1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/CodeGen/SwiftCallingConv.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> // std::sort 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 // Helper for coercing an aggregate argument or return value into an integer 35 // array of the same size (including padding) and alignment. This alternate 36 // coercion happens only for the RenderScript ABI and can be removed after 37 // runtimes that rely on it are no longer supported. 38 // 39 // RenderScript assumes that the size of the argument / return value in the IR 40 // is the same as the size of the corresponding qualified type. This helper 41 // coerces the aggregate type into an array of the same size (including 42 // padding). This coercion is used in lieu of expansion of struct members or 43 // other canonical coercions that return a coerced-type of larger size. 44 // 45 // Ty - The argument / return value type 46 // Context - The associated ASTContext 47 // LLVMContext - The associated LLVMContext 48 static ABIArgInfo coerceToIntArray(QualType Ty, 49 ASTContext &Context, 50 llvm::LLVMContext &LLVMContext) { 51 // Alignment and Size are measured in bits. 52 const uint64_t Size = Context.getTypeSize(Ty); 53 const uint64_t Alignment = Context.getTypeAlign(Ty); 54 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 55 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 56 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 57 } 58 59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 60 llvm::Value *Array, 61 llvm::Value *Value, 62 unsigned FirstIndex, 63 unsigned LastIndex) { 64 // Alternatively, we could emit this as a loop in the source. 65 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 66 llvm::Value *Cell = 67 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 68 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 69 } 70 } 71 72 static bool isAggregateTypeForABI(QualType T) { 73 return !CodeGenFunction::hasScalarEvaluationKind(T) || 74 T->isMemberFunctionPointerType(); 75 } 76 77 ABIArgInfo 78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 79 llvm::Type *Padding) const { 80 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 81 ByRef, Realign, Padding); 82 } 83 84 ABIArgInfo 85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 86 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 87 /*ByRef*/ false, Realign); 88 } 89 90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 91 QualType Ty) const { 92 return Address::invalid(); 93 } 94 95 ABIInfo::~ABIInfo() {} 96 97 /// Does the given lowering require more than the given number of 98 /// registers when expanded? 99 /// 100 /// This is intended to be the basis of a reasonable basic implementation 101 /// of should{Pass,Return}IndirectlyForSwift. 102 /// 103 /// For most targets, a limit of four total registers is reasonable; this 104 /// limits the amount of code required in order to move around the value 105 /// in case it wasn't produced immediately prior to the call by the caller 106 /// (or wasn't produced in exactly the right registers) or isn't used 107 /// immediately within the callee. But some targets may need to further 108 /// limit the register count due to an inability to support that many 109 /// return registers. 110 static bool occupiesMoreThan(CodeGenTypes &cgt, 111 ArrayRef<llvm::Type*> scalarTypes, 112 unsigned maxAllRegisters) { 113 unsigned intCount = 0, fpCount = 0; 114 for (llvm::Type *type : scalarTypes) { 115 if (type->isPointerTy()) { 116 intCount++; 117 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 118 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 119 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 120 } else { 121 assert(type->isVectorTy() || type->isFloatingPointTy()); 122 fpCount++; 123 } 124 } 125 126 return (intCount + fpCount > maxAllRegisters); 127 } 128 129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 130 llvm::Type *eltTy, 131 unsigned numElts) const { 132 // The default implementation of this assumes that the target guarantees 133 // 128-bit SIMD support but nothing more. 134 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 135 } 136 137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 138 CGCXXABI &CXXABI) { 139 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 140 if (!RD) 141 return CGCXXABI::RAA_Default; 142 return CXXABI.getRecordArgABI(RD); 143 } 144 145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 146 CGCXXABI &CXXABI) { 147 const RecordType *RT = T->getAs<RecordType>(); 148 if (!RT) 149 return CGCXXABI::RAA_Default; 150 return getRecordArgABI(RT, CXXABI); 151 } 152 153 /// Pass transparent unions as if they were the type of the first element. Sema 154 /// should ensure that all elements of the union have the same "machine type". 155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 156 if (const RecordType *UT = Ty->getAsUnionType()) { 157 const RecordDecl *UD = UT->getDecl(); 158 if (UD->hasAttr<TransparentUnionAttr>()) { 159 assert(!UD->field_empty() && "sema created an empty transparent union"); 160 return UD->field_begin()->getType(); 161 } 162 } 163 return Ty; 164 } 165 166 CGCXXABI &ABIInfo::getCXXABI() const { 167 return CGT.getCXXABI(); 168 } 169 170 ASTContext &ABIInfo::getContext() const { 171 return CGT.getContext(); 172 } 173 174 llvm::LLVMContext &ABIInfo::getVMContext() const { 175 return CGT.getLLVMContext(); 176 } 177 178 const llvm::DataLayout &ABIInfo::getDataLayout() const { 179 return CGT.getDataLayout(); 180 } 181 182 const TargetInfo &ABIInfo::getTarget() const { 183 return CGT.getTarget(); 184 } 185 186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); } 187 188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 189 return false; 190 } 191 192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 193 uint64_t Members) const { 194 return false; 195 } 196 197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 198 return false; 199 } 200 201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 202 raw_ostream &OS = llvm::errs(); 203 OS << "(ABIArgInfo Kind="; 204 switch (TheKind) { 205 case Direct: 206 OS << "Direct Type="; 207 if (llvm::Type *Ty = getCoerceToType()) 208 Ty->print(OS); 209 else 210 OS << "null"; 211 break; 212 case Extend: 213 OS << "Extend"; 214 break; 215 case Ignore: 216 OS << "Ignore"; 217 break; 218 case InAlloca: 219 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 220 break; 221 case Indirect: 222 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 223 << " ByVal=" << getIndirectByVal() 224 << " Realign=" << getIndirectRealign(); 225 break; 226 case Expand: 227 OS << "Expand"; 228 break; 229 case CoerceAndExpand: 230 OS << "CoerceAndExpand Type="; 231 getCoerceAndExpandType()->print(OS); 232 break; 233 } 234 OS << ")\n"; 235 } 236 237 // Dynamically round a pointer up to a multiple of the given alignment. 238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 239 llvm::Value *Ptr, 240 CharUnits Align) { 241 llvm::Value *PtrAsInt = Ptr; 242 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 243 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 244 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 245 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 246 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 247 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 248 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 249 Ptr->getType(), 250 Ptr->getName() + ".aligned"); 251 return PtrAsInt; 252 } 253 254 /// Emit va_arg for a platform using the common void* representation, 255 /// where arguments are simply emitted in an array of slots on the stack. 256 /// 257 /// This version implements the core direct-value passing rules. 258 /// 259 /// \param SlotSize - The size and alignment of a stack slot. 260 /// Each argument will be allocated to a multiple of this number of 261 /// slots, and all the slots will be aligned to this value. 262 /// \param AllowHigherAlign - The slot alignment is not a cap; 263 /// an argument type with an alignment greater than the slot size 264 /// will be emitted on a higher-alignment address, potentially 265 /// leaving one or more empty slots behind as padding. If this 266 /// is false, the returned address might be less-aligned than 267 /// DirectAlign. 268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 269 Address VAListAddr, 270 llvm::Type *DirectTy, 271 CharUnits DirectSize, 272 CharUnits DirectAlign, 273 CharUnits SlotSize, 274 bool AllowHigherAlign) { 275 // Cast the element type to i8* if necessary. Some platforms define 276 // va_list as a struct containing an i8* instead of just an i8*. 277 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 278 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 279 280 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 281 282 // If the CC aligns values higher than the slot size, do so if needed. 283 Address Addr = Address::invalid(); 284 if (AllowHigherAlign && DirectAlign > SlotSize) { 285 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 286 DirectAlign); 287 } else { 288 Addr = Address(Ptr, SlotSize); 289 } 290 291 // Advance the pointer past the argument, then store that back. 292 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 293 llvm::Value *NextPtr = 294 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 295 "argp.next"); 296 CGF.Builder.CreateStore(NextPtr, VAListAddr); 297 298 // If the argument is smaller than a slot, and this is a big-endian 299 // target, the argument will be right-adjusted in its slot. 300 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 301 !DirectTy->isStructTy()) { 302 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 303 } 304 305 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 306 return Addr; 307 } 308 309 /// Emit va_arg for a platform using the common void* representation, 310 /// where arguments are simply emitted in an array of slots on the stack. 311 /// 312 /// \param IsIndirect - Values of this type are passed indirectly. 313 /// \param ValueInfo - The size and alignment of this type, generally 314 /// computed with getContext().getTypeInfoInChars(ValueTy). 315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 316 /// Each argument will be allocated to a multiple of this number of 317 /// slots, and all the slots will be aligned to this value. 318 /// \param AllowHigherAlign - The slot alignment is not a cap; 319 /// an argument type with an alignment greater than the slot size 320 /// will be emitted on a higher-alignment address, potentially 321 /// leaving one or more empty slots behind as padding. 322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 323 QualType ValueTy, bool IsIndirect, 324 std::pair<CharUnits, CharUnits> ValueInfo, 325 CharUnits SlotSizeAndAlign, 326 bool AllowHigherAlign) { 327 // The size and alignment of the value that was passed directly. 328 CharUnits DirectSize, DirectAlign; 329 if (IsIndirect) { 330 DirectSize = CGF.getPointerSize(); 331 DirectAlign = CGF.getPointerAlign(); 332 } else { 333 DirectSize = ValueInfo.first; 334 DirectAlign = ValueInfo.second; 335 } 336 337 // Cast the address we've calculated to the right type. 338 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 339 if (IsIndirect) 340 DirectTy = DirectTy->getPointerTo(0); 341 342 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 343 DirectSize, DirectAlign, 344 SlotSizeAndAlign, 345 AllowHigherAlign); 346 347 if (IsIndirect) { 348 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 349 } 350 351 return Addr; 352 353 } 354 355 static Address emitMergePHI(CodeGenFunction &CGF, 356 Address Addr1, llvm::BasicBlock *Block1, 357 Address Addr2, llvm::BasicBlock *Block2, 358 const llvm::Twine &Name = "") { 359 assert(Addr1.getType() == Addr2.getType()); 360 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 361 PHI->addIncoming(Addr1.getPointer(), Block1); 362 PHI->addIncoming(Addr2.getPointer(), Block2); 363 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 364 return Address(PHI, Align); 365 } 366 367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 368 369 // If someone can figure out a general rule for this, that would be great. 370 // It's probably just doomed to be platform-dependent, though. 371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 372 // Verified for: 373 // x86-64 FreeBSD, Linux, Darwin 374 // x86-32 FreeBSD, Linux, Darwin 375 // PowerPC Linux, Darwin 376 // ARM Darwin (*not* EABI) 377 // AArch64 Linux 378 return 32; 379 } 380 381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 382 const FunctionNoProtoType *fnType) const { 383 // The following conventions are known to require this to be false: 384 // x86_stdcall 385 // MIPS 386 // For everything else, we just prefer false unless we opt out. 387 return false; 388 } 389 390 void 391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 392 llvm::SmallString<24> &Opt) const { 393 // This assumes the user is passing a library name like "rt" instead of a 394 // filename like "librt.a/so", and that they don't care whether it's static or 395 // dynamic. 396 Opt = "-l"; 397 Opt += Lib; 398 } 399 400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 401 return llvm::CallingConv::C; 402 } 403 404 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 405 llvm::PointerType *T, QualType QT) const { 406 return llvm::ConstantPointerNull::get(T); 407 } 408 409 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 410 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, QualType SrcTy, 411 QualType DestTy) const { 412 // Since target may map different address spaces in AST to the same address 413 // space, an address space conversion may end up as a bitcast. 414 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, 415 CGF.ConvertType(DestTy)); 416 } 417 418 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 419 420 /// isEmptyField - Return true iff a the field is "empty", that is it 421 /// is an unnamed bit-field or an (array of) empty record(s). 422 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 423 bool AllowArrays) { 424 if (FD->isUnnamedBitfield()) 425 return true; 426 427 QualType FT = FD->getType(); 428 429 // Constant arrays of empty records count as empty, strip them off. 430 // Constant arrays of zero length always count as empty. 431 if (AllowArrays) 432 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 433 if (AT->getSize() == 0) 434 return true; 435 FT = AT->getElementType(); 436 } 437 438 const RecordType *RT = FT->getAs<RecordType>(); 439 if (!RT) 440 return false; 441 442 // C++ record fields are never empty, at least in the Itanium ABI. 443 // 444 // FIXME: We should use a predicate for whether this behavior is true in the 445 // current ABI. 446 if (isa<CXXRecordDecl>(RT->getDecl())) 447 return false; 448 449 return isEmptyRecord(Context, FT, AllowArrays); 450 } 451 452 /// isEmptyRecord - Return true iff a structure contains only empty 453 /// fields. Note that a structure with a flexible array member is not 454 /// considered empty. 455 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 456 const RecordType *RT = T->getAs<RecordType>(); 457 if (!RT) 458 return false; 459 const RecordDecl *RD = RT->getDecl(); 460 if (RD->hasFlexibleArrayMember()) 461 return false; 462 463 // If this is a C++ record, check the bases first. 464 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 465 for (const auto &I : CXXRD->bases()) 466 if (!isEmptyRecord(Context, I.getType(), true)) 467 return false; 468 469 for (const auto *I : RD->fields()) 470 if (!isEmptyField(Context, I, AllowArrays)) 471 return false; 472 return true; 473 } 474 475 /// isSingleElementStruct - Determine if a structure is a "single 476 /// element struct", i.e. it has exactly one non-empty field or 477 /// exactly one field which is itself a single element 478 /// struct. Structures with flexible array members are never 479 /// considered single element structs. 480 /// 481 /// \return The field declaration for the single non-empty field, if 482 /// it exists. 483 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 484 const RecordType *RT = T->getAs<RecordType>(); 485 if (!RT) 486 return nullptr; 487 488 const RecordDecl *RD = RT->getDecl(); 489 if (RD->hasFlexibleArrayMember()) 490 return nullptr; 491 492 const Type *Found = nullptr; 493 494 // If this is a C++ record, check the bases first. 495 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 496 for (const auto &I : CXXRD->bases()) { 497 // Ignore empty records. 498 if (isEmptyRecord(Context, I.getType(), true)) 499 continue; 500 501 // If we already found an element then this isn't a single-element struct. 502 if (Found) 503 return nullptr; 504 505 // If this is non-empty and not a single element struct, the composite 506 // cannot be a single element struct. 507 Found = isSingleElementStruct(I.getType(), Context); 508 if (!Found) 509 return nullptr; 510 } 511 } 512 513 // Check for single element. 514 for (const auto *FD : RD->fields()) { 515 QualType FT = FD->getType(); 516 517 // Ignore empty fields. 518 if (isEmptyField(Context, FD, true)) 519 continue; 520 521 // If we already found an element then this isn't a single-element 522 // struct. 523 if (Found) 524 return nullptr; 525 526 // Treat single element arrays as the element. 527 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 528 if (AT->getSize().getZExtValue() != 1) 529 break; 530 FT = AT->getElementType(); 531 } 532 533 if (!isAggregateTypeForABI(FT)) { 534 Found = FT.getTypePtr(); 535 } else { 536 Found = isSingleElementStruct(FT, Context); 537 if (!Found) 538 return nullptr; 539 } 540 } 541 542 // We don't consider a struct a single-element struct if it has 543 // padding beyond the element type. 544 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 545 return nullptr; 546 547 return Found; 548 } 549 550 namespace { 551 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 552 const ABIArgInfo &AI) { 553 // This default implementation defers to the llvm backend's va_arg 554 // instruction. It can handle only passing arguments directly 555 // (typically only handled in the backend for primitive types), or 556 // aggregates passed indirectly by pointer (NOTE: if the "byval" 557 // flag has ABI impact in the callee, this implementation cannot 558 // work.) 559 560 // Only a few cases are covered here at the moment -- those needed 561 // by the default abi. 562 llvm::Value *Val; 563 564 if (AI.isIndirect()) { 565 assert(!AI.getPaddingType() && 566 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 567 assert( 568 !AI.getIndirectRealign() && 569 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 570 571 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 572 CharUnits TyAlignForABI = TyInfo.second; 573 574 llvm::Type *BaseTy = 575 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 576 llvm::Value *Addr = 577 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 578 return Address(Addr, TyAlignForABI); 579 } else { 580 assert((AI.isDirect() || AI.isExtend()) && 581 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 582 583 assert(!AI.getInReg() && 584 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 585 assert(!AI.getPaddingType() && 586 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 587 assert(!AI.getDirectOffset() && 588 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 589 assert(!AI.getCoerceToType() && 590 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 591 592 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 593 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 594 CGF.Builder.CreateStore(Val, Temp); 595 return Temp; 596 } 597 } 598 599 /// DefaultABIInfo - The default implementation for ABI specific 600 /// details. This implementation provides information which results in 601 /// self-consistent and sensible LLVM IR generation, but does not 602 /// conform to any particular ABI. 603 class DefaultABIInfo : public ABIInfo { 604 public: 605 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 606 607 ABIArgInfo classifyReturnType(QualType RetTy) const; 608 ABIArgInfo classifyArgumentType(QualType RetTy) const; 609 610 void computeInfo(CGFunctionInfo &FI) const override { 611 if (!getCXXABI().classifyReturnType(FI)) 612 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 613 for (auto &I : FI.arguments()) 614 I.info = classifyArgumentType(I.type); 615 } 616 617 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 618 QualType Ty) const override { 619 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 620 } 621 }; 622 623 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 624 public: 625 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 626 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 627 }; 628 629 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 630 Ty = useFirstFieldIfTransparentUnion(Ty); 631 632 if (isAggregateTypeForABI(Ty)) { 633 // Records with non-trivial destructors/copy-constructors should not be 634 // passed by value. 635 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 636 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 637 638 return getNaturalAlignIndirect(Ty); 639 } 640 641 // Treat an enum type as its underlying type. 642 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 643 Ty = EnumTy->getDecl()->getIntegerType(); 644 645 return (Ty->isPromotableIntegerType() ? 646 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 647 } 648 649 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 650 if (RetTy->isVoidType()) 651 return ABIArgInfo::getIgnore(); 652 653 if (isAggregateTypeForABI(RetTy)) 654 return getNaturalAlignIndirect(RetTy); 655 656 // Treat an enum type as its underlying type. 657 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 658 RetTy = EnumTy->getDecl()->getIntegerType(); 659 660 return (RetTy->isPromotableIntegerType() ? 661 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 662 } 663 664 //===----------------------------------------------------------------------===// 665 // WebAssembly ABI Implementation 666 // 667 // This is a very simple ABI that relies a lot on DefaultABIInfo. 668 //===----------------------------------------------------------------------===// 669 670 class WebAssemblyABIInfo final : public DefaultABIInfo { 671 public: 672 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 673 : DefaultABIInfo(CGT) {} 674 675 private: 676 ABIArgInfo classifyReturnType(QualType RetTy) const; 677 ABIArgInfo classifyArgumentType(QualType Ty) const; 678 679 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 680 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 681 // overload them. 682 void computeInfo(CGFunctionInfo &FI) const override { 683 if (!getCXXABI().classifyReturnType(FI)) 684 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 685 for (auto &Arg : FI.arguments()) 686 Arg.info = classifyArgumentType(Arg.type); 687 } 688 689 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 690 QualType Ty) const override; 691 }; 692 693 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 694 public: 695 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 696 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 697 }; 698 699 /// \brief Classify argument of given type \p Ty. 700 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 701 Ty = useFirstFieldIfTransparentUnion(Ty); 702 703 if (isAggregateTypeForABI(Ty)) { 704 // Records with non-trivial destructors/copy-constructors should not be 705 // passed by value. 706 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 707 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 708 // Ignore empty structs/unions. 709 if (isEmptyRecord(getContext(), Ty, true)) 710 return ABIArgInfo::getIgnore(); 711 // Lower single-element structs to just pass a regular value. TODO: We 712 // could do reasonable-size multiple-element structs too, using getExpand(), 713 // though watch out for things like bitfields. 714 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 715 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 716 } 717 718 // Otherwise just do the default thing. 719 return DefaultABIInfo::classifyArgumentType(Ty); 720 } 721 722 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 723 if (isAggregateTypeForABI(RetTy)) { 724 // Records with non-trivial destructors/copy-constructors should not be 725 // returned by value. 726 if (!getRecordArgABI(RetTy, getCXXABI())) { 727 // Ignore empty structs/unions. 728 if (isEmptyRecord(getContext(), RetTy, true)) 729 return ABIArgInfo::getIgnore(); 730 // Lower single-element structs to just return a regular value. TODO: We 731 // could do reasonable-size multiple-element structs too, using 732 // ABIArgInfo::getDirect(). 733 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 734 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 735 } 736 } 737 738 // Otherwise just do the default thing. 739 return DefaultABIInfo::classifyReturnType(RetTy); 740 } 741 742 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 743 QualType Ty) const { 744 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 745 getContext().getTypeInfoInChars(Ty), 746 CharUnits::fromQuantity(4), 747 /*AllowHigherAlign=*/ true); 748 } 749 750 //===----------------------------------------------------------------------===// 751 // le32/PNaCl bitcode ABI Implementation 752 // 753 // This is a simplified version of the x86_32 ABI. Arguments and return values 754 // are always passed on the stack. 755 //===----------------------------------------------------------------------===// 756 757 class PNaClABIInfo : public ABIInfo { 758 public: 759 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 760 761 ABIArgInfo classifyReturnType(QualType RetTy) const; 762 ABIArgInfo classifyArgumentType(QualType RetTy) const; 763 764 void computeInfo(CGFunctionInfo &FI) const override; 765 Address EmitVAArg(CodeGenFunction &CGF, 766 Address VAListAddr, QualType Ty) const override; 767 }; 768 769 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 770 public: 771 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 772 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 773 }; 774 775 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 776 if (!getCXXABI().classifyReturnType(FI)) 777 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 778 779 for (auto &I : FI.arguments()) 780 I.info = classifyArgumentType(I.type); 781 } 782 783 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 784 QualType Ty) const { 785 // The PNaCL ABI is a bit odd, in that varargs don't use normal 786 // function classification. Structs get passed directly for varargs 787 // functions, through a rewriting transform in 788 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 789 // this target to actually support a va_arg instructions with an 790 // aggregate type, unlike other targets. 791 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 792 } 793 794 /// \brief Classify argument of given type \p Ty. 795 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 796 if (isAggregateTypeForABI(Ty)) { 797 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 798 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 799 return getNaturalAlignIndirect(Ty); 800 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 801 // Treat an enum type as its underlying type. 802 Ty = EnumTy->getDecl()->getIntegerType(); 803 } else if (Ty->isFloatingType()) { 804 // Floating-point types don't go inreg. 805 return ABIArgInfo::getDirect(); 806 } 807 808 return (Ty->isPromotableIntegerType() ? 809 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 810 } 811 812 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 813 if (RetTy->isVoidType()) 814 return ABIArgInfo::getIgnore(); 815 816 // In the PNaCl ABI we always return records/structures on the stack. 817 if (isAggregateTypeForABI(RetTy)) 818 return getNaturalAlignIndirect(RetTy); 819 820 // Treat an enum type as its underlying type. 821 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 822 RetTy = EnumTy->getDecl()->getIntegerType(); 823 824 return (RetTy->isPromotableIntegerType() ? 825 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 826 } 827 828 /// IsX86_MMXType - Return true if this is an MMX type. 829 bool IsX86_MMXType(llvm::Type *IRType) { 830 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 831 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 832 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 833 IRType->getScalarSizeInBits() != 64; 834 } 835 836 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 837 StringRef Constraint, 838 llvm::Type* Ty) { 839 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 840 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 841 // Invalid MMX constraint 842 return nullptr; 843 } 844 845 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 846 } 847 848 // No operation needed 849 return Ty; 850 } 851 852 /// Returns true if this type can be passed in SSE registers with the 853 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 854 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 855 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 856 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 857 return true; 858 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 859 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 860 // registers specially. 861 unsigned VecSize = Context.getTypeSize(VT); 862 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 863 return true; 864 } 865 return false; 866 } 867 868 /// Returns true if this aggregate is small enough to be passed in SSE registers 869 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 870 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 871 return NumMembers <= 4; 872 } 873 874 //===----------------------------------------------------------------------===// 875 // X86-32 ABI Implementation 876 //===----------------------------------------------------------------------===// 877 878 /// \brief Similar to llvm::CCState, but for Clang. 879 struct CCState { 880 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 881 882 unsigned CC; 883 unsigned FreeRegs; 884 unsigned FreeSSERegs; 885 }; 886 887 /// X86_32ABIInfo - The X86-32 ABI information. 888 class X86_32ABIInfo : public SwiftABIInfo { 889 enum Class { 890 Integer, 891 Float 892 }; 893 894 static const unsigned MinABIStackAlignInBytes = 4; 895 896 bool IsDarwinVectorABI; 897 bool IsRetSmallStructInRegABI; 898 bool IsWin32StructABI; 899 bool IsSoftFloatABI; 900 bool IsMCUABI; 901 unsigned DefaultNumRegisterParameters; 902 903 static bool isRegisterSize(unsigned Size) { 904 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 905 } 906 907 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 908 // FIXME: Assumes vectorcall is in use. 909 return isX86VectorTypeForVectorCall(getContext(), Ty); 910 } 911 912 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 913 uint64_t NumMembers) const override { 914 // FIXME: Assumes vectorcall is in use. 915 return isX86VectorCallAggregateSmallEnough(NumMembers); 916 } 917 918 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 919 920 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 921 /// such that the argument will be passed in memory. 922 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 923 924 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 925 926 /// \brief Return the alignment to use for the given type on the stack. 