the int, but not on
3245     // struct{double,int,int} because we wouldn't return the second int.  We
3246     // have to do this analysis on the source type because we can't depend on
3247     // unions being lowered a specific way etc.
3248     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3249         IRType->isIntegerTy(32) ||
3250         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3251       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3252           cast<llvm::IntegerType>(IRType)->getBitWidth();
3253 
3254       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3255                                 SourceOffset*8+64, getContext()))
3256         return IRType;
3257     }
3258   }
3259 
3260   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3261     // If this is a struct, recurse into the field at the specified offset.
3262     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3263     if (IROffset < SL->getSizeInBytes()) {
3264       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3265       IROffset -= SL->getElementOffset(FieldIdx);
3266 
3267       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3268                                     SourceTy, SourceOffset);
3269     }
3270   }
3271 
3272   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3273     llvm::Type *EltTy = ATy->getElementType();
3274     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3275     unsigned EltOffset = IROffset/EltSize*EltSize;
3276     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3277                                   SourceOffset);
3278   }
3279 
3280   // Okay, we don't have any better idea of what to pass, so we pass this in an
3281   // integer register that isn't too big to fit the rest of the struct.
3282   unsigned TySizeInBytes =
3283     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3284 
3285   assert(TySizeInBytes != SourceOffset && "Empty field?");
3286 
3287   // It is always safe to classify this as an integer type up to i64 that
3288   // isn't larger than the structure.
3289   return llvm::IntegerType::get(getVMContext(),
3290                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3291 }
3292 
3293 
3294 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3295 /// be used as elements of a two register pair to pass or return, return a
3296 /// first class aggregate to represent them.  For example, if the low part of
3297 /// a by-value argument should be passed as i32* and the high part as float,
3298 /// return {i32*, float}.
3299 static llvm::Type *
3300 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3301                            const llvm::DataLayout &TD) {
3302   // In order to correctly satisfy the ABI, we need to the high part to start
3303   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3304   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3305   // the second element at offset 8.  Check for this:
3306   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3307   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3308   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3309   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3310 
3311   // To handle this, we have to increase the size of the low part so that the
3312   // second element will start at an 8 byte offset.  We can't increase the size
3313   // of the second element because it might make us access off the end of the
3314   // struct.
3315   if (HiStart != 8) {
3316     // There are usually two sorts of types the ABI generation code can produce
3317     // for the low part of a pair that aren't 8 bytes in size: float or
3318     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3319     // NaCl).
3320     // Promote these to a larger type.
3321     if (Lo->isFloatTy())
3322       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3323     else {
3324       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3325              && "Invalid/unknown lo type");
3326       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3327     }
3328   }
3329 
3330   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3331 
3332   // Verify that the second element is at an 8-byte offset.
3333   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3334          "Invalid x86-64 argument pair!");
3335   return Result;
3336 }
3337 
3338 ABIArgInfo X86_64ABIInfo::
3339 classifyReturnType(QualType RetTy) const {
3340   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3341   // classification algorithm.
3342   X86_64ABIInfo::Class Lo, Hi;
3343   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3344 
3345   // Check some invariants.
3346   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3347   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3348 
3349   llvm::Type *ResType = nullptr;
3350   switch (Lo) {
3351   case NoClass:
3352     if (Hi == NoClass)
3353       return ABIArgInfo::getIgnore();
3354     // If the low part is just padding, it takes no register, leave ResType
3355     // null.
3356     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3357            "Unknown missing lo part");
3358     break;
3359 
3360   case SSEUp:
3361   case X87Up:
3362     llvm_unreachable("Invalid classification for lo word.");
3363 
3364     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3365     // hidden argument.
3366   case Memory:
3367     return getIndirectReturnResult(RetTy);
3368 
3369     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3370     // available register of the sequence %rax, %rdx is used.
3371   case Integer:
3372     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3373 
3374     // If we have a sign or zero extended integer, make sure to return Extend
3375     // so that the parameter gets the right LLVM IR attributes.
3376     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3377       // Treat an enum type as its underlying type.
3378       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3379         RetTy = EnumTy->getDecl()->getIntegerType();
3380 
3381       if (RetTy->isIntegralOrEnumerationType() &&
3382           RetTy->isPromotableIntegerType())
3383         return ABIArgInfo::getExtend(RetTy);
3384     }
3385     break;
3386 
3387     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3388     // available SSE register of the sequence %xmm0, %xmm1 is used.
3389   case SSE:
3390     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3391     break;
3392 
3393     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3394     // returned on the X87 stack in %st0 as 80-bit x87 number.
3395   case X87:
3396     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3397     break;
3398 
3399     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3400     // part of the value is returned in %st0 and the imaginary part in
3401     // %st1.
3402   case ComplexX87:
3403     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3404     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3405                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3406     break;
3407   }
3408 
3409   llvm::Type *HighPart = nullptr;
3410   switch (Hi) {
3411     // Memory was handled previously and X87 should
3412     // never occur as a hi class.
3413   case Memory:
3414   case X87:
3415     llvm_unreachable("Invalid classification for hi word.");
3416 
3417   case ComplexX87: // Previously handled.
3418   case NoClass:
3419     break;
3420 
3421   case Integer:
3422     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3423     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3424       return ABIArgInfo::getDirect(HighPart, 8);
3425     break;
3426   case SSE:
3427     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3428     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3429       return ABIArgInfo::getDirect(HighPart, 8);
3430     break;
3431 
3432     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3433     // is passed in the next available eightbyte chunk if the last used
3434     // vector register.
3435     //
3436     // SSEUP should always be preceded by SSE, just widen.
3437   case SSEUp:
3438     assert(Lo == SSE && "Unexpected SSEUp classification.");
3439     ResType = GetByteVectorType(RetTy);
3440     break;
3441 
3442     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3443     // returned together with the previous X87 value in %st0.
3444   case X87Up:
3445     // If X87Up is preceded by X87, we don't need to do
3446     // anything. However, in some cases with unions it may not be
3447     // preceded by X87. In such situations we follow gcc and pass the
3448     // extra bits in an SSE reg.
3449     if (Lo != X87) {
3450       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3451       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3452         return ABIArgInfo::getDirect(HighPart, 8);
3453     }
3454     break;
3455   }
3456 
3457   // If a high part was specified, merge it together with the low part.  It is
3458   // known to pass in the high eightbyte of the result.  We do this by forming a
3459   // first class struct aggregate with the high and low part: {low, high}
3460   if (HighPart)
3461     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3462 
3463   return ABIArgInfo::getDirect(ResType);
3464 }
3465 
3466 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3467   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3468   bool isNamedArg)
3469   const
3470 {
3471   Ty = useFirstFieldIfTransparentUnion(Ty);
3472 
3473   X86_64ABIInfo::Class Lo, Hi;
3474   classify(Ty, 0, Lo, Hi, isNamedArg);
3475 
3476   // Check some invariants.
3477   // FIXME: Enforce these by construction.
3478   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3479   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3480 
3481   neededInt = 0;
3482   neededSSE = 0;
3483   llvm::Type *ResType = nullptr;
3484   switch (Lo) {
3485   case NoClass:
3486     if (Hi == NoClass)
3487       return ABIArgInfo::getIgnore();
3488     // If the low part is just padding, it takes no register, leave ResType
3489     // null.
3490     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3491            "Unknown missing lo part");
3492     break;
3493 
3494     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3495     // on the stack.
3496   case Memory:
3497 
3498     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3499     // COMPLEX_X87, it is passed in memory.
3500   case X87:
3501   case ComplexX87:
3502     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3503       ++neededInt;
3504     return getIndirectResult(Ty, freeIntRegs);
3505 
3506   case SSEUp:
3507   case X87Up:
3508     llvm_unreachable("Invalid classification for lo word.");
3509 
3510     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3511     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3512     // and %r9 is used.
3513   case Integer:
3514     ++neededInt;
3515 
3516     // Pick an 8-byte type based on the preferred type.
3517     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3518 
3519     // If we have a sign or zero extended integer, make sure to return Extend
3520     // so that the parameter gets the right LLVM IR attributes.
3521     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3522       // Treat an enum type as its underlying type.
3523       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3524         Ty = EnumTy->getDecl()->getIntegerType();
3525 
3526       if (Ty->isIntegralOrEnumerationType() &&
3527           Ty->isPromotableIntegerType())
3528         return ABIArgInfo::getExtend(Ty);
3529     }
3530 
3531     break;
3532 
3533     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3534     // available SSE register is used, the registers are taken in the
3535     // order from %xmm0 to %xmm7.
3536   case SSE: {
3537     llvm::Type *IRType = CGT.ConvertType(Ty);
3538     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3539     ++neededSSE;
3540     break;
3541   }
3542   }
3543 
3544   llvm::Type *HighPart = nullptr;
3545   switch (Hi) {
3546     // Memory was handled previously, ComplexX87 and X87 should
3547     // never occur as hi classes, and X87Up must be preceded by X87,
3548     // which is passed in memory.
3549   case Memory:
3550   case X87:
3551   case ComplexX87:
3552     llvm_unreachable("Invalid classification for hi word.");
3553 
3554   case NoClass: break;
3555 
3556   case Integer:
3557     ++neededInt;
3558     // Pick an 8-byte type based on the preferred type.
3559     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3560 
3561     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3562       return ABIArgInfo::getDirect(HighPart, 8);
3563     break;
3564 
3565     // X87Up generally doesn't occur here (long double is passed in
3566     // memory), except in situations involving unions.
3567   case X87Up:
3568   case SSE:
3569     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3570 
3571     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3572       return ABIArgInfo::getDirect(HighPart, 8);
3573 
3574     ++neededSSE;
3575     break;
3576 
3577     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3578     // eightbyte is passed in the upper half of the last used SSE
3579     // register.  This only happens when 128-bit vectors are passed.
3580   case SSEUp:
3581     assert(Lo == SSE && "Unexpected SSEUp classification");
3582     ResType = GetByteVectorType(Ty);
3583     break;
3584   }
3585 
3586   // If a high part was specified, merge it together with the low part.  It is
3587   // known to pass in the high eightbyte of the result.  We do this by forming a
3588   // first class struct aggregate with the high and low part: {low, high}
3589   if (HighPart)
3590     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3591 
3592   return ABIArgInfo::getDirect(ResType);
3593 }
3594 
3595 ABIArgInfo
3596 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3597                                              unsigned &NeededSSE) const {
3598   auto RT = Ty->getAs<RecordType>();
3599   assert(RT && "classifyRegCallStructType only valid with struct types");
3600 
3601   if (RT->getDecl()->hasFlexibleArrayMember())
3602     return getIndirectReturnResult(Ty);
3603 
3604   // Sum up bases
3605   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3606     if (CXXRD->isDynamicClass()) {
3607       NeededInt = NeededSSE = 0;
3608       return getIndirectReturnResult(Ty);
3609     }
3610 
3611     for (const auto &I : CXXRD->bases())
3612       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3613               .isIndirect()) {
3614         NeededInt = NeededSSE = 0;
3615         return getIndirectReturnResult(Ty);
3616       }
3617   }
3618 
3619   // Sum up members
3620   for (const auto *FD : RT->getDecl()->fields()) {
3621     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3622       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3623               .isIndirect()) {
3624         NeededInt = NeededSSE = 0;
3625         return getIndirectReturnResult(Ty);
3626       }
3627     } else {
3628       unsigned LocalNeededInt, LocalNeededSSE;
3629       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3630                                LocalNeededSSE, true)
3631               .isIndirect()) {
3632         NeededInt = NeededSSE = 0;
3633         return getIndirectReturnResult(Ty);
3634       }
3635       NeededInt += LocalNeededInt;
3636       NeededSSE += LocalNeededSSE;
3637     }
3638   }
3639 
3640   return ABIArgInfo::getDirect();
3641 }
3642 
3643 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3644                                                     unsigned &NeededInt,
3645                                                     unsigned &NeededSSE) const {
3646 
3647   NeededInt = 0;
3648   NeededSSE = 0;
3649 
3650   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3651 }
3652 
3653 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3654 
3655   const unsigned CallingConv = FI.getCallingConvention();
3656   // It is possible to force Win64 calling convention on any x86_64 target by
3657   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3658   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3659   if (CallingConv == llvm::CallingConv::Win64) {
3660     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3661     Win64ABIInfo.computeInfo(FI);
3662     return;
3663   }
3664 
3665   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3666 
3667   // Keep track of the number of assigned registers.
3668   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3669   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3670   unsigned NeededInt, NeededSSE;
3671 
3672   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3673     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3674         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3675       FI.getReturnInfo() =
3676           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3677       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3678         FreeIntRegs -= NeededInt;
3679         FreeSSERegs -= NeededSSE;
3680       } else {
3681         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3682       }
3683     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3684       // Complex Long Double Type is passed in Memory when Regcall
3685       // calling convention is used.
3686       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3687       if (getContext().getCanonicalType(CT->getElementType()) ==
3688           getContext().LongDoubleTy)
3689         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3690     } else
3691       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3692   }
3693 
3694   // If the return value is indirect, then the hidden argument is consuming one
3695   // integer register.
3696   if (FI.getReturnInfo().isIndirect())
3697     --FreeIntRegs;
3698 
3699   // The chain argument effectively gives us another free register.
3700   if (FI.isChainCall())
3701     ++FreeIntRegs;
3702 
3703   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3704   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3705   // get assigned (in left-to-right order) for passing as follows...
3706   unsigned ArgNo = 0;
3707   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3708        it != ie; ++it, ++ArgNo) {
3709     bool IsNamedArg = ArgNo < NumRequiredArgs;
3710 
3711     if (IsRegCall && it->type->isStructureOrClassType())
3712       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3713     else
3714       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3715                                       NeededSSE, IsNamedArg);
3716 
3717     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3718     // eightbyte of an argument, the whole argument is passed on the
3719     // stack. If registers have already been assigned for some
3720     // eightbytes of such an argument, the assignments get reverted.
3721     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3722       FreeIntRegs -= NeededInt;
3723       FreeSSERegs -= NeededSSE;
3724     } else {
3725       it->info = getIndirectResult(it->type, FreeIntRegs);
3726     }
3727   }
3728 }
3729 
3730 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3731                                          Address VAListAddr, QualType Ty) {
3732   Address overflow_arg_area_p =
3733       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3734   llvm::Value *overflow_arg_area =
3735     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3736 
3737   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3738   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3739   // It isn't stated explicitly in the standard, but in practice we use
3740   // alignment greater than 16 where necessary.
3741   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3742   if (Align > CharUnits::fromQuantity(8)) {
3743     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3744                                                       Align);
3745   }
3746 
3747   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3748   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3749   llvm::Value *Res =
3750     CGF.Builder.CreateBitCast(overflow_arg_area,
3751                               llvm::PointerType::getUnqual(LTy));
3752 
3753   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3754   // l->overflow_arg_area + sizeof(type).
3755   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3756   // an 8 byte boundary.
3757 
3758   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3759   llvm::Value *Offset =
3760       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3761   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3762                                             "overflow_arg_area.next");
3763   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3764 
3765   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3766   return Address(Res, Align);
3767 }
3768 
3769 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3770                                  QualType Ty) const {
3771   // Assume that va_list type is correct; should be pointer to LLVM type:
3772   // struct {
3773   //   i32 gp_offset;
3774   //   i32 fp_offset;
3775   //   i8* overflow_arg_area;
3776   //   i8* reg_save_area;
3777   // };
3778   unsigned neededInt, neededSSE;
3779 
3780   Ty = getContext().getCanonicalType(Ty);
3781   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3782                                        /*isNamedArg*/false);
3783 
3784   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3785   // in the registers. If not go to step 7.
3786   if (!neededInt && !neededSSE)
3787     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3788 
3789   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3790   // general purpose registers needed to pass type and num_fp to hold
3791   // the number of floating point registers needed.
3792 
3793   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3794   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3795   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3796   //
3797   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3798   // register save space).
3799 
3800   llvm::Value *InRegs = nullptr;
3801   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3802   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3803   if (neededInt) {
3804     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3805     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3806     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3807     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3808   }
3809 
3810   if (neededSSE) {
3811     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3812     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3813     llvm::Value *FitsInFP =
3814       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3815     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3816     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3817   }
3818 
3819   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3820   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3821   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3822   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3823 
3824   // Emit code to load the value if it was passed in registers.
3825 
3826   CGF.EmitBlock(InRegBlock);
3827 
3828   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3829   // an offset of l->gp_offset and/or l->fp_offset. This may require
3830   // copying to a temporary location in case the parameter is passed
3831   // in different register classes or requires an alignment greater
3832   // than 8 for general purpose registers and 16 for XMM registers.
3833   //
3834   // FIXME: This really results in shameful code when we end up needing to
3835   // collect arguments from different places; often what should result in a
3836   // simple assembling of a structure from scattered addresses has many more
3837   // loads than necessary. Can we clean this up?
3838   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3839   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3840       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3841 
3842   Address RegAddr = Address::invalid();
3843   if (neededInt && neededSSE) {
3844     // FIXME: Cleanup.
3845     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3846     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3847     Address Tmp = CGF.CreateMemTemp(Ty);
3848     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3849     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3850     llvm::Type *TyLo = ST->getElementType(0);
3851     llvm::Type *TyHi = ST->getElementType(1);
3852     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3853            "Unexpected ABI info for mixed regs");
3854     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3855     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3856     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3857     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3858     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3859     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3860 
3861     // Copy the first element.
3862     // FIXME: Our choice of alignment here and below is probably pessimistic.
3863     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3864         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3865         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3866     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3867 
3868     // Copy the second element.
3869     V = CGF.Builder.CreateAlignedLoad(
3870         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3871         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3872     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3873 
3874     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3875   } else if (neededInt) {
3876     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3877                       CharUnits::fromQuantity(8));
3878     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3879 
3880     // Copy to a temporary if necessary to ensure the appropriate alignment.
3881     std::pair<CharUnits, CharUnits> SizeAlign =
3882         getContext().getTypeInfoInChars(Ty);
3883     uint64_t TySize = SizeAlign.first.getQuantity();
3884     CharUnits TyAlign = SizeAlign.second;
3885 
3886     // Copy into a temporary if the type is more aligned than the
3887     // register save area.
3888     if (TyAlign.getQuantity() > 8) {
3889       Address Tmp = CGF.CreateMemTemp(Ty);
3890       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3891       RegAddr = Tmp;
3892     }
3893 
3894   } else if (neededSSE == 1) {
3895     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3896                       CharUnits::fromQuantity(16));
3897     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3898   } else {
3899     assert(neededSSE == 2 && "Invalid number of needed registers!");
3900     // SSE registers are spaced 16 bytes apart in the register save
3901     // area, we need to collect the two eightbytes together.
3902     // The ABI isn't explicit about this, but it seems reasonable
3903     // to assume that the slots are 16-byte aligned, since the stack is
3904     // naturally 16-byte aligned and the prologue is expected to store
3905     // all the SSE registers to the RSA.
3906     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3907                                 CharUnits::fromQuantity(16));
3908     Address RegAddrHi =
3909       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3910                                              CharUnits::fromQuantity(16));
3911     llvm::Type *ST = AI.canHaveCoerceToType()
3912                          ? AI.getCoerceToType()
3913                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3914     llvm::Value *V;
3915     Address Tmp = CGF.CreateMemTemp(Ty);
3916     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3917     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3918         RegAddrLo, ST->getStructElementType(0)));
3919     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3920     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3921         RegAddrHi, ST->getStructElementType(1)));
3922     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3923 
3924     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3925   }
3926 
3927   // AMD64-ABI 3.5.7p5: Step 5. Set:
3928   // l->gp_offset = l->gp_offset + num_gp * 8
3929   // l->fp_offset = l->fp_offset + num_fp * 16.
3930   if (neededInt) {
3931     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3932     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3933                             gp_offset_p);
3934   }
3935   if (neededSSE) {
3936     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3937     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3938                             fp_offset_p);
3939   }
3940   CGF.EmitBranch(ContBlock);
3941 
3942   // Emit code to load the value if it was passed in memory.
3943 
3944   CGF.EmitBlock(InMemBlock);
3945   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3946 
3947   // Return the appropriate result.
3948 
3949   CGF.EmitBlock(ContBlock);
3950   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3951                                  "vaarg.addr");
3952   return ResAddr;
3953 }
3954 
3955 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3956                                    QualType Ty) const {
3957   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3958                           CGF.getContext().getTypeInfoInChars(Ty),
3959                           CharUnits::fromQuantity(8),
3960                           /*allowHigherAlign*/ false);
3961 }
3962 
3963 ABIArgInfo
3964 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3965                                     const ABIArgInfo &current) const {
3966   // Assumes vectorCall calling convention.
3967   const Type *Base = nullptr;
3968   uint64_t NumElts = 0;
3969 
3970   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3971       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3972     FreeSSERegs -= NumElts;
3973     return getDirectX86Hva();
3974   }
3975   return current;
3976 }
3977 
3978 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3979                                       bool IsReturnType, bool IsVectorCall,
3980                                       bool IsRegCall) const {
3981 
3982   if (Ty->isVoidType())
3983     return ABIArgInfo::getIgnore();
3984 
3985   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3986     Ty = EnumTy->getDecl()->getIntegerType();
3987 
3988   TypeInfo Info = getContext().getTypeInfo(Ty);
3989   uint64_t Width = Info.Width;
3990   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3991 
3992   const RecordType *RT = Ty->getAs<RecordType>();
3993   if (RT) {
3994     if (!IsReturnType) {
3995       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3996         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3997     }
3998 
3999     if (RT->getDecl()->hasFlexibleArrayMember())
4000       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4001 
4002   }
4003 
4004   const Type *Base = nullptr;
4005   uint64_t NumElts = 0;
4006   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4007   // other targets.
4008   if ((IsVectorCall || IsRegCall) &&
4009       isHomogeneousAggregate(Ty, Base, NumElts)) {
4010     if (IsRegCall) {
4011       if (FreeSSERegs >= NumElts) {
4012         FreeSSERegs -= NumElts;
4013         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4014           return ABIArgInfo::getDirect();
4015         return ABIArgInfo::getExpand();
4016       }
4017       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4018     } else if (IsVectorCall) {
4019       if (FreeSSERegs >= NumElts &&
4020           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4021         FreeSSERegs -= NumElts;
4022         return ABIArgInfo::getDirect();
4023       } else if (IsReturnType) {
4024         return ABIArgInfo::getExpand();
4025       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4026         // HVAs are delayed and reclassified in the 2nd step.
4027         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4028       }
4029     }
4030   }
4031 
4032   if (Ty->isMemberPointerType()) {
4033     // If the member pointer is represented by an LLVM int or ptr, pass it
4034     // directly.
4035     llvm::Type *LLTy = CGT.ConvertType(Ty);
4036     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4037       return ABIArgInfo::getDirect();
4038   }
4039 
4040   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4041     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4042     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4043     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4044       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4045 
4046     // Otherwise, coerce it to a small integer.
4047     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4048   }
4049 
4050   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4051     switch (BT->getKind()) {
4052     case BuiltinType::Bool:
4053       // Bool type is always extended to the ABI, other builtin types are not
4054       // extended.
4055       return ABIArgInfo::getExtend(Ty);
4056 
4057     case BuiltinType::LongDouble:
4058       // Mingw64 GCC uses the old 80 bit extended precision floating point
4059       // unit. It passes them indirectly through memory.
4060       if (IsMingw64) {
4061         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4062         if (LDF == &llvm::APFloat::x87DoubleExtended())
4063           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4064       }
4065       break;
4066 
4067     case BuiltinType::Int128:
4068     case BuiltinType::UInt128:
4069       // If it's a parameter type, the normal ABI rule is that arguments larger
4070       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4071       // even though it isn't particularly efficient.
4072       if (!IsReturnType)
4073         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4074 
4075       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4076       // Clang matches them for compatibility.
4077       return ABIArgInfo::getDirect(
4078           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
4079 
4080     default:
4081       break;
4082     }
4083   }
4084 
4085   return ABIArgInfo::getDirect();
4086 }
4087 
4088 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4089                                              unsigned FreeSSERegs,
4090                                              bool IsVectorCall,
4091                                              bool IsRegCall) const {
4092   unsigned Count = 0;
4093   for (auto &I : FI.arguments()) {
4094     // Vectorcall in x64 only permits the first 6 arguments to be passed
4095     // as XMM/YMM registers.
4096     if (Count < VectorcallMaxParamNumAsReg)
4097       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4098     else {
4099       // Since these cannot be passed in registers, pretend no registers
4100       // are left.
4101       unsigned ZeroSSERegsAvail = 0;
4102       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4103                         IsVectorCall, IsRegCall);
4104     }
4105     ++Count;
4106   }
4107 
4108   for (auto &I : FI.arguments()) {
4109     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4110   }
4111 }
4112 
4113 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4114   const unsigned CC = FI.getCallingConvention();
4115   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4116   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4117 
4118   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4119   // classification rules.
4120   if (CC == llvm::CallingConv::X86_64_SysV) {
4121     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4122     SysVABIInfo.computeInfo(FI);
4123     return;
4124   }
4125 
4126   unsigned FreeSSERegs = 0;
4127   if (IsVectorCall) {
4128     // We can use up to 4 SSE return registers with vectorcall.
4129     FreeSSERegs = 4;
4130   } else if (IsRegCall) {
4131     // RegCall gives us 16 SSE registers.
4132     FreeSSERegs = 16;
4133   }
4134 
4135   if (!getCXXABI().classifyReturnType(FI))
4136     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4137                                   IsVectorCall, IsRegCall);
4138 
4139   if (IsVectorCall) {
4140     // We can use up to 6 SSE register parameters with vectorcall.
4141     FreeSSERegs = 6;
4142   } else if (IsRegCall) {
4143     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4144     FreeSSERegs = 16;
4145   }
4146 
4147   if (IsVectorCall) {
4148     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4149   } else {
4150     for (auto &I : FI.arguments())
4151       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4152   }
4153 
4154 }
4155 
4156 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4157                                     QualType Ty) const {
4158 
4159   bool IsIndirect = false;
4160 
4161   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4162   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4163   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4164     uint64_t Width = getContext().getTypeSize(Ty);
4165     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4166   }
4167 
4168   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4169                           CGF.getContext().getTypeInfoInChars(Ty),
4170                           CharUnits::fromQuantity(8),
4171                           /*allowHigherAlign*/ false);
4172 }
4173 
4174 // PowerPC-32
4175 namespace {
4176 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4177 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4178   bool IsSoftFloatABI;
4179 
4180   CharUnits getParamTypeAlignment(QualType Ty) const;
4181 
4182 public:
4183   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4184       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4185 
4186   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4187                     QualType Ty) const override;
4188 };
4189 
4190 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4191 public:
4192   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4193       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4194 
4195   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4196     // This is recovered from gcc output.
