1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/Basic/CodeGenOptions.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>    // std::sort
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 // Helper for coercing an aggregate argument or return value into an integer
37 // array of the same size (including padding) and alignment.  This alternate
38 // coercion happens only for the RenderScript ABI and can be removed after
39 // runtimes that rely on it are no longer supported.
40 //
41 // RenderScript assumes that the size of the argument / return value in the IR
42 // is the same as the size of the corresponding qualified type. This helper
43 // coerces the aggregate type into an array of the same size (including
44 // padding).  This coercion is used in lieu of expansion of struct members or
45 // other canonical coercions that return a coerced-type of larger size.
46 //
47 // Ty          - The argument / return value type
48 // Context     - The associated ASTContext
49 // LLVMContext - The associated LLVMContext
50 static ABIArgInfo coerceToIntArray(QualType Ty,
51                                    ASTContext &Context,
52                                    llvm::LLVMContext &LLVMContext) {
53   // Alignment and Size are measured in bits.
54   const uint64_t Size = Context.getTypeSize(Ty);
55   const uint64_t Alignment = Context.getTypeAlign(Ty);
56   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
57   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
58   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
59 }
60 
61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
62                                llvm::Value *Array,
63                                llvm::Value *Value,
64                                unsigned FirstIndex,
65                                unsigned LastIndex) {
66   // Alternatively, we could emit this as a loop in the source.
67   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
68     llvm::Value *Cell =
69         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
70     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
71   }
72 }
73 
74 static bool isAggregateTypeForABI(QualType T) {
75   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
76          T->isMemberFunctionPointerType();
77 }
78 
79 ABIArgInfo
80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
81                                  llvm::Type *Padding) const {
82   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
83                                  ByRef, Realign, Padding);
84 }
85 
86 ABIArgInfo
87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
88   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
89                                       /*ByRef*/ false, Realign);
90 }
91 
92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
93                              QualType Ty) const {
94   return Address::invalid();
95 }
96 
97 ABIInfo::~ABIInfo() {}
98 
99 /// Does the given lowering require more than the given number of
100 /// registers when expanded?
101 ///
102 /// This is intended to be the basis of a reasonable basic implementation
103 /// of should{Pass,Return}IndirectlyForSwift.
104 ///
105 /// For most targets, a limit of four total registers is reasonable; this
106 /// limits the amount of code required in order to move around the value
107 /// in case it wasn't produced immediately prior to the call by the caller
108 /// (or wasn't produced in exactly the right registers) or isn't used
109 /// immediately within the callee.  But some targets may need to further
110 /// limit the register count due to an inability to support that many
111 /// return registers.
112 static bool occupiesMoreThan(CodeGenTypes &cgt,
113                              ArrayRef<llvm::Type*> scalarTypes,
114                              unsigned maxAllRegisters) {
115   unsigned intCount = 0, fpCount = 0;
116   for (llvm::Type *type : scalarTypes) {
117     if (type->isPointerTy()) {
118       intCount++;
119     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
120       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
121       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
122     } else {
123       assert(type->isVectorTy() || type->isFloatingPointTy());
124       fpCount++;
125     }
126   }
127 
128   return (intCount + fpCount > maxAllRegisters);
129 }
130 
131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
132                                              llvm::Type *eltTy,
133                                              unsigned numElts) const {
134   // The default implementation of this assumes that the target guarantees
135   // 128-bit SIMD support but nothing more.
136   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
137 }
138 
139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
140                                               CGCXXABI &CXXABI) {
141   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
142   if (!RD) {
143     if (!RT->getDecl()->canPassInRegisters())
144       return CGCXXABI::RAA_Indirect;
145     return CGCXXABI::RAA_Default;
146   }
147   return CXXABI.getRecordArgABI(RD);
148 }
149 
150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
151                                               CGCXXABI &CXXABI) {
152   const RecordType *RT = T->getAs<RecordType>();
153   if (!RT)
154     return CGCXXABI::RAA_Default;
155   return getRecordArgABI(RT, CXXABI);
156 }
157 
158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
159                                const ABIInfo &Info) {
160   QualType Ty = FI.getReturnType();
161 
162   if (const auto *RT = Ty->getAs<RecordType>())
163     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
164         !RT->getDecl()->canPassInRegisters()) {
165       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
166       return true;
167     }
168 
169   return CXXABI.classifyReturnType(FI);
170 }
171 
172 /// Pass transparent unions as if they were the type of the first element. Sema
173 /// should ensure that all elements of the union have the same "machine type".
174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
175   if (const RecordType *UT = Ty->getAsUnionType()) {
176     const RecordDecl *UD = UT->getDecl();
177     if (UD->hasAttr<TransparentUnionAttr>()) {
178       assert(!UD->field_empty() && "sema created an empty transparent union");
179       return UD->field_begin()->getType();
180     }
181   }
182   return Ty;
183 }
184 
185 CGCXXABI &ABIInfo::getCXXABI() const {
186   return CGT.getCXXABI();
187 }
188 
189 ASTContext &ABIInfo::getContext() const {
190   return CGT.getContext();
191 }
192 
193 llvm::LLVMContext &ABIInfo::getVMContext() const {
194   return CGT.getLLVMContext();
195 }
196 
197 const llvm::DataLayout &ABIInfo::getDataLayout() const {
198   return CGT.getDataLayout();
199 }
200 
201 const TargetInfo &ABIInfo::getTarget() const {
202   return CGT.getTarget();
203 }
204 
205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
206   return CGT.getCodeGenOpts();
207 }
208 
209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
210 
211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
212   return false;
213 }
214 
215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
216                                                 uint64_t Members) const {
217   return false;
218 }
219 
220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
221   raw_ostream &OS = llvm::errs();
222   OS << "(ABIArgInfo Kind=";
223   switch (TheKind) {
224   case Direct:
225     OS << "Direct Type=";
226     if (llvm::Type *Ty = getCoerceToType())
227       Ty->print(OS);
228     else
229       OS << "null";
230     break;
231   case Extend:
232     OS << "Extend";
233     break;
234   case Ignore:
235     OS << "Ignore";
236     break;
237   case InAlloca:
238     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
239     break;
240   case Indirect:
241     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
242        << " ByVal=" << getIndirectByVal()
243        << " Realign=" << getIndirectRealign();
244     break;
245   case Expand:
246     OS << "Expand";
247     break;
248   case CoerceAndExpand:
249     OS << "CoerceAndExpand Type=";
250     getCoerceAndExpandType()->print(OS);
251     break;
252   }
253   OS << ")\n";
254 }
255 
256 // Dynamically round a pointer up to a multiple of the given alignment.
257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
258                                                   llvm::Value *Ptr,
259                                                   CharUnits Align) {
260   llvm::Value *PtrAsInt = Ptr;
261   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
262   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
263   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
264         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
265   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
266            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
267   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
268                                         Ptr->getType(),
269                                         Ptr->getName() + ".aligned");
270   return PtrAsInt;
271 }
272 
273 /// Emit va_arg for a platform using the common void* representation,
274 /// where arguments are simply emitted in an array of slots on the stack.
275 ///
276 /// This version implements the core direct-value passing rules.
277 ///
278 /// \param SlotSize - The size and alignment of a stack slot.
279 ///   Each argument will be allocated to a multiple of this number of
280 ///   slots, and all the slots will be aligned to this value.
281 /// \param AllowHigherAlign - The slot alignment is not a cap;
282 ///   an argument type with an alignment greater than the slot size
283 ///   will be emitted on a higher-alignment address, potentially
284 ///   leaving one or more empty slots behind as padding.  If this
285 ///   is false, the returned address might be less-aligned than
286 ///   DirectAlign.
287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
288                                       Address VAListAddr,
289                                       llvm::Type *DirectTy,
290                                       CharUnits DirectSize,
291                                       CharUnits DirectAlign,
292                                       CharUnits SlotSize,
293                                       bool AllowHigherAlign) {
294   // Cast the element type to i8* if necessary.  Some platforms define
295   // va_list as a struct containing an i8* instead of just an i8*.
296   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
297     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
298 
299   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
300 
301   // If the CC aligns values higher than the slot size, do so if needed.
302   Address Addr = Address::invalid();
303   if (AllowHigherAlign && DirectAlign > SlotSize) {
304     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
305                                                  DirectAlign);
306   } else {
307     Addr = Address(Ptr, SlotSize);
308   }
309 
310   // Advance the pointer past the argument, then store that back.
311   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
312   Address NextPtr =
313       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
314   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
315 
316   // If the argument is smaller than a slot, and this is a big-endian
317   // target, the argument will be right-adjusted in its slot.
318   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
319       !DirectTy->isStructTy()) {
320     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
321   }
322 
323   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
324   return Addr;
325 }
326 
327 /// Emit va_arg for a platform using the common void* representation,
328 /// where arguments are simply emitted in an array of slots on the stack.
329 ///
330 /// \param IsIndirect - Values of this type are passed indirectly.
331 /// \param ValueInfo - The size and alignment of this type, generally
332 ///   computed with getContext().getTypeInfoInChars(ValueTy).
333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
334 ///   Each argument will be allocated to a multiple of this number of
335 ///   slots, and all the slots will be aligned to this value.
336 /// \param AllowHigherAlign - The slot alignment is not a cap;
337 ///   an argument type with an alignment greater than the slot size
338 ///   will be emitted on a higher-alignment address, potentially
339 ///   leaving one or more empty slots behind as padding.
340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
341                                 QualType ValueTy, bool IsIndirect,
342                                 std::pair<CharUnits, CharUnits> ValueInfo,
343                                 CharUnits SlotSizeAndAlign,
344                                 bool AllowHigherAlign) {
345   // The size and alignment of the value that was passed directly.
346   CharUnits DirectSize, DirectAlign;
347   if (IsIndirect) {
348     DirectSize = CGF.getPointerSize();
349     DirectAlign = CGF.getPointerAlign();
350   } else {
351     DirectSize = ValueInfo.first;
352     DirectAlign = ValueInfo.second;
353   }
354 
355   // Cast the address we've calculated to the right type.
356   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
357   if (IsIndirect)
358     DirectTy = DirectTy->getPointerTo(0);
359 
360   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
361                                         DirectSize, DirectAlign,
362                                         SlotSizeAndAlign,
363                                         AllowHigherAlign);
364 
365   if (IsIndirect) {
366     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
367   }
368 
369   return Addr;
370 
371 }
372 
373 static Address emitMergePHI(CodeGenFunction &CGF,
374                             Address Addr1, llvm::BasicBlock *Block1,
375                             Address Addr2, llvm::BasicBlock *Block2,
376                             const llvm::Twine &Name = "") {
377   assert(Addr1.getType() == Addr2.getType());
378   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
379   PHI->addIncoming(Addr1.getPointer(), Block1);
380   PHI->addIncoming(Addr2.getPointer(), Block2);
381   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
382   return Address(PHI, Align);
383 }
384 
385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
386 
387 // If someone can figure out a general rule for this, that would be great.
388 // It's probably just doomed to be platform-dependent, though.
389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
390   // Verified for:
391   //   x86-64     FreeBSD, Linux, Darwin
392   //   x86-32     FreeBSD, Linux, Darwin
393   //   PowerPC    Linux, Darwin
394   //   ARM        Darwin (*not* EABI)
395   //   AArch64    Linux
396   return 32;
397 }
398 
399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
400                                      const FunctionNoProtoType *fnType) const {
401   // The following conventions are known to require this to be false:
402   //   x86_stdcall
403   //   MIPS
404   // For everything else, we just prefer false unless we opt out.
405   return false;
406 }
407 
408 void
409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
410                                              llvm::SmallString<24> &Opt) const {
411   // This assumes the user is passing a library name like "rt" instead of a
412   // filename like "librt.a/so", and that they don't care whether it's static or
413   // dynamic.
414   Opt = "-l";
415   Opt += Lib;
416 }
417 
418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
419   // OpenCL kernels are called via an explicit runtime API with arguments
420   // set with clSetKernelArg(), not as normal sub-functions.
421   // Return SPIR_KERNEL by default as the kernel calling convention to
422   // ensure the fingerprint is fixed such way that each OpenCL argument
423   // gets one matching argument in the produced kernel function argument
424   // list to enable feasible implementation of clSetKernelArg() with
425   // aggregates etc. In case we would use the default C calling conv here,
426   // clSetKernelArg() might break depending on the target-specific
427   // conventions; different targets might split structs passed as values
428   // to multiple function arguments etc.
429   return llvm::CallingConv::SPIR_KERNEL;
430 }
431 
432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
433     llvm::PointerType *T, QualType QT) const {
434   return llvm::ConstantPointerNull::get(T);
435 }
436 
437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
438                                                    const VarDecl *D) const {
439   assert(!CGM.getLangOpts().OpenCL &&
440          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
441          "Address space agnostic languages only");
442   return D ? D->getType().getAddressSpace() : LangAS::Default;
443 }
444 
445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
446     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
447     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
448   // Since target may map different address spaces in AST to the same address
449   // space, an address space conversion may end up as a bitcast.
450   if (auto *C = dyn_cast<llvm::Constant>(Src))
451     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
452   // Try to preserve the source's name to make IR more readable.
453   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
454       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
455 }
456 
457 llvm::Constant *
458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
459                                         LangAS SrcAddr, LangAS DestAddr,
460                                         llvm::Type *DestTy) const {
461   // Since target may map different address spaces in AST to the same address
462   // space, an address space conversion may end up as a bitcast.
463   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
464 }
465 
466 llvm::SyncScope::ID
467 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
468                                       SyncScope Scope,
469                                       llvm::AtomicOrdering Ordering,
470                                       llvm::LLVMContext &Ctx) const {
471   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
472 }
473 
474 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
475 
476 /// isEmptyField - Return true iff a the field is "empty", that is it
477 /// is an unnamed bit-field or an (array of) empty record(s).
478 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
479                          bool AllowArrays) {
480   if (FD->isUnnamedBitfield())
481     return true;
482 
483   QualType FT = FD->getType();
484 
485   // Constant arrays of empty records count as empty, strip them off.
486   // Constant arrays of zero length always count as empty.
487   if (AllowArrays)
488     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
489       if (AT->getSize() == 0)
490         return true;
491       FT = AT->getElementType();
492     }
493 
494   const RecordType *RT = FT->getAs<RecordType>();
495   if (!RT)
496     return false;
497 
498   // C++ record fields are never empty, at least in the Itanium ABI.
499   //
500   // FIXME: We should use a predicate for whether this behavior is true in the
501   // current ABI.
502   if (isa<CXXRecordDecl>(RT->getDecl()))
503     return false;
504 
505   return isEmptyRecord(Context, FT, AllowArrays);
506 }
507 
508 /// isEmptyRecord - Return true iff a structure contains only empty
509 /// fields. Note that a structure with a flexible array member is not
510 /// considered empty.
511 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
512   const RecordType *RT = T->getAs<RecordType>();
513   if (!RT)
514     return false;
515   const RecordDecl *RD = RT->getDecl();
516   if (RD->hasFlexibleArrayMember())
517     return false;
518 
519   // If this is a C++ record, check the bases first.
520   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
521     for (const auto &I : CXXRD->bases())
522       if (!isEmptyRecord(Context, I.getType(), true))
523         return false;
524 
525   for (const auto *I : RD->fields())
526     if (!isEmptyField(Context, I, AllowArrays))
527       return false;
528   return true;
529 }
530 
531 /// isSingleElementStruct - Determine if a structure is a "single
532 /// element struct", i.e. it has exactly one non-empty field or
533 /// exactly one field which is itself a single element
534 /// struct. Structures with flexible array members are never
535 /// considered single element structs.
536 ///
537 /// \return The field declaration for the single non-empty field, if
538 /// it exists.
539 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
540   const RecordType *RT = T->getAs<RecordType>();
541   if (!RT)
542     return nullptr;
543 
544   const RecordDecl *RD = RT->getDecl();
545   if (RD->hasFlexibleArrayMember())
546     return nullptr;
547 
548   const Type *Found = nullptr;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
552     for (const auto &I : CXXRD->bases()) {
553       // Ignore empty records.
554       if (isEmptyRecord(Context, I.getType(), true))
555         continue;
556 
557       // If we already found an element then this isn't a single-element struct.
558       if (Found)
559         return nullptr;
560 
561       // If this is non-empty and not a single element struct, the composite
562       // cannot be a single element struct.
563       Found = isSingleElementStruct(I.getType(), Context);
564       if (!Found)
565         return nullptr;
566     }
567   }
568 
569   // Check for single element.
570   for (const auto *FD : RD->fields()) {
571     QualType FT = FD->getType();
572 
573     // Ignore empty fields.
574     if (isEmptyField(Context, FD, true))
575       continue;
576 
577     // If we already found an element then this isn't a single-element
578     // struct.
579     if (Found)
580       return nullptr;
581 
582     // Treat single element arrays as the element.
583     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
584       if (AT->getSize().getZExtValue() != 1)
585         break;
586       FT = AT->getElementType();
587     }
588 
589     if (!isAggregateTypeForABI(FT)) {
590       Found = FT.getTypePtr();
591     } else {
592       Found = isSingleElementStruct(FT, Context);
593       if (!Found)
594         return nullptr;
595     }
596   }
597 
598   // We don't consider a struct a single-element struct if it has
599   // padding beyond the element type.
600   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
601     return nullptr;
602 
603   return Found;
604 }
605 
606 namespace {
607 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
608                        const ABIArgInfo &AI) {
609   // This default implementation defers to the llvm backend's va_arg
610   // instruction. It can handle only passing arguments directly
611   // (typically only handled in the backend for primitive types), or
612   // aggregates passed indirectly by pointer (NOTE: if the "byval"
613   // flag has ABI impact in the callee, this implementation cannot
614   // work.)
615 
616   // Only a few cases are covered here at the moment -- those needed
617   // by the default abi.
618   llvm::Value *Val;
619 
620   if (AI.isIndirect()) {
621     assert(!AI.getPaddingType() &&
622            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
623     assert(
624         !AI.getIndirectRealign() &&
625         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
626 
627     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
628     CharUnits TyAlignForABI = TyInfo.second;
629 
630     llvm::Type *BaseTy =
631         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
632     llvm::Value *Addr =
633         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
634     return Address(Addr, TyAlignForABI);
635   } else {
636     assert((AI.isDirect() || AI.isExtend()) &&
637            "Unexpected ArgInfo Kind in generic VAArg emitter!");
638 
639     assert(!AI.getInReg() &&
640            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
641     assert(!AI.getPaddingType() &&
642            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
643     assert(!AI.getDirectOffset() &&
644            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
645     assert(!AI.getCoerceToType() &&
646            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
647 
648     Address Temp = CGF.CreateMemTemp(Ty, "varet");
649     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
650     CGF.Builder.CreateStore(Val, Temp);
651     return Temp;
652   }
653 }
654 
655 /// DefaultABIInfo - The default implementation for ABI specific
656 /// details. This implementation provides information which results in
657 /// self-consistent and sensible LLVM IR generation, but does not
658 /// conform to any particular ABI.
659 class DefaultABIInfo : public ABIInfo {
660 public:
661   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
662 
663   ABIArgInfo classifyReturnType(QualType RetTy) const;
664   ABIArgInfo classifyArgumentType(QualType RetTy) const;
665 
666   void computeInfo(CGFunctionInfo &FI) const override {
667     if (!getCXXABI().classifyReturnType(FI))
668       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
669     for (auto &I : FI.arguments())
670       I.info = classifyArgumentType(I.type);
671   }
672 
673   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
674                     QualType Ty) const override {
675     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
676   }
677 };
678 
679 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
680 public:
681   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
682     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
683 };
684 
685 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
686   Ty = useFirstFieldIfTransparentUnion(Ty);
687 
688   if (isAggregateTypeForABI(Ty)) {
689     // Records with non-trivial destructors/copy-constructors should not be
690     // passed by value.
691     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
692       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
693 
694     return getNaturalAlignIndirect(Ty);
695   }
696 
697   // Treat an enum type as its underlying type.
698   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
699     Ty = EnumTy->getDecl()->getIntegerType();
700 
701   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
702                                         : ABIArgInfo::getDirect());
703 }
704 
705 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
706   if (RetTy->isVoidType())
707     return ABIArgInfo::getIgnore();
708 
709   if (isAggregateTypeForABI(RetTy))
710     return getNaturalAlignIndirect(RetTy);
711 
712   // Treat an enum type as its underlying type.
713   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
714     RetTy = EnumTy->getDecl()->getIntegerType();
715 
716   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
717                                            : ABIArgInfo::getDirect());
718 }
719 
720 //===----------------------------------------------------------------------===//
721 // WebAssembly ABI Implementation
722 //
723 // This is a very simple ABI that relies a lot on DefaultABIInfo.
724 //===----------------------------------------------------------------------===//
725 
726 class WebAssemblyABIInfo final : public SwiftABIInfo {
727   DefaultABIInfo defaultInfo;
728 
729 public:
730   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
731       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
732 
733 private:
734   ABIArgInfo classifyReturnType(QualType RetTy) const;
735   ABIArgInfo classifyArgumentType(QualType Ty) const;
736 
737   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
738   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
739   // overload them.
740   void computeInfo(CGFunctionInfo &FI) const override {
741     if (!getCXXABI().classifyReturnType(FI))
742       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
743     for (auto &Arg : FI.arguments())
744       Arg.info = classifyArgumentType(Arg.type);
745   }
746 
747   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
748                     QualType Ty) const override;
749 
750   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
751                                     bool asReturnValue) const override {
752     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
753   }
754 
755   bool isSwiftErrorInRegister() const override {
756     return false;
757   }
758 };
759 
760 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
761 public:
762   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
763       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
764 
765   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
766                            CodeGen::CodeGenModule &CGM) const override {
767     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
768     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
769       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
770         llvm::Function *Fn = cast<llvm::Function>(GV);
771         llvm::AttrBuilder B;
772         B.addAttribute("wasm-import-module", Attr->getImportModule());
773         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
774       }
775       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
776         llvm::Function *Fn = cast<llvm::Function>(GV);
777         llvm::AttrBuilder B;
778         B.addAttribute("wasm-import-name", Attr->getImportName());
779         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
780       }
781     }
782 
783     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
784       llvm::Function *Fn = cast<llvm::Function>(GV);
785       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
786         Fn->addFnAttr("no-prototype");
787     }
788   }
789 };
790 
791 /// Classify argument of given type \p Ty.
792 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
793   Ty = useFirstFieldIfTransparentUnion(Ty);
794 
795   if (isAggregateTypeForABI(Ty)) {
796     // Records with non-trivial destructors/copy-constructors should not be
797     // passed by value.
798     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
799       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
800     // Ignore empty structs/unions.
801     if (isEmptyRecord(getContext(), Ty, true))
802       return ABIArgInfo::getIgnore();
803     // Lower single-element structs to just pass a regular value. TODO: We
804     // could do reasonable-size multiple-element structs too, using getExpand(),
805     // though watch out for things like bitfields.
806     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
807       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
808   }
809 
810   // Otherwise just do the default thing.
811   return defaultInfo.classifyArgumentType(Ty);
812 }
813 
814 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
815   if (isAggregateTypeForABI(RetTy)) {
816     // Records with non-trivial destructors/copy-constructors should not be
817     // returned by value.
818     if (!getRecordArgABI(RetTy, getCXXABI())) {
819       // Ignore empty structs/unions.
820       if (isEmptyRecord(getContext(), RetTy, true))
821         return ABIArgInfo::getIgnore();
822       // Lower single-element structs to just return a regular value. TODO: We
823       // could do reasonable-size multiple-element structs too, using
824       // ABIArgInfo::getDirect().
825       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
826         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
827     }
828   }
829 
830   // Otherwise just do the default thing.
831   return defaultInfo.classifyReturnType(RetTy);
832 }
833 
834 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
835                                       QualType Ty) const {
836   bool IsIndirect = isAggregateTypeForABI(Ty) &&
837                     !isEmptyRecord(getContext(), Ty, true) &&
838                     !isSingleElementStruct(Ty, getContext());
839   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
840                           getContext().getTypeInfoInChars(Ty),
841                           CharUnits::fromQuantity(4),
842                           /*AllowHigherAlign=*/true);
843 }
844 
845 //===----------------------------------------------------------------------===//
846 // le32/PNaCl bitcode ABI Implementation
847 //
848 // This is a simplified version of the x86_32 ABI.  Arguments and return values
849 // are always passed on the stack.
850 //===----------------------------------------------------------------------===//
851 
852 class PNaClABIInfo : public ABIInfo {
853  public:
854   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
855 
856   ABIArgInfo classifyReturnType(QualType RetTy) const;
857   ABIArgInfo classifyArgumentType(QualType RetTy) const;
858 
859   void computeInfo(CGFunctionInfo &FI) const override;
860   Address EmitVAArg(CodeGenFunction &CGF,
861                     Address VAListAddr, QualType Ty) const override;
862 };
863 
864 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
865  public:
866   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
867     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
868 };
869 
870 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
871   if (!getCXXABI().classifyReturnType(FI))
872     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
873 
874   for (auto &I : FI.arguments())
875     I.info = classifyArgumentType(I.type);
876 }
877 
878 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
879                                 QualType Ty) const {
880   // The PNaCL ABI is a bit odd, in that varargs don't use normal
881   // function classification. Structs get passed directly for varargs
882   // functions, through a rewriting transform in
883   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
884   // this target to actually support a va_arg instructions with an
885   // aggregate type, unlike other targets.
886   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
887 }
888 
889 /// Classify argument of given type \p Ty.
890 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
891   if (isAggregateTypeForABI(Ty)) {
892     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
893       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
894     return getNaturalAlignIndirect(Ty);
895   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
896     // Treat an enum type as its underlying type.
897     Ty = EnumTy->getDecl()->getIntegerType();
898   } else if (Ty->isFloatingType()) {
899     // Floating-point types don't go inreg.
900     return ABIArgInfo::getDirect();
901   }
902 
903   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
904                                         : ABIArgInfo::getDirect());
905 }
906 
907 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
908   if (RetTy->isVoidType())
909     return ABIArgInfo::getIgnore();
910 
911   // In the PNaCl ABI we always return records/structures on the stack.
912   if (isAggregateTypeForABI(RetTy))
913     return getNaturalAlignIndirect(RetTy);
914 
915   // Treat an enum type as its underlying type.
916   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
917     RetTy = EnumTy->getDecl()->getIntegerType();
918 
919   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
920                                            : ABIArgInfo::getDirect());
921 }
922 
923 /// IsX86_MMXType - Return true if this is an MMX type.
924 bool IsX86_MMXType(llvm::Type *IRType) {
925   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
926   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
927     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
928     IRType->getScalarSizeInBits() != 64;
929 }
930 
931 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
932                                           StringRef Constraint,
933                                           llvm::Type* Ty) {
934   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
935                      .Cases("y", "&y", "^Ym", true)
936                      .Default(false);
937   if (IsMMXCons && Ty->isVectorTy()) {
938     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
939       // Invalid MMX constraint
940       return nullptr;
941     }
942 
943     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
944   }
945 
946   // No operation needed
947   return Ty;
948 }
949 
950 /// Returns true if this type can be passed in SSE registers with the
951 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
952 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
953   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
954     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
955       if (BT->getKind() == BuiltinType::LongDouble) {
956         if (&Context.getTargetInfo().getLongDoubleFormat() ==
957             &llvm::APFloat::x87DoubleExtended())
958           return false;
959       }
960       return true;
961     }
962   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
963     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
964     // registers specially.
965     unsigned VecSize = Context.getTypeSize(VT);
966     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
967       return true;
968   }
969   return false;
970 }
971 
972 /// Returns true if this aggregate is small enough to be passed in SSE registers
973 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
974 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
975   return NumMembers <= 4;
976 }
977 
978 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
979 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
980   auto AI = ABIArgInfo::getDirect(T);
981   AI.setInReg(true);
982   AI.setCanBeFlattened(false);
983   return AI;
984 }
985 
986 //===----------------------------------------------------------------------===//
987 // X86-32 ABI Implementation
988 //===----------------------------------------------------------------------===//
989 
990 /// Similar to llvm::CCState, but for Clang.
991 struct CCState {
992   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
993 
994   unsigned CC;
995   unsigned FreeRegs;
996   unsigned FreeSSERegs;
997 };
998 
999 enum {
1000   // Vectorcall only allows the first 6 parameters to be passed in registers.
1001   VectorcallMaxParamNumAsReg = 6
1002 };
1003 
1004 /// X86_32ABIInfo - The X86-32 ABI information.
1005 class X86_32ABIInfo : public SwiftABIInfo {
1006   enum Class {
1007     Integer,
1008     Float
1009   };
1010 
1011   static const unsigned MinABIStackAlignInBytes = 4;
1012 
1013   bool IsDarwinVectorABI;
1014   bool IsRetSmallStructInRegABI;
1015   bool IsWin32StructABI;
1016   bool IsSoftFloatABI;
1017   bool IsMCUABI;
1018   unsigned DefaultNumRegisterParameters;
1019 
1020   static bool isRegisterSize(unsigned Size) {
1021     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1022   }
1023 
1024   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1025     // FIXME: Assumes vectorcall is in use.
1026     return isX86VectorTypeForVectorCall(getContext(), Ty);
1027   }
1028 
1029   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1030                                          uint64_t NumMembers) const override {
1031     // FIXME: Assumes vectorcall is in use.
1032     return isX86VectorCallAggregateSmallEnough(NumMembers);
1033   }
1034 
1035   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1036 
1037   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1038   /// such that the argument will be passed in memory.
1039   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1040 
1041   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1042 
1043   /// Return the alignment to use for the given type on the stack.
1044   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1045 
1046   Class classify(QualType Ty) const;
1047   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1048   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1049 
1050   /// Updates the number of available free registers, returns
1051   /// true if any registers were allocated.
1052   bool updateFreeRegs(QualType Ty, CCState &State) const;
1053 
1054   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1055                                 bool &NeedsPadding) const;
1056   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1057 
1058   bool canExpandIndirectArgument(QualType Ty) const;
1059 
1060   /// Rewrite the function info so that all memory arguments use
1061   /// inalloca.
1062   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1063 
1064   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1065                            CharUnits &StackOffset, ABIArgInfo &Info,
1066                            QualType Type) const;
1067   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1068                              bool &UsedInAlloca) const;
1069 
1070 public:
1071 
1072   void computeInfo(CGFunctionInfo &FI) const override;
1073   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1074                     QualType Ty) const override;
1075 
1076   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1077                 bool RetSmallStructInRegABI, bool Win32StructABI,
1078                 unsigned NumRegisterParameters, bool SoftFloatABI)
1079     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1080       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1081       IsWin32StructABI(Win32StructABI),
1082       IsSoftFloatABI(SoftFloatABI),
1083       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1084       DefaultNumRegisterParameters(NumRegisterParameters) {}
1085 
1086   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1087                                     bool asReturnValue) const override {
1088     // LLVM's x86-32 lowering currently only assigns up to three
1089     // integer registers and three fp registers.  Oddly, it'll use up to
1090     // four vector registers for vectors, but those can overlap with the
1091     // scalar registers.
1092     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1093   }
1094 
1095   bool isSwiftErrorInRegister() const override {
1096     // x86-32 lowering does not support passing swifterror in a register.
1097     return false;
1098   }
1099 };
1100 
1101 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1102 public:
1103   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1104                           bool RetSmallStructInRegABI, bool Win32StructABI,
1105                           unsigned NumRegisterParameters, bool SoftFloatABI)
1106       : TargetCodeGenInfo(new X86_32ABIInfo(
1107             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1108             NumRegisterParameters, SoftFloatABI)) {}
1109 
1110   static bool isStructReturnInRegABI(
1111       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1112 
1113   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1114                            CodeGen::CodeGenModule &CGM) const override;
1115 
1116   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1117     // Darwin uses different dwarf register numbers for EH.
1118     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1119     return 4;
1120   }
1121 
1122   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1123                                llvm::Value *Address) const override;
1124 
1125   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1126                                   StringRef Constraint,
1127                                   llvm::Type* Ty) const override {
1128     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1129   }
1130 
1131   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1132                                 std::string &Constraints,
1133                                 std::vector<llvm::Type *> &ResultRegTypes,
1134                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1135                                 std::vector<LValue> &ResultRegDests,
1136                                 std::string &AsmString,
1137                                 unsigned NumOutputs) const override;
1138 
1139   llvm::Constant *
1140   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1141     unsigned Sig = (0xeb << 0) |  // jmp rel8
1142                    (0x06 << 8) |  //           .+0x08
1143                    ('v' << 16) |
1144                    ('2' << 24);
1145     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1146   }
1147 
1148   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1149     return "movl\t%ebp, %ebp"
1150            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1151   }
1152 };
1153 
1154 }
1155 
1156 /// Rewrite input constraint references after adding some output constraints.
1157 /// In the case where there is one output and one input and we add one output,
1158 /// we need to replace all operand references greater than or equal to 1:
1159 ///     mov $0, $1
1160 ///     mov eax, $1
1161 /// The result will be:
1162 ///     mov $0, $2
1163 ///     mov eax, $2
1164 static void rewriteInputConstraintReferences(unsigned FirstIn,
1165                                              unsigned NumNewOuts,
1166                                              std::string &AsmString) {
1167   std::string Buf;
1168   llvm::raw_string_ostream OS(Buf);
1169   size_t Pos = 0;
1170   while (Pos < AsmString.size()) {
1171     size_t DollarStart = AsmString.find('$', Pos);
1172     if (DollarStart == std::string::npos)
1173       DollarStart = AsmString.size();
1174     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1175     if (DollarEnd == std::string::npos)
1176       DollarEnd = AsmString.size();
1177     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1178     Pos = DollarEnd;
1179     size_t NumDollars = DollarEnd - DollarStart;
1180     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1181       // We have an operand reference.
1182       size_t DigitStart = Pos;
1183       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1184       if (DigitEnd == std::string::npos)
1185         DigitEnd = AsmString.size();
1186       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1187       unsigned OperandIndex;
1188       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1189         if (OperandIndex >= FirstIn)
1190           OperandIndex += NumNewOuts;
1191         OS << OperandIndex;
1192       } else {
1193         OS << OperandStr;
1194       }
1195       Pos = DigitEnd;
1196     }
1197   }
1198   AsmString = std::move(OS.str());
1199 }
1200 
1201 /// Add output constraints for EAX:EDX because they are return registers.
1202 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1203     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1204     std::vector<llvm::Type *> &ResultRegTypes,
1205     std::vector<llvm::Type *> &ResultTruncRegTypes,
1206     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1207     unsigned NumOutputs) const {
1208   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1209 
1210   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1211   // larger.
1212   if (!Constraints.empty())
1213     Constraints += ',';
1214   if (RetWidth <= 32) {
1215     Constraints += "={eax}";
1216     ResultRegTypes.push_back(CGF.Int32Ty);
1217   } else {
1218     // Use the 'A' constraint for EAX:EDX.
1219     Constraints += "=A";
1220     ResultRegTypes.push_back(CGF.Int64Ty);
1221   }
1222 
1223   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1224   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1225   ResultTruncRegTypes.push_back(CoerceTy);
1226 
1227   // Coerce the integer by bitcasting the return slot pointer.
1228   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1229                                                   CoerceTy->getPointerTo()));
1230   ResultRegDests.push_back(ReturnSlot);
1231 
1232   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1233 }
1234 
1235 /// shouldReturnTypeInRegister - Determine if the given type should be
1236 /// returned in a register (for the Darwin and MCU ABI).
1237 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1238                                                ASTContext &Context) const {
1239   uint64_t Size = Context.getTypeSize(Ty);
1240 
1241   // For i386, type must be register sized.
1242   // For the MCU ABI, it only needs to be <= 8-byte
1243   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1244    return false;
1245 
1246   if (Ty->isVectorType()) {
1247     // 64- and 128- bit vectors inside structures are not returned in
1248     // registers.
1249     if (Size == 64 || Size == 128)
1250       return false;
1251 
1252     return true;
1253   }
1254 
1255   // If this is a builtin, pointer, enum, complex type, member pointer, or
1256   // member function pointer it is ok.
1257   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1258       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1259       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1260     return true;
1261 
1262   // Arrays are treated like records.
1263   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1264     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1265 
1266   // Otherwise, it must be a record type.
1267   const RecordType *RT = Ty->getAs<RecordType>();
1268   if (!RT) return false;
1269 
1270   // FIXME: Traverse bases here too.
1271 
1272   // Structure types are passed in register if all fields would be
1273   // passed in a register.
1274   for (const auto *FD : RT->getDecl()->fields()) {
1275     // Empty fields are ignored.
1276     if (isEmptyField(Context, FD, true))
1277       continue;
1278 
1279     // Check fields recursively.
1280     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1281       return false;
1282   }
1283   return true;
1284 }
1285 
1286 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1287   // Treat complex types as the element type.