927 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 928 929 Class classify(QualType Ty) const; 930 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 931 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 932 /// \brief Updates the number of available free registers, returns 933 /// true if any registers were allocated. 934 bool updateFreeRegs(QualType Ty, CCState &State) const; 935 936 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 937 bool &NeedsPadding) const; 938 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 939 940 bool canExpandIndirectArgument(QualType Ty) const; 941 942 /// \brief Rewrite the function info so that all memory arguments use 943 /// inalloca. 944 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 945 946 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 947 CharUnits &StackOffset, ABIArgInfo &Info, 948 QualType Type) const; 949 950 public: 951 952 void computeInfo(CGFunctionInfo &FI) const override; 953 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 954 QualType Ty) const override; 955 956 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 957 bool RetSmallStructInRegABI, bool Win32StructABI, 958 unsigned NumRegisterParameters, bool SoftFloatABI) 959 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 960 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 961 IsWin32StructABI(Win32StructABI), 962 IsSoftFloatABI(SoftFloatABI), 963 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 964 DefaultNumRegisterParameters(NumRegisterParameters) {} 965 966 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 967 ArrayRef<llvm::Type*> scalars, 968 bool asReturnValue) const override { 969 // LLVM's x86-32 lowering currently only assigns up to three 970 // integer registers and three fp registers. Oddly, it'll use up to 971 // four vector registers for vectors, but those can overlap with the 972 // scalar registers. 973 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 974 } 975 976 bool isSwiftErrorInRegister() const override { 977 // x86-32 lowering does not support passing swifterror in a register. 978 return false; 979 } 980 }; 981 982 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 983 public: 984 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 985 bool RetSmallStructInRegABI, bool Win32StructABI, 986 unsigned NumRegisterParameters, bool SoftFloatABI) 987 : TargetCodeGenInfo(new X86_32ABIInfo( 988 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 989 NumRegisterParameters, SoftFloatABI)) {} 990 991 static bool isStructReturnInRegABI( 992 const llvm::Triple &Triple, const CodeGenOptions &Opts); 993 994 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 995 CodeGen::CodeGenModule &CGM) const override; 996 997 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 998 // Darwin uses different dwarf register numbers for EH. 999 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1000 return 4; 1001 } 1002 1003 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1004 llvm::Value *Address) const override; 1005 1006 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1007 StringRef Constraint, 1008 llvm::Type* Ty) const override { 1009 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1010 } 1011 1012 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1013 std::string &Constraints, 1014 std::vector<llvm::Type *> &ResultRegTypes, 1015 std::vector<llvm::Type *> &ResultTruncRegTypes, 1016 std::vector<LValue> &ResultRegDests, 1017 std::string &AsmString, 1018 unsigned NumOutputs) const override; 1019 1020 llvm::Constant * 1021 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1022 unsigned Sig = (0xeb << 0) | // jmp rel8 1023 (0x06 << 8) | // .+0x08 1024 ('F' << 16) | 1025 ('T' << 24); 1026 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1027 } 1028 1029 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1030 return "movl\t%ebp, %ebp" 1031 "\t\t## marker for objc_retainAutoreleaseReturnValue"; 1032 } 1033 }; 1034 1035 } 1036 1037 /// Rewrite input constraint references after adding some output constraints. 1038 /// In the case where there is one output and one input and we add one output, 1039 /// we need to replace all operand references greater than or equal to 1: 1040 /// mov $0, $1 1041 /// mov eax, $1 1042 /// The result will be: 1043 /// mov $0, $2 1044 /// mov eax, $2 1045 static void rewriteInputConstraintReferences(unsigned FirstIn, 1046 unsigned NumNewOuts, 1047 std::string &AsmString) { 1048 std::string Buf; 1049 llvm::raw_string_ostream OS(Buf); 1050 size_t Pos = 0; 1051 while (Pos < AsmString.size()) { 1052 size_t DollarStart = AsmString.find('$', Pos); 1053 if (DollarStart == std::string::npos) 1054 DollarStart = AsmString.size(); 1055 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1056 if (DollarEnd == std::string::npos) 1057 DollarEnd = AsmString.size(); 1058 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1059 Pos = DollarEnd; 1060 size_t NumDollars = DollarEnd - DollarStart; 1061 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1062 // We have an operand reference. 1063 size_t DigitStart = Pos; 1064 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1065 if (DigitEnd == std::string::npos) 1066 DigitEnd = AsmString.size(); 1067 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1068 unsigned OperandIndex; 1069 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1070 if (OperandIndex >= FirstIn) 1071 OperandIndex += NumNewOuts; 1072 OS << OperandIndex; 1073 } else { 1074 OS << OperandStr; 1075 } 1076 Pos = DigitEnd; 1077 } 1078 } 1079 AsmString = std::move(OS.str()); 1080 } 1081 1082 /// Add output constraints for EAX:EDX because they are return registers. 1083 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1084 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1085 std::vector<llvm::Type *> &ResultRegTypes, 1086 std::vector<llvm::Type *> &ResultTruncRegTypes, 1087 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1088 unsigned NumOutputs) const { 1089 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1090 1091 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1092 // larger. 1093 if (!Constraints.empty()) 1094 Constraints += ','; 1095 if (RetWidth <= 32) { 1096 Constraints += "={eax}"; 1097 ResultRegTypes.push_back(CGF.Int32Ty); 1098 } else { 1099 // Use the 'A' constraint for EAX:EDX. 1100 Constraints += "=A"; 1101 ResultRegTypes.push_back(CGF.Int64Ty); 1102 } 1103 1104 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1105 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1106 ResultTruncRegTypes.push_back(CoerceTy); 1107 1108 // Coerce the integer by bitcasting the return slot pointer. 1109 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1110 CoerceTy->getPointerTo())); 1111 ResultRegDests.push_back(ReturnSlot); 1112 1113 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1114 } 1115 1116 /// shouldReturnTypeInRegister - Determine if the given type should be 1117 /// returned in a register (for the Darwin and MCU ABI). 1118 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1119 ASTContext &Context) const { 1120 uint64_t Size = Context.getTypeSize(Ty); 1121 1122 // For i386, type must be register sized. 1123 // For the MCU ABI, it only needs to be <= 8-byte 1124 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1125 return false; 1126 1127 if (Ty->isVectorType()) { 1128 // 64- and 128- bit vectors inside structures are not returned in 1129 // registers. 1130 if (Size == 64 || Size == 128) 1131 return false; 1132 1133 return true; 1134 } 1135 1136 // If this is a builtin, pointer, enum, complex type, member pointer, or 1137 // member function pointer it is ok. 1138 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1139 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1140 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1141 return true; 1142 1143 // Arrays are treated like records. 1144 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1145 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1146 1147 // Otherwise, it must be a record type. 1148 const RecordType *RT = Ty->getAs<RecordType>(); 1149 if (!RT) return false; 1150 1151 // FIXME: Traverse bases here too. 1152 1153 // Structure types are passed in register if all fields would be 1154 // passed in a register. 1155 for (const auto *FD : RT->getDecl()->fields()) { 1156 // Empty fields are ignored. 1157 if (isEmptyField(Context, FD, true)) 1158 continue; 1159 1160 // Check fields recursively. 1161 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1162 return false; 1163 } 1164 return true; 1165 } 1166 1167 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1168 // Treat complex types as the element type. 1169 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1170 Ty = CTy->getElementType(); 1171 1172 // Check for a type which we know has a simple scalar argument-passing 1173 // convention without any padding. (We're specifically looking for 32 1174 // and 64-bit integer and integer-equivalents, float, and double.) 1175 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1176 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1177 return false; 1178 1179 uint64_t Size = Context.getTypeSize(Ty); 1180 return Size == 32 || Size == 64; 1181 } 1182 1183 /// Test whether an argument type which is to be passed indirectly (on the 1184 /// stack) would have the equivalent layout if it was expanded into separate 1185 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1186 /// optimizations. 1187 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1188 // We can only expand structure types. 1189 const RecordType *RT = Ty->getAs<RecordType>(); 1190 if (!RT) 1191 return false; 1192 const RecordDecl *RD = RT->getDecl(); 1193 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1194 if (!IsWin32StructABI ) { 1195 // On non-Windows, we have to conservatively match our old bitcode 1196 // prototypes in order to be ABI-compatible at the bitcode level. 1197 if (!CXXRD->isCLike()) 1198 return false; 1199 } else { 1200 // Don't do this for dynamic classes. 1201 if (CXXRD->isDynamicClass()) 1202 return false; 1203 // Don't do this if there are any non-empty bases. 1204 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 1205 if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true)) 1206 return false; 1207 } 1208 } 1209 } 1210 1211 uint64_t Size = 0; 1212 1213 for (const auto *FD : RD->fields()) { 1214 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1215 // argument is smaller than 32-bits, expanding the struct will create 1216 // alignment padding. 1217 if (!is32Or64BitBasicType(FD->getType(), getContext())) 1218 return false; 1219 1220 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1221 // how to expand them yet, and the predicate for telling if a bitfield still 1222 // counts as "basic" is more complicated than what we were doing previously. 1223 if (FD->isBitField()) 1224 return false; 1225 1226 Size += getContext().getTypeSize(FD->getType()); 1227 } 1228 1229 // We can do this if there was no alignment padding. 1230 return Size == getContext().getTypeSize(Ty); 1231 } 1232 1233 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1234 // If the return value is indirect, then the hidden argument is consuming one 1235 // integer register. 1236 if (State.FreeRegs) { 1237 --State.FreeRegs; 1238 if (!IsMCUABI) 1239 return getNaturalAlignIndirectInReg(RetTy); 1240 } 1241 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1242 } 1243 1244 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1245 CCState &State) const { 1246 if (RetTy->isVoidType()) 1247 return ABIArgInfo::getIgnore(); 1248 1249 const Type *Base = nullptr; 1250 uint64_t NumElts = 0; 1251 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1252 State.CC == llvm::CallingConv::X86_RegCall) && 1253 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1254 // The LLVM struct type for such an aggregate should lower properly. 1255 return ABIArgInfo::getDirect(); 1256 } 1257 1258 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1259 // On Darwin, some vectors are returned in registers. 1260 if (IsDarwinVectorABI) { 1261 uint64_t Size = getContext().getTypeSize(RetTy); 1262 1263 // 128-bit vectors are a special case; they are returned in 1264 // registers and we need to make sure to pick a type the LLVM 1265 // backend will like. 1266 if (Size == 128) 1267 return ABIArgInfo::getDirect(llvm::VectorType::get( 1268 llvm::Type::getInt64Ty(getVMContext()), 2)); 1269 1270 // Always return in register if it fits in a general purpose 1271 // register, or if it is 64 bits and has a single element. 1272 if ((Size == 8 || Size == 16 || Size == 32) || 1273 (Size == 64 && VT->getNumElements() == 1)) 1274 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1275 Size)); 1276 1277 return getIndirectReturnResult(RetTy, State); 1278 } 1279 1280 return ABIArgInfo::getDirect(); 1281 } 1282 1283 if (isAggregateTypeForABI(RetTy)) { 1284 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1285 // Structures with flexible arrays are always indirect. 1286 if (RT->getDecl()->hasFlexibleArrayMember()) 1287 return getIndirectReturnResult(RetTy, State); 1288 } 1289 1290 // If specified, structs and unions are always indirect. 1291 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1292 return getIndirectReturnResult(RetTy, State); 1293 1294 // Ignore empty structs/unions. 1295 if (isEmptyRecord(getContext(), RetTy, true)) 1296 return ABIArgInfo::getIgnore(); 1297 1298 // Small structures which are register sized are generally returned 1299 // in a register. 1300 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1301 uint64_t Size = getContext().getTypeSize(RetTy); 1302 1303 // As a special-case, if the struct is a "single-element" struct, and 1304 // the field is of type "float" or "double", return it in a 1305 // floating-point register. (MSVC does not apply this special case.) 1306 // We apply a similar transformation for pointer types to improve the 1307 // quality of the generated IR. 1308 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1309 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1310 || SeltTy->hasPointerRepresentation()) 1311 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1312 1313 // FIXME: We should be able to narrow this integer in cases with dead 1314 // padding. 1315 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1316 } 1317 1318 return getIndirectReturnResult(RetTy, State); 1319 } 1320 1321 // Treat an enum type as its underlying type. 1322 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1323 RetTy = EnumTy->getDecl()->getIntegerType(); 1324 1325 return (RetTy->isPromotableIntegerType() ? 1326 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1327 } 1328 1329 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1330 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1331 } 1332 1333 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1334 const RecordType *RT = Ty->getAs<RecordType>(); 1335 if (!RT) 1336 return 0; 1337 const RecordDecl *RD = RT->getDecl(); 1338 1339 // If this is a C++ record, check the bases first. 1340 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1341 for (const auto &I : CXXRD->bases()) 1342 if (!isRecordWithSSEVectorType(Context, I.getType())) 1343 return false; 1344 1345 for (const auto *i : RD->fields()) { 1346 QualType FT = i->getType(); 1347 1348 if (isSSEVectorType(Context, FT)) 1349 return true; 1350 1351 if (isRecordWithSSEVectorType(Context, FT)) 1352 return true; 1353 } 1354 1355 return false; 1356 } 1357 1358 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1359 unsigned Align) const { 1360 // Otherwise, if the alignment is less than or equal to the minimum ABI 1361 // alignment, just use the default; the backend will handle this. 1362 if (Align <= MinABIStackAlignInBytes) 1363 return 0; // Use default alignment. 1364 1365 // On non-Darwin, the stack type alignment is always 4. 1366 if (!IsDarwinVectorABI) { 1367 // Set explicit alignment, since we may need to realign the top. 1368 return MinABIStackAlignInBytes; 1369 } 1370 1371 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1372 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1373 isRecordWithSSEVectorType(getContext(), Ty))) 1374 return 16; 1375 1376 return MinABIStackAlignInBytes; 1377 } 1378 1379 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1380 CCState &State) const { 1381 if (!ByVal) { 1382 if (State.FreeRegs) { 1383 --State.FreeRegs; // Non-byval indirects just use one pointer. 1384 if (!IsMCUABI) 1385 return getNaturalAlignIndirectInReg(Ty); 1386 } 1387 return getNaturalAlignIndirect(Ty, false); 1388 } 1389 1390 // Compute the byval alignment. 1391 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1392 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1393 if (StackAlign == 0) 1394 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1395 1396 // If the stack alignment is less than the type alignment, realign the 1397 // argument. 1398 bool Realign = TypeAlign > StackAlign; 1399 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1400 /*ByVal=*/true, Realign); 1401 } 1402 1403 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1404 const Type *T = isSingleElementStruct(Ty, getContext()); 1405 if (!T) 1406 T = Ty.getTypePtr(); 1407 1408 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1409 BuiltinType::Kind K = BT->getKind(); 1410 if (K == BuiltinType::Float || K == BuiltinType::Double) 1411 return Float; 1412 } 1413 return Integer; 1414 } 1415 1416 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1417 if (!IsSoftFloatABI) { 1418 Class C = classify(Ty); 1419 if (C == Float) 1420 return false; 1421 } 1422 1423 unsigned Size = getContext().getTypeSize(Ty); 1424 unsigned SizeInRegs = (Size + 31) / 32; 1425 1426 if (SizeInRegs == 0) 1427 return false; 1428 1429 if (!IsMCUABI) { 1430 if (SizeInRegs > State.FreeRegs) { 1431 State.FreeRegs = 0; 1432 return false; 1433 } 1434 } else { 1435 // The MCU psABI allows passing parameters in-reg even if there are 1436 // earlier parameters that are passed on the stack. Also, 1437 // it does not allow passing >8-byte structs in-register, 1438 // even if there are 3 free registers available. 1439 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1440 return false; 1441 } 1442 1443 State.FreeRegs -= SizeInRegs; 1444 return true; 1445 } 1446 1447 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1448 bool &InReg, 1449 bool &NeedsPadding) const { 1450 // On Windows, aggregates other than HFAs are never passed in registers, and 1451 // they do not consume register slots. Homogenous floating-point aggregates 1452 // (HFAs) have already been dealt with at this point. 1453 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1454 return false; 1455 1456 NeedsPadding = false; 1457 InReg = !IsMCUABI; 1458 1459 if (!updateFreeRegs(Ty, State)) 1460 return false; 1461 1462 if (IsMCUABI) 1463 return true; 1464 1465 if (State.CC == llvm::CallingConv::X86_FastCall || 1466 State.CC == llvm::CallingConv::X86_VectorCall || 1467 State.CC == llvm::CallingConv::X86_RegCall) { 1468 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1469 NeedsPadding = true; 1470 1471 return false; 1472 } 1473 1474 return true; 1475 } 1476 1477 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1478 if (!updateFreeRegs(Ty, State)) 1479 return false; 1480 1481 if (IsMCUABI) 1482 return false; 1483 1484 if (State.CC == llvm::CallingConv::X86_FastCall || 1485 State.CC == llvm::CallingConv::X86_VectorCall || 1486 State.CC == llvm::CallingConv::X86_RegCall) { 1487 if (getContext().getTypeSize(Ty) > 32) 1488 return false; 1489 1490 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1491 Ty->isReferenceType()); 1492 } 1493 1494 return true; 1495 } 1496 1497 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1498 CCState &State) const { 1499 // FIXME: Set alignment on indirect arguments. 1500 1501 Ty = useFirstFieldIfTransparentUnion(Ty); 1502 1503 // Check with the C++ ABI first. 1504 const RecordType *RT = Ty->getAs<RecordType>(); 1505 if (RT) { 1506 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1507 if (RAA == CGCXXABI::RAA_Indirect) { 1508 return getIndirectResult(Ty, false, State); 1509 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1510 // The field index doesn't matter, we'll fix it up later. 1511 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1512 } 1513 } 1514 1515 // vectorcall adds the concept of a homogenous vector aggregate, similar 1516 // to other targets. 1517 const Type *Base = nullptr; 1518 uint64_t NumElts = 0; 1519 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1520 State.CC == llvm::CallingConv::X86_RegCall) && 1521 isHomogeneousAggregate(Ty, Base, NumElts)) { 1522 if (State.FreeSSERegs >= NumElts) { 1523 State.FreeSSERegs -= NumElts; 1524 if (Ty->isBuiltinType() || Ty->isVectorType()) 1525 return ABIArgInfo::getDirect(); 1526 return ABIArgInfo::getExpand(); 1527 } 1528 return getIndirectResult(Ty, /*ByVal=*/false, State); 1529 } 1530 1531 if (isAggregateTypeForABI(Ty)) { 1532 // Structures with flexible arrays are always indirect. 1533 // FIXME: This should not be byval! 1534 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1535 return getIndirectResult(Ty, true, State); 1536 1537 // Ignore empty structs/unions on non-Windows. 1538 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1539 return ABIArgInfo::getIgnore(); 1540 1541 llvm::LLVMContext &LLVMContext = getVMContext(); 1542 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1543 bool NeedsPadding = false; 1544 bool InReg; 1545 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1546 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1547 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1548 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1549 if (InReg) 1550 return ABIArgInfo::getDirectInReg(Result); 1551 else 1552 return ABIArgInfo::getDirect(Result); 1553 } 1554 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1555 1556 // Expand small (<= 128-bit) record types when we know that the stack layout 1557 // of those arguments will match the struct. This is important because the 1558 // LLVM backend isn't smart enough to remove byval, which inhibits many 1559 // optimizations. 1560 // Don't do this for the MCU if there are still free integer registers 1561 // (see X86_64 ABI for full explanation). 1562 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1563 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1564 return ABIArgInfo::getExpandWithPadding( 1565 State.CC == llvm::CallingConv::X86_FastCall || 1566 State.CC == llvm::CallingConv::X86_VectorCall || 1567 State.CC == llvm::CallingConv::X86_RegCall, 1568 PaddingType); 1569 1570 return getIndirectResult(Ty, true, State); 1571 } 1572 1573 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1574 // On Darwin, some vectors are passed in memory, we handle this by passing 1575 // it as an i8/i16/i32/i64. 1576 if (IsDarwinVectorABI) { 1577 uint64_t Size = getContext().getTypeSize(Ty); 1578 if ((Size == 8 || Size == 16 || Size == 32) || 1579 (Size == 64 && VT->getNumElements() == 1)) 1580 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1581 Size)); 1582 } 1583 1584 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1585 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1586 1587 return ABIArgInfo::getDirect(); 1588 } 1589 1590 1591 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1592 Ty = EnumTy->getDecl()->getIntegerType(); 1593 1594 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1595 1596 if (Ty->isPromotableIntegerType()) { 1597 if (InReg) 1598 return ABIArgInfo::getExtendInReg(); 1599 return ABIArgInfo::getExtend(); 1600 } 1601 1602 if (InReg) 1603 return ABIArgInfo::getDirectInReg(); 1604 return ABIArgInfo::getDirect(); 1605 } 1606 1607 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1608 CCState State(FI.getCallingConvention()); 1609 if (IsMCUABI) 1610 State.FreeRegs = 3; 1611 else if (State.CC == llvm::CallingConv::X86_FastCall) 1612 State.FreeRegs = 2; 1613 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1614 State.FreeRegs = 2; 1615 State.FreeSSERegs = 6; 1616 } else if (FI.getHasRegParm()) 1617 State.FreeRegs = FI.getRegParm(); 1618 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1619 State.FreeRegs = 5; 1620 State.FreeSSERegs = 8; 1621 } else 1622 State.FreeRegs = DefaultNumRegisterParameters; 1623 1624 if (!getCXXABI().classifyReturnType(FI)) { 1625 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1626 } else if (FI.getReturnInfo().isIndirect()) { 1627 // The C++ ABI is not aware of register usage, so we have to check if the 1628 // return value was sret and put it in a register ourselves if appropriate. 1629 if (State.FreeRegs) { 1630 --State.FreeRegs; // The sret parameter consumes a register. 1631 if (!IsMCUABI) 1632 FI.getReturnInfo().setInReg(true); 1633 } 1634 } 1635 1636 // The chain argument effectively gives us another free register. 1637 if (FI.isChainCall()) 1638 ++State.FreeRegs; 1639 1640 bool UsedInAlloca = false; 1641 for (auto &I : FI.arguments()) { 1642 I.info = classifyArgumentType(I.type, State); 1643 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1644 } 1645 1646 // If we needed to use inalloca for any argument, do a second pass and rewrite 1647 // all the memory arguments to use inalloca. 1648 if (UsedInAlloca) 1649 rewriteWithInAlloca(FI); 1650 } 1651 1652 void 1653 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1654 CharUnits &StackOffset, ABIArgInfo &Info, 1655 QualType Type) const { 1656 // Arguments are always 4-byte-aligned. 1657 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1658 1659 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1660 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1661 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1662 StackOffset += getContext().getTypeSizeInChars(Type); 1663 1664 // Insert padding bytes to respect alignment. 1665 CharUnits FieldEnd = StackOffset; 1666 StackOffset = FieldEnd.alignTo(FieldAlign); 1667 if (StackOffset != FieldEnd) { 1668 CharUnits NumBytes = StackOffset - FieldEnd; 1669 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1670 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1671 FrameFields.push_back(Ty); 1672 } 1673 } 1674 1675 static bool isArgInAlloca(const ABIArgInfo &Info) { 1676 // Leave ignored and inreg arguments alone. 1677 switch (Info.getKind()) { 1678 case ABIArgInfo::InAlloca: 1679 return true; 1680 case ABIArgInfo::Indirect: 1681 assert(Info.getIndirectByVal()); 1682 return true; 1683 case ABIArgInfo::Ignore: 1684 return false; 1685 case ABIArgInfo::Direct: 1686 case ABIArgInfo::Extend: 1687 if (Info.getInReg()) 1688 return false; 1689 return true; 1690 case ABIArgInfo::Expand: 1691 case ABIArgInfo::CoerceAndExpand: 1692 // These are aggregate types which are never passed in registers when 1693 // inalloca is involved. 1694 return true; 1695 } 1696 llvm_unreachable("invalid enum"); 1697 } 1698 1699 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1700 assert(IsWin32StructABI && "inalloca only supported on win32"); 1701 1702 // Build a packed struct type for all of the arguments in memory. 1703 SmallVector<llvm::Type *, 6> FrameFields; 1704 1705 // The stack alignment is always 4. 1706 CharUnits StackAlign = CharUnits::fromQuantity(4); 1707 1708 CharUnits StackOffset; 1709 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1710 1711 // Put 'this' into the struct before 'sret', if necessary. 1712 bool IsThisCall = 1713 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1714 ABIArgInfo &Ret = FI.getReturnInfo(); 1715 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1716 isArgInAlloca(I->info)) { 1717 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1718 ++I; 1719 } 1720 1721 // Put the sret parameter into the inalloca struct if it's in memory. 1722 if (Ret.isIndirect() && !Ret.getInReg()) { 1723 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1724 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1725 // On Windows, the hidden sret parameter is always returned in eax. 1726 Ret.setInAllocaSRet(IsWin32StructABI); 1727 } 1728 1729 // Skip the 'this' parameter in ecx. 1730 if (IsThisCall) 1731 ++I; 1732 1733 // Put arguments passed in memory into the struct. 1734 for (; I != E; ++I) { 1735 if (isArgInAlloca(I->info)) 1736 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1737 } 1738 1739 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1740 /*isPacked=*/true), 1741 StackAlign); 1742 } 1743 1744 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1745 Address VAListAddr, QualType Ty) const { 1746 1747 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1748 1749 // x86-32 changes the alignment of certain arguments on the stack. 1750 // 1751 // Just messing with TypeInfo like this works because we never pass 1752 // anything indirectly. 1753 TypeInfo.second = CharUnits::fromQuantity( 1754 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1755 1756 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1757 TypeInfo, CharUnits::fromQuantity(4), 1758 /*AllowHigherAlign*/ true); 1759 } 1760 1761 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1762 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1763 assert(Triple.getArch() == llvm::Triple::x86); 1764 1765 switch (Opts.getStructReturnConvention()) { 1766 case CodeGenOptions::SRCK_Default: 1767 break; 1768 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1769 return false; 1770 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1771 return true; 1772 } 1773 1774 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1775 return true; 1776 1777 switch (Triple.getOS()) { 1778 case llvm::Triple::DragonFly: 1779 case llvm::Triple::FreeBSD: 1780 case llvm::Triple::OpenBSD: 1781 case llvm::Triple::Bitrig: 1782 case llvm::Triple::Win32: 1783 return true; 1784 default: 1785 return false; 1786 } 1787 } 1788 1789 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1790 llvm::GlobalValue *GV, 1791 CodeGen::CodeGenModule &CGM) const { 1792 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1793 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1794 // Get the LLVM function. 1795 llvm::Function *Fn = cast<llvm::Function>(GV); 1796 1797 // Now add the 'alignstack' attribute with a value of 16. 1798 llvm::AttrBuilder B; 1799 B.addStackAlignmentAttr(16); 1800 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1801 llvm::AttributeSet::get(CGM.getLLVMContext(), 1802 llvm::AttributeSet::FunctionIndex, 1803 B)); 1804 } 1805 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1806 llvm::Function *Fn = cast<llvm::Function>(GV); 1807 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1808 } 1809 } 1810 } 1811 1812 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1813 CodeGen::CodeGenFunction &CGF, 1814 llvm::Value *Address) const { 1815 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1816 1817 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1818 1819 // 0-7 are the eight integer registers; the order is different 1820 // on Darwin (for EH), but the range is the same. 1821 // 8 is %eip. 1822 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1823 1824 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1825 // 12-16 are st(0..4). Not sure why we stop at 4. 1826 // These have size 16, which is sizeof(long double) on 1827 // platforms with 8-byte alignment for that type. 1828 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1829 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1830 1831 } else { 1832 // 9 is %eflags, which doesn't get a size on Darwin for some 1833 // reason. 