4197     return 1; // r1 is the dedicated stack pointer
4198   }
4199 
4200   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4201                                llvm::Value *Address) const override;
4202 };
4203 }
4204 
4205 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4206   // Complex types are passed just like their elements
4207   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4208     Ty = CTy->getElementType();
4209 
4210   if (Ty->isVectorType())
4211     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4212                                                                        : 4);
4213 
4214   // For single-element float/vector structs, we consider the whole type
4215   // to have the same alignment requirements as its single element.
4216   const Type *AlignTy = nullptr;
4217   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4218     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4219     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4220         (BT && BT->isFloatingPoint()))
4221       AlignTy = EltType;
4222   }
4223 
4224   if (AlignTy)
4225     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4226   return CharUnits::fromQuantity(4);
4227 }
4228 
4229 // TODO: this implementation is now likely redundant with
4230 // DefaultABIInfo::EmitVAArg.
4231 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4232                                       QualType Ty) const {
4233   if (getTarget().getTriple().isOSDarwin()) {
4234     auto TI = getContext().getTypeInfoInChars(Ty);
4235     TI.second = getParamTypeAlignment(Ty);
4236 
4237     CharUnits SlotSize = CharUnits::fromQuantity(4);
4238     return emitVoidPtrVAArg(CGF, VAList, Ty,
4239                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4240                             /*AllowHigherAlign=*/true);
4241   }
4242 
4243   const unsigned OverflowLimit = 8;
4244   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4245     // TODO: Implement this. For now ignore.
4246     (void)CTy;
4247     return Address::invalid(); // FIXME?
4248   }
4249 
4250   // struct __va_list_tag {
4251   //   unsigned char gpr;
4252   //   unsigned char fpr;
4253   //   unsigned short reserved;
4254   //   void *overflow_arg_area;
4255   //   void *reg_save_area;
4256   // };
4257 
4258   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4259   bool isInt =
4260       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4261   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4262 
4263   // All aggregates are passed indirectly?  That doesn't seem consistent
4264   // with the argument-lowering code.
4265   bool isIndirect = Ty->isAggregateType();
4266 
4267   CGBuilderTy &Builder = CGF.Builder;
4268 
4269   // The calling convention either uses 1-2 GPRs or 1 FPR.
4270   Address NumRegsAddr = Address::invalid();
4271   if (isInt || IsSoftFloatABI) {
4272     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4273   } else {
4274     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4275   }
4276 
4277   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4278 
4279   // "Align" the register count when TY is i64.
4280   if (isI64 || (isF64 && IsSoftFloatABI)) {
4281     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4282     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4283   }
4284 
4285   llvm::Value *CC =
4286       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4287 
4288   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4289   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4290   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4291 
4292   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4293 
4294   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4295   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4296 
4297   // Case 1: consume registers.
4298   Address RegAddr = Address::invalid();
4299   {
4300     CGF.EmitBlock(UsingRegs);
4301 
4302     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4303     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4304                       CharUnits::fromQuantity(8));
4305     assert(RegAddr.getElementType() == CGF.Int8Ty);
4306 
4307     // Floating-point registers start after the general-purpose registers.
4308     if (!(isInt || IsSoftFloatABI)) {
4309       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4310                                                    CharUnits::fromQuantity(32));
4311     }
4312 
4313     // Get the address of the saved value by scaling the number of
4314     // registers we've used by the number of
4315     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4316     llvm::Value *RegOffset =
4317       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4318     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4319                                             RegAddr.getPointer(), RegOffset),
4320                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4321     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4322 
4323     // Increase the used-register count.
4324     NumRegs =
4325       Builder.CreateAdd(NumRegs,
4326                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4327     Builder.CreateStore(NumRegs, NumRegsAddr);
4328 
4329     CGF.EmitBranch(Cont);
4330   }
4331 
4332   // Case 2: consume space in the overflow area.
4333   Address MemAddr = Address::invalid();
4334   {
4335     CGF.EmitBlock(UsingOverflow);
4336 
4337     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4338 
4339     // Everything in the overflow area is rounded up to a size of at least 4.
4340     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4341 
4342     CharUnits Size;
4343     if (!isIndirect) {
4344       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4345       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4346     } else {
4347       Size = CGF.getPointerSize();
4348     }
4349 
4350     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4351     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4352                          OverflowAreaAlign);
4353     // Round up address of argument to alignment
4354     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4355     if (Align > OverflowAreaAlign) {
4356       llvm::Value *Ptr = OverflowArea.getPointer();
4357       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4358                                                            Align);
4359     }
4360 
4361     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4362 
4363     // Increase the overflow area.
4364     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4365     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4366     CGF.EmitBranch(Cont);
4367   }
4368 
4369   CGF.EmitBlock(Cont);
4370 
4371   // Merge the cases with a phi.
4372   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4373                                 "vaarg.addr");
4374 
4375   // Load the pointer if the argument was passed indirectly.
4376   if (isIndirect) {
4377     Result = Address(Builder.CreateLoad(Result, "aggr"),
4378                      getContext().getTypeAlignInChars(Ty));
4379   }
4380 
4381   return Result;
4382 }
4383 
4384 bool
4385 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4386                                                 llvm::Value *Address) const {
4387   // This is calculated from the LLVM and GCC tables and verified
4388   // against gcc output.  AFAIK all ABIs use the same encoding.
4389 
4390   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4391 
4392   llvm::IntegerType *i8 = CGF.Int8Ty;
4393   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4394   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4395   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4396 
4397   // 0-31: r0-31, the 4-byte general-purpose registers
4398   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4399 
4400   // 32-63: fp0-31, the 8-byte floating-point registers
4401   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4402 
4403   // 64-76 are various 4-byte special-purpose registers:
4404   // 64: mq
4405   // 65: lr
4406   // 66: ctr
4407   // 67: ap
4408   // 68-75 cr0-7
4409   // 76: xer
4410   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4411 
4412   // 77-108: v0-31, the 16-byte vector registers
4413   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4414 
4415   // 109: vrsave
4416   // 110: vscr
4417   // 111: spe_acc
4418   // 112: spefscr
4419   // 113: sfp
4420   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4421 
4422   return false;
4423 }
4424 
4425 // PowerPC-64
4426 
4427 namespace {
4428 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4429 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4430 public:
4431   enum ABIKind {
4432     ELFv1 = 0,
4433     ELFv2
4434   };
4435 
4436 private:
4437   static const unsigned GPRBits = 64;
4438   ABIKind Kind;
4439   bool HasQPX;
4440   bool IsSoftFloatABI;
4441 
4442   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4443   // will be passed in a QPX register.
4444   bool IsQPXVectorTy(const Type *Ty) const {
4445     if (!HasQPX)
4446       return false;
4447 
4448     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4449       unsigned NumElements = VT->getNumElements();
4450       if (NumElements == 1)
4451         return false;
4452 
4453       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4454         if (getContext().getTypeSize(Ty) <= 256)
4455           return true;
4456       } else if (VT->getElementType()->
4457                    isSpecificBuiltinType(BuiltinType::Float)) {
4458         if (getContext().getTypeSize(Ty) <= 128)
4459           return true;
4460       }
4461     }
4462 
4463     return false;
4464   }
4465 
4466   bool IsQPXVectorTy(QualType Ty) const {
4467     return IsQPXVectorTy(Ty.getTypePtr());
4468   }
4469 
4470 public:
4471   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4472                      bool SoftFloatABI)
4473       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4474         IsSoftFloatABI(SoftFloatABI) {}
4475 
4476   bool isPromotableTypeForABI(QualType Ty) const;
4477   CharUnits getParamTypeAlignment(QualType Ty) const;
4478 
4479   ABIArgInfo classifyReturnType(QualType RetTy) const;
4480   ABIArgInfo classifyArgumentType(QualType Ty) const;
4481 
4482   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4483   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4484                                          uint64_t Members) const override;
4485 
4486   // TODO: We can add more logic to computeInfo to improve performance.
4487   // Example: For aggregate arguments that fit in a register, we could
4488   // use getDirectInReg (as is done below for structs containing a single
4489   // floating-point value) to avoid pushing them to memory on function
4490   // entry.  This would require changing the logic in PPCISelLowering
4491   // when lowering the parameters in the caller and args in the callee.
4492   void computeInfo(CGFunctionInfo &FI) const override {
4493     if (!getCXXABI().classifyReturnType(FI))
4494       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4495     for (auto &I : FI.arguments()) {
4496       // We rely on the default argument classification for the most part.
4497       // One exception:  An aggregate containing a single floating-point
4498       // or vector item must be passed in a register if one is available.
4499       const Type *T = isSingleElementStruct(I.type, getContext());
4500       if (T) {
4501         const BuiltinType *BT = T->getAs<BuiltinType>();
4502         if (IsQPXVectorTy(T) ||
4503             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4504             (BT && BT->isFloatingPoint())) {
4505           QualType QT(T, 0);
4506           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4507           continue;
4508         }
4509       }
4510       I.info = classifyArgumentType(I.type);
4511     }
4512   }
4513 
4514   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4515                     QualType Ty) const override;
4516 
4517   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4518                                     bool asReturnValue) const override {
4519     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4520   }
4521 
4522   bool isSwiftErrorInRegister() const override {
4523     return false;
4524   }
4525 };
4526 
4527 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4528 
4529 public:
4530   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4531                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4532                                bool SoftFloatABI)
4533       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4534                                                  SoftFloatABI)) {}
4535 
4536   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4537     // This is recovered from gcc output.
4538     return 1; // r1 is the dedicated stack pointer
4539   }
4540 
4541   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4542                                llvm::Value *Address) const override;
4543 };
4544 
4545 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4546 public:
4547   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4548 
4549   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4550     // This is recovered from gcc output.
4551     return 1; // r1 is the dedicated stack pointer
4552   }
4553 
4554   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4555                                llvm::Value *Address) const override;
4556 };
4557 
4558 }
4559 
4560 // Return true if the ABI requires Ty to be passed sign- or zero-
4561 // extended to 64 bits.
4562 bool
4563 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4564   // Treat an enum type as its underlying type.
4565   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4566     Ty = EnumTy->getDecl()->getIntegerType();
4567 
4568   // Promotable integer types are required to be promoted by the ABI.
4569   if (Ty->isPromotableIntegerType())
4570     return true;
4571 
4572   // In addition to the usual promotable integer types, we also need to
4573   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4574   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4575     switch (BT->getKind()) {
4576     case BuiltinType::Int:
4577     case BuiltinType::UInt:
4578       return true;
4579     default:
4580       break;
4581     }
4582 
4583   return false;
4584 }
4585 
4586 /// isAlignedParamType - Determine whether a type requires 16-byte or
4587 /// higher alignment in the parameter area.  Always returns at least 8.
4588 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4589   // Complex types are passed just like their elements.
4590   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4591     Ty = CTy->getElementType();
4592 
4593   // Only vector types of size 16 bytes need alignment (larger types are
4594   // passed via reference, smaller types are not aligned).
4595   if (IsQPXVectorTy(Ty)) {
4596     if (getContext().getTypeSize(Ty) > 128)
4597       return CharUnits::fromQuantity(32);
4598 
4599     return CharUnits::fromQuantity(16);
4600   } else if (Ty->isVectorType()) {
4601     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4602   }
4603 
4604   // For single-element float/vector structs, we consider the whole type
4605   // to have the same alignment requirements as its single element.
4606   const Type *AlignAsType = nullptr;
4607   const Type *EltType = isSingleElementStruct(Ty, getContext());
4608   if (EltType) {
4609     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4610     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4611          getContext().getTypeSize(EltType) == 128) ||
4612         (BT && BT->isFloatingPoint()))
4613       AlignAsType = EltType;
4614   }
4615 
4616   // Likewise for ELFv2 homogeneous aggregates.
4617   const Type *Base = nullptr;
4618   uint64_t Members = 0;
4619   if (!AlignAsType && Kind == ELFv2 &&
4620       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4621     AlignAsType = Base;
4622 
4623   // With special case aggregates, only vector base types need alignment.
4624   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4625     if (getContext().getTypeSize(AlignAsType) > 128)
4626       return CharUnits::fromQuantity(32);
4627 
4628     return CharUnits::fromQuantity(16);
4629   } else if (AlignAsType) {
4630     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4631   }
4632 
4633   // Otherwise, we only need alignment for any aggregate type that
4634   // has an alignment requirement of >= 16 bytes.
4635   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4636     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4637       return CharUnits::fromQuantity(32);
4638     return CharUnits::fromQuantity(16);
4639   }
4640 
4641   return CharUnits::fromQuantity(8);
4642 }
4643 
4644 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4645 /// aggregate.  Base is set to the base element type, and Members is set
4646 /// to the number of base elements.
4647 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4648                                      uint64_t &Members) const {
4649   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4650     uint64_t NElements = AT->getSize().getZExtValue();
4651     if (NElements == 0)
4652       return false;
4653     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4654       return false;
4655     Members *= NElements;
4656   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4657     const RecordDecl *RD = RT->getDecl();
4658     if (RD->hasFlexibleArrayMember())
4659       return false;
4660 
4661     Members = 0;
4662 
4663     // If this is a C++ record, check the bases first.
4664     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4665       for (const auto &I : CXXRD->bases()) {
4666         // Ignore empty records.
4667         if (isEmptyRecord(getContext(), I.getType(), true))
4668           continue;
4669 
4670         uint64_t FldMembers;
4671         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4672           return false;
4673 
4674         Members += FldMembers;
4675       }
4676     }
4677 
4678     for (const auto *FD : RD->fields()) {
4679       // Ignore (non-zero arrays of) empty records.
4680       QualType FT = FD->getType();
4681       while (const ConstantArrayType *AT =
4682              getContext().getAsConstantArrayType(FT)) {
4683         if (AT->getSize().getZExtValue() == 0)
4684           return false;
4685         FT = AT->getElementType();
4686       }
4687       if (isEmptyRecord(getContext(), FT, true))
4688         continue;
4689 
4690       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4691       if (getContext().getLangOpts().CPlusPlus &&
4692           FD->isZeroLengthBitField(getContext()))
4693         continue;
4694 
4695       uint64_t FldMembers;
4696       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4697         return false;
4698 
4699       Members = (RD->isUnion() ?
4700                  std::max(Members, FldMembers) : Members + FldMembers);
4701     }
4702 
4703     if (!Base)
4704       return false;
4705 
4706     // Ensure there is no padding.
4707     if (getContext().getTypeSize(Base) * Members !=
4708         getContext().getTypeSize(Ty))
4709       return false;
4710   } else {
4711     Members = 1;
4712     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4713       Members = 2;
4714       Ty = CT->getElementType();
4715     }
4716 
4717     // Most ABIs only support float, double, and some vector type widths.
4718     if (!isHomogeneousAggregateBaseType(Ty))
4719       return false;
4720 
4721     // The base type must be the same for all members.  Types that
4722     // agree in both total size and mode (float vs. vector) are
4723     // treated as being equivalent here.
4724     const Type *TyPtr = Ty.getTypePtr();
4725     if (!Base) {
4726       Base = TyPtr;
4727       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4728       // so make sure to widen it explicitly.
4729       if (const VectorType *VT = Base->getAs<VectorType>()) {
4730         QualType EltTy = VT->getElementType();
4731         unsigned NumElements =
4732             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4733         Base = getContext()
4734                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4735                    .getTypePtr();
4736       }
4737     }
4738 
4739     if (Base->isVectorType() != TyPtr->isVectorType() ||
4740         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4741       return false;
4742   }
4743   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4744 }
4745 
4746 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4747   // Homogeneous aggregates for ELFv2 must have base types of float,
4748   // double, long double, or 128-bit vectors.
4749   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4750     if (BT->getKind() == BuiltinType::Float ||
4751         BT->getKind() == BuiltinType::Double ||
4752         BT->getKind() == BuiltinType::LongDouble ||
4753         (getContext().getTargetInfo().hasFloat128Type() &&
4754           (BT->getKind() == BuiltinType::Float128))) {
4755       if (IsSoftFloatABI)
4756         return false;
4757       return true;
4758     }
4759   }
4760   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4761     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4762       return true;
4763   }
4764   return false;
4765 }
4766 
4767 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4768     const Type *Base, uint64_t Members) const {
4769   // Vector and fp128 types require one register, other floating point types
4770   // require one or two registers depending on their size.
4771   uint32_t NumRegs =
4772       ((getContext().getTargetInfo().hasFloat128Type() &&
4773           Base->isFloat128Type()) ||
4774         Base->isVectorType()) ? 1
4775                               : (getContext().getTypeSize(Base) + 63) / 64;
4776 
4777   // Homogeneous Aggregates may occupy at most 8 registers.
4778   return Members * NumRegs <= 8;
4779 }
4780 
4781 ABIArgInfo
4782 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4783   Ty = useFirstFieldIfTransparentUnion(Ty);
4784 
4785   if (Ty->isAnyComplexType())
4786     return ABIArgInfo::getDirect();
4787 
4788   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4789   // or via reference (larger than 16 bytes).
4790   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4791     uint64_t Size = getContext().getTypeSize(Ty);
4792     if (Size > 128)
4793       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4794     else if (Size < 128) {
4795       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4796       return ABIArgInfo::getDirect(CoerceTy);
4797     }
4798   }
4799 
4800   if (isAggregateTypeForABI(Ty)) {
4801     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4802       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4803 
4804     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4805     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4806 
4807     // ELFv2 homogeneous aggregates are passed as array types.
4808     const Type *Base = nullptr;
4809     uint64_t Members = 0;
4810     if (Kind == ELFv2 &&
4811         isHomogeneousAggregate(Ty, Base, Members)) {
4812       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4813       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4814       return ABIArgInfo::getDirect(CoerceTy);
4815     }
4816 
4817     // If an aggregate may end up fully in registers, we do not
4818     // use the ByVal method, but pass the aggregate as array.
4819     // This is usually beneficial since we avoid forcing the
4820     // back-end to store the argument to memory.
4821     uint64_t Bits = getContext().getTypeSize(Ty);
4822     if (Bits > 0 && Bits <= 8 * GPRBits) {
4823       llvm::Type *CoerceTy;
4824 
4825       // Types up to 8 bytes are passed as integer type (which will be
4826       // properly aligned in the argument save area doubleword).
4827       if (Bits <= GPRBits)
4828         CoerceTy =
4829             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4830       // Larger types are passed as arrays, with the base type selected
4831       // according to the required alignment in the save area.
4832       else {
4833         uint64_t RegBits = ABIAlign * 8;
4834         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4835         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4836         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4837       }
4838 
4839       return ABIArgInfo::getDirect(CoerceTy);
4840     }
4841 
4842     // All other aggregates are passed ByVal.
4843     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4844                                    /*ByVal=*/true,
4845                                    /*Realign=*/TyAlign > ABIAlign);
4846   }
4847 
4848   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4849                                      : ABIArgInfo::getDirect());
4850 }
4851 
4852 ABIArgInfo
4853 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4854   if (RetTy->isVoidType())
4855     return ABIArgInfo::getIgnore();
4856 
4857   if (RetTy->isAnyComplexType())
4858     return ABIArgInfo::getDirect();
4859 
4860   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4861   // or via reference (larger than 16 bytes).
4862   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4863     uint64_t Size = getContext().getTypeSize(RetTy);
4864     if (Size > 128)
4865       return getNaturalAlignIndirect(RetTy);
4866     else if (Size < 128) {
4867       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4868       return ABIArgInfo::getDirect(CoerceTy);
4869     }
4870   }
4871 
4872   if (isAggregateTypeForABI(RetTy)) {
4873     // ELFv2 homogeneous aggregates are returned as array types.
4874     const Type *Base = nullptr;
4875     uint64_t Members = 0;
4876     if (Kind == ELFv2 &&
4877         isHomogeneousAggregate(RetTy, Base, Members)) {
4878       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4879       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4880       return ABIArgInfo::getDirect(CoerceTy);
4881     }
4882 
4883     // ELFv2 small aggregates are returned in up to two registers.
4884     uint64_t Bits = getContext().getTypeSize(RetTy);
4885     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4886       if (Bits == 0)
4887         return ABIArgInfo::getIgnore();
4888 
4889       llvm::Type *CoerceTy;
4890       if (Bits > GPRBits) {
4891         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4892         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4893       } else
4894         CoerceTy =
4895             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4896       return ABIArgInfo::getDirect(CoerceTy);
4897     }
4898 
4899     // All other aggregates are returned indirectly.
4900     return getNaturalAlignIndirect(RetTy);
4901   }
4902 
4903   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4904                                         : ABIArgInfo::getDirect());
4905 }
4906 
4907 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4908 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4909                                       QualType Ty) const {
4910   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4911   TypeInfo.second = getParamTypeAlignment(Ty);
4912 
4913   CharUnits SlotSize = CharUnits::fromQuantity(8);
4914 
4915   // If we have a complex type and the base type is smaller than 8 bytes,
4916   // the ABI calls for the real and imaginary parts to be right-adjusted
4917   // in separate doublewords.  However, Clang expects us to produce a
4918   // pointer to a structure with the two parts packed tightly.  So generate
4919   // loads of the real and imaginary parts relative to the va_list pointer,
4920   // and store them to a temporary structure.
4921   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4922     CharUnits EltSize = TypeInfo.first / 2;
4923     if (EltSize < SlotSize) {
4924       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4925                                             SlotSize * 2, SlotSize,
4926                                             SlotSize, /*AllowHigher*/ true);
4927 
4928       Address RealAddr = Addr;
4929       Address ImagAddr = RealAddr;
4930       if (CGF.CGM.getDataLayout().isBigEndian()) {
4931         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4932                                                           SlotSize - EltSize);
4933         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4934                                                       2 * SlotSize - EltSize);
4935       } else {
4936         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4937       }
4938 
4939       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4940       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4941       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4942       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4943       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4944 
4945       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4946       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4947                              /*init*/ true);
4948       return Temp;
4949     }
4950   }
4951 
4952   // Otherwise, just use the general rule.
4953   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4954                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4955 }
4956 
4957 static bool
4958 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4959                               llvm::Value *Address) {
4960   // This is calculated from the LLVM and GCC tables and verified
4961   // against gcc output.  AFAIK all ABIs use the same encoding.
4962 
4963   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4964 
4965   llvm::IntegerType *i8 = CGF.Int8Ty;
4966   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4967   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4968   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4969 
4970   // 0-31: r0-31, the 8-byte general-purpose registers
4971   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4972 
4973   // 32-63: fp0-31, the 8-byte floating-point registers
4974   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4975 
4976   // 64-67 are various 8-byte special-purpose registers:
4977   // 64: mq
4978   // 65: lr
4979   // 66: ctr
4980   // 67: ap
4981   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4982 
4983   // 68-76 are various 4-byte special-purpose registers:
4984   // 68-75 cr0-7
4985   // 76: xer
4986   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4987 
4988   // 77-108: v0-31, the 16-byte vector registers
4989   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4990 
4991   // 109: vrsave
4992   // 110: vscr
4993   // 111: spe_acc
4994   // 112: spefscr
4995   // 113: sfp
4996   // 114: tfhar
4997   // 115: tfiar
4998   // 116: texasr
4999   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
5000 
5001   return false;
5002 }
5003 
5004 bool
5005 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5006   CodeGen::CodeGenFunction &CGF,
5007   llvm::Value *Address) const {
5008 
5009   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
5010 }
5011 
5012 bool
5013 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5014                                                 llvm::Value *Address) const {
5015 
5016   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
5017 }
5018 
5019 //===----------------------------------------------------------------------===//
5020 // AArch64 ABI Implementation
5021 //===----------------------------------------------------------------------===//
5022 
5023 namespace {
5024 
5025 class AArch64ABIInfo : public SwiftABIInfo {
5026 public:
5027   enum ABIKind {
5028     AAPCS = 0,
5029     DarwinPCS,
5030     Win64
5031   };
5032 
5033 private:
5034   ABIKind Kind;
5035 
5036 public:
5037   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5038     : SwiftABIInfo(CGT), Kind(Kind) {}
5039 
5040 private:
5041   ABIKind getABIKind() const { return Kind; }
5042   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5043 
5044   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5045   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5046   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5047   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5048                                          uint64_t Members) const override;
5049 
5050   bool isIllegalVectorType(QualType Ty) const;
5051 
5052   void computeInfo(CGFunctionInfo &FI) const override {
5053     if (!::classifyReturnType(getCXXABI(), FI, *this))
5054       FI.getReturnInfo() =
5055           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5056 
5057     for (auto &it : FI.arguments())
5058       it.info = classifyArgumentType(it.type);
5059   }
5060 
5061   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5062                           CodeGenFunction &CGF) const;
5063 
5064   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5065                          CodeGenFunction &CGF) const;
5066 
5067   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5068                     QualType Ty) const override {
5069     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5070                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5071                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5072   }
5073 
5074   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5075                       QualType Ty) const override;
5076 
5077   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5078                                     bool asReturnValue) const override {
5079     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5080   }
5081   bool isSwiftErrorInRegister() const override {
5082     return true;
5083   }
5084 
5085   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5086                                  unsigned elts) const override;
5087 };
5088 
5089 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5090 public:
5091   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5092       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5093 
5094   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5095     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5096   }
5097 
5098   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5099     return 31;
5100   }
5101 
5102   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5103 
5104   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5105                            CodeGen::CodeGenModule &CGM) const override {
5106     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5107     if (!FD)
5108       return;
5109 
5110     LangOptions::SignReturnAddressScopeKind Scope =
5111         CGM.getLangOpts().getSignReturnAddressScope();
5112     LangOptions::SignReturnAddressKeyKind Key =
5113         CGM.getLangOpts().getSignReturnAddressKey();
5114     bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement;
5115     if (const auto *TA = FD->getAttr<TargetAttr>()) {
5116       ParsedTargetAttr Attr = TA->parse();
5117       if (!Attr.BranchProtection.empty()) {
5118         TargetInfo::BranchProtectionInfo BPI;
5119         StringRef Error;
5120         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5121                                                        BPI, Error);
5122         assert(Error.empty());
5123         Scope = BPI.SignReturnAddr;
5124         Key = BPI.SignKey;
5125         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
5126       }
5127     }
5128 
5129     auto *Fn = cast<llvm::Function>(GV);
5130     if (Scope != LangOptions::SignReturnAddressScopeKind::None) {
5131       Fn->addFnAttr("sign-return-address",
5132                     Scope == LangOptions::SignReturnAddressScopeKind::All
5133                         ? "all"
5134                         : "non-leaf");
5135 
5136       Fn->addFnAttr("sign-return-address-key",
5137                     Key == LangOptions::SignReturnAddressKeyKind::AKey
5138                         ? "a_key"
5139                         : "b_key");
5140     }
5141 
5142     if (BranchTargetEnforcement)
5143       Fn->addFnAttr("branch-target-enforcement");
5144   }
5145 };
5146 
5147 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5148 public:
5149   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5150       : AArch64TargetCodeGenInfo(CGT, K) {}
5151 
5152   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5153                            CodeGen::CodeGenModule &CGM) const override;
5154 
5155   void getDependentLibraryOption(llvm::StringRef Lib,
5156                                  llvm::SmallString<24> &Opt) const override {
5157     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5158   }
5159 
5160   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5161                                llvm::SmallString<32> &Opt) const override {
5162     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5163   }
5164 };
5165 
5166 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5167     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5168   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5169   if (GV->isDeclaration())
5170     return;
5171   addStackProbeTargetAttributes(D, GV, CGM);
5172 }
5173 }
5174 
5175 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5176   Ty = useFirstFieldIfTransparentUnion(Ty);
5177 
5178   // Handle illegal vector types here.