1288   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1289     Ty = CTy->getElementType();
1290 
1291   // Check for a type which we know has a simple scalar argument-passing
1292   // convention without any padding.  (We're specifically looking for 32
1293   // and 64-bit integer and integer-equivalents, float, and double.)
1294   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1295       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1296     return false;
1297 
1298   uint64_t Size = Context.getTypeSize(Ty);
1299   return Size == 32 || Size == 64;
1300 }
1301 
1302 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1303                           uint64_t &Size) {
1304   for (const auto *FD : RD->fields()) {
1305     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1306     // argument is smaller than 32-bits, expanding the struct will create
1307     // alignment padding.
1308     if (!is32Or64BitBasicType(FD->getType(), Context))
1309       return false;
1310 
1311     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1312     // how to expand them yet, and the predicate for telling if a bitfield still
1313     // counts as "basic" is more complicated than what we were doing previously.
1314     if (FD->isBitField())
1315       return false;
1316 
1317     Size += Context.getTypeSize(FD->getType());
1318   }
1319   return true;
1320 }
1321 
1322 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1323                                  uint64_t &Size) {
1324   // Don't do this if there are any non-empty bases.
1325   for (const CXXBaseSpecifier &Base : RD->bases()) {
1326     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1327                               Size))
1328       return false;
1329   }
1330   if (!addFieldSizes(Context, RD, Size))
1331     return false;
1332   return true;
1333 }
1334 
1335 /// Test whether an argument type which is to be passed indirectly (on the
1336 /// stack) would have the equivalent layout if it was expanded into separate
1337 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1338 /// optimizations.
1339 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1340   // We can only expand structure types.
1341   const RecordType *RT = Ty->getAs<RecordType>();
1342   if (!RT)
1343     return false;
1344   const RecordDecl *RD = RT->getDecl();
1345   uint64_t Size = 0;
1346   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1347     if (!IsWin32StructABI) {
1348       // On non-Windows, we have to conservatively match our old bitcode
1349       // prototypes in order to be ABI-compatible at the bitcode level.
1350       if (!CXXRD->isCLike())
1351         return false;
1352     } else {
1353       // Don't do this for dynamic classes.
1354       if (CXXRD->isDynamicClass())
1355         return false;
1356     }
1357     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1358       return false;
1359   } else {
1360     if (!addFieldSizes(getContext(), RD, Size))
1361       return false;
1362   }
1363 
1364   // We can do this if there was no alignment padding.
1365   return Size == getContext().getTypeSize(Ty);
1366 }
1367 
1368 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1369   // If the return value is indirect, then the hidden argument is consuming one
1370   // integer register.
1371   if (State.FreeRegs) {
1372     --State.FreeRegs;
1373     if (!IsMCUABI)
1374       return getNaturalAlignIndirectInReg(RetTy);
1375   }
1376   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1377 }
1378 
1379 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1380                                              CCState &State) const {
1381   if (RetTy->isVoidType())
1382     return ABIArgInfo::getIgnore();
1383 
1384   const Type *Base = nullptr;
1385   uint64_t NumElts = 0;
1386   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1387        State.CC == llvm::CallingConv::X86_RegCall) &&
1388       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1389     // The LLVM struct type for such an aggregate should lower properly.
1390     return ABIArgInfo::getDirect();
1391   }
1392 
1393   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1394     // On Darwin, some vectors are returned in registers.
1395     if (IsDarwinVectorABI) {
1396       uint64_t Size = getContext().getTypeSize(RetTy);
1397 
1398       // 128-bit vectors are a special case; they are returned in
1399       // registers and we need to make sure to pick a type the LLVM
1400       // backend will like.
1401       if (Size == 128)
1402         return ABIArgInfo::getDirect(llvm::VectorType::get(
1403                   llvm::Type::getInt64Ty(getVMContext()), 2));
1404 
1405       // Always return in register if it fits in a general purpose
1406       // register, or if it is 64 bits and has a single element.
1407       if ((Size == 8 || Size == 16 || Size == 32) ||
1408           (Size == 64 && VT->getNumElements() == 1))
1409         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1410                                                             Size));
1411 
1412       return getIndirectReturnResult(RetTy, State);
1413     }
1414 
1415     return ABIArgInfo::getDirect();
1416   }
1417 
1418   if (isAggregateTypeForABI(RetTy)) {
1419     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1420       // Structures with flexible arrays are always indirect.
1421       if (RT->getDecl()->hasFlexibleArrayMember())
1422         return getIndirectReturnResult(RetTy, State);
1423     }
1424 
1425     // If specified, structs and unions are always indirect.
1426     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1427       return getIndirectReturnResult(RetTy, State);
1428 
1429     // Ignore empty structs/unions.
1430     if (isEmptyRecord(getContext(), RetTy, true))
1431       return ABIArgInfo::getIgnore();
1432 
1433     // Small structures which are register sized are generally returned
1434     // in a register.
1435     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1436       uint64_t Size = getContext().getTypeSize(RetTy);
1437 
1438       // As a special-case, if the struct is a "single-element" struct, and
1439       // the field is of type "float" or "double", return it in a
1440       // floating-point register. (MSVC does not apply this special case.)
1441       // We apply a similar transformation for pointer types to improve the
1442       // quality of the generated IR.
1443       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1444         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1445             || SeltTy->hasPointerRepresentation())
1446           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1447 
1448       // FIXME: We should be able to narrow this integer in cases with dead
1449       // padding.
1450       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1451     }
1452 
1453     return getIndirectReturnResult(RetTy, State);
1454   }
1455 
1456   // Treat an enum type as its underlying type.
1457   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1458     RetTy = EnumTy->getDecl()->getIntegerType();
1459 
1460   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1461                                            : ABIArgInfo::getDirect());
1462 }
1463 
1464 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1465   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1466 }
1467 
1468 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1469   const RecordType *RT = Ty->getAs<RecordType>();
1470   if (!RT)
1471     return 0;
1472   const RecordDecl *RD = RT->getDecl();
1473 
1474   // If this is a C++ record, check the bases first.
1475   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1476     for (const auto &I : CXXRD->bases())
1477       if (!isRecordWithSSEVectorType(Context, I.getType()))
1478         return false;
1479 
1480   for (const auto *i : RD->fields()) {
1481     QualType FT = i->getType();
1482 
1483     if (isSSEVectorType(Context, FT))
1484       return true;
1485 
1486     if (isRecordWithSSEVectorType(Context, FT))
1487       return true;
1488   }
1489 
1490   return false;
1491 }
1492 
1493 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1494                                                  unsigned Align) const {
1495   // Otherwise, if the alignment is less than or equal to the minimum ABI
1496   // alignment, just use the default; the backend will handle this.
1497   if (Align <= MinABIStackAlignInBytes)
1498     return 0; // Use default alignment.
1499 
1500   // On non-Darwin, the stack type alignment is always 4.
1501   if (!IsDarwinVectorABI) {
1502     // Set explicit alignment, since we may need to realign the top.
1503     return MinABIStackAlignInBytes;
1504   }
1505 
1506   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1507   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1508                       isRecordWithSSEVectorType(getContext(), Ty)))
1509     return 16;
1510 
1511   return MinABIStackAlignInBytes;
1512 }
1513 
1514 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1515                                             CCState &State) const {
1516   if (!ByVal) {
1517     if (State.FreeRegs) {
1518       --State.FreeRegs; // Non-byval indirects just use one pointer.
1519       if (!IsMCUABI)
1520         return getNaturalAlignIndirectInReg(Ty);
1521     }
1522     return getNaturalAlignIndirect(Ty, false);
1523   }
1524 
1525   // Compute the byval alignment.
1526   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1527   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1528   if (StackAlign == 0)
1529     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1530 
1531   // If the stack alignment is less than the type alignment, realign the
1532   // argument.
1533   bool Realign = TypeAlign > StackAlign;
1534   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1535                                  /*ByVal=*/true, Realign);
1536 }
1537 
1538 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1539   const Type *T = isSingleElementStruct(Ty, getContext());
1540   if (!T)
1541     T = Ty.getTypePtr();
1542 
1543   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1544     BuiltinType::Kind K = BT->getKind();
1545     if (K == BuiltinType::Float || K == BuiltinType::Double)
1546       return Float;
1547   }
1548   return Integer;
1549 }
1550 
1551 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1552   if (!IsSoftFloatABI) {
1553     Class C = classify(Ty);
1554     if (C == Float)
1555       return false;
1556   }
1557 
1558   unsigned Size = getContext().getTypeSize(Ty);
1559   unsigned SizeInRegs = (Size + 31) / 32;
1560 
1561   if (SizeInRegs == 0)
1562     return false;
1563 
1564   if (!IsMCUABI) {
1565     if (SizeInRegs > State.FreeRegs) {
1566       State.FreeRegs = 0;
1567       return false;
1568     }
1569   } else {
1570     // The MCU psABI allows passing parameters in-reg even if there are
1571     // earlier parameters that are passed on the stack. Also,
1572     // it does not allow passing >8-byte structs in-register,
1573     // even if there are 3 free registers available.
1574     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1575       return false;
1576   }
1577 
1578   State.FreeRegs -= SizeInRegs;
1579   return true;
1580 }
1581 
1582 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1583                                              bool &InReg,
1584                                              bool &NeedsPadding) const {
1585   // On Windows, aggregates other than HFAs are never passed in registers, and
1586   // they do not consume register slots. Homogenous floating-point aggregates
1587   // (HFAs) have already been dealt with at this point.
1588   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1589     return false;
1590 
1591   NeedsPadding = false;
1592   InReg = !IsMCUABI;
1593 
1594   if (!updateFreeRegs(Ty, State))
1595     return false;
1596 
1597   if (IsMCUABI)
1598     return true;
1599 
1600   if (State.CC == llvm::CallingConv::X86_FastCall ||
1601       State.CC == llvm::CallingConv::X86_VectorCall ||
1602       State.CC == llvm::CallingConv::X86_RegCall) {
1603     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1604       NeedsPadding = true;
1605 
1606     return false;
1607   }
1608 
1609   return true;
1610 }
1611 
1612 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1613   if (!updateFreeRegs(Ty, State))
1614     return false;
1615 
1616   if (IsMCUABI)
1617     return false;
1618 
1619   if (State.CC == llvm::CallingConv::X86_FastCall ||
1620       State.CC == llvm::CallingConv::X86_VectorCall ||
1621       State.CC == llvm::CallingConv::X86_RegCall) {
1622     if (getContext().getTypeSize(Ty) > 32)
1623       return false;
1624 
1625     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1626         Ty->isReferenceType());
1627   }
1628 
1629   return true;
1630 }
1631 
1632 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1633                                                CCState &State) const {
1634   // FIXME: Set alignment on indirect arguments.
1635 
1636   Ty = useFirstFieldIfTransparentUnion(Ty);
1637 
1638   // Check with the C++ ABI first.
1639   const RecordType *RT = Ty->getAs<RecordType>();
1640   if (RT) {
1641     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1642     if (RAA == CGCXXABI::RAA_Indirect) {
1643       return getIndirectResult(Ty, false, State);
1644     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1645       // The field index doesn't matter, we'll fix it up later.
1646       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1647     }
1648   }
1649 
1650   // Regcall uses the concept of a homogenous vector aggregate, similar
1651   // to other targets.
1652   const Type *Base = nullptr;
1653   uint64_t NumElts = 0;
1654   if (State.CC == llvm::CallingConv::X86_RegCall &&
1655       isHomogeneousAggregate(Ty, Base, NumElts)) {
1656 
1657     if (State.FreeSSERegs >= NumElts) {
1658       State.FreeSSERegs -= NumElts;
1659       if (Ty->isBuiltinType() || Ty->isVectorType())
1660         return ABIArgInfo::getDirect();
1661       return ABIArgInfo::getExpand();
1662     }
1663     return getIndirectResult(Ty, /*ByVal=*/false, State);
1664   }
1665 
1666   if (isAggregateTypeForABI(Ty)) {
1667     // Structures with flexible arrays are always indirect.
1668     // FIXME: This should not be byval!
1669     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1670       return getIndirectResult(Ty, true, State);
1671 
1672     // Ignore empty structs/unions on non-Windows.
1673     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1674       return ABIArgInfo::getIgnore();
1675 
1676     llvm::LLVMContext &LLVMContext = getVMContext();
1677     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1678     bool NeedsPadding = false;
1679     bool InReg;
1680     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1681       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1682       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1683       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1684       if (InReg)
1685         return ABIArgInfo::getDirectInReg(Result);
1686       else
1687         return ABIArgInfo::getDirect(Result);
1688     }
1689     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1690 
1691     // Expand small (<= 128-bit) record types when we know that the stack layout
1692     // of those arguments will match the struct. This is important because the
1693     // LLVM backend isn't smart enough to remove byval, which inhibits many
1694     // optimizations.
1695     // Don't do this for the MCU if there are still free integer registers
1696     // (see X86_64 ABI for full explanation).
1697     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1698         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1699       return ABIArgInfo::getExpandWithPadding(
1700           State.CC == llvm::CallingConv::X86_FastCall ||
1701               State.CC == llvm::CallingConv::X86_VectorCall ||
1702               State.CC == llvm::CallingConv::X86_RegCall,
1703           PaddingType);
1704 
1705     return getIndirectResult(Ty, true, State);
1706   }
1707 
1708   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1709     // On Darwin, some vectors are passed in memory, we handle this by passing
1710     // it as an i8/i16/i32/i64.
1711     if (IsDarwinVectorABI) {
1712       uint64_t Size = getContext().getTypeSize(Ty);
1713       if ((Size == 8 || Size == 16 || Size == 32) ||
1714           (Size == 64 && VT->getNumElements() == 1))
1715         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1716                                                             Size));
1717     }
1718 
1719     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1720       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1721 
1722     return ABIArgInfo::getDirect();
1723   }
1724 
1725 
1726   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1727     Ty = EnumTy->getDecl()->getIntegerType();
1728 
1729   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1730 
1731   if (Ty->isPromotableIntegerType()) {
1732     if (InReg)
1733       return ABIArgInfo::getExtendInReg(Ty);
1734     return ABIArgInfo::getExtend(Ty);
1735   }
1736 
1737   if (InReg)
1738     return ABIArgInfo::getDirectInReg();
1739   return ABIArgInfo::getDirect();
1740 }
1741 
1742 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1743                                           bool &UsedInAlloca) const {
1744   // Vectorcall x86 works subtly different than in x64, so the format is
1745   // a bit different than the x64 version.  First, all vector types (not HVAs)
1746   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1747   // This differs from the x64 implementation, where the first 6 by INDEX get
1748   // registers.
1749   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1750   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1751   // first take up the remaining YMM/XMM registers. If insufficient registers
1752   // remain but an integer register (ECX/EDX) is available, it will be passed
1753   // in that, else, on the stack.
1754   for (auto &I : FI.arguments()) {
1755     // First pass do all the vector types.
1756     const Type *Base = nullptr;
1757     uint64_t NumElts = 0;
1758     const QualType& Ty = I.type;
1759     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1760         isHomogeneousAggregate(Ty, Base, NumElts)) {
1761       if (State.FreeSSERegs >= NumElts) {
1762         State.FreeSSERegs -= NumElts;
1763         I.info = ABIArgInfo::getDirect();
1764       } else {
1765         I.info = classifyArgumentType(Ty, State);
1766       }
1767       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1768     }
1769   }
1770 
1771   for (auto &I : FI.arguments()) {
1772     // Second pass, do the rest!
1773     const Type *Base = nullptr;
1774     uint64_t NumElts = 0;
1775     const QualType& Ty = I.type;
1776     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1777 
1778     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1779       // Assign true HVAs (non vector/native FP types).
1780       if (State.FreeSSERegs >= NumElts) {
1781         State.FreeSSERegs -= NumElts;
1782         I.info = getDirectX86Hva();
1783       } else {
1784         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1785       }
1786     } else if (!IsHva) {
1787       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1788       I.info = classifyArgumentType(Ty, State);
1789       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1790     }
1791   }
1792 }
1793 
1794 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1795   CCState State(FI.getCallingConvention());
1796   if (IsMCUABI)
1797     State.FreeRegs = 3;
1798   else if (State.CC == llvm::CallingConv::X86_FastCall)
1799     State.FreeRegs = 2;
1800   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1801     State.FreeRegs = 2;
1802     State.FreeSSERegs = 6;
1803   } else if (FI.getHasRegParm())
1804     State.FreeRegs = FI.getRegParm();
1805   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1806     State.FreeRegs = 5;
1807     State.FreeSSERegs = 8;
1808   } else
1809     State.FreeRegs = DefaultNumRegisterParameters;
1810 
1811   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1812     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1813   } else if (FI.getReturnInfo().isIndirect()) {
1814     // The C++ ABI is not aware of register usage, so we have to check if the
1815     // return value was sret and put it in a register ourselves if appropriate.
1816     if (State.FreeRegs) {
1817       --State.FreeRegs;  // The sret parameter consumes a register.
1818       if (!IsMCUABI)
1819         FI.getReturnInfo().setInReg(true);
1820     }
1821   }
1822 
1823   // The chain argument effectively gives us another free register.
1824   if (FI.isChainCall())
1825     ++State.FreeRegs;
1826 
1827   bool UsedInAlloca = false;
1828   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1829     computeVectorCallArgs(FI, State, UsedInAlloca);
1830   } else {
1831     // If not vectorcall, revert to normal behavior.
1832     for (auto &I : FI.arguments()) {
1833       I.info = classifyArgumentType(I.type, State);
1834       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1835     }
1836   }
1837 
1838   // If we needed to use inalloca for any argument, do a second pass and rewrite
1839   // all the memory arguments to use inalloca.
1840   if (UsedInAlloca)
1841     rewriteWithInAlloca(FI);
1842 }
1843 
1844 void
1845 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1846                                    CharUnits &StackOffset, ABIArgInfo &Info,
1847                                    QualType Type) const {
1848   // Arguments are always 4-byte-aligned.
1849   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1850 
1851   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1852   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1853   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1854   StackOffset += getContext().getTypeSizeInChars(Type);
1855 
1856   // Insert padding bytes to respect alignment.
1857   CharUnits FieldEnd = StackOffset;
1858   StackOffset = FieldEnd.alignTo(FieldAlign);
1859   if (StackOffset != FieldEnd) {
1860     CharUnits NumBytes = StackOffset - FieldEnd;
1861     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1862     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1863     FrameFields.push_back(Ty);
1864   }
1865 }
1866 
1867 static bool isArgInAlloca(const ABIArgInfo &Info) {
1868   // Leave ignored and inreg arguments alone.
1869   switch (Info.getKind()) {
1870   case ABIArgInfo::InAlloca:
1871     return true;
1872   case ABIArgInfo::Indirect:
1873     assert(Info.getIndirectByVal());
1874     return true;
1875   case ABIArgInfo::Ignore:
1876     return false;
1877   case ABIArgInfo::Direct:
1878   case ABIArgInfo::Extend:
1879     if (Info.getInReg())
1880       return false;
1881     return true;
1882   case ABIArgInfo::Expand:
1883   case ABIArgInfo::CoerceAndExpand:
1884     // These are aggregate types which are never passed in registers when
1885     // inalloca is involved.
1886     return true;
1887   }
1888   llvm_unreachable("invalid enum");
1889 }
1890 
1891 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1892   assert(IsWin32StructABI && "inalloca only supported on win32");
1893 
1894   // Build a packed struct type for all of the arguments in memory.
1895   SmallVector<llvm::Type *, 6> FrameFields;
1896 
1897   // The stack alignment is always 4.
1898   CharUnits StackAlign = CharUnits::fromQuantity(4);
1899 
1900   CharUnits StackOffset;
1901   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1902 
1903   // Put 'this' into the struct before 'sret', if necessary.
1904   bool IsThisCall =
1905       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1906   ABIArgInfo &Ret = FI.getReturnInfo();
1907   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1908       isArgInAlloca(I->info)) {
1909     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1910     ++I;
1911   }
1912 
1913   // Put the sret parameter into the inalloca struct if it's in memory.
1914   if (Ret.isIndirect() && !Ret.getInReg()) {
1915     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1916     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1917     // On Windows, the hidden sret parameter is always returned in eax.
1918     Ret.setInAllocaSRet(IsWin32StructABI);
1919   }
1920 
1921   // Skip the 'this' parameter in ecx.
1922   if (IsThisCall)
1923     ++I;
1924 
1925   // Put arguments passed in memory into the struct.
1926   for (; I != E; ++I) {
1927     if (isArgInAlloca(I->info))
1928       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1929   }
1930 
1931   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1932                                         /*isPacked=*/true),
1933                   StackAlign);
1934 }
1935 
1936 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1937                                  Address VAListAddr, QualType Ty) const {
1938 
1939   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1940 
1941   // x86-32 changes the alignment of certain arguments on the stack.
1942   //
1943   // Just messing with TypeInfo like this works because we never pass
1944   // anything indirectly.
1945   TypeInfo.second = CharUnits::fromQuantity(
1946                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1947 
1948   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1949                           TypeInfo, CharUnits::fromQuantity(4),
1950                           /*AllowHigherAlign*/ true);
1951 }
1952 
1953 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1954     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1955   assert(Triple.getArch() == llvm::Triple::x86);
1956 
1957   switch (Opts.getStructReturnConvention()) {
1958   case CodeGenOptions::SRCK_Default:
1959     break;
1960   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1961     return false;
1962   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1963     return true;
1964   }
1965 
1966   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1967     return true;
1968 
1969   switch (Triple.getOS()) {
1970   case llvm::Triple::DragonFly:
1971   case llvm::Triple::FreeBSD:
1972   case llvm::Triple::OpenBSD:
1973   case llvm::Triple::Win32:
1974     return true;
1975   default:
1976     return false;
1977   }
1978 }
1979 
1980 void X86_32TargetCodeGenInfo::setTargetAttributes(
1981     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1982   if (GV->isDeclaration())
1983     return;
1984   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1985     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1986       llvm::Function *Fn = cast<llvm::Function>(GV);
1987       Fn->addFnAttr("stackrealign");
1988     }
1989     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1990       llvm::Function *Fn = cast<llvm::Function>(GV);
1991       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1992     }
1993   }
1994 }
1995 
1996 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1997                                                CodeGen::CodeGenFunction &CGF,
1998                                                llvm::Value *Address) const {
1999   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2000 
2001   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2002 
2003   // 0-7 are the eight integer registers;  the order is different
2004   //   on Darwin (for EH), but the range is the same.
2005   // 8 is %eip.
2006   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2007 
2008   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2009     // 12-16 are st(0..4).  Not sure why we stop at 4.
2010     // These have size 16, which is sizeof(long double) on
2011     // platforms with 8-byte alignment for that type.
2012     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2013     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2014 
2015   } else {
2016     // 9 is %eflags, which doesn't get a size on Darwin for some
2017     // reason.
2018     Builder.CreateAlignedStore(
2019         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2020                                CharUnits::One());
2021 
2022     // 11-16 are st(0..5).  Not sure why we stop at 5.
2023     // These have size 12, which is sizeof(long double) on
2024     // platforms with 4-byte alignment for that type.
2025     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2026     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2027   }
2028 
2029   return false;
2030 }
2031 
2032 //===----------------------------------------------------------------------===//
2033 // X86-64 ABI Implementation
2034 //===----------------------------------------------------------------------===//
2035 
2036 
2037 namespace {
2038 /// The AVX ABI level for X86 targets.
2039 enum class X86AVXABILevel {
2040   None,
2041   AVX,
2042   AVX512
2043 };
2044 
2045 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2046 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2047   switch (AVXLevel) {
2048   case X86AVXABILevel::AVX512:
2049     return 512;
2050   case X86AVXABILevel::AVX:
2051     return 256;
2052   case X86AVXABILevel::None:
2053     return 128;
2054   }
2055   llvm_unreachable("Unknown AVXLevel");
2056 }
2057 
2058 /// X86_64ABIInfo - The X86_64 ABI information.
2059 class X86_64ABIInfo : public SwiftABIInfo {
2060   enum Class {
2061     Integer = 0,
2062     SSE,
2063     SSEUp,
2064     X87,
2065     X87Up,
2066     ComplexX87,
2067     NoClass,
2068     Memory
2069   };
2070 
2071   /// merge - Implement the X86_64 ABI merging algorithm.
2072   ///
2073   /// Merge an accumulating classification \arg Accum with a field
2074   /// classification \arg Field.
2075   ///
2076   /// \param Accum - The accumulating classification. This should
2077   /// always be either NoClass or the result of a previous merge
2078   /// call. In addition, this should never be Memory (the caller
2079   /// should just return Memory for the aggregate).
2080   static Class merge(Class Accum, Class Field);
2081 
2082   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2083   ///
2084   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2085   /// final MEMORY or SSE classes when necessary.
2086   ///
2087   /// \param AggregateSize - The size of the current aggregate in
2088   /// the classification process.
2089   ///
2090   /// \param Lo - The classification for the parts of the type
2091   /// residing in the low word of the containing object.
2092   ///
2093   /// \param Hi - The classification for the parts of the type
2094   /// residing in the higher words of the containing object.
2095   ///
2096   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2097 
2098   /// classify - Determine the x86_64 register classes in which the
2099   /// given type T should be passed.
2100   ///
2101   /// \param Lo - The classification for the parts of the type
2102   /// residing in the low word of the containing object.
2103   ///
2104   /// \param Hi - The classification for the parts of the type
2105   /// residing in the high word of the containing object.
2106   ///
2107   /// \param OffsetBase - The bit offset of this type in the
2108   /// containing object.  Some parameters are classified different
2109   /// depending on whether they straddle an eightbyte boundary.
2110   ///
2111   /// \param isNamedArg - Whether the argument in question is a "named"
2112   /// argument, as used in AMD64-ABI 3.5.7.
2113   ///
2114   /// If a word is unused its result will be NoClass; if a type should
2115   /// be passed in Memory then at least the classification of \arg Lo
2116   /// will be Memory.
2117   ///
2118   /// The \arg Lo class will be NoClass iff the argument is ignored.
2119   ///
2120   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2121   /// also be ComplexX87.
2122   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2123                 bool isNamedArg) const;
2124 
2125   llvm::Type *GetByteVectorType(QualType Ty) const;
2126   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2127                                  unsigned IROffset, QualType SourceTy,
2128                                  unsigned SourceOffset) const;
2129   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2130                                      unsigned IROffset, QualType SourceTy,
2131                                      unsigned SourceOffset) const;
2132 
2133   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2134   /// such that the argument will be returned in memory.
2135   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2136 
2137   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2138   /// such that the argument will be passed in memory.
2139   ///
2140   /// \param freeIntRegs - The number of free integer registers remaining
2141   /// available.
2142   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2143 
2144   ABIArgInfo classifyReturnType(QualType RetTy) const;
2145 
2146   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2147                                   unsigned &neededInt, unsigned &neededSSE,
2148                                   bool isNamedArg) const;
2149 
2150   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2151                                        unsigned &NeededSSE) const;
2152 
2153   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2154                                            unsigned &NeededSSE) const;
2155 
2156   bool IsIllegalVectorType(QualType Ty) const;
2157 
2158   /// The 0.98 ABI revision clarified a lot of ambiguities,
2159   /// unfortunately in ways that were not always consistent with
2160   /// certain previous compilers.  In particular, platforms which
2161   /// required strict binary compatibility with older versions of GCC
2162   /// may need to exempt themselves.
2163   bool honorsRevision0_98() const {
2164     return !getTarget().getTriple().isOSDarwin();
2165   }
2166 
2167   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2168   /// classify it as INTEGER (for compatibility with older clang compilers).
2169   bool classifyIntegerMMXAsSSE() const {
2170     // Clang <= 3.8 did not do this.
2171     if (getContext().getLangOpts().getClangABICompat() <=
2172         LangOptions::ClangABI::Ver3_8)
2173       return false;
2174 
2175     const llvm::Triple &Triple = getTarget().getTriple();
2176     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2177       return false;
2178     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2179       return false;
2180     return true;
2181   }
2182 
2183   // GCC classifies vectors of __int128 as memory.
2184   bool passInt128VectorsInMem() const {
2185     // Clang <= 9.0 did not do this.
2186     if (getContext().getLangOpts().getClangABICompat() <=
2187         LangOptions::ClangABI::Ver9)
2188       return false;
2189 
2190     const llvm::Triple &T = getTarget().getTriple();
2191     return T.isOSLinux() || T.isOSNetBSD();
2192   }
2193 
2194   X86AVXABILevel AVXLevel;
2195   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2196   // 64-bit hardware.
2197   bool Has64BitPointers;
2198 
2199 public:
2200   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2201       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2202       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2203   }
2204 
2205   bool isPassedUsingAVXType(QualType type) const {
2206     unsigned neededInt, neededSSE;
2207     // The freeIntRegs argument doesn't matter here.
2208     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2209                                            /*isNamedArg*/true);
2210     if (info.isDirect()) {
2211       llvm::Type *ty = info.getCoerceToType();
2212       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2213         return (vectorTy->getBitWidth() > 128);
2214     }
2215     return false;
2216   }
2217 
2218   void computeInfo(CGFunctionInfo &FI) const override;
2219 
2220   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2221                     QualType Ty) const override;
2222   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2223                       QualType Ty) const override;
2224 
2225   bool has64BitPointers() const {
2226     return Has64BitPointers;
2227   }
2228 
2229   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2230                                     bool asReturnValue) const override {
2231     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2232   }
2233   bool isSwiftErrorInRegister() const override {
2234     return true;
2235   }
2236 };
2237 
2238 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2239 class WinX86_64ABIInfo : public SwiftABIInfo {
2240 public:
2241   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2242       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2243         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2244 
2245   void computeInfo(CGFunctionInfo &FI) const override;
2246 
2247   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2248                     QualType Ty) const override;
2249 
2250   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2251     // FIXME: Assumes vectorcall is in use.
2252     return isX86VectorTypeForVectorCall(getContext(), Ty);
2253   }
2254 
2255   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2256                                          uint64_t NumMembers) const override {
2257     // FIXME: Assumes vectorcall is in use.
2258     return isX86VectorCallAggregateSmallEnough(NumMembers);
2259   }
2260 
2261   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2262                                     bool asReturnValue) const override {
2263     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2264   }
2265 
2266   bool isSwiftErrorInRegister() const override {
2267     return true;
2268   }
2269 
2270 private:
2271   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2272                       bool IsVectorCall, bool IsRegCall) const;
2273   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2274                                       const ABIArgInfo &current) const;
2275   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2276                              bool IsVectorCall, bool IsRegCall) const;
2277 
2278   X86AVXABILevel AVXLevel;
2279 
2280   bool IsMingw64;
2281 };
2282 
2283 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2284 public:
2285   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2286       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2287 
2288   const X86_64ABIInfo &getABIInfo() const {
2289     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2290   }
2291 
2292   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2293   /// the autoreleaseRV/retainRV optimization.
2294   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2295     return true;
2296   }
2297 
2298   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2299     return 7;
2300   }
2301 
2302   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2303                                llvm::Value *Address) const override {
2304     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2305 
2306     // 0-15 are the 16 integer registers.
2307     // 16 is %rip.
2308     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2309     return false;
2310   }
2311 
2312   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2313                                   StringRef Constraint,
2314                                   llvm::Type* Ty) const override {
2315     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2316   }
2317 
2318   bool isNoProtoCallVariadic(const CallArgList &args,
2319                              const FunctionNoProtoType *fnType) const override {
2320     // The default CC on x86-64 sets %al to the number of SSA
2321     // registers used, and GCC sets this when calling an unprototyped
2322     // function, so we override the default behavior.  However, don't do
2323     // that when AVX types are involved: the ABI explicitly states it is
2324     // undefined, and it doesn't work in practice because of how the ABI
2325     // defines varargs anyway.
2326     if (fnType->getCallConv() == CC_C) {
2327       bool HasAVXType = false;
2328       for (CallArgList::const_iterator
2329              it = args.begin(), ie = args.end(); it != ie; ++it) {
2330         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2331           HasAVXType = true;
2332           break;
2333         }
2334       }
2335 
2336       if (!HasAVXType)
2337         return true;
2338     }
2339 
2340     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2341   }
2342 
2343   llvm::Constant *
2344   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2345     unsigned Sig = (0xeb << 0) | // jmp rel8
2346                    (0x06 << 8) | //           .+0x08
2347                    ('v' << 16) |
2348                    ('2' << 24);
2349     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2350   }
2351 
2352   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2353                            CodeGen::CodeGenModule &CGM) const override {
2354     if (GV->isDeclaration())
2355       return;
2356     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2357       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2358         llvm::Function *Fn = cast<llvm::Function>(GV);
2359         Fn->addFnAttr("stackrealign");
2360       }
2361       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2362         llvm::Function *Fn = cast<llvm::Function>(GV);
2363         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2364       }
2365     }
2366   }
2367 };
2368 
2369 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2370   // If the argument does not end in .lib, automatically add the suffix.
2371   // If the argument contains a space, enclose it in quotes.
2372   // This matches the behavior of MSVC.
2373   bool Quote = (Lib.find(" ") != StringRef::npos);
2374   std::string ArgStr = Quote ? "\"" : "";
2375   ArgStr += Lib;
2376   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2377     ArgStr += ".lib";
2378   ArgStr += Quote ? "\"" : "";
2379   return ArgStr;
2380 }
2381 
2382 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2383 public:
2384   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2385         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2386         unsigned NumRegisterParameters)
2387     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2388         Win32StructABI, NumRegisterParameters, false) {}
2389 
2390   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2391                            CodeGen::CodeGenModule &CGM) const override;
2392 
2393   void getDependentLibraryOption(llvm::StringRef Lib,
2394                                  llvm::SmallString<24> &Opt) const override {
2395     Opt = "/DEFAULTLIB:";
2396     Opt += qualifyWindowsLibrary(Lib);
2397   }
2398 
2399   void getDetectMismatchOption(llvm::StringRef Name,
2400                                llvm::StringRef Value,
2401                                llvm::SmallString<32> &Opt) const override {
2402     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2403   }
2404 };
2405 
2406 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2407                                           CodeGen::CodeGenModule &CGM) {
2408   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2409 
2410     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2411       Fn->addFnAttr("stack-probe-size",
2412                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2413     if (CGM.getCodeGenOpts().NoStackArgProbe)
2414       Fn->addFnAttr("no-stack-arg-probe");
2415   }
2416 }
2417 
2418 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2419     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2420   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2421   if (GV->isDeclaration())
2422     return;
2423   addStackProbeTargetAttributes(D, GV, CGM);
2424 }
2425 
2426 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2427 public:
2428   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2429                              X86AVXABILevel AVXLevel)
2430       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {}
2431 
2432   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2433                            CodeGen::CodeGenModule &CGM) const override;
2434 
2435   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2436     return 7;
2437   }
2438 
2439   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2440                                llvm::Value *Address) const override {
2441     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2442 
2443     // 0-15 are the 16 integer registers.
2444     // 16 is %rip.
2445     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2446     return false;
2447   }
2448 
2449   void getDependentLibraryOption(llvm::StringRef Lib,
2450                                  llvm::SmallString<24> &Opt) const override {
2451     Opt = "/DEFAULTLIB:";
2452     Opt += qualifyWindowsLibrary(Lib);
2453   }
2454 
2455   void getDetectMismatchOption(llvm::StringRef Name,
2456                                llvm::StringRef Value,
2457                                llvm::SmallString<32> &Opt) const override {
2458     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2459   }
2460 };
2461 
2462 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2463     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2464   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2465   if (GV->isDeclaration())
2466     return;
2467   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2468     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2469       llvm::Function *Fn = cast<llvm::Function>(GV);
2470       Fn->addFnAttr("stackrealign");
2471     }
2472     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2473       llvm::Function *Fn = cast<llvm::Function>(GV);
2474       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2475     }
2476   }
2477 
2478   addStackProbeTargetAttributes(D, GV, CGM);
2479 }
2480 }
2481 
2482 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2483                               Class &Hi) const {
2484   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2485   //
2486   // (a) If one of the classes is Memory, the whole argument is passed in
2487   //     memory.
2488   //
2489   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2490   //     memory.
2491   //
2492   // (c) If the size of the aggregate exceeds two eightbytes and the first
2493   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2494   //     argument is passed in memory. NOTE: This is necessary to keep the
2495   //     ABI working for processors that don't support the __m256 type.
2496   //
2497   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2498   //
2499   // Some of these are enforced by the merging logic.  Others can arise
2500   // only with unions; for example:
2501   //   union { _Complex double; unsigned; }
2502   //
2503   // Note that clauses (b) and (c) were added in 0.98.
2504   //
2505   if (Hi == Memory)
2506     Lo = Memory;
2507   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2508     Lo = Memory;
2509   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2510     Lo = Memory;
2511   if (Hi == SSEUp && Lo != SSE)
2512     Hi = SSE;
2513 }
2514 
2515 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2516   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2517   // classified recursively so that always two fields are
2518   // considered. The resulting class is calculated according to
2519   // the classes of the fields in the eightbyte:
2520   //
2521   // (a) If both classes are equal, this is the resulting class.