1834 Builder.CreateAlignedStore( 1835 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1836 CharUnits::One()); 1837 1838 // 11-16 are st(0..5). Not sure why we stop at 5. 1839 // These have size 12, which is sizeof(long double) on 1840 // platforms with 4-byte alignment for that type. 1841 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1842 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1843 } 1844 1845 return false; 1846 } 1847 1848 //===----------------------------------------------------------------------===// 1849 // X86-64 ABI Implementation 1850 //===----------------------------------------------------------------------===// 1851 1852 1853 namespace { 1854 /// The AVX ABI level for X86 targets. 1855 enum class X86AVXABILevel { 1856 None, 1857 AVX, 1858 AVX512 1859 }; 1860 1861 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1862 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1863 switch (AVXLevel) { 1864 case X86AVXABILevel::AVX512: 1865 return 512; 1866 case X86AVXABILevel::AVX: 1867 return 256; 1868 case X86AVXABILevel::None: 1869 return 128; 1870 } 1871 llvm_unreachable("Unknown AVXLevel"); 1872 } 1873 1874 /// X86_64ABIInfo - The X86_64 ABI information. 1875 class X86_64ABIInfo : public SwiftABIInfo { 1876 enum Class { 1877 Integer = 0, 1878 SSE, 1879 SSEUp, 1880 X87, 1881 X87Up, 1882 ComplexX87, 1883 NoClass, 1884 Memory 1885 }; 1886 1887 /// merge - Implement the X86_64 ABI merging algorithm. 1888 /// 1889 /// Merge an accumulating classification \arg Accum with a field 1890 /// classification \arg Field. 1891 /// 1892 /// \param Accum - The accumulating classification. This should 1893 /// always be either NoClass or the result of a previous merge 1894 /// call. In addition, this should never be Memory (the caller 1895 /// should just return Memory for the aggregate). 1896 static Class merge(Class Accum, Class Field); 1897 1898 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1899 /// 1900 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1901 /// final MEMORY or SSE classes when necessary. 1902 /// 1903 /// \param AggregateSize - The size of the current aggregate in 1904 /// the classification process. 1905 /// 1906 /// \param Lo - The classification for the parts of the type 1907 /// residing in the low word of the containing object. 1908 /// 1909 /// \param Hi - The classification for the parts of the type 1910 /// residing in the higher words of the containing object. 1911 /// 1912 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1913 1914 /// classify - Determine the x86_64 register classes in which the 1915 /// given type T should be passed. 1916 /// 1917 /// \param Lo - The classification for the parts of the type 1918 /// residing in the low word of the containing object. 1919 /// 1920 /// \param Hi - The classification for the parts of the type 1921 /// residing in the high word of the containing object. 1922 /// 1923 /// \param OffsetBase - The bit offset of this type in the 1924 /// containing object. Some parameters are classified different 1925 /// depending on whether they straddle an eightbyte boundary. 1926 /// 1927 /// \param isNamedArg - Whether the argument in question is a "named" 1928 /// argument, as used in AMD64-ABI 3.5.7. 1929 /// 1930 /// If a word is unused its result will be NoClass; if a type should 1931 /// be passed in Memory then at least the classification of \arg Lo 1932 /// will be Memory. 1933 /// 1934 /// The \arg Lo class will be NoClass iff the argument is ignored. 1935 /// 1936 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1937 /// also be ComplexX87. 1938 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1939 bool isNamedArg) const; 1940 1941 llvm::Type *GetByteVectorType(QualType Ty) const; 1942 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1943 unsigned IROffset, QualType SourceTy, 1944 unsigned SourceOffset) const; 1945 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1946 unsigned IROffset, QualType SourceTy, 1947 unsigned SourceOffset) const; 1948 1949 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1950 /// such that the argument will be returned in memory. 1951 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1952 1953 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1954 /// such that the argument will be passed in memory. 1955 /// 1956 /// \param freeIntRegs - The number of free integer registers remaining 1957 /// available. 1958 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1959 1960 ABIArgInfo classifyReturnType(QualType RetTy) const; 1961 1962 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 1963 unsigned &neededInt, unsigned &neededSSE, 1964 bool isNamedArg) const; 1965 1966 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 1967 unsigned &NeededSSE) const; 1968 1969 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 1970 unsigned &NeededSSE) const; 1971 1972 bool IsIllegalVectorType(QualType Ty) const; 1973 1974 /// The 0.98 ABI revision clarified a lot of ambiguities, 1975 /// unfortunately in ways that were not always consistent with 1976 /// certain previous compilers. In particular, platforms which 1977 /// required strict binary compatibility with older versions of GCC 1978 /// may need to exempt themselves. 1979 bool honorsRevision0_98() const { 1980 return !getTarget().getTriple().isOSDarwin(); 1981 } 1982 1983 /// GCC classifies <1 x long long> as SSE but compatibility with older clang 1984 // compilers require us to classify it as INTEGER. 1985 bool classifyIntegerMMXAsSSE() const { 1986 const llvm::Triple &Triple = getTarget().getTriple(); 1987 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 1988 return false; 1989 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 1990 return false; 1991 return true; 1992 } 1993 1994 X86AVXABILevel AVXLevel; 1995 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1996 // 64-bit hardware. 1997 bool Has64BitPointers; 1998 1999 public: 2000 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2001 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2002 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2003 } 2004 2005 bool isPassedUsingAVXType(QualType type) const { 2006 unsigned neededInt, neededSSE; 2007 // The freeIntRegs argument doesn't matter here. 2008 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2009 /*isNamedArg*/true); 2010 if (info.isDirect()) { 2011 llvm::Type *ty = info.getCoerceToType(); 2012 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2013 return (vectorTy->getBitWidth() > 128); 2014 } 2015 return false; 2016 } 2017 2018 void computeInfo(CGFunctionInfo &FI) const override; 2019 2020 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2021 QualType Ty) const override; 2022 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2023 QualType Ty) const override; 2024 2025 bool has64BitPointers() const { 2026 return Has64BitPointers; 2027 } 2028 2029 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2030 ArrayRef<llvm::Type*> scalars, 2031 bool asReturnValue) const override { 2032 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2033 } 2034 bool isSwiftErrorInRegister() const override { 2035 return true; 2036 } 2037 }; 2038 2039 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2040 class WinX86_64ABIInfo : public SwiftABIInfo { 2041 public: 2042 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2043 : SwiftABIInfo(CGT), 2044 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2045 2046 void computeInfo(CGFunctionInfo &FI) const override; 2047 2048 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2049 QualType Ty) const override; 2050 2051 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2052 // FIXME: Assumes vectorcall is in use. 2053 return isX86VectorTypeForVectorCall(getContext(), Ty); 2054 } 2055 2056 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2057 uint64_t NumMembers) const override { 2058 // FIXME: Assumes vectorcall is in use. 2059 return isX86VectorCallAggregateSmallEnough(NumMembers); 2060 } 2061 2062 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2063 ArrayRef<llvm::Type *> scalars, 2064 bool asReturnValue) const override { 2065 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2066 } 2067 2068 bool isSwiftErrorInRegister() const override { 2069 return true; 2070 } 2071 2072 private: 2073 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 2074 bool IsReturnType) const; 2075 2076 bool IsMingw64; 2077 }; 2078 2079 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2080 public: 2081 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2082 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2083 2084 const X86_64ABIInfo &getABIInfo() const { 2085 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2086 } 2087 2088 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2089 return 7; 2090 } 2091 2092 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2093 llvm::Value *Address) const override { 2094 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2095 2096 // 0-15 are the 16 integer registers. 2097 // 16 is %rip. 2098 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2099 return false; 2100 } 2101 2102 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2103 StringRef Constraint, 2104 llvm::Type* Ty) const override { 2105 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2106 } 2107 2108 bool isNoProtoCallVariadic(const CallArgList &args, 2109 const FunctionNoProtoType *fnType) const override { 2110 // The default CC on x86-64 sets %al to the number of SSA 2111 // registers used, and GCC sets this when calling an unprototyped 2112 // function, so we override the default behavior. However, don't do 2113 // that when AVX types are involved: the ABI explicitly states it is 2114 // undefined, and it doesn't work in practice because of how the ABI 2115 // defines varargs anyway. 2116 if (fnType->getCallConv() == CC_C) { 2117 bool HasAVXType = false; 2118 for (CallArgList::const_iterator 2119 it = args.begin(), ie = args.end(); it != ie; ++it) { 2120 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2121 HasAVXType = true; 2122 break; 2123 } 2124 } 2125 2126 if (!HasAVXType) 2127 return true; 2128 } 2129 2130 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2131 } 2132 2133 llvm::Constant * 2134 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2135 unsigned Sig; 2136 if (getABIInfo().has64BitPointers()) 2137 Sig = (0xeb << 0) | // jmp rel8 2138 (0x0a << 8) | // .+0x0c 2139 ('F' << 16) | 2140 ('T' << 24); 2141 else 2142 Sig = (0xeb << 0) | // jmp rel8 2143 (0x06 << 8) | // .+0x08 2144 ('F' << 16) | 2145 ('T' << 24); 2146 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2147 } 2148 2149 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2150 CodeGen::CodeGenModule &CGM) const override { 2151 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2152 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2153 llvm::Function *Fn = cast<llvm::Function>(GV); 2154 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2155 } 2156 } 2157 } 2158 }; 2159 2160 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2161 public: 2162 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2163 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2164 2165 void getDependentLibraryOption(llvm::StringRef Lib, 2166 llvm::SmallString<24> &Opt) const override { 2167 Opt = "\01"; 2168 // If the argument contains a space, enclose it in quotes. 2169 if (Lib.find(" ") != StringRef::npos) 2170 Opt += "\"" + Lib.str() + "\""; 2171 else 2172 Opt += Lib; 2173 } 2174 }; 2175 2176 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2177 // If the argument does not end in .lib, automatically add the suffix. 2178 // If the argument contains a space, enclose it in quotes. 2179 // This matches the behavior of MSVC. 2180 bool Quote = (Lib.find(" ") != StringRef::npos); 2181 std::string ArgStr = Quote ? "\"" : ""; 2182 ArgStr += Lib; 2183 if (!Lib.endswith_lower(".lib")) 2184 ArgStr += ".lib"; 2185 ArgStr += Quote ? "\"" : ""; 2186 return ArgStr; 2187 } 2188 2189 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2190 public: 2191 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2192 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2193 unsigned NumRegisterParameters) 2194 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2195 Win32StructABI, NumRegisterParameters, false) {} 2196 2197 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2198 CodeGen::CodeGenModule &CGM) const override; 2199 2200 void getDependentLibraryOption(llvm::StringRef Lib, 2201 llvm::SmallString<24> &Opt) const override { 2202 Opt = "/DEFAULTLIB:"; 2203 Opt += qualifyWindowsLibrary(Lib); 2204 } 2205 2206 void getDetectMismatchOption(llvm::StringRef Name, 2207 llvm::StringRef Value, 2208 llvm::SmallString<32> &Opt) const override { 2209 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2210 } 2211 }; 2212 2213 static void addStackProbeSizeTargetAttribute(const Decl *D, 2214 llvm::GlobalValue *GV, 2215 CodeGen::CodeGenModule &CGM) { 2216 if (D && isa<FunctionDecl>(D)) { 2217 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2218 llvm::Function *Fn = cast<llvm::Function>(GV); 2219 2220 Fn->addFnAttr("stack-probe-size", 2221 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2222 } 2223 } 2224 } 2225 2226 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2227 llvm::GlobalValue *GV, 2228 CodeGen::CodeGenModule &CGM) const { 2229 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2230 2231 addStackProbeSizeTargetAttribute(D, GV, CGM); 2232 } 2233 2234 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2235 public: 2236 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2237 X86AVXABILevel AVXLevel) 2238 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2239 2240 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2241 CodeGen::CodeGenModule &CGM) const override; 2242 2243 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2244 return 7; 2245 } 2246 2247 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2248 llvm::Value *Address) const override { 2249 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2250 2251 // 0-15 are the 16 integer registers. 2252 // 16 is %rip. 2253 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2254 return false; 2255 } 2256 2257 void getDependentLibraryOption(llvm::StringRef Lib, 2258 llvm::SmallString<24> &Opt) const override { 2259 Opt = "/DEFAULTLIB:"; 2260 Opt += qualifyWindowsLibrary(Lib); 2261 } 2262 2263 void getDetectMismatchOption(llvm::StringRef Name, 2264 llvm::StringRef Value, 2265 llvm::SmallString<32> &Opt) const override { 2266 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2267 } 2268 }; 2269 2270 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 2271 llvm::GlobalValue *GV, 2272 CodeGen::CodeGenModule &CGM) const { 2273 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2274 2275 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2276 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2277 llvm::Function *Fn = cast<llvm::Function>(GV); 2278 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2279 } 2280 } 2281 2282 addStackProbeSizeTargetAttribute(D, GV, CGM); 2283 } 2284 } 2285 2286 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2287 Class &Hi) const { 2288 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2289 // 2290 // (a) If one of the classes is Memory, the whole argument is passed in 2291 // memory. 2292 // 2293 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2294 // memory. 2295 // 2296 // (c) If the size of the aggregate exceeds two eightbytes and the first 2297 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2298 // argument is passed in memory. NOTE: This is necessary to keep the 2299 // ABI working for processors that don't support the __m256 type. 2300 // 2301 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2302 // 2303 // Some of these are enforced by the merging logic. Others can arise 2304 // only with unions; for example: 2305 // union { _Complex double; unsigned; } 2306 // 2307 // Note that clauses (b) and (c) were added in 0.98. 2308 // 2309 if (Hi == Memory) 2310 Lo = Memory; 2311 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2312 Lo = Memory; 2313 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2314 Lo = Memory; 2315 if (Hi == SSEUp && Lo != SSE) 2316 Hi = SSE; 2317 } 2318 2319 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2320 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2321 // classified recursively so that always two fields are 2322 // considered. The resulting class is calculated according to 2323 // the classes of the fields in the eightbyte: 2324 // 2325 // (a) If both classes are equal, this is the resulting class. 2326 // 2327 // (b) If one of the classes is NO_CLASS, the resulting class is 2328 // the other class. 2329 // 2330 // (c) If one of the classes is MEMORY, the result is the MEMORY 2331 // class. 2332 // 2333 // (d) If one of the classes is INTEGER, the result is the 2334 // INTEGER. 2335 // 2336 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2337 // MEMORY is used as class. 2338 // 2339 // (f) Otherwise class SSE is used. 2340 2341 // Accum should never be memory (we should have returned) or 2342 // ComplexX87 (because this cannot be passed in a structure). 2343 assert((Accum != Memory && Accum != ComplexX87) && 2344 "Invalid accumulated classification during merge."); 2345 if (Accum == Field || Field == NoClass) 2346 return Accum; 2347 if (Field == Memory) 2348 return Memory; 2349 if (Accum == NoClass) 2350 return Field; 2351 if (Accum == Integer || Field == Integer) 2352 return Integer; 2353 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2354 Accum == X87 || Accum == X87Up) 2355 return Memory; 2356 return SSE; 2357 } 2358 2359 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2360 Class &Lo, Class &Hi, bool isNamedArg) const { 2361 // FIXME: This code can be simplified by introducing a simple value class for 2362 // Class pairs with appropriate constructor methods for the various 2363 // situations. 2364 2365 // FIXME: Some of the split computations are wrong; unaligned vectors 2366 // shouldn't be passed in registers for example, so there is no chance they 2367 // can straddle an eightbyte. Verify & simplify. 2368 2369 Lo = Hi = NoClass; 2370 2371 Class &Current = OffsetBase < 64 ? Lo : Hi; 2372 Current = Memory; 2373 2374 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2375 BuiltinType::Kind k = BT->getKind(); 2376 2377 if (k == BuiltinType::Void) { 2378 Current = NoClass; 2379 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2380 Lo = Integer; 2381 Hi = Integer; 2382 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2383 Current = Integer; 2384 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2385 Current = SSE; 2386 } else if (k == BuiltinType::LongDouble) { 2387 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2388 if (LDF == &llvm::APFloat::IEEEquad) { 2389 Lo = SSE; 2390 Hi = SSEUp; 2391 } else if (LDF == &llvm::APFloat::x87DoubleExtended) { 2392 Lo = X87; 2393 Hi = X87Up; 2394 } else if (LDF == &llvm::APFloat::IEEEdouble) { 2395 Current = SSE; 2396 } else 2397 llvm_unreachable("unexpected long double representation!"); 2398 } 2399 // FIXME: _Decimal32 and _Decimal64 are SSE. 2400 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2401 return; 2402 } 2403 2404 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2405 // Classify the underlying integer type. 2406 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2407 return; 2408 } 2409 2410 if (Ty->hasPointerRepresentation()) { 2411 Current = Integer; 2412 return; 2413 } 2414 2415 if (Ty->isMemberPointerType()) { 2416 if (Ty->isMemberFunctionPointerType()) { 2417 if (Has64BitPointers) { 2418 // If Has64BitPointers, this is an {i64, i64}, so classify both 2419 // Lo and Hi now. 2420 Lo = Hi = Integer; 2421 } else { 2422 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2423 // straddles an eightbyte boundary, Hi should be classified as well. 2424 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2425 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2426 if (EB_FuncPtr != EB_ThisAdj) { 2427 Lo = Hi = Integer; 2428 } else { 2429 Current = Integer; 2430 } 2431 } 2432 } else { 2433 Current = Integer; 2434 } 2435 return; 2436 } 2437 2438 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2439 uint64_t Size = getContext().getTypeSize(VT); 2440 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2441 // gcc passes the following as integer: 2442 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2443 // 2 bytes - <2 x char>, <1 x short> 2444 // 1 byte - <1 x char> 2445 Current = Integer; 2446 2447 // If this type crosses an eightbyte boundary, it should be 2448 // split. 2449 uint64_t EB_Lo = (OffsetBase) / 64; 2450 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2451 if (EB_Lo != EB_Hi) 2452 Hi = Lo; 2453 } else if (Size == 64) { 2454 QualType ElementType = VT->getElementType(); 2455 2456 // gcc passes <1 x double> in memory. :( 2457 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2458 return; 2459 2460 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2461 // pass them as integer. For platforms where clang is the de facto 2462 // platform compiler, we must continue to use integer. 2463 if (!classifyIntegerMMXAsSSE() && 2464 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2465 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2466 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2467 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2468 Current = Integer; 2469 else 2470 Current = SSE; 2471 2472 // If this type crosses an eightbyte boundary, it should be 2473 // split. 2474 if (OffsetBase && OffsetBase != 64) 2475 Hi = Lo; 2476 } else if (Size == 128 || 2477 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2478 // Arguments of 256-bits are split into four eightbyte chunks. The 2479 // least significant one belongs to class SSE and all the others to class 2480 // SSEUP. The original Lo and Hi design considers that types can't be 2481 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2482 // This design isn't correct for 256-bits, but since there're no cases 2483 // where the upper parts would need to be inspected, avoid adding 2484 // complexity and just consider Hi to match the 64-256 part. 2485 // 2486 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2487 // registers if they are "named", i.e. not part of the "..." of a 2488 // variadic function. 2489 // 2490 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2491 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2492 Lo = SSE; 2493 Hi = SSEUp; 2494 } 2495 return; 2496 } 2497 2498 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2499 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2500 2501 uint64_t Size = getContext().getTypeSize(Ty); 2502 if (ET->isIntegralOrEnumerationType()) { 2503 if (Size <= 64) 2504 Current = Integer; 2505 else if (Size <= 128) 2506 Lo = Hi = Integer; 2507 } else if (ET == getContext().FloatTy) { 2508 Current = SSE; 2509 } else if (ET == getContext().DoubleTy) { 2510 Lo = Hi = SSE; 2511 } else if (ET == getContext().LongDoubleTy) { 2512 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2513 if (LDF == &llvm::APFloat::IEEEquad) 2514 Current = Memory; 2515 else if (LDF == &llvm::APFloat::x87DoubleExtended) 2516 Current = ComplexX87; 2517 else if (LDF == &llvm::APFloat::IEEEdouble) 2518 Lo = Hi = SSE; 2519 else 2520 llvm_unreachable("unexpected long double representation!"); 2521 } 2522 2523 // If this complex type crosses an eightbyte boundary then it 2524 // should be split. 2525 uint64_t EB_Real = (OffsetBase) / 64; 2526 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2527 if (Hi == NoClass && EB_Real != EB_Imag) 2528 Hi = Lo; 2529 2530 return; 2531 } 2532 2533 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2534 // Arrays are treated like structures. 2535 2536 uint64_t Size = getContext().getTypeSize(Ty); 2537 2538 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2539 // than eight eightbytes, ..., it has class MEMORY. 2540 if (Size > 512) 2541 return; 2542 2543 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2544 // fields, it has class MEMORY. 2545 // 2546 // Only need to check alignment of array base. 2547 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2548 return; 2549 2550 // Otherwise implement simplified merge. We could be smarter about 2551 // this, but it isn't worth it and would be harder to verify. 2552 Current = NoClass; 2553 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2554 uint64_t ArraySize = AT->getSize().getZExtValue(); 2555 2556 // The only case a 256-bit wide vector could be used is when the array 2557 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2558 // to work for sizes wider than 128, early check and fallback to memory. 2559 // 2560 if (Size > 128 && 2561 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2562 return; 2563 2564 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2565 Class FieldLo, FieldHi; 2566 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2567 Lo = merge(Lo, FieldLo); 2568 Hi = merge(Hi, FieldHi); 2569 if (Lo == Memory || Hi == Memory) 2570 break; 2571 } 2572 2573 postMerge(Size, Lo, Hi); 2574 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2575 return; 2576 } 2577 2578 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2579 uint64_t Size = getContext().getTypeSize(Ty); 2580 2581 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2582 // than eight eightbytes, ..., it has class MEMORY. 2583 if (Size > 512) 2584 return; 2585 2586 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2587 // copy constructor or a non-trivial destructor, it is passed by invisible 2588 // reference. 2589 if (getRecordArgABI(RT, getCXXABI())) 2590 return; 2591 2592 const RecordDecl *RD = RT->getDecl(); 2593 2594 // Assume variable sized types are passed in memory. 2595 if (RD->hasFlexibleArrayMember()) 2596 return; 2597 2598 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2599 2600 // Reset Lo class, this will be recomputed. 2601 Current = NoClass; 2602 2603 // If this is a C++ record, classify the bases first. 2604 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2605 for (const auto &I : CXXRD->bases()) { 2606 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2607 "Unexpected base class!"); 2608 const CXXRecordDecl *Base = 2609 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2610 2611 // Classify this field. 2612 // 2613 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2614 // single eightbyte, each is classified separately. Each eightbyte gets 2615 // initialized to class NO_CLASS. 2616 Class FieldLo, FieldHi; 2617 uint64_t Offset = 2618 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2619 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2620 Lo = merge(Lo, FieldLo); 2621 Hi = merge(Hi, FieldHi); 2622 if (Lo == Memory || Hi == Memory) { 2623 postMerge(Size, Lo, Hi); 2624 return; 2625 } 2626 } 2627 } 2628 2629 // Classify the fields one at a time, merging the results. 2630 unsigned idx = 0; 2631 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2632 i != e; ++i, ++idx) { 2633 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2634 bool BitField = i->isBitField(); 2635 2636 // Ignore padding bit-fields. 2637 if (BitField && i->isUnnamedBitfield()) 2638 continue; 2639 2640 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2641 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2642 // 2643 // The only case a 256-bit wide vector could be used is when the struct 2644 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2645 // to work for sizes wider than 128, early check and fallback to memory. 2646 // 2647 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2648 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2649 Lo = Memory; 2650 postMerge(Size, Lo, Hi); 2651 return; 2652 } 2653 // Note, skip this test for bit-fields, see below. 2654 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2655 Lo = Memory; 2656 postMerge(Size, Lo, Hi); 2657 return; 2658 } 2659 2660 // Classify this field. 2661 // 2662 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2663 // exceeds a single eightbyte, each is classified 2664 // separately. Each eightbyte gets initialized to class 2665 // NO_CLASS. 2666 Class FieldLo, FieldHi; 2667 2668 // Bit-fields require special handling, they do not force the 2669 // structure to be passed in memory even if unaligned, and 2670 // therefore they can straddle an eightbyte. 2671 if (BitField) { 2672 assert(!i->isUnnamedBitfield()); 2673 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2674 uint64_t Size = i->getBitWidthValue(getContext()); 2675 2676 uint64_t EB_Lo = Offset / 64; 2677 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2678 2679 if (EB_Lo) { 2680 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2681 FieldLo = NoClass; 2682 FieldHi = Integer; 2683 } else { 2684 FieldLo = Integer; 2685 FieldHi = EB_Hi ? Integer : NoClass; 2686 } 2687 } else 2688 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2689 Lo = merge(Lo, FieldLo); 2690 Hi = merge(Hi, FieldHi); 2691 if (Lo == Memory || Hi == Memory) 2692 break; 2693 } 2694 2695 postMerge(Size, Lo, Hi); 2696 } 2697 } 2698 2699 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2700 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2701 // place naturally. 2702 if (!isAggregateTypeForABI(Ty)) { 2703 // Treat an enum type as its underlying type. 2704 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2705 Ty = EnumTy->getDecl()->getIntegerType(); 2706 2707 return (Ty->isPromotableIntegerType() ? 2708 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2709 } 2710 2711 return getNaturalAlignIndirect(Ty); 2712 } 2713 2714 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2715 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2716 uint64_t Size = getContext().getTypeSize(VecTy); 2717 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2718 if (Size <= 64 || Size > LargestVector) 2719 return true; 2720 } 2721 2722 return false; 2723 } 2724 2725 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2726 unsigned freeIntRegs) const { 2727 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2728 // place naturally. 2729 // 2730 // This assumption is optimistic, as there could be free registers available 2731 // when we need to pass this argument in memory, and LLVM could try to pass 2732 // the argument in the free register. This does not seem to happen currently, 2733 // but this code would be much safer if we could mark the argument with 2734 // 'onstack'. See PR12193. 2735 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2736 // Treat an enum type as its underlying type. 2737 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2738 Ty = EnumTy->getDecl()->getIntegerType(); 2739 2740 return (Ty->isPromotableIntegerType() ? 2741 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2742 } 2743 2744 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2745 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2746 2747 // Compute the byval alignment. We specify the alignment of the byval in all 2748 // cases so that the mid-level optimizer knows the alignment of the byval. 2749 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2750 2751 // Attempt to avoid passing indirect results using byval when possible. This 2752 // is important for good codegen. 