5179   if (isIllegalVectorType(Ty)) {
5180     uint64_t Size = getContext().getTypeSize(Ty);
5181     // Android promotes <2 x i8> to i16, not i32
5182     if (isAndroid() && (Size <= 16)) {
5183       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5184       return ABIArgInfo::getDirect(ResType);
5185     }
5186     if (Size <= 32) {
5187       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5188       return ABIArgInfo::getDirect(ResType);
5189     }
5190     if (Size == 64) {
5191       llvm::Type *ResType =
5192           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5193       return ABIArgInfo::getDirect(ResType);
5194     }
5195     if (Size == 128) {
5196       llvm::Type *ResType =
5197           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5198       return ABIArgInfo::getDirect(ResType);
5199     }
5200     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5201   }
5202 
5203   if (!isAggregateTypeForABI(Ty)) {
5204     // Treat an enum type as its underlying type.
5205     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5206       Ty = EnumTy->getDecl()->getIntegerType();
5207 
5208     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5209                 ? ABIArgInfo::getExtend(Ty)
5210                 : ABIArgInfo::getDirect());
5211   }
5212 
5213   // Structures with either a non-trivial destructor or a non-trivial
5214   // copy constructor are always indirect.
5215   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5216     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5217                                      CGCXXABI::RAA_DirectInMemory);
5218   }
5219 
5220   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5221   // elsewhere for GNU compatibility.
5222   uint64_t Size = getContext().getTypeSize(Ty);
5223   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5224   if (IsEmpty || Size == 0) {
5225     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5226       return ABIArgInfo::getIgnore();
5227 
5228     // GNU C mode. The only argument that gets ignored is an empty one with size
5229     // 0.
5230     if (IsEmpty && Size == 0)
5231       return ABIArgInfo::getIgnore();
5232     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5233   }
5234 
5235   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5236   const Type *Base = nullptr;
5237   uint64_t Members = 0;
5238   if (isHomogeneousAggregate(Ty, Base, Members)) {
5239     return ABIArgInfo::getDirect(
5240         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5241   }
5242 
5243   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5244   if (Size <= 128) {
5245     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5246     // same size and alignment.
5247     if (getTarget().isRenderScriptTarget()) {
5248       return coerceToIntArray(Ty, getContext(), getVMContext());
5249     }
5250     unsigned Alignment;
5251     if (Kind == AArch64ABIInfo::AAPCS) {
5252       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5253       Alignment = Alignment < 128 ? 64 : 128;
5254     } else {
5255       Alignment = std::max(getContext().getTypeAlign(Ty),
5256                            (unsigned)getTarget().getPointerWidth(0));
5257     }
5258     Size = llvm::alignTo(Size, Alignment);
5259 
5260     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5261     // For aggregates with 16-byte alignment, we use i128.
5262     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5263     return ABIArgInfo::getDirect(
5264         Size == Alignment ? BaseTy
5265                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5266   }
5267 
5268   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5269 }
5270 
5271 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5272                                               bool IsVariadic) const {
5273   if (RetTy->isVoidType())
5274     return ABIArgInfo::getIgnore();
5275 
5276   // Large vector types should be returned via memory.
5277   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5278     return getNaturalAlignIndirect(RetTy);
5279 
5280   if (!isAggregateTypeForABI(RetTy)) {
5281     // Treat an enum type as its underlying type.
5282     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5283       RetTy = EnumTy->getDecl()->getIntegerType();
5284 
5285     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5286                 ? ABIArgInfo::getExtend(RetTy)
5287                 : ABIArgInfo::getDirect());
5288   }
5289 
5290   uint64_t Size = getContext().getTypeSize(RetTy);
5291   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5292     return ABIArgInfo::getIgnore();
5293 
5294   const Type *Base = nullptr;
5295   uint64_t Members = 0;
5296   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5297       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5298         IsVariadic))
5299     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5300     return ABIArgInfo::getDirect();
5301 
5302   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5303   if (Size <= 128) {
5304     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5305     // same size and alignment.
5306     if (getTarget().isRenderScriptTarget()) {
5307       return coerceToIntArray(RetTy, getContext(), getVMContext());
5308     }
5309     unsigned Alignment = getContext().getTypeAlign(RetTy);
5310     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5311 
5312     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5313     // For aggregates with 16-byte alignment, we use i128.
5314     if (Alignment < 128 && Size == 128) {
5315       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5316       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5317     }
5318     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5319   }
5320 
5321   return getNaturalAlignIndirect(RetTy);
5322 }
5323 
5324 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5325 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5326   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5327     // Check whether VT is legal.
5328     unsigned NumElements = VT->getNumElements();
5329     uint64_t Size = getContext().getTypeSize(VT);
5330     // NumElements should be power of 2.
5331     if (!llvm::isPowerOf2_32(NumElements))
5332       return true;
5333 
5334     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5335     // vectors for some reason.
5336     llvm::Triple Triple = getTarget().getTriple();
5337     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5338         Triple.isOSBinFormatMachO())
5339       return Size <= 32;
5340 
5341     return Size != 64 && (Size != 128 || NumElements == 1);
5342   }
5343   return false;
5344 }
5345 
5346 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5347                                                llvm::Type *eltTy,
5348                                                unsigned elts) const {
5349   if (!llvm::isPowerOf2_32(elts))
5350     return false;
5351   if (totalSize.getQuantity() != 8 &&
5352       (totalSize.getQuantity() != 16 || elts == 1))
5353     return false;
5354   return true;
5355 }
5356 
5357 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5358   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5359   // point type or a short-vector type. This is the same as the 32-bit ABI,
5360   // but with the difference that any floating-point type is allowed,
5361   // including __fp16.
5362   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5363     if (BT->isFloatingPoint())
5364       return true;
5365   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5366     unsigned VecSize = getContext().getTypeSize(VT);
5367     if (VecSize == 64 || VecSize == 128)
5368       return true;
5369   }
5370   return false;
5371 }
5372 
5373 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5374                                                        uint64_t Members) const {
5375   return Members <= 4;
5376 }
5377 
5378 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5379                                             QualType Ty,
5380                                             CodeGenFunction &CGF) const {
5381   ABIArgInfo AI = classifyArgumentType(Ty);
5382   bool IsIndirect = AI.isIndirect();
5383 
5384   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5385   if (IsIndirect)
5386     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5387   else if (AI.getCoerceToType())
5388     BaseTy = AI.getCoerceToType();
5389 
5390   unsigned NumRegs = 1;
5391   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5392     BaseTy = ArrTy->getElementType();
5393     NumRegs = ArrTy->getNumElements();
5394   }
5395   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5396 
5397   // The AArch64 va_list type and handling is specified in the Procedure Call
5398   // Standard, section B.4:
5399   //
5400   // struct {
5401   //   void *__stack;
5402   //   void *__gr_top;
5403   //   void *__vr_top;
5404   //   int __gr_offs;
5405   //   int __vr_offs;
5406   // };
5407 
5408   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5409   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5410   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5411   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5412 
5413   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5414   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5415 
5416   Address reg_offs_p = Address::invalid();
5417   llvm::Value *reg_offs = nullptr;
5418   int reg_top_index;
5419   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5420   if (!IsFPR) {
5421     // 3 is the field number of __gr_offs
5422     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5423     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5424     reg_top_index = 1; // field number for __gr_top
5425     RegSize = llvm::alignTo(RegSize, 8);
5426   } else {
5427     // 4 is the field number of __vr_offs.
5428     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5429     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5430     reg_top_index = 2; // field number for __vr_top
5431     RegSize = 16 * NumRegs;
5432   }
5433 
5434   //=======================================
5435   // Find out where argument was passed
5436   //=======================================
5437 
5438   // If reg_offs >= 0 we're already using the stack for this type of
5439   // argument. We don't want to keep updating reg_offs (in case it overflows,
5440   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5441   // whatever they get).
5442   llvm::Value *UsingStack = nullptr;
5443   UsingStack = CGF.Builder.CreateICmpSGE(
5444       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5445 
5446   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5447 
5448   // Otherwise, at least some kind of argument could go in these registers, the
5449   // question is whether this particular type is too big.
5450   CGF.EmitBlock(MaybeRegBlock);
5451 
5452   // Integer arguments may need to correct register alignment (for example a
5453   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5454   // align __gr_offs to calculate the potential address.
5455   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5456     int Align = TyAlign.getQuantity();
5457 
5458     reg_offs = CGF.Builder.CreateAdd(
5459         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5460         "align_regoffs");
5461     reg_offs = CGF.Builder.CreateAnd(
5462         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5463         "aligned_regoffs");
5464   }
5465 
5466   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5467   // The fact that this is done unconditionally reflects the fact that
5468   // allocating an argument to the stack also uses up all the remaining
5469   // registers of the appropriate kind.
5470   llvm::Value *NewOffset = nullptr;
5471   NewOffset = CGF.Builder.CreateAdd(
5472       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5473   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5474 
5475   // Now we're in a position to decide whether this argument really was in
5476   // registers or not.
5477   llvm::Value *InRegs = nullptr;
5478   InRegs = CGF.Builder.CreateICmpSLE(
5479       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5480 
5481   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5482 
5483   //=======================================
5484   // Argument was in registers
5485   //=======================================
5486 
5487   // Now we emit the code for if the argument was originally passed in
5488   // registers. First start the appropriate block:
5489   CGF.EmitBlock(InRegBlock);
5490 
5491   llvm::Value *reg_top = nullptr;
5492   Address reg_top_p =
5493       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5494   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5495   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5496                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5497   Address RegAddr = Address::invalid();
5498   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5499 
5500   if (IsIndirect) {
5501     // If it's been passed indirectly (actually a struct), whatever we find from
5502     // stored registers or on the stack will actually be a struct **.
5503     MemTy = llvm::PointerType::getUnqual(MemTy);
5504   }
5505 
5506   const Type *Base = nullptr;
5507   uint64_t NumMembers = 0;
5508   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5509   if (IsHFA && NumMembers > 1) {
5510     // Homogeneous aggregates passed in registers will have their elements split
5511     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5512     // qN+1, ...). We reload and store into a temporary local variable
5513     // contiguously.
5514     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5515     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5516     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5517     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5518     Address Tmp = CGF.CreateTempAlloca(HFATy,
5519                                        std::max(TyAlign, BaseTyInfo.second));
5520 
5521     // On big-endian platforms, the value will be right-aligned in its slot.
5522     int Offset = 0;
5523     if (CGF.CGM.getDataLayout().isBigEndian() &&
5524         BaseTyInfo.first.getQuantity() < 16)
5525       Offset = 16 - BaseTyInfo.first.getQuantity();
5526 
5527     for (unsigned i = 0; i < NumMembers; ++i) {
5528       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5529       Address LoadAddr =
5530         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5531       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5532 
5533       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5534 
5535       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5536       CGF.Builder.CreateStore(Elem, StoreAddr);
5537     }
5538 
5539     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5540   } else {
5541     // Otherwise the object is contiguous in memory.
5542 
5543     // It might be right-aligned in its slot.
5544     CharUnits SlotSize = BaseAddr.getAlignment();
5545     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5546         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5547         TySize < SlotSize) {
5548       CharUnits Offset = SlotSize - TySize;
5549       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5550     }
5551 
5552     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5553   }
5554 
5555   CGF.EmitBranch(ContBlock);
5556 
5557   //=======================================
5558   // Argument was on the stack
5559   //=======================================
5560   CGF.EmitBlock(OnStackBlock);
5561 
5562   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5563   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5564 
5565   // Again, stack arguments may need realignment. In this case both integer and
5566   // floating-point ones might be affected.
5567   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5568     int Align = TyAlign.getQuantity();
5569 
5570     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5571 
5572     OnStackPtr = CGF.Builder.CreateAdd(
5573         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5574         "align_stack");
5575     OnStackPtr = CGF.Builder.CreateAnd(
5576         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5577         "align_stack");
5578 
5579     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5580   }
5581   Address OnStackAddr(OnStackPtr,
5582                       std::max(CharUnits::fromQuantity(8), TyAlign));
5583 
5584   // All stack slots are multiples of 8 bytes.
5585   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5586   CharUnits StackSize;
5587   if (IsIndirect)
5588     StackSize = StackSlotSize;
5589   else
5590     StackSize = TySize.alignTo(StackSlotSize);
5591 
5592   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5593   llvm::Value *NewStack =
5594       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5595 
5596   // Write the new value of __stack for the next call to va_arg
5597   CGF.Builder.CreateStore(NewStack, stack_p);
5598 
5599   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5600       TySize < StackSlotSize) {
5601     CharUnits Offset = StackSlotSize - TySize;
5602     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5603   }
5604 
5605   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5606 
5607   CGF.EmitBranch(ContBlock);
5608 
5609   //=======================================
5610   // Tidy up
5611   //=======================================
5612   CGF.EmitBlock(ContBlock);
5613 
5614   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5615                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5616 
5617   if (IsIndirect)
5618     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5619                    TyAlign);
5620 
5621   return ResAddr;
5622 }
5623 
5624 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5625                                         CodeGenFunction &CGF) const {
5626   // The backend's lowering doesn't support va_arg for aggregates or
5627   // illegal vector types.  Lower VAArg here for these cases and use
5628   // the LLVM va_arg instruction for everything else.
5629   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5630     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5631 
5632   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
5633   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
5634 
5635   // Empty records are ignored for parameter passing purposes.
5636   if (isEmptyRecord(getContext(), Ty, true)) {
5637     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5638     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5639     return Addr;
5640   }
5641 
5642   // The size of the actual thing passed, which might end up just
5643   // being a pointer for indirect types.
5644   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5645 
5646   // Arguments bigger than 16 bytes which aren't homogeneous
5647   // aggregates should be passed indirectly.
5648   bool IsIndirect = false;
5649   if (TyInfo.first.getQuantity() > 16) {
5650     const Type *Base = nullptr;
5651     uint64_t Members = 0;
5652     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5653   }
5654 
5655   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5656                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5657 }
5658 
5659 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5660                                     QualType Ty) const {
5661   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5662                           CGF.getContext().getTypeInfoInChars(Ty),
5663                           CharUnits::fromQuantity(8),
5664                           /*allowHigherAlign*/ false);
5665 }
5666 
5667 //===----------------------------------------------------------------------===//
5668 // ARM ABI Implementation
5669 //===----------------------------------------------------------------------===//
5670 
5671 namespace {
5672 
5673 class ARMABIInfo : public SwiftABIInfo {
5674 public:
5675   enum ABIKind {
5676     APCS = 0,
5677     AAPCS = 1,
5678     AAPCS_VFP = 2,
5679     AAPCS16_VFP = 3,
5680   };
5681 
5682 private:
5683   ABIKind Kind;
5684 
5685 public:
5686   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5687       : SwiftABIInfo(CGT), Kind(_Kind) {
5688     setCCs();
5689   }
5690 
5691   bool isEABI() const {
5692     switch (getTarget().getTriple().getEnvironment()) {
5693     case llvm::Triple::Android:
5694     case llvm::Triple::EABI:
5695     case llvm::Triple::EABIHF:
5696     case llvm::Triple::GNUEABI:
5697     case llvm::Triple::GNUEABIHF:
5698     case llvm::Triple::MuslEABI:
5699     case llvm::Triple::MuslEABIHF:
5700       return true;
5701     default:
5702       return false;
5703     }
5704   }
5705 
5706   bool isEABIHF() const {
5707     switch (getTarget().getTriple().getEnvironment()) {
5708     case llvm::Triple::EABIHF:
5709     case llvm::Triple::GNUEABIHF:
5710     case llvm::Triple::MuslEABIHF:
5711       return true;
5712     default:
5713       return false;
5714     }
5715   }
5716 
5717   ABIKind getABIKind() const { return Kind; }
5718 
5719 private:
5720   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5721                                 unsigned functionCallConv) const;
5722   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5723                                   unsigned functionCallConv) const;
5724   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5725                                           uint64_t Members) const;
5726   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5727   bool isIllegalVectorType(QualType Ty) const;
5728   bool containsAnyFP16Vectors(QualType Ty) const;
5729 
5730   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5731   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5732                                          uint64_t Members) const override;
5733 
5734   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5735 
5736   void computeInfo(CGFunctionInfo &FI) const override;
5737 
5738   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5739                     QualType Ty) const override;
5740 
5741   llvm::CallingConv::ID getLLVMDefaultCC() const;
5742   llvm::CallingConv::ID getABIDefaultCC() const;
5743   void setCCs();
5744 
5745   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5746                                     bool asReturnValue) const override {
5747     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5748   }
5749   bool isSwiftErrorInRegister() const override {
5750     return true;
5751   }
5752   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5753                                  unsigned elts) const override;
5754 };
5755 
5756 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5757 public:
5758   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5759     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5760 
5761   const ARMABIInfo &getABIInfo() const {
5762     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5763   }
5764 
5765   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5766     return 13;
5767   }
5768 
5769   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5770     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5771   }
5772 
5773   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5774                                llvm::Value *Address) const override {
5775     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5776 
5777     // 0-15 are the 16 integer registers.
5778     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5779     return false;
5780   }
5781 
5782   unsigned getSizeOfUnwindException() const override {
5783     if (getABIInfo().isEABI()) return 88;
5784     return TargetCodeGenInfo::getSizeOfUnwindException();
5785   }
5786 
5787   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5788                            CodeGen::CodeGenModule &CGM) const override {
5789     if (GV->isDeclaration())
5790       return;
5791     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5792     if (!FD)
5793       return;
5794 
5795     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5796     if (!Attr)
5797       return;
5798 
5799     const char *Kind;
5800     switch (Attr->getInterrupt()) {
5801     case ARMInterruptAttr::Generic: Kind = ""; break;
5802     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5803     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5804     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5805     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5806     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5807     }
5808 
5809     llvm::Function *Fn = cast<llvm::Function>(GV);
5810 
5811     Fn->addFnAttr("interrupt", Kind);
5812 
5813     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5814     if (ABI == ARMABIInfo::APCS)
5815       return;
5816 
5817     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5818     // however this is not necessarily true on taking any interrupt. Instruct
5819     // the backend to perform a realignment as part of the function prologue.
5820     llvm::AttrBuilder B;
5821     B.addStackAlignmentAttr(8);
5822     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5823   }
5824 };
5825 
5826 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5827 public:
5828   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5829       : ARMTargetCodeGenInfo(CGT, K) {}
5830 
5831   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5832                            CodeGen::CodeGenModule &CGM) const override;
5833 
5834   void getDependentLibraryOption(llvm::StringRef Lib,
5835                                  llvm::SmallString<24> &Opt) const override {
5836     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5837   }
5838 
5839   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5840                                llvm::SmallString<32> &Opt) const override {
5841     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5842   }
5843 };
5844 
5845 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5846     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5847   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5848   if (GV->isDeclaration())
5849     return;
5850   addStackProbeTargetAttributes(D, GV, CGM);
5851 }
5852 }
5853 
5854 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5855   if (!::classifyReturnType(getCXXABI(), FI, *this))
5856     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5857                                             FI.getCallingConvention());
5858 
5859   for (auto &I : FI.arguments())
5860     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5861                                   FI.getCallingConvention());
5862 
5863 
5864   // Always honor user-specified calling convention.
5865   if (FI.getCallingConvention() != llvm::CallingConv::C)
5866     return;
5867 
5868   llvm::CallingConv::ID cc = getRuntimeCC();
5869   if (cc != llvm::CallingConv::C)
5870     FI.setEffectiveCallingConvention(cc);
5871 }
5872 
5873 /// Return the default calling convention that LLVM will use.
5874 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5875   // The default calling convention that LLVM will infer.
5876   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5877     return llvm::CallingConv::ARM_AAPCS_VFP;
5878   else if (isEABI())
5879     return llvm::CallingConv::ARM_AAPCS;
5880   else
5881     return llvm::CallingConv::ARM_APCS;
5882 }
5883 
5884 /// Return the calling convention that our ABI would like us to use
5885 /// as the C calling convention.
5886 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5887   switch (getABIKind()) {
5888   case APCS: return llvm::CallingConv::ARM_APCS;
5889   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5890   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5891   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5892   }
5893   llvm_unreachable("bad ABI kind");
5894 }
5895 
5896 void ARMABIInfo::setCCs() {
5897   assert(getRuntimeCC() == llvm::CallingConv::C);
5898 
5899   // Don't muddy up the IR with a ton of explicit annotations if
5900   // they'd just match what LLVM will infer from the triple.
5901   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5902   if (abiCC != getLLVMDefaultCC())
5903     RuntimeCC = abiCC;
5904 }
5905 
5906 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5907   uint64_t Size = getContext().getTypeSize(Ty);
5908   if (Size <= 32) {
5909     llvm::Type *ResType =
5910         llvm::Type::getInt32Ty(getVMContext());
5911     return ABIArgInfo::getDirect(ResType);
5912   }
5913   if (Size == 64 || Size == 128) {
5914     llvm::Type *ResType = llvm::VectorType::get(
5915         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5916     return ABIArgInfo::getDirect(ResType);
5917   }
5918   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5919 }
5920 
5921 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5922                                                     const Type *Base,
5923                                                     uint64_t Members) const {
5924   assert(Base && "Base class should be set for homogeneous aggregate");
5925   // Base can be a floating-point or a vector.
5926   if (const VectorType *VT = Base->getAs<VectorType>()) {
5927     // FP16 vectors should be converted to integer vectors
5928     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
5929       uint64_t Size = getContext().getTypeSize(VT);
5930       llvm::Type *NewVecTy = llvm::VectorType::get(
5931           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5932       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5933       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5934     }
5935   }
5936   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5937 }
5938 
5939 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
5940                                             unsigned functionCallConv) const {
5941   // 6.1.2.1 The following argument types are VFP CPRCs:
5942   //   A single-precision floating-point type (including promoted
5943   //   half-precision types); A double-precision floating-point type;
5944   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5945   //   with a Base Type of a single- or double-precision floating-point type,
5946   //   64-bit containerized vectors or 128-bit containerized vectors with one
5947   //   to four Elements.
5948   // Variadic functions should always marshal to the base standard.
5949   bool IsAAPCS_VFP =
5950       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
5951 
5952   Ty = useFirstFieldIfTransparentUnion(Ty);
5953 
5954   // Handle illegal vector types here.
5955   if (isIllegalVectorType(Ty))
5956     return coerceIllegalVector(Ty);
5957 
5958   // _Float16 and __fp16 get passed as if it were an int or float, but with
5959   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5960   // half type natively, and does not need to interwork with AAPCS code.
5961   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5962       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5963     llvm::Type *ResType = IsAAPCS_VFP ?
5964       llvm::Type::getFloatTy(getVMContext()) :
5965       llvm::Type::getInt32Ty(getVMContext());
5966     return ABIArgInfo::getDirect(ResType);
5967   }
5968 
5969   if (!isAggregateTypeForABI(Ty)) {
5970     // Treat an enum type as its underlying type.
5971     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5972       Ty = EnumTy->getDecl()->getIntegerType();
5973     }
5974 
5975     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5976                                           : ABIArgInfo::getDirect());
5977   }
5978 
5979   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5980     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5981   }
5982 
5983   // Ignore empty records.
5984   if (isEmptyRecord(getContext(), Ty, true))
5985     return ABIArgInfo::getIgnore();
5986 
5987   if (IsAAPCS_VFP) {
5988     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5989     // into VFP registers.
5990     const Type *Base = nullptr;
5991     uint64_t Members = 0;
5992     if (isHomogeneousAggregate(Ty, Base, Members))
5993       return classifyHomogeneousAggregate(Ty, Base, Members);
5994   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5995     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5996     // this convention even for a variadic function: the backend will use GPRs
5997     // if needed.
5998     const Type *Base = nullptr;
5999     uint64_t Members = 0;
6000     if (isHomogeneousAggregate(Ty, Base, Members)) {
6001       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6002       llvm::Type *Ty =
6003         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6004       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6005     }
6006   }
6007 
6008   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6009       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6010     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6011     // bigger than 128-bits, they get placed in space allocated by the caller,
6012     // and a pointer is passed.
6013     return ABIArgInfo::getIndirect(
6014         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6015   }
6016 
6017   // Support byval for ARM.
6018   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6019   // most 8-byte. We realign the indirect argument if type alignment is bigger
6020   // than ABI alignment.
6021   uint64_t ABIAlign = 4;
6022   uint64_t TyAlign;
6023   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6024       getABIKind() == ARMABIInfo::AAPCS) {
6025     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6026     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6027   } else {
6028     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6029   }
6030   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6031     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6032     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6033                                    /*ByVal=*/true,
6034                                    /*Realign=*/TyAlign > ABIAlign);
6035   }
6036 
6037   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6038   // same size and alignment.
6039   if (getTarget().isRenderScriptTarget()) {
6040     return coerceToIntArray(Ty, getContext(), getVMContext());
6041   }
6042 
6043   // Otherwise, pass by coercing to a structure of the appropriate size.
6044   llvm::Type* ElemTy;
6045   unsigned SizeRegs;
6046   // FIXME: Try to match the types of the arguments more accurately where
6047   // we can.
6048   if (TyAlign <= 4) {
6049     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6050     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6051   } else {
6052     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6053     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6054   }
6055 
6056   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6057 }
6058 
6059 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6060                               llvm::LLVMContext &VMContext) {
6061   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6062   // is called integer-like if its size is less than or equal to one word, and
6063   // the offset of each of its addressable sub-fields is zero.