2522   //
2523   // (b) If one of the classes is NO_CLASS, the resulting class is
2524   // the other class.
2525   //
2526   // (c) If one of the classes is MEMORY, the result is the MEMORY
2527   // class.
2528   //
2529   // (d) If one of the classes is INTEGER, the result is the
2530   // INTEGER.
2531   //
2532   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2533   // MEMORY is used as class.
2534   //
2535   // (f) Otherwise class SSE is used.
2536 
2537   // Accum should never be memory (we should have returned) or
2538   // ComplexX87 (because this cannot be passed in a structure).
2539   assert((Accum != Memory && Accum != ComplexX87) &&
2540          "Invalid accumulated classification during merge.");
2541   if (Accum == Field || Field == NoClass)
2542     return Accum;
2543   if (Field == Memory)
2544     return Memory;
2545   if (Accum == NoClass)
2546     return Field;
2547   if (Accum == Integer || Field == Integer)
2548     return Integer;
2549   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2550       Accum == X87 || Accum == X87Up)
2551     return Memory;
2552   return SSE;
2553 }
2554 
2555 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2556                              Class &Lo, Class &Hi, bool isNamedArg) const {
2557   // FIXME: This code can be simplified by introducing a simple value class for
2558   // Class pairs with appropriate constructor methods for the various
2559   // situations.
2560 
2561   // FIXME: Some of the split computations are wrong; unaligned vectors
2562   // shouldn't be passed in registers for example, so there is no chance they
2563   // can straddle an eightbyte. Verify & simplify.
2564 
2565   Lo = Hi = NoClass;
2566 
2567   Class &Current = OffsetBase < 64 ? Lo : Hi;
2568   Current = Memory;
2569 
2570   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2571     BuiltinType::Kind k = BT->getKind();
2572 
2573     if (k == BuiltinType::Void) {
2574       Current = NoClass;
2575     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2576       Lo = Integer;
2577       Hi = Integer;
2578     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2579       Current = Integer;
2580     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2581       Current = SSE;
2582     } else if (k == BuiltinType::LongDouble) {
2583       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2584       if (LDF == &llvm::APFloat::IEEEquad()) {
2585         Lo = SSE;
2586         Hi = SSEUp;
2587       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2588         Lo = X87;
2589         Hi = X87Up;
2590       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2591         Current = SSE;
2592       } else
2593         llvm_unreachable("unexpected long double representation!");
2594     }
2595     // FIXME: _Decimal32 and _Decimal64 are SSE.
2596     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2597     return;
2598   }
2599 
2600   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2601     // Classify the underlying integer type.
2602     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2603     return;
2604   }
2605 
2606   if (Ty->hasPointerRepresentation()) {
2607     Current = Integer;
2608     return;
2609   }
2610 
2611   if (Ty->isMemberPointerType()) {
2612     if (Ty->isMemberFunctionPointerType()) {
2613       if (Has64BitPointers) {
2614         // If Has64BitPointers, this is an {i64, i64}, so classify both
2615         // Lo and Hi now.
2616         Lo = Hi = Integer;
2617       } else {
2618         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2619         // straddles an eightbyte boundary, Hi should be classified as well.
2620         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2621         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2622         if (EB_FuncPtr != EB_ThisAdj) {
2623           Lo = Hi = Integer;
2624         } else {
2625           Current = Integer;
2626         }
2627       }
2628     } else {
2629       Current = Integer;
2630     }
2631     return;
2632   }
2633 
2634   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2635     uint64_t Size = getContext().getTypeSize(VT);
2636     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2637       // gcc passes the following as integer:
2638       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2639       // 2 bytes - <2 x char>, <1 x short>
2640       // 1 byte  - <1 x char>
2641       Current = Integer;
2642 
2643       // If this type crosses an eightbyte boundary, it should be
2644       // split.
2645       uint64_t EB_Lo = (OffsetBase) / 64;
2646       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2647       if (EB_Lo != EB_Hi)
2648         Hi = Lo;
2649     } else if (Size == 64) {
2650       QualType ElementType = VT->getElementType();
2651 
2652       // gcc passes <1 x double> in memory. :(
2653       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2654         return;
2655 
2656       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2657       // pass them as integer.  For platforms where clang is the de facto
2658       // platform compiler, we must continue to use integer.
2659       if (!classifyIntegerMMXAsSSE() &&
2660           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2661            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2662            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2663            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2664         Current = Integer;
2665       else
2666         Current = SSE;
2667 
2668       // If this type crosses an eightbyte boundary, it should be
2669       // split.
2670       if (OffsetBase && OffsetBase != 64)
2671         Hi = Lo;
2672     } else if (Size == 128 ||
2673                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2674       QualType ElementType = VT->getElementType();
2675 
2676       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2677       if (passInt128VectorsInMem() && Size != 128 &&
2678           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2679            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2680         return;
2681 
2682       // Arguments of 256-bits are split into four eightbyte chunks. The
2683       // least significant one belongs to class SSE and all the others to class
2684       // SSEUP. The original Lo and Hi design considers that types can't be
2685       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2686       // This design isn't correct for 256-bits, but since there're no cases
2687       // where the upper parts would need to be inspected, avoid adding
2688       // complexity and just consider Hi to match the 64-256 part.
2689       //
2690       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2691       // registers if they are "named", i.e. not part of the "..." of a
2692       // variadic function.
2693       //
2694       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2695       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2696       Lo = SSE;
2697       Hi = SSEUp;
2698     }
2699     return;
2700   }
2701 
2702   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2703     QualType ET = getContext().getCanonicalType(CT->getElementType());
2704 
2705     uint64_t Size = getContext().getTypeSize(Ty);
2706     if (ET->isIntegralOrEnumerationType()) {
2707       if (Size <= 64)
2708         Current = Integer;
2709       else if (Size <= 128)
2710         Lo = Hi = Integer;
2711     } else if (ET == getContext().FloatTy) {
2712       Current = SSE;
2713     } else if (ET == getContext().DoubleTy) {
2714       Lo = Hi = SSE;
2715     } else if (ET == getContext().LongDoubleTy) {
2716       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2717       if (LDF == &llvm::APFloat::IEEEquad())
2718         Current = Memory;
2719       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2720         Current = ComplexX87;
2721       else if (LDF == &llvm::APFloat::IEEEdouble())
2722         Lo = Hi = SSE;
2723       else
2724         llvm_unreachable("unexpected long double representation!");
2725     }
2726 
2727     // If this complex type crosses an eightbyte boundary then it
2728     // should be split.
2729     uint64_t EB_Real = (OffsetBase) / 64;
2730     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2731     if (Hi == NoClass && EB_Real != EB_Imag)
2732       Hi = Lo;
2733 
2734     return;
2735   }
2736 
2737   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2738     // Arrays are treated like structures.
2739 
2740     uint64_t Size = getContext().getTypeSize(Ty);
2741 
2742     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2743     // than eight eightbytes, ..., it has class MEMORY.
2744     if (Size > 512)
2745       return;
2746 
2747     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2748     // fields, it has class MEMORY.
2749     //
2750     // Only need to check alignment of array base.
2751     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2752       return;
2753 
2754     // Otherwise implement simplified merge. We could be smarter about
2755     // this, but it isn't worth it and would be harder to verify.
2756     Current = NoClass;
2757     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2758     uint64_t ArraySize = AT->getSize().getZExtValue();
2759 
2760     // The only case a 256-bit wide vector could be used is when the array
2761     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2762     // to work for sizes wider than 128, early check and fallback to memory.
2763     //
2764     if (Size > 128 &&
2765         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2766       return;
2767 
2768     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2769       Class FieldLo, FieldHi;
2770       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2771       Lo = merge(Lo, FieldLo);
2772       Hi = merge(Hi, FieldHi);
2773       if (Lo == Memory || Hi == Memory)
2774         break;
2775     }
2776 
2777     postMerge(Size, Lo, Hi);
2778     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2779     return;
2780   }
2781 
2782   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2783     uint64_t Size = getContext().getTypeSize(Ty);
2784 
2785     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2786     // than eight eightbytes, ..., it has class MEMORY.
2787     if (Size > 512)
2788       return;
2789 
2790     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2791     // copy constructor or a non-trivial destructor, it is passed by invisible
2792     // reference.
2793     if (getRecordArgABI(RT, getCXXABI()))
2794       return;
2795 
2796     const RecordDecl *RD = RT->getDecl();
2797 
2798     // Assume variable sized types are passed in memory.
2799     if (RD->hasFlexibleArrayMember())
2800       return;
2801 
2802     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2803 
2804     // Reset Lo class, this will be recomputed.
2805     Current = NoClass;
2806 
2807     // If this is a C++ record, classify the bases first.
2808     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2809       for (const auto &I : CXXRD->bases()) {
2810         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2811                "Unexpected base class!");
2812         const auto *Base =
2813             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2814 
2815         // Classify this field.
2816         //
2817         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2818         // single eightbyte, each is classified separately. Each eightbyte gets
2819         // initialized to class NO_CLASS.
2820         Class FieldLo, FieldHi;
2821         uint64_t Offset =
2822           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2823         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2824         Lo = merge(Lo, FieldLo);
2825         Hi = merge(Hi, FieldHi);
2826         if (Lo == Memory || Hi == Memory) {
2827           postMerge(Size, Lo, Hi);
2828           return;
2829         }
2830       }
2831     }
2832 
2833     // Classify the fields one at a time, merging the results.
2834     unsigned idx = 0;
2835     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2836            i != e; ++i, ++idx) {
2837       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2838       bool BitField = i->isBitField();
2839 
2840       // Ignore padding bit-fields.
2841       if (BitField && i->isUnnamedBitfield())
2842         continue;
2843 
2844       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2845       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2846       //
2847       // The only case a 256-bit wide vector could be used is when the struct
2848       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2849       // to work for sizes wider than 128, early check and fallback to memory.
2850       //
2851       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2852                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2853         Lo = Memory;
2854         postMerge(Size, Lo, Hi);
2855         return;
2856       }
2857       // Note, skip this test for bit-fields, see below.
2858       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2859         Lo = Memory;
2860         postMerge(Size, Lo, Hi);
2861         return;
2862       }
2863 
2864       // Classify this field.
2865       //
2866       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2867       // exceeds a single eightbyte, each is classified
2868       // separately. Each eightbyte gets initialized to class
2869       // NO_CLASS.
2870       Class FieldLo, FieldHi;
2871 
2872       // Bit-fields require special handling, they do not force the
2873       // structure to be passed in memory even if unaligned, and
2874       // therefore they can straddle an eightbyte.
2875       if (BitField) {
2876         assert(!i->isUnnamedBitfield());
2877         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2878         uint64_t Size = i->getBitWidthValue(getContext());
2879 
2880         uint64_t EB_Lo = Offset / 64;
2881         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2882 
2883         if (EB_Lo) {
2884           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2885           FieldLo = NoClass;
2886           FieldHi = Integer;
2887         } else {
2888           FieldLo = Integer;
2889           FieldHi = EB_Hi ? Integer : NoClass;
2890         }
2891       } else
2892         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2893       Lo = merge(Lo, FieldLo);
2894       Hi = merge(Hi, FieldHi);
2895       if (Lo == Memory || Hi == Memory)
2896         break;
2897     }
2898 
2899     postMerge(Size, Lo, Hi);
2900   }
2901 }
2902 
2903 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2904   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2905   // place naturally.
2906   if (!isAggregateTypeForABI(Ty)) {
2907     // Treat an enum type as its underlying type.
2908     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2909       Ty = EnumTy->getDecl()->getIntegerType();
2910 
2911     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2912                                           : ABIArgInfo::getDirect());
2913   }
2914 
2915   return getNaturalAlignIndirect(Ty);
2916 }
2917 
2918 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2919   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2920     uint64_t Size = getContext().getTypeSize(VecTy);
2921     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2922     if (Size <= 64 || Size > LargestVector)
2923       return true;
2924     QualType EltTy = VecTy->getElementType();
2925     if (passInt128VectorsInMem() &&
2926         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2927          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2928       return true;
2929   }
2930 
2931   return false;
2932 }
2933 
2934 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2935                                             unsigned freeIntRegs) const {
2936   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2937   // place naturally.
2938   //
2939   // This assumption is optimistic, as there could be free registers available
2940   // when we need to pass this argument in memory, and LLVM could try to pass
2941   // the argument in the free register. This does not seem to happen currently,
2942   // but this code would be much safer if we could mark the argument with
2943   // 'onstack'. See PR12193.
2944   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2945     // Treat an enum type as its underlying type.
2946     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2947       Ty = EnumTy->getDecl()->getIntegerType();
2948 
2949     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2950                                           : ABIArgInfo::getDirect());
2951   }
2952 
2953   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2954     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2955 
2956   // Compute the byval alignment. We specify the alignment of the byval in all
2957   // cases so that the mid-level optimizer knows the alignment of the byval.
2958   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2959 
2960   // Attempt to avoid passing indirect results using byval when possible. This
2961   // is important for good codegen.
2962   //
2963   // We do this by coercing the value into a scalar type which the backend can
2964   // handle naturally (i.e., without using byval).
2965   //
2966   // For simplicity, we currently only do this when we have exhausted all of the
2967   // free integer registers. Doing this when there are free integer registers
2968   // would require more care, as we would have to ensure that the coerced value
2969   // did not claim the unused register. That would require either reording the
2970   // arguments to the function (so that any subsequent inreg values came first),
2971   // or only doing this optimization when there were no following arguments that
2972   // might be inreg.
2973   //
2974   // We currently expect it to be rare (particularly in well written code) for
2975   // arguments to be passed on the stack when there are still free integer
2976   // registers available (this would typically imply large structs being passed
2977   // by value), so this seems like a fair tradeoff for now.
2978   //
2979   // We can revisit this if the backend grows support for 'onstack' parameter
2980   // attributes. See PR12193.
2981   if (freeIntRegs == 0) {
2982     uint64_t Size = getContext().getTypeSize(Ty);
2983 
2984     // If this type fits in an eightbyte, coerce it into the matching integral
2985     // type, which will end up on the stack (with alignment 8).
2986     if (Align == 8 && Size <= 64)
2987       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2988                                                           Size));
2989   }
2990 
2991   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2992 }
2993 
2994 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2995 /// register. Pick an LLVM IR type that will be passed as a vector register.
2996 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2997   // Wrapper structs/arrays that only contain vectors are passed just like
2998   // vectors; strip them off if present.
2999   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3000     Ty = QualType(InnerTy, 0);
3001 
3002   llvm::Type *IRType = CGT.ConvertType(Ty);
3003   if (isa<llvm::VectorType>(IRType)) {
3004     // Don't pass vXi128 vectors in their native type, the backend can't
3005     // legalize them.
3006     if (passInt128VectorsInMem() &&
3007         IRType->getVectorElementType()->isIntegerTy(128)) {
3008       // Use a vXi64 vector.
3009       uint64_t Size = getContext().getTypeSize(Ty);
3010       return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3011                                    Size / 64);
3012     }
3013 
3014     return IRType;
3015   }
3016 
3017   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3018     return IRType;
3019 
3020   // We couldn't find the preferred IR vector type for 'Ty'.
3021   uint64_t Size = getContext().getTypeSize(Ty);
3022   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3023 
3024 
3025   // Return a LLVM IR vector type based on the size of 'Ty'.
3026   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3027                                Size / 64);
3028 }
3029 
3030 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3031 /// is known to either be off the end of the specified type or being in
3032 /// alignment padding.  The user type specified is known to be at most 128 bits
3033 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3034 /// classification that put one of the two halves in the INTEGER class.
3035 ///
3036 /// It is conservatively correct to return false.
3037 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3038                                   unsigned EndBit, ASTContext &Context) {
3039   // If the bytes being queried are off the end of the type, there is no user
3040   // data hiding here.  This handles analysis of builtins, vectors and other
3041   // types that don't contain interesting padding.
3042   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3043   if (TySize <= StartBit)
3044     return true;
3045 
3046   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3047     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3048     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3049 
3050     // Check each element to see if the element overlaps with the queried range.
3051     for (unsigned i = 0; i != NumElts; ++i) {
3052       // If the element is after the span we care about, then we're done..
3053       unsigned EltOffset = i*EltSize;
3054       if (EltOffset >= EndBit) break;
3055 
3056       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3057       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3058                                  EndBit-EltOffset, Context))
3059         return false;
3060     }
3061     // If it overlaps no elements, then it is safe to process as padding.
3062     return true;
3063   }
3064 
3065   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3066     const RecordDecl *RD = RT->getDecl();
3067     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3068 
3069     // If this is a C++ record, check the bases first.
3070     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3071       for (const auto &I : CXXRD->bases()) {
3072         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3073                "Unexpected base class!");
3074         const auto *Base =
3075             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3076 
3077         // If the base is after the span we care about, ignore it.
3078         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3079         if (BaseOffset >= EndBit) continue;
3080 
3081         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3082         if (!BitsContainNoUserData(I.getType(), BaseStart,
3083                                    EndBit-BaseOffset, Context))
3084           return false;
3085       }
3086     }
3087 
3088     // Verify that no field has data that overlaps the region of interest.  Yes
3089     // this could be sped up a lot by being smarter about queried fields,
3090     // however we're only looking at structs up to 16 bytes, so we don't care
3091     // much.
3092     unsigned idx = 0;
3093     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3094          i != e; ++i, ++idx) {
3095       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3096 
3097       // If we found a field after the region we care about, then we're done.
3098       if (FieldOffset >= EndBit) break;
3099 
3100       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3101       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3102                                  Context))
3103         return false;
3104     }
3105 
3106     // If nothing in this record overlapped the area of interest, then we're
3107     // clean.
3108     return true;
3109   }
3110 
3111   return false;
3112 }
3113 
3114 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3115 /// float member at the specified offset.  For example, {int,{float}} has a
3116 /// float at offset 4.  It is conservatively correct for this routine to return
3117 /// false.
3118 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3119                                   const llvm::DataLayout &TD) {
3120   // Base case if we find a float.
3121   if (IROffset == 0 && IRType->isFloatTy())
3122     return true;
3123 
3124   // If this is a struct, recurse into the field at the specified offset.
3125   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3126     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3127     unsigned Elt = SL->getElementContainingOffset(IROffset);
3128     IROffset -= SL->getElementOffset(Elt);
3129     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3130   }
3131 
3132   // If this is an array, recurse into the field at the specified offset.
3133   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3134     llvm::Type *EltTy = ATy->getElementType();
3135     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3136     IROffset -= IROffset/EltSize*EltSize;
3137     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3138   }
3139 
3140   return false;
3141 }
3142 
3143 
3144 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3145 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3146 llvm::Type *X86_64ABIInfo::
3147 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3148                    QualType SourceTy, unsigned SourceOffset) const {
3149   // The only three choices we have are either double, <2 x float>, or float. We
3150   // pass as float if the last 4 bytes is just padding.  This happens for
3151   // structs that contain 3 floats.
3152   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3153                             SourceOffset*8+64, getContext()))
3154     return llvm::Type::getFloatTy(getVMContext());
3155 
3156   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3157   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3158   // case.
3159   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3160       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3161     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3162 
3163   return llvm::Type::getDoubleTy(getVMContext());
3164 }
3165 
3166 
3167 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3168 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3169 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3170 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3171 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3172 /// etc).
3173 ///
3174 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3175 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3176 /// the 8-byte value references.  PrefType may be null.
3177 ///
3178 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3179 /// an offset into this that we're processing (which is always either 0 or 8).
3180 ///
3181 llvm::Type *X86_64ABIInfo::
3182 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3183                        QualType SourceTy, unsigned SourceOffset) const {
3184   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3185   // returning an 8-byte unit starting with it.  See if we can safely use it.
3186   if (IROffset == 0) {
3187     // Pointers and int64's always fill the 8-byte unit.
3188     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3189         IRType->isIntegerTy(64))
3190       return IRType;
3191 
3192     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3193     // goodness in the source type is just tail padding.  This is allowed to
3194     // kick in for struct {double,int} on the int, but not on
3195     // struct{double,int,int} because we wouldn't return the second int.  We
3196     // have to do this analysis on the source type because we can't depend on
3197     // unions being lowered a specific way etc.
3198     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3199         IRType->isIntegerTy(32) ||
3200         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3201       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3202           cast<llvm::IntegerType>(IRType)->getBitWidth();
3203 
3204       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3205                                 SourceOffset*8+64, getContext()))
3206         return IRType;
3207     }
3208   }
3209 
3210   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3211     // If this is a struct, recurse into the field at the specified offset.
3212     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3213     if (IROffset < SL->getSizeInBytes()) {
3214       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3215       IROffset -= SL->getElementOffset(FieldIdx);
3216 
3217       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3218                                     SourceTy, SourceOffset);
3219     }
3220   }
3221 
3222   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3223     llvm::Type *EltTy = ATy->getElementType();
3224     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3225     unsigned EltOffset = IROffset/EltSize*EltSize;
3226     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3227                                   SourceOffset);
3228   }
3229 
3230   // Okay, we don't have any better idea of what to pass, so we pass this in an
3231   // integer register that isn't too big to fit the rest of the struct.
3232   unsigned TySizeInBytes =
3233     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3234 
3235   assert(TySizeInBytes != SourceOffset && "Empty field?");
3236 
3237   // It is always safe to classify this as an integer type up to i64 that
3238   // isn't larger than the structure.
3239   return llvm::IntegerType::get(getVMContext(),
3240                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3241 }
3242 
3243 
3244 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3245 /// be used as elements of a two register pair to pass or return, return a
3246 /// first class aggregate to represent them.  For example, if the low part of
3247 /// a by-value argument should be passed as i32* and the high part as float,
3248 /// return {i32*, float}.
3249 static llvm::Type *
3250 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3251                            const llvm::DataLayout &TD) {
3252   // In order to correctly satisfy the ABI, we need to the high part to start
3253   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3254   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3255   // the second element at offset 8.  Check for this:
3256   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3257   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3258   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3259   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3260 
3261   // To handle this, we have to increase the size of the low part so that the
3262   // second element will start at an 8 byte offset.  We can't increase the size
3263   // of the second element because it might make us access off the end of the
3264   // struct.
3265   if (HiStart != 8) {
3266     // There are usually two sorts of types the ABI generation code can produce
3267     // for the low part of a pair that aren't 8 bytes in size: float or
3268     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3269     // NaCl).
3270     // Promote these to a larger type.
3271     if (Lo->isFloatTy())
3272       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3273     else {
3274       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3275              && "Invalid/unknown lo type");
3276       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3277     }
3278   }
3279 
3280   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3281 
3282   // Verify that the second element is at an 8-byte offset.
3283   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3284          "Invalid x86-64 argument pair!");
3285   return Result;
3286 }
3287 
3288 ABIArgInfo X86_64ABIInfo::
3289 classifyReturnType(QualType RetTy) const {
3290   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3291   // classification algorithm.
3292   X86_64ABIInfo::Class Lo, Hi;
3293   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3294 
3295   // Check some invariants.
3296   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3297   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3298 
3299   llvm::Type *ResType = nullptr;
3300   switch (Lo) {
3301   case NoClass:
3302     if (Hi == NoClass)
3303       return ABIArgInfo::getIgnore();
3304     // If the low part is just padding, it takes no register, leave ResType
3305     // null.
3306     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3307            "Unknown missing lo part");
3308     break;
3309 
3310   case SSEUp:
3311   case X87Up:
3312     llvm_unreachable("Invalid classification for lo word.");
3313 
3314     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3315     // hidden argument.
3316   case Memory:
3317     return getIndirectReturnResult(RetTy);
3318 
3319     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3320     // available register of the sequence %rax, %rdx is used.
3321   case Integer:
3322     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3323 
3324     // If we have a sign or zero extended integer, make sure to return Extend
3325     // so that the parameter gets the right LLVM IR attributes.
3326     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3327       // Treat an enum type as its underlying type.
3328       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3329         RetTy = EnumTy->getDecl()->getIntegerType();
3330 
3331       if (RetTy->isIntegralOrEnumerationType() &&
3332           RetTy->isPromotableIntegerType())
3333         return ABIArgInfo::getExtend(RetTy);
3334     }
3335     break;
3336 
3337     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3338     // available SSE register of the sequence %xmm0, %xmm1 is used.
3339   case SSE:
3340     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3341     break;
3342 
3343     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3344     // returned on the X87 stack in %st0 as 80-bit x87 number.
3345   case X87:
3346     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3347     break;
3348 
3349     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3350     // part of the value is returned in %st0 and the imaginary part in
3351     // %st1.
3352   case ComplexX87:
3353     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3354     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3355                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3356     break;
3357   }
3358 
3359   llvm::Type *HighPart = nullptr;
3360   switch (Hi) {
3361     // Memory was handled previously and X87 should
3362     // never occur as a hi class.
3363   case Memory:
3364   case X87:
3365     llvm_unreachable("Invalid classification for hi word.");
3366 
3367   case ComplexX87: // Previously handled.
3368   case NoClass:
3369     break;
3370 
3371   case Integer:
3372     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3373     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3374       return ABIArgInfo::getDirect(HighPart, 8);
3375     break;
3376   case SSE:
3377     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3378     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3379       return ABIArgInfo::getDirect(HighPart, 8);
3380     break;
3381 
3382     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3383     // is passed in the next available eightbyte chunk if the last used
3384     // vector register.
3385     //
3386     // SSEUP should always be preceded by SSE, just widen.
3387   case SSEUp:
3388     assert(Lo == SSE && "Unexpected SSEUp classification.");
3389     ResType = GetByteVectorType(RetTy);
3390     break;
3391 
3392     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3393     // returned together with the previous X87 value in %st0.
3394   case X87Up:
3395     // If X87Up is preceded by X87, we don't need to do
3396     // anything. However, in some cases with unions it may not be
3397     // preceded by X87. In such situations we follow gcc and pass the
3398     // extra bits in an SSE reg.
3399     if (Lo != X87) {
3400       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3401       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3402         return ABIArgInfo::getDirect(HighPart, 8);
3403     }
3404     break;
3405   }
3406 
3407   // If a high part was specified, merge it together with the low part.  It is
3408   // known to pass in the high eightbyte of the result.  We do this by forming a
3409   // first class struct aggregate with the high and low part: {low, high}
3410   if (HighPart)
3411     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3412 
3413   return ABIArgInfo::getDirect(ResType);
3414 }
3415 
3416 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3417   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3418   bool isNamedArg)
3419   const
3420 {
3421   Ty = useFirstFieldIfTransparentUnion(Ty);
3422 
3423   X86_64ABIInfo::Class Lo, Hi;
3424   classify(Ty, 0, Lo, Hi, isNamedArg);
3425 
3426   // Check some invariants.
3427   // FIXME: Enforce these by construction.
3428   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3429   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3430 
3431   neededInt = 0;
3432   neededSSE = 0;
3433   llvm::Type *ResType = nullptr;
3434   switch (Lo) {
3435   case NoClass:
3436     if (Hi == NoClass)
3437       return ABIArgInfo::getIgnore();
3438     // If the low part is just padding, it takes no register, leave ResType
3439     // null.
3440     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3441            "Unknown missing lo part");
3442     break;
3443 
3444     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3445     // on the stack.
3446   case Memory:
3447 
3448     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3449     // COMPLEX_X87, it is passed in memory.
3450   case X87:
3451   case ComplexX87:
3452     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3453       ++neededInt;
3454     return getIndirectResult(Ty, freeIntRegs);
3455 
3456   case SSEUp:
3457   case X87Up:
3458     llvm_unreachable("Invalid classification for lo word.");
3459 
3460     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3461     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3462     // and %r9 is used.
3463   case Integer:
3464     ++neededInt;
3465 
3466     // Pick an 8-byte type based on the preferred type.
3467     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3468 
3469     // If we have a sign or zero extended integer, make sure to return Extend
3470     // so that the parameter gets the right LLVM IR attributes.
3471     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3472       // Treat an enum type as its underlying type.
3473       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3474         Ty = EnumTy->getDecl()->getIntegerType();
3475 
3476       if (Ty->isIntegralOrEnumerationType() &&
3477           Ty->isPromotableIntegerType())
3478         return ABIArgInfo::getExtend(Ty);
3479     }
3480 
3481     break;
3482 
3483     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3484     // available SSE register is used, the registers are taken in the
3485     // order from %xmm0 to %xmm7.
3486   case SSE: {
3487     llvm::Type *IRType = CGT.ConvertType(Ty);
3488     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3489     ++neededSSE;
3490     break;
3491   }
3492   }
3493 
3494   llvm::Type *HighPart = nullptr;
3495   switch (Hi) {
3496     // Memory was handled previously, ComplexX87 and X87 should
3497     // never occur as hi classes, and X87Up must be preceded by X87,
3498     // which is passed in memory.
3499   case Memory:
3500   case X87:
3501   case ComplexX87:
3502     llvm_unreachable("Invalid classification for hi word.");
3503 
3504   case NoClass: break;
3505 
3506   case Integer:
3507     ++neededInt;
3508     // Pick an 8-byte type based on the preferred type.
3509     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3510 
3511     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3512       return ABIArgInfo::getDirect(HighPart, 8);
3513     break;
3514 
3515     // X87Up generally doesn't occur here (long double is passed in
3516     // memory), except in situations involving unions.
3517   case X87Up:
3518   case SSE:
3519     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3520 
3521     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3522       return ABIArgInfo::getDirect(HighPart, 8);
3523 
3524     ++neededSSE;
3525     break;
3526 
3527     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3528     // eightbyte is passed in the upper half of the last used SSE
3529     // register.  This only happens when 128-bit vectors are passed.
3530   case SSEUp:
3531     assert(Lo == SSE && "Unexpected SSEUp classification");
3532     ResType = GetByteVectorType(Ty);
3533     break;
3534   }
3535 
3536   // If a high part was specified, merge it together with the low part.  It is
3537   // known to pass in the high eightbyte of the result.  We do this by forming a
3538   // first class struct aggregate with the high and low part: {low, high}
3539   if (HighPart)
3540     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3541 
3542   return ABIArgInfo::getDirect(ResType);
3543 }
3544 
3545 ABIArgInfo
3546 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3547                                              unsigned &NeededSSE) const {
3548   auto RT = Ty->getAs<RecordType>();
3549   assert(RT && "classifyRegCallStructType only valid with struct types");
3550 
3551   if (RT->getDecl()->hasFlexibleArrayMember())
3552     return getIndirectReturnResult(Ty);
3553 
3554   // Sum up bases
3555   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3556     if (CXXRD->isDynamicClass()) {
3557       NeededInt = NeededSSE = 0;
3558       return getIndirectReturnResult(Ty);
3559     }
3560 
3561     for (const auto &I : CXXRD->bases())
3562       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3563               .isIndirect()) {
3564         NeededInt = NeededSSE = 0;
3565         return getIndirectReturnResult(Ty);
3566       }
3567   }
3568 
3569   // Sum up members
3570   for (const auto *FD : RT->getDecl()->fields()) {
3571     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3572       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3573               .isIndirect()) {
3574         NeededInt = NeededSSE = 0;
3575         return getIndirectReturnResult(Ty);
3576       }
3577     } else {
3578       unsigned LocalNeededInt, LocalNeededSSE;
3579       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3580                                LocalNeededSSE, true)
3581               .isIndirect()) {
3582         NeededInt = NeededSSE = 0;
3583         return getIndirectReturnResult(Ty);
3584       }
3585       NeededInt += LocalNeededInt;
3586       NeededSSE += LocalNeededSSE;
3587     }
3588   }
3589 
3590   return ABIArgInfo::getDirect();
3591 }
3592 
3593 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3594                                                     unsigned &NeededInt,
3595                                                     unsigned &NeededSSE) const {
3596 
3597   NeededInt = 0;
3598   NeededSSE = 0;
3599 
3600   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3601 }
3602 
3603 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3604 
3605   const unsigned CallingConv = FI.getCallingConvention();
3606   // It is possible to force Win64 calling convention on any x86_64 target by
3607   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3608   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3609   if (CallingConv == llvm::CallingConv::Win64) {
3610     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3611     Win64ABIInfo.computeInfo(FI);
3612     return;
3613   }
3614 
3615   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3616 
3617   // Keep track of the number of assigned registers.
3618   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3619   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3620   unsigned NeededInt, NeededSSE;
3621 
3622   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3623     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3624         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3625       FI.getReturnInfo() =
3626           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3627       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3628         FreeIntRegs -= NeededInt;
3629         FreeSSERegs -= NeededSSE;
3630       } else {
3631         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3632       }
3633     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3634       // Complex Long Double Type is passed in Memory when Regcall
3635       // calling convention is used.
3636       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3637       if (getContext().getCanonicalType(CT->getElementType()) ==
3638           getContext().LongDoubleTy)
3639         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3640     } else
3641       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3642   }
3643 
3644   // If the return value is indirect, then the hidden argument is consuming one
3645   // integer register.
3646   if (FI.getReturnInfo().isIndirect())
3647     --FreeIntRegs;
3648 
3649   // The chain argument effectively gives us another free register.
3650   if (FI.isChainCall())
3651     ++FreeIntRegs;
3652 
3653   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3654   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3655   // get assigned (in left-to-right order) for passing as follows...
3656   unsigned ArgNo = 0;
3657   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3658        it != ie; ++it, ++ArgNo) {
3659     bool IsNamedArg = ArgNo < NumRequiredArgs;
3660 
3661     if (IsRegCall && it->type->isStructureOrClassType())
3662       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3663     else
3664       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3665                                       NeededSSE, IsNamedArg);
3666 
3667     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3668     // eightbyte of an argument, the whole argument is passed on the
3669     // stack. If registers have already been assigned for some
3670     // eightbytes of such an argument, the assignments get reverted.
3671     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3672       FreeIntRegs -= NeededInt;
3673       FreeSSERegs -= NeededSSE;
3674     } else {
3675       it->info = getIndirectResult(it->type, FreeIntRegs);
3676     }
3677   }
3678 }
3679 
3680 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3681                                          Address VAListAddr, QualType Ty) {
3682   Address overflow_arg_area_p =
3683       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3684   llvm::Value *overflow_arg_area =
3685     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3686 
3687   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3688   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3689   // It isn't stated explicitly in the standard, but in practice we use
3690   // alignment greater than 16 where necessary.
3691   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3692   if (Align > CharUnits::fromQuantity(8)) {
3693     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3694                                                       Align);
3695   }
3696 
3697   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3698   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3699   llvm::Value *Res =
3700     CGF.Builder.CreateBitCast(overflow_arg_area,
3701                               llvm::PointerType::getUnqual(LTy));
3702 
3703   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3704   // l->overflow_arg_area + sizeof(type).
3705   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3706   // an 8 byte boundary.
3707 
3708   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3709   llvm::Value *Offset =
3710       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3711   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3712                                             "overflow_arg_area.next");
3713   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3714 
3715   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3716   return Address(Res, Align);
3717 }
3718 
3719 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3720                                  QualType Ty) const {
3721   // Assume that va_list type is correct; should be pointer to LLVM type:
3722   // struct {
3723   //   i32 gp_offset;
3724   //   i32 fp_offset;
3725   //   i8* overflow_arg_area;
3726   //   i8* reg_save_area;
3727   // };
3728   unsigned neededInt, neededSSE;
3729 
3730   Ty = getContext().getCanonicalType(Ty);
3731   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3732                                        /*isNamedArg*/false);
3733 
3734   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3735   // in the registers. If not go to step 7.
3736   if (!neededInt && !neededSSE)
3737     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3738 
3739   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3740   // general purpose registers needed to pass type and num_fp to hold
3741   // the number of floating point registers needed.
3742 
3743   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3744   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3745   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3746   //
3747   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3748   // register save space).
3749 
3750   llvm::Value *InRegs = nullptr;
3751   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3752   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3753   if (neededInt) {
3754     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3755     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3756     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3757     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3758   }
3759 
3760   if (neededSSE) {
3761     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3762     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3763     llvm::Value *FitsInFP =
3764       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3765     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3766     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3767   }
3768 
3769   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3770   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3771   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3772   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3773 
3774   // Emit code to load the value if it was passed in registers.
3775 
3776   CGF.EmitBlock(InRegBlock);
3777 
3778   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3779   // an offset of l->gp_offset and/or l->fp_offset. This may require
3780   // copying to a temporary location in case the parameter is passed
3781   // in different register classes or requires an alignment greater
3782   // than 8 for general purpose registers and 16 for XMM registers.
3783   //
3784   // FIXME: This really results in shameful code when we end up needing to
3785   // collect arguments from different places; often what should result in a
3786   // simple assembling of a structure from scattered addresses has many more
3787   // loads than necessary. Can we clean this up?