2753 // 2754 // We do this by coercing the value into a scalar type which the backend can 2755 // handle naturally (i.e., without using byval). 2756 // 2757 // For simplicity, we currently only do this when we have exhausted all of the 2758 // free integer registers. Doing this when there are free integer registers 2759 // would require more care, as we would have to ensure that the coerced value 2760 // did not claim the unused register. That would require either reording the 2761 // arguments to the function (so that any subsequent inreg values came first), 2762 // or only doing this optimization when there were no following arguments that 2763 // might be inreg. 2764 // 2765 // We currently expect it to be rare (particularly in well written code) for 2766 // arguments to be passed on the stack when there are still free integer 2767 // registers available (this would typically imply large structs being passed 2768 // by value), so this seems like a fair tradeoff for now. 2769 // 2770 // We can revisit this if the backend grows support for 'onstack' parameter 2771 // attributes. See PR12193. 2772 if (freeIntRegs == 0) { 2773 uint64_t Size = getContext().getTypeSize(Ty); 2774 2775 // If this type fits in an eightbyte, coerce it into the matching integral 2776 // type, which will end up on the stack (with alignment 8). 2777 if (Align == 8 && Size <= 64) 2778 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2779 Size)); 2780 } 2781 2782 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2783 } 2784 2785 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2786 /// register. Pick an LLVM IR type that will be passed as a vector register. 2787 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2788 // Wrapper structs/arrays that only contain vectors are passed just like 2789 // vectors; strip them off if present. 2790 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2791 Ty = QualType(InnerTy, 0); 2792 2793 llvm::Type *IRType = CGT.ConvertType(Ty); 2794 if (isa<llvm::VectorType>(IRType) || 2795 IRType->getTypeID() == llvm::Type::FP128TyID) 2796 return IRType; 2797 2798 // We couldn't find the preferred IR vector type for 'Ty'. 2799 uint64_t Size = getContext().getTypeSize(Ty); 2800 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2801 2802 // Return a LLVM IR vector type based on the size of 'Ty'. 2803 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2804 Size / 64); 2805 } 2806 2807 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2808 /// is known to either be off the end of the specified type or being in 2809 /// alignment padding. The user type specified is known to be at most 128 bits 2810 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2811 /// classification that put one of the two halves in the INTEGER class. 2812 /// 2813 /// It is conservatively correct to return false. 2814 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2815 unsigned EndBit, ASTContext &Context) { 2816 // If the bytes being queried are off the end of the type, there is no user 2817 // data hiding here. This handles analysis of builtins, vectors and other 2818 // types that don't contain interesting padding. 2819 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2820 if (TySize <= StartBit) 2821 return true; 2822 2823 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2824 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2825 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2826 2827 // Check each element to see if the element overlaps with the queried range. 2828 for (unsigned i = 0; i != NumElts; ++i) { 2829 // If the element is after the span we care about, then we're done.. 2830 unsigned EltOffset = i*EltSize; 2831 if (EltOffset >= EndBit) break; 2832 2833 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2834 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2835 EndBit-EltOffset, Context)) 2836 return false; 2837 } 2838 // If it overlaps no elements, then it is safe to process as padding. 2839 return true; 2840 } 2841 2842 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2843 const RecordDecl *RD = RT->getDecl(); 2844 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2845 2846 // If this is a C++ record, check the bases first. 2847 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2848 for (const auto &I : CXXRD->bases()) { 2849 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2850 "Unexpected base class!"); 2851 const CXXRecordDecl *Base = 2852 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2853 2854 // If the base is after the span we care about, ignore it. 2855 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2856 if (BaseOffset >= EndBit) continue; 2857 2858 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2859 if (!BitsContainNoUserData(I.getType(), BaseStart, 2860 EndBit-BaseOffset, Context)) 2861 return false; 2862 } 2863 } 2864 2865 // Verify that no field has data that overlaps the region of interest. Yes 2866 // this could be sped up a lot by being smarter about queried fields, 2867 // however we're only looking at structs up to 16 bytes, so we don't care 2868 // much. 2869 unsigned idx = 0; 2870 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2871 i != e; ++i, ++idx) { 2872 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2873 2874 // If we found a field after the region we care about, then we're done. 2875 if (FieldOffset >= EndBit) break; 2876 2877 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2878 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2879 Context)) 2880 return false; 2881 } 2882 2883 // If nothing in this record overlapped the area of interest, then we're 2884 // clean. 2885 return true; 2886 } 2887 2888 return false; 2889 } 2890 2891 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2892 /// float member at the specified offset. For example, {int,{float}} has a 2893 /// float at offset 4. It is conservatively correct for this routine to return 2894 /// false. 2895 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2896 const llvm::DataLayout &TD) { 2897 // Base case if we find a float. 2898 if (IROffset == 0 && IRType->isFloatTy()) 2899 return true; 2900 2901 // If this is a struct, recurse into the field at the specified offset. 2902 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2903 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2904 unsigned Elt = SL->getElementContainingOffset(IROffset); 2905 IROffset -= SL->getElementOffset(Elt); 2906 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2907 } 2908 2909 // If this is an array, recurse into the field at the specified offset. 2910 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2911 llvm::Type *EltTy = ATy->getElementType(); 2912 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2913 IROffset -= IROffset/EltSize*EltSize; 2914 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2915 } 2916 2917 return false; 2918 } 2919 2920 2921 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2922 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2923 llvm::Type *X86_64ABIInfo:: 2924 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2925 QualType SourceTy, unsigned SourceOffset) const { 2926 // The only three choices we have are either double, <2 x float>, or float. We 2927 // pass as float if the last 4 bytes is just padding. This happens for 2928 // structs that contain 3 floats. 2929 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2930 SourceOffset*8+64, getContext())) 2931 return llvm::Type::getFloatTy(getVMContext()); 2932 2933 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2934 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2935 // case. 2936 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2937 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2938 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2939 2940 return llvm::Type::getDoubleTy(getVMContext()); 2941 } 2942 2943 2944 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2945 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2946 /// about the high or low part of an up-to-16-byte struct. This routine picks 2947 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2948 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2949 /// etc). 2950 /// 2951 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2952 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2953 /// the 8-byte value references. PrefType may be null. 2954 /// 2955 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2956 /// an offset into this that we're processing (which is always either 0 or 8). 2957 /// 2958 llvm::Type *X86_64ABIInfo:: 2959 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2960 QualType SourceTy, unsigned SourceOffset) const { 2961 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2962 // returning an 8-byte unit starting with it. See if we can safely use it. 2963 if (IROffset == 0) { 2964 // Pointers and int64's always fill the 8-byte unit. 2965 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2966 IRType->isIntegerTy(64)) 2967 return IRType; 2968 2969 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2970 // goodness in the source type is just tail padding. This is allowed to 2971 // kick in for struct {double,int} on the int, but not on 2972 // struct{double,int,int} because we wouldn't return the second int. We 2973 // have to do this analysis on the source type because we can't depend on 2974 // unions being lowered a specific way etc. 2975 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2976 IRType->isIntegerTy(32) || 2977 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2978 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2979 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2980 2981 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2982 SourceOffset*8+64, getContext())) 2983 return IRType; 2984 } 2985 } 2986 2987 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2988 // If this is a struct, recurse into the field at the specified offset. 2989 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2990 if (IROffset < SL->getSizeInBytes()) { 2991 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2992 IROffset -= SL->getElementOffset(FieldIdx); 2993 2994 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2995 SourceTy, SourceOffset); 2996 } 2997 } 2998 2999 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3000 llvm::Type *EltTy = ATy->getElementType(); 3001 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3002 unsigned EltOffset = IROffset/EltSize*EltSize; 3003 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3004 SourceOffset); 3005 } 3006 3007 // Okay, we don't have any better idea of what to pass, so we pass this in an 3008 // integer register that isn't too big to fit the rest of the struct. 3009 unsigned TySizeInBytes = 3010 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3011 3012 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3013 3014 // It is always safe to classify this as an integer type up to i64 that 3015 // isn't larger than the structure. 3016 return llvm::IntegerType::get(getVMContext(), 3017 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3018 } 3019 3020 3021 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3022 /// be used as elements of a two register pair to pass or return, return a 3023 /// first class aggregate to represent them. For example, if the low part of 3024 /// a by-value argument should be passed as i32* and the high part as float, 3025 /// return {i32*, float}. 3026 static llvm::Type * 3027 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3028 const llvm::DataLayout &TD) { 3029 // In order to correctly satisfy the ABI, we need to the high part to start 3030 // at offset 8. If the high and low parts we inferred are both 4-byte types 3031 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3032 // the second element at offset 8. Check for this: 3033 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3034 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3035 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3036 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3037 3038 // To handle this, we have to increase the size of the low part so that the 3039 // second element will start at an 8 byte offset. We can't increase the size 3040 // of the second element because it might make us access off the end of the 3041 // struct. 3042 if (HiStart != 8) { 3043 // There are usually two sorts of types the ABI generation code can produce 3044 // for the low part of a pair that aren't 8 bytes in size: float or 3045 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3046 // NaCl). 3047 // Promote these to a larger type. 3048 if (Lo->isFloatTy()) 3049 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3050 else { 3051 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3052 && "Invalid/unknown lo type"); 3053 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3054 } 3055 } 3056 3057 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 3058 3059 3060 // Verify that the second element is at an 8-byte offset. 3061 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3062 "Invalid x86-64 argument pair!"); 3063 return Result; 3064 } 3065 3066 ABIArgInfo X86_64ABIInfo:: 3067 classifyReturnType(QualType RetTy) const { 3068 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3069 // classification algorithm. 3070 X86_64ABIInfo::Class Lo, Hi; 3071 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3072 3073 // Check some invariants. 3074 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3075 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3076 3077 llvm::Type *ResType = nullptr; 3078 switch (Lo) { 3079 case NoClass: 3080 if (Hi == NoClass) 3081 return ABIArgInfo::getIgnore(); 3082 // If the low part is just padding, it takes no register, leave ResType 3083 // null. 3084 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3085 "Unknown missing lo part"); 3086 break; 3087 3088 case SSEUp: 3089 case X87Up: 3090 llvm_unreachable("Invalid classification for lo word."); 3091 3092 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3093 // hidden argument. 3094 case Memory: 3095 return getIndirectReturnResult(RetTy); 3096 3097 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3098 // available register of the sequence %rax, %rdx is used. 3099 case Integer: 3100 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3101 3102 // If we have a sign or zero extended integer, make sure to return Extend 3103 // so that the parameter gets the right LLVM IR attributes. 3104 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3105 // Treat an enum type as its underlying type. 3106 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3107 RetTy = EnumTy->getDecl()->getIntegerType(); 3108 3109 if (RetTy->isIntegralOrEnumerationType() && 3110 RetTy->isPromotableIntegerType()) 3111 return ABIArgInfo::getExtend(); 3112 } 3113 break; 3114 3115 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3116 // available SSE register of the sequence %xmm0, %xmm1 is used. 3117 case SSE: 3118 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3119 break; 3120 3121 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3122 // returned on the X87 stack in %st0 as 80-bit x87 number. 3123 case X87: 3124 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3125 break; 3126 3127 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3128 // part of the value is returned in %st0 and the imaginary part in 3129 // %st1. 3130 case ComplexX87: 3131 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3132 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3133 llvm::Type::getX86_FP80Ty(getVMContext()), 3134 nullptr); 3135 break; 3136 } 3137 3138 llvm::Type *HighPart = nullptr; 3139 switch (Hi) { 3140 // Memory was handled previously and X87 should 3141 // never occur as a hi class. 3142 case Memory: 3143 case X87: 3144 llvm_unreachable("Invalid classification for hi word."); 3145 3146 case ComplexX87: // Previously handled. 3147 case NoClass: 3148 break; 3149 3150 case Integer: 3151 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3152 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3153 return ABIArgInfo::getDirect(HighPart, 8); 3154 break; 3155 case SSE: 3156 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3157 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3158 return ABIArgInfo::getDirect(HighPart, 8); 3159 break; 3160 3161 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3162 // is passed in the next available eightbyte chunk if the last used 3163 // vector register. 3164 // 3165 // SSEUP should always be preceded by SSE, just widen. 3166 case SSEUp: 3167 assert(Lo == SSE && "Unexpected SSEUp classification."); 3168 ResType = GetByteVectorType(RetTy); 3169 break; 3170 3171 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3172 // returned together with the previous X87 value in %st0. 3173 case X87Up: 3174 // If X87Up is preceded by X87, we don't need to do 3175 // anything. However, in some cases with unions it may not be 3176 // preceded by X87. In such situations we follow gcc and pass the 3177 // extra bits in an SSE reg. 3178 if (Lo != X87) { 3179 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3180 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3181 return ABIArgInfo::getDirect(HighPart, 8); 3182 } 3183 break; 3184 } 3185 3186 // If a high part was specified, merge it together with the low part. It is 3187 // known to pass in the high eightbyte of the result. We do this by forming a 3188 // first class struct aggregate with the high and low part: {low, high} 3189 if (HighPart) 3190 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3191 3192 return ABIArgInfo::getDirect(ResType); 3193 } 3194 3195 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3196 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3197 bool isNamedArg) 3198 const 3199 { 3200 Ty = useFirstFieldIfTransparentUnion(Ty); 3201 3202 X86_64ABIInfo::Class Lo, Hi; 3203 classify(Ty, 0, Lo, Hi, isNamedArg); 3204 3205 // Check some invariants. 3206 // FIXME: Enforce these by construction. 3207 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3208 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3209 3210 neededInt = 0; 3211 neededSSE = 0; 3212 llvm::Type *ResType = nullptr; 3213 switch (Lo) { 3214 case NoClass: 3215 if (Hi == NoClass) 3216 return ABIArgInfo::getIgnore(); 3217 // If the low part is just padding, it takes no register, leave ResType 3218 // null. 3219 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3220 "Unknown missing lo part"); 3221 break; 3222 3223 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3224 // on the stack. 3225 case Memory: 3226 3227 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3228 // COMPLEX_X87, it is passed in memory. 3229 case X87: 3230 case ComplexX87: 3231 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3232 ++neededInt; 3233 return getIndirectResult(Ty, freeIntRegs); 3234 3235 case SSEUp: 3236 case X87Up: 3237 llvm_unreachable("Invalid classification for lo word."); 3238 3239 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3240 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3241 // and %r9 is used. 3242 case Integer: 3243 ++neededInt; 3244 3245 // Pick an 8-byte type based on the preferred type. 3246 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3247 3248 // If we have a sign or zero extended integer, make sure to return Extend 3249 // so that the parameter gets the right LLVM IR attributes. 3250 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3251 // Treat an enum type as its underlying type. 3252 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3253 Ty = EnumTy->getDecl()->getIntegerType(); 3254 3255 if (Ty->isIntegralOrEnumerationType() && 3256 Ty->isPromotableIntegerType()) 3257 return ABIArgInfo::getExtend(); 3258 } 3259 3260 break; 3261 3262 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3263 // available SSE register is used, the registers are taken in the 3264 // order from %xmm0 to %xmm7. 3265 case SSE: { 3266 llvm::Type *IRType = CGT.ConvertType(Ty); 3267 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3268 ++neededSSE; 3269 break; 3270 } 3271 } 3272 3273 llvm::Type *HighPart = nullptr; 3274 switch (Hi) { 3275 // Memory was handled previously, ComplexX87 and X87 should 3276 // never occur as hi classes, and X87Up must be preceded by X87, 3277 // which is passed in memory. 3278 case Memory: 3279 case X87: 3280 case ComplexX87: 3281 llvm_unreachable("Invalid classification for hi word."); 3282 3283 case NoClass: break; 3284 3285 case Integer: 3286 ++neededInt; 3287 // Pick an 8-byte type based on the preferred type. 3288 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3289 3290 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3291 return ABIArgInfo::getDirect(HighPart, 8); 3292 break; 3293 3294 // X87Up generally doesn't occur here (long double is passed in 3295 // memory), except in situations involving unions. 3296 case X87Up: 3297 case SSE: 3298 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3299 3300 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3301 return ABIArgInfo::getDirect(HighPart, 8); 3302 3303 ++neededSSE; 3304 break; 3305 3306 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3307 // eightbyte is passed in the upper half of the last used SSE 3308 // register. This only happens when 128-bit vectors are passed. 3309 case SSEUp: 3310 assert(Lo == SSE && "Unexpected SSEUp classification"); 3311 ResType = GetByteVectorType(Ty); 3312 break; 3313 } 3314 3315 // If a high part was specified, merge it together with the low part. It is 3316 // known to pass in the high eightbyte of the result. We do this by forming a 3317 // first class struct aggregate with the high and low part: {low, high} 3318 if (HighPart) 3319 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3320 3321 return ABIArgInfo::getDirect(ResType); 3322 } 3323 3324 ABIArgInfo 3325 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3326 unsigned &NeededSSE) const { 3327 auto RT = Ty->getAs<RecordType>(); 3328 assert(RT && "classifyRegCallStructType only valid with struct types"); 3329 3330 if (RT->getDecl()->hasFlexibleArrayMember()) 3331 return getIndirectReturnResult(Ty); 3332 3333 // Sum up bases 3334 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3335 if (CXXRD->isDynamicClass()) { 3336 NeededInt = NeededSSE = 0; 3337 return getIndirectReturnResult(Ty); 3338 } 3339 3340 for (const auto &I : CXXRD->bases()) 3341 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3342 .isIndirect()) { 3343 NeededInt = NeededSSE = 0; 3344 return getIndirectReturnResult(Ty); 3345 } 3346 } 3347 3348 // Sum up members 3349 for (const auto *FD : RT->getDecl()->fields()) { 3350 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3351 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3352 .isIndirect()) { 3353 NeededInt = NeededSSE = 0; 3354 return getIndirectReturnResult(Ty); 3355 } 3356 } else { 3357 unsigned LocalNeededInt, LocalNeededSSE; 3358 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3359 LocalNeededSSE, true) 3360 .isIndirect()) { 3361 NeededInt = NeededSSE = 0; 3362 return getIndirectReturnResult(Ty); 3363 } 3364 NeededInt += LocalNeededInt; 3365 NeededSSE += LocalNeededSSE; 3366 } 3367 } 3368 3369 return ABIArgInfo::getDirect(); 3370 } 3371 3372 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3373 unsigned &NeededInt, 3374 unsigned &NeededSSE) const { 3375 3376 NeededInt = 0; 3377 NeededSSE = 0; 3378 3379 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3380 } 3381 3382 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3383 3384 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3385 3386 // Keep track of the number of assigned registers. 3387 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3388 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3389 unsigned NeededInt, NeededSSE; 3390 3391 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3392 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3393 FI.getReturnInfo() = 3394 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3395 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3396 FreeIntRegs -= NeededInt; 3397 FreeSSERegs -= NeededSSE; 3398 } else { 3399 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3400 } 3401 } else if (!getCXXABI().classifyReturnType(FI)) 3402 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3403 3404 // If the return value is indirect, then the hidden argument is consuming one 3405 // integer register. 3406 if (FI.getReturnInfo().isIndirect()) 3407 --FreeIntRegs; 3408 3409 // The chain argument effectively gives us another free register. 3410 if (FI.isChainCall()) 3411 ++FreeIntRegs; 3412 3413 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3414 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3415 // get assigned (in left-to-right order) for passing as follows... 3416 unsigned ArgNo = 0; 3417 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3418 it != ie; ++it, ++ArgNo) { 3419 bool IsNamedArg = ArgNo < NumRequiredArgs; 3420 3421 if (IsRegCall && it->type->isStructureOrClassType()) 3422 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3423 else 3424 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3425 NeededSSE, IsNamedArg); 3426 3427 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3428 // eightbyte of an argument, the whole argument is passed on the 3429 // stack. If registers have already been assigned for some 3430 // eightbytes of such an argument, the assignments get reverted. 3431 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3432 FreeIntRegs -= NeededInt; 3433 FreeSSERegs -= NeededSSE; 3434 } else { 3435 it->info = getIndirectResult(it->type, FreeIntRegs); 3436 } 3437 } 3438 } 3439 3440 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3441 Address VAListAddr, QualType Ty) { 3442 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3443 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3444 llvm::Value *overflow_arg_area = 3445 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3446 3447 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3448 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3449 // It isn't stated explicitly in the standard, but in practice we use 3450 // alignment greater than 16 where necessary. 3451 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3452 if (Align > CharUnits::fromQuantity(8)) { 3453 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3454 Align); 3455 } 3456 3457 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3458 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3459 llvm::Value *Res = 3460 CGF.Builder.CreateBitCast(overflow_arg_area, 3461 llvm::PointerType::getUnqual(LTy)); 3462 3463 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3464 // l->overflow_arg_area + sizeof(type). 3465 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3466 // an 8 byte boundary. 3467 3468 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3469 llvm::Value *Offset = 3470 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3471 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3472 "overflow_arg_area.next"); 3473 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3474 3475 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3476 return Address(Res, Align); 3477 } 3478 3479 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3480 QualType Ty) const { 3481 // Assume that va_list type is correct; should be pointer to LLVM type: 3482 // struct { 3483 // i32 gp_offset; 3484 // i32 fp_offset; 3485 // i8* overflow_arg_area; 3486 // i8* reg_save_area; 3487 // }; 3488 unsigned neededInt, neededSSE; 3489 3490 Ty = getContext().getCanonicalType(Ty); 3491 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3492 /*isNamedArg*/false); 3493 3494 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3495 // in the registers. If not go to step 7. 3496 if (!neededInt && !neededSSE) 3497 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3498 3499 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3500 // general purpose registers needed to pass type and num_fp to hold 3501 // the number of floating point registers needed. 3502 3503 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3504 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3505 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3506 // 3507 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3508 // register save space). 3509 3510 llvm::Value *InRegs = nullptr; 3511 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3512 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3513 if (neededInt) { 3514 gp_offset_p = 3515 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3516 "gp_offset_p"); 3517 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3518 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3519 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3520 } 3521 3522 if (neededSSE) { 3523 fp_offset_p = 3524 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3525 "fp_offset_p"); 3526 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3527 llvm::Value *FitsInFP = 3528 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3529 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3530 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3531 } 3532 3533 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3534 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3535 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3536 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3537 3538 // Emit code to load the value if it was passed in registers. 3539 3540 CGF.EmitBlock(InRegBlock); 3541 3542 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3543 // an offset of l->gp_offset and/or l->fp_offset. This may require 3544 // copying to a temporary location in case the parameter is passed 3545 // in different register classes or requires an alignment greater 3546 // than 8 for general purpose registers and 16 for XMM registers. 3547 // 3548 // FIXME: This really results in shameful code when we end up needing to 3549 // collect arguments from different places; often what should result in a 3550 // simple assembling of a structure from scattered addresses has many more 3551 // loads than necessary. Can we clean this up? 3552 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3553 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3554 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3555 "reg_save_area"); 3556 3557 Address RegAddr = Address::invalid(); 3558 if (neededInt && neededSSE) { 3559 // FIXME: Cleanup. 3560 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3561 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3562 Address Tmp = CGF.CreateMemTemp(Ty); 3563 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3564 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3565 llvm::Type *TyLo = ST->getElementType(0); 3566 llvm::Type *TyHi = ST->getElementType(1); 3567 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3568 "Unexpected ABI info for mixed regs"); 3569 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3570 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3571 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3572 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3573 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3574 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3575 3576 // Copy the first element. 