6064 
6065   uint64_t Size = Context.getTypeSize(Ty);
6066 
6067   // Check that the type fits in a word.
6068   if (Size > 32)
6069     return false;
6070 
6071   // FIXME: Handle vector types!
6072   if (Ty->isVectorType())
6073     return false;
6074 
6075   // Float types are never treated as "integer like".
6076   if (Ty->isRealFloatingType())
6077     return false;
6078 
6079   // If this is a builtin or pointer type then it is ok.
6080   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6081     return true;
6082 
6083   // Small complex integer types are "integer like".
6084   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6085     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6086 
6087   // Single element and zero sized arrays should be allowed, by the definition
6088   // above, but they are not.
6089 
6090   // Otherwise, it must be a record type.
6091   const RecordType *RT = Ty->getAs<RecordType>();
6092   if (!RT) return false;
6093 
6094   // Ignore records with flexible arrays.
6095   const RecordDecl *RD = RT->getDecl();
6096   if (RD->hasFlexibleArrayMember())
6097     return false;
6098 
6099   // Check that all sub-fields are at offset 0, and are themselves "integer
6100   // like".
6101   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6102 
6103   bool HadField = false;
6104   unsigned idx = 0;
6105   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6106        i != e; ++i, ++idx) {
6107     const FieldDecl *FD = *i;
6108 
6109     // Bit-fields are not addressable, we only need to verify they are "integer
6110     // like". We still have to disallow a subsequent non-bitfield, for example:
6111     //   struct { int : 0; int x }
6112     // is non-integer like according to gcc.
6113     if (FD->isBitField()) {
6114       if (!RD->isUnion())
6115         HadField = true;
6116 
6117       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6118         return false;
6119 
6120       continue;
6121     }
6122 
6123     // Check if this field is at offset 0.
6124     if (Layout.getFieldOffset(idx) != 0)
6125       return false;
6126 
6127     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6128       return false;
6129 
6130     // Only allow at most one field in a structure. This doesn't match the
6131     // wording above, but follows gcc in situations with a field following an
6132     // empty structure.
6133     if (!RD->isUnion()) {
6134       if (HadField)
6135         return false;
6136 
6137       HadField = true;
6138     }
6139   }
6140 
6141   return true;
6142 }
6143 
6144 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6145                                           unsigned functionCallConv) const {
6146 
6147   // Variadic functions should always marshal to the base standard.
6148   bool IsAAPCS_VFP =
6149       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6150 
6151   if (RetTy->isVoidType())
6152     return ABIArgInfo::getIgnore();
6153 
6154   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6155     // Large vector types should be returned via memory.
6156     if (getContext().getTypeSize(RetTy) > 128)
6157       return getNaturalAlignIndirect(RetTy);
6158     // FP16 vectors should be converted to integer vectors
6159     if (!getTarget().hasLegalHalfType() &&
6160         (VT->getElementType()->isFloat16Type() ||
6161          VT->getElementType()->isHalfType()))
6162       return coerceIllegalVector(RetTy);
6163   }
6164 
6165   // _Float16 and __fp16 get returned as if it were an int or float, but with
6166   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6167   // half type natively, and does not need to interwork with AAPCS code.
6168   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6169       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6170     llvm::Type *ResType = IsAAPCS_VFP ?
6171       llvm::Type::getFloatTy(getVMContext()) :
6172       llvm::Type::getInt32Ty(getVMContext());
6173     return ABIArgInfo::getDirect(ResType);
6174   }
6175 
6176   if (!isAggregateTypeForABI(RetTy)) {
6177     // Treat an enum type as its underlying type.
6178     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6179       RetTy = EnumTy->getDecl()->getIntegerType();
6180 
6181     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6182                                             : ABIArgInfo::getDirect();
6183   }
6184 
6185   // Are we following APCS?
6186   if (getABIKind() == APCS) {
6187     if (isEmptyRecord(getContext(), RetTy, false))
6188       return ABIArgInfo::getIgnore();
6189 
6190     // Complex types are all returned as packed integers.
6191     //
6192     // FIXME: Consider using 2 x vector types if the back end handles them
6193     // correctly.
6194     if (RetTy->isAnyComplexType())
6195       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6196           getVMContext(), getContext().getTypeSize(RetTy)));
6197 
6198     // Integer like structures are returned in r0.
6199     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6200       // Return in the smallest viable integer type.
6201       uint64_t Size = getContext().getTypeSize(RetTy);
6202       if (Size <= 8)
6203         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6204       if (Size <= 16)
6205         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6206       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6207     }
6208 
6209     // Otherwise return in memory.
6210     return getNaturalAlignIndirect(RetTy);
6211   }
6212 
6213   // Otherwise this is an AAPCS variant.
6214 
6215   if (isEmptyRecord(getContext(), RetTy, true))
6216     return ABIArgInfo::getIgnore();
6217 
6218   // Check for homogeneous aggregates with AAPCS-VFP.
6219   if (IsAAPCS_VFP) {
6220     const Type *Base = nullptr;
6221     uint64_t Members = 0;
6222     if (isHomogeneousAggregate(RetTy, Base, Members))
6223       return classifyHomogeneousAggregate(RetTy, Base, Members);
6224   }
6225 
6226   // Aggregates <= 4 bytes are returned in r0; other aggregates
6227   // are returned indirectly.
6228   uint64_t Size = getContext().getTypeSize(RetTy);
6229   if (Size <= 32) {
6230     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6231     // same size and alignment.
6232     if (getTarget().isRenderScriptTarget()) {
6233       return coerceToIntArray(RetTy, getContext(), getVMContext());
6234     }
6235     if (getDataLayout().isBigEndian())
6236       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6237       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6238 
6239     // Return in the smallest viable integer type.
6240     if (Size <= 8)
6241       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6242     if (Size <= 16)
6243       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6244     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6245   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6246     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6247     llvm::Type *CoerceTy =
6248         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6249     return ABIArgInfo::getDirect(CoerceTy);
6250   }
6251 
6252   return getNaturalAlignIndirect(RetTy);
6253 }
6254 
6255 /// isIllegalVector - check whether Ty is an illegal vector type.
6256 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6257   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6258     // On targets that don't support FP16, FP16 is expanded into float, and we
6259     // don't want the ABI to depend on whether or not FP16 is supported in
6260     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6261     if (!getTarget().hasLegalHalfType() &&
6262         (VT->getElementType()->isFloat16Type() ||
6263          VT->getElementType()->isHalfType()))
6264       return true;
6265     if (isAndroid()) {
6266       // Android shipped using Clang 3.1, which supported a slightly different
6267       // vector ABI. The primary differences were that 3-element vector types
6268       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6269       // accepts that legacy behavior for Android only.
6270       // Check whether VT is legal.
6271       unsigned NumElements = VT->getNumElements();
6272       // NumElements should be power of 2 or equal to 3.
6273       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6274         return true;
6275     } else {
6276       // Check whether VT is legal.
6277       unsigned NumElements = VT->getNumElements();
6278       uint64_t Size = getContext().getTypeSize(VT);
6279       // NumElements should be power of 2.
6280       if (!llvm::isPowerOf2_32(NumElements))
6281         return true;
6282       // Size should be greater than 32 bits.
6283       return Size <= 32;
6284     }
6285   }
6286   return false;
6287 }
6288 
6289 /// Return true if a type contains any 16-bit floating point vectors
6290 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6291   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6292     uint64_t NElements = AT->getSize().getZExtValue();
6293     if (NElements == 0)
6294       return false;
6295     return containsAnyFP16Vectors(AT->getElementType());
6296   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6297     const RecordDecl *RD = RT->getDecl();
6298 
6299     // If this is a C++ record, check the bases first.
6300     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6301       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6302             return containsAnyFP16Vectors(B.getType());
6303           }))
6304         return true;
6305 
6306     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6307           return FD && containsAnyFP16Vectors(FD->getType());
6308         }))
6309       return true;
6310 
6311     return false;
6312   } else {
6313     if (const VectorType *VT = Ty->getAs<VectorType>())
6314       return (VT->getElementType()->isFloat16Type() ||
6315               VT->getElementType()->isHalfType());
6316     return false;
6317   }
6318 }
6319 
6320 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6321                                            llvm::Type *eltTy,
6322                                            unsigned numElts) const {
6323   if (!llvm::isPowerOf2_32(numElts))
6324     return false;
6325   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6326   if (size > 64)
6327     return false;
6328   if (vectorSize.getQuantity() != 8 &&
6329       (vectorSize.getQuantity() != 16 || numElts == 1))
6330     return false;
6331   return true;
6332 }
6333 
6334 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6335   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6336   // double, or 64-bit or 128-bit vectors.
6337   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6338     if (BT->getKind() == BuiltinType::Float ||
6339         BT->getKind() == BuiltinType::Double ||
6340         BT->getKind() == BuiltinType::LongDouble)
6341       return true;
6342   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6343     unsigned VecSize = getContext().getTypeSize(VT);
6344     if (VecSize == 64 || VecSize == 128)
6345       return true;
6346   }
6347   return false;
6348 }
6349 
6350 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6351                                                    uint64_t Members) const {
6352   return Members <= 4;
6353 }
6354 
6355 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6356                                         bool acceptHalf) const {
6357   // Give precedence to user-specified calling conventions.
6358   if (callConvention != llvm::CallingConv::C)
6359     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6360   else
6361     return (getABIKind() == AAPCS_VFP) ||
6362            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6363 }
6364 
6365 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6366                               QualType Ty) const {
6367   CharUnits SlotSize = CharUnits::fromQuantity(4);
6368 
6369   // Empty records are ignored for parameter passing purposes.
6370   if (isEmptyRecord(getContext(), Ty, true)) {
6371     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6372     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6373     return Addr;
6374   }
6375 
6376   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6377   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6378 
6379   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6380   bool IsIndirect = false;
6381   const Type *Base = nullptr;
6382   uint64_t Members = 0;
6383   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6384     IsIndirect = true;
6385 
6386   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6387   // allocated by the caller.
6388   } else if (TySize > CharUnits::fromQuantity(16) &&
6389              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6390              !isHomogeneousAggregate(Ty, Base, Members)) {
6391     IsIndirect = true;
6392 
6393   // Otherwise, bound the type's ABI alignment.
6394   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6395   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6396   // Our callers should be prepared to handle an under-aligned address.
6397   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6398              getABIKind() == ARMABIInfo::AAPCS) {
6399     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6400     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6401   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6402     // ARMv7k allows type alignment up to 16 bytes.
6403     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6404     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6405   } else {
6406     TyAlignForABI = CharUnits::fromQuantity(4);
6407   }
6408 
6409   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6410   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6411                           SlotSize, /*AllowHigherAlign*/ true);
6412 }
6413 
6414 //===----------------------------------------------------------------------===//
6415 // NVPTX ABI Implementation
6416 //===----------------------------------------------------------------------===//
6417 
6418 namespace {
6419 
6420 class NVPTXTargetCodeGenInfo;
6421 
6422 class NVPTXABIInfo : public ABIInfo {
6423   NVPTXTargetCodeGenInfo &CGInfo;
6424 
6425 public:
6426   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6427       : ABIInfo(CGT), CGInfo(Info) {}
6428 
6429   ABIArgInfo classifyReturnType(QualType RetTy) const;
6430   ABIArgInfo classifyArgumentType(QualType Ty) const;
6431 
6432   void computeInfo(CGFunctionInfo &FI) const override;
6433   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6434                     QualType Ty) const override;
6435 };
6436 
6437 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6438 public:
6439   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6440       : TargetCodeGenInfo(new NVPTXABIInfo(CGT, *this)) {}
6441 
6442   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6443                            CodeGen::CodeGenModule &M) const override;
6444   bool shouldEmitStaticExternCAliases() const override;
6445 
6446   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6447     // On the device side, surface reference is represented as an object handle
6448     // in 64-bit integer.
6449     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6450   }
6451 
6452   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6453     // On the device side, texture reference is represented as an object handle
6454     // in 64-bit integer.
6455     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6456   }
6457 
6458   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6459                                               LValue Src) const override {
6460     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6461     return true;
6462   }
6463 
6464   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6465                                               LValue Src) const override {
6466     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6467     return true;
6468   }
6469 
6470 private:
6471   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6472   // resulting MDNode to the nvvm.annotations MDNode.
6473   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6474                               int Operand);
6475 
6476   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6477                                            LValue Src) {
6478     llvm::Value *Handle = nullptr;
6479     llvm::Constant *C =
6480         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6481     // Lookup `addrspacecast` through the constant pointer if any.
6482     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6483       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6484     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6485       // Load the handle from the specific global variable using
6486       // `nvvm.texsurf.handle.internal` intrinsic.
6487       Handle = CGF.EmitRuntimeCall(
6488           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6489                                {GV->getType()}),
6490           {GV}, "texsurf_handle");
6491     } else
6492       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6493     CGF.EmitStoreOfScalar(Handle, Dst);
6494   }
6495 };
6496 
6497 /// Checks if the type is unsupported directly by the current target.
6498 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6499   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6500     return true;
6501   if (!Context.getTargetInfo().hasFloat128Type() &&
6502       (T->isFloat128Type() ||
6503        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6504     return true;
6505   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6506       Context.getTypeSize(T) > 64)
6507     return true;
6508   if (const auto *AT = T->getAsArrayTypeUnsafe())
6509     return isUnsupportedType(Context, AT->getElementType());
6510   const auto *RT = T->getAs<RecordType>();
6511   if (!RT)
6512     return false;
6513   const RecordDecl *RD = RT->getDecl();
6514 
6515   // If this is a C++ record, check the bases first.
6516   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6517     for (const CXXBaseSpecifier &I : CXXRD->bases())
6518       if (isUnsupportedType(Context, I.getType()))
6519         return true;
6520 
6521   for (const FieldDecl *I : RD->fields())
6522     if (isUnsupportedType(Context, I->getType()))
6523       return true;
6524   return false;
6525 }
6526 
6527 /// Coerce the given type into an array with maximum allowed size of elements.
6528 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6529                                             llvm::LLVMContext &LLVMContext,
6530                                             unsigned MaxSize) {
6531   // Alignment and Size are measured in bits.
6532   const uint64_t Size = Context.getTypeSize(Ty);
6533   const uint64_t Alignment = Context.getTypeAlign(Ty);
6534   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6535   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6536   const uint64_t NumElements = (Size + Div - 1) / Div;
6537   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6538 }
6539 
6540 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6541   if (RetTy->isVoidType())
6542     return ABIArgInfo::getIgnore();
6543 
6544   if (getContext().getLangOpts().OpenMP &&
6545       getContext().getLangOpts().OpenMPIsDevice &&
6546       isUnsupportedType(getContext(), RetTy))
6547     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6548 
6549   // note: this is different from default ABI
6550   if (!RetTy->isScalarType())
6551     return ABIArgInfo::getDirect();
6552 
6553   // Treat an enum type as its underlying type.
6554   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6555     RetTy = EnumTy->getDecl()->getIntegerType();
6556 
6557   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6558                                            : ABIArgInfo::getDirect());
6559 }
6560 
6561 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6562   // Treat an enum type as its underlying type.
6563   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6564     Ty = EnumTy->getDecl()->getIntegerType();
6565 
6566   // Return aggregates type as indirect by value
6567   if (isAggregateTypeForABI(Ty)) {
6568     // Under CUDA device compilation, tex/surf builtin types are replaced with
6569     // object types and passed directly.
6570     if (getContext().getLangOpts().CUDAIsDevice) {
6571       if (Ty->isCUDADeviceBuiltinSurfaceType())
6572         return ABIArgInfo::getDirect(
6573             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
6574       if (Ty->isCUDADeviceBuiltinTextureType())
6575         return ABIArgInfo::getDirect(
6576             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
6577     }
6578     return getNaturalAlignIndirect(Ty, /* byval */ true);
6579   }
6580 
6581   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6582                                         : ABIArgInfo::getDirect());
6583 }
6584 
6585 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6586   if (!getCXXABI().classifyReturnType(FI))
6587     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6588   for (auto &I : FI.arguments())
6589     I.info = classifyArgumentType(I.type);
6590 
6591   // Always honor user-specified calling convention.
6592   if (FI.getCallingConvention() != llvm::CallingConv::C)
6593     return;
6594 
6595   FI.setEffectiveCallingConvention(getRuntimeCC());
6596 }
6597 
6598 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6599                                 QualType Ty) const {
6600   llvm_unreachable("NVPTX does not support varargs");
6601 }
6602 
6603 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6604     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6605   if (GV->isDeclaration())
6606     return;
6607   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
6608   if (VD) {
6609     if (M.getLangOpts().CUDA) {
6610       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
6611         addNVVMMetadata(GV, "surface", 1);
6612       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
6613         addNVVMMetadata(GV, "texture", 1);
6614       return;
6615     }
6616   }
6617 
6618   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6619   if (!FD) return;
6620 
6621   llvm::Function *F = cast<llvm::Function>(GV);
6622 
6623   // Perform special handling in OpenCL mode
6624   if (M.getLangOpts().OpenCL) {
6625     // Use OpenCL function attributes to check for kernel functions
6626     // By default, all functions are device functions
6627     if (FD->hasAttr<OpenCLKernelAttr>()) {
6628       // OpenCL __kernel functions get kernel metadata
6629       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6630       addNVVMMetadata(F, "kernel", 1);
6631       // And kernel functions are not subject to inlining
6632       F->addFnAttr(llvm::Attribute::NoInline);
6633     }
6634   }
6635 
6636   // Perform special handling in CUDA mode.
6637   if (M.getLangOpts().CUDA) {
6638     // CUDA __global__ functions get a kernel metadata entry.  Since
6639     // __global__ functions cannot be called from the device, we do not
6640     // need to set the noinline attribute.
6641     if (FD->hasAttr<CUDAGlobalAttr>()) {
6642       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6643       addNVVMMetadata(F, "kernel", 1);
6644     }
6645     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6646       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6647       llvm::APSInt MaxThreads(32);
6648       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6649       if (MaxThreads > 0)
6650         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6651 
6652       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6653       // not specified in __launch_bounds__ or if the user specified a 0 value,
6654       // we don't have to add a PTX directive.
6655       if (Attr->getMinBlocks()) {
6656         llvm::APSInt MinBlocks(32);
6657         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6658         if (MinBlocks > 0)
6659           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6660           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6661       }
6662     }
6663   }
6664 }
6665 
6666 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
6667                                              StringRef Name, int Operand) {
6668   llvm::Module *M = GV->getParent();
6669   llvm::LLVMContext &Ctx = M->getContext();
6670 
6671   // Get "nvvm.annotations" metadata node
6672   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6673 
6674   llvm::Metadata *MDVals[] = {
6675       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
6676       llvm::ConstantAsMetadata::get(
6677           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6678   // Append metadata to nvvm.annotations
6679   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6680 }
6681 
6682 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6683   return false;
6684 }
6685 }
6686 
6687 //===----------------------------------------------------------------------===//
6688 // SystemZ ABI Implementation
6689 //===----------------------------------------------------------------------===//
6690 
6691 namespace {
6692 
6693 class SystemZABIInfo : public SwiftABIInfo {
6694   bool HasVector;
6695   bool IsSoftFloatABI;
6696 
6697 public:
6698   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
6699     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
6700 
6701   bool isPromotableIntegerType(QualType Ty) const;
6702   bool isCompoundType(QualType Ty) const;
6703   bool isVectorArgumentType(QualType Ty) const;
6704   bool isFPArgumentType(QualType Ty) const;
6705   QualType GetSingleElementType(QualType Ty) const;
6706 
6707   ABIArgInfo classifyReturnType(QualType RetTy) const;
6708   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6709 
6710   void computeInfo(CGFunctionInfo &FI) const override {
6711     if (!getCXXABI().classifyReturnType(FI))
6712       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6713     for (auto &I : FI.arguments())
6714       I.info = classifyArgumentType(I.type);
6715   }
6716 
6717   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6718                     QualType Ty) const override;
6719 
6720   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6721                                     bool asReturnValue) const override {
6722     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6723   }
6724   bool isSwiftErrorInRegister() const override {
6725     return false;
6726   }
6727 };
6728 
6729 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6730 public:
6731   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
6732     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector, SoftFloatABI)) {}
6733 };
6734 
6735 }
6736 
6737 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6738   // Treat an enum type as its underlying type.
6739   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6740     Ty = EnumTy->getDecl()->getIntegerType();
6741 
6742   // Promotable integer types are required to be promoted by the ABI.
6743   if (Ty->isPromotableIntegerType())
6744     return true;
6745 
6746   // 32-bit values must also be promoted.
6747   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6748     switch (BT->getKind()) {
6749     case BuiltinType::Int:
6750     case BuiltinType::UInt:
6751       return true;
6752     default:
6753       return false;
6754     }
6755   return false;
6756 }
6757 
6758 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6759   return (Ty->isAnyComplexType() ||
6760           Ty->isVectorType() ||
6761           isAggregateTypeForABI(Ty));
6762 }
6763 
6764 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6765   return (HasVector &&
6766           Ty->isVectorType() &&
6767           getContext().getTypeSize(Ty) <= 128);
6768 }
6769 
6770 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6771   if (IsSoftFloatABI)
6772     return false;
6773 
6774   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6775     switch (BT->getKind()) {
6776     case BuiltinType::Float:
6777     case BuiltinType::Double:
6778       return true;
6779     default:
6780       return false;
6781     }
6782 
6783   return false;
6784 }
6785 
6786 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6787   if (const RecordType *RT = Ty->getAsStructureType()) {
6788     const RecordDecl *RD = RT->getDecl();
6789     QualType Found;
6790 
6791     // If this is a C++ record, check the bases first.
6792     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6793       for (const auto &I : CXXRD->bases()) {
6794         QualType Base = I.getType();
6795 
6796         // Empty bases don't affect things either way.
6797         if (isEmptyRecord(getContext(), Base, true))
6798           continue;
6799 
6800         if (!Found.isNull())
6801           return Ty;
6802         Found = GetSingleElementType(Base);
6803       }
6804 
6805     // Check the fields.
6806     for (const auto *FD : RD->fields()) {
6807       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6808       // Unlike isSingleElementStruct(), empty structure and array fields
6809       // do count.  So do anonymous bitfields that aren't zero-sized.
6810       if (getContext().getLangOpts().CPlusPlus &&
6811           FD->isZeroLengthBitField(getContext()))
6812         continue;
6813 
6814       // Unlike isSingleElementStruct(), arrays do not count.
6815       // Nested structures still do though.
6816       if (!Found.isNull())
6817         return Ty;
6818       Found = GetSingleElementType(FD->getType());
6819     }
6820 
6821     // Unlike isSingleElementStruct(), trailing padding is allowed.
6822     // An 8-byte aligned struct s { float f; } is passed as a double.
6823     if (!Found.isNull())
6824       return Found;
6825   }
6826 
6827   return Ty;
6828 }
6829 
6830 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6831                                   QualType Ty) const {
6832   // Assume that va_list type is correct; should be pointer to LLVM type:
6833   // struct {
6834   //   i64 __gpr;
6835   //   i64 __fpr;
6836   //   i8 *__overflow_arg_area;
6837   //   i8 *__reg_save_area;
6838   // };
6839 
6840   // Every non-vector argument occupies 8 bytes and is passed by preference
6841   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6842   // always passed on the stack.
6843   Ty = getContext().getCanonicalType(Ty);
6844   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6845   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6846   llvm::Type *DirectTy = ArgTy;
6847   ABIArgInfo AI = classifyArgumentType(Ty);
6848   bool IsIndirect = AI.isIndirect();
6849   bool InFPRs = false;
6850   bool IsVector = false;
6851   CharUnits UnpaddedSize;
6852   CharUnits DirectAlign;
6853   if (IsIndirect) {
6854     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6855     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6856   } else {
6857     if (AI.getCoerceToType())
6858       ArgTy = AI.getCoerceToType();
6859     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
6860     IsVector = ArgTy->isVectorTy();
6861     UnpaddedSize = TyInfo.first;
6862     DirectAlign = TyInfo.second;
6863   }
6864   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6865   if (IsVector && UnpaddedSize > PaddedSize)
6866     PaddedSize = CharUnits::fromQuantity(16);
6867   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6868 
6869   CharUnits Padding = (PaddedSize - UnpaddedSize);
6870 
6871   llvm::Type *IndexTy = CGF.Int64Ty;
6872   llvm::Value *PaddedSizeV =
6873     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6874 
6875   if (IsVector) {
6876     // Work out the address of a vector argument on the stack.
6877     // Vector arguments are always passed in the high bits of a
6878     // single (8 byte) or double (16 byte) stack slot.
6879     Address OverflowArgAreaPtr =
6880         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6881     Address OverflowArgArea =
6882       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6883               TyInfo.second);
6884     Address MemAddr =
6885       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6886 
6887     // Update overflow_arg_area_ptr pointer
6888     llvm::Value *NewOverflowArgArea =
6889       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6890                             "overflow_arg_area");
6891     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6892 
6893     return MemAddr;
6894   }
6895 
6896   assert(PaddedSize.getQuantity() == 8);
6897 
6898   unsigned MaxRegs, RegCountField, RegSaveIndex;
6899   CharUnits RegPadding;
6900   if (InFPRs) {
6901     MaxRegs = 4; // Maximum of 4 FPR arguments
6902     RegCountField = 1; // __fpr
6903     RegSaveIndex = 16; // save offset for f0
6904     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6905   } else {
6906     MaxRegs = 5; // Maximum of 5 GPR arguments
6907     RegCountField = 0; // __gpr
6908     RegSaveIndex = 2; // save offset for r2
6909     RegPadding = Padding; // values are passed in the low bits of a GPR
6910   }
6911 
6912   Address RegCountPtr =
6913       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6914   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6915   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6916   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6917                                                  "fits_in_regs");
6918 
6919   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6920   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6921   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6922   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6923 
6924   // Emit code to load the value if it was passed in registers.
6925   CGF.EmitBlock(InRegBlock);
6926 
6927   // Work out the address of an argument register.
6928   llvm::Value *ScaledRegCount =
6929     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6930   llvm::Value *RegBase =
6931     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6932                                       + RegPadding.getQuantity());
6933   llvm::Value *RegOffset =
6934     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6935   Address RegSaveAreaPtr =
6936       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6937   llvm::Value *RegSaveArea =
6938     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6939   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6940                                            "raw_reg_addr"),
6941                      PaddedSize);
6942   Address RegAddr =
6943     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6944 
6945   // Update the register count
6946   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6947   llvm::Value *NewRegCount =
6948     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6949   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6950   CGF.EmitBranch(ContBlock);
6951 
6952   // Emit code to load the value if it was passed in memory.