3788   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3789   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3790       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3791 
3792   Address RegAddr = Address::invalid();
3793   if (neededInt && neededSSE) {
3794     // FIXME: Cleanup.
3795     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3796     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3797     Address Tmp = CGF.CreateMemTemp(Ty);
3798     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3799     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3800     llvm::Type *TyLo = ST->getElementType(0);
3801     llvm::Type *TyHi = ST->getElementType(1);
3802     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3803            "Unexpected ABI info for mixed regs");
3804     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3805     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3806     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3807     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3808     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3809     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3810 
3811     // Copy the first element.
3812     // FIXME: Our choice of alignment here and below is probably pessimistic.
3813     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3814         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3815         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3816     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3817 
3818     // Copy the second element.
3819     V = CGF.Builder.CreateAlignedLoad(
3820         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3821         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3822     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3823 
3824     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3825   } else if (neededInt) {
3826     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3827                       CharUnits::fromQuantity(8));
3828     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3829 
3830     // Copy to a temporary if necessary to ensure the appropriate alignment.
3831     std::pair<CharUnits, CharUnits> SizeAlign =
3832         getContext().getTypeInfoInChars(Ty);
3833     uint64_t TySize = SizeAlign.first.getQuantity();
3834     CharUnits TyAlign = SizeAlign.second;
3835 
3836     // Copy into a temporary if the type is more aligned than the
3837     // register save area.
3838     if (TyAlign.getQuantity() > 8) {
3839       Address Tmp = CGF.CreateMemTemp(Ty);
3840       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3841       RegAddr = Tmp;
3842     }
3843 
3844   } else if (neededSSE == 1) {
3845     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3846                       CharUnits::fromQuantity(16));
3847     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3848   } else {
3849     assert(neededSSE == 2 && "Invalid number of needed registers!");
3850     // SSE registers are spaced 16 bytes apart in the register save
3851     // area, we need to collect the two eightbytes together.
3852     // The ABI isn't explicit about this, but it seems reasonable
3853     // to assume that the slots are 16-byte aligned, since the stack is
3854     // naturally 16-byte aligned and the prologue is expected to store
3855     // all the SSE registers to the RSA.
3856     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3857                                 CharUnits::fromQuantity(16));
3858     Address RegAddrHi =
3859       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3860                                              CharUnits::fromQuantity(16));
3861     llvm::Type *ST = AI.canHaveCoerceToType()
3862                          ? AI.getCoerceToType()
3863                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3864     llvm::Value *V;
3865     Address Tmp = CGF.CreateMemTemp(Ty);
3866     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3867     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3868         RegAddrLo, ST->getStructElementType(0)));
3869     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3870     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3871         RegAddrHi, ST->getStructElementType(1)));
3872     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3873 
3874     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3875   }
3876 
3877   // AMD64-ABI 3.5.7p5: Step 5. Set:
3878   // l->gp_offset = l->gp_offset + num_gp * 8
3879   // l->fp_offset = l->fp_offset + num_fp * 16.
3880   if (neededInt) {
3881     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3882     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3883                             gp_offset_p);
3884   }
3885   if (neededSSE) {
3886     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3887     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3888                             fp_offset_p);
3889   }
3890   CGF.EmitBranch(ContBlock);
3891 
3892   // Emit code to load the value if it was passed in memory.
3893 
3894   CGF.EmitBlock(InMemBlock);
3895   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3896 
3897   // Return the appropriate result.
3898 
3899   CGF.EmitBlock(ContBlock);
3900   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3901                                  "vaarg.addr");
3902   return ResAddr;
3903 }
3904 
3905 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3906                                    QualType Ty) const {
3907   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3908                           CGF.getContext().getTypeInfoInChars(Ty),
3909                           CharUnits::fromQuantity(8),
3910                           /*allowHigherAlign*/ false);
3911 }
3912 
3913 ABIArgInfo
3914 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3915                                     const ABIArgInfo &current) const {
3916   // Assumes vectorCall calling convention.
3917   const Type *Base = nullptr;
3918   uint64_t NumElts = 0;
3919 
3920   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3921       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3922     FreeSSERegs -= NumElts;
3923     return getDirectX86Hva();
3924   }
3925   return current;
3926 }
3927 
3928 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3929                                       bool IsReturnType, bool IsVectorCall,
3930                                       bool IsRegCall) const {
3931 
3932   if (Ty->isVoidType())
3933     return ABIArgInfo::getIgnore();
3934 
3935   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3936     Ty = EnumTy->getDecl()->getIntegerType();
3937 
3938   TypeInfo Info = getContext().getTypeInfo(Ty);
3939   uint64_t Width = Info.Width;
3940   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3941 
3942   const RecordType *RT = Ty->getAs<RecordType>();
3943   if (RT) {
3944     if (!IsReturnType) {
3945       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3946         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3947     }
3948 
3949     if (RT->getDecl()->hasFlexibleArrayMember())
3950       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3951 
3952   }
3953 
3954   const Type *Base = nullptr;
3955   uint64_t NumElts = 0;
3956   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3957   // other targets.
3958   if ((IsVectorCall || IsRegCall) &&
3959       isHomogeneousAggregate(Ty, Base, NumElts)) {
3960     if (IsRegCall) {
3961       if (FreeSSERegs >= NumElts) {
3962         FreeSSERegs -= NumElts;
3963         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3964           return ABIArgInfo::getDirect();
3965         return ABIArgInfo::getExpand();
3966       }
3967       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3968     } else if (IsVectorCall) {
3969       if (FreeSSERegs >= NumElts &&
3970           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3971         FreeSSERegs -= NumElts;
3972         return ABIArgInfo::getDirect();
3973       } else if (IsReturnType) {
3974         return ABIArgInfo::getExpand();
3975       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3976         // HVAs are delayed and reclassified in the 2nd step.
3977         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3978       }
3979     }
3980   }
3981 
3982   if (Ty->isMemberPointerType()) {
3983     // If the member pointer is represented by an LLVM int or ptr, pass it
3984     // directly.
3985     llvm::Type *LLTy = CGT.ConvertType(Ty);
3986     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3987       return ABIArgInfo::getDirect();
3988   }
3989 
3990   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3991     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3992     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3993     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3994       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3995 
3996     // Otherwise, coerce it to a small integer.
3997     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3998   }
3999 
4000   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4001     switch (BT->getKind()) {
4002     case BuiltinType::Bool:
4003       // Bool type is always extended to the ABI, other builtin types are not
4004       // extended.
4005       return ABIArgInfo::getExtend(Ty);
4006 
4007     case BuiltinType::LongDouble:
4008       // Mingw64 GCC uses the old 80 bit extended precision floating point
4009       // unit. It passes them indirectly through memory.
4010       if (IsMingw64) {
4011         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4012         if (LDF == &llvm::APFloat::x87DoubleExtended())
4013           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4014       }
4015       break;
4016 
4017     case BuiltinType::Int128:
4018     case BuiltinType::UInt128:
4019       // If it's a parameter type, the normal ABI rule is that arguments larger
4020       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4021       // even though it isn't particularly efficient.
4022       if (!IsReturnType)
4023         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4024 
4025       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4026       // Clang matches them for compatibility.
4027       return ABIArgInfo::getDirect(
4028           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
4029 
4030     default:
4031       break;
4032     }
4033   }
4034 
4035   return ABIArgInfo::getDirect();
4036 }
4037 
4038 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4039                                              unsigned FreeSSERegs,
4040                                              bool IsVectorCall,
4041                                              bool IsRegCall) const {
4042   unsigned Count = 0;
4043   for (auto &I : FI.arguments()) {
4044     // Vectorcall in x64 only permits the first 6 arguments to be passed
4045     // as XMM/YMM registers.
4046     if (Count < VectorcallMaxParamNumAsReg)
4047       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4048     else {
4049       // Since these cannot be passed in registers, pretend no registers
4050       // are left.
4051       unsigned ZeroSSERegsAvail = 0;
4052       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4053                         IsVectorCall, IsRegCall);
4054     }
4055     ++Count;
4056   }
4057 
4058   for (auto &I : FI.arguments()) {
4059     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4060   }
4061 }
4062 
4063 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4064   const unsigned CC = FI.getCallingConvention();
4065   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4066   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4067 
4068   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4069   // classification rules.
4070   if (CC == llvm::CallingConv::X86_64_SysV) {
4071     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4072     SysVABIInfo.computeInfo(FI);
4073     return;
4074   }
4075 
4076   unsigned FreeSSERegs = 0;
4077   if (IsVectorCall) {
4078     // We can use up to 4 SSE return registers with vectorcall.
4079     FreeSSERegs = 4;
4080   } else if (IsRegCall) {
4081     // RegCall gives us 16 SSE registers.
4082     FreeSSERegs = 16;
4083   }
4084 
4085   if (!getCXXABI().classifyReturnType(FI))
4086     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4087                                   IsVectorCall, IsRegCall);
4088 
4089   if (IsVectorCall) {
4090     // We can use up to 6 SSE register parameters with vectorcall.
4091     FreeSSERegs = 6;
4092   } else if (IsRegCall) {
4093     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4094     FreeSSERegs = 16;
4095   }
4096 
4097   if (IsVectorCall) {
4098     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4099   } else {
4100     for (auto &I : FI.arguments())
4101       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4102   }
4103 
4104 }
4105 
4106 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4107                                     QualType Ty) const {
4108 
4109   bool IsIndirect = false;
4110 
4111   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4112   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4113   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4114     uint64_t Width = getContext().getTypeSize(Ty);
4115     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4116   }
4117 
4118   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4119                           CGF.getContext().getTypeInfoInChars(Ty),
4120                           CharUnits::fromQuantity(8),
4121                           /*allowHigherAlign*/ false);
4122 }
4123 
4124 // PowerPC-32
4125 namespace {
4126 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4127 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4128   bool IsSoftFloatABI;
4129 
4130   CharUnits getParamTypeAlignment(QualType Ty) const;
4131 
4132 public:
4133   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4134       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4135 
4136   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4137                     QualType Ty) const override;
4138 };
4139 
4140 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4141 public:
4142   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4143       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4144 
4145   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4146     // This is recovered from gcc output.
4147     return 1; // r1 is the dedicated stack pointer
4148   }
4149 
4150   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4151                                llvm::Value *Address) const override;
4152 };
4153 }
4154 
4155 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4156   // Complex types are passed just like their elements
4157   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4158     Ty = CTy->getElementType();
4159 
4160   if (Ty->isVectorType())
4161     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4162                                                                        : 4);
4163 
4164   // For single-element float/vector structs, we consider the whole type
4165   // to have the same alignment requirements as its single element.
4166   const Type *AlignTy = nullptr;
4167   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4168     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4169     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4170         (BT && BT->isFloatingPoint()))
4171       AlignTy = EltType;
4172   }
4173 
4174   if (AlignTy)
4175     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4176   return CharUnits::fromQuantity(4);
4177 }
4178 
4179 // TODO: this implementation is now likely redundant with
4180 // DefaultABIInfo::EmitVAArg.
4181 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4182                                       QualType Ty) const {
4183   if (getTarget().getTriple().isOSDarwin()) {
4184     auto TI = getContext().getTypeInfoInChars(Ty);
4185     TI.second = getParamTypeAlignment(Ty);
4186 
4187     CharUnits SlotSize = CharUnits::fromQuantity(4);
4188     return emitVoidPtrVAArg(CGF, VAList, Ty,
4189                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4190                             /*AllowHigherAlign=*/true);
4191   }
4192 
4193   const unsigned OverflowLimit = 8;
4194   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4195     // TODO: Implement this. For now ignore.
4196     (void)CTy;
4197     return Address::invalid(); // FIXME?
4198   }
4199 
4200   // struct __va_list_tag {
4201   //   unsigned char gpr;
4202   //   unsigned char fpr;
4203   //   unsigned short reserved;
4204   //   void *overflow_arg_area;
4205   //   void *reg_save_area;
4206   // };
4207 
4208   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4209   bool isInt =
4210       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4211   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4212 
4213   // All aggregates are passed indirectly?  That doesn't seem consistent
4214   // with the argument-lowering code.
4215   bool isIndirect = Ty->isAggregateType();
4216 
4217   CGBuilderTy &Builder = CGF.Builder;
4218 
4219   // The calling convention either uses 1-2 GPRs or 1 FPR.
4220   Address NumRegsAddr = Address::invalid();
4221   if (isInt || IsSoftFloatABI) {
4222     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4223   } else {
4224     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4225   }
4226 
4227   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4228 
4229   // "Align" the register count when TY is i64.
4230   if (isI64 || (isF64 && IsSoftFloatABI)) {
4231     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4232     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4233   }
4234 
4235   llvm::Value *CC =
4236       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4237 
4238   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4239   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4240   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4241 
4242   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4243 
4244   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4245   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4246 
4247   // Case 1: consume registers.
4248   Address RegAddr = Address::invalid();
4249   {
4250     CGF.EmitBlock(UsingRegs);
4251 
4252     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4253     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4254                       CharUnits::fromQuantity(8));
4255     assert(RegAddr.getElementType() == CGF.Int8Ty);
4256 
4257     // Floating-point registers start after the general-purpose registers.
4258     if (!(isInt || IsSoftFloatABI)) {
4259       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4260                                                    CharUnits::fromQuantity(32));
4261     }
4262 
4263     // Get the address of the saved value by scaling the number of
4264     // registers we've used by the number of
4265     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4266     llvm::Value *RegOffset =
4267       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4268     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4269                                             RegAddr.getPointer(), RegOffset),
4270                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4271     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4272 
4273     // Increase the used-register count.
4274     NumRegs =
4275       Builder.CreateAdd(NumRegs,
4276                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4277     Builder.CreateStore(NumRegs, NumRegsAddr);
4278 
4279     CGF.EmitBranch(Cont);
4280   }
4281 
4282   // Case 2: consume space in the overflow area.
4283   Address MemAddr = Address::invalid();
4284   {
4285     CGF.EmitBlock(UsingOverflow);
4286 
4287     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4288 
4289     // Everything in the overflow area is rounded up to a size of at least 4.
4290     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4291 
4292     CharUnits Size;
4293     if (!isIndirect) {
4294       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4295       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4296     } else {
4297       Size = CGF.getPointerSize();
4298     }
4299 
4300     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4301     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4302                          OverflowAreaAlign);
4303     // Round up address of argument to alignment
4304     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4305     if (Align > OverflowAreaAlign) {
4306       llvm::Value *Ptr = OverflowArea.getPointer();
4307       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4308                                                            Align);
4309     }
4310 
4311     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4312 
4313     // Increase the overflow area.
4314     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4315     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4316     CGF.EmitBranch(Cont);
4317   }
4318 
4319   CGF.EmitBlock(Cont);
4320 
4321   // Merge the cases with a phi.
4322   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4323                                 "vaarg.addr");
4324 
4325   // Load the pointer if the argument was passed indirectly.
4326   if (isIndirect) {
4327     Result = Address(Builder.CreateLoad(Result, "aggr"),
4328                      getContext().getTypeAlignInChars(Ty));
4329   }
4330 
4331   return Result;
4332 }
4333 
4334 bool
4335 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4336                                                 llvm::Value *Address) const {
4337   // This is calculated from the LLVM and GCC tables and verified
4338   // against gcc output.  AFAIK all ABIs use the same encoding.
4339 
4340   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4341 
4342   llvm::IntegerType *i8 = CGF.Int8Ty;
4343   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4344   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4345   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4346 
4347   // 0-31: r0-31, the 4-byte general-purpose registers
4348   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4349 
4350   // 32-63: fp0-31, the 8-byte floating-point registers
4351   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4352 
4353   // 64-76 are various 4-byte special-purpose registers:
4354   // 64: mq
4355   // 65: lr
4356   // 66: ctr
4357   // 67: ap
4358   // 68-75 cr0-7
4359   // 76: xer
4360   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4361 
4362   // 77-108: v0-31, the 16-byte vector registers
4363   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4364 
4365   // 109: vrsave
4366   // 110: vscr
4367   // 111: spe_acc
4368   // 112: spefscr
4369   // 113: sfp
4370   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4371 
4372   return false;
4373 }
4374 
4375 // PowerPC-64
4376 
4377 namespace {
4378 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4379 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4380 public:
4381   enum ABIKind {
4382     ELFv1 = 0,
4383     ELFv2
4384   };
4385 
4386 private:
4387   static const unsigned GPRBits = 64;
4388   ABIKind Kind;
4389   bool HasQPX;
4390   bool IsSoftFloatABI;
4391 
4392   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4393   // will be passed in a QPX register.
4394   bool IsQPXVectorTy(const Type *Ty) const {
4395     if (!HasQPX)
4396       return false;
4397 
4398     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4399       unsigned NumElements = VT->getNumElements();
4400       if (NumElements == 1)
4401         return false;
4402 
4403       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4404         if (getContext().getTypeSize(Ty) <= 256)
4405           return true;
4406       } else if (VT->getElementType()->
4407                    isSpecificBuiltinType(BuiltinType::Float)) {
4408         if (getContext().getTypeSize(Ty) <= 128)
4409           return true;
4410       }
4411     }
4412 
4413     return false;
4414   }
4415 
4416   bool IsQPXVectorTy(QualType Ty) const {
4417     return IsQPXVectorTy(Ty.getTypePtr());
4418   }
4419 
4420 public:
4421   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4422                      bool SoftFloatABI)
4423       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4424         IsSoftFloatABI(SoftFloatABI) {}
4425 
4426   bool isPromotableTypeForABI(QualType Ty) const;
4427   CharUnits getParamTypeAlignment(QualType Ty) const;
4428 
4429   ABIArgInfo classifyReturnType(QualType RetTy) const;
4430   ABIArgInfo classifyArgumentType(QualType Ty) const;
4431 
4432   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4433   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4434                                          uint64_t Members) const override;
4435 
4436   // TODO: We can add more logic to computeInfo to improve performance.
4437   // Example: For aggregate arguments that fit in a register, we could
4438   // use getDirectInReg (as is done below for structs containing a single
4439   // floating-point value) to avoid pushing them to memory on function
4440   // entry.  This would require changing the logic in PPCISelLowering
4441   // when lowering the parameters in the caller and args in the callee.
4442   void computeInfo(CGFunctionInfo &FI) const override {
4443     if (!getCXXABI().classifyReturnType(FI))
4444       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4445     for (auto &I : FI.arguments()) {
4446       // We rely on the default argument classification for the most part.
4447       // One exception:  An aggregate containing a single floating-point
4448       // or vector item must be passed in a register if one is available.
4449       const Type *T = isSingleElementStruct(I.type, getContext());
4450       if (T) {
4451         const BuiltinType *BT = T->getAs<BuiltinType>();
4452         if (IsQPXVectorTy(T) ||
4453             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4454             (BT && BT->isFloatingPoint())) {
4455           QualType QT(T, 0);
4456           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4457           continue;
4458         }
4459       }
4460       I.info = classifyArgumentType(I.type);
4461     }
4462   }
4463 
4464   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4465                     QualType Ty) const override;
4466 
4467   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4468                                     bool asReturnValue) const override {
4469     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4470   }
4471 
4472   bool isSwiftErrorInRegister() const override {
4473     return false;
4474   }
4475 };
4476 
4477 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4478 
4479 public:
4480   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4481                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4482                                bool SoftFloatABI)
4483       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4484                                                  SoftFloatABI)) {}
4485 
4486   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4487     // This is recovered from gcc output.
4488     return 1; // r1 is the dedicated stack pointer
4489   }
4490 
4491   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4492                                llvm::Value *Address) const override;
4493 };
4494 
4495 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4496 public:
4497   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4498 
4499   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4500     // This is recovered from gcc output.
4501     return 1; // r1 is the dedicated stack pointer
4502   }
4503 
4504   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4505                                llvm::Value *Address) const override;
4506 };
4507 
4508 }
4509 
4510 // Return true if the ABI requires Ty to be passed sign- or zero-
4511 // extended to 64 bits.
4512 bool
4513 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4514   // Treat an enum type as its underlying type.
4515   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4516     Ty = EnumTy->getDecl()->getIntegerType();
4517 
4518   // Promotable integer types are required to be promoted by the ABI.
4519   if (Ty->isPromotableIntegerType())
4520     return true;
4521 
4522   // In addition to the usual promotable integer types, we also need to
4523   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4524   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4525     switch (BT->getKind()) {
4526     case BuiltinType::Int:
4527     case BuiltinType::UInt:
4528       return true;
4529     default:
4530       break;
4531     }
4532 
4533   return false;
4534 }
4535 
4536 /// isAlignedParamType - Determine whether a type requires 16-byte or
4537 /// higher alignment in the parameter area.  Always returns at least 8.
4538 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4539   // Complex types are passed just like their elements.
4540   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4541     Ty = CTy->getElementType();
4542 
4543   // Only vector types of size 16 bytes need alignment (larger types are
4544   // passed via reference, smaller types are not aligned).
4545   if (IsQPXVectorTy(Ty)) {
4546     if (getContext().getTypeSize(Ty) > 128)
4547       return CharUnits::fromQuantity(32);
4548 
4549     return CharUnits::fromQuantity(16);
4550   } else if (Ty->isVectorType()) {
4551     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4552   }
4553 
4554   // For single-element float/vector structs, we consider the whole type
4555   // to have the same alignment requirements as its single element.
4556   const Type *AlignAsType = nullptr;
4557   const Type *EltType = isSingleElementStruct(Ty, getContext());
4558   if (EltType) {
4559     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4560     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4561          getContext().getTypeSize(EltType) == 128) ||
4562         (BT && BT->isFloatingPoint()))
4563       AlignAsType = EltType;
4564   }
4565 
4566   // Likewise for ELFv2 homogeneous aggregates.
4567   const Type *Base = nullptr;
4568   uint64_t Members = 0;
4569   if (!AlignAsType && Kind == ELFv2 &&
4570       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4571     AlignAsType = Base;
4572 
4573   // With special case aggregates, only vector base types need alignment.
4574   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4575     if (getContext().getTypeSize(AlignAsType) > 128)
4576       return CharUnits::fromQuantity(32);
4577 
4578     return CharUnits::fromQuantity(16);
4579   } else if (AlignAsType) {
4580     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4581   }
4582 
4583   // Otherwise, we only need alignment for any aggregate type that
4584   // has an alignment requirement of >= 16 bytes.
4585   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4586     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4587       return CharUnits::fromQuantity(32);
4588     return CharUnits::fromQuantity(16);
4589   }
4590 
4591   return CharUnits::fromQuantity(8);
4592 }
4593 
4594 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4595 /// aggregate.  Base is set to the base element type, and Members is set
4596 /// to the number of base elements.
4597 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4598                                      uint64_t &Members) const {
4599   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4600     uint64_t NElements = AT->getSize().getZExtValue();
4601     if (NElements == 0)
4602       return false;
4603     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4604       return false;
4605     Members *= NElements;
4606   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4607     const RecordDecl *RD = RT->getDecl();
4608     if (RD->hasFlexibleArrayMember())
4609       return false;
4610 
4611     Members = 0;
4612 
4613     // If this is a C++ record, check the bases first.
4614     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4615       for (const auto &I : CXXRD->bases()) {
4616         // Ignore empty records.
4617         if (isEmptyRecord(getContext(), I.getType(), true))
4618           continue;
4619 
4620         uint64_t FldMembers;
4621         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4622           return false;
4623 
4624         Members += FldMembers;
4625       }
4626     }
4627 
4628     for (const auto *FD : RD->fields()) {
4629       // Ignore (non-zero arrays of) empty records.
4630       QualType FT = FD->getType();
4631       while (const ConstantArrayType *AT =
4632              getContext().getAsConstantArrayType(FT)) {
4633         if (AT->getSize().getZExtValue() == 0)
4634           return false;
4635         FT = AT->getElementType();
4636       }
4637       if (isEmptyRecord(getContext(), FT, true))
4638         continue;
4639 
4640       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4641       if (getContext().getLangOpts().CPlusPlus &&
4642           FD->isZeroLengthBitField(getContext()))
4643         continue;
4644 
4645       uint64_t FldMembers;
4646       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4647         return false;
4648 
4649       Members = (RD->isUnion() ?
4650                  std::max(Members, FldMembers) : Members + FldMembers);
4651     }
4652 
4653     if (!Base)
4654       return false;
4655 
4656     // Ensure there is no padding.
4657     if (getContext().getTypeSize(Base) * Members !=
4658         getContext().getTypeSize(Ty))
4659       return false;
4660   } else {
4661     Members = 1;
4662     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4663       Members = 2;
4664       Ty = CT->getElementType();
4665     }
4666 
4667     // Most ABIs only support float, double, and some vector type widths.
4668     if (!isHomogeneousAggregateBaseType(Ty))
4669       return false;
4670 
4671     // The base type must be the same for all members.  Types that
4672     // agree in both total size and mode (float vs. vector) are
4673     // treated as being equivalent here.
4674     const Type *TyPtr = Ty.getTypePtr();
4675     if (!Base) {
4676       Base = TyPtr;
4677       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4678       // so make sure to widen it explicitly.
4679       if (const VectorType *VT = Base->getAs<VectorType>()) {
4680         QualType EltTy = VT->getElementType();
4681         unsigned NumElements =
4682             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4683         Base = getContext()
4684                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4685                    .getTypePtr();
4686       }
4687     }
4688 
4689     if (Base->isVectorType() != TyPtr->isVectorType() ||
4690         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4691       return false;
4692   }
4693   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4694 }
4695 
4696 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4697   // Homogeneous aggregates for ELFv2 must have base types of float,
4698   // double, long double, or 128-bit vectors.
4699   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4700     if (BT->getKind() == BuiltinType::Float ||
4701         BT->getKind() == BuiltinType::Double ||
4702         BT->getKind() == BuiltinType::LongDouble ||
4703         (getContext().getTargetInfo().hasFloat128Type() &&
4704           (BT->getKind() == BuiltinType::Float128))) {
4705       if (IsSoftFloatABI)
4706         return false;
4707       return true;
4708     }
4709   }
4710   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4711     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4712       return true;
4713   }
4714   return false;
4715 }
4716 
4717 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4718     const Type *Base, uint64_t Members) const {
4719   // Vector and fp128 types require one register, other floating point types
4720   // require one or two registers depending on their size.
4721   uint32_t NumRegs =
4722       ((getContext().getTargetInfo().hasFloat128Type() &&
4723           Base->isFloat128Type()) ||
4724         Base->isVectorType()) ? 1
4725                               : (getContext().getTypeSize(Base) + 63) / 64;
4726 
4727   // Homogeneous Aggregates may occupy at most 8 registers.
4728   return Members * NumRegs <= 8;
4729 }
4730 
4731 ABIArgInfo
4732 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4733   Ty = useFirstFieldIfTransparentUnion(Ty);
4734 
4735   if (Ty->isAnyComplexType())
4736     return ABIArgInfo::getDirect();
4737 
4738   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4739   // or via reference (larger than 16 bytes).
4740   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4741     uint64_t Size = getContext().getTypeSize(Ty);
4742     if (Size > 128)
4743       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4744     else if (Size < 128) {
4745       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4746       return ABIArgInfo::getDirect(CoerceTy);
4747     }
4748   }
4749 
4750   if (isAggregateTypeForABI(Ty)) {
4751     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4752       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4753 
4754     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4755     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4756 
4757     // ELFv2 homogeneous aggregates are passed as array types.
4758     const Type *Base = nullptr;
4759     uint64_t Members = 0;
4760     if (Kind == ELFv2 &&
4761         isHomogeneousAggregate(Ty, Base, Members)) {
4762       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4763       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4764       return ABIArgInfo::getDirect(CoerceTy);
4765     }
4766 
4767     // If an aggregate may end up fully in registers, we do not
4768     // use the ByVal method, but pass the aggregate as array.
4769     // This is usually beneficial since we avoid forcing the
4770     // back-end to store the argument to memory.
4771     uint64_t Bits = getContext().getTypeSize(Ty);
4772     if (Bits > 0 && Bits <= 8 * GPRBits) {
4773       llvm::Type *CoerceTy;
4774 
4775       // Types up to 8 bytes are passed as integer type (which will be
4776       // properly aligned in the argument save area doubleword).
4777       if (Bits <= GPRBits)
4778         CoerceTy =
4779             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4780       // Larger types are passed as arrays, with the base type selected
4781       // according to the required alignment in the save area.
4782       else {
4783         uint64_t RegBits = ABIAlign * 8;
4784         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4785         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4786         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4787       }
4788 
4789       return ABIArgInfo::getDirect(CoerceTy);
4790     }
4791 
4792     // All other aggregates are passed ByVal.
4793     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4794                                    /*ByVal=*/true,
4795                                    /*Realign=*/TyAlign > ABIAlign);
4796   }
4797 
4798   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4799                                      : ABIArgInfo::getDirect());
4800 }
4801 
4802 ABIArgInfo
4803 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4804   if (RetTy->isVoidType())
4805     return ABIArgInfo::getIgnore();
4806 
4807   if (RetTy->isAnyComplexType())
4808     return ABIArgInfo::getDirect();
4809 
4810   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4811   // or via reference (larger than 16 bytes).
4812   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4813     uint64_t Size = getContext().getTypeSize(RetTy);
4814     if (Size > 128)
4815       return getNaturalAlignIndirect(RetTy);
4816     else if (Size < 128) {
4817       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4818       return ABIArgInfo::getDirect(CoerceTy);
4819     }
4820   }
4821 
4822   if (isAggregateTypeForABI(RetTy)) {
4823     // ELFv2 homogeneous aggregates are returned as array types.
4824     const Type *Base = nullptr;
4825     uint64_t Members = 0;
4826     if (Kind == ELFv2 &&
4827         isHomogeneousAggregate(RetTy, Base, Members)) {
4828       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4829       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4830       return ABIArgInfo::getDirect(CoerceTy);
4831     }
4832 
4833     // ELFv2 small aggregates are returned in up to two registers.
4834     uint64_t Bits = getContext().getTypeSize(RetTy);
4835     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4836       if (Bits == 0)
4837         return ABIArgInfo::getIgnore();
4838 
4839       llvm::Type *CoerceTy;
4840       if (Bits > GPRBits) {
4841         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4842         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4843       } else
4844         CoerceTy =
4845             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4846       return ABIArgInfo::getDirect(CoerceTy);
4847     }
4848 
4849     // All other aggregates are returned indirectly.
4850     return getNaturalAlignIndirect(RetTy);
4851   }
4852 
4853   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4854                                         : ABIArgInfo::getDirect());
4855 }
4856 
4857 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4858 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4859                                       QualType Ty) const {
4860   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4861   TypeInfo.second = getParamTypeAlignment(Ty);
4862 
4863   CharUnits SlotSize = CharUnits::fromQuantity(8);
4864 
4865   // If we have a complex type and the base type is smaller than 8 bytes,
4866   // the ABI calls for the real and imaginary parts to be right-adjusted
4867   // in separate doublewords.  However, Clang expects us to produce a
4868   // pointer to a structure with the two parts packed tightly.  So generate
4869   // loads of the real and imaginary parts relative to the va_list pointer,
4870   // and store them to a temporary structure.
4871   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4872     CharUnits EltSize = TypeInfo.first / 2;
4873     if (EltSize < SlotSize) {
4874       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4875                                             SlotSize * 2, SlotSize,
4876                                             SlotSize, /*AllowHigher*/ true);
4877 
4878       Address RealAddr = Addr;
4879       Address ImagAddr = RealAddr;
4880       if (CGF.CGM.getDataLayout().isBigEndian()) {
4881         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4882                                                           SlotSize - EltSize);
4883         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4884                                                       2 * SlotSize - EltSize);
4885       } else {
4886         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4887       }
4888 
4889       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4890       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4891       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4892       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4893       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4894 
4895       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4896       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4897                              /*init*/ true);
4898       return Temp;
4899     }
4900   }
4901 
4902   // Otherwise, just use the general rule.
4903   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4904                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4905 }
4906 
4907 static bool
4908 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4909                               llvm::Value *Address) {
4910   // This is calculated from the LLVM and GCC tables and verified
4911   // against gcc output.  AFAIK all ABIs use the same encoding.
4912 
4913   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4914 
4915   llvm::IntegerType *i8 = CGF.Int8Ty;
4916   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4917   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4918   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4919 
4920   // 0-31: r0-31, the 8-byte general-purpose registers
4921   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4922 
4923   // 32-63: fp0-31, the 8-byte floating-point registers
4924   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4925 
4926   // 64-67 are various 8-byte special-purpose registers:
4927   // 64: mq
4928   // 65: lr
4929   // 66: ctr
4930   // 67: ap
4931   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4932 
4933   // 68-76 are various 4-byte special-purpose registers:
4934   // 68-75 cr0-7
4935   // 76: xer
4936   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4937 
4938   // 77-108: v0-31, the 16-byte vector registers
4939   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4940 
4941   // 109: vrsave
4942   // 110: vscr
4943   // 111: spe_acc
4944   // 112: spefscr
4945   // 113: sfp
4946   // 114: tfhar
4947   // 115: tfiar
4948   // 116: texasr
4949   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4950 
4951   return false;
4952 }
4953 
4954 bool
4955 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4956   CodeGen::CodeGenFunction &CGF,
4957   llvm::Value *Address) const {
4958 
4959   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4960 }
4961 
4962 bool
4963 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4964                                                 llvm::Value *Address) const {
4965 
4966   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4967 }
4968 
4969 //===----------------------------------------------------------------------===//
4970 // AArch64 ABI Implementation
4971 //===----------------------------------------------------------------------===//
4972 
4973 namespace {
4974 
4975 class AArch64ABIInfo : public SwiftABIInfo {
4976 public:
4977   enum ABIKind {
4978     AAPCS = 0,
4979     DarwinPCS,
4980     Win64
4981   };
4982 
4983 private:
4984   ABIKind Kind;
4985 
4986 public:
4987   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4988     : SwiftABIInfo(CGT), Kind(Kind) {}
4989 
4990 private:
4991   ABIKind getABIKind() const { return Kind; }
4992   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4993 
4994   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
4995   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4996   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4997   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4998                                          uint64_t Members) const override;
4999 
5000   bool isIllegalVectorType(QualType Ty) const;
5001 
5002   void computeInfo(CGFunctionInfo &FI) const override {
5003     if (!::classifyReturnType(getCXXABI(), FI, *this))
5004       FI.getReturnInfo() =
5005           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5006 
5007     for (auto &it : FI.arguments())
5008       it.info = classifyArgumentType(it.type);
5009   }
5010 
5011   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5012                           CodeGenFunction &CGF) const;
5013 
5014   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5015                          CodeGenFunction &CGF) const;
5016 
5017   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5018                     QualType Ty) const override {
5019     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5020                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5021                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5022   }
5023 
5024   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5025                       QualType Ty) const override;
5026 
5027   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5028                                     bool asReturnValue) const override {
5029     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5030   }
5031   bool isSwiftErrorInRegister() const override {
5032     return true;
5033   }
5034 
5035   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5036                                  unsigned elts) const override;
5037 };
5038 
5039 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5040 public:
5041   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5042       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5043 
5044   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5045     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5046   }
5047 
5048   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5049     return 31;
5050   }
5051 
5052   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5053 
5054   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5055                            CodeGen::CodeGenModule &CGM) const override {
5056     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5057     if (!FD)
5058       return;
5059 
5060     CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress();
5061     CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5062     bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement;
5063     if (const auto *TA = FD->getAttr<TargetAttr>()) {
5064       TargetAttr::ParsedTargetAttr Attr = TA->parse();
5065       if (!Attr.BranchProtection.empty()) {
5066         TargetInfo::BranchProtectionInfo BPI;
5067         StringRef Error;
5068         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5069                                                        BPI, Error);
5070         assert(Error.empty());
5071         Scope = BPI.SignReturnAddr;
5072         Key = BPI.SignKey;
5073         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
5074       }
5075     }
5076 
5077     auto *Fn = cast<llvm::Function>(GV);
5078     if (Scope != CodeGenOptions::SignReturnAddressScope::None) {
5079       Fn->addFnAttr("sign-return-address",
5080                     Scope == CodeGenOptions::SignReturnAddressScope::All
5081                         ? "all"
5082                         : "non-leaf");
5083 
5084       Fn->addFnAttr("sign-return-address-key",
5085                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5086                         ? "a_key"
5087                         : "b_key");
5088     }
5089 
5090     if (BranchTargetEnforcement)
5091       Fn->addFnAttr("branch-target-enforcement");
5092   }
5093 };
5094 
5095 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5096 public:
5097   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5098       : AArch64TargetCodeGenInfo(CGT, K) {}
5099 
5100   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5101                            CodeGen::CodeGenModule &CGM) const override;
5102 
5103   void getDependentLibraryOption(llvm::StringRef Lib,
5104                                  llvm::SmallString<24> &Opt) const override {
5105     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5106   }
5107 
5108   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5109                                llvm::SmallString<32> &Opt) const override {
5110     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5111   }
5112 };
5113 
5114 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5115     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5116   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5117   if (GV->isDeclaration())
5118     return;
5119   addStackProbeTargetAttributes(D, GV, CGM);
5120 }
5121 }
5122 
5123 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5124   Ty = useFirstFieldIfTransparentUnion(Ty);
5125 
5126   // Handle illegal vector types here.