3577 // FIXME: Our choice of alignment here and below is probably pessimistic. 3578 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3579 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3580 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3581 CGF.Builder.CreateStore(V, 3582 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3583 3584 // Copy the second element. 3585 V = CGF.Builder.CreateAlignedLoad( 3586 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3587 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3588 CharUnits Offset = CharUnits::fromQuantity( 3589 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3590 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3591 3592 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3593 } else if (neededInt) { 3594 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3595 CharUnits::fromQuantity(8)); 3596 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3597 3598 // Copy to a temporary if necessary to ensure the appropriate alignment. 3599 std::pair<CharUnits, CharUnits> SizeAlign = 3600 getContext().getTypeInfoInChars(Ty); 3601 uint64_t TySize = SizeAlign.first.getQuantity(); 3602 CharUnits TyAlign = SizeAlign.second; 3603 3604 // Copy into a temporary if the type is more aligned than the 3605 // register save area. 3606 if (TyAlign.getQuantity() > 8) { 3607 Address Tmp = CGF.CreateMemTemp(Ty); 3608 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3609 RegAddr = Tmp; 3610 } 3611 3612 } else if (neededSSE == 1) { 3613 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3614 CharUnits::fromQuantity(16)); 3615 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3616 } else { 3617 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3618 // SSE registers are spaced 16 bytes apart in the register save 3619 // area, we need to collect the two eightbytes together. 3620 // The ABI isn't explicit about this, but it seems reasonable 3621 // to assume that the slots are 16-byte aligned, since the stack is 3622 // naturally 16-byte aligned and the prologue is expected to store 3623 // all the SSE registers to the RSA. 3624 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3625 CharUnits::fromQuantity(16)); 3626 Address RegAddrHi = 3627 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3628 CharUnits::fromQuantity(16)); 3629 llvm::Type *DoubleTy = CGF.DoubleTy; 3630 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3631 llvm::Value *V; 3632 Address Tmp = CGF.CreateMemTemp(Ty); 3633 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3634 V = CGF.Builder.CreateLoad( 3635 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3636 CGF.Builder.CreateStore(V, 3637 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3638 V = CGF.Builder.CreateLoad( 3639 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3640 CGF.Builder.CreateStore(V, 3641 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3642 3643 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3644 } 3645 3646 // AMD64-ABI 3.5.7p5: Step 5. Set: 3647 // l->gp_offset = l->gp_offset + num_gp * 8 3648 // l->fp_offset = l->fp_offset + num_fp * 16. 3649 if (neededInt) { 3650 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3651 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3652 gp_offset_p); 3653 } 3654 if (neededSSE) { 3655 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3656 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3657 fp_offset_p); 3658 } 3659 CGF.EmitBranch(ContBlock); 3660 3661 // Emit code to load the value if it was passed in memory. 3662 3663 CGF.EmitBlock(InMemBlock); 3664 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3665 3666 // Return the appropriate result. 3667 3668 CGF.EmitBlock(ContBlock); 3669 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3670 "vaarg.addr"); 3671 return ResAddr; 3672 } 3673 3674 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3675 QualType Ty) const { 3676 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3677 CGF.getContext().getTypeInfoInChars(Ty), 3678 CharUnits::fromQuantity(8), 3679 /*allowHigherAlign*/ false); 3680 } 3681 3682 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3683 bool IsReturnType) const { 3684 3685 if (Ty->isVoidType()) 3686 return ABIArgInfo::getIgnore(); 3687 3688 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3689 Ty = EnumTy->getDecl()->getIntegerType(); 3690 3691 TypeInfo Info = getContext().getTypeInfo(Ty); 3692 uint64_t Width = Info.Width; 3693 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3694 3695 const RecordType *RT = Ty->getAs<RecordType>(); 3696 if (RT) { 3697 if (!IsReturnType) { 3698 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3699 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3700 } 3701 3702 if (RT->getDecl()->hasFlexibleArrayMember()) 3703 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3704 3705 } 3706 3707 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3708 // other targets. 3709 const Type *Base = nullptr; 3710 uint64_t NumElts = 0; 3711 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3712 if (FreeSSERegs >= NumElts) { 3713 FreeSSERegs -= NumElts; 3714 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3715 return ABIArgInfo::getDirect(); 3716 return ABIArgInfo::getExpand(); 3717 } 3718 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3719 } 3720 3721 3722 if (Ty->isMemberPointerType()) { 3723 // If the member pointer is represented by an LLVM int or ptr, pass it 3724 // directly. 3725 llvm::Type *LLTy = CGT.ConvertType(Ty); 3726 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3727 return ABIArgInfo::getDirect(); 3728 } 3729 3730 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3731 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3732 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3733 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3734 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3735 3736 // Otherwise, coerce it to a small integer. 3737 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3738 } 3739 3740 // Bool type is always extended to the ABI, other builtin types are not 3741 // extended. 3742 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3743 if (BT && BT->getKind() == BuiltinType::Bool) 3744 return ABIArgInfo::getExtend(); 3745 3746 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3747 // passes them indirectly through memory. 3748 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3749 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3750 if (LDF == &llvm::APFloat::x87DoubleExtended) 3751 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3752 } 3753 3754 return ABIArgInfo::getDirect(); 3755 } 3756 3757 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3758 bool IsVectorCall = 3759 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3760 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3761 3762 unsigned FreeSSERegs = 0; 3763 if (IsVectorCall) { 3764 // We can use up to 4 SSE return registers with vectorcall. 3765 FreeSSERegs = 4; 3766 } else if (IsRegCall) { 3767 // RegCall gives us 16 SSE registers. 3768 FreeSSERegs = 16; 3769 } 3770 3771 if (!getCXXABI().classifyReturnType(FI)) 3772 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3773 3774 if (IsVectorCall) { 3775 // We can use up to 6 SSE register parameters with vectorcall. 3776 FreeSSERegs = 6; 3777 } else if (IsRegCall) { 3778 FreeSSERegs = 16; 3779 } 3780 3781 for (auto &I : FI.arguments()) 3782 I.info = classify(I.type, FreeSSERegs, false); 3783 } 3784 3785 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3786 QualType Ty) const { 3787 3788 bool IsIndirect = false; 3789 3790 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3791 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3792 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 3793 uint64_t Width = getContext().getTypeSize(Ty); 3794 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3795 } 3796 3797 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3798 CGF.getContext().getTypeInfoInChars(Ty), 3799 CharUnits::fromQuantity(8), 3800 /*allowHigherAlign*/ false); 3801 } 3802 3803 // PowerPC-32 3804 namespace { 3805 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3806 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3807 bool IsSoftFloatABI; 3808 public: 3809 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 3810 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 3811 3812 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3813 QualType Ty) const override; 3814 }; 3815 3816 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3817 public: 3818 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 3819 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 3820 3821 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3822 // This is recovered from gcc output. 3823 return 1; // r1 is the dedicated stack pointer 3824 } 3825 3826 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3827 llvm::Value *Address) const override; 3828 }; 3829 3830 } 3831 3832 // TODO: this implementation is now likely redundant with 3833 // DefaultABIInfo::EmitVAArg. 3834 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 3835 QualType Ty) const { 3836 const unsigned OverflowLimit = 8; 3837 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3838 // TODO: Implement this. For now ignore. 3839 (void)CTy; 3840 return Address::invalid(); // FIXME? 3841 } 3842 3843 // struct __va_list_tag { 3844 // unsigned char gpr; 3845 // unsigned char fpr; 3846 // unsigned short reserved; 3847 // void *overflow_arg_area; 3848 // void *reg_save_area; 3849 // }; 3850 3851 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3852 bool isInt = 3853 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3854 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 3855 3856 // All aggregates are passed indirectly? That doesn't seem consistent 3857 // with the argument-lowering code. 3858 bool isIndirect = Ty->isAggregateType(); 3859 3860 CGBuilderTy &Builder = CGF.Builder; 3861 3862 // The calling convention either uses 1-2 GPRs or 1 FPR. 3863 Address NumRegsAddr = Address::invalid(); 3864 if (isInt || IsSoftFloatABI) { 3865 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 3866 } else { 3867 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 3868 } 3869 3870 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 3871 3872 // "Align" the register count when TY is i64. 3873 if (isI64 || (isF64 && IsSoftFloatABI)) { 3874 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 3875 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 3876 } 3877 3878 llvm::Value *CC = 3879 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 3880 3881 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3882 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3883 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3884 3885 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3886 3887 llvm::Type *DirectTy = CGF.ConvertType(Ty); 3888 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 3889 3890 // Case 1: consume registers. 3891 Address RegAddr = Address::invalid(); 3892 { 3893 CGF.EmitBlock(UsingRegs); 3894 3895 Address RegSaveAreaPtr = 3896 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 3897 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 3898 CharUnits::fromQuantity(8)); 3899 assert(RegAddr.getElementType() == CGF.Int8Ty); 3900 3901 // Floating-point registers start after the general-purpose registers. 3902 if (!(isInt || IsSoftFloatABI)) { 3903 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 3904 CharUnits::fromQuantity(32)); 3905 } 3906 3907 // Get the address of the saved value by scaling the number of 3908 // registers we've used by the number of 3909 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 3910 llvm::Value *RegOffset = 3911 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 3912 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 3913 RegAddr.getPointer(), RegOffset), 3914 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 3915 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 3916 3917 // Increase the used-register count. 3918 NumRegs = 3919 Builder.CreateAdd(NumRegs, 3920 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 3921 Builder.CreateStore(NumRegs, NumRegsAddr); 3922 3923 CGF.EmitBranch(Cont); 3924 } 3925 3926 // Case 2: consume space in the overflow area. 3927 Address MemAddr = Address::invalid(); 3928 { 3929 CGF.EmitBlock(UsingOverflow); 3930 3931 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 3932 3933 // Everything in the overflow area is rounded up to a size of at least 4. 3934 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 3935 3936 CharUnits Size; 3937 if (!isIndirect) { 3938 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 3939 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 3940 } else { 3941 Size = CGF.getPointerSize(); 3942 } 3943 3944 Address OverflowAreaAddr = 3945 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 3946 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 3947 OverflowAreaAlign); 3948 // Round up address of argument to alignment 3949 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3950 if (Align > OverflowAreaAlign) { 3951 llvm::Value *Ptr = OverflowArea.getPointer(); 3952 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 3953 Align); 3954 } 3955 3956 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 3957 3958 // Increase the overflow area. 3959 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 3960 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 3961 CGF.EmitBranch(Cont); 3962 } 3963 3964 CGF.EmitBlock(Cont); 3965 3966 // Merge the cases with a phi. 3967 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 3968 "vaarg.addr"); 3969 3970 // Load the pointer if the argument was passed indirectly. 3971 if (isIndirect) { 3972 Result = Address(Builder.CreateLoad(Result, "aggr"), 3973 getContext().getTypeAlignInChars(Ty)); 3974 } 3975 3976 return Result; 3977 } 3978 3979 bool 3980 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3981 llvm::Value *Address) const { 3982 // This is calculated from the LLVM and GCC tables and verified 3983 // against gcc output. AFAIK all ABIs use the same encoding. 3984 3985 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3986 3987 llvm::IntegerType *i8 = CGF.Int8Ty; 3988 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3989 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3990 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3991 3992 // 0-31: r0-31, the 4-byte general-purpose registers 3993 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3994 3995 // 32-63: fp0-31, the 8-byte floating-point registers 3996 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3997 3998 // 64-76 are various 4-byte special-purpose registers: 3999 // 64: mq 4000 // 65: lr 4001 // 66: ctr 4002 // 67: ap 4003 // 68-75 cr0-7 4004 // 76: xer 4005 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4006 4007 // 77-108: v0-31, the 16-byte vector registers 4008 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4009 4010 // 109: vrsave 4011 // 110: vscr 4012 // 111: spe_acc 4013 // 112: spefscr 4014 // 113: sfp 4015 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4016 4017 return false; 4018 } 4019 4020 // PowerPC-64 4021 4022 namespace { 4023 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4024 class PPC64_SVR4_ABIInfo : public ABIInfo { 4025 public: 4026 enum ABIKind { 4027 ELFv1 = 0, 4028 ELFv2 4029 }; 4030 4031 private: 4032 static const unsigned GPRBits = 64; 4033 ABIKind Kind; 4034 bool HasQPX; 4035 bool IsSoftFloatABI; 4036 4037 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4038 // will be passed in a QPX register. 4039 bool IsQPXVectorTy(const Type *Ty) const { 4040 if (!HasQPX) 4041 return false; 4042 4043 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4044 unsigned NumElements = VT->getNumElements(); 4045 if (NumElements == 1) 4046 return false; 4047 4048 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4049 if (getContext().getTypeSize(Ty) <= 256) 4050 return true; 4051 } else if (VT->getElementType()-> 4052 isSpecificBuiltinType(BuiltinType::Float)) { 4053 if (getContext().getTypeSize(Ty) <= 128) 4054 return true; 4055 } 4056 } 4057 4058 return false; 4059 } 4060 4061 bool IsQPXVectorTy(QualType Ty) const { 4062 return IsQPXVectorTy(Ty.getTypePtr()); 4063 } 4064 4065 public: 4066 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4067 bool SoftFloatABI) 4068 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4069 IsSoftFloatABI(SoftFloatABI) {} 4070 4071 bool isPromotableTypeForABI(QualType Ty) const; 4072 CharUnits getParamTypeAlignment(QualType Ty) const; 4073 4074 ABIArgInfo classifyReturnType(QualType RetTy) const; 4075 ABIArgInfo classifyArgumentType(QualType Ty) const; 4076 4077 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4078 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4079 uint64_t Members) const override; 4080 4081 // TODO: We can add more logic to computeInfo to improve performance. 4082 // Example: For aggregate arguments that fit in a register, we could 4083 // use getDirectInReg (as is done below for structs containing a single 4084 // floating-point value) to avoid pushing them to memory on function 4085 // entry. This would require changing the logic in PPCISelLowering 4086 // when lowering the parameters in the caller and args in the callee. 4087 void computeInfo(CGFunctionInfo &FI) const override { 4088 if (!getCXXABI().classifyReturnType(FI)) 4089 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4090 for (auto &I : FI.arguments()) { 4091 // We rely on the default argument classification for the most part. 4092 // One exception: An aggregate containing a single floating-point 4093 // or vector item must be passed in a register if one is available. 4094 const Type *T = isSingleElementStruct(I.type, getContext()); 4095 if (T) { 4096 const BuiltinType *BT = T->getAs<BuiltinType>(); 4097 if (IsQPXVectorTy(T) || 4098 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4099 (BT && BT->isFloatingPoint())) { 4100 QualType QT(T, 0); 4101 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4102 continue; 4103 } 4104 } 4105 I.info = classifyArgumentType(I.type); 4106 } 4107 } 4108 4109 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4110 QualType Ty) const override; 4111 }; 4112 4113 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4114 4115 public: 4116 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4117 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4118 bool SoftFloatABI) 4119 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4120 SoftFloatABI)) {} 4121 4122 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4123 // This is recovered from gcc output. 4124 return 1; // r1 is the dedicated stack pointer 4125 } 4126 4127 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4128 llvm::Value *Address) const override; 4129 }; 4130 4131 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4132 public: 4133 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4134 4135 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4136 // This is recovered from gcc output. 4137 return 1; // r1 is the dedicated stack pointer 4138 } 4139 4140 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4141 llvm::Value *Address) const override; 4142 }; 4143 4144 } 4145 4146 // Return true if the ABI requires Ty to be passed sign- or zero- 4147 // extended to 64 bits. 4148 bool 4149 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4150 // Treat an enum type as its underlying type. 4151 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4152 Ty = EnumTy->getDecl()->getIntegerType(); 4153 4154 // Promotable integer types are required to be promoted by the ABI. 4155 if (Ty->isPromotableIntegerType()) 4156 return true; 4157 4158 // In addition to the usual promotable integer types, we also need to 4159 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4160 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4161 switch (BT->getKind()) { 4162 case BuiltinType::Int: 4163 case BuiltinType::UInt: 4164 return true; 4165 default: 4166 break; 4167 } 4168 4169 return false; 4170 } 4171 4172 /// isAlignedParamType - Determine whether a type requires 16-byte or 4173 /// higher alignment in the parameter area. Always returns at least 8. 4174 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4175 // Complex types are passed just like their elements. 4176 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4177 Ty = CTy->getElementType(); 4178 4179 // Only vector types of size 16 bytes need alignment (larger types are 4180 // passed via reference, smaller types are not aligned). 4181 if (IsQPXVectorTy(Ty)) { 4182 if (getContext().getTypeSize(Ty) > 128) 4183 return CharUnits::fromQuantity(32); 4184 4185 return CharUnits::fromQuantity(16); 4186 } else if (Ty->isVectorType()) { 4187 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4188 } 4189 4190 // For single-element float/vector structs, we consider the whole type 4191 // to have the same alignment requirements as its single element. 4192 const Type *AlignAsType = nullptr; 4193 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4194 if (EltType) { 4195 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4196 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4197 getContext().getTypeSize(EltType) == 128) || 4198 (BT && BT->isFloatingPoint())) 4199 AlignAsType = EltType; 4200 } 4201 4202 // Likewise for ELFv2 homogeneous aggregates. 4203 const Type *Base = nullptr; 4204 uint64_t Members = 0; 4205 if (!AlignAsType && Kind == ELFv2 && 4206 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4207 AlignAsType = Base; 4208 4209 // With special case aggregates, only vector base types need alignment. 4210 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4211 if (getContext().getTypeSize(AlignAsType) > 128) 4212 return CharUnits::fromQuantity(32); 4213 4214 return CharUnits::fromQuantity(16); 4215 } else if (AlignAsType) { 4216 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4217 } 4218 4219 // Otherwise, we only need alignment for any aggregate type that 4220 // has an alignment requirement of >= 16 bytes. 4221 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4222 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4223 return CharUnits::fromQuantity(32); 4224 return CharUnits::fromQuantity(16); 4225 } 4226 4227 return CharUnits::fromQuantity(8); 4228 } 4229 4230 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4231 /// aggregate. Base is set to the base element type, and Members is set 4232 /// to the number of base elements. 4233 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4234 uint64_t &Members) const { 4235 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4236 uint64_t NElements = AT->getSize().getZExtValue(); 4237 if (NElements == 0) 4238 return false; 4239 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4240 return false; 4241 Members *= NElements; 4242 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4243 const RecordDecl *RD = RT->getDecl(); 4244 if (RD->hasFlexibleArrayMember()) 4245 return false; 4246 4247 Members = 0; 4248 4249 // If this is a C++ record, check the bases first. 4250 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4251 for (const auto &I : CXXRD->bases()) { 4252 // Ignore empty records. 4253 if (isEmptyRecord(getContext(), I.getType(), true)) 4254 continue; 4255 4256 uint64_t FldMembers; 4257 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4258 return false; 4259 4260 Members += FldMembers; 4261 } 4262 } 4263 4264 for (const auto *FD : RD->fields()) { 4265 // Ignore (non-zero arrays of) empty records. 4266 QualType FT = FD->getType(); 4267 while (const ConstantArrayType *AT = 4268 getContext().getAsConstantArrayType(FT)) { 4269 if (AT->getSize().getZExtValue() == 0) 4270 return false; 4271 FT = AT->getElementType(); 4272 } 4273 if (isEmptyRecord(getContext(), FT, true)) 4274 continue; 4275 4276 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4277 if (getContext().getLangOpts().CPlusPlus && 4278 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4279 continue; 4280 4281 uint64_t FldMembers; 4282 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4283 return false; 4284 4285 Members = (RD->isUnion() ? 4286 std::max(Members, FldMembers) : Members + FldMembers); 4287 } 4288 4289 if (!Base) 4290 return false; 4291 4292 // Ensure there is no padding. 4293 if (getContext().getTypeSize(Base) * Members != 4294 getContext().getTypeSize(Ty)) 4295 return false; 4296 } else { 4297 Members = 1; 4298 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4299 Members = 2; 4300 Ty = CT->getElementType(); 4301 } 4302 4303 // Most ABIs only support float, double, and some vector type widths. 4304 if (!isHomogeneousAggregateBaseType(Ty)) 4305 return false; 4306 4307 // The base type must be the same for all members. Types that 4308 // agree in both total size and mode (float vs. vector) are 4309 // treated as being equivalent here. 4310 const Type *TyPtr = Ty.getTypePtr(); 4311 if (!Base) { 4312 Base = TyPtr; 4313 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4314 // so make sure to widen it explicitly. 4315 if (const VectorType *VT = Base->getAs<VectorType>()) { 4316 QualType EltTy = VT->getElementType(); 4317 unsigned NumElements = 4318 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4319 Base = getContext() 4320 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4321 .getTypePtr(); 4322 } 4323 } 4324 4325 if (Base->isVectorType() != TyPtr->isVectorType() || 4326 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4327 return false; 4328 } 4329 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4330 } 4331 4332 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4333 // Homogeneous aggregates for ELFv2 must have base types of float, 4334 // double, long double, or 128-bit vectors. 4335 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4336 if (BT->getKind() == BuiltinType::Float || 4337 BT->getKind() == BuiltinType::Double || 4338 BT->getKind() == BuiltinType::LongDouble) { 4339 if (IsSoftFloatABI) 4340 return false; 4341 return true; 4342 } 4343 } 4344 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4345 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4346 return true; 4347 } 4348 return false; 4349 } 4350 4351 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4352 const Type *Base, uint64_t Members) const { 4353 // Vector types require one register, floating point types require one 4354 // or two registers depending on their size. 4355 uint32_t NumRegs = 4356 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4357 4358 // Homogeneous Aggregates may occupy at most 8 registers. 4359 return Members * NumRegs <= 8; 4360 } 4361 4362 ABIArgInfo 4363 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4364 Ty = useFirstFieldIfTransparentUnion(Ty); 4365 4366 if (Ty->isAnyComplexType()) 4367 return ABIArgInfo::getDirect(); 4368 4369 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4370 // or via reference (larger than 16 bytes). 4371 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4372 uint64_t Size = getContext().getTypeSize(Ty); 4373 if (Size > 128) 4374 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4375 else if (Size < 128) { 4376 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4377 return ABIArgInfo::getDirect(CoerceTy); 4378 } 4379 } 4380 4381 if (isAggregateTypeForABI(Ty)) { 4382 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4383 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4384 4385 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4386 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4387 4388 // ELFv2 homogeneous aggregates are passed as array types. 4389 const Type *Base = nullptr; 4390 uint64_t Members = 0; 4391 if (Kind == ELFv2 && 4392 isHomogeneousAggregate(Ty, Base, Members)) { 4393 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4394 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4395 return ABIArgInfo::getDirect(CoerceTy); 4396 } 4397 4398 // If an aggregate may end up fully in registers, we do not 4399 // use the ByVal method, but pass the aggregate as array. 4400 // This is usually beneficial since we avoid forcing the 4401 // back-end to store the argument to memory. 4402 uint64_t Bits = getContext().getTypeSize(Ty); 4403 if (Bits > 0 && Bits <= 8 * GPRBits) { 4404 llvm::Type *CoerceTy; 4405 4406 // Types up to 8 bytes are passed as integer type (which will be 4407 // properly aligned in the argument save area doubleword). 4408 if (Bits <= GPRBits) 4409 CoerceTy = 4410 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4411 // Larger types are passed as arrays, with the base type selected 4412 // according to the required alignment in the save area. 4413 else { 4414 uint64_t RegBits = ABIAlign * 8; 4415 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4416 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4417 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4418 } 4419 4420 return ABIArgInfo::getDirect(CoerceTy); 4421 } 4422 4423 // All other aggregates are passed ByVal. 4424 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4425 /*ByVal=*/true, 4426 /*Realign=*/TyAlign > ABIAlign); 4427 } 4428 4429 return (isPromotableTypeForABI(Ty) ? 4430 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4431 } 4432 4433 ABIArgInfo 4434 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4435 if (RetTy->isVoidType()) 4436 return ABIArgInfo::getIgnore(); 4437 4438 if (RetTy->isAnyComplexType()) 4439 return ABIArgInfo::getDirect(); 4440 4441 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4442 // or via reference (larger than 16 bytes). 4443 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4444 uint64_t Size = getContext().getTypeSize(RetTy); 4445 if (Size > 128) 4446 return getNaturalAlignIndirect(RetTy); 4447 else if (Size < 128) { 4448 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4449 return ABIArgInfo::getDirect(CoerceTy); 4450 } 4451 } 4452 4453 if (isAggregateTypeForABI(RetTy)) { 4454 // ELFv2 homogeneous aggregates are returned as array types. 4455 const Type *Base = nullptr; 4456 uint64_t Members = 0; 4457 if (Kind == ELFv2 && 4458 isHomogeneousAggregate(RetTy, Base, Members)) { 4459 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4460 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4461 return ABIArgInfo::getDirect(CoerceTy); 4462 } 4463 4464 // ELFv2 small aggregates are returned in up to two registers. 4465 uint64_t Bits = getContext().getTypeSize(RetTy); 4466 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4467 if (Bits == 0) 4468 return ABIArgInfo::getIgnore(); 4469 4470 llvm::Type *CoerceTy; 4471 if (Bits > GPRBits) { 4472 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4473 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 4474 } else 4475 CoerceTy = 4476 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4477 return ABIArgInfo::getDirect(CoerceTy); 4478 } 4479 4480 // All other aggregates are returned indirectly. 4481 return getNaturalAlignIndirect(RetTy); 4482 } 4483 4484 return (isPromotableTypeForABI(RetTy) ? 