6953   CGF.EmitBlock(InMemBlock);
6954 
6955   // Work out the address of a stack argument.
6956   Address OverflowArgAreaPtr =
6957       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6958   Address OverflowArgArea =
6959     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6960             PaddedSize);
6961   Address RawMemAddr =
6962     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6963   Address MemAddr =
6964     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6965 
6966   // Update overflow_arg_area_ptr pointer
6967   llvm::Value *NewOverflowArgArea =
6968     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6969                           "overflow_arg_area");
6970   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6971   CGF.EmitBranch(ContBlock);
6972 
6973   // Return the appropriate result.
6974   CGF.EmitBlock(ContBlock);
6975   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6976                                  MemAddr, InMemBlock, "va_arg.addr");
6977 
6978   if (IsIndirect)
6979     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6980                       TyInfo.second);
6981 
6982   return ResAddr;
6983 }
6984 
6985 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6986   if (RetTy->isVoidType())
6987     return ABIArgInfo::getIgnore();
6988   if (isVectorArgumentType(RetTy))
6989     return ABIArgInfo::getDirect();
6990   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6991     return getNaturalAlignIndirect(RetTy);
6992   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6993                                          : ABIArgInfo::getDirect());
6994 }
6995 
6996 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6997   // Handle the generic C++ ABI.
6998   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6999     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7000 
7001   // Integers and enums are extended to full register width.
7002   if (isPromotableIntegerType(Ty))
7003     return ABIArgInfo::getExtend(Ty);
7004 
7005   // Handle vector types and vector-like structure types.  Note that
7006   // as opposed to float-like structure types, we do not allow any
7007   // padding for vector-like structures, so verify the sizes match.
7008   uint64_t Size = getContext().getTypeSize(Ty);
7009   QualType SingleElementTy = GetSingleElementType(Ty);
7010   if (isVectorArgumentType(SingleElementTy) &&
7011       getContext().getTypeSize(SingleElementTy) == Size)
7012     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7013 
7014   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7015   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7016     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7017 
7018   // Handle small structures.
7019   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7020     // Structures with flexible arrays have variable length, so really
7021     // fail the size test above.
7022     const RecordDecl *RD = RT->getDecl();
7023     if (RD->hasFlexibleArrayMember())
7024       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7025 
7026     // The structure is passed as an unextended integer, a float, or a double.
7027     llvm::Type *PassTy;
7028     if (isFPArgumentType(SingleElementTy)) {
7029       assert(Size == 32 || Size == 64);
7030       if (Size == 32)
7031         PassTy = llvm::Type::getFloatTy(getVMContext());
7032       else
7033         PassTy = llvm::Type::getDoubleTy(getVMContext());
7034     } else
7035       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7036     return ABIArgInfo::getDirect(PassTy);
7037   }
7038 
7039   // Non-structure compounds are passed indirectly.
7040   if (isCompoundType(Ty))
7041     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7042 
7043   return ABIArgInfo::getDirect(nullptr);
7044 }
7045 
7046 //===----------------------------------------------------------------------===//
7047 // MSP430 ABI Implementation
7048 //===----------------------------------------------------------------------===//
7049 
7050 namespace {
7051 
7052 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7053 public:
7054   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7055     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
7056   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7057                            CodeGen::CodeGenModule &M) const override;
7058 };
7059 
7060 }
7061 
7062 void MSP430TargetCodeGenInfo::setTargetAttributes(
7063     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7064   if (GV->isDeclaration())
7065     return;
7066   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7067     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7068     if (!InterruptAttr)
7069       return;
7070 
7071     // Handle 'interrupt' attribute:
7072     llvm::Function *F = cast<llvm::Function>(GV);
7073 
7074     // Step 1: Set ISR calling convention.
7075     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7076 
7077     // Step 2: Add attributes goodness.
7078     F->addFnAttr(llvm::Attribute::NoInline);
7079     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7080   }
7081 }
7082 
7083 //===----------------------------------------------------------------------===//
7084 // MIPS ABI Implementation.  This works for both little-endian and
7085 // big-endian variants.
7086 //===----------------------------------------------------------------------===//
7087 
7088 namespace {
7089 class MipsABIInfo : public ABIInfo {
7090   bool IsO32;
7091   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7092   void CoerceToIntArgs(uint64_t TySize,
7093                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7094   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7095   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7096   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7097 public:
7098   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7099     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7100     StackAlignInBytes(IsO32 ? 8 : 16) {}
7101 
7102   ABIArgInfo classifyReturnType(QualType RetTy) const;
7103   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7104   void computeInfo(CGFunctionInfo &FI) const override;
7105   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7106                     QualType Ty) const override;
7107   ABIArgInfo extendType(QualType Ty) const;
7108 };
7109 
7110 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7111   unsigned SizeOfUnwindException;
7112 public:
7113   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7114     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
7115       SizeOfUnwindException(IsO32 ? 24 : 32) {}
7116 
7117   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7118     return 29;
7119   }
7120 
7121   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7122                            CodeGen::CodeGenModule &CGM) const override {
7123     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7124     if (!FD) return;
7125     llvm::Function *Fn = cast<llvm::Function>(GV);
7126 
7127     if (FD->hasAttr<MipsLongCallAttr>())
7128       Fn->addFnAttr("long-call");
7129     else if (FD->hasAttr<MipsShortCallAttr>())
7130       Fn->addFnAttr("short-call");
7131 
7132     // Other attributes do not have a meaning for declarations.
7133     if (GV->isDeclaration())
7134       return;
7135 
7136     if (FD->hasAttr<Mips16Attr>()) {
7137       Fn->addFnAttr("mips16");
7138     }
7139     else if (FD->hasAttr<NoMips16Attr>()) {
7140       Fn->addFnAttr("nomips16");
7141     }
7142 
7143     if (FD->hasAttr<MicroMipsAttr>())
7144       Fn->addFnAttr("micromips");
7145     else if (FD->hasAttr<NoMicroMipsAttr>())
7146       Fn->addFnAttr("nomicromips");
7147 
7148     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7149     if (!Attr)
7150       return;
7151 
7152     const char *Kind;
7153     switch (Attr->getInterrupt()) {
7154     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7155     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7156     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7157     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7158     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7159     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7160     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7161     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7162     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7163     }
7164 
7165     Fn->addFnAttr("interrupt", Kind);
7166 
7167   }
7168 
7169   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7170                                llvm::Value *Address) const override;
7171 
7172   unsigned getSizeOfUnwindException() const override {
7173     return SizeOfUnwindException;
7174   }
7175 };
7176 }
7177 
7178 void MipsABIInfo::CoerceToIntArgs(
7179     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7180   llvm::IntegerType *IntTy =
7181     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7182 
7183   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7184   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7185     ArgList.push_back(IntTy);
7186 
7187   // If necessary, add one more integer type to ArgList.
7188   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7189 
7190   if (R)
7191     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7192 }
7193 
7194 // In N32/64, an aligned double precision floating point field is passed in
7195 // a register.
7196 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7197   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7198 
7199   if (IsO32) {
7200     CoerceToIntArgs(TySize, ArgList);
7201     return llvm::StructType::get(getVMContext(), ArgList);
7202   }
7203 
7204   if (Ty->isComplexType())
7205     return CGT.ConvertType(Ty);
7206 
7207   const RecordType *RT = Ty->getAs<RecordType>();
7208 
7209   // Unions/vectors are passed in integer registers.
7210   if (!RT || !RT->isStructureOrClassType()) {
7211     CoerceToIntArgs(TySize, ArgList);
7212     return llvm::StructType::get(getVMContext(), ArgList);
7213   }
7214 
7215   const RecordDecl *RD = RT->getDecl();
7216   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7217   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7218 
7219   uint64_t LastOffset = 0;
7220   unsigned idx = 0;
7221   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7222 
7223   // Iterate over fields in the struct/class and check if there are any aligned
7224   // double fields.
7225   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7226        i != e; ++i, ++idx) {
7227     const QualType Ty = i->getType();
7228     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7229 
7230     if (!BT || BT->getKind() != BuiltinType::Double)
7231       continue;
7232 
7233     uint64_t Offset = Layout.getFieldOffset(idx);
7234     if (Offset % 64) // Ignore doubles that are not aligned.
7235       continue;
7236 
7237     // Add ((Offset - LastOffset) / 64) args of type i64.
7238     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7239       ArgList.push_back(I64);
7240 
7241     // Add double type.
7242     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7243     LastOffset = Offset + 64;
7244   }
7245 
7246   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7247   ArgList.append(IntArgList.begin(), IntArgList.end());
7248 
7249   return llvm::StructType::get(getVMContext(), ArgList);
7250 }
7251 
7252 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7253                                         uint64_t Offset) const {
7254   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7255     return nullptr;
7256 
7257   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7258 }
7259 
7260 ABIArgInfo
7261 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7262   Ty = useFirstFieldIfTransparentUnion(Ty);
7263 
7264   uint64_t OrigOffset = Offset;
7265   uint64_t TySize = getContext().getTypeSize(Ty);
7266   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7267 
7268   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7269                    (uint64_t)StackAlignInBytes);
7270   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7271   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7272 
7273   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7274     // Ignore empty aggregates.
7275     if (TySize == 0)
7276       return ABIArgInfo::getIgnore();
7277 
7278     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7279       Offset = OrigOffset + MinABIStackAlignInBytes;
7280       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7281     }
7282 
7283     // If we have reached here, aggregates are passed directly by coercing to
7284     // another structure type. Padding is inserted if the offset of the
7285     // aggregate is unaligned.
7286     ABIArgInfo ArgInfo =
7287         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7288                               getPaddingType(OrigOffset, CurrOffset));
7289     ArgInfo.setInReg(true);
7290     return ArgInfo;
7291   }
7292 
7293   // Treat an enum type as its underlying type.
7294   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7295     Ty = EnumTy->getDecl()->getIntegerType();
7296 
7297   // All integral types are promoted to the GPR width.
7298   if (Ty->isIntegralOrEnumerationType())
7299     return extendType(Ty);
7300 
7301   return ABIArgInfo::getDirect(
7302       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7303 }
7304 
7305 llvm::Type*
7306 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7307   const RecordType *RT = RetTy->getAs<RecordType>();
7308   SmallVector<llvm::Type*, 8> RTList;
7309 
7310   if (RT && RT->isStructureOrClassType()) {
7311     const RecordDecl *RD = RT->getDecl();
7312     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7313     unsigned FieldCnt = Layout.getFieldCount();
7314 
7315     // N32/64 returns struct/classes in floating point registers if the
7316     // following conditions are met:
7317     // 1. The size of the struct/class is no larger than 128-bit.
7318     // 2. The struct/class has one or two fields all of which are floating
7319     //    point types.
7320     // 3. The offset of the first field is zero (this follows what gcc does).
7321     //
7322     // Any other composite results are returned in integer registers.
7323     //
7324     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7325       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7326       for (; b != e; ++b) {
7327         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7328 
7329         if (!BT || !BT->isFloatingPoint())
7330           break;
7331 
7332         RTList.push_back(CGT.ConvertType(b->getType()));
7333       }
7334 
7335       if (b == e)
7336         return llvm::StructType::get(getVMContext(), RTList,
7337                                      RD->hasAttr<PackedAttr>());
7338 
7339       RTList.clear();
7340     }
7341   }
7342 
7343   CoerceToIntArgs(Size, RTList);
7344   return llvm::StructType::get(getVMContext(), RTList);
7345 }
7346 
7347 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7348   uint64_t Size = getContext().getTypeSize(RetTy);
7349 
7350   if (RetTy->isVoidType())
7351     return ABIArgInfo::getIgnore();
7352 
7353   // O32 doesn't treat zero-sized structs differently from other structs.
7354   // However, N32/N64 ignores zero sized return values.
7355   if (!IsO32 && Size == 0)
7356     return ABIArgInfo::getIgnore();
7357 
7358   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7359     if (Size <= 128) {
7360       if (RetTy->isAnyComplexType())
7361         return ABIArgInfo::getDirect();
7362 
7363       // O32 returns integer vectors in registers and N32/N64 returns all small
7364       // aggregates in registers.
7365       if (!IsO32 ||
7366           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7367         ABIArgInfo ArgInfo =
7368             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7369         ArgInfo.setInReg(true);
7370         return ArgInfo;
7371       }
7372     }
7373 
7374     return getNaturalAlignIndirect(RetTy);
7375   }
7376 
7377   // Treat an enum type as its underlying type.
7378   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7379     RetTy = EnumTy->getDecl()->getIntegerType();
7380 
7381   if (RetTy->isPromotableIntegerType())
7382     return ABIArgInfo::getExtend(RetTy);
7383 
7384   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7385       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7386     return ABIArgInfo::getSignExtend(RetTy);
7387 
7388   return ABIArgInfo::getDirect();
7389 }
7390 
7391 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7392   ABIArgInfo &RetInfo = FI.getReturnInfo();
7393   if (!getCXXABI().classifyReturnType(FI))
7394     RetInfo = classifyReturnType(FI.getReturnType());
7395 
7396   // Check if a pointer to an aggregate is passed as a hidden argument.
7397   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7398 
7399   for (auto &I : FI.arguments())
7400     I.info = classifyArgumentType(I.type, Offset);
7401 }
7402 
7403 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7404                                QualType OrigTy) const {
7405   QualType Ty = OrigTy;
7406 
7407   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7408   // Pointers are also promoted in the same way but this only matters for N32.
7409   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7410   unsigned PtrWidth = getTarget().getPointerWidth(0);
7411   bool DidPromote = false;
7412   if ((Ty->isIntegerType() &&
7413           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7414       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7415     DidPromote = true;
7416     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7417                                             Ty->isSignedIntegerType());
7418   }
7419 
7420   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7421 
7422   // The alignment of things in the argument area is never larger than
7423   // StackAlignInBytes.
7424   TyInfo.second =
7425     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7426 
7427   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7428   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7429 
7430   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7431                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7432 
7433 
7434   // If there was a promotion, "unpromote" into a temporary.
7435   // TODO: can we just use a pointer into a subset of the original slot?
7436   if (DidPromote) {
7437     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7438     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7439 
7440     // Truncate down to the right width.
7441     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7442                                                  : CGF.IntPtrTy);
7443     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7444     if (OrigTy->isPointerType())
7445       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7446 
7447     CGF.Builder.CreateStore(V, Temp);
7448     Addr = Temp;
7449   }
7450 
7451   return Addr;
7452 }
7453 
7454 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7455   int TySize = getContext().getTypeSize(Ty);
7456 
7457   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7458   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7459     return ABIArgInfo::getSignExtend(Ty);
7460 
7461   return ABIArgInfo::getExtend(Ty);
7462 }
7463 
7464 bool
7465 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7466                                                llvm::Value *Address) const {
7467   // This information comes from gcc's implementation, which seems to
7468   // as canonical as it gets.
7469 
7470   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7471   // are aliased to pairs of single-precision FP registers.
7472   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7473 
7474   // 0-31 are the general purpose registers, $0 - $31.
7475   // 32-63 are the floating-point registers, $f0 - $f31.
7476   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7477   // 66 is the (notional, I think) register for signal-handler return.
7478   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7479 
7480   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7481   // They are one bit wide and ignored here.
7482 
7483   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7484   // (coprocessor 1 is the FP unit)
7485   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7486   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7487   // 176-181 are the DSP accumulator registers.
7488   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7489   return false;
7490 }
7491 
7492 //===----------------------------------------------------------------------===//
7493 // AVR ABI Implementation.
7494 //===----------------------------------------------------------------------===//
7495 
7496 namespace {
7497 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7498 public:
7499   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7500     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7501 
7502   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7503                            CodeGen::CodeGenModule &CGM) const override {
7504     if (GV->isDeclaration())
7505       return;
7506     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7507     if (!FD) return;
7508     auto *Fn = cast<llvm::Function>(GV);
7509 
7510     if (FD->getAttr<AVRInterruptAttr>())
7511       Fn->addFnAttr("interrupt");
7512 
7513     if (FD->getAttr<AVRSignalAttr>())
7514       Fn->addFnAttr("signal");
7515   }
7516 };
7517 }
7518 
7519 //===----------------------------------------------------------------------===//
7520 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7521 // Currently subclassed only to implement custom OpenCL C function attribute
7522 // handling.
7523 //===----------------------------------------------------------------------===//
7524 
7525 namespace {
7526 
7527 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7528 public:
7529   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7530     : DefaultTargetCodeGenInfo(CGT) {}
7531 
7532   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7533                            CodeGen::CodeGenModule &M) const override;
7534 };
7535 
7536 void TCETargetCodeGenInfo::setTargetAttributes(
7537     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7538   if (GV->isDeclaration())
7539     return;
7540   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7541   if (!FD) return;
7542 
7543   llvm::Function *F = cast<llvm::Function>(GV);
7544 
7545   if (M.getLangOpts().OpenCL) {
7546     if (FD->hasAttr<OpenCLKernelAttr>()) {
7547       // OpenCL C Kernel functions are not subject to inlining
7548       F->addFnAttr(llvm::Attribute::NoInline);
7549       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7550       if (Attr) {
7551         // Convert the reqd_work_group_size() attributes to metadata.
7552         llvm::LLVMContext &Context = F->getContext();
7553         llvm::NamedMDNode *OpenCLMetadata =
7554             M.getModule().getOrInsertNamedMetadata(
7555                 "opencl.kernel_wg_size_info");
7556 
7557         SmallVector<llvm::Metadata *, 5> Operands;
7558         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7559 
7560         Operands.push_back(
7561             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7562                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7563         Operands.push_back(
7564             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7565                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7566         Operands.push_back(
7567             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7568                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7569 
7570         // Add a boolean constant operand for "required" (true) or "hint"
7571         // (false) for implementing the work_group_size_hint attr later.
7572         // Currently always true as the hint is not yet implemented.
7573         Operands.push_back(
7574             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7575         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7576       }
7577     }
7578   }
7579 }
7580 
7581 }
7582 
7583 //===----------------------------------------------------------------------===//
7584 // Hexagon ABI Implementation
7585 //===----------------------------------------------------------------------===//
7586 
7587 namespace {
7588 
7589 class HexagonABIInfo : public DefaultABIInfo {
7590 public:
7591   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7592 
7593 private:
7594   ABIArgInfo classifyReturnType(QualType RetTy) const;
7595   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7596   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
7597 
7598   void computeInfo(CGFunctionInfo &FI) const override;
7599 
7600   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7601                     QualType Ty) const override;
7602   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
7603                               QualType Ty) const;
7604   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
7605                               QualType Ty) const;
7606   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
7607                                    QualType Ty) const;
7608 };
7609 
7610 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7611 public:
7612   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7613     : TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7614 
7615   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7616     return 29;
7617   }
7618 
7619   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7620                            CodeGen::CodeGenModule &GCM) const override {
7621     if (GV->isDeclaration())
7622       return;
7623     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7624     if (!FD)
7625       return;
7626   }
7627 };
7628 
7629 } // namespace
7630 
7631 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7632   unsigned RegsLeft = 6;
7633   if (!getCXXABI().classifyReturnType(FI))
7634     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7635   for (auto &I : FI.arguments())
7636     I.info = classifyArgumentType(I.type, &RegsLeft);
7637 }
7638 
7639 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
7640   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
7641                        " through registers");
7642 
7643   if (*RegsLeft == 0)
7644     return false;
7645 
7646   if (Size <= 32) {
7647     (*RegsLeft)--;
7648     return true;
7649   }
7650 
7651   if (2 <= (*RegsLeft & (~1U))) {
7652     *RegsLeft = (*RegsLeft & (~1U)) - 2;
7653     return true;
7654   }
7655 
7656   // Next available register was r5 but candidate was greater than 32-bits so it
7657   // has to go on the stack. However we still consume r5
7658   if (*RegsLeft == 1)
7659     *RegsLeft = 0;
7660 
7661   return false;
7662 }
7663 
7664 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
7665                                                 unsigned *RegsLeft) const {
7666   if (!isAggregateTypeForABI(Ty)) {
7667     // Treat an enum type as its underlying type.
7668     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7669       Ty = EnumTy->getDecl()->getIntegerType();
7670 
7671     uint64_t Size = getContext().getTypeSize(Ty);
7672     if (Size <= 64)
7673       HexagonAdjustRegsLeft(Size, RegsLeft);
7674 
7675     return Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7676                                          : ABIArgInfo::getDirect();
7677   }
7678 
7679   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7680     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7681 
7682   // Ignore empty records.
7683   if (isEmptyRecord(getContext(), Ty, true))
7684     return ABIArgInfo::getIgnore();
7685 
7686   uint64_t Size = getContext().getTypeSize(Ty);
7687   unsigned Align = getContext().getTypeAlign(Ty);
7688 
7689   if (Size > 64)
7690     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7691 
7692   if (HexagonAdjustRegsLeft(Size, RegsLeft))
7693     Align = Size <= 32 ? 32 : 64;
7694   if (Size <= Align) {
7695     // Pass in the smallest viable integer type.
7696     if (!llvm::isPowerOf2_64(Size))
7697       Size = llvm::NextPowerOf2(Size);
7698     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
7699   }
7700   return DefaultABIInfo::classifyArgumentType(Ty);
7701 }
7702 
7703 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7704   if (RetTy->isVoidType())
7705     return ABIArgInfo::getIgnore();
7706 
7707   const TargetInfo &T = CGT.getTarget();
7708   uint64_t Size = getContext().getTypeSize(RetTy);
7709 
7710   if (RetTy->getAs<VectorType>()) {
7711     // HVX vectors are returned in vector registers or register pairs.
7712     if (T.hasFeature("hvx")) {
7713       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
7714       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
7715       if (Size == VecSize || Size == 2*VecSize)
7716         return ABIArgInfo::getDirectInReg();
7717     }
7718     // Large vector types should be returned via memory.
7719     if (Size > 64)
7720       return getNaturalAlignIndirect(RetTy);
7721   }
7722 
7723   if (!isAggregateTypeForABI(RetTy)) {
7724     // Treat an enum type as its underlying type.
7725     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7726       RetTy = EnumTy->getDecl()->getIntegerType();
7727 
7728     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7729                                             : ABIArgInfo::getDirect();
7730   }
7731 
7732   if (isEmptyRecord(getContext(), RetTy, true))
7733     return ABIArgInfo::getIgnore();
7734 
7735   // Aggregates <= 8 bytes are returned in registers, other aggregates
7736   // are returned indirectly.
7737   if (Size <= 64) {
7738     // Return in the smallest viable integer type.
7739     if (!llvm::isPowerOf2_64(Size))
7740       Size = llvm::NextPowerOf2(Size);
7741     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
7742   }
7743   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7744 }
7745 
7746 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
7747                                             Address VAListAddr,
7748                                             QualType Ty) const {
7749   // Load the overflow area pointer.
7750   Address __overflow_area_pointer_p =
7751       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
7752   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
7753       __overflow_area_pointer_p, "__overflow_area_pointer");
7754 
7755   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
7756   if (Align > 4) {
7757     // Alignment should be a power of 2.
7758     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
7759 
7760     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
7761     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
7762 
7763     // Add offset to the current pointer to access the argument.
7764     __overflow_area_pointer =
7765         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
7766     llvm::Value *AsInt =
7767         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
7768 
7769     // Create a mask which should be "AND"ed
7770     // with (overflow_arg_area + align - 1)
7771     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
7772     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
7773         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
7774         "__overflow_area_pointer.align");
7775   }
7776 
7777   // Get the type of the argument from memory and bitcast
7778   // overflow area pointer to the argument type.
7779   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
7780   Address AddrTyped = CGF.Builder.CreateBitCast(
7781       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
7782       llvm::PointerType::getUnqual(PTy));
7783 
7784   // Round up to the minimum stack alignment for varargs which is 4 bytes.
7785   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
7786 
7787   __overflow_area_pointer = CGF.Builder.CreateGEP(
7788       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
7789       "__overflow_area_pointer.next");
7790   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
7791 
7792   return AddrTyped;
7793 }
7794 
7795 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
7796                                             Address VAListAddr,
7797                                             QualType Ty) const {
7798   // FIXME: Need to handle alignment
7799   llvm::Type *BP = CGF.Int8PtrTy;
7800   llvm::Type *BPP = CGF.Int8PtrPtrTy;
7801   CGBuilderTy &Builder = CGF.Builder;
7802   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
7803   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
7804   // Handle address alignment for type alignment > 32 bits
7805   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
7806   if (TyAlign > 4) {
7807     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
7808     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
7809     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
7810     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
7811     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
7812   }
7813   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
7814   Address AddrTyped = Builder.CreateBitCast(
7815       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
7816 
7817   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
7818   llvm::Value *NextAddr = Builder.CreateGEP(
7819       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
7820   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
7821 
7822   return AddrTyped;
7823 }
7824 
7825 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
7826                                                  Address VAListAddr,
7827                                                  QualType Ty) const {
7828   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
7829 
7830   if (ArgSize > 8)
7831     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
7832 
7833   // Here we have check if the argument is in register area or
7834   // in overflow area.
7835   // If the saved register area pointer + argsize rounded up to alignment >
7836   // saved register area end pointer, argument is in overflow area.
7837   unsigned RegsLeft = 6;
7838   Ty = CGF.getContext().getCanonicalType(Ty);
7839   (void)classifyArgumentType(Ty, &RegsLeft);
7840 
7841   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
7842   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7843   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
7844   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7845 
7846   // Get rounded size of the argument.GCC does not allow vararg of
7847   // size < 4 bytes. We follow the same logic here.
7848   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
7849   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
7850 
7851   // Argument may be in saved register area
7852   CGF.EmitBlock(MaybeRegBlock);
7853 
7854   // Load the current saved register area pointer.
7855   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
7856       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
7857   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
7858       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
7859 
7860   // Load the saved register area end pointer.
7861   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
7862       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
7863   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
7864       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
7865 
7866   // If the size of argument is > 4 bytes, check if the stack
7867   // location is aligned to 8 bytes
7868   if (ArgAlign > 4) {
7869 
7870     llvm::Value *__current_saved_reg_area_pointer_int =
7871         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
7872                                    CGF.Int32Ty);
7873 
7874     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
7875         __current_saved_reg_area_pointer_int,
7876         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
7877         "align_current_saved_reg_area_pointer");
7878 
7879     __current_saved_reg_area_pointer_int =
7880         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
7881                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
7882                               "align_current_saved_reg_area_pointer");
7883 
7884     __current_saved_reg_area_pointer =
7885         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
7886                                    __current_saved_reg_area_pointer->getType(),
7887                                    "align_current_saved_reg_area_pointer");
7888   }
7889 
7890   llvm::Value *__new_saved_reg_area_pointer =
7891       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
7892                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
7893                             "__new_saved_reg_area_pointer");
7894 
7895   llvm::Value *UsingStack = 0;
7896   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
7897                                          __saved_reg_area_end_pointer);
7898 
7899   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
7900 
7901   // Argument in saved register area
7902   // Implement the block where argument is in register saved area
7903   CGF.EmitBlock(InRegBlock);
7904 
7905   llvm::Type *PTy = CGF.ConvertType(Ty);
7906   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
7907       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
7908 
7909   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
7910                           __current_saved_reg_area_pointer_p);
7911 
7912   CGF.EmitBranch(ContBlock);
7913 
7914   // Argument in overflow area
7915   // Implement the block where the argument is in overflow area.