5127   if (isIllegalVectorType(Ty)) {
5128     uint64_t Size = getContext().getTypeSize(Ty);
5129     // Android promotes <2 x i8> to i16, not i32
5130     if (isAndroid() && (Size <= 16)) {
5131       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5132       return ABIArgInfo::getDirect(ResType);
5133     }
5134     if (Size <= 32) {
5135       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5136       return ABIArgInfo::getDirect(ResType);
5137     }
5138     if (Size == 64) {
5139       llvm::Type *ResType =
5140           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5141       return ABIArgInfo::getDirect(ResType);
5142     }
5143     if (Size == 128) {
5144       llvm::Type *ResType =
5145           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5146       return ABIArgInfo::getDirect(ResType);
5147     }
5148     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5149   }
5150 
5151   if (!isAggregateTypeForABI(Ty)) {
5152     // Treat an enum type as its underlying type.
5153     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5154       Ty = EnumTy->getDecl()->getIntegerType();
5155 
5156     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5157                 ? ABIArgInfo::getExtend(Ty)
5158                 : ABIArgInfo::getDirect());
5159   }
5160 
5161   // Structures with either a non-trivial destructor or a non-trivial
5162   // copy constructor are always indirect.
5163   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5164     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5165                                      CGCXXABI::RAA_DirectInMemory);
5166   }
5167 
5168   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5169   // elsewhere for GNU compatibility.
5170   uint64_t Size = getContext().getTypeSize(Ty);
5171   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5172   if (IsEmpty || Size == 0) {
5173     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5174       return ABIArgInfo::getIgnore();
5175 
5176     // GNU C mode. The only argument that gets ignored is an empty one with size
5177     // 0.
5178     if (IsEmpty && Size == 0)
5179       return ABIArgInfo::getIgnore();
5180     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5181   }
5182 
5183   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5184   const Type *Base = nullptr;
5185   uint64_t Members = 0;
5186   if (isHomogeneousAggregate(Ty, Base, Members)) {
5187     return ABIArgInfo::getDirect(
5188         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5189   }
5190 
5191   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5192   if (Size <= 128) {
5193     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5194     // same size and alignment.
5195     if (getTarget().isRenderScriptTarget()) {
5196       return coerceToIntArray(Ty, getContext(), getVMContext());
5197     }
5198     unsigned Alignment;
5199     if (Kind == AArch64ABIInfo::AAPCS) {
5200       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5201       Alignment = Alignment < 128 ? 64 : 128;
5202     } else {
5203       Alignment = std::max(getContext().getTypeAlign(Ty),
5204                            (unsigned)getTarget().getPointerWidth(0));
5205     }
5206     Size = llvm::alignTo(Size, Alignment);
5207 
5208     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5209     // For aggregates with 16-byte alignment, we use i128.
5210     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5211     return ABIArgInfo::getDirect(
5212         Size == Alignment ? BaseTy
5213                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5214   }
5215 
5216   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5217 }
5218 
5219 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5220                                               bool IsVariadic) const {
5221   if (RetTy->isVoidType())
5222     return ABIArgInfo::getIgnore();
5223 
5224   // Large vector types should be returned via memory.
5225   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5226     return getNaturalAlignIndirect(RetTy);
5227 
5228   if (!isAggregateTypeForABI(RetTy)) {
5229     // Treat an enum type as its underlying type.
5230     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5231       RetTy = EnumTy->getDecl()->getIntegerType();
5232 
5233     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5234                 ? ABIArgInfo::getExtend(RetTy)
5235                 : ABIArgInfo::getDirect());
5236   }
5237 
5238   uint64_t Size = getContext().getTypeSize(RetTy);
5239   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5240     return ABIArgInfo::getIgnore();
5241 
5242   const Type *Base = nullptr;
5243   uint64_t Members = 0;
5244   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5245       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5246         IsVariadic))
5247     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5248     return ABIArgInfo::getDirect();
5249 
5250   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5251   if (Size <= 128) {
5252     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5253     // same size and alignment.
5254     if (getTarget().isRenderScriptTarget()) {
5255       return coerceToIntArray(RetTy, getContext(), getVMContext());
5256     }
5257     unsigned Alignment = getContext().getTypeAlign(RetTy);
5258     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5259 
5260     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5261     // For aggregates with 16-byte alignment, we use i128.
5262     if (Alignment < 128 && Size == 128) {
5263       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5264       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5265     }
5266     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5267   }
5268 
5269   return getNaturalAlignIndirect(RetTy);
5270 }
5271 
5272 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5273 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5274   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5275     // Check whether VT is legal.
5276     unsigned NumElements = VT->getNumElements();
5277     uint64_t Size = getContext().getTypeSize(VT);
5278     // NumElements should be power of 2.
5279     if (!llvm::isPowerOf2_32(NumElements))
5280       return true;
5281 
5282     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5283     // vectors for some reason.
5284     llvm::Triple Triple = getTarget().getTriple();
5285     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5286         Triple.isOSBinFormatMachO())
5287       return Size <= 32;
5288 
5289     return Size != 64 && (Size != 128 || NumElements == 1);
5290   }
5291   return false;
5292 }
5293 
5294 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5295                                                llvm::Type *eltTy,
5296                                                unsigned elts) const {
5297   if (!llvm::isPowerOf2_32(elts))
5298     return false;
5299   if (totalSize.getQuantity() != 8 &&
5300       (totalSize.getQuantity() != 16 || elts == 1))
5301     return false;
5302   return true;
5303 }
5304 
5305 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5306   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5307   // point type or a short-vector type. This is the same as the 32-bit ABI,
5308   // but with the difference that any floating-point type is allowed,
5309   // including __fp16.
5310   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5311     if (BT->isFloatingPoint())
5312       return true;
5313   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5314     unsigned VecSize = getContext().getTypeSize(VT);
5315     if (VecSize == 64 || VecSize == 128)
5316       return true;
5317   }
5318   return false;
5319 }
5320 
5321 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5322                                                        uint64_t Members) const {
5323   return Members <= 4;
5324 }
5325 
5326 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5327                                             QualType Ty,
5328                                             CodeGenFunction &CGF) const {
5329   ABIArgInfo AI = classifyArgumentType(Ty);
5330   bool IsIndirect = AI.isIndirect();
5331 
5332   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5333   if (IsIndirect)
5334     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5335   else if (AI.getCoerceToType())
5336     BaseTy = AI.getCoerceToType();
5337 
5338   unsigned NumRegs = 1;
5339   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5340     BaseTy = ArrTy->getElementType();
5341     NumRegs = ArrTy->getNumElements();
5342   }
5343   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5344 
5345   // The AArch64 va_list type and handling is specified in the Procedure Call
5346   // Standard, section B.4:
5347   //
5348   // struct {
5349   //   void *__stack;
5350   //   void *__gr_top;
5351   //   void *__vr_top;
5352   //   int __gr_offs;
5353   //   int __vr_offs;
5354   // };
5355 
5356   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5357   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5358   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5359   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5360 
5361   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5362   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5363 
5364   Address reg_offs_p = Address::invalid();
5365   llvm::Value *reg_offs = nullptr;
5366   int reg_top_index;
5367   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5368   if (!IsFPR) {
5369     // 3 is the field number of __gr_offs
5370     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5371     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5372     reg_top_index = 1; // field number for __gr_top
5373     RegSize = llvm::alignTo(RegSize, 8);
5374   } else {
5375     // 4 is the field number of __vr_offs.
5376     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5377     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5378     reg_top_index = 2; // field number for __vr_top
5379     RegSize = 16 * NumRegs;
5380   }
5381 
5382   //=======================================
5383   // Find out where argument was passed
5384   //=======================================
5385 
5386   // If reg_offs >= 0 we're already using the stack for this type of
5387   // argument. We don't want to keep updating reg_offs (in case it overflows,
5388   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5389   // whatever they get).
5390   llvm::Value *UsingStack = nullptr;
5391   UsingStack = CGF.Builder.CreateICmpSGE(
5392       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5393 
5394   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5395 
5396   // Otherwise, at least some kind of argument could go in these registers, the
5397   // question is whether this particular type is too big.
5398   CGF.EmitBlock(MaybeRegBlock);
5399 
5400   // Integer arguments may need to correct register alignment (for example a
5401   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5402   // align __gr_offs to calculate the potential address.
5403   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5404     int Align = TyAlign.getQuantity();
5405 
5406     reg_offs = CGF.Builder.CreateAdd(
5407         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5408         "align_regoffs");
5409     reg_offs = CGF.Builder.CreateAnd(
5410         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5411         "aligned_regoffs");
5412   }
5413 
5414   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5415   // The fact that this is done unconditionally reflects the fact that
5416   // allocating an argument to the stack also uses up all the remaining
5417   // registers of the appropriate kind.
5418   llvm::Value *NewOffset = nullptr;
5419   NewOffset = CGF.Builder.CreateAdd(
5420       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5421   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5422 
5423   // Now we're in a position to decide whether this argument really was in
5424   // registers or not.
5425   llvm::Value *InRegs = nullptr;
5426   InRegs = CGF.Builder.CreateICmpSLE(
5427       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5428 
5429   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5430 
5431   //=======================================
5432   // Argument was in registers
5433   //=======================================
5434 
5435   // Now we emit the code for if the argument was originally passed in
5436   // registers. First start the appropriate block:
5437   CGF.EmitBlock(InRegBlock);
5438 
5439   llvm::Value *reg_top = nullptr;
5440   Address reg_top_p =
5441       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5442   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5443   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5444                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5445   Address RegAddr = Address::invalid();
5446   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5447 
5448   if (IsIndirect) {
5449     // If it's been passed indirectly (actually a struct), whatever we find from
5450     // stored registers or on the stack will actually be a struct **.
5451     MemTy = llvm::PointerType::getUnqual(MemTy);
5452   }
5453 
5454   const Type *Base = nullptr;
5455   uint64_t NumMembers = 0;
5456   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5457   if (IsHFA && NumMembers > 1) {
5458     // Homogeneous aggregates passed in registers will have their elements split
5459     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5460     // qN+1, ...). We reload and store into a temporary local variable
5461     // contiguously.
5462     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5463     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5464     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5465     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5466     Address Tmp = CGF.CreateTempAlloca(HFATy,
5467                                        std::max(TyAlign, BaseTyInfo.second));
5468 
5469     // On big-endian platforms, the value will be right-aligned in its slot.
5470     int Offset = 0;
5471     if (CGF.CGM.getDataLayout().isBigEndian() &&
5472         BaseTyInfo.first.getQuantity() < 16)
5473       Offset = 16 - BaseTyInfo.first.getQuantity();
5474 
5475     for (unsigned i = 0; i < NumMembers; ++i) {
5476       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5477       Address LoadAddr =
5478         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5479       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5480 
5481       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5482 
5483       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5484       CGF.Builder.CreateStore(Elem, StoreAddr);
5485     }
5486 
5487     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5488   } else {
5489     // Otherwise the object is contiguous in memory.
5490 
5491     // It might be right-aligned in its slot.
5492     CharUnits SlotSize = BaseAddr.getAlignment();
5493     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5494         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5495         TySize < SlotSize) {
5496       CharUnits Offset = SlotSize - TySize;
5497       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5498     }
5499 
5500     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5501   }
5502 
5503   CGF.EmitBranch(ContBlock);
5504 
5505   //=======================================
5506   // Argument was on the stack
5507   //=======================================
5508   CGF.EmitBlock(OnStackBlock);
5509 
5510   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5511   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5512 
5513   // Again, stack arguments may need realignment. In this case both integer and
5514   // floating-point ones might be affected.
5515   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5516     int Align = TyAlign.getQuantity();
5517 
5518     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5519 
5520     OnStackPtr = CGF.Builder.CreateAdd(
5521         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5522         "align_stack");
5523     OnStackPtr = CGF.Builder.CreateAnd(
5524         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5525         "align_stack");
5526 
5527     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5528   }
5529   Address OnStackAddr(OnStackPtr,
5530                       std::max(CharUnits::fromQuantity(8), TyAlign));
5531 
5532   // All stack slots are multiples of 8 bytes.
5533   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5534   CharUnits StackSize;
5535   if (IsIndirect)
5536     StackSize = StackSlotSize;
5537   else
5538     StackSize = TySize.alignTo(StackSlotSize);
5539 
5540   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5541   llvm::Value *NewStack =
5542       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5543 
5544   // Write the new value of __stack for the next call to va_arg
5545   CGF.Builder.CreateStore(NewStack, stack_p);
5546 
5547   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5548       TySize < StackSlotSize) {
5549     CharUnits Offset = StackSlotSize - TySize;
5550     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5551   }
5552 
5553   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5554 
5555   CGF.EmitBranch(ContBlock);
5556 
5557   //=======================================
5558   // Tidy up
5559   //=======================================
5560   CGF.EmitBlock(ContBlock);
5561 
5562   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5563                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5564 
5565   if (IsIndirect)
5566     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5567                    TyAlign);
5568 
5569   return ResAddr;
5570 }
5571 
5572 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5573                                         CodeGenFunction &CGF) const {
5574   // The backend's lowering doesn't support va_arg for aggregates or
5575   // illegal vector types.  Lower VAArg here for these cases and use
5576   // the LLVM va_arg instruction for everything else.
5577   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5578     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5579 
5580   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
5581   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
5582 
5583   // Empty records are ignored for parameter passing purposes.
5584   if (isEmptyRecord(getContext(), Ty, true)) {
5585     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5586     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5587     return Addr;
5588   }
5589 
5590   // The size of the actual thing passed, which might end up just
5591   // being a pointer for indirect types.
5592   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5593 
5594   // Arguments bigger than 16 bytes which aren't homogeneous
5595   // aggregates should be passed indirectly.
5596   bool IsIndirect = false;
5597   if (TyInfo.first.getQuantity() > 16) {
5598     const Type *Base = nullptr;
5599     uint64_t Members = 0;
5600     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5601   }
5602 
5603   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5604                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5605 }
5606 
5607 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5608                                     QualType Ty) const {
5609   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5610                           CGF.getContext().getTypeInfoInChars(Ty),
5611                           CharUnits::fromQuantity(8),
5612                           /*allowHigherAlign*/ false);
5613 }
5614 
5615 //===----------------------------------------------------------------------===//
5616 // ARM ABI Implementation
5617 //===----------------------------------------------------------------------===//
5618 
5619 namespace {
5620 
5621 class ARMABIInfo : public SwiftABIInfo {
5622 public:
5623   enum ABIKind {
5624     APCS = 0,
5625     AAPCS = 1,
5626     AAPCS_VFP = 2,
5627     AAPCS16_VFP = 3,
5628   };
5629 
5630 private:
5631   ABIKind Kind;
5632 
5633 public:
5634   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5635       : SwiftABIInfo(CGT), Kind(_Kind) {
5636     setCCs();
5637   }
5638 
5639   bool isEABI() const {
5640     switch (getTarget().getTriple().getEnvironment()) {
5641     case llvm::Triple::Android:
5642     case llvm::Triple::EABI:
5643     case llvm::Triple::EABIHF:
5644     case llvm::Triple::GNUEABI:
5645     case llvm::Triple::GNUEABIHF:
5646     case llvm::Triple::MuslEABI:
5647     case llvm::Triple::MuslEABIHF:
5648       return true;
5649     default:
5650       return false;
5651     }
5652   }
5653 
5654   bool isEABIHF() const {
5655     switch (getTarget().getTriple().getEnvironment()) {
5656     case llvm::Triple::EABIHF:
5657     case llvm::Triple::GNUEABIHF:
5658     case llvm::Triple::MuslEABIHF:
5659       return true;
5660     default:
5661       return false;
5662     }
5663   }
5664 
5665   ABIKind getABIKind() const { return Kind; }
5666 
5667 private:
5668   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5669                                 unsigned functionCallConv) const;
5670   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5671                                   unsigned functionCallConv) const;
5672   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5673                                           uint64_t Members) const;
5674   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5675   bool isIllegalVectorType(QualType Ty) const;
5676   bool containsAnyFP16Vectors(QualType Ty) const;
5677 
5678   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5679   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5680                                          uint64_t Members) const override;
5681 
5682   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5683 
5684   void computeInfo(CGFunctionInfo &FI) const override;
5685 
5686   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5687                     QualType Ty) const override;
5688 
5689   llvm::CallingConv::ID getLLVMDefaultCC() const;
5690   llvm::CallingConv::ID getABIDefaultCC() const;
5691   void setCCs();
5692 
5693   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5694                                     bool asReturnValue) const override {
5695     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5696   }
5697   bool isSwiftErrorInRegister() const override {
5698     return true;
5699   }
5700   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5701                                  unsigned elts) const override;
5702 };
5703 
5704 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5705 public:
5706   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5707     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5708 
5709   const ARMABIInfo &getABIInfo() const {
5710     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5711   }
5712 
5713   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5714     return 13;
5715   }
5716 
5717   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5718     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5719   }
5720 
5721   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5722                                llvm::Value *Address) const override {
5723     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5724 
5725     // 0-15 are the 16 integer registers.
5726     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5727     return false;
5728   }
5729 
5730   unsigned getSizeOfUnwindException() const override {
5731     if (getABIInfo().isEABI()) return 88;
5732     return TargetCodeGenInfo::getSizeOfUnwindException();
5733   }
5734 
5735   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5736                            CodeGen::CodeGenModule &CGM) const override {
5737     if (GV->isDeclaration())
5738       return;
5739     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5740     if (!FD)
5741       return;
5742 
5743     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5744     if (!Attr)
5745       return;
5746 
5747     const char *Kind;
5748     switch (Attr->getInterrupt()) {
5749     case ARMInterruptAttr::Generic: Kind = ""; break;
5750     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5751     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5752     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5753     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5754     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5755     }
5756 
5757     llvm::Function *Fn = cast<llvm::Function>(GV);
5758 
5759     Fn->addFnAttr("interrupt", Kind);
5760 
5761     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5762     if (ABI == ARMABIInfo::APCS)
5763       return;
5764 
5765     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5766     // however this is not necessarily true on taking any interrupt. Instruct
5767     // the backend to perform a realignment as part of the function prologue.
5768     llvm::AttrBuilder B;
5769     B.addStackAlignmentAttr(8);
5770     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5771   }
5772 };
5773 
5774 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5775 public:
5776   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5777       : ARMTargetCodeGenInfo(CGT, K) {}
5778 
5779   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5780                            CodeGen::CodeGenModule &CGM) const override;
5781 
5782   void getDependentLibraryOption(llvm::StringRef Lib,
5783                                  llvm::SmallString<24> &Opt) const override {
5784     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5785   }
5786 
5787   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5788                                llvm::SmallString<32> &Opt) const override {
5789     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5790   }
5791 };
5792 
5793 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5794     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5795   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5796   if (GV->isDeclaration())
5797     return;
5798   addStackProbeTargetAttributes(D, GV, CGM);
5799 }
5800 }
5801 
5802 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5803   if (!::classifyReturnType(getCXXABI(), FI, *this))
5804     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5805                                             FI.getCallingConvention());
5806 
5807   for (auto &I : FI.arguments())
5808     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5809                                   FI.getCallingConvention());
5810 
5811 
5812   // Always honor user-specified calling convention.
5813   if (FI.getCallingConvention() != llvm::CallingConv::C)
5814     return;
5815 
5816   llvm::CallingConv::ID cc = getRuntimeCC();
5817   if (cc != llvm::CallingConv::C)
5818     FI.setEffectiveCallingConvention(cc);
5819 }
5820 
5821 /// Return the default calling convention that LLVM will use.
5822 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5823   // The default calling convention that LLVM will infer.
5824   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5825     return llvm::CallingConv::ARM_AAPCS_VFP;
5826   else if (isEABI())
5827     return llvm::CallingConv::ARM_AAPCS;
5828   else
5829     return llvm::CallingConv::ARM_APCS;
5830 }
5831 
5832 /// Return the calling convention that our ABI would like us to use
5833 /// as the C calling convention.
5834 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5835   switch (getABIKind()) {
5836   case APCS: return llvm::CallingConv::ARM_APCS;
5837   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5838   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5839   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5840   }
5841   llvm_unreachable("bad ABI kind");
5842 }
5843 
5844 void ARMABIInfo::setCCs() {
5845   assert(getRuntimeCC() == llvm::CallingConv::C);
5846 
5847   // Don't muddy up the IR with a ton of explicit annotations if
5848   // they'd just match what LLVM will infer from the triple.
5849   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5850   if (abiCC != getLLVMDefaultCC())
5851     RuntimeCC = abiCC;
5852 }
5853 
5854 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5855   uint64_t Size = getContext().getTypeSize(Ty);
5856   if (Size <= 32) {
5857     llvm::Type *ResType =
5858         llvm::Type::getInt32Ty(getVMContext());
5859     return ABIArgInfo::getDirect(ResType);
5860   }
5861   if (Size == 64 || Size == 128) {
5862     llvm::Type *ResType = llvm::VectorType::get(
5863         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5864     return ABIArgInfo::getDirect(ResType);
5865   }
5866   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5867 }
5868 
5869 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5870                                                     const Type *Base,
5871                                                     uint64_t Members) const {
5872   assert(Base && "Base class should be set for homogeneous aggregate");
5873   // Base can be a floating-point or a vector.
5874   if (const VectorType *VT = Base->getAs<VectorType>()) {
5875     // FP16 vectors should be converted to integer vectors
5876     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
5877       uint64_t Size = getContext().getTypeSize(VT);
5878       llvm::Type *NewVecTy = llvm::VectorType::get(
5879           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5880       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5881       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5882     }
5883   }
5884   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5885 }
5886 
5887 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
5888                                             unsigned functionCallConv) const {
5889   // 6.1.2.1 The following argument types are VFP CPRCs:
5890   //   A single-precision floating-point type (including promoted
5891   //   half-precision types); A double-precision floating-point type;
5892   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5893   //   with a Base Type of a single- or double-precision floating-point type,
5894   //   64-bit containerized vectors or 128-bit containerized vectors with one
5895   //   to four Elements.
5896   // Variadic functions should always marshal to the base standard.
5897   bool IsAAPCS_VFP =
5898       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
5899 
5900   Ty = useFirstFieldIfTransparentUnion(Ty);
5901 
5902   // Handle illegal vector types here.
5903   if (isIllegalVectorType(Ty))
5904     return coerceIllegalVector(Ty);
5905 
5906   // _Float16 and __fp16 get passed as if it were an int or float, but with
5907   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5908   // half type natively, and does not need to interwork with AAPCS code.
5909   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5910       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5911     llvm::Type *ResType = IsAAPCS_VFP ?
5912       llvm::Type::getFloatTy(getVMContext()) :
5913       llvm::Type::getInt32Ty(getVMContext());
5914     return ABIArgInfo::getDirect(ResType);
5915   }
5916 
5917   if (!isAggregateTypeForABI(Ty)) {
5918     // Treat an enum type as its underlying type.
5919     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5920       Ty = EnumTy->getDecl()->getIntegerType();
5921     }
5922 
5923     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5924                                           : ABIArgInfo::getDirect());
5925   }
5926 
5927   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5928     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5929   }
5930 
5931   // Ignore empty records.
5932   if (isEmptyRecord(getContext(), Ty, true))
5933     return ABIArgInfo::getIgnore();
5934 
5935   if (IsAAPCS_VFP) {
5936     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5937     // into VFP registers.
5938     const Type *Base = nullptr;
5939     uint64_t Members = 0;
5940     if (isHomogeneousAggregate(Ty, Base, Members))
5941       return classifyHomogeneousAggregate(Ty, Base, Members);
5942   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5943     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5944     // this convention even for a variadic function: the backend will use GPRs
5945     // if needed.
5946     const Type *Base = nullptr;
5947     uint64_t Members = 0;
5948     if (isHomogeneousAggregate(Ty, Base, Members)) {
5949       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5950       llvm::Type *Ty =
5951         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5952       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5953     }
5954   }
5955 
5956   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5957       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5958     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5959     // bigger than 128-bits, they get placed in space allocated by the caller,
5960     // and a pointer is passed.
5961     return ABIArgInfo::getIndirect(
5962         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5963   }
5964 
5965   // Support byval for ARM.
5966   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5967   // most 8-byte. We realign the indirect argument if type alignment is bigger
5968   // than ABI alignment.
5969   uint64_t ABIAlign = 4;
5970   uint64_t TyAlign;
5971   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5972       getABIKind() == ARMABIInfo::AAPCS) {
5973     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5974     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5975   } else {
5976     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5977   }
5978   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5979     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5980     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5981                                    /*ByVal=*/true,
5982                                    /*Realign=*/TyAlign > ABIAlign);
5983   }
5984 
5985   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5986   // same size and alignment.
5987   if (getTarget().isRenderScriptTarget()) {
5988     return coerceToIntArray(Ty, getContext(), getVMContext());
5989   }
5990 
5991   // Otherwise, pass by coercing to a structure of the appropriate size.
5992   llvm::Type* ElemTy;
5993   unsigned SizeRegs;
5994   // FIXME: Try to match the types of the arguments more accurately where
5995   // we can.
5996   if (TyAlign <= 4) {
5997     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5998     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5999   } else {
6000     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6001     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6002   }
6003 
6004   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6005 }
6006 
6007 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6008                               llvm::LLVMContext &VMContext) {
6009   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6010   // is called integer-like if its size is less than or equal to one word, and
6011   // the offset of each of its addressable sub-fields is zero.
6012 
6013   uint64_t Size = Context.getTypeSize(Ty);
6014 
6015   // Check that the type fits in a word.
6016   if (Size > 32)
6017     return false;
6018 
6019   // FIXME: Handle vector types!
6020   if (Ty->isVectorType())
6021     return false;
6022 
6023   // Float types are never treated as "integer like".
6024   if (Ty->isRealFloatingType())
6025     return false;
6026 
6027   // If this is a builtin or pointer type then it is ok.
6028   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6029     return true;
6030 
6031   // Small complex integer types are "integer like".
6032   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6033     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6034 
6035   // Single element and zero sized arrays should be allowed, by the definition
6036   // above, but they are not.
6037 
6038   // Otherwise, it must be a record type.
6039   const RecordType *RT = Ty->getAs<RecordType>();
6040   if (!RT) return false;
6041 
6042   // Ignore records with flexible arrays.
6043   const RecordDecl *RD = RT->getDecl();
6044   if (RD->hasFlexibleArrayMember())
6045     return false;
6046 
6047   // Check that all sub-fields are at offset 0, and are themselves "integer
6048   // like".
6049   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6050 
6051   bool HadField = false;
6052   unsigned idx = 0;
6053   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6054        i != e; ++i, ++idx) {
6055     const FieldDecl *FD = *i;
6056 
6057     // Bit-fields are not addressable, we only need to verify they are "integer
6058     // like". We still have to disallow a subsequent non-bitfield, for example:
6059     //   struct { int : 0; int x }
6060     // is non-integer like according to gcc.
6061     if (FD->isBitField()) {
6062       if (!RD->isUnion())
6063         HadField = true;
6064 
6065       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6066         return false;
6067 
6068       continue;
6069     }
6070 
6071     // Check if this field is at offset 0.
6072     if (Layout.getFieldOffset(idx) != 0)
6073       return false;
6074 
6075     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6076       return false;
6077 
6078     // Only allow at most one field in a structure. This doesn't match the
6079     // wording above, but follows gcc in situations with a field following an
6080     // empty structure.
6081     if (!RD->isUnion()) {
6082       if (HadField)
6083         return false;
6084 
6085       HadField = true;
6086     }
6087   }
6088 
6089   return true;
6090 }
6091 
6092 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6093                                           unsigned functionCallConv) const {
6094 
6095   // Variadic functions should always marshal to the base standard.
6096   bool IsAAPCS_VFP =
6097       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6098 
6099   if (RetTy->isVoidType())
6100     return ABIArgInfo::getIgnore();
6101 
6102   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6103     // Large vector types should be returned via memory.
6104     if (getContext().getTypeSize(RetTy) > 128)
6105       return getNaturalAlignIndirect(RetTy);
6106     // FP16 vectors should be converted to integer vectors
6107     if (!getTarget().hasLegalHalfType() &&
6108         (VT->getElementType()->isFloat16Type() ||
6109          VT->getElementType()->isHalfType()))
6110       return coerceIllegalVector(RetTy);
6111   }
6112 
6113   // _Float16 and __fp16 get returned as if it were an int or float, but with
6114   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6115   // half type natively, and does not need to interwork with AAPCS code.
6116   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6117       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6118     llvm::Type *ResType = IsAAPCS_VFP ?
6119       llvm::Type::getFloatTy(getVMContext()) :
6120       llvm::Type::getInt32Ty(getVMContext());
6121     return ABIArgInfo::getDirect(ResType);
6122   }
6123 
6124   if (!isAggregateTypeForABI(RetTy)) {
6125     // Treat an enum type as its underlying type.
6126     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6127       RetTy = EnumTy->getDecl()->getIntegerType();
6128 
6129     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6130                                             : ABIArgInfo::getDirect();
6131   }
6132 
6133   // Are we following APCS?
6134   if (getABIKind() == APCS) {
6135     if (isEmptyRecord(getContext(), RetTy, false))
6136       return ABIArgInfo::getIgnore();
6137 
6138     // Complex types are all returned as packed integers.
6139     //
6140     // FIXME: Consider using 2 x vector types if the back end handles them
6141     // correctly.
6142     if (RetTy->isAnyComplexType())
6143       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6144           getVMContext(), getContext().getTypeSize(RetTy)));
6145 
6146     // Integer like structures are returned in r0.
6147     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6148       // Return in the smallest viable integer type.
6149       uint64_t Size = getContext().getTypeSize(RetTy);
6150       if (Size <= 8)
6151         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6152       if (Size <= 16)
6153         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6154       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6155     }
6156 
6157     // Otherwise return in memory.
6158     return getNaturalAlignIndirect(RetTy);
6159   }
6160 
6161   // Otherwise this is an AAPCS variant.
6162 
6163   if (isEmptyRecord(getContext(), RetTy, true))
6164     return ABIArgInfo::getIgnore();
6165 
6166   // Check for homogeneous aggregates with AAPCS-VFP.
6167   if (IsAAPCS_VFP) {
6168     const Type *Base = nullptr;
6169     uint64_t Members = 0;
6170     if (isHomogeneousAggregate(RetTy, Base, Members))
6171       return classifyHomogeneousAggregate(RetTy, Base, Members);
6172   }
6173 
6174   // Aggregates <= 4 bytes are returned in r0; other aggregates
6175   // are returned indirectly.
6176   uint64_t Size = getContext().getTypeSize(RetTy);
6177   if (Size <= 32) {
6178     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6179     // same size and alignment.
6180     if (getTarget().isRenderScriptTarget()) {
6181       return coerceToIntArray(RetTy, getContext(), getVMContext());
6182     }
6183     if (getDataLayout().isBigEndian())
6184       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6185       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6186 
6187     // Return in the smallest viable integer type.
6188     if (Size <= 8)
6189       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6190     if (Size <= 16)
6191       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6192     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6193   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6194     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6195     llvm::Type *CoerceTy =
6196         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6197     return ABIArgInfo::getDirect(CoerceTy);
6198   }
6199 
6200   return getNaturalAlignIndirect(RetTy);
6201 }
6202 
6203 /// isIllegalVector - check whether Ty is an illegal vector type.
6204 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6205   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6206     // On targets that don't support FP16, FP16 is expanded into float, and we
6207     // don't want the ABI to depend on whether or not FP16 is supported in
6208     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6209     if (!getTarget().hasLegalHalfType() &&
6210         (VT->getElementType()->isFloat16Type() ||
6211          VT->getElementType()->isHalfType()))
6212       return true;
6213     if (isAndroid()) {
6214       // Android shipped using Clang 3.1, which supported a slightly different
6215       // vector ABI. The primary differences were that 3-element vector types
6216       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6217       // accepts that legacy behavior for Android only.
6218       // Check whether VT is legal.
6219       unsigned NumElements = VT->getNumElements();
6220       // NumElements should be power of 2 or equal to 3.
6221       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6222         return true;
6223     } else {
6224       // Check whether VT is legal.
6225       unsigned NumElements = VT->getNumElements();
6226       uint64_t Size = getContext().getTypeSize(VT);
6227       // NumElements should be power of 2.
6228       if (!llvm::isPowerOf2_32(NumElements))
6229         return true;
6230       // Size should be greater than 32 bits.
6231       return Size <= 32;
6232     }
6233   }
6234   return false;
6235 }
6236 
6237 /// Return true if a type contains any 16-bit floating point vectors
6238 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6239   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6240     uint64_t NElements = AT->getSize().getZExtValue();
6241     if (NElements == 0)
6242       return false;
6243     return containsAnyFP16Vectors(AT->getElementType());
6244   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6245     const RecordDecl *RD = RT->getDecl();
6246 
6247     // If this is a C++ record, check the bases first.
6248     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6249       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6250             return containsAnyFP16Vectors(B.getType());
6251           }))
6252         return true;
6253 
6254     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6255           return FD && containsAnyFP16Vectors(FD->getType());
6256         }))
6257       return true;
6258 
6259     return false;
6260   } else {
6261     if (const VectorType *VT = Ty->getAs<VectorType>())
6262       return (VT->getElementType()->isFloat16Type() ||
6263               VT->getElementType()->isHalfType());
6264     return false;
6265   }
6266 }
6267 
6268 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6269                                            llvm::Type *eltTy,
6270                                            unsigned numElts) const {
6271   if (!llvm::isPowerOf2_32(numElts))
6272     return false;
6273   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6274   if (size > 64)
6275     return false;
6276   if (vectorSize.getQuantity() != 8 &&
6277       (vectorSize.getQuantity() != 16 || numElts == 1))
6278     return false;
6279   return true;
6280 }
6281 
6282 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6283   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6284   // double, or 64-bit or 128-bit vectors.
6285   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6286     if (BT->getKind() == BuiltinType::Float ||
6287         BT->getKind() == BuiltinType::Double ||
6288         BT->getKind() == BuiltinType::LongDouble)
6289       return true;
6290   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6291     unsigned VecSize = getContext().getTypeSize(VT);
6292     if (VecSize == 64 || VecSize == 128)
6293       return true;
6294   }
6295   return false;
6296 }
6297 
6298 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6299                                                    uint64_t Members) const {
6300   return Members <= 4;
6301 }
6302 
6303 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6304                                         bool acceptHalf) const {
6305   // Give precedence to user-specified calling conventions.
6306   if (callConvention != llvm::CallingConv::C)
6307     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6308   else
6309     return (getABIKind() == AAPCS_VFP) ||
6310            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6311 }
6312 
6313 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6314                               QualType Ty) const {
6315   CharUnits SlotSize = CharUnits::fromQuantity(4);
6316 
6317   // Empty records are ignored for parameter passing purposes.
6318   if (isEmptyRecord(getContext(), Ty, true)) {
6319     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6320     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6321     return Addr;
6322   }
6323 
6324   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6325   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6326 
6327   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6328   bool IsIndirect = false;
6329   const Type *Base = nullptr;
6330   uint64_t Members = 0;
6331   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6332     IsIndirect = true;
6333 
6334   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6335   // allocated by the caller.
6336   } else if (TySize > CharUnits::fromQuantity(16) &&
6337              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6338              !isHomogeneousAggregate(Ty, Base, Members)) {
6339     IsIndirect = true;
6340 
6341   // Otherwise, bound the type's ABI alignment.
6342   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6343   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6344   // Our callers should be prepared to handle an under-aligned address.
6345   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6346              getABIKind() == ARMABIInfo::AAPCS) {
6347     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6348     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6349   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6350     // ARMv7k allows type alignment up to 16 bytes.
6351     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6352     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6353   } else {
6354     TyAlignForABI = CharUnits::fromQuantity(4);
6355   }
6356 
6357   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6358   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6359                           SlotSize, /*AllowHigherAlign*/ true);
6360 }
6361 
6362 //===----------------------------------------------------------------------===//
6363 // NVPTX ABI Implementation
6364 //===----------------------------------------------------------------------===//
6365 
6366 namespace {
6367 
6368 class NVPTXABIInfo : public ABIInfo {
6369 public:
6370   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6371 
6372   ABIArgInfo classifyReturnType(QualType RetTy) const;
6373   ABIArgInfo classifyArgumentType(QualType Ty) const;
6374 
6375   void computeInfo(CGFunctionInfo &FI) const override;
6376   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6377                     QualType Ty) const override;
6378 };
6379 
6380 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6381 public:
6382   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6383     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6384 
6385   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6386                            CodeGen::CodeGenModule &M) const override;
6387   bool shouldEmitStaticExternCAliases() const override;
6388 
6389 private:
6390   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6391   // resulting MDNode to the nvvm.annotations MDNode.