4485 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4486 } 4487 4488 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4489 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4490 QualType Ty) const { 4491 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4492 TypeInfo.second = getParamTypeAlignment(Ty); 4493 4494 CharUnits SlotSize = CharUnits::fromQuantity(8); 4495 4496 // If we have a complex type and the base type is smaller than 8 bytes, 4497 // the ABI calls for the real and imaginary parts to be right-adjusted 4498 // in separate doublewords. However, Clang expects us to produce a 4499 // pointer to a structure with the two parts packed tightly. So generate 4500 // loads of the real and imaginary parts relative to the va_list pointer, 4501 // and store them to a temporary structure. 4502 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4503 CharUnits EltSize = TypeInfo.first / 2; 4504 if (EltSize < SlotSize) { 4505 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4506 SlotSize * 2, SlotSize, 4507 SlotSize, /*AllowHigher*/ true); 4508 4509 Address RealAddr = Addr; 4510 Address ImagAddr = RealAddr; 4511 if (CGF.CGM.getDataLayout().isBigEndian()) { 4512 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4513 SlotSize - EltSize); 4514 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4515 2 * SlotSize - EltSize); 4516 } else { 4517 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4518 } 4519 4520 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4521 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4522 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4523 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4524 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4525 4526 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4527 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4528 /*init*/ true); 4529 return Temp; 4530 } 4531 } 4532 4533 // Otherwise, just use the general rule. 4534 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4535 TypeInfo, SlotSize, /*AllowHigher*/ true); 4536 } 4537 4538 static bool 4539 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4540 llvm::Value *Address) { 4541 // This is calculated from the LLVM and GCC tables and verified 4542 // against gcc output. AFAIK all ABIs use the same encoding. 4543 4544 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4545 4546 llvm::IntegerType *i8 = CGF.Int8Ty; 4547 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4548 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4549 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4550 4551 // 0-31: r0-31, the 8-byte general-purpose registers 4552 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4553 4554 // 32-63: fp0-31, the 8-byte floating-point registers 4555 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4556 4557 // 64-67 are various 8-byte special-purpose registers: 4558 // 64: mq 4559 // 65: lr 4560 // 66: ctr 4561 // 67: ap 4562 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4563 4564 // 68-76 are various 4-byte special-purpose registers: 4565 // 68-75 cr0-7 4566 // 76: xer 4567 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4568 4569 // 77-108: v0-31, the 16-byte vector registers 4570 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4571 4572 // 109: vrsave 4573 // 110: vscr 4574 // 111: spe_acc 4575 // 112: spefscr 4576 // 113: sfp 4577 // 114: tfhar 4578 // 115: tfiar 4579 // 116: texasr 4580 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4581 4582 return false; 4583 } 4584 4585 bool 4586 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4587 CodeGen::CodeGenFunction &CGF, 4588 llvm::Value *Address) const { 4589 4590 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4591 } 4592 4593 bool 4594 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4595 llvm::Value *Address) const { 4596 4597 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4598 } 4599 4600 //===----------------------------------------------------------------------===// 4601 // AArch64 ABI Implementation 4602 //===----------------------------------------------------------------------===// 4603 4604 namespace { 4605 4606 class AArch64ABIInfo : public SwiftABIInfo { 4607 public: 4608 enum ABIKind { 4609 AAPCS = 0, 4610 DarwinPCS 4611 }; 4612 4613 private: 4614 ABIKind Kind; 4615 4616 public: 4617 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4618 : SwiftABIInfo(CGT), Kind(Kind) {} 4619 4620 private: 4621 ABIKind getABIKind() const { return Kind; } 4622 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4623 4624 ABIArgInfo classifyReturnType(QualType RetTy) const; 4625 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4626 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4627 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4628 uint64_t Members) const override; 4629 4630 bool isIllegalVectorType(QualType Ty) const; 4631 4632 void computeInfo(CGFunctionInfo &FI) const override { 4633 if (!getCXXABI().classifyReturnType(FI)) 4634 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4635 4636 for (auto &it : FI.arguments()) 4637 it.info = classifyArgumentType(it.type); 4638 } 4639 4640 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4641 CodeGenFunction &CGF) const; 4642 4643 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4644 CodeGenFunction &CGF) const; 4645 4646 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4647 QualType Ty) const override { 4648 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4649 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4650 } 4651 4652 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4653 ArrayRef<llvm::Type*> scalars, 4654 bool asReturnValue) const override { 4655 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4656 } 4657 bool isSwiftErrorInRegister() const override { 4658 return true; 4659 } 4660 }; 4661 4662 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4663 public: 4664 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4665 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4666 4667 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4668 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 4669 } 4670 4671 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4672 return 31; 4673 } 4674 4675 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4676 }; 4677 } 4678 4679 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4680 Ty = useFirstFieldIfTransparentUnion(Ty); 4681 4682 // Handle illegal vector types here. 4683 if (isIllegalVectorType(Ty)) { 4684 uint64_t Size = getContext().getTypeSize(Ty); 4685 // Android promotes <2 x i8> to i16, not i32 4686 if (isAndroid() && (Size <= 16)) { 4687 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4688 return ABIArgInfo::getDirect(ResType); 4689 } 4690 if (Size <= 32) { 4691 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4692 return ABIArgInfo::getDirect(ResType); 4693 } 4694 if (Size == 64) { 4695 llvm::Type *ResType = 4696 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4697 return ABIArgInfo::getDirect(ResType); 4698 } 4699 if (Size == 128) { 4700 llvm::Type *ResType = 4701 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4702 return ABIArgInfo::getDirect(ResType); 4703 } 4704 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4705 } 4706 4707 if (!isAggregateTypeForABI(Ty)) { 4708 // Treat an enum type as its underlying type. 4709 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4710 Ty = EnumTy->getDecl()->getIntegerType(); 4711 4712 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4713 ? ABIArgInfo::getExtend() 4714 : ABIArgInfo::getDirect()); 4715 } 4716 4717 // Structures with either a non-trivial destructor or a non-trivial 4718 // copy constructor are always indirect. 4719 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4720 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 4721 CGCXXABI::RAA_DirectInMemory); 4722 } 4723 4724 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4725 // elsewhere for GNU compatibility. 4726 if (isEmptyRecord(getContext(), Ty, true)) { 4727 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4728 return ABIArgInfo::getIgnore(); 4729 4730 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4731 } 4732 4733 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4734 const Type *Base = nullptr; 4735 uint64_t Members = 0; 4736 if (isHomogeneousAggregate(Ty, Base, Members)) { 4737 return ABIArgInfo::getDirect( 4738 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4739 } 4740 4741 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4742 uint64_t Size = getContext().getTypeSize(Ty); 4743 if (Size <= 128) { 4744 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4745 // same size and alignment. 4746 if (getTarget().isRenderScriptTarget()) { 4747 return coerceToIntArray(Ty, getContext(), getVMContext()); 4748 } 4749 unsigned Alignment = getContext().getTypeAlign(Ty); 4750 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4751 4752 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4753 // For aggregates with 16-byte alignment, we use i128. 4754 if (Alignment < 128 && Size == 128) { 4755 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4756 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4757 } 4758 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4759 } 4760 4761 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4762 } 4763 4764 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4765 if (RetTy->isVoidType()) 4766 return ABIArgInfo::getIgnore(); 4767 4768 // Large vector types should be returned via memory. 4769 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4770 return getNaturalAlignIndirect(RetTy); 4771 4772 if (!isAggregateTypeForABI(RetTy)) { 4773 // Treat an enum type as its underlying type. 4774 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4775 RetTy = EnumTy->getDecl()->getIntegerType(); 4776 4777 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4778 ? ABIArgInfo::getExtend() 4779 : ABIArgInfo::getDirect()); 4780 } 4781 4782 if (isEmptyRecord(getContext(), RetTy, true)) 4783 return ABIArgInfo::getIgnore(); 4784 4785 const Type *Base = nullptr; 4786 uint64_t Members = 0; 4787 if (isHomogeneousAggregate(RetTy, Base, Members)) 4788 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4789 return ABIArgInfo::getDirect(); 4790 4791 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4792 uint64_t Size = getContext().getTypeSize(RetTy); 4793 if (Size <= 128) { 4794 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 4795 // same size and alignment. 4796 if (getTarget().isRenderScriptTarget()) { 4797 return coerceToIntArray(RetTy, getContext(), getVMContext()); 4798 } 4799 unsigned Alignment = getContext().getTypeAlign(RetTy); 4800 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4801 4802 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4803 // For aggregates with 16-byte alignment, we use i128. 4804 if (Alignment < 128 && Size == 128) { 4805 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4806 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4807 } 4808 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4809 } 4810 4811 return getNaturalAlignIndirect(RetTy); 4812 } 4813 4814 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4815 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4816 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4817 // Check whether VT is legal. 4818 unsigned NumElements = VT->getNumElements(); 4819 uint64_t Size = getContext().getTypeSize(VT); 4820 // NumElements should be power of 2. 4821 if (!llvm::isPowerOf2_32(NumElements)) 4822 return true; 4823 return Size != 64 && (Size != 128 || NumElements == 1); 4824 } 4825 return false; 4826 } 4827 4828 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4829 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4830 // point type or a short-vector type. This is the same as the 32-bit ABI, 4831 // but with the difference that any floating-point type is allowed, 4832 // including __fp16. 4833 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4834 if (BT->isFloatingPoint()) 4835 return true; 4836 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4837 unsigned VecSize = getContext().getTypeSize(VT); 4838 if (VecSize == 64 || VecSize == 128) 4839 return true; 4840 } 4841 return false; 4842 } 4843 4844 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4845 uint64_t Members) const { 4846 return Members <= 4; 4847 } 4848 4849 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 4850 QualType Ty, 4851 CodeGenFunction &CGF) const { 4852 ABIArgInfo AI = classifyArgumentType(Ty); 4853 bool IsIndirect = AI.isIndirect(); 4854 4855 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4856 if (IsIndirect) 4857 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4858 else if (AI.getCoerceToType()) 4859 BaseTy = AI.getCoerceToType(); 4860 4861 unsigned NumRegs = 1; 4862 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4863 BaseTy = ArrTy->getElementType(); 4864 NumRegs = ArrTy->getNumElements(); 4865 } 4866 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4867 4868 // The AArch64 va_list type and handling is specified in the Procedure Call 4869 // Standard, section B.4: 4870 // 4871 // struct { 4872 // void *__stack; 4873 // void *__gr_top; 4874 // void *__vr_top; 4875 // int __gr_offs; 4876 // int __vr_offs; 4877 // }; 4878 4879 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4880 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4881 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4882 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4883 4884 auto TyInfo = getContext().getTypeInfoInChars(Ty); 4885 CharUnits TyAlign = TyInfo.second; 4886 4887 Address reg_offs_p = Address::invalid(); 4888 llvm::Value *reg_offs = nullptr; 4889 int reg_top_index; 4890 CharUnits reg_top_offset; 4891 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 4892 if (!IsFPR) { 4893 // 3 is the field number of __gr_offs 4894 reg_offs_p = 4895 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 4896 "gr_offs_p"); 4897 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4898 reg_top_index = 1; // field number for __gr_top 4899 reg_top_offset = CharUnits::fromQuantity(8); 4900 RegSize = llvm::alignTo(RegSize, 8); 4901 } else { 4902 // 4 is the field number of __vr_offs. 4903 reg_offs_p = 4904 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 4905 "vr_offs_p"); 4906 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4907 reg_top_index = 2; // field number for __vr_top 4908 reg_top_offset = CharUnits::fromQuantity(16); 4909 RegSize = 16 * NumRegs; 4910 } 4911 4912 //======================================= 4913 // Find out where argument was passed 4914 //======================================= 4915 4916 // If reg_offs >= 0 we're already using the stack for this type of 4917 // argument. We don't want to keep updating reg_offs (in case it overflows, 4918 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4919 // whatever they get). 4920 llvm::Value *UsingStack = nullptr; 4921 UsingStack = CGF.Builder.CreateICmpSGE( 4922 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4923 4924 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4925 4926 // Otherwise, at least some kind of argument could go in these registers, the 4927 // question is whether this particular type is too big. 4928 CGF.EmitBlock(MaybeRegBlock); 4929 4930 // Integer arguments may need to correct register alignment (for example a 4931 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4932 // align __gr_offs to calculate the potential address. 4933 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 4934 int Align = TyAlign.getQuantity(); 4935 4936 reg_offs = CGF.Builder.CreateAdd( 4937 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4938 "align_regoffs"); 4939 reg_offs = CGF.Builder.CreateAnd( 4940 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4941 "aligned_regoffs"); 4942 } 4943 4944 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4945 // The fact that this is done unconditionally reflects the fact that 4946 // allocating an argument to the stack also uses up all the remaining 4947 // registers of the appropriate kind. 4948 llvm::Value *NewOffset = nullptr; 4949 NewOffset = CGF.Builder.CreateAdd( 4950 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4951 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4952 4953 // Now we're in a position to decide whether this argument really was in 4954 // registers or not. 4955 llvm::Value *InRegs = nullptr; 4956 InRegs = CGF.Builder.CreateICmpSLE( 4957 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4958 4959 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4960 4961 //======================================= 4962 // Argument was in registers 4963 //======================================= 4964 4965 // Now we emit the code for if the argument was originally passed in 4966 // registers. First start the appropriate block: 4967 CGF.EmitBlock(InRegBlock); 4968 4969 llvm::Value *reg_top = nullptr; 4970 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 4971 reg_top_offset, "reg_top_p"); 4972 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4973 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 4974 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 4975 Address RegAddr = Address::invalid(); 4976 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 4977 4978 if (IsIndirect) { 4979 // If it's been passed indirectly (actually a struct), whatever we find from 4980 // stored registers or on the stack will actually be a struct **. 4981 MemTy = llvm::PointerType::getUnqual(MemTy); 4982 } 4983 4984 const Type *Base = nullptr; 4985 uint64_t NumMembers = 0; 4986 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4987 if (IsHFA && NumMembers > 1) { 4988 // Homogeneous aggregates passed in registers will have their elements split 4989 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4990 // qN+1, ...). We reload and store into a temporary local variable 4991 // contiguously. 4992 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4993 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 4994 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4995 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4996 Address Tmp = CGF.CreateTempAlloca(HFATy, 4997 std::max(TyAlign, BaseTyInfo.second)); 4998 4999 // On big-endian platforms, the value will be right-aligned in its slot. 5000 int Offset = 0; 5001 if (CGF.CGM.getDataLayout().isBigEndian() && 5002 BaseTyInfo.first.getQuantity() < 16) 5003 Offset = 16 - BaseTyInfo.first.getQuantity(); 5004 5005 for (unsigned i = 0; i < NumMembers; ++i) { 5006 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5007 Address LoadAddr = 5008 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5009 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5010 5011 Address StoreAddr = 5012 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5013 5014 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5015 CGF.Builder.CreateStore(Elem, StoreAddr); 5016 } 5017 5018 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5019 } else { 5020 // Otherwise the object is contiguous in memory. 5021 5022 // It might be right-aligned in its slot. 5023 CharUnits SlotSize = BaseAddr.getAlignment(); 5024 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5025 (IsHFA || !isAggregateTypeForABI(Ty)) && 5026 TyInfo.first < SlotSize) { 5027 CharUnits Offset = SlotSize - TyInfo.first; 5028 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5029 } 5030 5031 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5032 } 5033 5034 CGF.EmitBranch(ContBlock); 5035 5036 //======================================= 5037 // Argument was on the stack 5038 //======================================= 5039 CGF.EmitBlock(OnStackBlock); 5040 5041 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5042 CharUnits::Zero(), "stack_p"); 5043 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5044 5045 // Again, stack arguments may need realignment. In this case both integer and 5046 // floating-point ones might be affected. 5047 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5048 int Align = TyAlign.getQuantity(); 5049 5050 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5051 5052 OnStackPtr = CGF.Builder.CreateAdd( 5053 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5054 "align_stack"); 5055 OnStackPtr = CGF.Builder.CreateAnd( 5056 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5057 "align_stack"); 5058 5059 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5060 } 5061 Address OnStackAddr(OnStackPtr, 5062 std::max(CharUnits::fromQuantity(8), TyAlign)); 5063 5064 // All stack slots are multiples of 8 bytes. 5065 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5066 CharUnits StackSize; 5067 if (IsIndirect) 5068 StackSize = StackSlotSize; 5069 else 5070 StackSize = TyInfo.first.alignTo(StackSlotSize); 5071 5072 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5073 llvm::Value *NewStack = 5074 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5075 5076 // Write the new value of __stack for the next call to va_arg 5077 CGF.Builder.CreateStore(NewStack, stack_p); 5078 5079 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5080 TyInfo.first < StackSlotSize) { 5081 CharUnits Offset = StackSlotSize - TyInfo.first; 5082 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5083 } 5084 5085 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5086 5087 CGF.EmitBranch(ContBlock); 5088 5089 //======================================= 5090 // Tidy up 5091 //======================================= 5092 CGF.EmitBlock(ContBlock); 5093 5094 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5095 OnStackAddr, OnStackBlock, "vaargs.addr"); 5096 5097 if (IsIndirect) 5098 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5099 TyInfo.second); 5100 5101 return ResAddr; 5102 } 5103 5104 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5105 CodeGenFunction &CGF) const { 5106 // The backend's lowering doesn't support va_arg for aggregates or 5107 // illegal vector types. Lower VAArg here for these cases and use 5108 // the LLVM va_arg instruction for everything else. 5109 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5110 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5111 5112 CharUnits SlotSize = CharUnits::fromQuantity(8); 5113 5114 // Empty records are ignored for parameter passing purposes. 5115 if (isEmptyRecord(getContext(), Ty, true)) { 5116 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5117 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5118 return Addr; 5119 } 5120 5121 // The size of the actual thing passed, which might end up just 5122 // being a pointer for indirect types. 5123 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5124 5125 // Arguments bigger than 16 bytes which aren't homogeneous 5126 // aggregates should be passed indirectly. 5127 bool IsIndirect = false; 5128 if (TyInfo.first.getQuantity() > 16) { 5129 const Type *Base = nullptr; 5130 uint64_t Members = 0; 5131 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5132 } 5133 5134 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5135 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5136 } 5137 5138 //===----------------------------------------------------------------------===// 5139 // ARM ABI Implementation 5140 //===----------------------------------------------------------------------===// 5141 5142 namespace { 5143 5144 class ARMABIInfo : public SwiftABIInfo { 5145 public: 5146 enum ABIKind { 5147 APCS = 0, 5148 AAPCS = 1, 5149 AAPCS_VFP = 2, 5150 AAPCS16_VFP = 3, 5151 }; 5152 5153 private: 5154 ABIKind Kind; 5155 5156 public: 5157 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5158 : SwiftABIInfo(CGT), Kind(_Kind) { 5159 setCCs(); 5160 } 5161 5162 bool isEABI() const { 5163 switch (getTarget().getTriple().getEnvironment()) { 5164 case llvm::Triple::Android: 5165 case llvm::Triple::EABI: 5166 case llvm::Triple::EABIHF: 5167 case llvm::Triple::GNUEABI: 5168 case llvm::Triple::GNUEABIHF: 5169 case llvm::Triple::MuslEABI: 5170 case llvm::Triple::MuslEABIHF: 5171 return true; 5172 default: 5173 return false; 5174 } 5175 } 5176 5177 bool isEABIHF() const { 5178 switch (getTarget().getTriple().getEnvironment()) { 5179 case llvm::Triple::EABIHF: 5180 case llvm::Triple::GNUEABIHF: 5181 case llvm::Triple::MuslEABIHF: 5182 return true; 5183 default: 5184 return false; 5185 } 5186 } 5187 5188 ABIKind getABIKind() const { return Kind; } 5189 5190 private: 5191 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5192 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5193 bool isIllegalVectorType(QualType Ty) const; 5194 5195 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5196 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5197 uint64_t Members) const override; 5198 5199 void computeInfo(CGFunctionInfo &FI) const override; 5200 5201 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5202 QualType Ty) const override; 5203 5204 llvm::CallingConv::ID getLLVMDefaultCC() const; 5205 llvm::CallingConv::ID getABIDefaultCC() const; 5206 void setCCs(); 5207 5208 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5209 ArrayRef<llvm::Type*> scalars, 5210 bool asReturnValue) const override { 5211 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5212 } 5213 bool isSwiftErrorInRegister() const override { 5214 return true; 5215 } 5216 }; 5217 5218 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5219 public: 5220 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5221 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5222 5223 const ARMABIInfo &getABIInfo() const { 5224 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5225 } 5226 5227 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5228 return 13; 5229 } 5230 5231 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5232 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 5233 } 5234 5235 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5236 llvm::Value *Address) const override { 5237 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5238 5239 // 0-15 are the 16 integer registers. 5240 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5241 return false; 5242 } 5243 5244 unsigned getSizeOfUnwindException() const override { 5245 if (getABIInfo().isEABI()) return 88; 5246 return TargetCodeGenInfo::getSizeOfUnwindException(); 5247 } 5248 5249 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5250 CodeGen::CodeGenModule &CGM) const override { 5251 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5252 if (!FD) 5253 return; 5254 5255 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5256 if (!Attr) 5257 return; 5258 5259 const char *Kind; 5260 switch (Attr->getInterrupt()) { 5261 case ARMInterruptAttr::Generic: Kind = ""; break; 5262 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5263 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5264 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5265 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5266 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5267 } 5268 5269 llvm::Function *Fn = cast<llvm::Function>(GV); 5270 5271 Fn->addFnAttr("interrupt", Kind); 5272 5273 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5274 if (ABI == ARMABIInfo::APCS) 5275 return; 5276 5277 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5278 // however this is not necessarily true on taking any interrupt. Instruct 5279 // the backend to perform a realignment as part of the function prologue. 5280 llvm::AttrBuilder B; 5281 B.addStackAlignmentAttr(8); 5282 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 5283 llvm::AttributeSet::get(CGM.getLLVMContext(), 5284 llvm::AttributeSet::FunctionIndex, 5285 B)); 5286 } 5287 }; 5288 5289 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5290 public: 5291 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5292 : ARMTargetCodeGenInfo(CGT, K) {} 5293 5294 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5295 CodeGen::CodeGenModule &CGM) const override; 5296 5297 void getDependentLibraryOption(llvm::StringRef Lib, 5298 llvm::SmallString<24> &Opt) const override { 5299 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5300 } 5301 5302 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5303 llvm::SmallString<32> &Opt) const override { 5304 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5305 } 5306 }; 5307 5308 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5309 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5310 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5311 addStackProbeSizeTargetAttribute(D, GV, CGM); 5312 } 5313 } 5314 5315 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5316 if (!getCXXABI().classifyReturnType(FI)) 5317 FI.getReturnInfo() = 5318 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5319 5320 for (auto &I : FI.arguments()) 5321 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5322 5323 // Always honor user-specified calling convention. 5324 if (FI.getCallingConvention() != llvm::CallingConv::C) 5325 return; 5326 5327 llvm::CallingConv::ID cc = getRuntimeCC(); 5328 if (cc != llvm::CallingConv::C) 5329 FI.setEffectiveCallingConvention(cc); 5330 } 5331 5332 /// Return the default calling convention that LLVM will use. 5333 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5334 // The default calling convention that LLVM will infer. 5335 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5336 return llvm::CallingConv::ARM_AAPCS_VFP; 5337 else if (isEABI()) 5338 return llvm::CallingConv::ARM_AAPCS; 5339 else 5340 return llvm::CallingConv::ARM_APCS; 5341 } 5342 5343 /// Return the calling convention that our ABI would like us to use 5344 /// as the C calling convention. 5345 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5346 switch (getABIKind()) { 5347 case APCS: return llvm::CallingConv::ARM_APCS; 5348 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5349 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5350 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5351 } 5352 llvm_unreachable("bad ABI kind"); 5353 } 5354 5355 void ARMABIInfo::setCCs() { 5356 assert(getRuntimeCC() == llvm::CallingConv::C); 5357 5358 // Don't muddy up the IR with a ton of explicit annotations if 5359 // they'd just match what LLVM will infer from the triple. 5360 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5361 if (abiCC != getLLVMDefaultCC()) 5362 RuntimeCC = abiCC; 5363 5364 // AAPCS apparently requires runtime support functions to be soft-float, but 5365 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5366 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5367 switch (getABIKind()) { 5368 case APCS: 5369 case AAPCS16_VFP: 5370 if (abiCC != getLLVMDefaultCC()) 5371 BuiltinCC = abiCC; 5372 break; 5373 case AAPCS: 5374 case AAPCS_VFP: 5375 BuiltinCC = llvm::CallingConv::ARM_AAPCS; 5376 break; 5377 } 5378 } 5379 5380 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5381 bool isVariadic) const { 5382 // 6.1.2.1 The following argument types are VFP CPRCs: 5383 // A single-precision floating-point type (including promoted 5384 // half-precision types); A double-precision floating-point type; 5385 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5386 // with a Base Type of a single- or double-precision floating-point type, 5387 // 64-bit containerized vectors or 128-bit containerized vectors with one 5388 // to four Elements. 