7916   CGF.EmitBlock(OnStackBlock);
7917 
7918   // Load the overflow area pointer
7919   Address __overflow_area_pointer_p =
7920       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
7921   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
7922       __overflow_area_pointer_p, "__overflow_area_pointer");
7923 
7924   // Align the overflow area pointer according to the alignment of the argument
7925   if (ArgAlign > 4) {
7926     llvm::Value *__overflow_area_pointer_int =
7927         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
7928 
7929     __overflow_area_pointer_int =
7930         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
7931                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
7932                               "align_overflow_area_pointer");
7933 
7934     __overflow_area_pointer_int =
7935         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
7936                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
7937                               "align_overflow_area_pointer");
7938 
7939     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
7940         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
7941         "align_overflow_area_pointer");
7942   }
7943 
7944   // Get the pointer for next argument in overflow area and store it
7945   // to overflow area pointer.
7946   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
7947       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
7948       "__overflow_area_pointer.next");
7949 
7950   CGF.Builder.CreateStore(__new_overflow_area_pointer,
7951                           __overflow_area_pointer_p);
7952 
7953   CGF.Builder.CreateStore(__new_overflow_area_pointer,
7954                           __current_saved_reg_area_pointer_p);
7955 
7956   // Bitcast the overflow area pointer to the type of argument.
7957   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
7958   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
7959       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
7960 
7961   CGF.EmitBranch(ContBlock);
7962 
7963   // Get the correct pointer to load the variable argument
7964   // Implement the ContBlock
7965   CGF.EmitBlock(ContBlock);
7966 
7967   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
7968   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
7969   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
7970   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
7971 
7972   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
7973 }
7974 
7975 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7976                                   QualType Ty) const {
7977 
7978   if (getTarget().getTriple().isMusl())
7979     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
7980 
7981   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
7982 }
7983 
7984 //===----------------------------------------------------------------------===//
7985 // Lanai ABI Implementation
7986 //===----------------------------------------------------------------------===//
7987 
7988 namespace {
7989 class LanaiABIInfo : public DefaultABIInfo {
7990 public:
7991   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7992 
7993   bool shouldUseInReg(QualType Ty, CCState &State) const;
7994 
7995   void computeInfo(CGFunctionInfo &FI) const override {
7996     CCState State(FI);
7997     // Lanai uses 4 registers to pass arguments unless the function has the
7998     // regparm attribute set.
7999     if (FI.getHasRegParm()) {
8000       State.FreeRegs = FI.getRegParm();
8001     } else {
8002       State.FreeRegs = 4;
8003     }
8004 
8005     if (!getCXXABI().classifyReturnType(FI))
8006       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8007     for (auto &I : FI.arguments())
8008       I.info = classifyArgumentType(I.type, State);
8009   }
8010 
8011   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8012   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8013 };
8014 } // end anonymous namespace
8015 
8016 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8017   unsigned Size = getContext().getTypeSize(Ty);
8018   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8019 
8020   if (SizeInRegs == 0)
8021     return false;
8022 
8023   if (SizeInRegs > State.FreeRegs) {
8024     State.FreeRegs = 0;
8025     return false;
8026   }
8027 
8028   State.FreeRegs -= SizeInRegs;
8029 
8030   return true;
8031 }
8032 
8033 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8034                                            CCState &State) const {
8035   if (!ByVal) {
8036     if (State.FreeRegs) {
8037       --State.FreeRegs; // Non-byval indirects just use one pointer.
8038       return getNaturalAlignIndirectInReg(Ty);
8039     }
8040     return getNaturalAlignIndirect(Ty, false);
8041   }
8042 
8043   // Compute the byval alignment.
8044   const unsigned MinABIStackAlignInBytes = 4;
8045   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8046   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8047                                  /*Realign=*/TypeAlign >
8048                                      MinABIStackAlignInBytes);
8049 }
8050 
8051 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8052                                               CCState &State) const {
8053   // Check with the C++ ABI first.
8054   const RecordType *RT = Ty->getAs<RecordType>();
8055   if (RT) {
8056     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8057     if (RAA == CGCXXABI::RAA_Indirect) {
8058       return getIndirectResult(Ty, /*ByVal=*/false, State);
8059     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8060       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
8061     }
8062   }
8063 
8064   if (isAggregateTypeForABI(Ty)) {
8065     // Structures with flexible arrays are always indirect.
8066     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8067       return getIndirectResult(Ty, /*ByVal=*/true, State);
8068 
8069     // Ignore empty structs/unions.
8070     if (isEmptyRecord(getContext(), Ty, true))
8071       return ABIArgInfo::getIgnore();
8072 
8073     llvm::LLVMContext &LLVMContext = getVMContext();
8074     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8075     if (SizeInRegs <= State.FreeRegs) {
8076       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8077       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8078       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8079       State.FreeRegs -= SizeInRegs;
8080       return ABIArgInfo::getDirectInReg(Result);
8081     } else {
8082       State.FreeRegs = 0;
8083     }
8084     return getIndirectResult(Ty, true, State);
8085   }
8086 
8087   // Treat an enum type as its underlying type.
8088   if (const auto *EnumTy = Ty->getAs<EnumType>())
8089     Ty = EnumTy->getDecl()->getIntegerType();
8090 
8091   bool InReg = shouldUseInReg(Ty, State);
8092   if (Ty->isPromotableIntegerType()) {
8093     if (InReg)
8094       return ABIArgInfo::getDirectInReg();
8095     return ABIArgInfo::getExtend(Ty);
8096   }
8097   if (InReg)
8098     return ABIArgInfo::getDirectInReg();
8099   return ABIArgInfo::getDirect();
8100 }
8101 
8102 namespace {
8103 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8104 public:
8105   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8106       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
8107 };
8108 }
8109 
8110 //===----------------------------------------------------------------------===//
8111 // AMDGPU ABI Implementation
8112 //===----------------------------------------------------------------------===//
8113 
8114 namespace {
8115 
8116 class AMDGPUABIInfo final : public DefaultABIInfo {
8117 private:
8118   static const unsigned MaxNumRegsForArgsRet = 16;
8119 
8120   unsigned numRegsForType(QualType Ty) const;
8121 
8122   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8123   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8124                                          uint64_t Members) const override;
8125 
8126   // Coerce HIP pointer arguments from generic pointers to global ones.
8127   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8128                                        unsigned ToAS) const {
8129     // Structure types.
8130     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
8131       SmallVector<llvm::Type *, 8> EltTys;
8132       bool Changed = false;
8133       for (auto T : STy->elements()) {
8134         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8135         EltTys.push_back(NT);
8136         Changed |= (NT != T);
8137       }
8138       // Skip if there is no change in element types.
8139       if (!Changed)
8140         return STy;
8141       if (STy->hasName())
8142         return llvm::StructType::create(
8143             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
8144       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
8145     }
8146     // Arrary types.
8147     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
8148       auto T = ATy->getElementType();
8149       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8150       // Skip if there is no change in that element type.
8151       if (NT == T)
8152         return ATy;
8153       return llvm::ArrayType::get(NT, ATy->getNumElements());
8154     }
8155     // Single value types.
8156     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8157       return llvm::PointerType::get(
8158           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8159     return Ty;
8160   }
8161 
8162 public:
8163   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8164     DefaultABIInfo(CGT) {}
8165 
8166   ABIArgInfo classifyReturnType(QualType RetTy) const;
8167   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8168   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8169 
8170   void computeInfo(CGFunctionInfo &FI) const override;
8171   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8172                     QualType Ty) const override;
8173 };
8174 
8175 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8176   return true;
8177 }
8178 
8179 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8180   const Type *Base, uint64_t Members) const {
8181   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8182 
8183   // Homogeneous Aggregates may occupy at most 16 registers.
8184   return Members * NumRegs <= MaxNumRegsForArgsRet;
8185 }
8186 
8187 /// Estimate number of registers the type will use when passed in registers.
8188 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8189   unsigned NumRegs = 0;
8190 
8191   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8192     // Compute from the number of elements. The reported size is based on the
8193     // in-memory size, which includes the padding 4th element for 3-vectors.
8194     QualType EltTy = VT->getElementType();
8195     unsigned EltSize = getContext().getTypeSize(EltTy);
8196 
8197     // 16-bit element vectors should be passed as packed.
8198     if (EltSize == 16)
8199       return (VT->getNumElements() + 1) / 2;
8200 
8201     unsigned EltNumRegs = (EltSize + 31) / 32;
8202     return EltNumRegs * VT->getNumElements();
8203   }
8204 
8205   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8206     const RecordDecl *RD = RT->getDecl();
8207     assert(!RD->hasFlexibleArrayMember());
8208 
8209     for (const FieldDecl *Field : RD->fields()) {
8210       QualType FieldTy = Field->getType();
8211       NumRegs += numRegsForType(FieldTy);
8212     }
8213 
8214     return NumRegs;
8215   }
8216 
8217   return (getContext().getTypeSize(Ty) + 31) / 32;
8218 }
8219 
8220 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8221   llvm::CallingConv::ID CC = FI.getCallingConvention();
8222 
8223   if (!getCXXABI().classifyReturnType(FI))
8224     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8225 
8226   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8227   for (auto &Arg : FI.arguments()) {
8228     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8229       Arg.info = classifyKernelArgumentType(Arg.type);
8230     } else {
8231       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8232     }
8233   }
8234 }
8235 
8236 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8237                                  QualType Ty) const {
8238   llvm_unreachable("AMDGPU does not support varargs");
8239 }
8240 
8241 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8242   if (isAggregateTypeForABI(RetTy)) {
8243     // Records with non-trivial destructors/copy-constructors should not be
8244     // returned by value.
8245     if (!getRecordArgABI(RetTy, getCXXABI())) {
8246       // Ignore empty structs/unions.
8247       if (isEmptyRecord(getContext(), RetTy, true))
8248         return ABIArgInfo::getIgnore();
8249 
8250       // Lower single-element structs to just return a regular value.
8251       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8252         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8253 
8254       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8255         const RecordDecl *RD = RT->getDecl();
8256         if (RD->hasFlexibleArrayMember())
8257           return DefaultABIInfo::classifyReturnType(RetTy);
8258       }
8259 
8260       // Pack aggregates <= 4 bytes into single VGPR or pair.
8261       uint64_t Size = getContext().getTypeSize(RetTy);
8262       if (Size <= 16)
8263         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8264 
8265       if (Size <= 32)
8266         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8267 
8268       if (Size <= 64) {
8269         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8270         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8271       }
8272 
8273       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8274         return ABIArgInfo::getDirect();
8275     }
8276   }
8277 
8278   // Otherwise just do the default thing.
8279   return DefaultABIInfo::classifyReturnType(RetTy);
8280 }
8281 
8282 /// For kernels all parameters are really passed in a special buffer. It doesn't
8283 /// make sense to pass anything byval, so everything must be direct.
8284 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8285   Ty = useFirstFieldIfTransparentUnion(Ty);
8286 
8287   // TODO: Can we omit empty structs?
8288 
8289   llvm::Type *LTy = nullptr;
8290   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8291     LTy = CGT.ConvertType(QualType(SeltTy, 0));
8292 
8293   if (getContext().getLangOpts().HIP) {
8294     if (!LTy)
8295       LTy = CGT.ConvertType(Ty);
8296     LTy = coerceKernelArgumentType(
8297         LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8298         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8299   }
8300 
8301   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8302   // individual elements, which confuses the Clover OpenCL backend; therefore we
8303   // have to set it to false here. Other args of getDirect() are just defaults.
8304   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8305 }
8306 
8307 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8308                                                unsigned &NumRegsLeft) const {
8309   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8310 
8311   Ty = useFirstFieldIfTransparentUnion(Ty);
8312 
8313   if (isAggregateTypeForABI(Ty)) {
8314     // Records with non-trivial destructors/copy-constructors should not be
8315     // passed by value.
8316     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8317       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8318 
8319     // Ignore empty structs/unions.
8320     if (isEmptyRecord(getContext(), Ty, true))
8321       return ABIArgInfo::getIgnore();
8322 
8323     // Lower single-element structs to just pass a regular value. TODO: We
8324     // could do reasonable-size multiple-element structs too, using getExpand(),
8325     // though watch out for things like bitfields.
8326     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8327       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8328 
8329     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8330       const RecordDecl *RD = RT->getDecl();
8331       if (RD->hasFlexibleArrayMember())
8332         return DefaultABIInfo::classifyArgumentType(Ty);
8333     }
8334 
8335     // Pack aggregates <= 8 bytes into single VGPR or pair.
8336     uint64_t Size = getContext().getTypeSize(Ty);
8337     if (Size <= 64) {
8338       unsigned NumRegs = (Size + 31) / 32;
8339       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8340 
8341       if (Size <= 16)
8342         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8343 
8344       if (Size <= 32)
8345         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8346 
8347       // XXX: Should this be i64 instead, and should the limit increase?
8348       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8349       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8350     }
8351 
8352     if (NumRegsLeft > 0) {
8353       unsigned NumRegs = numRegsForType(Ty);
8354       if (NumRegsLeft >= NumRegs) {
8355         NumRegsLeft -= NumRegs;
8356         return ABIArgInfo::getDirect();
8357       }
8358     }
8359   }
8360 
8361   // Otherwise just do the default thing.
8362   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8363   if (!ArgInfo.isIndirect()) {
8364     unsigned NumRegs = numRegsForType(Ty);
8365     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8366   }
8367 
8368   return ArgInfo;
8369 }
8370 
8371 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8372 public:
8373   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8374     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
8375   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8376                            CodeGen::CodeGenModule &M) const override;
8377   unsigned getOpenCLKernelCallingConv() const override;
8378 
8379   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8380       llvm::PointerType *T, QualType QT) const override;
8381 
8382   LangAS getASTAllocaAddressSpace() const override {
8383     return getLangASFromTargetAS(
8384         getABIInfo().getDataLayout().getAllocaAddrSpace());
8385   }
8386   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8387                                   const VarDecl *D) const override;
8388   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8389                                          SyncScope Scope,
8390                                          llvm::AtomicOrdering Ordering,
8391                                          llvm::LLVMContext &Ctx) const override;
8392   llvm::Function *
8393   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8394                             llvm::Function *BlockInvokeFunc,
8395                             llvm::Value *BlockLiteral) const override;
8396   bool shouldEmitStaticExternCAliases() const override;
8397   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8398 };
8399 }
8400 
8401 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8402                                               llvm::GlobalValue *GV) {
8403   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8404     return false;
8405 
8406   return D->hasAttr<OpenCLKernelAttr>() ||
8407          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8408          (isa<VarDecl>(D) &&
8409           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8410            D->hasAttr<HIPPinnedShadowAttr>()));
8411 }
8412 
8413 static bool requiresAMDGPUDefaultVisibility(const Decl *D,
8414                                             llvm::GlobalValue *GV) {
8415   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8416     return false;
8417 
8418   return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>();
8419 }
8420 
8421 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8422     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8423   if (requiresAMDGPUDefaultVisibility(D, GV)) {
8424     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
8425     GV->setDSOLocal(false);
8426   } else if (requiresAMDGPUProtectedVisibility(D, GV)) {
8427     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8428     GV->setDSOLocal(true);
8429   }
8430 
8431   if (GV->isDeclaration())
8432     return;
8433   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8434   if (!FD)
8435     return;
8436 
8437   llvm::Function *F = cast<llvm::Function>(GV);
8438 
8439   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8440     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8441 
8442 
8443   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8444                               FD->hasAttr<OpenCLKernelAttr>();
8445   const bool IsHIPKernel = M.getLangOpts().HIP &&
8446                            FD->hasAttr<CUDAGlobalAttr>();
8447   if ((IsOpenCLKernel || IsHIPKernel) &&
8448       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8449     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8450 
8451   if (IsHIPKernel)
8452     F->addFnAttr("uniform-work-group-size", "true");
8453 
8454 
8455   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8456   if (ReqdWGS || FlatWGS) {
8457     unsigned Min = 0;
8458     unsigned Max = 0;
8459     if (FlatWGS) {
8460       Min = FlatWGS->getMin()
8461                 ->EvaluateKnownConstInt(M.getContext())
8462                 .getExtValue();
8463       Max = FlatWGS->getMax()
8464                 ->EvaluateKnownConstInt(M.getContext())
8465                 .getExtValue();
8466     }
8467     if (ReqdWGS && Min == 0 && Max == 0)
8468       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8469 
8470     if (Min != 0) {
8471       assert(Min <= Max && "Min must be less than or equal Max");
8472 
8473       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
8474       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8475     } else
8476       assert(Max == 0 && "Max must be zero");
8477   } else if (IsOpenCLKernel || IsHIPKernel) {
8478     // By default, restrict the maximum size to a value specified by
8479     // --gpu-max-threads-per-block=n or its default value.
8480     std::string AttrVal =
8481         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
8482     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8483   }
8484 
8485   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
8486     unsigned Min =
8487         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
8488     unsigned Max = Attr->getMax() ? Attr->getMax()
8489                                         ->EvaluateKnownConstInt(M.getContext())
8490                                         .getExtValue()
8491                                   : 0;
8492 
8493     if (Min != 0) {
8494       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
8495 
8496       std::string AttrVal = llvm::utostr(Min);
8497       if (Max != 0)
8498         AttrVal = AttrVal + "," + llvm::utostr(Max);
8499       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
8500     } else
8501       assert(Max == 0 && "Max must be zero");
8502   }
8503 
8504   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
8505     unsigned NumSGPR = Attr->getNumSGPR();
8506 
8507     if (NumSGPR != 0)
8508       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
8509   }
8510 
8511   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
8512     uint32_t NumVGPR = Attr->getNumVGPR();
8513 
8514     if (NumVGPR != 0)
8515       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
8516   }
8517 }
8518 
8519 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8520   return llvm::CallingConv::AMDGPU_KERNEL;
8521 }
8522 
8523 // Currently LLVM assumes null pointers always have value 0,
8524 // which results in incorrectly transformed IR. Therefore, instead of
8525 // emitting null pointers in private and local address spaces, a null
8526 // pointer in generic address space is emitted which is casted to a
8527 // pointer in local or private address space.
8528 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
8529     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
8530     QualType QT) const {
8531   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
8532     return llvm::ConstantPointerNull::get(PT);
8533 
8534   auto &Ctx = CGM.getContext();
8535   auto NPT = llvm::PointerType::get(PT->getElementType(),
8536       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
8537   return llvm::ConstantExpr::getAddrSpaceCast(
8538       llvm::ConstantPointerNull::get(NPT), PT);
8539 }
8540 
8541 LangAS
8542 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
8543                                                   const VarDecl *D) const {
8544   assert(!CGM.getLangOpts().OpenCL &&
8545          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
8546          "Address space agnostic languages only");
8547   LangAS DefaultGlobalAS = getLangASFromTargetAS(
8548       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
8549   if (!D)
8550     return DefaultGlobalAS;
8551 
8552   LangAS AddrSpace = D->getType().getAddressSpace();
8553   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
8554   if (AddrSpace != LangAS::Default)
8555     return AddrSpace;
8556 
8557   if (CGM.isTypeConstant(D->getType(), false)) {
8558     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
8559       return ConstAS.getValue();
8560   }
8561   return DefaultGlobalAS;
8562 }
8563 
8564 llvm::SyncScope::ID
8565 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
8566                                             SyncScope Scope,
8567                                             llvm::AtomicOrdering Ordering,
8568                                             llvm::LLVMContext &Ctx) const {
8569   std::string Name;
8570   switch (Scope) {
8571   case SyncScope::OpenCLWorkGroup:
8572     Name = "workgroup";
8573     break;
8574   case SyncScope::OpenCLDevice:
8575     Name = "agent";
8576     break;
8577   case SyncScope::OpenCLAllSVMDevices:
8578     Name = "";
8579     break;
8580   case SyncScope::OpenCLSubGroup:
8581     Name = "wavefront";
8582   }
8583 
8584   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
8585     if (!Name.empty())
8586       Name = Twine(Twine(Name) + Twine("-")).str();
8587 
8588     Name = Twine(Twine(Name) + Twine("one-as")).str();
8589   }
8590 
8591   return Ctx.getOrInsertSyncScopeID(Name);
8592 }
8593 
8594 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8595   return false;
8596 }
8597 
8598 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8599     const FunctionType *&FT) const {
8600   FT = getABIInfo().getContext().adjustFunctionType(
8601       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8602 }
8603 
8604 //===----------------------------------------------------------------------===//
8605 // SPARC v8 ABI Implementation.
8606 // Based on the SPARC Compliance Definition version 2.4.1.
8607 //
8608 // Ensures that complex values are passed in registers.
8609 //
8610 namespace {
8611 class SparcV8ABIInfo : public DefaultABIInfo {
8612 public:
8613   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8614 
8615 private:
8616   ABIArgInfo classifyReturnType(QualType RetTy) const;
8617   void computeInfo(CGFunctionInfo &FI) const override;
8618 };
8619 } // end anonymous namespace
8620 
8621 
8622 ABIArgInfo
8623 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8624   if (Ty->isAnyComplexType()) {
8625     return ABIArgInfo::getDirect();
8626   }
8627   else {
8628     return DefaultABIInfo::classifyReturnType(Ty);
8629   }
8630 }
8631 
8632 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8633 
8634   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8635   for (auto &Arg : FI.arguments())
8636     Arg.info = classifyArgumentType(Arg.type);
8637 }
8638 
8639 namespace {
8640 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8641 public:
8642   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8643     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8644 };
8645 } // end anonymous namespace
8646 
8647 //===----------------------------------------------------------------------===//
8648 // SPARC v9 ABI Implementation.
8649 // Based on the SPARC Compliance Definition version 2.4.1.
8650 //
8651 // Function arguments a mapped to a nominal "parameter array" and promoted to
8652 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8653 // the array, structs larger than 16 bytes are passed indirectly.
8654 //
8655 // One case requires special care:
8656 //
8657 //   struct mixed {
8658 //     int i;
8659 //     float f;
8660 //   };
8661 //
8662 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8663 // parameter array, but the int is passed in an integer register, and the float
8664 // is passed in a floating point register. This is represented as two arguments
8665 // with the LLVM IR inreg attribute:
8666 //
8667 //   declare void f(i32 inreg %i, float inreg %f)
8668 //
8669 // The code generator will only allocate 4 bytes from the parameter array for
8670 // the inreg arguments. All other arguments are allocated a multiple of 8
8671 // bytes.
8672 //
8673 namespace {
8674 class SparcV9ABIInfo : public ABIInfo {
8675 public:
8676   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8677 
8678 private:
8679   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8680   void computeInfo(CGFunctionInfo &FI) const override;
8681   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8682                     QualType Ty) const override;
8683 
8684   // Coercion type builder for structs passed in registers. The coercion type
8685   // serves two purposes:
8686   //
8687   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8688   //    in registers.
8689   // 2. Expose aligned floating point elements as first-level elements, so the
8690   //    code generator knows to pass them in floating point registers.
8691   //
8692   // We also compute the InReg flag which indicates that the struct contains
8693   // aligned 32-bit floats.
8694   //
8695   struct CoerceBuilder {
8696     llvm::LLVMContext &Context;
8697     const llvm::DataLayout &DL;
8698     SmallVector<llvm::Type*, 8> Elems;
8699     uint64_t Size;
8700     bool InReg;
8701 
8702     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8703       : Context(c), DL(dl), Size(0), InReg(false) {}
8704 
8705     // Pad Elems with integers until Size is ToSize.
8706     void pad(uint64_t ToSize) {
8707       assert(ToSize >= Size && "Cannot remove elements");
8708       if (ToSize == Size)
8709         return;
8710 
8711       // Finish the current 64-bit word.
8712       uint64_t Aligned = llvm::alignTo(Size, 64);
8713       if (Aligned > Size && Aligned <= ToSize) {
8714         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8715         Size = Aligned;
8716       }
8717 
8718       // Add whole 64-bit words.
8719       while (Size + 64 <= ToSize) {
8720         Elems.push_back(llvm::Type::getInt64Ty(Context));
8721         Size += 64;
8722       }
8723 
8724       // Final in-word padding.
8725       if (Size < ToSize) {
8726         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8727         Size = ToSize;
8728       }
8729     }
8730 
8731     // Add a floating point element at Offset.
8732     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8733       // Unaligned floats are treated as integers.
8734       if (Offset % Bits)
8735         return;
8736       // The InReg flag is only required if there are any floats < 64 bits.
8737       if (Bits < 64)
8738         InReg = true;
8739       pad(Offset);
8740       Elems.push_back(Ty);
8741       Size = Offset + Bits;
8742     }
8743 
8744     // Add a struct type to the coercion type, starting at Offset (in bits).
8745     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8746       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8747       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8748         llvm::Type *ElemTy = StrTy->getElementType(i);
8749         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8750         switch (ElemTy->getTypeID()) {
8751         case llvm::Type::StructTyID:
8752           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8753           break;
8754         case llvm::Type::FloatTyID:
8755           addFloat(ElemOffset, ElemTy, 32);
8756           break;
8757         case llvm::Type::DoubleTyID:
8758           addFloat(ElemOffset, ElemTy, 64);
8759           break;
8760         case llvm::Type::FP128TyID:
8761           addFloat(ElemOffset, ElemTy, 128);
8762           break;
8763         case llvm::Type::PointerTyID:
8764           if (ElemOffset % 64 == 0) {
8765             pad(ElemOffset);
8766             Elems.push_back(ElemTy);
8767             Size += 64;
8768           }
8769           break;
8770         default:
8771           break;
8772         }
8773       }
8774     }
8775 
8776     // Check if Ty is a usable substitute for the coercion type.
8777     bool isUsableType(llvm::StructType *Ty) const {
8778       return llvm::makeArrayRef(Elems) == Ty->elements();
8779     }
8780 
8781     // Get the coercion type as a literal struct type.