6392   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6393 };
6394 
6395 /// Checks if the type is unsupported directly by the current target.
6396 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6397   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6398     return true;
6399   if (!Context.getTargetInfo().hasFloat128Type() &&
6400       (T->isFloat128Type() ||
6401        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6402     return true;
6403   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6404       Context.getTypeSize(T) > 64)
6405     return true;
6406   if (const auto *AT = T->getAsArrayTypeUnsafe())
6407     return isUnsupportedType(Context, AT->getElementType());
6408   const auto *RT = T->getAs<RecordType>();
6409   if (!RT)
6410     return false;
6411   const RecordDecl *RD = RT->getDecl();
6412 
6413   // If this is a C++ record, check the bases first.
6414   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6415     for (const CXXBaseSpecifier &I : CXXRD->bases())
6416       if (isUnsupportedType(Context, I.getType()))
6417         return true;
6418 
6419   for (const FieldDecl *I : RD->fields())
6420     if (isUnsupportedType(Context, I->getType()))
6421       return true;
6422   return false;
6423 }
6424 
6425 /// Coerce the given type into an array with maximum allowed size of elements.
6426 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6427                                             llvm::LLVMContext &LLVMContext,
6428                                             unsigned MaxSize) {
6429   // Alignment and Size are measured in bits.
6430   const uint64_t Size = Context.getTypeSize(Ty);
6431   const uint64_t Alignment = Context.getTypeAlign(Ty);
6432   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6433   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6434   const uint64_t NumElements = (Size + Div - 1) / Div;
6435   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6436 }
6437 
6438 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6439   if (RetTy->isVoidType())
6440     return ABIArgInfo::getIgnore();
6441 
6442   if (getContext().getLangOpts().OpenMP &&
6443       getContext().getLangOpts().OpenMPIsDevice &&
6444       isUnsupportedType(getContext(), RetTy))
6445     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6446 
6447   // note: this is different from default ABI
6448   if (!RetTy->isScalarType())
6449     return ABIArgInfo::getDirect();
6450 
6451   // Treat an enum type as its underlying type.
6452   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6453     RetTy = EnumTy->getDecl()->getIntegerType();
6454 
6455   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6456                                            : ABIArgInfo::getDirect());
6457 }
6458 
6459 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6460   // Treat an enum type as its underlying type.
6461   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6462     Ty = EnumTy->getDecl()->getIntegerType();
6463 
6464   // Return aggregates type as indirect by value
6465   if (isAggregateTypeForABI(Ty))
6466     return getNaturalAlignIndirect(Ty, /* byval */ true);
6467 
6468   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6469                                         : ABIArgInfo::getDirect());
6470 }
6471 
6472 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6473   if (!getCXXABI().classifyReturnType(FI))
6474     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6475   for (auto &I : FI.arguments())
6476     I.info = classifyArgumentType(I.type);
6477 
6478   // Always honor user-specified calling convention.
6479   if (FI.getCallingConvention() != llvm::CallingConv::C)
6480     return;
6481 
6482   FI.setEffectiveCallingConvention(getRuntimeCC());
6483 }
6484 
6485 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6486                                 QualType Ty) const {
6487   llvm_unreachable("NVPTX does not support varargs");
6488 }
6489 
6490 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6491     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6492   if (GV->isDeclaration())
6493     return;
6494   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6495   if (!FD) return;
6496 
6497   llvm::Function *F = cast<llvm::Function>(GV);
6498 
6499   // Perform special handling in OpenCL mode
6500   if (M.getLangOpts().OpenCL) {
6501     // Use OpenCL function attributes to check for kernel functions
6502     // By default, all functions are device functions
6503     if (FD->hasAttr<OpenCLKernelAttr>()) {
6504       // OpenCL __kernel functions get kernel metadata
6505       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6506       addNVVMMetadata(F, "kernel", 1);
6507       // And kernel functions are not subject to inlining
6508       F->addFnAttr(llvm::Attribute::NoInline);
6509     }
6510   }
6511 
6512   // Perform special handling in CUDA mode.
6513   if (M.getLangOpts().CUDA) {
6514     // CUDA __global__ functions get a kernel metadata entry.  Since
6515     // __global__ functions cannot be called from the device, we do not
6516     // need to set the noinline attribute.
6517     if (FD->hasAttr<CUDAGlobalAttr>()) {
6518       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6519       addNVVMMetadata(F, "kernel", 1);
6520     }
6521     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6522       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6523       llvm::APSInt MaxThreads(32);
6524       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6525       if (MaxThreads > 0)
6526         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6527 
6528       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6529       // not specified in __launch_bounds__ or if the user specified a 0 value,
6530       // we don't have to add a PTX directive.
6531       if (Attr->getMinBlocks()) {
6532         llvm::APSInt MinBlocks(32);
6533         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6534         if (MinBlocks > 0)
6535           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6536           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6537       }
6538     }
6539   }
6540 }
6541 
6542 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6543                                              int Operand) {
6544   llvm::Module *M = F->getParent();
6545   llvm::LLVMContext &Ctx = M->getContext();
6546 
6547   // Get "nvvm.annotations" metadata node
6548   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6549 
6550   llvm::Metadata *MDVals[] = {
6551       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6552       llvm::ConstantAsMetadata::get(
6553           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6554   // Append metadata to nvvm.annotations
6555   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6556 }
6557 
6558 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6559   return false;
6560 }
6561 }
6562 
6563 //===----------------------------------------------------------------------===//
6564 // SystemZ ABI Implementation
6565 //===----------------------------------------------------------------------===//
6566 
6567 namespace {
6568 
6569 class SystemZABIInfo : public SwiftABIInfo {
6570   bool HasVector;
6571 
6572 public:
6573   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6574     : SwiftABIInfo(CGT), HasVector(HV) {}
6575 
6576   bool isPromotableIntegerType(QualType Ty) const;
6577   bool isCompoundType(QualType Ty) const;
6578   bool isVectorArgumentType(QualType Ty) const;
6579   bool isFPArgumentType(QualType Ty) const;
6580   QualType GetSingleElementType(QualType Ty) const;
6581 
6582   ABIArgInfo classifyReturnType(QualType RetTy) const;
6583   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6584 
6585   void computeInfo(CGFunctionInfo &FI) const override {
6586     if (!getCXXABI().classifyReturnType(FI))
6587       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6588     for (auto &I : FI.arguments())
6589       I.info = classifyArgumentType(I.type);
6590   }
6591 
6592   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6593                     QualType Ty) const override;
6594 
6595   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6596                                     bool asReturnValue) const override {
6597     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6598   }
6599   bool isSwiftErrorInRegister() const override {
6600     return false;
6601   }
6602 };
6603 
6604 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6605 public:
6606   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6607     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6608 };
6609 
6610 }
6611 
6612 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6613   // Treat an enum type as its underlying type.
6614   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6615     Ty = EnumTy->getDecl()->getIntegerType();
6616 
6617   // Promotable integer types are required to be promoted by the ABI.
6618   if (Ty->isPromotableIntegerType())
6619     return true;
6620 
6621   // 32-bit values must also be promoted.
6622   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6623     switch (BT->getKind()) {
6624     case BuiltinType::Int:
6625     case BuiltinType::UInt:
6626       return true;
6627     default:
6628       return false;
6629     }
6630   return false;
6631 }
6632 
6633 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6634   return (Ty->isAnyComplexType() ||
6635           Ty->isVectorType() ||
6636           isAggregateTypeForABI(Ty));
6637 }
6638 
6639 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6640   return (HasVector &&
6641           Ty->isVectorType() &&
6642           getContext().getTypeSize(Ty) <= 128);
6643 }
6644 
6645 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6646   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6647     switch (BT->getKind()) {
6648     case BuiltinType::Float:
6649     case BuiltinType::Double:
6650       return true;
6651     default:
6652       return false;
6653     }
6654 
6655   return false;
6656 }
6657 
6658 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6659   if (const RecordType *RT = Ty->getAsStructureType()) {
6660     const RecordDecl *RD = RT->getDecl();
6661     QualType Found;
6662 
6663     // If this is a C++ record, check the bases first.
6664     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6665       for (const auto &I : CXXRD->bases()) {
6666         QualType Base = I.getType();
6667 
6668         // Empty bases don't affect things either way.
6669         if (isEmptyRecord(getContext(), Base, true))
6670           continue;
6671 
6672         if (!Found.isNull())
6673           return Ty;
6674         Found = GetSingleElementType(Base);
6675       }
6676 
6677     // Check the fields.
6678     for (const auto *FD : RD->fields()) {
6679       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6680       // Unlike isSingleElementStruct(), empty structure and array fields
6681       // do count.  So do anonymous bitfields that aren't zero-sized.
6682       if (getContext().getLangOpts().CPlusPlus &&
6683           FD->isZeroLengthBitField(getContext()))
6684         continue;
6685 
6686       // Unlike isSingleElementStruct(), arrays do not count.
6687       // Nested structures still do though.
6688       if (!Found.isNull())
6689         return Ty;
6690       Found = GetSingleElementType(FD->getType());
6691     }
6692 
6693     // Unlike isSingleElementStruct(), trailing padding is allowed.
6694     // An 8-byte aligned struct s { float f; } is passed as a double.
6695     if (!Found.isNull())
6696       return Found;
6697   }
6698 
6699   return Ty;
6700 }
6701 
6702 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6703                                   QualType Ty) const {
6704   // Assume that va_list type is correct; should be pointer to LLVM type:
6705   // struct {
6706   //   i64 __gpr;
6707   //   i64 __fpr;
6708   //   i8 *__overflow_arg_area;
6709   //   i8 *__reg_save_area;
6710   // };
6711 
6712   // Every non-vector argument occupies 8 bytes and is passed by preference
6713   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6714   // always passed on the stack.
6715   Ty = getContext().getCanonicalType(Ty);
6716   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6717   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6718   llvm::Type *DirectTy = ArgTy;
6719   ABIArgInfo AI = classifyArgumentType(Ty);
6720   bool IsIndirect = AI.isIndirect();
6721   bool InFPRs = false;
6722   bool IsVector = false;
6723   CharUnits UnpaddedSize;
6724   CharUnits DirectAlign;
6725   if (IsIndirect) {
6726     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6727     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6728   } else {
6729     if (AI.getCoerceToType())
6730       ArgTy = AI.getCoerceToType();
6731     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6732     IsVector = ArgTy->isVectorTy();
6733     UnpaddedSize = TyInfo.first;
6734     DirectAlign = TyInfo.second;
6735   }
6736   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6737   if (IsVector && UnpaddedSize > PaddedSize)
6738     PaddedSize = CharUnits::fromQuantity(16);
6739   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6740 
6741   CharUnits Padding = (PaddedSize - UnpaddedSize);
6742 
6743   llvm::Type *IndexTy = CGF.Int64Ty;
6744   llvm::Value *PaddedSizeV =
6745     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6746 
6747   if (IsVector) {
6748     // Work out the address of a vector argument on the stack.
6749     // Vector arguments are always passed in the high bits of a
6750     // single (8 byte) or double (16 byte) stack slot.
6751     Address OverflowArgAreaPtr =
6752         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6753     Address OverflowArgArea =
6754       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6755               TyInfo.second);
6756     Address MemAddr =
6757       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6758 
6759     // Update overflow_arg_area_ptr pointer
6760     llvm::Value *NewOverflowArgArea =
6761       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6762                             "overflow_arg_area");
6763     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6764 
6765     return MemAddr;
6766   }
6767 
6768   assert(PaddedSize.getQuantity() == 8);
6769 
6770   unsigned MaxRegs, RegCountField, RegSaveIndex;
6771   CharUnits RegPadding;
6772   if (InFPRs) {
6773     MaxRegs = 4; // Maximum of 4 FPR arguments
6774     RegCountField = 1; // __fpr
6775     RegSaveIndex = 16; // save offset for f0
6776     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6777   } else {
6778     MaxRegs = 5; // Maximum of 5 GPR arguments
6779     RegCountField = 0; // __gpr
6780     RegSaveIndex = 2; // save offset for r2
6781     RegPadding = Padding; // values are passed in the low bits of a GPR
6782   }
6783 
6784   Address RegCountPtr =
6785       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6786   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6787   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6788   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6789                                                  "fits_in_regs");
6790 
6791   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6792   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6793   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6794   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6795 
6796   // Emit code to load the value if it was passed in registers.
6797   CGF.EmitBlock(InRegBlock);
6798 
6799   // Work out the address of an argument register.
6800   llvm::Value *ScaledRegCount =
6801     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6802   llvm::Value *RegBase =
6803     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6804                                       + RegPadding.getQuantity());
6805   llvm::Value *RegOffset =
6806     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6807   Address RegSaveAreaPtr =
6808       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6809   llvm::Value *RegSaveArea =
6810     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6811   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6812                                            "raw_reg_addr"),
6813                      PaddedSize);
6814   Address RegAddr =
6815     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6816 
6817   // Update the register count
6818   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6819   llvm::Value *NewRegCount =
6820     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6821   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6822   CGF.EmitBranch(ContBlock);
6823 
6824   // Emit code to load the value if it was passed in memory.
6825   CGF.EmitBlock(InMemBlock);
6826 
6827   // Work out the address of a stack argument.
6828   Address OverflowArgAreaPtr =
6829       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6830   Address OverflowArgArea =
6831     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6832             PaddedSize);
6833   Address RawMemAddr =
6834     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6835   Address MemAddr =
6836     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6837 
6838   // Update overflow_arg_area_ptr pointer
6839   llvm::Value *NewOverflowArgArea =
6840     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6841                           "overflow_arg_area");
6842   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6843   CGF.EmitBranch(ContBlock);
6844 
6845   // Return the appropriate result.
6846   CGF.EmitBlock(ContBlock);
6847   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6848                                  MemAddr, InMemBlock, "va_arg.addr");
6849 
6850   if (IsIndirect)
6851     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6852                       TyInfo.second);
6853 
6854   return ResAddr;
6855 }
6856 
6857 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6858   if (RetTy->isVoidType())
6859     return ABIArgInfo::getIgnore();
6860   if (isVectorArgumentType(RetTy))
6861     return ABIArgInfo::getDirect();
6862   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6863     return getNaturalAlignIndirect(RetTy);
6864   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6865                                          : ABIArgInfo::getDirect());
6866 }
6867 
6868 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6869   // Handle the generic C++ ABI.
6870   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6871     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6872 
6873   // Integers and enums are extended to full register width.
6874   if (isPromotableIntegerType(Ty))
6875     return ABIArgInfo::getExtend(Ty);
6876 
6877   // Handle vector types and vector-like structure types.  Note that
6878   // as opposed to float-like structure types, we do not allow any
6879   // padding for vector-like structures, so verify the sizes match.
6880   uint64_t Size = getContext().getTypeSize(Ty);
6881   QualType SingleElementTy = GetSingleElementType(Ty);
6882   if (isVectorArgumentType(SingleElementTy) &&
6883       getContext().getTypeSize(SingleElementTy) == Size)
6884     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6885 
6886   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6887   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6888     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6889 
6890   // Handle small structures.
6891   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6892     // Structures with flexible arrays have variable length, so really
6893     // fail the size test above.
6894     const RecordDecl *RD = RT->getDecl();
6895     if (RD->hasFlexibleArrayMember())
6896       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6897 
6898     // The structure is passed as an unextended integer, a float, or a double.
6899     llvm::Type *PassTy;
6900     if (isFPArgumentType(SingleElementTy)) {
6901       assert(Size == 32 || Size == 64);
6902       if (Size == 32)
6903         PassTy = llvm::Type::getFloatTy(getVMContext());
6904       else
6905         PassTy = llvm::Type::getDoubleTy(getVMContext());
6906     } else
6907       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6908     return ABIArgInfo::getDirect(PassTy);
6909   }
6910 
6911   // Non-structure compounds are passed indirectly.
6912   if (isCompoundType(Ty))
6913     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6914 
6915   return ABIArgInfo::getDirect(nullptr);
6916 }
6917 
6918 //===----------------------------------------------------------------------===//
6919 // MSP430 ABI Implementation
6920 //===----------------------------------------------------------------------===//
6921 
6922 namespace {
6923 
6924 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6925 public:
6926   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6927     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6928   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6929                            CodeGen::CodeGenModule &M) const override;
6930 };
6931 
6932 }
6933 
6934 void MSP430TargetCodeGenInfo::setTargetAttributes(
6935     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6936   if (GV->isDeclaration())
6937     return;
6938   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6939     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6940     if (!InterruptAttr)
6941       return;
6942 
6943     // Handle 'interrupt' attribute:
6944     llvm::Function *F = cast<llvm::Function>(GV);
6945 
6946     // Step 1: Set ISR calling convention.
6947     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6948 
6949     // Step 2: Add attributes goodness.
6950     F->addFnAttr(llvm::Attribute::NoInline);
6951     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6952   }
6953 }
6954 
6955 //===----------------------------------------------------------------------===//
6956 // MIPS ABI Implementation.  This works for both little-endian and
6957 // big-endian variants.
6958 //===----------------------------------------------------------------------===//
6959 
6960 namespace {
6961 class MipsABIInfo : public ABIInfo {
6962   bool IsO32;
6963   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6964   void CoerceToIntArgs(uint64_t TySize,
6965                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6966   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6967   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6968   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6969 public:
6970   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6971     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6972     StackAlignInBytes(IsO32 ? 8 : 16) {}
6973 
6974   ABIArgInfo classifyReturnType(QualType RetTy) const;
6975   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6976   void computeInfo(CGFunctionInfo &FI) const override;
6977   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6978                     QualType Ty) const override;
6979   ABIArgInfo extendType(QualType Ty) const;
6980 };
6981 
6982 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6983   unsigned SizeOfUnwindException;
6984 public:
6985   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6986     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6987       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6988 
6989   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6990     return 29;
6991   }
6992 
6993   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6994                            CodeGen::CodeGenModule &CGM) const override {
6995     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6996     if (!FD) return;
6997     llvm::Function *Fn = cast<llvm::Function>(GV);
6998 
6999     if (FD->hasAttr<MipsLongCallAttr>())
7000       Fn->addFnAttr("long-call");
7001     else if (FD->hasAttr<MipsShortCallAttr>())
7002       Fn->addFnAttr("short-call");
7003 
7004     // Other attributes do not have a meaning for declarations.
7005     if (GV->isDeclaration())
7006       return;
7007 
7008     if (FD->hasAttr<Mips16Attr>()) {
7009       Fn->addFnAttr("mips16");
7010     }
7011     else if (FD->hasAttr<NoMips16Attr>()) {
7012       Fn->addFnAttr("nomips16");
7013     }
7014 
7015     if (FD->hasAttr<MicroMipsAttr>())
7016       Fn->addFnAttr("micromips");
7017     else if (FD->hasAttr<NoMicroMipsAttr>())
7018       Fn->addFnAttr("nomicromips");
7019 
7020     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7021     if (!Attr)
7022       return;
7023 
7024     const char *Kind;
7025     switch (Attr->getInterrupt()) {
7026     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7027     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7028     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7029     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7030     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7031     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7032     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7033     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7034     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7035     }
7036 
7037     Fn->addFnAttr("interrupt", Kind);
7038 
7039   }
7040 
7041   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7042                                llvm::Value *Address) const override;
7043 
7044   unsigned getSizeOfUnwindException() const override {
7045     return SizeOfUnwindException;
7046   }
7047 };
7048 }
7049 
7050 void MipsABIInfo::CoerceToIntArgs(
7051     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7052   llvm::IntegerType *IntTy =
7053     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7054 
7055   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7056   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7057     ArgList.push_back(IntTy);
7058 
7059   // If necessary, add one more integer type to ArgList.
7060   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7061 
7062   if (R)
7063     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7064 }
7065 
7066 // In N32/64, an aligned double precision floating point field is passed in
7067 // a register.
7068 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7069   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7070 
7071   if (IsO32) {
7072     CoerceToIntArgs(TySize, ArgList);
7073     return llvm::StructType::get(getVMContext(), ArgList);
7074   }
7075 
7076   if (Ty->isComplexType())
7077     return CGT.ConvertType(Ty);
7078 
7079   const RecordType *RT = Ty->getAs<RecordType>();
7080 
7081   // Unions/vectors are passed in integer registers.
7082   if (!RT || !RT->isStructureOrClassType()) {
7083     CoerceToIntArgs(TySize, ArgList);
7084     return llvm::StructType::get(getVMContext(), ArgList);
7085   }
7086 
7087   const RecordDecl *RD = RT->getDecl();
7088   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7089   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7090 
7091   uint64_t LastOffset = 0;
7092   unsigned idx = 0;
7093   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7094 
7095   // Iterate over fields in the struct/class and check if there are any aligned
7096   // double fields.
7097   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7098        i != e; ++i, ++idx) {
7099     const QualType Ty = i->getType();
7100     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7101 
7102     if (!BT || BT->getKind() != BuiltinType::Double)
7103       continue;
7104 
7105     uint64_t Offset = Layout.getFieldOffset(idx);
7106     if (Offset % 64) // Ignore doubles that are not aligned.
7107       continue;
7108 
7109     // Add ((Offset - LastOffset) / 64) args of type i64.
7110     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7111       ArgList.push_back(I64);
7112 
7113     // Add double type.
7114     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7115     LastOffset = Offset + 64;
7116   }
7117 
7118   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7119   ArgList.append(IntArgList.begin(), IntArgList.end());
7120 
7121   return llvm::StructType::get(getVMContext(), ArgList);
7122 }
7123 
7124 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7125                                         uint64_t Offset) const {
7126   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7127     return nullptr;
7128 
7129   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7130 }
7131 
7132 ABIArgInfo
7133 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7134   Ty = useFirstFieldIfTransparentUnion(Ty);
7135 
7136   uint64_t OrigOffset = Offset;
7137   uint64_t TySize = getContext().getTypeSize(Ty);
7138   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7139 
7140   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7141                    (uint64_t)StackAlignInBytes);
7142   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7143   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7144 
7145   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7146     // Ignore empty aggregates.
7147     if (TySize == 0)
7148       return ABIArgInfo::getIgnore();
7149 
7150     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7151       Offset = OrigOffset + MinABIStackAlignInBytes;
7152       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7153     }
7154 
7155     // If we have reached here, aggregates are passed directly by coercing to
7156     // another structure type. Padding is inserted if the offset of the
7157     // aggregate is unaligned.
7158     ABIArgInfo ArgInfo =
7159         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7160                               getPaddingType(OrigOffset, CurrOffset));
7161     ArgInfo.setInReg(true);
7162     return ArgInfo;
7163   }
7164 
7165   // Treat an enum type as its underlying type.
7166   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7167     Ty = EnumTy->getDecl()->getIntegerType();
7168 
7169   // All integral types are promoted to the GPR width.
7170   if (Ty->isIntegralOrEnumerationType())
7171     return extendType(Ty);
7172 
7173   return ABIArgInfo::getDirect(
7174       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7175 }
7176 
7177 llvm::Type*
7178 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7179   const RecordType *RT = RetTy->getAs<RecordType>();
7180   SmallVector<llvm::Type*, 8> RTList;
7181 
7182   if (RT && RT->isStructureOrClassType()) {
7183     const RecordDecl *RD = RT->getDecl();
7184     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7185     unsigned FieldCnt = Layout.getFieldCount();
7186 
7187     // N32/64 returns struct/classes in floating point registers if the
7188     // following conditions are met:
7189     // 1. The size of the struct/class is no larger than 128-bit.
7190     // 2. The struct/class has one or two fields all of which are floating
7191     //    point types.
7192     // 3. The offset of the first field is zero (this follows what gcc does).
7193     //
7194     // Any other composite results are returned in integer registers.
7195     //
7196     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7197       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7198       for (; b != e; ++b) {
7199         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7200 
7201         if (!BT || !BT->isFloatingPoint())
7202           break;
7203 
7204         RTList.push_back(CGT.ConvertType(b->getType()));
7205       }
7206 
7207       if (b == e)
7208         return llvm::StructType::get(getVMContext(), RTList,
7209                                      RD->hasAttr<PackedAttr>());
7210 
7211       RTList.clear();
7212     }
7213   }
7214 
7215   CoerceToIntArgs(Size, RTList);
7216   return llvm::StructType::get(getVMContext(), RTList);
7217 }
7218 
7219 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7220   uint64_t Size = getContext().getTypeSize(RetTy);
7221 
7222   if (RetTy->isVoidType())
7223     return ABIArgInfo::getIgnore();
7224 
7225   // O32 doesn't treat zero-sized structs differently from other structs.
7226   // However, N32/N64 ignores zero sized return values.
7227   if (!IsO32 && Size == 0)
7228     return ABIArgInfo::getIgnore();
7229 
7230   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7231     if (Size <= 128) {
7232       if (RetTy->isAnyComplexType())
7233         return ABIArgInfo::getDirect();
7234 
7235       // O32 returns integer vectors in registers and N32/N64 returns all small
7236       // aggregates in registers.
7237       if (!IsO32 ||
7238           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7239         ABIArgInfo ArgInfo =
7240             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7241         ArgInfo.setInReg(true);
7242         return ArgInfo;
7243       }
7244     }
7245 
7246     return getNaturalAlignIndirect(RetTy);
7247   }
7248 
7249   // Treat an enum type as its underlying type.
7250   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7251     RetTy = EnumTy->getDecl()->getIntegerType();
7252 
7253   if (RetTy->isPromotableIntegerType())
7254     return ABIArgInfo::getExtend(RetTy);
7255 
7256   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7257       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7258     return ABIArgInfo::getSignExtend(RetTy);
7259 
7260   return ABIArgInfo::getDirect();
7261 }
7262 
7263 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7264   ABIArgInfo &RetInfo = FI.getReturnInfo();
7265   if (!getCXXABI().classifyReturnType(FI))
7266     RetInfo = classifyReturnType(FI.getReturnType());
7267 
7268   // Check if a pointer to an aggregate is passed as a hidden argument.
7269   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7270 
7271   for (auto &I : FI.arguments())
7272     I.info = classifyArgumentType(I.type, Offset);
7273 }
7274 
7275 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7276                                QualType OrigTy) const {
7277   QualType Ty = OrigTy;
7278 
7279   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7280   // Pointers are also promoted in the same way but this only matters for N32.
7281   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7282   unsigned PtrWidth = getTarget().getPointerWidth(0);
7283   bool DidPromote = false;
7284   if ((Ty->isIntegerType() &&
7285           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7286       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7287     DidPromote = true;
7288     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7289                                             Ty->isSignedIntegerType());
7290   }
7291 
7292   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7293 
7294   // The alignment of things in the argument area is never larger than
7295   // StackAlignInBytes.
7296   TyInfo.second =
7297     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7298 
7299   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7300   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7301 
7302   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7303                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7304 
7305 
7306   // If there was a promotion, "unpromote" into a temporary.
7307   // TODO: can we just use a pointer into a subset of the original slot?
7308   if (DidPromote) {
7309     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7310     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7311 
7312     // Truncate down to the right width.
7313     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7314                                                  : CGF.IntPtrTy);
7315     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7316     if (OrigTy->isPointerType())
7317       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7318 
7319     CGF.Builder.CreateStore(V, Temp);
7320     Addr = Temp;
7321   }
7322 
7323   return Addr;
7324 }
7325 
7326 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7327   int TySize = getContext().getTypeSize(Ty);
7328 
7329   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7330   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7331     return ABIArgInfo::getSignExtend(Ty);
7332 
7333   return ABIArgInfo::getExtend(Ty);
7334 }
7335 
7336 bool
7337 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7338                                                llvm::Value *Address) const {
7339   // This information comes from gcc's implementation, which seems to
7340   // as canonical as it gets.
7341 
7342   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7343   // are aliased to pairs of single-precision FP registers.
7344   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7345 
7346   // 0-31 are the general purpose registers, $0 - $31.
7347   // 32-63 are the floating-point registers, $f0 - $f31.
7348   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7349   // 66 is the (notional, I think) register for signal-handler return.
7350   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7351 
7352   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7353   // They are one bit wide and ignored here.
7354 
7355   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7356   // (coprocessor 1 is the FP unit)
7357   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7358   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7359   // 176-181 are the DSP accumulator registers.
7360   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7361   return false;
7362 }
7363 
7364 //===----------------------------------------------------------------------===//
7365 // AVR ABI Implementation.
7366 //===----------------------------------------------------------------------===//
7367 
7368 namespace {
7369 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7370 public:
7371   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7372     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7373 
7374   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7375                            CodeGen::CodeGenModule &CGM) const override {
7376     if (GV->isDeclaration())
7377       return;
7378     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7379     if (!FD) return;
7380     auto *Fn = cast<llvm::Function>(GV);
7381 
7382     if (FD->getAttr<AVRInterruptAttr>())
7383       Fn->addFnAttr("interrupt");
7384 
7385     if (FD->getAttr<AVRSignalAttr>())
7386       Fn->addFnAttr("signal");
7387   }
7388 };
7389 }
7390 
7391 //===----------------------------------------------------------------------===//
7392 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7393 // Currently subclassed only to implement custom OpenCL C function attribute
7394 // handling.
7395 //===----------------------------------------------------------------------===//
7396 
7397 namespace {
7398 
7399 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7400 public:
7401   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7402     : DefaultTargetCodeGenInfo(CGT) {}
7403 
7404   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7405                            CodeGen::CodeGenModule &M) const override;
7406 };
7407 
7408 void TCETargetCodeGenInfo::setTargetAttributes(
7409     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7410   if (GV->isDeclaration())
7411     return;
7412   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7413   if (!FD) return;
7414 
7415   llvm::Function *F = cast<llvm::Function>(GV);
7416 
7417   if (M.getLangOpts().OpenCL) {
7418     if (FD->hasAttr<OpenCLKernelAttr>()) {
7419       // OpenCL C Kernel functions are not subject to inlining
7420       F->addFnAttr(llvm::Attribute::NoInline);
7421       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7422       if (Attr) {
7423         // Convert the reqd_work_group_size() attributes to metadata.
7424         llvm::LLVMContext &Context = F->getContext();
7425         llvm::NamedMDNode *OpenCLMetadata =
7426             M.getModule().getOrInsertNamedMetadata(
7427                 "opencl.kernel_wg_size_info");
7428 
7429         SmallVector<llvm::Metadata *, 5> Operands;
7430         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7431 
7432         Operands.push_back(
7433             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7434                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7435         Operands.push_back(
7436             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7437                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7438         Operands.push_back(
7439             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7440                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7441 
7442         // Add a boolean constant operand for "required" (true) or "hint"
7443         // (false) for implementing the work_group_size_hint attr later.
7444         // Currently always true as the hint is not yet implemented.
7445         Operands.push_back(
7446             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7447         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7448       }
7449     }
7450   }
7451 }
7452 
7453 }
7454 
7455 //===----------------------------------------------------------------------===//
7456 // Hexagon ABI Implementation
7457 //===----------------------------------------------------------------------===//
7458 
7459 namespace {
7460 
7461 class HexagonABIInfo : public ABIInfo {
7462 
7463 
7464 public:
7465   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7466 
7467 private:
7468 
7469   ABIArgInfo classifyReturnType(QualType RetTy) const;
7470   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7471 
7472   void computeInfo(CGFunctionInfo &FI) const override;
7473 
7474   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7475                     QualType Ty) const override;
7476 };
7477 
7478 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7479 public:
7480   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7481     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7482 
7483   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7484     return 29;
7485   }
7486 };
7487 
7488 }
7489 
7490 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7491   if (!getCXXABI().classifyReturnType(FI))
7492     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7493   for (auto &I : FI.arguments())
7494     I.info = classifyArgumentType(I.type);
7495 }
7496 
7497 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7498   if (!isAggregateTypeForABI(Ty)) {
7499     // Treat an enum type as its underlying type.
7500     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7501       Ty = EnumTy->getDecl()->getIntegerType();
7502 
7503     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7504                                           : ABIArgInfo::getDirect());
7505   }
7506 
7507   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7508     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7509 
7510   // Ignore empty records.
7511   if (isEmptyRecord(getContext(), Ty, true))
7512     return ABIArgInfo::getIgnore();
7513 
7514   uint64_t Size = getContext().getTypeSize(Ty);
7515   if (Size > 64)
7516     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7517     // Pass in the smallest viable integer type.
7518   else if (Size > 32)
7519       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7520   else if (Size > 16)
7521       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7522   else if (Size > 8)
7523       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7524   else
7525       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7526 }
7527 
7528 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7529   if (RetTy->isVoidType())
7530     return ABIArgInfo::getIgnore();
7531 
7532   // Large vector types should be returned via memory.
7533   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7534     return getNaturalAlignIndirect(RetTy);
7535 
7536   if (!isAggregateTypeForABI(RetTy)) {
7537     // Treat an enum type as its underlying type.
7538     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7539       RetTy = EnumTy->getDecl()->getIntegerType();
7540 
7541     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7542                                              : ABIArgInfo::getDirect());
7543   }
7544 
7545   if (isEmptyRecord(getContext(), RetTy, true))
7546     return ABIArgInfo::getIgnore();
7547 
7548   // Aggregates <= 8 bytes are returned in r0; other aggregates
7549   // are returned indirectly.
7550   uint64_t Size = getContext().getTypeSize(RetTy);
7551   if (Size <= 64) {
7552     // Return in the smallest viable integer type.
7553     if (Size <= 8)
7554       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7555     if (Size <= 16)
7556       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7557     if (Size <= 32)
7558       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7559     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7560   }
7561 
7562   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7563 }
7564 
7565 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7566                                   QualType Ty) const {
7567   // FIXME: Someone needs to audit that this handle alignment correctly.
7568   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7569                           getContext().getTypeInfoInChars(Ty),
7570                           CharUnits::fromQuantity(4),
7571                           /*AllowHigherAlign*/ true);
7572 }
7573 
7574 //===----------------------------------------------------------------------===//
7575 // Lanai ABI Implementation
7576 //===----------------------------------------------------------------------===//
7577 
7578 namespace {
7579 class LanaiABIInfo : public DefaultABIInfo {
7580 public:
7581   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7582 
7583   bool shouldUseInReg(QualType Ty, CCState &State) const;
7584 
7585   void computeInfo(CGFunctionInfo &FI) const override {
7586     CCState State(FI.getCallingConvention());
7587     // Lanai uses 4 registers to pass arguments unless the function has the
7588     // regparm attribute set.
7589     if (FI.getHasRegParm()) {
7590       State.FreeRegs = FI.getRegParm();
7591     } else {
7592       State.FreeRegs = 4;
7593     }
7594 
7595     if (!getCXXABI().classifyReturnType(FI))
7596       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7597     for (auto &I : FI.arguments())
7598       I.info = classifyArgumentType(I.type, State);
7599   }
7600 
7601   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7602   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7603 };
7604 } // end anonymous namespace
7605 
7606 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7607   unsigned Size = getContext().getTypeSize(Ty);
7608   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7609 
7610   if (SizeInRegs == 0)
7611     return false;
7612 
7613   if (SizeInRegs > State.FreeRegs) {
7614     State.FreeRegs = 0;
7615     return false;
7616   }
7617 
7618   State.FreeRegs -= SizeInRegs;
7619 
7620   return true;
7621 }
7622 
7623 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7624                                            CCState &State) const {
7625   if (!ByVal) {
7626     if (State.FreeRegs) {
7627       --State.FreeRegs; // Non-byval indirects just use one pointer.
7628       return getNaturalAlignIndirectInReg(Ty);
7629     }
7630     return getNaturalAlignIndirect(Ty, false);
7631   }
7632 
7633   // Compute the byval alignment.
7634   const unsigned MinABIStackAlignInBytes = 4;
7635   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7636   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7637                                  /*Realign=*/TypeAlign >
7638                                      MinABIStackAlignInBytes);
7639 }
7640 
7641 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7642                                               CCState &State) const {
7643   // Check with the C++ ABI first.
7644   const RecordType *RT = Ty->getAs<RecordType>();
7645   if (RT) {
7646     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7647     if (RAA == CGCXXABI::RAA_Indirect) {
7648       return getIndirectResult(Ty, /*ByVal=*/false, State);
7649     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7650       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7651     }
7652   }
7653 
7654   if (isAggregateTypeForABI(Ty)) {
7655     // Structures with flexible arrays are always indirect.
7656     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7657       return getIndirectResult(Ty, /*ByVal=*/true, State);
7658 
7659     // Ignore empty structs/unions.