5389 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5390 5391 Ty = useFirstFieldIfTransparentUnion(Ty); 5392 5393 // Handle illegal vector types here. 5394 if (isIllegalVectorType(Ty)) { 5395 uint64_t Size = getContext().getTypeSize(Ty); 5396 if (Size <= 32) { 5397 llvm::Type *ResType = 5398 llvm::Type::getInt32Ty(getVMContext()); 5399 return ABIArgInfo::getDirect(ResType); 5400 } 5401 if (Size == 64) { 5402 llvm::Type *ResType = llvm::VectorType::get( 5403 llvm::Type::getInt32Ty(getVMContext()), 2); 5404 return ABIArgInfo::getDirect(ResType); 5405 } 5406 if (Size == 128) { 5407 llvm::Type *ResType = llvm::VectorType::get( 5408 llvm::Type::getInt32Ty(getVMContext()), 4); 5409 return ABIArgInfo::getDirect(ResType); 5410 } 5411 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5412 } 5413 5414 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5415 // unspecified. This is not done for OpenCL as it handles the half type 5416 // natively, and does not need to interwork with AAPCS code. 5417 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5418 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5419 llvm::Type::getFloatTy(getVMContext()) : 5420 llvm::Type::getInt32Ty(getVMContext()); 5421 return ABIArgInfo::getDirect(ResType); 5422 } 5423 5424 if (!isAggregateTypeForABI(Ty)) { 5425 // Treat an enum type as its underlying type. 5426 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5427 Ty = EnumTy->getDecl()->getIntegerType(); 5428 } 5429 5430 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5431 : ABIArgInfo::getDirect()); 5432 } 5433 5434 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5435 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5436 } 5437 5438 // Ignore empty records. 5439 if (isEmptyRecord(getContext(), Ty, true)) 5440 return ABIArgInfo::getIgnore(); 5441 5442 if (IsEffectivelyAAPCS_VFP) { 5443 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5444 // into VFP registers. 5445 const Type *Base = nullptr; 5446 uint64_t Members = 0; 5447 if (isHomogeneousAggregate(Ty, Base, Members)) { 5448 assert(Base && "Base class should be set for homogeneous aggregate"); 5449 // Base can be a floating-point or a vector. 5450 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5451 } 5452 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5453 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5454 // this convention even for a variadic function: the backend will use GPRs 5455 // if needed. 5456 const Type *Base = nullptr; 5457 uint64_t Members = 0; 5458 if (isHomogeneousAggregate(Ty, Base, Members)) { 5459 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5460 llvm::Type *Ty = 5461 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5462 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5463 } 5464 } 5465 5466 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5467 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5468 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5469 // bigger than 128-bits, they get placed in space allocated by the caller, 5470 // and a pointer is passed. 5471 return ABIArgInfo::getIndirect( 5472 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5473 } 5474 5475 // Support byval for ARM. 5476 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5477 // most 8-byte. We realign the indirect argument if type alignment is bigger 5478 // than ABI alignment. 5479 uint64_t ABIAlign = 4; 5480 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5481 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5482 getABIKind() == ARMABIInfo::AAPCS) 5483 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5484 5485 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5486 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5487 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5488 /*ByVal=*/true, 5489 /*Realign=*/TyAlign > ABIAlign); 5490 } 5491 5492 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5493 // same size and alignment. 5494 if (getTarget().isRenderScriptTarget()) { 5495 return coerceToIntArray(Ty, getContext(), getVMContext()); 5496 } 5497 5498 // Otherwise, pass by coercing to a structure of the appropriate size. 5499 llvm::Type* ElemTy; 5500 unsigned SizeRegs; 5501 // FIXME: Try to match the types of the arguments more accurately where 5502 // we can. 5503 if (getContext().getTypeAlign(Ty) <= 32) { 5504 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5505 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5506 } else { 5507 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5508 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5509 } 5510 5511 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5512 } 5513 5514 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5515 llvm::LLVMContext &VMContext) { 5516 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5517 // is called integer-like if its size is less than or equal to one word, and 5518 // the offset of each of its addressable sub-fields is zero. 5519 5520 uint64_t Size = Context.getTypeSize(Ty); 5521 5522 // Check that the type fits in a word. 5523 if (Size > 32) 5524 return false; 5525 5526 // FIXME: Handle vector types! 5527 if (Ty->isVectorType()) 5528 return false; 5529 5530 // Float types are never treated as "integer like". 5531 if (Ty->isRealFloatingType()) 5532 return false; 5533 5534 // If this is a builtin or pointer type then it is ok. 5535 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5536 return true; 5537 5538 // Small complex integer types are "integer like". 5539 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5540 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5541 5542 // Single element and zero sized arrays should be allowed, by the definition 5543 // above, but they are not. 5544 5545 // Otherwise, it must be a record type. 5546 const RecordType *RT = Ty->getAs<RecordType>(); 5547 if (!RT) return false; 5548 5549 // Ignore records with flexible arrays. 5550 const RecordDecl *RD = RT->getDecl(); 5551 if (RD->hasFlexibleArrayMember()) 5552 return false; 5553 5554 // Check that all sub-fields are at offset 0, and are themselves "integer 5555 // like". 5556 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5557 5558 bool HadField = false; 5559 unsigned idx = 0; 5560 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5561 i != e; ++i, ++idx) { 5562 const FieldDecl *FD = *i; 5563 5564 // Bit-fields are not addressable, we only need to verify they are "integer 5565 // like". We still have to disallow a subsequent non-bitfield, for example: 5566 // struct { int : 0; int x } 5567 // is non-integer like according to gcc. 5568 if (FD->isBitField()) { 5569 if (!RD->isUnion()) 5570 HadField = true; 5571 5572 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5573 return false; 5574 5575 continue; 5576 } 5577 5578 // Check if this field is at offset 0. 5579 if (Layout.getFieldOffset(idx) != 0) 5580 return false; 5581 5582 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5583 return false; 5584 5585 // Only allow at most one field in a structure. This doesn't match the 5586 // wording above, but follows gcc in situations with a field following an 5587 // empty structure. 5588 if (!RD->isUnion()) { 5589 if (HadField) 5590 return false; 5591 5592 HadField = true; 5593 } 5594 } 5595 5596 return true; 5597 } 5598 5599 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5600 bool isVariadic) const { 5601 bool IsEffectivelyAAPCS_VFP = 5602 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5603 5604 if (RetTy->isVoidType()) 5605 return ABIArgInfo::getIgnore(); 5606 5607 // Large vector types should be returned via memory. 5608 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5609 return getNaturalAlignIndirect(RetTy); 5610 } 5611 5612 // __fp16 gets returned as if it were an int or float, but with the top 16 5613 // bits unspecified. This is not done for OpenCL as it handles the half type 5614 // natively, and does not need to interwork with AAPCS code. 5615 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5616 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5617 llvm::Type::getFloatTy(getVMContext()) : 5618 llvm::Type::getInt32Ty(getVMContext()); 5619 return ABIArgInfo::getDirect(ResType); 5620 } 5621 5622 if (!isAggregateTypeForABI(RetTy)) { 5623 // Treat an enum type as its underlying type. 5624 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5625 RetTy = EnumTy->getDecl()->getIntegerType(); 5626 5627 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5628 : ABIArgInfo::getDirect(); 5629 } 5630 5631 // Are we following APCS? 5632 if (getABIKind() == APCS) { 5633 if (isEmptyRecord(getContext(), RetTy, false)) 5634 return ABIArgInfo::getIgnore(); 5635 5636 // Complex types are all returned as packed integers. 5637 // 5638 // FIXME: Consider using 2 x vector types if the back end handles them 5639 // correctly. 5640 if (RetTy->isAnyComplexType()) 5641 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5642 getVMContext(), getContext().getTypeSize(RetTy))); 5643 5644 // Integer like structures are returned in r0. 5645 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5646 // Return in the smallest viable integer type. 5647 uint64_t Size = getContext().getTypeSize(RetTy); 5648 if (Size <= 8) 5649 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5650 if (Size <= 16) 5651 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5652 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5653 } 5654 5655 // Otherwise return in memory. 5656 return getNaturalAlignIndirect(RetTy); 5657 } 5658 5659 // Otherwise this is an AAPCS variant. 5660 5661 if (isEmptyRecord(getContext(), RetTy, true)) 5662 return ABIArgInfo::getIgnore(); 5663 5664 // Check for homogeneous aggregates with AAPCS-VFP. 5665 if (IsEffectivelyAAPCS_VFP) { 5666 const Type *Base = nullptr; 5667 uint64_t Members = 0; 5668 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5669 assert(Base && "Base class should be set for homogeneous aggregate"); 5670 // Homogeneous Aggregates are returned directly. 5671 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5672 } 5673 } 5674 5675 // Aggregates <= 4 bytes are returned in r0; other aggregates 5676 // are returned indirectly. 5677 uint64_t Size = getContext().getTypeSize(RetTy); 5678 if (Size <= 32) { 5679 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5680 // same size and alignment. 5681 if (getTarget().isRenderScriptTarget()) { 5682 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5683 } 5684 if (getDataLayout().isBigEndian()) 5685 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5686 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5687 5688 // Return in the smallest viable integer type. 5689 if (Size <= 8) 5690 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5691 if (Size <= 16) 5692 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5693 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5694 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5695 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5696 llvm::Type *CoerceTy = 5697 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 5698 return ABIArgInfo::getDirect(CoerceTy); 5699 } 5700 5701 return getNaturalAlignIndirect(RetTy); 5702 } 5703 5704 /// isIllegalVector - check whether Ty is an illegal vector type. 5705 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 5706 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 5707 if (isAndroid()) { 5708 // Android shipped using Clang 3.1, which supported a slightly different 5709 // vector ABI. The primary differences were that 3-element vector types 5710 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 5711 // accepts that legacy behavior for Android only. 5712 // Check whether VT is legal. 5713 unsigned NumElements = VT->getNumElements(); 5714 // NumElements should be power of 2 or equal to 3. 5715 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 5716 return true; 5717 } else { 5718 // Check whether VT is legal. 5719 unsigned NumElements = VT->getNumElements(); 5720 uint64_t Size = getContext().getTypeSize(VT); 5721 // NumElements should be power of 2. 5722 if (!llvm::isPowerOf2_32(NumElements)) 5723 return true; 5724 // Size should be greater than 32 bits. 5725 return Size <= 32; 5726 } 5727 } 5728 return false; 5729 } 5730 5731 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5732 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 5733 // double, or 64-bit or 128-bit vectors. 5734 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5735 if (BT->getKind() == BuiltinType::Float || 5736 BT->getKind() == BuiltinType::Double || 5737 BT->getKind() == BuiltinType::LongDouble) 5738 return true; 5739 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5740 unsigned VecSize = getContext().getTypeSize(VT); 5741 if (VecSize == 64 || VecSize == 128) 5742 return true; 5743 } 5744 return false; 5745 } 5746 5747 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5748 uint64_t Members) const { 5749 return Members <= 4; 5750 } 5751 5752 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5753 QualType Ty) const { 5754 CharUnits SlotSize = CharUnits::fromQuantity(4); 5755 5756 // Empty records are ignored for parameter passing purposes. 5757 if (isEmptyRecord(getContext(), Ty, true)) { 5758 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 5759 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5760 return Addr; 5761 } 5762 5763 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5764 CharUnits TyAlignForABI = TyInfo.second; 5765 5766 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5767 bool IsIndirect = false; 5768 const Type *Base = nullptr; 5769 uint64_t Members = 0; 5770 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 5771 IsIndirect = true; 5772 5773 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 5774 // allocated by the caller. 5775 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 5776 getABIKind() == ARMABIInfo::AAPCS16_VFP && 5777 !isHomogeneousAggregate(Ty, Base, Members)) { 5778 IsIndirect = true; 5779 5780 // Otherwise, bound the type's ABI alignment. 5781 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5782 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5783 // Our callers should be prepared to handle an under-aligned address. 5784 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5785 getABIKind() == ARMABIInfo::AAPCS) { 5786 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5787 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 5788 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5789 // ARMv7k allows type alignment up to 16 bytes. 5790 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 5791 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 5792 } else { 5793 TyAlignForABI = CharUnits::fromQuantity(4); 5794 } 5795 TyInfo.second = TyAlignForABI; 5796 5797 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 5798 SlotSize, /*AllowHigherAlign*/ true); 5799 } 5800 5801 //===----------------------------------------------------------------------===// 5802 // NVPTX ABI Implementation 5803 //===----------------------------------------------------------------------===// 5804 5805 namespace { 5806 5807 class NVPTXABIInfo : public ABIInfo { 5808 public: 5809 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5810 5811 ABIArgInfo classifyReturnType(QualType RetTy) const; 5812 ABIArgInfo classifyArgumentType(QualType Ty) const; 5813 5814 void computeInfo(CGFunctionInfo &FI) const override; 5815 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5816 QualType Ty) const override; 5817 }; 5818 5819 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5820 public: 5821 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5822 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5823 5824 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5825 CodeGen::CodeGenModule &M) const override; 5826 private: 5827 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5828 // resulting MDNode to the nvvm.annotations MDNode. 5829 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5830 }; 5831 5832 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5833 if (RetTy->isVoidType()) 5834 return ABIArgInfo::getIgnore(); 5835 5836 // note: this is different from default ABI 5837 if (!RetTy->isScalarType()) 5838 return ABIArgInfo::getDirect(); 5839 5840 // Treat an enum type as its underlying type. 5841 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5842 RetTy = EnumTy->getDecl()->getIntegerType(); 5843 5844 return (RetTy->isPromotableIntegerType() ? 5845 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5846 } 5847 5848 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5849 // Treat an enum type as its underlying type. 5850 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5851 Ty = EnumTy->getDecl()->getIntegerType(); 5852 5853 // Return aggregates type as indirect by value 5854 if (isAggregateTypeForABI(Ty)) 5855 return getNaturalAlignIndirect(Ty, /* byval */ true); 5856 5857 return (Ty->isPromotableIntegerType() ? 5858 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5859 } 5860 5861 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5862 if (!getCXXABI().classifyReturnType(FI)) 5863 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5864 for (auto &I : FI.arguments()) 5865 I.info = classifyArgumentType(I.type); 5866 5867 // Always honor user-specified calling convention. 5868 if (FI.getCallingConvention() != llvm::CallingConv::C) 5869 return; 5870 5871 FI.setEffectiveCallingConvention(getRuntimeCC()); 5872 } 5873 5874 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5875 QualType Ty) const { 5876 llvm_unreachable("NVPTX does not support varargs"); 5877 } 5878 5879 void NVPTXTargetCodeGenInfo:: 5880 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5881 CodeGen::CodeGenModule &M) const{ 5882 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5883 if (!FD) return; 5884 5885 llvm::Function *F = cast<llvm::Function>(GV); 5886 5887 // Perform special handling in OpenCL mode 5888 if (M.getLangOpts().OpenCL) { 5889 // Use OpenCL function attributes to check for kernel functions 5890 // By default, all functions are device functions 5891 if (FD->hasAttr<OpenCLKernelAttr>()) { 5892 // OpenCL __kernel functions get kernel metadata 5893 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5894 addNVVMMetadata(F, "kernel", 1); 5895 // And kernel functions are not subject to inlining 5896 F->addFnAttr(llvm::Attribute::NoInline); 5897 } 5898 } 5899 5900 // Perform special handling in CUDA mode. 5901 if (M.getLangOpts().CUDA) { 5902 // CUDA __global__ functions get a kernel metadata entry. Since 5903 // __global__ functions cannot be called from the device, we do not 5904 // need to set the noinline attribute. 5905 if (FD->hasAttr<CUDAGlobalAttr>()) { 5906 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5907 addNVVMMetadata(F, "kernel", 1); 5908 } 5909 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5910 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5911 llvm::APSInt MaxThreads(32); 5912 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5913 if (MaxThreads > 0) 5914 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5915 5916 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5917 // not specified in __launch_bounds__ or if the user specified a 0 value, 5918 // we don't have to add a PTX directive. 5919 if (Attr->getMinBlocks()) { 5920 llvm::APSInt MinBlocks(32); 5921 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5922 if (MinBlocks > 0) 5923 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5924 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5925 } 5926 } 5927 } 5928 } 5929 5930 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5931 int Operand) { 5932 llvm::Module *M = F->getParent(); 5933 llvm::LLVMContext &Ctx = M->getContext(); 5934 5935 // Get "nvvm.annotations" metadata node 5936 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5937 5938 llvm::Metadata *MDVals[] = { 5939 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5940 llvm::ConstantAsMetadata::get( 5941 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5942 // Append metadata to nvvm.annotations 5943 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5944 } 5945 } 5946 5947 //===----------------------------------------------------------------------===// 5948 // SystemZ ABI Implementation 5949 //===----------------------------------------------------------------------===// 5950 5951 namespace { 5952 5953 class SystemZABIInfo : public SwiftABIInfo { 5954 bool HasVector; 5955 5956 public: 5957 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5958 : SwiftABIInfo(CGT), HasVector(HV) {} 5959 5960 bool isPromotableIntegerType(QualType Ty) const; 5961 bool isCompoundType(QualType Ty) const; 5962 bool isVectorArgumentType(QualType Ty) const; 5963 bool isFPArgumentType(QualType Ty) const; 5964 QualType GetSingleElementType(QualType Ty) const; 5965 5966 ABIArgInfo classifyReturnType(QualType RetTy) const; 5967 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5968 5969 void computeInfo(CGFunctionInfo &FI) const override { 5970 if (!getCXXABI().classifyReturnType(FI)) 5971 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5972 for (auto &I : FI.arguments()) 5973 I.info = classifyArgumentType(I.type); 5974 } 5975 5976 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5977 QualType Ty) const override; 5978 5979 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5980 ArrayRef<llvm::Type*> scalars, 5981 bool asReturnValue) const override { 5982 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5983 } 5984 bool isSwiftErrorInRegister() const override { 5985 return true; 5986 } 5987 }; 5988 5989 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5990 public: 5991 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5992 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5993 }; 5994 5995 } 5996 5997 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5998 // Treat an enum type as its underlying type. 5999 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6000 Ty = EnumTy->getDecl()->getIntegerType(); 6001 6002 // Promotable integer types are required to be promoted by the ABI. 6003 if (Ty->isPromotableIntegerType()) 6004 return true; 6005 6006 // 32-bit values must also be promoted. 6007 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6008 switch (BT->getKind()) { 6009 case BuiltinType::Int: 6010 case BuiltinType::UInt: 6011 return true; 6012 default: 6013 return false; 6014 } 6015 return false; 6016 } 6017 6018 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6019 return (Ty->isAnyComplexType() || 6020 Ty->isVectorType() || 6021 isAggregateTypeForABI(Ty)); 6022 } 6023 6024 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6025 return (HasVector && 6026 Ty->isVectorType() && 6027 getContext().getTypeSize(Ty) <= 128); 6028 } 6029 6030 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6031 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6032 switch (BT->getKind()) { 6033 case BuiltinType::Float: 6034 case BuiltinType::Double: 6035 return true; 6036 default: 6037 return false; 6038 } 6039 6040 return false; 6041 } 6042 6043 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6044 if (const RecordType *RT = Ty->getAsStructureType()) { 6045 const RecordDecl *RD = RT->getDecl(); 6046 QualType Found; 6047 6048 // If this is a C++ record, check the bases first. 6049 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6050 for (const auto &I : CXXRD->bases()) { 6051 QualType Base = I.getType(); 6052 6053 // Empty bases don't affect things either way. 6054 if (isEmptyRecord(getContext(), Base, true)) 6055 continue; 6056 6057 if (!Found.isNull()) 6058 return Ty; 6059 Found = GetSingleElementType(Base); 6060 } 6061 6062 // Check the fields. 6063 for (const auto *FD : RD->fields()) { 6064 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6065 // Unlike isSingleElementStruct(), empty structure and array fields 6066 // do count. So do anonymous bitfields that aren't zero-sized. 6067 if (getContext().getLangOpts().CPlusPlus && 6068 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6069 continue; 6070 6071 // Unlike isSingleElementStruct(), arrays do not count. 6072 // Nested structures still do though. 6073 if (!Found.isNull()) 6074 return Ty; 6075 Found = GetSingleElementType(FD->getType()); 6076 } 6077 6078 // Unlike isSingleElementStruct(), trailing padding is allowed. 6079 // An 8-byte aligned struct s { float f; } is passed as a double. 6080 if (!Found.isNull()) 6081 return Found; 6082 } 6083 6084 return Ty; 6085 } 6086 6087 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6088 QualType Ty) const { 6089 // Assume that va_list type is correct; should be pointer to LLVM type: 6090 // struct { 6091 // i64 __gpr; 6092 // i64 __fpr; 6093 // i8 *__overflow_arg_area; 6094 // i8 *__reg_save_area; 6095 // }; 6096 6097 // Every non-vector argument occupies 8 bytes and is passed by preference 6098 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6099 // always passed on the stack. 6100 Ty = getContext().getCanonicalType(Ty); 6101 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6102 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6103 llvm::Type *DirectTy = ArgTy; 6104 ABIArgInfo AI = classifyArgumentType(Ty); 6105 bool IsIndirect = AI.isIndirect(); 6106 bool InFPRs = false; 6107 bool IsVector = false; 6108 CharUnits UnpaddedSize; 6109 CharUnits DirectAlign; 6110 if (IsIndirect) { 6111 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6112 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6113 } else { 6114 if (AI.getCoerceToType()) 6115 ArgTy = AI.getCoerceToType(); 6116 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6117 IsVector = ArgTy->isVectorTy(); 6118 UnpaddedSize = TyInfo.first; 6119 DirectAlign = TyInfo.second; 6120 } 6121 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6122 if (IsVector && UnpaddedSize > PaddedSize) 6123 PaddedSize = CharUnits::fromQuantity(16); 6124 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6125 6126 CharUnits Padding = (PaddedSize - UnpaddedSize); 6127 6128 llvm::Type *IndexTy = CGF.Int64Ty; 6129 llvm::Value *PaddedSizeV = 6130 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6131 6132 if (IsVector) { 6133 // Work out the address of a vector argument on the stack. 6134 // Vector arguments are always passed in the high bits of a 6135 // single (8 byte) or double (16 byte) stack slot. 6136 Address OverflowArgAreaPtr = 6137 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6138 "overflow_arg_area_ptr"); 6139 Address OverflowArgArea = 6140 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6141 TyInfo.second); 6142 Address MemAddr = 6143 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6144 6145 // Update overflow_arg_area_ptr pointer 6146 llvm::Value *NewOverflowArgArea = 6147 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6148 "overflow_arg_area"); 6149 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6150 6151 return MemAddr; 6152 } 6153 6154 assert(PaddedSize.getQuantity() == 8); 6155 6156 unsigned MaxRegs, RegCountField, RegSaveIndex; 6157 CharUnits RegPadding; 6158 if (InFPRs) { 6159 MaxRegs = 4; // Maximum of 4 FPR arguments 6160 RegCountField = 1; // __fpr 6161 RegSaveIndex = 16; // save offset for f0 6162 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6163 } else { 6164 MaxRegs = 5; // Maximum of 5 GPR arguments 6165 RegCountField = 0; // __gpr 6166 RegSaveIndex = 2; // save offset for r2 6167 RegPadding = Padding; // values are passed in the low bits of a GPR 6168 } 6169 6170 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6171 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6172 "reg_count_ptr"); 6173 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6174 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6175 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6176 "fits_in_regs"); 6177 6178 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6179 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6180 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6181 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6182 6183 // Emit code to load the value if it was passed in registers. 6184 CGF.EmitBlock(InRegBlock); 6185 6186 // Work out the address of an argument register. 6187 llvm::Value *ScaledRegCount = 6188 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6189 llvm::Value *RegBase = 6190 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6191 + RegPadding.getQuantity()); 6192 llvm::Value *RegOffset = 6193 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6194 Address RegSaveAreaPtr = 6195 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6196 "reg_save_area_ptr"); 6197 llvm::Value *RegSaveArea = 6198 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6199 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6200 "raw_reg_addr"), 6201 PaddedSize); 6202 Address RegAddr = 6203 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6204 6205 // Update the register count 6206 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6207 llvm::Value *NewRegCount = 6208 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6209 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6210 CGF.EmitBranch(ContBlock); 6211 6212 // Emit code to load the value if it was passed in memory. 6213 CGF.EmitBlock(InMemBlock); 6214 6215 // Work out the address of a stack argument. 6216 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6217 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6218 Address OverflowArgArea = 6219 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6220 PaddedSize); 6221 Address RawMemAddr = 6222 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6223 Address MemAddr = 6224 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6225 6226 // Update overflow_arg_area_ptr pointer 6227 llvm::Value *NewOverflowArgArea = 6228 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6229 "overflow_arg_area"); 6230 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6231 CGF.EmitBranch(ContBlock); 6232 6233 // Return the appropriate result. 6234 CGF.EmitBlock(ContBlock); 6235 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6236 MemAddr, InMemBlock, "va_arg.addr"); 6237 6238 if (IsIndirect) 6239 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6240 TyInfo.second); 6241 6242 return ResAddr; 6243 } 6244 6245 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6246 if (RetTy->isVoidType()) 6247 return ABIArgInfo::getIgnore(); 6248 if (isVectorArgumentType(RetTy)) 6249 return ABIArgInfo::getDirect(); 6250 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6251 return getNaturalAlignIndirect(RetTy); 6252 return (isPromotableIntegerType(RetTy) ? 6253 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6254 } 6255 6256 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6257 // Handle the generic C++ ABI. 6258 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6259 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6260 6261 // Integers and enums are extended to full register width. 6262 if (isPromotableIntegerType(Ty)) 6263 return ABIArgInfo::getExtend(); 6264 6265 // Handle vector types and vector-like structure types. Note that 6266 // as opposed to float-like structure types, we do not allow any 6267 // padding for vector-like structures, so verify the sizes match. 6268 uint64_t Size = getContext().getTypeSize(Ty); 6269 QualType SingleElementTy = GetSingleElementType(Ty); 6270 if (isVectorArgumentType(SingleElementTy) && 6271 getContext().getTypeSize(SingleElementTy) == Size) 6272 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6273 6274 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6275 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6276 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6277 6278 // Handle small structures. 