8782     llvm::Type *getType() const {
8783       if (Elems.size() == 1)
8784         return Elems.front();
8785       else
8786         return llvm::StructType::get(Context, Elems);
8787     }
8788   };
8789 };
8790 } // end anonymous namespace
8791 
8792 ABIArgInfo
8793 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8794   if (Ty->isVoidType())
8795     return ABIArgInfo::getIgnore();
8796 
8797   uint64_t Size = getContext().getTypeSize(Ty);
8798 
8799   // Anything too big to fit in registers is passed with an explicit indirect
8800   // pointer / sret pointer.
8801   if (Size > SizeLimit)
8802     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8803 
8804   // Treat an enum type as its underlying type.
8805   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8806     Ty = EnumTy->getDecl()->getIntegerType();
8807 
8808   // Integer types smaller than a register are extended.
8809   if (Size < 64 && Ty->isIntegerType())
8810     return ABIArgInfo::getExtend(Ty);
8811 
8812   // Other non-aggregates go in registers.
8813   if (!isAggregateTypeForABI(Ty))
8814     return ABIArgInfo::getDirect();
8815 
8816   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8817   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8818   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8819     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8820 
8821   // This is a small aggregate type that should be passed in registers.
8822   // Build a coercion type from the LLVM struct type.
8823   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8824   if (!StrTy)
8825     return ABIArgInfo::getDirect();
8826 
8827   CoerceBuilder CB(getVMContext(), getDataLayout());
8828   CB.addStruct(0, StrTy);
8829   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8830 
8831   // Try to use the original type for coercion.
8832   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8833 
8834   if (CB.InReg)
8835     return ABIArgInfo::getDirectInReg(CoerceTy);
8836   else
8837     return ABIArgInfo::getDirect(CoerceTy);
8838 }
8839 
8840 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8841                                   QualType Ty) const {
8842   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8843   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8844   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8845     AI.setCoerceToType(ArgTy);
8846 
8847   CharUnits SlotSize = CharUnits::fromQuantity(8);
8848 
8849   CGBuilderTy &Builder = CGF.Builder;
8850   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8851   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8852 
8853   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8854 
8855   Address ArgAddr = Address::invalid();
8856   CharUnits Stride;
8857   switch (AI.getKind()) {
8858   case ABIArgInfo::Expand:
8859   case ABIArgInfo::CoerceAndExpand:
8860   case ABIArgInfo::InAlloca:
8861     llvm_unreachable("Unsupported ABI kind for va_arg");
8862 
8863   case ABIArgInfo::Extend: {
8864     Stride = SlotSize;
8865     CharUnits Offset = SlotSize - TypeInfo.first;
8866     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8867     break;
8868   }
8869 
8870   case ABIArgInfo::Direct: {
8871     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8872     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8873     ArgAddr = Addr;
8874     break;
8875   }
8876 
8877   case ABIArgInfo::Indirect:
8878     Stride = SlotSize;
8879     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8880     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8881                       TypeInfo.second);
8882     break;
8883 
8884   case ABIArgInfo::Ignore:
8885     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8886   }
8887 
8888   // Update VAList.
8889   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8890   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8891 
8892   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8893 }
8894 
8895 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8896   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8897   for (auto &I : FI.arguments())
8898     I.info = classifyType(I.type, 16 * 8);
8899 }
8900 
8901 namespace {
8902 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8903 public:
8904   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8905     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8906 
8907   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8908     return 14;
8909   }
8910 
8911   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8912                                llvm::Value *Address) const override;
8913 };
8914 } // end anonymous namespace
8915 
8916 bool
8917 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8918                                                 llvm::Value *Address) const {
8919   // This is calculated from the LLVM and GCC tables and verified
8920   // against gcc output.  AFAIK all ABIs use the same encoding.
8921 
8922   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8923 
8924   llvm::IntegerType *i8 = CGF.Int8Ty;
8925   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8926   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8927 
8928   // 0-31: the 8-byte general-purpose registers
8929   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8930 
8931   // 32-63: f0-31, the 4-byte floating-point registers
8932   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8933 
8934   //   Y   = 64
8935   //   PSR = 65
8936   //   WIM = 66
8937   //   TBR = 67
8938   //   PC  = 68
8939   //   NPC = 69
8940   //   FSR = 70
8941   //   CSR = 71
8942   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8943 
8944   // 72-87: d0-15, the 8-byte floating-point registers
8945   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8946 
8947   return false;
8948 }
8949 
8950 // ARC ABI implementation.
8951 namespace {
8952 
8953 class ARCABIInfo : public DefaultABIInfo {
8954 public:
8955   using DefaultABIInfo::DefaultABIInfo;
8956 
8957 private:
8958   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8959                     QualType Ty) const override;
8960 
8961   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8962     if (!State.FreeRegs)
8963       return;
8964     if (Info.isIndirect() && Info.getInReg())
8965       State.FreeRegs--;
8966     else if (Info.isDirect() && Info.getInReg()) {
8967       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8968       if (sz < State.FreeRegs)
8969         State.FreeRegs -= sz;
8970       else
8971         State.FreeRegs = 0;
8972     }
8973   }
8974 
8975   void computeInfo(CGFunctionInfo &FI) const override {
8976     CCState State(FI);
8977     // ARC uses 8 registers to pass arguments.
8978     State.FreeRegs = 8;
8979 
8980     if (!getCXXABI().classifyReturnType(FI))
8981       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8982     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8983     for (auto &I : FI.arguments()) {
8984       I.info = classifyArgumentType(I.type, State.FreeRegs);
8985       updateState(I.info, I.type, State);
8986     }
8987   }
8988 
8989   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8990   ABIArgInfo getIndirectByValue(QualType Ty) const;
8991   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8992   ABIArgInfo classifyReturnType(QualType RetTy) const;
8993 };
8994 
8995 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8996 public:
8997   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8998       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8999 };
9000 
9001 
9002 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9003   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9004                        getNaturalAlignIndirect(Ty, false);
9005 }
9006 
9007 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9008   // Compute the byval alignment.
9009   const unsigned MinABIStackAlignInBytes = 4;
9010   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9011   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9012                                  TypeAlign > MinABIStackAlignInBytes);
9013 }
9014 
9015 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9016                               QualType Ty) const {
9017   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9018                           getContext().getTypeInfoInChars(Ty),
9019                           CharUnits::fromQuantity(4), true);
9020 }
9021 
9022 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9023                                             uint8_t FreeRegs) const {
9024   // Handle the generic C++ ABI.
9025   const RecordType *RT = Ty->getAs<RecordType>();
9026   if (RT) {
9027     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9028     if (RAA == CGCXXABI::RAA_Indirect)
9029       return getIndirectByRef(Ty, FreeRegs > 0);
9030 
9031     if (RAA == CGCXXABI::RAA_DirectInMemory)
9032       return getIndirectByValue(Ty);
9033   }
9034 
9035   // Treat an enum type as its underlying type.
9036   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9037     Ty = EnumTy->getDecl()->getIntegerType();
9038 
9039   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9040 
9041   if (isAggregateTypeForABI(Ty)) {
9042     // Structures with flexible arrays are always indirect.
9043     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9044       return getIndirectByValue(Ty);
9045 
9046     // Ignore empty structs/unions.
9047     if (isEmptyRecord(getContext(), Ty, true))
9048       return ABIArgInfo::getIgnore();
9049 
9050     llvm::LLVMContext &LLVMContext = getVMContext();
9051 
9052     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9053     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9054     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9055 
9056     return FreeRegs >= SizeInRegs ?
9057         ABIArgInfo::getDirectInReg(Result) :
9058         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9059   }
9060 
9061   return Ty->isPromotableIntegerType() ?
9062       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
9063                                 ABIArgInfo::getExtend(Ty)) :
9064       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
9065                                 ABIArgInfo::getDirect());
9066 }
9067 
9068 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9069   if (RetTy->isAnyComplexType())
9070     return ABIArgInfo::getDirectInReg();
9071 
9072   // Arguments of size > 4 registers are indirect.
9073   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9074   if (RetSize > 4)
9075     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9076 
9077   return DefaultABIInfo::classifyReturnType(RetTy);
9078 }
9079 
9080 } // End anonymous namespace.
9081 
9082 //===----------------------------------------------------------------------===//
9083 // XCore ABI Implementation
9084 //===----------------------------------------------------------------------===//
9085 
9086 namespace {
9087 
9088 /// A SmallStringEnc instance is used to build up the TypeString by passing
9089 /// it by reference between functions that append to it.
9090 typedef llvm::SmallString<128> SmallStringEnc;
9091 
9092 /// TypeStringCache caches the meta encodings of Types.
9093 ///
9094 /// The reason for caching TypeStrings is two fold:
9095 ///   1. To cache a type's encoding for later uses;
9096 ///   2. As a means to break recursive member type inclusion.
9097 ///
9098 /// A cache Entry can have a Status of:
9099 ///   NonRecursive:   The type encoding is not recursive;
9100 ///   Recursive:      The type encoding is recursive;
9101 ///   Incomplete:     An incomplete TypeString;
9102 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9103 ///                   Recursive type encoding.
9104 ///
9105 /// A NonRecursive entry will have all of its sub-members expanded as fully
9106 /// as possible. Whilst it may contain types which are recursive, the type
9107 /// itself is not recursive and thus its encoding may be safely used whenever
9108 /// the type is encountered.
9109 ///
9110 /// A Recursive entry will have all of its sub-members expanded as fully as
9111 /// possible. The type itself is recursive and it may contain other types which
9112 /// are recursive. The Recursive encoding must not be used during the expansion
9113 /// of a recursive type's recursive branch. For simplicity the code uses
9114 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9115 ///
9116 /// An Incomplete entry is always a RecordType and only encodes its
9117 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9118 /// are placed into the cache during type expansion as a means to identify and
9119 /// handle recursive inclusion of types as sub-members. If there is recursion
9120 /// the entry becomes IncompleteUsed.
9121 ///
9122 /// During the expansion of a RecordType's members:
9123 ///
9124 ///   If the cache contains a NonRecursive encoding for the member type, the
9125 ///   cached encoding is used;
9126 ///
9127 ///   If the cache contains a Recursive encoding for the member type, the
9128 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9129 ///
9130 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9131 ///   cache to break potential recursive inclusion of itself as a sub-member;
9132 ///
9133 ///   Once a member RecordType has been expanded, its temporary incomplete
9134 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9135 ///   it is swapped back in;
9136 ///
9137 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9138 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9139 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9140 ///
9141 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9142 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9143 ///   Else the member is part of a recursive type and thus the recursion has
9144 ///   been exited too soon for the encoding to be correct for the member.
9145 ///
9146 class TypeStringCache {
9147   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9148   struct Entry {
9149     std::string Str;     // The encoded TypeString for the type.
9150     enum Status State;   // Information about the encoding in 'Str'.
9151     std::string Swapped; // A temporary place holder for a Recursive encoding
9152                          // during the expansion of RecordType's members.
9153   };
9154   std::map<const IdentifierInfo *, struct Entry> Map;
9155   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9156   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9157 public:
9158   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9159   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9160   bool removeIncomplete(const IdentifierInfo *ID);
9161   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9162                      bool IsRecursive);
9163   StringRef lookupStr(const IdentifierInfo *ID);
9164 };
9165 
9166 /// TypeString encodings for enum & union fields must be order.
9167 /// FieldEncoding is a helper for this ordering process.
9168 class FieldEncoding {
9169   bool HasName;
9170   std::string Enc;
9171 public:
9172   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9173   StringRef str() { return Enc; }
9174   bool operator<(const FieldEncoding &rhs) const {
9175     if (HasName != rhs.HasName) return HasName;
9176     return Enc < rhs.Enc;
9177   }
9178 };
9179 
9180 class XCoreABIInfo : public DefaultABIInfo {
9181 public:
9182   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9183   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9184                     QualType Ty) const override;
9185 };
9186 
9187 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9188   mutable TypeStringCache TSC;
9189 public:
9190   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9191     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
9192   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9193                     CodeGen::CodeGenModule &M) const override;
9194 };
9195 
9196 } // End anonymous namespace.
9197 
9198 // TODO: this implementation is likely now redundant with the default
9199 // EmitVAArg.
9200 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9201                                 QualType Ty) const {
9202   CGBuilderTy &Builder = CGF.Builder;
9203 
9204   // Get the VAList.
9205   CharUnits SlotSize = CharUnits::fromQuantity(4);
9206   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9207 
9208   // Handle the argument.
9209   ABIArgInfo AI = classifyArgumentType(Ty);
9210   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9211   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9212   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9213     AI.setCoerceToType(ArgTy);
9214   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9215 
9216   Address Val = Address::invalid();
9217   CharUnits ArgSize = CharUnits::Zero();
9218   switch (AI.getKind()) {
9219   case ABIArgInfo::Expand:
9220   case ABIArgInfo::CoerceAndExpand:
9221   case ABIArgInfo::InAlloca:
9222     llvm_unreachable("Unsupported ABI kind for va_arg");
9223   case ABIArgInfo::Ignore:
9224     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9225     ArgSize = CharUnits::Zero();
9226     break;
9227   case ABIArgInfo::Extend:
9228   case ABIArgInfo::Direct:
9229     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9230     ArgSize = CharUnits::fromQuantity(
9231                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9232     ArgSize = ArgSize.alignTo(SlotSize);
9233     break;
9234   case ABIArgInfo::Indirect:
9235     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9236     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9237     ArgSize = SlotSize;
9238     break;
9239   }
9240 
9241   // Increment the VAList.
9242   if (!ArgSize.isZero()) {
9243     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9244     Builder.CreateStore(APN.getPointer(), VAListAddr);
9245   }
9246 
9247   return Val;
9248 }
9249 
9250 /// During the expansion of a RecordType, an incomplete TypeString is placed
9251 /// into the cache as a means to identify and break recursion.
9252 /// If there is a Recursive encoding in the cache, it is swapped out and will
9253 /// be reinserted by removeIncomplete().
9254 /// All other types of encoding should have been used rather than arriving here.
9255 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9256                                     std::string StubEnc) {
9257   if (!ID)
9258     return;
9259   Entry &E = Map[ID];
9260   assert( (E.Str.empty() || E.State == Recursive) &&
9261          "Incorrectly use of addIncomplete");
9262   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9263   E.Swapped.swap(E.Str); // swap out the Recursive
9264   E.Str.swap(StubEnc);
9265   E.State = Incomplete;
9266   ++IncompleteCount;
9267 }
9268 
9269 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9270 /// must be removed from the cache.
9271 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9272 /// Returns true if the RecordType was defined recursively.
9273 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9274   if (!ID)
9275     return false;
9276   auto I = Map.find(ID);
9277   assert(I != Map.end() && "Entry not present");
9278   Entry &E = I->second;
9279   assert( (E.State == Incomplete ||
9280            E.State == IncompleteUsed) &&
9281          "Entry must be an incomplete type");
9282   bool IsRecursive = false;
9283   if (E.State == IncompleteUsed) {
9284     // We made use of our Incomplete encoding, thus we are recursive.
9285     IsRecursive = true;
9286     --IncompleteUsedCount;
9287   }
9288   if (E.Swapped.empty())
9289     Map.erase(I);
9290   else {
9291     // Swap the Recursive back.
9292     E.Swapped.swap(E.Str);
9293     E.Swapped.clear();
9294     E.State = Recursive;
9295   }
9296   --IncompleteCount;
9297   return IsRecursive;
9298 }
9299 
9300 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9301 /// Recursive (viz: all sub-members were expanded as fully as possible).
9302 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9303                                     bool IsRecursive) {
9304   if (!ID || IncompleteUsedCount)
9305     return; // No key or it is is an incomplete sub-type so don't add.
9306   Entry &E = Map[ID];
9307   if (IsRecursive && !E.Str.empty()) {
9308     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9309            "This is not the same Recursive entry");
9310     // The parent container was not recursive after all, so we could have used
9311     // this Recursive sub-member entry after all, but we assumed the worse when
9312     // we started viz: IncompleteCount!=0.
9313     return;
9314   }
9315   assert(E.Str.empty() && "Entry already present");
9316   E.Str = Str.str();
9317   E.State = IsRecursive? Recursive : NonRecursive;
9318 }
9319 
9320 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9321 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9322 /// encoding is Recursive, return an empty StringRef.
9323 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9324   if (!ID)
9325     return StringRef();   // We have no key.
9326   auto I = Map.find(ID);
9327   if (I == Map.end())
9328     return StringRef();   // We have no encoding.
9329   Entry &E = I->second;
9330   if (E.State == Recursive && IncompleteCount)
9331     return StringRef();   // We don't use Recursive encodings for member types.
9332 
9333   if (E.State == Incomplete) {
9334     // The incomplete type is being used to break out of recursion.
9335     E.State = IncompleteUsed;
9336     ++IncompleteUsedCount;
9337   }
9338   return E.Str;
9339 }
9340 
9341 /// The XCore ABI includes a type information section that communicates symbol
9342 /// type information to the linker. The linker uses this information to verify
9343 /// safety/correctness of things such as array bound and pointers et al.
9344 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9345 /// This type information (TypeString) is emitted into meta data for all global
9346 /// symbols: definitions, declarations, functions & variables.
9347 ///
9348 /// The TypeString carries type, qualifier, name, size & value details.
9349 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9350 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9351 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9352 ///
9353 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9354                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
9355 
9356 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9357 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9358                                           CodeGen::CodeGenModule &CGM) const {
9359   SmallStringEnc Enc;
9360   if (getTypeString(Enc, D, CGM, TSC)) {
9361     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9362     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9363                                 llvm::MDString::get(Ctx, Enc.str())};
9364     llvm::NamedMDNode *MD =
9365       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9366     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9367   }
9368 }
9369 
9370 //===----------------------------------------------------------------------===//
9371 // SPIR ABI Implementation
9372 //===----------------------------------------------------------------------===//
9373 
9374 namespace {
9375 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9376 public:
9377   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9378     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
9379   unsigned getOpenCLKernelCallingConv() const override;
9380 };
9381 
9382 } // End anonymous namespace.
9383 
9384 namespace clang {
9385 namespace CodeGen {
9386 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9387   DefaultABIInfo SPIRABI(CGM.getTypes());
9388   SPIRABI.computeInfo(FI);
9389 }
9390 }
9391 }
9392 
9393 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9394   return llvm::CallingConv::SPIR_KERNEL;
9395 }
9396 
9397 static bool appendType(SmallStringEnc &Enc, QualType QType,
9398                        const CodeGen::CodeGenModule &CGM,
9399                        TypeStringCache &TSC);
9400 
9401 /// Helper function for appendRecordType().
9402 /// Builds a SmallVector containing the encoded field types in declaration
9403 /// order.
9404 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
9405                              const RecordDecl *RD,
9406                              const CodeGen::CodeGenModule &CGM,
9407                              TypeStringCache &TSC) {
9408   for (const auto *Field : RD->fields()) {
9409     SmallStringEnc Enc;
9410     Enc += "m(";
9411     Enc += Field->getName();
9412     Enc += "){";
9413     if (Field->isBitField()) {
9414       Enc += "b(";
9415       llvm::raw_svector_ostream OS(Enc);
9416       OS << Field->getBitWidthValue(CGM.getContext());
9417       Enc += ':';
9418     }
9419     if (!appendType(Enc, Field->getType(), CGM, TSC))
9420       return false;
9421     if (Field->isBitField())
9422       Enc += ')';
9423     Enc += '}';
9424     FE.emplace_back(!Field->getName().empty(), Enc);
9425   }
9426   return true;
9427 }
9428 
9429 /// Appends structure and union types to Enc and adds encoding to cache.
9430 /// Recursively calls appendType (via extractFieldType) for each field.
9431 /// Union types have their fields ordered according to the ABI.
9432 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
9433                              const CodeGen::CodeGenModule &CGM,
9434                              TypeStringCache &TSC, const IdentifierInfo *ID) {
9435   // Append the cached TypeString if we have one.
9436   StringRef TypeString = TSC.lookupStr(ID);
9437   if (!TypeString.empty()) {
9438     Enc += TypeString;
9439     return true;
9440   }
9441 
9442   // Start to emit an incomplete TypeString.
9443   size_t Start = Enc.size();
9444   Enc += (RT->isUnionType()? 'u' : 's');
9445   Enc += '(';
9446   if (ID)
9447     Enc += ID->getName();
9448   Enc += "){";
9449 
9450   // We collect all encoded fields and order as necessary.
9451   bool IsRecursive = false;
9452   const RecordDecl *RD = RT->getDecl()->getDefinition();
9453   if (RD && !RD->field_empty()) {
9454     // An incomplete TypeString stub is placed in the cache for this RecordType
9455     // so that recursive calls to this RecordType will use it whilst building a
9456     // complete TypeString for this RecordType.
9457     SmallVector<FieldEncoding, 16> FE;
9458     std::string StubEnc(Enc.substr(Start).str());
9459     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
9460     TSC.addIncomplete(ID, std::move(StubEnc));
9461     if (!extractFieldType(FE, RD, CGM, TSC)) {
9462       (void) TSC.removeIncomplete(ID);
9463       return false;
9464     }
9465     IsRecursive = TSC.removeIncomplete(ID);
9466     // The ABI requires unions to be sorted but not structures.
9467     // See FieldEncoding::operator< for sort algorithm.
9468     if (RT->isUnionType())
9469       llvm::sort(FE);
9470     // We can now complete the TypeString.
9471     unsigned E = FE.size();
9472     for (unsigned I = 0; I != E; ++I) {
9473       if (I)
9474         Enc += ',';
9475       Enc += FE[I].str();
9476     }
9477   }
9478   Enc += '}';
9479   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
9480   return true;
9481 }
9482 
9483 /// Appends enum types to Enc and adds the encoding to the cache.
9484 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
9485                            TypeStringCache &TSC,
9486                            const IdentifierInfo *ID) {
9487   // Append the cached TypeString if we have one.
9488   StringRef TypeString = TSC.lookupStr(ID);
9489   if (!TypeString.empty()) {
9490     Enc += TypeString;
9491     return true;
9492   }
9493 
9494   size_t Start = Enc.size();
9495   Enc += "e(";
9496   if (ID)
9497     Enc += ID->getName();
9498   Enc += "){";
9499 
9500   // We collect all encoded enumerations and order them alphanumerically.
9501   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
9502     SmallVector<FieldEncoding, 16> FE;
9503     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
9504          ++I) {
9505       SmallStringEnc EnumEnc;
9506       EnumEnc += "m(";
9507       EnumEnc += I->getName();
9508       EnumEnc += "){";
9509       I->getInitVal().toString(EnumEnc);
9510       EnumEnc += '}';
9511       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
9512     }
9513     llvm::sort(FE);
9514     unsigned E = FE.size();
9515     for (unsigned I = 0; I != E; ++I) {
9516       if (I)
9517         Enc += ',';
9518       Enc += FE[I].str();
9519     }
9520   }
9521   Enc += '}';
9522   TSC.addIfComplete(ID, Enc.substr(Start), false);
9523   return true;
9524 }
9525 
9526 /// Appends type's qualifier to Enc.
9527 /// This is done prior to appending the type's encoding.
9528 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
9529   // Qualifiers are emitted in alphabetical order.
9530   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
9531   int Lookup = 0;
9532   if (QT.isConstQualified())
9533     Lookup += 1<<0;
9534   if (QT.isRestrictQualified())
9535     Lookup += 1<<1;
9536   if (QT.isVolatileQualified())
9537     Lookup += 1<<2;
9538   Enc += Table[Lookup];
9539 }
9540 
9541 /// Appends built-in types to Enc.
9542 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
9543   const char *EncType;
9544   switch (BT->getKind()) {
9545     case BuiltinType::Void:
9546       EncType = "0";
9547       break;
9548     case BuiltinType::Bool:
9549       EncType = "b";
9550       break;
9551     case BuiltinType::Char_U:
9552       EncType = "uc";
9553       break;
9554     case BuiltinType::UChar:
9555       EncType = "uc";
9556       break;
9557     case BuiltinType::SChar:
9558       EncType = "sc";
9559       break;
9560     case BuiltinType::UShort:
9561       EncType = "us";
9562       break;
9563     case BuiltinType::Short:
9564       EncType = "ss";
9565       break;
9566     case BuiltinType::UInt:
9567       EncType = "ui";
9568       break;
9569     case BuiltinType::Int:
9570       EncType = "si";
9571       break;
9572     case BuiltinType::ULong:
9573       EncType = "ul";
9574       break;
9575     case BuiltinType::Long:
9576       EncType = "sl";
9577       break;
9578     case BuiltinType::ULongLong:
9579       EncType = "ull";
9580       break;
9581     case BuiltinType::LongLong:
9582       EncType = "sll";
9583       break;
9584     case BuiltinType::Float:
9585       EncType = "ft";
9586       break;
9587     case BuiltinType::Double:
9588       EncType = "d";
9589       break;
9590     case BuiltinType::LongDouble:
9591       EncType = "ld";
9592       break;
9593     default:
9594       return false;
9595   }
9596   Enc += EncType;
9597   return true;
9598 }
9599 
9600 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9601 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9602                               const CodeGen::CodeGenModule &CGM,
9603                               TypeStringCache &TSC) {
9604   Enc += "p(";
9605   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9606     return false;
9607   Enc += ')';
9608   return true;
9609 }
9610 
9611 /// Appends array encoding to Enc before calling appendType for the element.
9612 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9613                             const ArrayType *AT,
9614                             const CodeGen::CodeGenModule &CGM,
9615                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9616   if (AT->getSizeModifier() != ArrayType::Normal)
9617     return false;
9618   Enc += "a(";
9619   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9620     CAT->getSize().toStringUnsigned(Enc);
9621   else
9622     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9623   Enc += ':';
9624   // The Qualifiers should be attached to the type rather than the array.
9625   appendQualifier(Enc, QT);
9626   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9627     return false;
9628   Enc += ')';
9629   return true;
9630 }
9631 
9632 /// Appends a function encoding to Enc, calling appendType for the return type
9633 /// and the arguments.
9634 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9635                              const CodeGen::CodeGenModule &CGM,
9636                              TypeStringCache &TSC) {
9637   Enc += "f{";
9638   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9639     return false;
9640   Enc += "}(";
9641   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9642     // N.B. we are only interested in the adjusted param types.
9643     auto I = FPT->param_type_begin();
9644     auto E = FPT->param_type_end();
9645     if (I != E) {
9646       do {
9647         if (!appendType(Enc, *I, CGM, TSC))
9648           return false;
9649         ++I;
9650         if (I != E)
9651           Enc += ',';
9652       } while (I != E);
9653       if (FPT->isVariadic())
9654         Enc += ",va";
9655     } else {
9656       if (FPT->isVariadic())
9657         Enc += "va";
9658       else
9659         Enc += '0';
9660     }
9661   }
9662   Enc += ')';
9663   return true;
9664 }
9665 
9666 /// Handles the type's qualifier before dispatching a call to handle specific
9667 /// type encodings.