7660     if (isEmptyRecord(getContext(), Ty, true))
7661       return ABIArgInfo::getIgnore();
7662 
7663     llvm::LLVMContext &LLVMContext = getVMContext();
7664     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7665     if (SizeInRegs <= State.FreeRegs) {
7666       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7667       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7668       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7669       State.FreeRegs -= SizeInRegs;
7670       return ABIArgInfo::getDirectInReg(Result);
7671     } else {
7672       State.FreeRegs = 0;
7673     }
7674     return getIndirectResult(Ty, true, State);
7675   }
7676 
7677   // Treat an enum type as its underlying type.
7678   if (const auto *EnumTy = Ty->getAs<EnumType>())
7679     Ty = EnumTy->getDecl()->getIntegerType();
7680 
7681   bool InReg = shouldUseInReg(Ty, State);
7682   if (Ty->isPromotableIntegerType()) {
7683     if (InReg)
7684       return ABIArgInfo::getDirectInReg();
7685     return ABIArgInfo::getExtend(Ty);
7686   }
7687   if (InReg)
7688     return ABIArgInfo::getDirectInReg();
7689   return ABIArgInfo::getDirect();
7690 }
7691 
7692 namespace {
7693 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7694 public:
7695   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7696       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7697 };
7698 }
7699 
7700 //===----------------------------------------------------------------------===//
7701 // AMDGPU ABI Implementation
7702 //===----------------------------------------------------------------------===//
7703 
7704 namespace {
7705 
7706 class AMDGPUABIInfo final : public DefaultABIInfo {
7707 private:
7708   static const unsigned MaxNumRegsForArgsRet = 16;
7709 
7710   unsigned numRegsForType(QualType Ty) const;
7711 
7712   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7713   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7714                                          uint64_t Members) const override;
7715 
7716   // Coerce HIP pointer arguments from generic pointers to global ones.
7717   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
7718                                        unsigned ToAS) const {
7719     // Structure types.
7720     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
7721       SmallVector<llvm::Type *, 8> EltTys;
7722       bool Changed = false;
7723       for (auto T : STy->elements()) {
7724         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
7725         EltTys.push_back(NT);
7726         Changed |= (NT != T);
7727       }
7728       // Skip if there is no change in element types.
7729       if (!Changed)
7730         return STy;
7731       if (STy->hasName())
7732         return llvm::StructType::create(
7733             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
7734       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
7735     }
7736     // Arrary types.
7737     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
7738       auto T = ATy->getElementType();
7739       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
7740       // Skip if there is no change in that element type.
7741       if (NT == T)
7742         return ATy;
7743       return llvm::ArrayType::get(NT, ATy->getNumElements());
7744     }
7745     // Single value types.
7746     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
7747       return llvm::PointerType::get(
7748           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
7749     return Ty;
7750   }
7751 
7752 public:
7753   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7754     DefaultABIInfo(CGT) {}
7755 
7756   ABIArgInfo classifyReturnType(QualType RetTy) const;
7757   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7758   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7759 
7760   void computeInfo(CGFunctionInfo &FI) const override;
7761   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7762                     QualType Ty) const override;
7763 };
7764 
7765 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7766   return true;
7767 }
7768 
7769 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7770   const Type *Base, uint64_t Members) const {
7771   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7772 
7773   // Homogeneous Aggregates may occupy at most 16 registers.
7774   return Members * NumRegs <= MaxNumRegsForArgsRet;
7775 }
7776 
7777 /// Estimate number of registers the type will use when passed in registers.
7778 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7779   unsigned NumRegs = 0;
7780 
7781   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7782     // Compute from the number of elements. The reported size is based on the
7783     // in-memory size, which includes the padding 4th element for 3-vectors.
7784     QualType EltTy = VT->getElementType();
7785     unsigned EltSize = getContext().getTypeSize(EltTy);
7786 
7787     // 16-bit element vectors should be passed as packed.
7788     if (EltSize == 16)
7789       return (VT->getNumElements() + 1) / 2;
7790 
7791     unsigned EltNumRegs = (EltSize + 31) / 32;
7792     return EltNumRegs * VT->getNumElements();
7793   }
7794 
7795   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7796     const RecordDecl *RD = RT->getDecl();
7797     assert(!RD->hasFlexibleArrayMember());
7798 
7799     for (const FieldDecl *Field : RD->fields()) {
7800       QualType FieldTy = Field->getType();
7801       NumRegs += numRegsForType(FieldTy);
7802     }
7803 
7804     return NumRegs;
7805   }
7806 
7807   return (getContext().getTypeSize(Ty) + 31) / 32;
7808 }
7809 
7810 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7811   llvm::CallingConv::ID CC = FI.getCallingConvention();
7812 
7813   if (!getCXXABI().classifyReturnType(FI))
7814     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7815 
7816   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7817   for (auto &Arg : FI.arguments()) {
7818     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7819       Arg.info = classifyKernelArgumentType(Arg.type);
7820     } else {
7821       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7822     }
7823   }
7824 }
7825 
7826 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7827                                  QualType Ty) const {
7828   llvm_unreachable("AMDGPU does not support varargs");
7829 }
7830 
7831 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7832   if (isAggregateTypeForABI(RetTy)) {
7833     // Records with non-trivial destructors/copy-constructors should not be
7834     // returned by value.
7835     if (!getRecordArgABI(RetTy, getCXXABI())) {
7836       // Ignore empty structs/unions.
7837       if (isEmptyRecord(getContext(), RetTy, true))
7838         return ABIArgInfo::getIgnore();
7839 
7840       // Lower single-element structs to just return a regular value.
7841       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7842         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7843 
7844       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7845         const RecordDecl *RD = RT->getDecl();
7846         if (RD->hasFlexibleArrayMember())
7847           return DefaultABIInfo::classifyReturnType(RetTy);
7848       }
7849 
7850       // Pack aggregates <= 4 bytes into single VGPR or pair.
7851       uint64_t Size = getContext().getTypeSize(RetTy);
7852       if (Size <= 16)
7853         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7854 
7855       if (Size <= 32)
7856         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7857 
7858       if (Size <= 64) {
7859         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7860         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7861       }
7862 
7863       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7864         return ABIArgInfo::getDirect();
7865     }
7866   }
7867 
7868   // Otherwise just do the default thing.
7869   return DefaultABIInfo::classifyReturnType(RetTy);
7870 }
7871 
7872 /// For kernels all parameters are really passed in a special buffer. It doesn't
7873 /// make sense to pass anything byval, so everything must be direct.
7874 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7875   Ty = useFirstFieldIfTransparentUnion(Ty);
7876 
7877   // TODO: Can we omit empty structs?
7878 
7879   llvm::Type *LTy = nullptr;
7880   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7881     LTy = CGT.ConvertType(QualType(SeltTy, 0));
7882 
7883   if (getContext().getLangOpts().HIP) {
7884     if (!LTy)
7885       LTy = CGT.ConvertType(Ty);
7886     LTy = coerceKernelArgumentType(
7887         LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
7888         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
7889   }
7890 
7891   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7892   // individual elements, which confuses the Clover OpenCL backend; therefore we
7893   // have to set it to false here. Other args of getDirect() are just defaults.
7894   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
7895 }
7896 
7897 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7898                                                unsigned &NumRegsLeft) const {
7899   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7900 
7901   Ty = useFirstFieldIfTransparentUnion(Ty);
7902 
7903   if (isAggregateTypeForABI(Ty)) {
7904     // Records with non-trivial destructors/copy-constructors should not be
7905     // passed by value.
7906     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7907       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7908 
7909     // Ignore empty structs/unions.
7910     if (isEmptyRecord(getContext(), Ty, true))
7911       return ABIArgInfo::getIgnore();
7912 
7913     // Lower single-element structs to just pass a regular value. TODO: We
7914     // could do reasonable-size multiple-element structs too, using getExpand(),
7915     // though watch out for things like bitfields.
7916     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7917       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7918 
7919     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7920       const RecordDecl *RD = RT->getDecl();
7921       if (RD->hasFlexibleArrayMember())
7922         return DefaultABIInfo::classifyArgumentType(Ty);
7923     }
7924 
7925     // Pack aggregates <= 8 bytes into single VGPR or pair.
7926     uint64_t Size = getContext().getTypeSize(Ty);
7927     if (Size <= 64) {
7928       unsigned NumRegs = (Size + 31) / 32;
7929       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7930 
7931       if (Size <= 16)
7932         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7933 
7934       if (Size <= 32)
7935         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7936 
7937       // XXX: Should this be i64 instead, and should the limit increase?
7938       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7939       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7940     }
7941 
7942     if (NumRegsLeft > 0) {
7943       unsigned NumRegs = numRegsForType(Ty);
7944       if (NumRegsLeft >= NumRegs) {
7945         NumRegsLeft -= NumRegs;
7946         return ABIArgInfo::getDirect();
7947       }
7948     }
7949   }
7950 
7951   // Otherwise just do the default thing.
7952   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7953   if (!ArgInfo.isIndirect()) {
7954     unsigned NumRegs = numRegsForType(Ty);
7955     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7956   }
7957 
7958   return ArgInfo;
7959 }
7960 
7961 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7962 public:
7963   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7964     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7965   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7966                            CodeGen::CodeGenModule &M) const override;
7967   unsigned getOpenCLKernelCallingConv() const override;
7968 
7969   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7970       llvm::PointerType *T, QualType QT) const override;
7971 
7972   LangAS getASTAllocaAddressSpace() const override {
7973     return getLangASFromTargetAS(
7974         getABIInfo().getDataLayout().getAllocaAddrSpace());
7975   }
7976   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7977                                   const VarDecl *D) const override;
7978   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
7979                                          SyncScope Scope,
7980                                          llvm::AtomicOrdering Ordering,
7981                                          llvm::LLVMContext &Ctx) const override;
7982   llvm::Function *
7983   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7984                             llvm::Function *BlockInvokeFunc,
7985                             llvm::Value *BlockLiteral) const override;
7986   bool shouldEmitStaticExternCAliases() const override;
7987   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7988 };
7989 }
7990 
7991 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
7992                                               llvm::GlobalValue *GV) {
7993   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
7994     return false;
7995 
7996   return D->hasAttr<OpenCLKernelAttr>() ||
7997          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
7998          (isa<VarDecl>(D) &&
7999           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8000            D->hasAttr<HIPPinnedShadowAttr>()));
8001 }
8002 
8003 static bool requiresAMDGPUDefaultVisibility(const Decl *D,
8004                                             llvm::GlobalValue *GV) {
8005   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8006     return false;
8007 
8008   return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>();
8009 }
8010 
8011 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8012     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8013   if (requiresAMDGPUDefaultVisibility(D, GV)) {
8014     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
8015     GV->setDSOLocal(false);
8016   } else if (requiresAMDGPUProtectedVisibility(D, GV)) {
8017     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8018     GV->setDSOLocal(true);
8019   }
8020 
8021   if (GV->isDeclaration())
8022     return;
8023   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8024   if (!FD)
8025     return;
8026 
8027   llvm::Function *F = cast<llvm::Function>(GV);
8028 
8029   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8030     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8031 
8032 
8033   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8034                               FD->hasAttr<OpenCLKernelAttr>();
8035   const bool IsHIPKernel = M.getLangOpts().HIP &&
8036                            FD->hasAttr<CUDAGlobalAttr>();
8037   if ((IsOpenCLKernel || IsHIPKernel) &&
8038       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8039     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8040 
8041   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8042   if (ReqdWGS || FlatWGS) {
8043     unsigned Min = 0;
8044     unsigned Max = 0;
8045     if (FlatWGS) {
8046       Min = FlatWGS->getMin()
8047                 ->EvaluateKnownConstInt(M.getContext())
8048                 .getExtValue();
8049       Max = FlatWGS->getMax()
8050                 ->EvaluateKnownConstInt(M.getContext())
8051                 .getExtValue();
8052     }
8053     if (ReqdWGS && Min == 0 && Max == 0)
8054       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8055 
8056     if (Min != 0) {
8057       assert(Min <= Max && "Min must be less than or equal Max");
8058 
8059       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
8060       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8061     } else
8062       assert(Max == 0 && "Max must be zero");
8063   } else if (IsOpenCLKernel || IsHIPKernel) {
8064     // By default, restrict the maximum size to 256.
8065     F->addFnAttr("amdgpu-flat-work-group-size", "1,256");
8066   }
8067 
8068   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
8069     unsigned Min =
8070         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
8071     unsigned Max = Attr->getMax() ? Attr->getMax()
8072                                         ->EvaluateKnownConstInt(M.getContext())
8073                                         .getExtValue()
8074                                   : 0;
8075 
8076     if (Min != 0) {
8077       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
8078 
8079       std::string AttrVal = llvm::utostr(Min);
8080       if (Max != 0)
8081         AttrVal = AttrVal + "," + llvm::utostr(Max);
8082       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
8083     } else
8084       assert(Max == 0 && "Max must be zero");
8085   }
8086 
8087   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
8088     unsigned NumSGPR = Attr->getNumSGPR();
8089 
8090     if (NumSGPR != 0)
8091       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
8092   }
8093 
8094   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
8095     uint32_t NumVGPR = Attr->getNumVGPR();
8096 
8097     if (NumVGPR != 0)
8098       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
8099   }
8100 }
8101 
8102 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8103   return llvm::CallingConv::AMDGPU_KERNEL;
8104 }
8105 
8106 // Currently LLVM assumes null pointers always have value 0,
8107 // which results in incorrectly transformed IR. Therefore, instead of
8108 // emitting null pointers in private and local address spaces, a null
8109 // pointer in generic address space is emitted which is casted to a
8110 // pointer in local or private address space.
8111 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
8112     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
8113     QualType QT) const {
8114   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
8115     return llvm::ConstantPointerNull::get(PT);
8116 
8117   auto &Ctx = CGM.getContext();
8118   auto NPT = llvm::PointerType::get(PT->getElementType(),
8119       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
8120   return llvm::ConstantExpr::getAddrSpaceCast(
8121       llvm::ConstantPointerNull::get(NPT), PT);
8122 }
8123 
8124 LangAS
8125 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
8126                                                   const VarDecl *D) const {
8127   assert(!CGM.getLangOpts().OpenCL &&
8128          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
8129          "Address space agnostic languages only");
8130   LangAS DefaultGlobalAS = getLangASFromTargetAS(
8131       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
8132   if (!D)
8133     return DefaultGlobalAS;
8134 
8135   LangAS AddrSpace = D->getType().getAddressSpace();
8136   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
8137   if (AddrSpace != LangAS::Default)
8138     return AddrSpace;
8139 
8140   if (CGM.isTypeConstant(D->getType(), false)) {
8141     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
8142       return ConstAS.getValue();
8143   }
8144   return DefaultGlobalAS;
8145 }
8146 
8147 llvm::SyncScope::ID
8148 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
8149                                             SyncScope Scope,
8150                                             llvm::AtomicOrdering Ordering,
8151                                             llvm::LLVMContext &Ctx) const {
8152   std::string Name;
8153   switch (Scope) {
8154   case SyncScope::OpenCLWorkGroup:
8155     Name = "workgroup";
8156     break;
8157   case SyncScope::OpenCLDevice:
8158     Name = "agent";
8159     break;
8160   case SyncScope::OpenCLAllSVMDevices:
8161     Name = "";
8162     break;
8163   case SyncScope::OpenCLSubGroup:
8164     Name = "wavefront";
8165   }
8166 
8167   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
8168     if (!Name.empty())
8169       Name = Twine(Twine(Name) + Twine("-")).str();
8170 
8171     Name = Twine(Twine(Name) + Twine("one-as")).str();
8172   }
8173 
8174   return Ctx.getOrInsertSyncScopeID(Name);
8175 }
8176 
8177 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8178   return false;
8179 }
8180 
8181 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8182     const FunctionType *&FT) const {
8183   FT = getABIInfo().getContext().adjustFunctionType(
8184       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8185 }
8186 
8187 //===----------------------------------------------------------------------===//
8188 // SPARC v8 ABI Implementation.
8189 // Based on the SPARC Compliance Definition version 2.4.1.
8190 //
8191 // Ensures that complex values are passed in registers.
8192 //
8193 namespace {
8194 class SparcV8ABIInfo : public DefaultABIInfo {
8195 public:
8196   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8197 
8198 private:
8199   ABIArgInfo classifyReturnType(QualType RetTy) const;
8200   void computeInfo(CGFunctionInfo &FI) const override;
8201 };
8202 } // end anonymous namespace
8203 
8204 
8205 ABIArgInfo
8206 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8207   if (Ty->isAnyComplexType()) {
8208     return ABIArgInfo::getDirect();
8209   }
8210   else {
8211     return DefaultABIInfo::classifyReturnType(Ty);
8212   }
8213 }
8214 
8215 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8216 
8217   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8218   for (auto &Arg : FI.arguments())
8219     Arg.info = classifyArgumentType(Arg.type);
8220 }
8221 
8222 namespace {
8223 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8224 public:
8225   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8226     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8227 };
8228 } // end anonymous namespace
8229 
8230 //===----------------------------------------------------------------------===//
8231 // SPARC v9 ABI Implementation.
8232 // Based on the SPARC Compliance Definition version 2.4.1.
8233 //
8234 // Function arguments a mapped to a nominal "parameter array" and promoted to
8235 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8236 // the array, structs larger than 16 bytes are passed indirectly.
8237 //
8238 // One case requires special care:
8239 //
8240 //   struct mixed {
8241 //     int i;
8242 //     float f;
8243 //   };
8244 //
8245 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8246 // parameter array, but the int is passed in an integer register, and the float
8247 // is passed in a floating point register. This is represented as two arguments
8248 // with the LLVM IR inreg attribute:
8249 //
8250 //   declare void f(i32 inreg %i, float inreg %f)
8251 //
8252 // The code generator will only allocate 4 bytes from the parameter array for
8253 // the inreg arguments. All other arguments are allocated a multiple of 8
8254 // bytes.
8255 //
8256 namespace {
8257 class SparcV9ABIInfo : public ABIInfo {
8258 public:
8259   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8260 
8261 private:
8262   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8263   void computeInfo(CGFunctionInfo &FI) const override;
8264   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8265                     QualType Ty) const override;
8266 
8267   // Coercion type builder for structs passed in registers. The coercion type
8268   // serves two purposes:
8269   //
8270   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8271   //    in registers.
8272   // 2. Expose aligned floating point elements as first-level elements, so the
8273   //    code generator knows to pass them in floating point registers.
8274   //
8275   // We also compute the InReg flag which indicates that the struct contains
8276   // aligned 32-bit floats.
8277   //
8278   struct CoerceBuilder {
8279     llvm::LLVMContext &Context;
8280     const llvm::DataLayout &DL;
8281     SmallVector<llvm::Type*, 8> Elems;
8282     uint64_t Size;
8283     bool InReg;
8284 
8285     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8286       : Context(c), DL(dl), Size(0), InReg(false) {}
8287 
8288     // Pad Elems with integers until Size is ToSize.
8289     void pad(uint64_t ToSize) {
8290       assert(ToSize >= Size && "Cannot remove elements");
8291       if (ToSize == Size)
8292         return;
8293 
8294       // Finish the current 64-bit word.
8295       uint64_t Aligned = llvm::alignTo(Size, 64);
8296       if (Aligned > Size && Aligned <= ToSize) {
8297         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8298         Size = Aligned;
8299       }
8300 
8301       // Add whole 64-bit words.
8302       while (Size + 64 <= ToSize) {
8303         Elems.push_back(llvm::Type::getInt64Ty(Context));
8304         Size += 64;
8305       }
8306 
8307       // Final in-word padding.
8308       if (Size < ToSize) {
8309         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8310         Size = ToSize;
8311       }
8312     }
8313 
8314     // Add a floating point element at Offset.
8315     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8316       // Unaligned floats are treated as integers.
8317       if (Offset % Bits)
8318         return;
8319       // The InReg flag is only required if there are any floats < 64 bits.
8320       if (Bits < 64)
8321         InReg = true;
8322       pad(Offset);
8323       Elems.push_back(Ty);
8324       Size = Offset + Bits;
8325     }
8326 
8327     // Add a struct type to the coercion type, starting at Offset (in bits).
8328     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8329       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8330       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8331         llvm::Type *ElemTy = StrTy->getElementType(i);
8332         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8333         switch (ElemTy->getTypeID()) {
8334         case llvm::Type::StructTyID:
8335           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8336           break;
8337         case llvm::Type::FloatTyID:
8338           addFloat(ElemOffset, ElemTy, 32);
8339           break;
8340         case llvm::Type::DoubleTyID:
8341           addFloat(ElemOffset, ElemTy, 64);
8342           break;
8343         case llvm::Type::FP128TyID:
8344           addFloat(ElemOffset, ElemTy, 128);
8345           break;
8346         case llvm::Type::PointerTyID:
8347           if (ElemOffset % 64 == 0) {
8348             pad(ElemOffset);
8349             Elems.push_back(ElemTy);
8350             Size += 64;
8351           }
8352           break;
8353         default:
8354           break;
8355         }
8356       }
8357     }
8358 
8359     // Check if Ty is a usable substitute for the coercion type.
8360     bool isUsableType(llvm::StructType *Ty) const {
8361       return llvm::makeArrayRef(Elems) == Ty->elements();
8362     }
8363 
8364     // Get the coercion type as a literal struct type.
8365     llvm::Type *getType() const {
8366       if (Elems.size() == 1)
8367         return Elems.front();
8368       else
8369         return llvm::StructType::get(Context, Elems);
8370     }
8371   };
8372 };
8373 } // end anonymous namespace
8374 
8375 ABIArgInfo
8376 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8377   if (Ty->isVoidType())
8378     return ABIArgInfo::getIgnore();
8379 
8380   uint64_t Size = getContext().getTypeSize(Ty);
8381 
8382   // Anything too big to fit in registers is passed with an explicit indirect
8383   // pointer / sret pointer.
8384   if (Size > SizeLimit)
8385     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8386 
8387   // Treat an enum type as its underlying type.
8388   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8389     Ty = EnumTy->getDecl()->getIntegerType();
8390 
8391   // Integer types smaller than a register are extended.
8392   if (Size < 64 && Ty->isIntegerType())
8393     return ABIArgInfo::getExtend(Ty);
8394 
8395   // Other non-aggregates go in registers.
8396   if (!isAggregateTypeForABI(Ty))
8397     return ABIArgInfo::getDirect();
8398 
8399   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8400   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8401   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8402     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8403 
8404   // This is a small aggregate type that should be passed in registers.
8405   // Build a coercion type from the LLVM struct type.
8406   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8407   if (!StrTy)
8408     return ABIArgInfo::getDirect();
8409 
8410   CoerceBuilder CB(getVMContext(), getDataLayout());
8411   CB.addStruct(0, StrTy);
8412   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8413 
8414   // Try to use the original type for coercion.
8415   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8416 
8417   if (CB.InReg)
8418     return ABIArgInfo::getDirectInReg(CoerceTy);
8419   else
8420     return ABIArgInfo::getDirect(CoerceTy);
8421 }
8422 
8423 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8424                                   QualType Ty) const {
8425   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8426   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8427   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8428     AI.setCoerceToType(ArgTy);
8429 
8430   CharUnits SlotSize = CharUnits::fromQuantity(8);
8431 
8432   CGBuilderTy &Builder = CGF.Builder;
8433   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8434   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8435 
8436   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8437 
8438   Address ArgAddr = Address::invalid();
8439   CharUnits Stride;
8440   switch (AI.getKind()) {
8441   case ABIArgInfo::Expand:
8442   case ABIArgInfo::CoerceAndExpand:
8443   case ABIArgInfo::InAlloca:
8444     llvm_unreachable("Unsupported ABI kind for va_arg");
8445 
8446   case ABIArgInfo::Extend: {
8447     Stride = SlotSize;
8448     CharUnits Offset = SlotSize - TypeInfo.first;
8449     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8450     break;
8451   }
8452 
8453   case ABIArgInfo::Direct: {
8454     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8455     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8456     ArgAddr = Addr;
8457     break;
8458   }
8459 
8460   case ABIArgInfo::Indirect:
8461     Stride = SlotSize;
8462     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8463     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8464                       TypeInfo.second);
8465     break;
8466 
8467   case ABIArgInfo::Ignore:
8468     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8469   }
8470 
8471   // Update VAList.
8472   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8473   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8474 
8475   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8476 }
8477 
8478 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8479   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8480   for (auto &I : FI.arguments())
8481     I.info = classifyType(I.type, 16 * 8);
8482 }
8483 
8484 namespace {
8485 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8486 public:
8487   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8488     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8489 
8490   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8491     return 14;
8492   }
8493 
8494   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8495                                llvm::Value *Address) const override;
8496 };
8497 } // end anonymous namespace
8498 
8499 bool
8500 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8501                                                 llvm::Value *Address) const {
8502   // This is calculated from the LLVM and GCC tables and verified
8503   // against gcc output.  AFAIK all ABIs use the same encoding.
8504 
8505   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8506 
8507   llvm::IntegerType *i8 = CGF.Int8Ty;
8508   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8509   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8510 
8511   // 0-31: the 8-byte general-purpose registers
8512   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8513 
8514   // 32-63: f0-31, the 4-byte floating-point registers
8515   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8516 
8517   //   Y   = 64
8518   //   PSR = 65
8519   //   WIM = 66
8520   //   TBR = 67
8521   //   PC  = 68
8522   //   NPC = 69
8523   //   FSR = 70
8524   //   CSR = 71
8525   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8526 
8527   // 72-87: d0-15, the 8-byte floating-point registers
8528   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8529 
8530   return false;
8531 }
8532 
8533 // ARC ABI implementation.
8534 namespace {
8535 
8536 class ARCABIInfo : public DefaultABIInfo {
8537 public:
8538   using DefaultABIInfo::DefaultABIInfo;
8539 
8540 private:
8541   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8542                     QualType Ty) const override;
8543 
8544   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8545     if (!State.FreeRegs)
8546       return;
8547     if (Info.isIndirect() && Info.getInReg())
8548       State.FreeRegs--;
8549     else if (Info.isDirect() && Info.getInReg()) {
8550       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8551       if (sz < State.FreeRegs)
8552         State.FreeRegs -= sz;
8553       else
8554         State.FreeRegs = 0;
8555     }
8556   }
8557 
8558   void computeInfo(CGFunctionInfo &FI) const override {
8559     CCState State(FI.getCallingConvention());
8560     // ARC uses 8 registers to pass arguments.
8561     State.FreeRegs = 8;
8562 
8563     if (!getCXXABI().classifyReturnType(FI))
8564       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8565     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8566     for (auto &I : FI.arguments()) {
8567       I.info = classifyArgumentType(I.type, State.FreeRegs);
8568       updateState(I.info, I.type, State);
8569     }
8570   }
8571 
8572   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8573   ABIArgInfo getIndirectByValue(QualType Ty) const;
8574   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8575   ABIArgInfo classifyReturnType(QualType RetTy) const;
8576 };
8577 
8578 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8579 public:
8580   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8581       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8582 };
8583 
8584 
8585 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8586   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8587                        getNaturalAlignIndirect(Ty, false);
8588 }
8589 
8590 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8591   // Compute the byval alignment.
8592   const unsigned MinABIStackAlignInBytes = 4;
8593   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8594   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8595                                  TypeAlign > MinABIStackAlignInBytes);
8596 }
8597 
8598 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8599                               QualType Ty) const {
8600   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8601                           getContext().getTypeInfoInChars(Ty),
8602                           CharUnits::fromQuantity(4), true);
8603 }
8604 
8605 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8606                                             uint8_t FreeRegs) const {
8607   // Handle the generic C++ ABI.
8608   const RecordType *RT = Ty->getAs<RecordType>();
8609   if (RT) {
8610     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8611     if (RAA == CGCXXABI::RAA_Indirect)
8612       return getIndirectByRef(Ty, FreeRegs > 0);
8613 
8614     if (RAA == CGCXXABI::RAA_DirectInMemory)
8615       return getIndirectByValue(Ty);
8616   }
8617 
8618   // Treat an enum type as its underlying type.
8619   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8620     Ty = EnumTy->getDecl()->getIntegerType();
8621 
8622   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8623 
8624   if (isAggregateTypeForABI(Ty)) {
8625     // Structures with flexible arrays are always indirect.
8626     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8627       return getIndirectByValue(Ty);
8628 
8629     // Ignore empty structs/unions.
8630     if (isEmptyRecord(getContext(), Ty, true))
8631       return ABIArgInfo::getIgnore();
8632 
8633     llvm::LLVMContext &LLVMContext = getVMContext();
8634 
8635     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8636     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8637     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8638 
8639     return FreeRegs >= SizeInRegs ?
8640         ABIArgInfo::getDirectInReg(Result) :
8641         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8642   }
8643 
8644   return Ty->isPromotableIntegerType() ?
8645       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8646                                 ABIArgInfo::getExtend(Ty)) :
8647       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8648                                 ABIArgInfo::getDirect());
8649 }
8650 
8651 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8652   if (RetTy->isAnyComplexType())
8653     return ABIArgInfo::getDirectInReg();
8654 
8655   // Arguments of size > 4 registers are indirect.
8656   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8657   if (RetSize > 4)
8658     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8659 
8660   return DefaultABIInfo::classifyReturnType(RetTy);
8661 }
8662 
8663 } // End anonymous namespace.
8664 
8665 //===----------------------------------------------------------------------===//
8666 // XCore ABI Implementation
8667 //===----------------------------------------------------------------------===//
8668 
8669 namespace {
8670 
8671 /// A SmallStringEnc instance is used to build up the TypeString by passing
8672 /// it by reference between functions that append to it.
8673 typedef llvm::SmallString<128> SmallStringEnc;
8674 
8675 /// TypeStringCache caches the meta encodings of Types.
8676 ///
8677 /// The reason for caching TypeStrings is two fold:
8678 ///   1. To cache a type's encoding for later uses;
8679 ///   2. As a means to break recursive member type inclusion.
8680 ///
8681 /// A cache Entry can have a Status of:
8682 ///   NonRecursive:   The type encoding is not recursive;
8683 ///   Recursive:      The type encoding is recursive;
8684 ///   Incomplete:     An incomplete TypeString;
8685 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8686 ///                   Recursive type encoding.
8687 ///
8688 /// A NonRecursive entry will have all of its sub-members expanded as fully
8689 /// as possible. Whilst it may contain types which are recursive, the type
8690 /// itself is not recursive and thus its encoding may be safely used whenever
8691 /// the type is encountered.
8692 ///
8693 /// A Recursive entry will have all of its sub-members expanded as fully as
8694 /// possible. The type itself is recursive and it may contain other types which
8695 /// are recursive. The Recursive encoding must not be used during the expansion
8696 /// of a recursive type's recursive branch. For simplicity the code uses
8697 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8698 ///
8699 /// An Incomplete entry is always a RecordType and only encodes its
8700 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8701 /// are placed into the cache during type expansion as a means to identify and
8702 /// handle recursive inclusion of types as sub-members. If there is recursion
8703 /// the entry becomes IncompleteUsed.
8704 ///
8705 /// During the expansion of a RecordType's members:
8706 ///
8707 ///   If the cache contains a NonRecursive encoding for the member type, the
8708 ///   cached encoding is used;
8709 ///
8710 ///   If the cache contains a Recursive encoding for the member type, the
8711 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8712 ///
8713 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8714 ///   cache to break potential recursive inclusion of itself as a sub-member;
8715 ///
8716 ///   Once a member RecordType has been expanded, its temporary incomplete
8717 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8718 ///   it is swapped back in;
8719 ///
8720 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8721 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8722 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8723 ///
8724 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8725 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8726 ///   Else the member is part of a recursive type and thus the recursion has
8727 ///   been exited too soon for the encoding to be correct for the member.
8728 ///
8729 class TypeStringCache {
8730   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8731   struct Entry {
8732     std::string Str;     // The encoded TypeString for the type.
8733     enum Status State;   // Information about the encoding in 'Str'.
8734     std::string Swapped; // A temporary place holder for a Recursive encoding
8735                          // during the expansion of RecordType's members.
8736   };
8737   std::map<const IdentifierInfo *, struct Entry> Map;
8738   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8739   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8740 public:
8741   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8742   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8743   bool removeIncomplete(const IdentifierInfo *ID);
8744   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8745                      bool IsRecursive);
8746   StringRef lookupStr(const IdentifierInfo *ID);
8747 };
8748 
8749 /// TypeString encodings for enum & union fields must be order.
8750 /// FieldEncoding is a helper for this ordering process.
8751 class FieldEncoding {
8752   bool HasName;
8753   std::string Enc;
8754 public:
8755   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8756   StringRef str() { return Enc; }
8757   bool operator<(const FieldEncoding &rhs) const {
8758     if (HasName != rhs.HasName) return HasName;
8759     return Enc < rhs.Enc;
8760   }
8761 };
8762 
8763 class XCoreABIInfo : public DefaultABIInfo {
8764 public:
8765   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8766   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8767                     QualType Ty) const override;
8768 };
8769 
8770 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8771   mutable TypeStringCache TSC;
8772 public:
8773   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8774     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8775   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8776                     CodeGen::CodeGenModule &M) const override;
8777 };
8778 
8779 } // End anonymous namespace.
8780 
8781 // TODO: this implementation is likely now redundant with the default
8782 // EmitVAArg.
8783 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8784                                 QualType Ty) const {
8785   CGBuilderTy &Builder = CGF.Builder;
8786 
8787   // Get the VAList.
8788   CharUnits SlotSize = CharUnits::fromQuantity(4);
8789   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8790 
8791   // Handle the argument.
8792   ABIArgInfo AI = classifyArgumentType(Ty);
8793   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8794   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8795   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8796     AI.setCoerceToType(ArgTy);
8797   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8798 
8799   Address Val = Address::invalid();
8800   CharUnits ArgSize = CharUnits::Zero();
8801   switch (AI.getKind()) {
8802   case ABIArgInfo::Expand:
8803   case ABIArgInfo::CoerceAndExpand:
8804   case ABIArgInfo::InAlloca:
8805     llvm_unreachable("Unsupported ABI kind for va_arg");
8806   case ABIArgInfo::Ignore:
8807     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8808     ArgSize = CharUnits::Zero();
8809     break;
8810   case ABIArgInfo::Extend:
8811   case ABIArgInfo::Direct:
8812     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8813     ArgSize = CharUnits::fromQuantity(
8814                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8815     ArgSize = ArgSize.alignTo(SlotSize);
8816     break;
8817   case ABIArgInfo::Indirect:
8818     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8819     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8820     ArgSize = SlotSize;
8821     break;
8822   }
8823 
8824   // Increment the VAList.
8825   if (!ArgSize.isZero()) {
8826     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
8827     Builder.CreateStore(APN.getPointer(), VAListAddr);
8828   }
8829 
8830   return Val;
8831 }
8832 
8833 /// During the expansion of a RecordType, an incomplete TypeString is placed
8834 /// into the cache as a means to identify and break recursion.
8835 /// If there is a Recursive encoding in the cache, it is swapped out and will
8836 /// be reinserted by removeIncomplete().
8837 /// All other types of encoding should have been used rather than arriving here.
8838 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8839                                     std::string StubEnc) {
8840   if (!ID)
8841     return;
8842   Entry &E = Map[ID];
8843   assert( (E.Str.empty() || E.State == Recursive) &&
8844          "Incorrectly use of addIncomplete");
8845   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8846   E.Swapped.swap(E.Str); // swap out the Recursive
8847   E.Str.swap(StubEnc);
8848   E.State = Incomplete;
8849   ++IncompleteCount;
8850 }
8851 
8852 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8853 /// must be removed from the cache.
8854 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8855 /// Returns true if the RecordType was defined recursively.
8856 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8857   if (!ID)
8858     return false;
8859   auto I = Map.find(ID);
8860   assert(I != Map.end() && "Entry not present");
8861   Entry &E = I->second;
8862   assert( (E.State == Incomplete ||
8863            E.State == IncompleteUsed) &&
8864          "Entry must be an incomplete type");
8865   bool IsRecursive = false;
8866   if (E.State == IncompleteUsed) {
8867     // We made use of our Incomplete encoding, thus we are recursive.
8868     IsRecursive = true;
8869     --IncompleteUsedCount;
8870   }
8871   if (E.Swapped.empty())
8872     Map.erase(I);
8873   else {
8874     // Swap the Recursive back.
8875     E.Swapped.swap(E.Str);
8876     E.Swapped.clear();
8877     E.State = Recursive;
8878   }
8879   --IncompleteCount;
8880   return IsRecursive;
8881 }
8882 
8883 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8884 /// Recursive (viz: all sub-members were expanded as fully as possible).
8885 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8886                                     bool IsRecursive) {
8887   if (!ID || IncompleteUsedCount)
8888     return; // No key or it is is an incomplete sub-type so don't add.
8889   Entry &E = Map[ID];
8890   if (IsRecursive && !E.Str.empty()) {
8891     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8892            "This is not the same Recursive entry");
8893     // The parent container was not recursive after all, so we could have used
8894     // this Recursive sub-member entry after all, but we assumed the worse when
8895     // we started viz: IncompleteCount!=0.
8896     return;
8897   }
8898   assert(E.Str.empty() && "Entry already present");
8899   E.Str = Str.str();
8900   E.State = IsRecursive? Recursive : NonRecursive;
8901 }
8902 
8903 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8904 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8905 /// encoding is Recursive, return an empty StringRef.
8906 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8907   if (!ID)
8908     return StringRef();   // We have no key.
8909   auto I = Map.find(ID);
8910   if (I == Map.end())
8911     return StringRef();   // We have no encoding.
8912   Entry &E = I->second;
8913   if (E.State == Recursive && IncompleteCount)
8914     return StringRef();   // We don't use Recursive encodings for member types.
8915 
8916   if (E.State == Incomplete) {
8917     // The incomplete type is being used to break out of recursion.
8918     E.State = IncompleteUsed;
8919     ++IncompleteUsedCount;
8920   }
8921   return E.Str;
8922 }
8923 
8924 /// The XCore ABI includes a type information section that communicates symbol
8925 /// type information to the linker. The linker uses this information to verify
8926 /// safety/correctness of things such as array bound and pointers et al.
8927 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8928 /// This type information (TypeString) is emitted into meta data for all global
8929 /// symbols: definitions, declarations, functions & variables.
8930 ///
8931 /// The TypeString carries type, qualifier, name, size & value details.
8932 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8933 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8934 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8935 ///
8936 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8937                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8938 
8939 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8940 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8941                                           CodeGen::CodeGenModule &CGM) const {
8942   SmallStringEnc Enc;
8943   if (getTypeString(Enc, D, CGM, TSC)) {
8944     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8945     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8946                                 llvm::MDString::get(Ctx, Enc.str())};
8947     llvm::NamedMDNode *MD =
8948       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8949     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8950   }
8951 }
8952 
8953 //===----------------------------------------------------------------------===//
8954 // SPIR ABI Implementation
8955 //===----------------------------------------------------------------------===//
8956 
8957 namespace {
8958 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8959 public:
8960   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8961     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8962   unsigned getOpenCLKernelCallingConv() const override;
8963 };
8964 
8965 } // End anonymous namespace.
8966 
8967 namespace clang {
8968 namespace CodeGen {
8969 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8970   DefaultABIInfo SPIRABI(CGM.getTypes());
8971   SPIRABI.computeInfo(FI);
8972 }
8973 }
8974 }
8975 
8976 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8977   return llvm::CallingConv::SPIR_KERNEL;
8978 }
8979 
8980 static bool appendType(SmallStringEnc &Enc, QualType QType,
8981                        const CodeGen::CodeGenModule &CGM,
8982                        TypeStringCache &TSC);
8983 
8984 /// Helper function for appendRecordType().
8985 /// Builds a SmallVector containing the encoded field types in declaration
8986 /// order.
8987 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8988                              const RecordDecl *RD,
8989                              const CodeGen::CodeGenModule &CGM,
8990                              TypeStringCache &TSC) {
8991   for (const auto *Field : RD->fields()) {
8992     SmallStringEnc Enc;
8993     Enc += "m(";
8994     Enc += Field->getName();
8995     Enc += "){";
8996     if (Field->isBitField()) {
8997       Enc += "b(";
8998       llvm::raw_svector_ostream OS(Enc);
8999       OS << Field->getBitWidthValue(CGM.getContext());
9000       Enc += ':';
9001     }
9002     if (!appendType(Enc, Field->getType(), CGM, TSC))
9003       return false;
9004     if (Field->isBitField())
9005       Enc += ')';
9006     Enc += '}';
9007     FE.emplace_back(!Field->getName().empty(), Enc);
9008   }
9009   return true;
9010 }
9011 
9012 /// Appends structure and union types to Enc and adds encoding to cache.
9013 /// Recursively calls appendType (via extractFieldType) for each field.
9014 /// Union types have their fields ordered according to the ABI.
9015 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
9016                              const CodeGen::CodeGenModule &CGM,
9017                              TypeStringCache &TSC, const IdentifierInfo *ID) {
9018   // Append the cached TypeString if we have one.
9019   StringRef TypeString = TSC.lookupStr(ID);
9020   if (!TypeString.empty()) {
9021     Enc += TypeString;
9022     return true;
9023   }
9024 
9025   // Start to emit an incomplete TypeString.
9026   size_t Start = Enc.size();
9027   Enc += (RT->isUnionType()? 'u' : 's');
9028   Enc += '(';
9029   if (ID)
9030     Enc += ID->getName();
9031   Enc += "){";
9032 
9033   // We collect all encoded fields and order as necessary.
9034   bool IsRecursive = false;
9035   const RecordDecl *RD = RT->getDecl()->getDefinition();
9036   if (RD && !RD->field_empty()) {
9037     // An incomplete TypeString stub is placed in the cache for this RecordType
9038     // so that recursive calls to this RecordType will use it whilst building a
9039     // complete TypeString for this RecordType.
9040     SmallVector<FieldEncoding, 16> FE;
9041     std::string StubEnc(Enc.substr(Start).str());
9042     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
9043     TSC.addIncomplete(ID, std::move(StubEnc));
9044     if (!extractFieldType(FE, RD, CGM, TSC)) {
9045       (void) TSC.removeIncomplete(ID);
9046       return false;
9047     }
9048     IsRecursive = TSC.removeIncomplete(ID);
9049     // The ABI requires unions to be sorted but not structures.
9050     // See FieldEncoding::operator< for sort algorithm.
9051     if (RT->isUnionType())
9052       llvm::sort(FE);
9053     // We can now complete the TypeString.
9054     unsigned E = FE.size();
9055     for (unsigned I = 0; I != E; ++I) {
9056       if (I)
9057         Enc += ',';
9058       Enc += FE[I].str();
9059     }
9060   }
9061   Enc += '}';
9062   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
9063   return true;
9064 }
9065 
9066 /// Appends enum types to Enc and adds the encoding to the cache.
9067 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
9068                            TypeStringCache &TSC,
9069                            const IdentifierInfo *ID) {
9070   // Append the cached TypeString if we have one.
9071   StringRef TypeString = TSC.lookupStr(ID);
9072   if (!TypeString.empty()) {
9073     Enc += TypeString;
9074     return true;
9075   }
9076 
9077   size_t Start = Enc.size();
9078   Enc += "e(";
9079   if (ID)
9080     Enc += ID->getName();
9081   Enc += "){";
9082 
9083   // We collect all encoded enumerations and order them alphanumerically.
9084   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
9085     SmallVector<FieldEncoding, 16> FE;
9086     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
9087          ++I) {
9088       SmallStringEnc EnumEnc;
9089       EnumEnc += "m(";
9090       EnumEnc += I->getName();
9091       EnumEnc += "){";
9092       I->getInitVal().toString(EnumEnc);
9093       EnumEnc += '}';
9094       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
9095     }
9096     llvm::sort(FE);
9097     unsigned E = FE.size();
9098     for (unsigned I = 0; I != E; ++I) {
9099       if (I)
9100         Enc += ',';
9101       Enc += FE[I].str();
9102     }
9103   }
9104   Enc += '}';
9105   TSC.addIfComplete(ID, Enc.substr(Start), false);
9106   return true;
9107 }
9108 
9109 /// Appends type's qualifier to Enc.
9110 /// This is done prior to appending the type's encoding.
9111 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
9112   // Qualifiers are emitted in alphabetical order.
9113   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
9114   int Lookup = 0;
9115   if (QT.isConstQualified())
9116     Lookup += 1<<0;
9117   if (QT.isRestrictQualified())
9118     Lookup += 1<<1;
9119   if (QT.isVolatileQualified())
9120     Lookup += 1<<2;
9121   Enc += Table[Lookup];
9122 }
9123 
9124 /// Appends built-in types to Enc.
9125 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
9126   const char *EncType;
9127   switch (BT->getKind()) {
9128     case BuiltinType::Void:
9129       EncType = "0";
9130       break;
9131     case BuiltinType::Bool:
9132       EncType = "b";
9133       break;
9134     case BuiltinType::Char_U:
9135       EncType = "uc";
9136       break;
9137     case BuiltinType::UChar:
9138       EncType = "uc";
9139       break;
9140     case BuiltinType::SChar:
9141       EncType = "sc";
9142       break;
9143     case BuiltinType::UShort:
9144       EncType = "us";
9145       break;
9146     case BuiltinType::Short:
9147       EncType = "ss";
9148       break;
9149     case BuiltinType::UInt:
9150       EncType = "ui";
9151       break;
9152     case BuiltinType::Int:
9153       EncType = "si";
9154       break;
9155     case BuiltinType::ULong:
9156       EncType = "ul";
9157       break;
9158     case BuiltinType::Long:
9159       EncType = "sl";
9160       break;
9161     case BuiltinType::ULongLong:
9162       EncType = "ull";
9163       break;
9164     case BuiltinType::LongLong:
9165       EncType = "sll";
9166       break;
9167     case BuiltinType::Float:
9168       EncType = "ft";
9169       break;
9170     case BuiltinType::Double:
9171       EncType = "d";
9172       break;
9173     case BuiltinType::LongDouble:
9174       EncType = "ld";
9175       break;
9176     default:
9177       return false;
9178   }
9179   Enc += EncType;
9180   return true;
9181 }
9182 
9183 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9184 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9185                               const CodeGen::CodeGenModule &CGM,
9186                               TypeStringCache &TSC) {
9187   Enc += "p(";
9188   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9189     return false;
9190   Enc += ')';
9191   return true;
9192 }
9193 
9194 /// Appends array encoding to Enc before calling appendType for the element.
9195 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9196                             const ArrayType *AT,
9197                             const CodeGen::CodeGenModule &CGM,
9198                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9199   if (AT->getSizeModifier() != ArrayType::Normal)
9200     return false;
9201   Enc += "a(";
9202   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9203     CAT->getSize().toStringUnsigned(Enc);
9204   else
9205     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9206   Enc += ':';
9207   // The Qualifiers should be attached to the type rather than the array.
9208   appendQualifier(Enc, QT);
9209   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9210     return false;
9211   Enc += ')';
9212   return true;
9213 }
9214 
9215 /// Appends a function encoding to Enc, calling appendType for the return type
9216 /// and the arguments.
9217 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9218                              const CodeGen::CodeGenModule &CGM,
9219                              TypeStringCache &TSC) {
9220   Enc += "f{";
9221   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9222     return false;
9223   Enc += "}(";
9224   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9225     // N.B. we are only interested in the adjusted param types.
9226     auto I = FPT->param_type_begin();
9227     auto E = FPT->param_type_end();
9228     if (I != E) {
9229       do {
9230         if (!appendType(Enc, *I, CGM, TSC))
9231           return false;
9232         ++I;
9233         if (I != E)
9234           Enc += ',';
9235       } while (I != E);
9236       if (FPT->isVariadic())
9237         Enc += ",va";
9238     } else {
9239       if (FPT->isVariadic())
9240         Enc += "va";
9241       else
9242         Enc += '0';
9243     }
9244   }
9245   Enc += ')';
9246   return true;
9247 }
9248 
9249 /// Handles the type's qualifier before dispatching a call to handle specific
9250 /// type encodings.
9251 static bool appendType(SmallStringEnc &Enc, QualType QType,
9252                        const CodeGen::CodeGenModule &CGM,
9253                        TypeStringCache &TSC) {
9254 
9255   QualType QT = QType.getCanonicalType();
9256 
9257   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9258     // The Qualifiers should be attached to the type rather than the array.
9259     // Thus we don't call appendQualifier() here.
9260     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9261 
9262   appendQualifier(Enc, QT);
9263 
9264   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9265     return appendBuiltinType(Enc, BT);
9266 
9267   if (const PointerType *PT = QT->getAs<PointerType>())
9268     return appendPointerType(Enc, PT, CGM, TSC);
9269 
9270   if (const EnumType *ET = QT->getAs<EnumType>())
9271     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9272 
9273   if (const RecordType *RT = QT->getAsStructureType())
9274     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9275 
9276   if (const RecordType *RT = QT->getAsUnionType())
9277     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9278 
9279   if (const FunctionType *FT = QT->getAs<FunctionType>())
9280     return appendFunctionType(Enc, FT, CGM, TSC);
9281 
9282   return false;
9283 }
9284 
9285 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9286                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9287   if (!D)
9288     return false;
9289 
9290   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9291     if (FD->getLanguageLinkage() != CLanguageLinkage)
9292       return false;
9293     return appendType(Enc, FD->getType(), CGM, TSC);
9294   }
9295 
9296   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9297     if (VD->getLanguageLinkage() != CLanguageLinkage)
9298       return false;
9299     QualType QT = VD->getType().getCanonicalType();
9300     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9301       // Global ArrayTypes are given a size of '*' if the size is unknown.
9302       // The Qualifiers should be attached to the type rather than the array.
9303       // Thus we don't call appendQualifier() here.
9304       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9305     }
9306     return appendType(Enc, QT, CGM, TSC);
9307   }
9308   return false;
9309 }
9310 
9311 //===----------------------------------------------------------------------===//
9312 // RISCV ABI Implementation
9313 //===----------------------------------------------------------------------===//
9314 
9315 namespace {
9316 class RISCVABIInfo : public DefaultABIInfo {
9317 private:
9318   // Size of the integer ('x') registers in bits.
9319   unsigned XLen;
9320   // Size of the floating point ('f') registers in bits. Note that the target
9321   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
9322   // with soft float ABI has FLen==0).
9323   unsigned FLen;
9324   static const int NumArgGPRs = 8;
9325   static const int NumArgFPRs = 8;
9326   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9327                                       llvm::Type *&Field1Ty,
9328                                       CharUnits &Field1Off,
9329                                       llvm::Type *&Field2Ty,
9330                                       CharUnits &Field2Off) const;
9331 
9332 public:
9333   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
9334       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
9335 
9336   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9337   // non-virtual, but computeInfo is virtual, so we overload it.
9338   void computeInfo(CGFunctionInfo &FI) const override;
9339 
9340   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
9341                                   int &ArgFPRsLeft) const;
9342   ABIArgInfo classifyReturnType(QualType RetTy) const;
9343 
9344   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9345                     QualType Ty) const override;
9346 
9347   ABIArgInfo extendType(QualType Ty) const;
9348 
9349   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9350                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
9351                                 CharUnits &Field2Off, int &NeededArgGPRs,
9352                                 int &NeededArgFPRs) const;
9353   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
9354                                                CharUnits Field1Off,
9355                                                llvm::Type *Field2Ty,
9356                                                CharUnits Field2Off) const;
9357 };
9358 } // end anonymous namespace
9359 
9360 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9361   QualType RetTy = FI.getReturnType();
9362   if (!getCXXABI().classifyReturnType(FI))
9363     FI.getReturnInfo() = classifyReturnType(RetTy);
9364 
9365   // IsRetIndirect is true if classifyArgumentType indicated the value should
9366   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9367   // is passed direct in LLVM IR, relying on the backend lowering code to
9368   // rewrite the argument list and pass indirectly on RV32.
9369   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9370                        getContext().getTypeSize(RetTy) > (2 * XLen);
9371 
9372   // We must track the number of GPRs used in order to conform to the RISC-V
9373   // ABI, as integer scalars passed in registers should have signext/zeroext
9374   // when promoted, but are anyext if passed on the stack. As GPR usage is
9375   // different for variadic arguments, we must also track whether we are
9376   // examining a vararg or not.
9377   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9378   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
9379   int NumFixedArgs = FI.getNumRequiredArgs();
9380 
9381   int ArgNum = 0;
9382   for (auto &ArgInfo : FI.arguments()) {
9383     bool IsFixed = ArgNum < NumFixedArgs;
9384     ArgInfo.info =
9385         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
9386     ArgNum++;
9387   }
9388 }
9389 
9390 // Returns true if the struct is a potential candidate for the floating point
9391 // calling convention. If this function returns true, the caller is
9392 // responsible for checking that if there is only a single field then that
9393 // field is a float.
9394 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9395                                                   llvm::Type *&Field1Ty,
9396                                                   CharUnits &Field1Off,
9397                                                   llvm::Type *&Field2Ty,
9398                                                   CharUnits &Field2Off) const {
9399   bool IsInt = Ty->isIntegralOrEnumerationType();
9400   bool IsFloat = Ty->isRealFloatingType();
9401 
9402   if (IsInt || IsFloat) {
9403     uint64_t Size = getContext().getTypeSize(Ty);
9404     if (IsInt && Size > XLen)
9405       return false;
9406     // Can't be eligible if larger than the FP registers. Half precision isn't
9407     // currently supported on RISC-V and the ABI hasn't been confirmed, so
9408     // default to the integer ABI in that case.
9409     if (IsFloat && (Size > FLen || Size < 32))
9410       return false;
9411     // Can't be eligible if an integer type was already found (int+int pairs
9412     // are not eligible).
9413     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
9414       return false;
9415     if (!Field1Ty) {
9416       Field1Ty = CGT.ConvertType(Ty);
9417       Field1Off = CurOff;
9418       return true;
9419     }
9420     if (!Field2Ty) {
9421       Field2Ty = CGT.ConvertType(Ty);
9422       Field2Off = CurOff;
9423       return true;
9424     }
9425     return false;
9426   }
9427 
9428   if (auto CTy = Ty->getAs<ComplexType>()) {
9429     if (Field1Ty)
9430       return false;
9431     QualType EltTy = CTy->getElementType();
9432     if (getContext().getTypeSize(EltTy) > FLen)
9433       return false;
9434     Field1Ty = CGT.ConvertType(EltTy);
9435     Field1Off = CurOff;
9436     assert(CurOff.isZero() && "Unexpected offset for first field");
9437     Field2Ty = Field1Ty;
9438     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
9439     return true;
9440   }
9441 
9442   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
9443     uint64_t ArraySize = ATy->getSize().getZExtValue();
9444     QualType EltTy = ATy->getElementType();
9445     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
9446     for (uint64_t i = 0; i < ArraySize; ++i) {
9447       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
9448                                                 Field1Off, Field2Ty, Field2Off);
9449       if (!Ret)
9450         return false;
9451       CurOff += EltSize;
9452     }
9453     return true;
9454   }
9455 
9456   if (const auto *RTy = Ty->getAs<RecordType>()) {
9457     // Structures with either a non-trivial destructor or a non-trivial
9458     // copy constructor are not eligible for the FP calling convention.
9459     if (getRecordArgABI(Ty, CGT.getCXXABI()))
9460       return false;
9461     if (isEmptyRecord(getContext(), Ty, true))
9462       return true;
9463     const RecordDecl *RD = RTy->getDecl();
9464     // Unions aren't eligible unless they're empty (which is caught above).
9465     if (RD->isUnion())
9466       return false;
9467     int ZeroWidthBitFieldCount = 0;
9468     for (const FieldDecl *FD : RD->fields()) {
9469       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
9470       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
9471       QualType QTy = FD->getType();
9472       if (FD->isBitField()) {
9473         unsigned BitWidth = FD->getBitWidthValue(getContext());
9474         // Allow a bitfield with a type greater than XLen as long as the
9475         // bitwidth is XLen or less.
9476         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
9477           QTy = getContext().getIntTypeForBitwidth(XLen, false);
9478         if (BitWidth == 0) {
9479           ZeroWidthBitFieldCount++;
9480           continue;
9481         }
9482       }
9483 
9484       bool Ret = detectFPCCEligibleStructHelper(
9485           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
9486           Field1Ty, Field1Off, Field2Ty, Field2Off);
9487       if (!Ret)
9488         return false;
9489 
9490       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
9491       // or int+fp structs, but are ignored for a struct with an fp field and
9492       // any number of zero-width bitfields.
9493       if (Field2Ty && ZeroWidthBitFieldCount > 0)
9494         return false;
9495     }
9496     return Field1Ty != nullptr;
9497   }
9498 
9499   return false;
9500 }
9501 
9502 // Determine if a struct is eligible for passing according to the floating
9503 // point calling convention (i.e., when flattened it contains a single fp
9504 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
9505 // NeededArgGPRs are incremented appropriately.
9506 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9507                                             CharUnits &Field1Off,
9508                                             llvm::Type *&Field2Ty,
9509                                             CharUnits &Field2Off,
9510                                             int &NeededArgGPRs,
9511                                             int &NeededArgFPRs) const {
9512   Field1Ty = nullptr;
9513   Field2Ty = nullptr;
9514   NeededArgGPRs = 0;
9515   NeededArgFPRs = 0;
9516   bool IsCandidate = detectFPCCEligibleStructHelper(
9517       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
9518   // Not really a candidate if we have a single int but no float.
9519   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
9520     return false;
9521   if (!IsCandidate)
9522     return false;
9523   if (Field1Ty && Field1Ty->isFloatingPointTy())
9524     NeededArgFPRs++;
9525   else if (Field1Ty)
9526     NeededArgGPRs++;
9527   if (Field2Ty && Field2Ty->isFloatingPointTy())
9528     NeededArgFPRs++;
9529   else if (Field2Ty)
9530     NeededArgGPRs++;
9531   return IsCandidate;
9532 }
9533 
9534 // Call getCoerceAndExpand for the two-element flattened struct described by
9535 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
9536 // appropriate coerceToType and unpaddedCoerceToType.
9537 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
9538     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
9539     CharUnits Field2Off) const {
9540   SmallVector<llvm::Type *, 3> CoerceElts;
9541   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
9542   if (!Field1Off.isZero())
9543     CoerceElts.push_back(llvm::ArrayType::get(
9544         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
9545 
9546   CoerceElts.push_back(Field1Ty);
9547   UnpaddedCoerceElts.push_back(Field1Ty);
9548 
9549   if (!Field2Ty) {
9550     return ABIArgInfo::getCoerceAndExpand(
9551         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
9552         UnpaddedCoerceElts[0]);
9553   }
9554 
9555   CharUnits Field2Align =
9556       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
9557   CharUnits Field1Size =
9558       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
9559   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
9560 
9561   CharUnits Padding = CharUnits::Zero();
9562   if (Field2Off > Field2OffNoPadNoPack)
9563     Padding = Field2Off - Field2OffNoPadNoPack;
9564   else if (Field2Off != Field2Align && Field2Off > Field1Size)
9565     Padding = Field2Off - Field1Size;
9566 
9567   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
9568 
9569   if (!Padding.isZero())
9570     CoerceElts.push_back(llvm::ArrayType::get(
9571         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
9572 
9573   CoerceElts.push_back(Field2Ty);
9574   UnpaddedCoerceElts.push_back(Field2Ty);
9575 
9576   auto CoerceToType =
9577       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
9578   auto UnpaddedCoerceToType =
9579       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
9580 
9581   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
9582 }
9583 
9584 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9585                                               int &ArgGPRsLeft,
9586                                               int &ArgFPRsLeft) const {
9587   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9588   Ty = useFirstFieldIfTransparentUnion(Ty);
9589 
9590   // Structures with either a non-trivial destructor or a non-trivial
9591   // copy constructor are always passed indirectly.
9592   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9593     if (ArgGPRsLeft)
9594       ArgGPRsLeft -= 1;
9595     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9596                                            CGCXXABI::RAA_DirectInMemory);
9597   }
9598 
9599   // Ignore empty structs/unions.
9600   if (isEmptyRecord(getContext(), Ty, true))
9601     return ABIArgInfo::getIgnore();
9602 
9603   uint64_t Size = getContext().getTypeSize(Ty);
9604 
9605   // Pass floating point values via FPRs if possible.
9606   if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
9607     ArgFPRsLeft--;
9608     return ABIArgInfo::getDirect();
9609   }
9610 
9611   // Complex types for the hard float ABI must be passed direct rather than
9612   // using CoerceAndExpand.
9613   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
9614     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
9615     if (getContext().getTypeSize(EltTy) <= FLen) {
9616       ArgFPRsLeft -= 2;
9617       return ABIArgInfo::getDirect();
9618     }
9619   }
9620 
9621   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
9622     llvm::Type *Field1Ty = nullptr;
9623     llvm::Type *Field2Ty = nullptr;
9624     CharUnits Field1Off = CharUnits::Zero();
9625     CharUnits Field2Off = CharUnits::Zero();
9626     int NeededArgGPRs;
9627     int NeededArgFPRs;
9628     bool IsCandidate =
9629         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
9630                                  NeededArgGPRs, NeededArgFPRs);
9631     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
9632         NeededArgFPRs <= ArgFPRsLeft) {
9633       ArgGPRsLeft -= NeededArgGPRs;
9634       ArgFPRsLeft -= NeededArgFPRs;
9635       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
9636                                                Field2Off);
9637     }
9638   }
9639 
9640   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9641   bool MustUseStack = false;
9642   // Determine the number of GPRs needed to pass the current argument
9643   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9644   // register pairs, so may consume 3 registers.
9645   int NeededArgGPRs = 1;
9646   if (!IsFixed && NeededAlign == 2 * XLen)
9647     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9648   else if (Size > XLen && Size <= 2 * XLen)
9649     NeededArgGPRs = 2;
9650 
9651   if (NeededArgGPRs > ArgGPRsLeft) {
9652     MustUseStack = true;
9653     NeededArgGPRs = ArgGPRsLeft;
9654   }
9655 
9656   ArgGPRsLeft -= NeededArgGPRs;
9657 
9658   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9659     // Treat an enum type as its underlying type.
9660     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9661       Ty = EnumTy->getDecl()->getIntegerType();
9662 
9663     // All integral types are promoted to XLen width, unless passed on the
9664     // stack.
9665     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9666       return extendType(Ty);
9667     }
9668 
9669     return ABIArgInfo::getDirect();
9670   }
9671 
9672   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9673   // so coerce to integers.
9674   if (Size <= 2 * XLen) {
9675     unsigned Alignment = getContext().getTypeAlign(Ty);
9676 
9677     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9678     // required, and a 2-element XLen array if only XLen alignment is required.
9679     if (Size <= XLen) {
9680       return ABIArgInfo::getDirect(
9681           llvm::IntegerType::get(getVMContext(), XLen));
9682     } else if (Alignment == 2 * XLen) {
9683       return ABIArgInfo::getDirect(
9684           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9685     } else {
9686       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9687           llvm::IntegerType::get(getVMContext(), XLen), 2));
9688     }
9689   }
9690   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9691 }
9692 
9693 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9694   if (RetTy->isVoidType())
9695     return ABIArgInfo::getIgnore();
9696 
9697   int ArgGPRsLeft = 2;
9698   int ArgFPRsLeft = FLen ? 2 : 0;
9699 
9700   // The rules for return and argument types are the same, so defer to
9701   // classifyArgumentType.
9702   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
9703                               ArgFPRsLeft);
9704 }
9705 
9706 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9707                                 QualType Ty) const {
9708   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9709 
9710   // Empty records are ignored for parameter passing purposes.
9711   if (isEmptyRecord(getContext(), Ty, true)) {
9712     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9713     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9714     return Addr;
9715   }
9716 
9717   std::pair<CharUnits, CharUnits> SizeAndAlign =
9718       getContext().getTypeInfoInChars(Ty);
9719 
9720   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9721   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9722 
9723   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9724                           SlotSize, /*AllowHigherAlign=*/true);
9725 }
9726 
9727 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9728   int TySize = getContext().getTypeSize(Ty);
9729   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9730   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9731     return ABIArgInfo::getSignExtend(Ty);
9732   return ABIArgInfo::getExtend(Ty);
9733 }
9734 
9735 namespace {
9736 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9737 public:
9738   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
9739                          unsigned FLen)
9740       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
9741 
9742   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9743                            CodeGen::CodeGenModule &CGM) const override {
9744     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9745     if (!FD) return;
9746 
9747     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9748     if (!Attr)
9749       return;
9750 
9751     const char *Kind;
9752     switch (Attr->getInterrupt()) {
9753     case RISCVInterruptAttr::user: Kind = "user"; break;
9754     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9755     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9756     }
9757 
9758     auto *Fn = cast<llvm::Function>(GV);
9759 
9760     Fn->addFnAttr("interrupt", Kind);
9761   }
9762 };
9763 } // namespace
9764 
9765 //===----------------------------------------------------------------------===//
9766 // Driver code
9767 //===----------------------------------------------------------------------===//
9768 
9769 bool CodeGenModule::supportsCOMDAT() const {
9770   return getTriple().supportsCOMDAT();
9771 }
9772 
9773 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9774   if (TheTargetCodeGenInfo)
9775     return *TheTargetCodeGenInfo;
9776 
9777   // Helper to set the unique_ptr while still keeping the return value.
9778   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9779     this->TheTargetCodeGenInfo.reset(P);
9780     return *P;
9781   };
9782 
9783   const llvm::Triple &Triple = getTarget().getTriple();
9784   switch (Triple.getArch()) {
9785   default:
9786     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9787 
9788   case llvm::Triple::le32:
9789     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9790   case llvm::Triple::mips:
9791   case llvm::Triple::mipsel:
9792     if (Triple.getOS() == llvm::Triple::NaCl)
9793       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9794     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9795 
9796   case llvm::Triple::mips64:
9797   case llvm::Triple::mips64el:
9798     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9799 
9800   case llvm::Triple::avr:
9801     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9802 
9803   case llvm::Triple::aarch64:
9804   case llvm::Triple::aarch64_32:
9805   case llvm::Triple::aarch64_be: {
9806     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9807     if (getTarget().getABI() == "darwinpcs")
9808       Kind = AArch64ABIInfo::DarwinPCS;
9809     else if (Triple.isOSWindows())
9810       return SetCGInfo(
9811           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9812 
9813     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9814   }
9815 
9816   case llvm::Triple::wasm32:
9817   case llvm::Triple::wasm64:
9818     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9819 
9820   case llvm::Triple::arm:
9821   case llvm::Triple::armeb:
9822   case llvm::Triple::thumb:
9823   case llvm::Triple::thumbeb: {
9824     if (Triple.getOS() == llvm::Triple::Win32) {
9825       return SetCGInfo(
9826           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9827     }
9828 
9829     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9830     StringRef ABIStr = getTarget().getABI();
9831     if (ABIStr == "apcs-gnu")
9832       Kind = ARMABIInfo::APCS;
9833     else if (ABIStr == "aapcs16")
9834       Kind = ARMABIInfo::AAPCS16_VFP;
9835     else if (CodeGenOpts.FloatABI == "hard" ||
9836              (CodeGenOpts.FloatABI != "soft" &&
9837               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9838                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9839                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9840       Kind = ARMABIInfo::AAPCS_VFP;
9841 
9842     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9843   }
9844 
9845   case llvm::Triple::ppc:
9846     return SetCGInfo(
9847         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" ||
9848                                    getTarget().hasFeature("spe")));
9849   case llvm::Triple::ppc64:
9850     if (Triple.isOSBinFormatELF()) {
9851       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9852       if (getTarget().getABI() == "elfv2")
9853         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9854       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9855       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9856 
9857       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9858                                                         IsSoftFloat));
9859     } else
9860       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9861   case llvm::Triple::ppc64le: {
9862     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9863     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9864     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9865       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9866     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9867     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9868 
9869     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9870                                                       IsSoftFloat));
9871   }
9872 
9873   case llvm::Triple::nvptx:
9874   case llvm::Triple::nvptx64:
9875     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9876 
9877   case llvm::Triple::msp430:
9878     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9879 
9880   case llvm::Triple::riscv32:
9881   case llvm::Triple::riscv64: {
9882     StringRef ABIStr = getTarget().getABI();
9883     unsigned XLen = getTarget().getPointerWidth(0);
9884     unsigned ABIFLen = 0;
9885     if (ABIStr.endswith("f"))
9886       ABIFLen = 32;
9887     else if (ABIStr.endswith("d"))
9888       ABIFLen = 64;
9889     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
9890   }
9891 
9892   case llvm::Triple::systemz: {
9893     bool HasVector = getTarget().getABI() == "vector";
9894     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9895   }
9896 
9897   case llvm::Triple::tce:
9898   case llvm::Triple::tcele:
9899     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9900 
9901   case llvm::Triple::x86: {
9902     bool IsDarwinVectorABI = Triple.isOSDarwin();
9903     bool RetSmallStructInRegABI =
9904         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9905     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9906 
9907     if (Triple.getOS() == llvm::Triple::Win32) {
9908       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9909           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9910           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9911     } else {
9912       return SetCGInfo(new X86_32TargetCodeGenInfo(
9913           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9914           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9915           CodeGenOpts.FloatABI == "soft"));
9916     }
9917   }
9918 
9919   case llvm::Triple::x86_64: {
9920     StringRef ABI = getTarget().getABI();
9921     X86AVXABILevel AVXLevel =
9922         (ABI == "avx512"
9923              ? X86AVXABILevel::AVX512
9924              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9925 
9926     switch (Triple.getOS()) {
9927     case llvm::Triple::Win32:
9928       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9929     default:
9930       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9931     }
9932   }
9933   case llvm::Triple::hexagon:
9934     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9935   case llvm::Triple::lanai:
9936     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9937   case llvm::Triple::r600:
9938     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9939   case llvm::Triple::amdgcn:
9940     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9941   case llvm::Triple::sparc:
9942     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9943   case llvm::Triple::sparcv9:
9944     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9945   case llvm::Triple::xcore:
9946     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9947   case llvm::Triple::arc:
9948     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9949   case llvm::Triple::spir:
9950   case llvm::Triple::spir64:
9951     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9952   }
9953 }
9954 
9955 /// Create an OpenCL kernel for an enqueued block.
9956 ///
9957 /// The kernel has the same function type as the block invoke function. Its
9958 /// name is the name of the block invoke function postfixed with "_kernel".
9959 /// It simply calls the block invoke function then returns.
9960 llvm::Function *
9961 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9962                                              llvm::Function *Invoke,
9963                                              llvm::Value *BlockLiteral) const {
9964   auto *InvokeFT = Invoke->getFunctionType();
9965   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9966   for (auto &P : InvokeFT->params())
9967     ArgTys.push_back(P);
9968   auto &C = CGF.getLLVMContext();
9969   std::string Name = Invoke->getName().str() + "_kernel";
9970   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9971   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9972                                    &CGF.CGM.getModule());
9973   auto IP = CGF.Builder.saveIP();
9974   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9975   auto &Builder = CGF.Builder;
9976   Builder.SetInsertPoint(BB);
9977   llvm::SmallVector<llvm::Value *, 2> Args;
9978   for (auto &A : F->args())
9979     Args.push_back(&A);
9980   Builder.CreateCall(Invoke, Args);
9981   Builder.CreateRetVoid();
9982   Builder.restoreIP(IP);
9983   return F;
9984 }
9985 
9986 /// Create an OpenCL kernel for an enqueued block.
9987 ///
9988 /// The type of the first argument (the block literal) is the struct type
9989 /// of the block literal instead of a pointer type. The first argument
9990 /// (block literal) is passed directly by value to the kernel. The kernel
9991 /// allocates the same type of struct on stack and stores the block literal
9992 /// to it and passes its pointer to the block invoke function. The kernel
9993 /// has "enqueued-block" function attribute and kernel argument metadata.
9994 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9995     CodeGenFunction &CGF, llvm::Function *Invoke,
9996     llvm::Value *BlockLiteral) const {
9997   auto &Builder = CGF.Builder;
9998   auto &C = CGF.getLLVMContext();
9999 
10000   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
10001   auto *InvokeFT = Invoke->getFunctionType();
10002   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10003   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
10004   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
10005   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
10006   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
10007   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
10008   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
10009 
10010   ArgTys.push_back(BlockTy);
10011   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10012   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
10013   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10014   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10015   AccessQuals.push_back(llvm::MDString::get(C, "none"));
10016   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
10017   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
10018     ArgTys.push_back(InvokeFT->getParamType(I));
10019     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
10020     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
10021     AccessQuals.push_back(llvm::MDString::get(C, "none"));
10022     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
10023     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10024     ArgNames.push_back(
10025         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
10026   }
10027   std::string Name = Invoke->getName().str() + "_kernel";
10028   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10029   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10030                                    &CGF.CGM.getModule());
10031   F->addFnAttr("enqueued-block");
10032   auto IP = CGF.Builder.saveIP();
10033   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10034   Builder.SetInsertPoint(BB);
10035   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
10036   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
10037   BlockPtr->setAlignment(llvm::MaybeAlign(BlockAlign));
10038   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
10039   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
10040   llvm::SmallVector<llvm::Value *, 2> Args;
10041   Args.push_back(Cast);
10042   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
10043     Args.push_back(I);
10044   Builder.CreateCall(Invoke, Args);
10045   Builder.CreateRetVoid();
10046   Builder.restoreIP(IP);
10047 
10048   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
10049   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
10050   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
10051   F->setMetadata("kernel_arg_base_type",
10052                  llvm::MDNode::get(C, ArgBaseTypeNames));
10053   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
10054   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
10055     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
10056 
10057   return F;
10058 }
10059