9668 static bool appendType(SmallStringEnc &Enc, QualType QType,
9669                        const CodeGen::CodeGenModule &CGM,
9670                        TypeStringCache &TSC) {
9671 
9672   QualType QT = QType.getCanonicalType();
9673 
9674   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9675     // The Qualifiers should be attached to the type rather than the array.
9676     // Thus we don't call appendQualifier() here.
9677     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9678 
9679   appendQualifier(Enc, QT);
9680 
9681   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9682     return appendBuiltinType(Enc, BT);
9683 
9684   if (const PointerType *PT = QT->getAs<PointerType>())
9685     return appendPointerType(Enc, PT, CGM, TSC);
9686 
9687   if (const EnumType *ET = QT->getAs<EnumType>())
9688     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9689 
9690   if (const RecordType *RT = QT->getAsStructureType())
9691     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9692 
9693   if (const RecordType *RT = QT->getAsUnionType())
9694     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9695 
9696   if (const FunctionType *FT = QT->getAs<FunctionType>())
9697     return appendFunctionType(Enc, FT, CGM, TSC);
9698 
9699   return false;
9700 }
9701 
9702 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9703                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9704   if (!D)
9705     return false;
9706 
9707   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9708     if (FD->getLanguageLinkage() != CLanguageLinkage)
9709       return false;
9710     return appendType(Enc, FD->getType(), CGM, TSC);
9711   }
9712 
9713   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9714     if (VD->getLanguageLinkage() != CLanguageLinkage)
9715       return false;
9716     QualType QT = VD->getType().getCanonicalType();
9717     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9718       // Global ArrayTypes are given a size of '*' if the size is unknown.
9719       // The Qualifiers should be attached to the type rather than the array.
9720       // Thus we don't call appendQualifier() here.
9721       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9722     }
9723     return appendType(Enc, QT, CGM, TSC);
9724   }
9725   return false;
9726 }
9727 
9728 //===----------------------------------------------------------------------===//
9729 // RISCV ABI Implementation
9730 //===----------------------------------------------------------------------===//
9731 
9732 namespace {
9733 class RISCVABIInfo : public DefaultABIInfo {
9734 private:
9735   // Size of the integer ('x') registers in bits.
9736   unsigned XLen;
9737   // Size of the floating point ('f') registers in bits. Note that the target
9738   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
9739   // with soft float ABI has FLen==0).
9740   unsigned FLen;
9741   static const int NumArgGPRs = 8;
9742   static const int NumArgFPRs = 8;
9743   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9744                                       llvm::Type *&Field1Ty,
9745                                       CharUnits &Field1Off,
9746                                       llvm::Type *&Field2Ty,
9747                                       CharUnits &Field2Off) const;
9748 
9749 public:
9750   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
9751       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
9752 
9753   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9754   // non-virtual, but computeInfo is virtual, so we overload it.
9755   void computeInfo(CGFunctionInfo &FI) const override;
9756 
9757   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
9758                                   int &ArgFPRsLeft) const;
9759   ABIArgInfo classifyReturnType(QualType RetTy) const;
9760 
9761   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9762                     QualType Ty) const override;
9763 
9764   ABIArgInfo extendType(QualType Ty) const;
9765 
9766   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9767                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
9768                                 CharUnits &Field2Off, int &NeededArgGPRs,
9769                                 int &NeededArgFPRs) const;
9770   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
9771                                                CharUnits Field1Off,
9772                                                llvm::Type *Field2Ty,
9773                                                CharUnits Field2Off) const;
9774 };
9775 } // end anonymous namespace
9776 
9777 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9778   QualType RetTy = FI.getReturnType();
9779   if (!getCXXABI().classifyReturnType(FI))
9780     FI.getReturnInfo() = classifyReturnType(RetTy);
9781 
9782   // IsRetIndirect is true if classifyArgumentType indicated the value should
9783   // be passed indirect, or if the type size is a scalar greater than 2*XLen
9784   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
9785   // in LLVM IR, relying on the backend lowering code to rewrite the argument
9786   // list and pass indirectly on RV32.
9787   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
9788   if (!IsRetIndirect && RetTy->isScalarType() &&
9789       getContext().getTypeSize(RetTy) > (2 * XLen)) {
9790     if (RetTy->isComplexType() && FLen) {
9791       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
9792       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
9793     } else {
9794       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
9795       IsRetIndirect = true;
9796     }
9797   }
9798 
9799   // We must track the number of GPRs used in order to conform to the RISC-V
9800   // ABI, as integer scalars passed in registers should have signext/zeroext
9801   // when promoted, but are anyext if passed on the stack. As GPR usage is
9802   // different for variadic arguments, we must also track whether we are
9803   // examining a vararg or not.
9804   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9805   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
9806   int NumFixedArgs = FI.getNumRequiredArgs();
9807 
9808   int ArgNum = 0;
9809   for (auto &ArgInfo : FI.arguments()) {
9810     bool IsFixed = ArgNum < NumFixedArgs;
9811     ArgInfo.info =
9812         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
9813     ArgNum++;
9814   }
9815 }
9816 
9817 // Returns true if the struct is a potential candidate for the floating point
9818 // calling convention. If this function returns true, the caller is
9819 // responsible for checking that if there is only a single field then that
9820 // field is a float.
9821 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9822                                                   llvm::Type *&Field1Ty,
9823                                                   CharUnits &Field1Off,
9824                                                   llvm::Type *&Field2Ty,
9825                                                   CharUnits &Field2Off) const {
9826   bool IsInt = Ty->isIntegralOrEnumerationType();
9827   bool IsFloat = Ty->isRealFloatingType();
9828 
9829   if (IsInt || IsFloat) {
9830     uint64_t Size = getContext().getTypeSize(Ty);
9831     if (IsInt && Size > XLen)
9832       return false;
9833     // Can't be eligible if larger than the FP registers. Half precision isn't
9834     // currently supported on RISC-V and the ABI hasn't been confirmed, so
9835     // default to the integer ABI in that case.
9836     if (IsFloat && (Size > FLen || Size < 32))
9837       return false;
9838     // Can't be eligible if an integer type was already found (int+int pairs
9839     // are not eligible).
9840     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
9841       return false;
9842     if (!Field1Ty) {
9843       Field1Ty = CGT.ConvertType(Ty);
9844       Field1Off = CurOff;
9845       return true;
9846     }
9847     if (!Field2Ty) {
9848       Field2Ty = CGT.ConvertType(Ty);
9849       Field2Off = CurOff;
9850       return true;
9851     }
9852     return false;
9853   }
9854 
9855   if (auto CTy = Ty->getAs<ComplexType>()) {
9856     if (Field1Ty)
9857       return false;
9858     QualType EltTy = CTy->getElementType();
9859     if (getContext().getTypeSize(EltTy) > FLen)
9860       return false;
9861     Field1Ty = CGT.ConvertType(EltTy);
9862     Field1Off = CurOff;
9863     assert(CurOff.isZero() && "Unexpected offset for first field");
9864     Field2Ty = Field1Ty;
9865     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
9866     return true;
9867   }
9868 
9869   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
9870     uint64_t ArraySize = ATy->getSize().getZExtValue();
9871     QualType EltTy = ATy->getElementType();
9872     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
9873     for (uint64_t i = 0; i < ArraySize; ++i) {
9874       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
9875                                                 Field1Off, Field2Ty, Field2Off);
9876       if (!Ret)
9877         return false;
9878       CurOff += EltSize;
9879     }
9880     return true;
9881   }
9882 
9883   if (const auto *RTy = Ty->getAs<RecordType>()) {
9884     // Structures with either a non-trivial destructor or a non-trivial
9885     // copy constructor are not eligible for the FP calling convention.
9886     if (getRecordArgABI(Ty, CGT.getCXXABI()))
9887       return false;
9888     if (isEmptyRecord(getContext(), Ty, true))
9889       return true;
9890     const RecordDecl *RD = RTy->getDecl();
9891     // Unions aren't eligible unless they're empty (which is caught above).
9892     if (RD->isUnion())
9893       return false;
9894     int ZeroWidthBitFieldCount = 0;
9895     for (const FieldDecl *FD : RD->fields()) {
9896       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
9897       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
9898       QualType QTy = FD->getType();
9899       if (FD->isBitField()) {
9900         unsigned BitWidth = FD->getBitWidthValue(getContext());
9901         // Allow a bitfield with a type greater than XLen as long as the
9902         // bitwidth is XLen or less.
9903         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
9904           QTy = getContext().getIntTypeForBitwidth(XLen, false);
9905         if (BitWidth == 0) {
9906           ZeroWidthBitFieldCount++;
9907           continue;
9908         }
9909       }
9910 
9911       bool Ret = detectFPCCEligibleStructHelper(
9912           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
9913           Field1Ty, Field1Off, Field2Ty, Field2Off);
9914       if (!Ret)
9915         return false;
9916 
9917       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
9918       // or int+fp structs, but are ignored for a struct with an fp field and
9919       // any number of zero-width bitfields.
9920       if (Field2Ty && ZeroWidthBitFieldCount > 0)
9921         return false;
9922     }
9923     return Field1Ty != nullptr;
9924   }
9925 
9926   return false;
9927 }
9928 
9929 // Determine if a struct is eligible for passing according to the floating
9930 // point calling convention (i.e., when flattened it contains a single fp
9931 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
9932 // NeededArgGPRs are incremented appropriately.
9933 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9934                                             CharUnits &Field1Off,
9935                                             llvm::Type *&Field2Ty,
9936                                             CharUnits &Field2Off,
9937                                             int &NeededArgGPRs,
9938                                             int &NeededArgFPRs) const {
9939   Field1Ty = nullptr;
9940   Field2Ty = nullptr;
9941   NeededArgGPRs = 0;
9942   NeededArgFPRs = 0;
9943   bool IsCandidate = detectFPCCEligibleStructHelper(
9944       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
9945   // Not really a candidate if we have a single int but no float.
9946   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
9947     return false;
9948   if (!IsCandidate)
9949     return false;
9950   if (Field1Ty && Field1Ty->isFloatingPointTy())
9951     NeededArgFPRs++;
9952   else if (Field1Ty)
9953     NeededArgGPRs++;
9954   if (Field2Ty && Field2Ty->isFloatingPointTy())
9955     NeededArgFPRs++;
9956   else if (Field2Ty)
9957     NeededArgGPRs++;
9958   return IsCandidate;
9959 }
9960 
9961 // Call getCoerceAndExpand for the two-element flattened struct described by
9962 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
9963 // appropriate coerceToType and unpaddedCoerceToType.
9964 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
9965     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
9966     CharUnits Field2Off) const {
9967   SmallVector<llvm::Type *, 3> CoerceElts;
9968   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
9969   if (!Field1Off.isZero())
9970     CoerceElts.push_back(llvm::ArrayType::get(
9971         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
9972 
9973   CoerceElts.push_back(Field1Ty);
9974   UnpaddedCoerceElts.push_back(Field1Ty);
9975 
9976   if (!Field2Ty) {
9977     return ABIArgInfo::getCoerceAndExpand(
9978         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
9979         UnpaddedCoerceElts[0]);
9980   }
9981 
9982   CharUnits Field2Align =
9983       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
9984   CharUnits Field1Size =
9985       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
9986   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
9987 
9988   CharUnits Padding = CharUnits::Zero();
9989   if (Field2Off > Field2OffNoPadNoPack)
9990     Padding = Field2Off - Field2OffNoPadNoPack;
9991   else if (Field2Off != Field2Align && Field2Off > Field1Size)
9992     Padding = Field2Off - Field1Size;
9993 
9994   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
9995 
9996   if (!Padding.isZero())
9997     CoerceElts.push_back(llvm::ArrayType::get(
9998         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
9999 
10000   CoerceElts.push_back(Field2Ty);
10001   UnpaddedCoerceElts.push_back(Field2Ty);
10002 
10003   auto CoerceToType =
10004       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10005   auto UnpaddedCoerceToType =
10006       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10007 
10008   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10009 }
10010 
10011 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10012                                               int &ArgGPRsLeft,
10013                                               int &ArgFPRsLeft) const {
10014   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10015   Ty = useFirstFieldIfTransparentUnion(Ty);
10016 
10017   // Structures with either a non-trivial destructor or a non-trivial
10018   // copy constructor are always passed indirectly.
10019   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10020     if (ArgGPRsLeft)
10021       ArgGPRsLeft -= 1;
10022     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10023                                            CGCXXABI::RAA_DirectInMemory);
10024   }
10025 
10026   // Ignore empty structs/unions.
10027   if (isEmptyRecord(getContext(), Ty, true))
10028     return ABIArgInfo::getIgnore();
10029 
10030   uint64_t Size = getContext().getTypeSize(Ty);
10031 
10032   // Pass floating point values via FPRs if possible.
10033   if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
10034     ArgFPRsLeft--;
10035     return ABIArgInfo::getDirect();
10036   }
10037 
10038   // Complex types for the hard float ABI must be passed direct rather than
10039   // using CoerceAndExpand.
10040   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10041     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10042     if (getContext().getTypeSize(EltTy) <= FLen) {
10043       ArgFPRsLeft -= 2;
10044       return ABIArgInfo::getDirect();
10045     }
10046   }
10047 
10048   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10049     llvm::Type *Field1Ty = nullptr;
10050     llvm::Type *Field2Ty = nullptr;
10051     CharUnits Field1Off = CharUnits::Zero();
10052     CharUnits Field2Off = CharUnits::Zero();
10053     int NeededArgGPRs;
10054     int NeededArgFPRs;
10055     bool IsCandidate =
10056         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10057                                  NeededArgGPRs, NeededArgFPRs);
10058     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10059         NeededArgFPRs <= ArgFPRsLeft) {
10060       ArgGPRsLeft -= NeededArgGPRs;
10061       ArgFPRsLeft -= NeededArgFPRs;
10062       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10063                                                Field2Off);
10064     }
10065   }
10066 
10067   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10068   bool MustUseStack = false;
10069   // Determine the number of GPRs needed to pass the current argument
10070   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10071   // register pairs, so may consume 3 registers.
10072   int NeededArgGPRs = 1;
10073   if (!IsFixed && NeededAlign == 2 * XLen)
10074     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10075   else if (Size > XLen && Size <= 2 * XLen)
10076     NeededArgGPRs = 2;
10077 
10078   if (NeededArgGPRs > ArgGPRsLeft) {
10079     MustUseStack = true;
10080     NeededArgGPRs = ArgGPRsLeft;
10081   }
10082 
10083   ArgGPRsLeft -= NeededArgGPRs;
10084 
10085   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10086     // Treat an enum type as its underlying type.
10087     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10088       Ty = EnumTy->getDecl()->getIntegerType();
10089 
10090     // All integral types are promoted to XLen width, unless passed on the
10091     // stack.
10092     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10093       return extendType(Ty);
10094     }
10095 
10096     return ABIArgInfo::getDirect();
10097   }
10098 
10099   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10100   // so coerce to integers.
10101   if (Size <= 2 * XLen) {
10102     unsigned Alignment = getContext().getTypeAlign(Ty);
10103 
10104     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10105     // required, and a 2-element XLen array if only XLen alignment is required.
10106     if (Size <= XLen) {
10107       return ABIArgInfo::getDirect(
10108           llvm::IntegerType::get(getVMContext(), XLen));
10109     } else if (Alignment == 2 * XLen) {
10110       return ABIArgInfo::getDirect(
10111           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10112     } else {
10113       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10114           llvm::IntegerType::get(getVMContext(), XLen), 2));
10115     }
10116   }
10117   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10118 }
10119 
10120 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10121   if (RetTy->isVoidType())
10122     return ABIArgInfo::getIgnore();
10123 
10124   int ArgGPRsLeft = 2;
10125   int ArgFPRsLeft = FLen ? 2 : 0;
10126 
10127   // The rules for return and argument types are the same, so defer to
10128   // classifyArgumentType.
10129   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10130                               ArgFPRsLeft);
10131 }
10132 
10133 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10134                                 QualType Ty) const {
10135   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10136 
10137   // Empty records are ignored for parameter passing purposes.
10138   if (isEmptyRecord(getContext(), Ty, true)) {
10139     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10140     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10141     return Addr;
10142   }
10143 
10144   std::pair<CharUnits, CharUnits> SizeAndAlign =
10145       getContext().getTypeInfoInChars(Ty);
10146 
10147   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10148   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
10149 
10150   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
10151                           SlotSize, /*AllowHigherAlign=*/true);
10152 }
10153 
10154 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10155   int TySize = getContext().getTypeSize(Ty);
10156   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10157   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10158     return ABIArgInfo::getSignExtend(Ty);
10159   return ABIArgInfo::getExtend(Ty);
10160 }
10161 
10162 namespace {
10163 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10164 public:
10165   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10166                          unsigned FLen)
10167       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
10168 
10169   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10170                            CodeGen::CodeGenModule &CGM) const override {
10171     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10172     if (!FD) return;
10173 
10174     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10175     if (!Attr)
10176       return;
10177 
10178     const char *Kind;
10179     switch (Attr->getInterrupt()) {
10180     case RISCVInterruptAttr::user: Kind = "user"; break;
10181     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10182     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10183     }
10184 
10185     auto *Fn = cast<llvm::Function>(GV);
10186 
10187     Fn->addFnAttr("interrupt", Kind);
10188   }
10189 };
10190 } // namespace
10191 
10192 //===----------------------------------------------------------------------===//
10193 // Driver code
10194 //===----------------------------------------------------------------------===//
10195 
10196 bool CodeGenModule::supportsCOMDAT() const {
10197   return getTriple().supportsCOMDAT();
10198 }
10199 
10200 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10201   if (TheTargetCodeGenInfo)
10202     return *TheTargetCodeGenInfo;
10203 
10204   // Helper to set the unique_ptr while still keeping the return value.
10205   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10206     this->TheTargetCodeGenInfo.reset(P);
10207     return *P;
10208   };
10209 
10210   const llvm::Triple &Triple = getTarget().getTriple();
10211   switch (Triple.getArch()) {
10212   default:
10213     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10214 
10215   case llvm::Triple::le32:
10216     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10217   case llvm::Triple::mips:
10218   case llvm::Triple::mipsel:
10219     if (Triple.getOS() == llvm::Triple::NaCl)
10220       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10221     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10222 
10223   case llvm::Triple::mips64:
10224   case llvm::Triple::mips64el:
10225     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10226 
10227   case llvm::Triple::avr:
10228     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10229 
10230   case llvm::Triple::aarch64:
10231   case llvm::Triple::aarch64_32:
10232   case llvm::Triple::aarch64_be: {
10233     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10234     if (getTarget().getABI() == "darwinpcs")
10235       Kind = AArch64ABIInfo::DarwinPCS;
10236     else if (Triple.isOSWindows())
10237       return SetCGInfo(
10238           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10239 
10240     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10241   }
10242 
10243   case llvm::Triple::wasm32:
10244   case llvm::Triple::wasm64: {
10245     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10246     if (getTarget().getABI() == "experimental-mv")
10247       Kind = WebAssemblyABIInfo::ExperimentalMV;
10248     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10249   }
10250 
10251   case llvm::Triple::arm:
10252   case llvm::Triple::armeb:
10253   case llvm::Triple::thumb:
10254   case llvm::Triple::thumbeb: {
10255     if (Triple.getOS() == llvm::Triple::Win32) {
10256       return SetCGInfo(
10257           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10258     }
10259 
10260     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10261     StringRef ABIStr = getTarget().getABI();
10262     if (ABIStr == "apcs-gnu")
10263       Kind = ARMABIInfo::APCS;
10264     else if (ABIStr == "aapcs16")
10265       Kind = ARMABIInfo::AAPCS16_VFP;
10266     else if (CodeGenOpts.FloatABI == "hard" ||
10267              (CodeGenOpts.FloatABI != "soft" &&
10268               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10269                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10270                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10271       Kind = ARMABIInfo::AAPCS_VFP;
10272 
10273     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10274   }
10275 
10276   case llvm::Triple::ppc:
10277     return SetCGInfo(
10278         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" ||
10279                                    getTarget().hasFeature("spe")));
10280   case llvm::Triple::ppc64:
10281     if (Triple.isOSBinFormatELF()) {
10282       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10283       if (getTarget().getABI() == "elfv2")
10284         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10285       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10286       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10287 
10288       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10289                                                         IsSoftFloat));
10290     } else
10291       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10292   case llvm::Triple::ppc64le: {
10293     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10294     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10295     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10296       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10297     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10298     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10299 
10300     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10301                                                       IsSoftFloat));
10302   }
10303 
10304   case llvm::Triple::nvptx:
10305   case llvm::Triple::nvptx64:
10306     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10307 
10308   case llvm::Triple::msp430:
10309     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10310 
10311   case llvm::Triple::riscv32:
10312   case llvm::Triple::riscv64: {
10313     StringRef ABIStr = getTarget().getABI();
10314     unsigned XLen = getTarget().getPointerWidth(0);
10315     unsigned ABIFLen = 0;
10316     if (ABIStr.endswith("f"))
10317       ABIFLen = 32;
10318     else if (ABIStr.endswith("d"))
10319       ABIFLen = 64;
10320     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
10321   }
10322 
10323   case llvm::Triple::systemz: {
10324     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
10325     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
10326     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
10327   }
10328 
10329   case llvm::Triple::tce:
10330   case llvm::Triple::tcele:
10331     return SetCGInfo(new TCETargetCodeGenInfo(Types));
10332 
10333   case llvm::Triple::x86: {
10334     bool IsDarwinVectorABI = Triple.isOSDarwin();
10335     bool RetSmallStructInRegABI =
10336         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10337     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
10338 
10339     if (Triple.getOS() == llvm::Triple::Win32) {
10340       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
10341           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10342           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
10343     } else {
10344       return SetCGInfo(new X86_32TargetCodeGenInfo(
10345           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10346           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
10347           CodeGenOpts.FloatABI == "soft"));
10348     }
10349   }
10350 
10351   case llvm::Triple::x86_64: {
10352     StringRef ABI = getTarget().getABI();
10353     X86AVXABILevel AVXLevel =
10354         (ABI == "avx512"
10355              ? X86AVXABILevel::AVX512
10356              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
10357 
10358     switch (Triple.getOS()) {
10359     case llvm::Triple::Win32:
10360       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
10361     default:
10362       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
10363     }
10364   }
10365   case llvm::Triple::hexagon:
10366     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
10367   case llvm::Triple::lanai:
10368     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
10369   case llvm::Triple::r600:
10370     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10371   case llvm::Triple::amdgcn:
10372     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10373   case llvm::Triple::sparc:
10374     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
10375   case llvm::Triple::sparcv9:
10376     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
10377   case llvm::Triple::xcore:
10378     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
10379   case llvm::Triple::arc:
10380     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
10381   case llvm::Triple::spir:
10382   case llvm::Triple::spir64:
10383     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
10384   }
10385 }
10386 
10387 /// Create an OpenCL kernel for an enqueued block.
10388 ///
10389 /// The kernel has the same function type as the block invoke function. Its
10390 /// name is the name of the block invoke function postfixed with "_kernel".
10391 /// It simply calls the block invoke function then returns.
10392 llvm::Function *
10393 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
10394                                              llvm::Function *Invoke,
10395                                              llvm::Value *BlockLiteral) const {
10396   auto *InvokeFT = Invoke->getFunctionType();
10397   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10398   for (auto &P : InvokeFT->params())
10399     ArgTys.push_back(P);
10400   auto &C = CGF.getLLVMContext();
10401   std::string Name = Invoke->getName().str() + "_kernel";
10402   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10403   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10404                                    &CGF.CGM.getModule());
10405   auto IP = CGF.Builder.saveIP();
10406   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10407   auto &Builder = CGF.Builder;
10408   Builder.SetInsertPoint(BB);
10409   llvm::SmallVector<llvm::Value *, 2> Args;
10410   for (auto &A : F->args())
10411     Args.push_back(&A);
10412   Builder.CreateCall(Invoke, Args);
10413   Builder.CreateRetVoid();
10414   Builder.restoreIP(IP);
10415   return F;
10416 }
10417 
10418 /// Create an OpenCL kernel for an enqueued block.
10419 ///
10420 /// The type of the first argument (the block literal) is the struct type
10421 /// of the block literal instead of a pointer type. The first argument
10422 /// (block literal) is passed directly by value to the kernel. The kernel
10423 /// allocates the same type of struct on stack and stores the block literal
10424 /// to it and passes its pointer to the block invoke function. The kernel
10425 /// has "enqueued-block" function attribute and kernel argument metadata.
10426 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
10427     CodeGenFunction &CGF, llvm::Function *Invoke,
10428     llvm::Value *BlockLiteral) const {
10429   auto &Builder = CGF.Builder;
10430   auto &C = CGF.getLLVMContext();
10431 
10432   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
10433   auto *InvokeFT = Invoke->getFunctionType();
10434   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10435   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
10436   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
10437   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
10438   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
10439   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
10440   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
10441 
10442   ArgTys.push_back(BlockTy);
10443   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10444   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
10445   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10446   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10447   AccessQuals.push_back(llvm::MDString::get(C, "none"));
10448   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
10449   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
10450     ArgTys.push_back(InvokeFT->getParamType(I));
10451     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
10452     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
10453     AccessQuals.push_back(llvm::MDString::get(C, "none"));
10454     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
10455     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10456     ArgNames.push_back(
10457         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
10458   }
10459   std::string Name = Invoke->getName().str() + "_kernel";
10460   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10461   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10462                                    &CGF.CGM.getModule());
10463   F->addFnAttr("enqueued-block");
10464   auto IP = CGF.Builder.saveIP();
10465   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10466   Builder.SetInsertPoint(BB);
10467   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
10468   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
10469   BlockPtr->setAlignment(BlockAlign);
10470   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
10471   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
10472   llvm::SmallVector<llvm::Value *, 2> Args;
10473   Args.push_back(Cast);
10474   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
10475     Args.push_back(I);
10476   Builder.CreateCall(Invoke, Args);
10477   Builder.CreateRetVoid();
10478   Builder.restoreIP(IP);
10479 
10480   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
10481   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
10482   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
10483   F->setMetadata("kernel_arg_base_type",
10484                  llvm::MDNode::get(C, ArgBaseTypeNames));
10485   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
10486   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
10487     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
10488 
10489   return F;
10490 }
10491