6279 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6280 // Structures with flexible arrays have variable length, so really 6281 // fail the size test above. 6282 const RecordDecl *RD = RT->getDecl(); 6283 if (RD->hasFlexibleArrayMember()) 6284 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6285 6286 // The structure is passed as an unextended integer, a float, or a double. 6287 llvm::Type *PassTy; 6288 if (isFPArgumentType(SingleElementTy)) { 6289 assert(Size == 32 || Size == 64); 6290 if (Size == 32) 6291 PassTy = llvm::Type::getFloatTy(getVMContext()); 6292 else 6293 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6294 } else 6295 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6296 return ABIArgInfo::getDirect(PassTy); 6297 } 6298 6299 // Non-structure compounds are passed indirectly. 6300 if (isCompoundType(Ty)) 6301 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6302 6303 return ABIArgInfo::getDirect(nullptr); 6304 } 6305 6306 //===----------------------------------------------------------------------===// 6307 // MSP430 ABI Implementation 6308 //===----------------------------------------------------------------------===// 6309 6310 namespace { 6311 6312 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6313 public: 6314 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6315 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6316 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6317 CodeGen::CodeGenModule &M) const override; 6318 }; 6319 6320 } 6321 6322 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 6323 llvm::GlobalValue *GV, 6324 CodeGen::CodeGenModule &M) const { 6325 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6326 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6327 // Handle 'interrupt' attribute: 6328 llvm::Function *F = cast<llvm::Function>(GV); 6329 6330 // Step 1: Set ISR calling convention. 6331 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6332 6333 // Step 2: Add attributes goodness. 6334 F->addFnAttr(llvm::Attribute::NoInline); 6335 6336 // Step 3: Emit ISR vector alias. 6337 unsigned Num = attr->getNumber() / 2; 6338 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6339 "__isr_" + Twine(Num), F); 6340 } 6341 } 6342 } 6343 6344 //===----------------------------------------------------------------------===// 6345 // MIPS ABI Implementation. This works for both little-endian and 6346 // big-endian variants. 6347 //===----------------------------------------------------------------------===// 6348 6349 namespace { 6350 class MipsABIInfo : public ABIInfo { 6351 bool IsO32; 6352 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6353 void CoerceToIntArgs(uint64_t TySize, 6354 SmallVectorImpl<llvm::Type *> &ArgList) const; 6355 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6356 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6357 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6358 public: 6359 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6360 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6361 StackAlignInBytes(IsO32 ? 8 : 16) {} 6362 6363 ABIArgInfo classifyReturnType(QualType RetTy) const; 6364 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6365 void computeInfo(CGFunctionInfo &FI) const override; 6366 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6367 QualType Ty) const override; 6368 bool shouldSignExtUnsignedType(QualType Ty) const override; 6369 }; 6370 6371 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6372 unsigned SizeOfUnwindException; 6373 public: 6374 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6375 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6376 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6377 6378 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6379 return 29; 6380 } 6381 6382 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6383 CodeGen::CodeGenModule &CGM) const override { 6384 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6385 if (!FD) return; 6386 llvm::Function *Fn = cast<llvm::Function>(GV); 6387 if (FD->hasAttr<Mips16Attr>()) { 6388 Fn->addFnAttr("mips16"); 6389 } 6390 else if (FD->hasAttr<NoMips16Attr>()) { 6391 Fn->addFnAttr("nomips16"); 6392 } 6393 6394 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6395 if (!Attr) 6396 return; 6397 6398 const char *Kind; 6399 switch (Attr->getInterrupt()) { 6400 case MipsInterruptAttr::eic: Kind = "eic"; break; 6401 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6402 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6403 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6404 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6405 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6406 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6407 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6408 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6409 } 6410 6411 Fn->addFnAttr("interrupt", Kind); 6412 6413 } 6414 6415 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6416 llvm::Value *Address) const override; 6417 6418 unsigned getSizeOfUnwindException() const override { 6419 return SizeOfUnwindException; 6420 } 6421 }; 6422 } 6423 6424 void MipsABIInfo::CoerceToIntArgs( 6425 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6426 llvm::IntegerType *IntTy = 6427 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6428 6429 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6430 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6431 ArgList.push_back(IntTy); 6432 6433 // If necessary, add one more integer type to ArgList. 6434 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6435 6436 if (R) 6437 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6438 } 6439 6440 // In N32/64, an aligned double precision floating point field is passed in 6441 // a register. 6442 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6443 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6444 6445 if (IsO32) { 6446 CoerceToIntArgs(TySize, ArgList); 6447 return llvm::StructType::get(getVMContext(), ArgList); 6448 } 6449 6450 if (Ty->isComplexType()) 6451 return CGT.ConvertType(Ty); 6452 6453 const RecordType *RT = Ty->getAs<RecordType>(); 6454 6455 // Unions/vectors are passed in integer registers. 6456 if (!RT || !RT->isStructureOrClassType()) { 6457 CoerceToIntArgs(TySize, ArgList); 6458 return llvm::StructType::get(getVMContext(), ArgList); 6459 } 6460 6461 const RecordDecl *RD = RT->getDecl(); 6462 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6463 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6464 6465 uint64_t LastOffset = 0; 6466 unsigned idx = 0; 6467 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6468 6469 // Iterate over fields in the struct/class and check if there are any aligned 6470 // double fields. 6471 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6472 i != e; ++i, ++idx) { 6473 const QualType Ty = i->getType(); 6474 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6475 6476 if (!BT || BT->getKind() != BuiltinType::Double) 6477 continue; 6478 6479 uint64_t Offset = Layout.getFieldOffset(idx); 6480 if (Offset % 64) // Ignore doubles that are not aligned. 6481 continue; 6482 6483 // Add ((Offset - LastOffset) / 64) args of type i64. 6484 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6485 ArgList.push_back(I64); 6486 6487 // Add double type. 6488 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6489 LastOffset = Offset + 64; 6490 } 6491 6492 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6493 ArgList.append(IntArgList.begin(), IntArgList.end()); 6494 6495 return llvm::StructType::get(getVMContext(), ArgList); 6496 } 6497 6498 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6499 uint64_t Offset) const { 6500 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6501 return nullptr; 6502 6503 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6504 } 6505 6506 ABIArgInfo 6507 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6508 Ty = useFirstFieldIfTransparentUnion(Ty); 6509 6510 uint64_t OrigOffset = Offset; 6511 uint64_t TySize = getContext().getTypeSize(Ty); 6512 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6513 6514 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6515 (uint64_t)StackAlignInBytes); 6516 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6517 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6518 6519 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6520 // Ignore empty aggregates. 6521 if (TySize == 0) 6522 return ABIArgInfo::getIgnore(); 6523 6524 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6525 Offset = OrigOffset + MinABIStackAlignInBytes; 6526 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6527 } 6528 6529 // If we have reached here, aggregates are passed directly by coercing to 6530 // another structure type. Padding is inserted if the offset of the 6531 // aggregate is unaligned. 6532 ABIArgInfo ArgInfo = 6533 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6534 getPaddingType(OrigOffset, CurrOffset)); 6535 ArgInfo.setInReg(true); 6536 return ArgInfo; 6537 } 6538 6539 // Treat an enum type as its underlying type. 6540 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6541 Ty = EnumTy->getDecl()->getIntegerType(); 6542 6543 // All integral types are promoted to the GPR width. 6544 if (Ty->isIntegralOrEnumerationType()) 6545 return ABIArgInfo::getExtend(); 6546 6547 return ABIArgInfo::getDirect( 6548 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6549 } 6550 6551 llvm::Type* 6552 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6553 const RecordType *RT = RetTy->getAs<RecordType>(); 6554 SmallVector<llvm::Type*, 8> RTList; 6555 6556 if (RT && RT->isStructureOrClassType()) { 6557 const RecordDecl *RD = RT->getDecl(); 6558 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6559 unsigned FieldCnt = Layout.getFieldCount(); 6560 6561 // N32/64 returns struct/classes in floating point registers if the 6562 // following conditions are met: 6563 // 1. The size of the struct/class is no larger than 128-bit. 6564 // 2. The struct/class has one or two fields all of which are floating 6565 // point types. 6566 // 3. The offset of the first field is zero (this follows what gcc does). 6567 // 6568 // Any other composite results are returned in integer registers. 6569 // 6570 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6571 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6572 for (; b != e; ++b) { 6573 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6574 6575 if (!BT || !BT->isFloatingPoint()) 6576 break; 6577 6578 RTList.push_back(CGT.ConvertType(b->getType())); 6579 } 6580 6581 if (b == e) 6582 return llvm::StructType::get(getVMContext(), RTList, 6583 RD->hasAttr<PackedAttr>()); 6584 6585 RTList.clear(); 6586 } 6587 } 6588 6589 CoerceToIntArgs(Size, RTList); 6590 return llvm::StructType::get(getVMContext(), RTList); 6591 } 6592 6593 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6594 uint64_t Size = getContext().getTypeSize(RetTy); 6595 6596 if (RetTy->isVoidType()) 6597 return ABIArgInfo::getIgnore(); 6598 6599 // O32 doesn't treat zero-sized structs differently from other structs. 6600 // However, N32/N64 ignores zero sized return values. 6601 if (!IsO32 && Size == 0) 6602 return ABIArgInfo::getIgnore(); 6603 6604 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6605 if (Size <= 128) { 6606 if (RetTy->isAnyComplexType()) 6607 return ABIArgInfo::getDirect(); 6608 6609 // O32 returns integer vectors in registers and N32/N64 returns all small 6610 // aggregates in registers. 6611 if (!IsO32 || 6612 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6613 ABIArgInfo ArgInfo = 6614 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6615 ArgInfo.setInReg(true); 6616 return ArgInfo; 6617 } 6618 } 6619 6620 return getNaturalAlignIndirect(RetTy); 6621 } 6622 6623 // Treat an enum type as its underlying type. 6624 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6625 RetTy = EnumTy->getDecl()->getIntegerType(); 6626 6627 return (RetTy->isPromotableIntegerType() ? 6628 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6629 } 6630 6631 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6632 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6633 if (!getCXXABI().classifyReturnType(FI)) 6634 RetInfo = classifyReturnType(FI.getReturnType()); 6635 6636 // Check if a pointer to an aggregate is passed as a hidden argument. 6637 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6638 6639 for (auto &I : FI.arguments()) 6640 I.info = classifyArgumentType(I.type, Offset); 6641 } 6642 6643 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6644 QualType OrigTy) const { 6645 QualType Ty = OrigTy; 6646 6647 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6648 // Pointers are also promoted in the same way but this only matters for N32. 6649 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6650 unsigned PtrWidth = getTarget().getPointerWidth(0); 6651 bool DidPromote = false; 6652 if ((Ty->isIntegerType() && 6653 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6654 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6655 DidPromote = true; 6656 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6657 Ty->isSignedIntegerType()); 6658 } 6659 6660 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6661 6662 // The alignment of things in the argument area is never larger than 6663 // StackAlignInBytes. 6664 TyInfo.second = 6665 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 6666 6667 // MinABIStackAlignInBytes is the size of argument slots on the stack. 6668 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 6669 6670 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6671 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 6672 6673 6674 // If there was a promotion, "unpromote" into a temporary. 6675 // TODO: can we just use a pointer into a subset of the original slot? 6676 if (DidPromote) { 6677 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 6678 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 6679 6680 // Truncate down to the right width. 6681 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 6682 : CGF.IntPtrTy); 6683 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 6684 if (OrigTy->isPointerType()) 6685 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 6686 6687 CGF.Builder.CreateStore(V, Temp); 6688 Addr = Temp; 6689 } 6690 6691 return Addr; 6692 } 6693 6694 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 6695 int TySize = getContext().getTypeSize(Ty); 6696 6697 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 6698 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 6699 return true; 6700 6701 return false; 6702 } 6703 6704 bool 6705 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6706 llvm::Value *Address) const { 6707 // This information comes from gcc's implementation, which seems to 6708 // as canonical as it gets. 6709 6710 // Everything on MIPS is 4 bytes. Double-precision FP registers 6711 // are aliased to pairs of single-precision FP registers. 6712 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6713 6714 // 0-31 are the general purpose registers, $0 - $31. 6715 // 32-63 are the floating-point registers, $f0 - $f31. 6716 // 64 and 65 are the multiply/divide registers, $hi and $lo. 6717 // 66 is the (notional, I think) register for signal-handler return. 6718 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 6719 6720 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 6721 // They are one bit wide and ignored here. 6722 6723 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 6724 // (coprocessor 1 is the FP unit) 6725 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 6726 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 6727 // 176-181 are the DSP accumulator registers. 6728 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 6729 return false; 6730 } 6731 6732 //===----------------------------------------------------------------------===// 6733 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 6734 // Currently subclassed only to implement custom OpenCL C function attribute 6735 // handling. 6736 //===----------------------------------------------------------------------===// 6737 6738 namespace { 6739 6740 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 6741 public: 6742 TCETargetCodeGenInfo(CodeGenTypes &CGT) 6743 : DefaultTargetCodeGenInfo(CGT) {} 6744 6745 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6746 CodeGen::CodeGenModule &M) const override; 6747 }; 6748 6749 void TCETargetCodeGenInfo::setTargetAttributes( 6750 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6751 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6752 if (!FD) return; 6753 6754 llvm::Function *F = cast<llvm::Function>(GV); 6755 6756 if (M.getLangOpts().OpenCL) { 6757 if (FD->hasAttr<OpenCLKernelAttr>()) { 6758 // OpenCL C Kernel functions are not subject to inlining 6759 F->addFnAttr(llvm::Attribute::NoInline); 6760 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 6761 if (Attr) { 6762 // Convert the reqd_work_group_size() attributes to metadata. 6763 llvm::LLVMContext &Context = F->getContext(); 6764 llvm::NamedMDNode *OpenCLMetadata = 6765 M.getModule().getOrInsertNamedMetadata( 6766 "opencl.kernel_wg_size_info"); 6767 6768 SmallVector<llvm::Metadata *, 5> Operands; 6769 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 6770 6771 Operands.push_back( 6772 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6773 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 6774 Operands.push_back( 6775 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6776 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 6777 Operands.push_back( 6778 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 6779 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 6780 6781 // Add a boolean constant operand for "required" (true) or "hint" 6782 // (false) for implementing the work_group_size_hint attr later. 6783 // Currently always true as the hint is not yet implemented. 6784 Operands.push_back( 6785 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 6786 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 6787 } 6788 } 6789 } 6790 } 6791 6792 } 6793 6794 //===----------------------------------------------------------------------===// 6795 // Hexagon ABI Implementation 6796 //===----------------------------------------------------------------------===// 6797 6798 namespace { 6799 6800 class HexagonABIInfo : public ABIInfo { 6801 6802 6803 public: 6804 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6805 6806 private: 6807 6808 ABIArgInfo classifyReturnType(QualType RetTy) const; 6809 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6810 6811 void computeInfo(CGFunctionInfo &FI) const override; 6812 6813 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6814 QualType Ty) const override; 6815 }; 6816 6817 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6818 public: 6819 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6820 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6821 6822 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6823 return 29; 6824 } 6825 }; 6826 6827 } 6828 6829 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6830 if (!getCXXABI().classifyReturnType(FI)) 6831 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6832 for (auto &I : FI.arguments()) 6833 I.info = classifyArgumentType(I.type); 6834 } 6835 6836 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6837 if (!isAggregateTypeForABI(Ty)) { 6838 // Treat an enum type as its underlying type. 6839 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6840 Ty = EnumTy->getDecl()->getIntegerType(); 6841 6842 return (Ty->isPromotableIntegerType() ? 6843 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6844 } 6845 6846 // Ignore empty records. 6847 if (isEmptyRecord(getContext(), Ty, true)) 6848 return ABIArgInfo::getIgnore(); 6849 6850 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6851 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6852 6853 uint64_t Size = getContext().getTypeSize(Ty); 6854 if (Size > 64) 6855 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6856 // Pass in the smallest viable integer type. 6857 else if (Size > 32) 6858 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6859 else if (Size > 16) 6860 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6861 else if (Size > 8) 6862 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6863 else 6864 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6865 } 6866 6867 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6868 if (RetTy->isVoidType()) 6869 return ABIArgInfo::getIgnore(); 6870 6871 // Large vector types should be returned via memory. 6872 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6873 return getNaturalAlignIndirect(RetTy); 6874 6875 if (!isAggregateTypeForABI(RetTy)) { 6876 // Treat an enum type as its underlying type. 6877 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6878 RetTy = EnumTy->getDecl()->getIntegerType(); 6879 6880 return (RetTy->isPromotableIntegerType() ? 6881 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6882 } 6883 6884 if (isEmptyRecord(getContext(), RetTy, true)) 6885 return ABIArgInfo::getIgnore(); 6886 6887 // Aggregates <= 8 bytes are returned in r0; other aggregates 6888 // are returned indirectly. 6889 uint64_t Size = getContext().getTypeSize(RetTy); 6890 if (Size <= 64) { 6891 // Return in the smallest viable integer type. 6892 if (Size <= 8) 6893 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6894 if (Size <= 16) 6895 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6896 if (Size <= 32) 6897 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6898 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6899 } 6900 6901 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 6902 } 6903 6904 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6905 QualType Ty) const { 6906 // FIXME: Someone needs to audit that this handle alignment correctly. 6907 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6908 getContext().getTypeInfoInChars(Ty), 6909 CharUnits::fromQuantity(4), 6910 /*AllowHigherAlign*/ true); 6911 } 6912 6913 //===----------------------------------------------------------------------===// 6914 // Lanai ABI Implementation 6915 //===----------------------------------------------------------------------===// 6916 6917 namespace { 6918 class LanaiABIInfo : public DefaultABIInfo { 6919 public: 6920 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6921 6922 bool shouldUseInReg(QualType Ty, CCState &State) const; 6923 6924 void computeInfo(CGFunctionInfo &FI) const override { 6925 CCState State(FI.getCallingConvention()); 6926 // Lanai uses 4 registers to pass arguments unless the function has the 6927 // regparm attribute set. 6928 if (FI.getHasRegParm()) { 6929 State.FreeRegs = FI.getRegParm(); 6930 } else { 6931 State.FreeRegs = 4; 6932 } 6933 6934 if (!getCXXABI().classifyReturnType(FI)) 6935 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6936 for (auto &I : FI.arguments()) 6937 I.info = classifyArgumentType(I.type, State); 6938 } 6939 6940 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 6941 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 6942 }; 6943 } // end anonymous namespace 6944 6945 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 6946 unsigned Size = getContext().getTypeSize(Ty); 6947 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 6948 6949 if (SizeInRegs == 0) 6950 return false; 6951 6952 if (SizeInRegs > State.FreeRegs) { 6953 State.FreeRegs = 0; 6954 return false; 6955 } 6956 6957 State.FreeRegs -= SizeInRegs; 6958 6959 return true; 6960 } 6961 6962 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 6963 CCState &State) const { 6964 if (!ByVal) { 6965 if (State.FreeRegs) { 6966 --State.FreeRegs; // Non-byval indirects just use one pointer. 6967 return getNaturalAlignIndirectInReg(Ty); 6968 } 6969 return getNaturalAlignIndirect(Ty, false); 6970 } 6971 6972 // Compute the byval alignment. 6973 const unsigned MinABIStackAlignInBytes = 4; 6974 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 6975 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 6976 /*Realign=*/TypeAlign > 6977 MinABIStackAlignInBytes); 6978 } 6979 6980 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 6981 CCState &State) const { 6982 // Check with the C++ ABI first. 6983 const RecordType *RT = Ty->getAs<RecordType>(); 6984 if (RT) { 6985 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 6986 if (RAA == CGCXXABI::RAA_Indirect) { 6987 return getIndirectResult(Ty, /*ByVal=*/false, State); 6988 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 6989 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 6990 } 6991 } 6992 6993 if (isAggregateTypeForABI(Ty)) { 6994 // Structures with flexible arrays are always indirect. 6995 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 6996 return getIndirectResult(Ty, /*ByVal=*/true, State); 6997 6998 // Ignore empty structs/unions. 6999 if (isEmptyRecord(getContext(), Ty, true)) 7000 return ABIArgInfo::getIgnore(); 7001 7002 llvm::LLVMContext &LLVMContext = getVMContext(); 7003 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7004 if (SizeInRegs <= State.FreeRegs) { 7005 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7006 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7007 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7008 State.FreeRegs -= SizeInRegs; 7009 return ABIArgInfo::getDirectInReg(Result); 7010 } else { 7011 State.FreeRegs = 0; 7012 } 7013 return getIndirectResult(Ty, true, State); 7014 } 7015 7016 // Treat an enum type as its underlying type. 7017 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7018 Ty = EnumTy->getDecl()->getIntegerType(); 7019 7020 bool InReg = shouldUseInReg(Ty, State); 7021 if (Ty->isPromotableIntegerType()) { 7022 if (InReg) 7023 return ABIArgInfo::getDirectInReg(); 7024 return ABIArgInfo::getExtend(); 7025 } 7026 if (InReg) 7027 return ABIArgInfo::getDirectInReg(); 7028 return ABIArgInfo::getDirect(); 7029 } 7030 7031 namespace { 7032 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7033 public: 7034 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7035 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7036 }; 7037 } 7038 7039 //===----------------------------------------------------------------------===// 7040 // AMDGPU ABI Implementation 7041 //===----------------------------------------------------------------------===// 7042 7043 namespace { 7044 7045 class AMDGPUABIInfo final : public DefaultABIInfo { 7046 public: 7047 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7048 7049 private: 7050 ABIArgInfo classifyArgumentType(QualType Ty) const; 7051 7052 void computeInfo(CGFunctionInfo &FI) const override; 7053 }; 7054 7055 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7056 if (!getCXXABI().classifyReturnType(FI)) 7057 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7058 7059 unsigned CC = FI.getCallingConvention(); 7060 for (auto &Arg : FI.arguments()) 7061 if (CC == llvm::CallingConv::AMDGPU_KERNEL) 7062 Arg.info = classifyArgumentType(Arg.type); 7063 else 7064 Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type); 7065 } 7066 7067 /// \brief Classify argument of given type \p Ty. 7068 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const { 7069 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7070 if (!StrTy) { 7071 return DefaultABIInfo::classifyArgumentType(Ty); 7072 } 7073 7074 // Coerce single element structs to its element. 7075 if (StrTy->getNumElements() == 1) { 7076 return ABIArgInfo::getDirect(); 7077 } 7078 7079 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7080 // individual elements, which confuses the Clover OpenCL backend; therefore we 7081 // have to set it to false here. Other args of getDirect() are just defaults. 7082 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7083 } 7084 7085 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7086 public: 7087 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7088 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7089 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7090 CodeGen::CodeGenModule &M) const override; 7091 unsigned getOpenCLKernelCallingConv() const override; 7092 7093 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7094 llvm::PointerType *T, QualType QT) const override; 7095 }; 7096 } 7097 7098 static void appendOpenCLVersionMD (CodeGen::CodeGenModule &CGM); 7099 7100 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7101 const Decl *D, 7102 llvm::GlobalValue *GV, 7103 CodeGen::CodeGenModule &M) const { 7104 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7105 if (!FD) 7106 return; 7107 7108 llvm::Function *F = cast<llvm::Function>(GV); 7109 7110 if (const auto *Attr = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { 7111 unsigned Min = Attr->getMin(); 7112 unsigned Max = Attr->getMax(); 7113 7114 if (Min != 0) { 7115 assert(Min <= Max && "Min must be less than or equal Max"); 7116 7117 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7118 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7119 } else 7120 assert(Max == 0 && "Max must be zero"); 7121 } 7122 7123 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7124 unsigned Min = Attr->getMin(); 7125 unsigned Max = Attr->getMax(); 7126 7127 if (Min != 0) { 7128 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7129 7130 std::string AttrVal = llvm::utostr(Min); 7131 if (Max != 0) 7132 AttrVal = AttrVal + "," + llvm::utostr(Max); 7133 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7134 } else 7135 assert(Max == 0 && "Max must be zero"); 7136 } 7137 7138 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7139 unsigned NumSGPR = Attr->getNumSGPR(); 7140 7141 if (NumSGPR != 0) 7142 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7143 } 7144 7145 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7146 uint32_t NumVGPR = Attr->getNumVGPR(); 7147 7148 if (NumVGPR != 0) 7149 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7150 } 7151 7152 appendOpenCLVersionMD(M); 7153 } 7154 7155 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7156 return llvm::CallingConv::AMDGPU_KERNEL; 7157 } 7158 7159 // Currently LLVM assumes null pointers always have value 0, 7160 // which results in incorrectly transformed IR. Therefore, instead of 7161 // emitting null pointers in private and local address spaces, a null 7162 // pointer in generic address space is emitted which is casted to a 7163 // pointer in local or private address space. 7164 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7165 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7166 QualType QT) const { 7167 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7168 return llvm::ConstantPointerNull::get(PT); 7169 7170 auto &Ctx = CGM.getContext(); 7171 auto NPT = llvm::PointerType::get(PT->getElementType(), 7172 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7173 return llvm::ConstantExpr::getAddrSpaceCast( 7174 llvm::ConstantPointerNull::get(NPT), PT); 7175 } 7176 7177 //===----------------------------------------------------------------------===// 7178 // SPARC v8 ABI Implementation. 7179 // Based on the SPARC Compliance Definition version 2.4.1. 7180 // 7181 // Ensures that complex values are passed in registers. 7182 // 7183 namespace { 7184 class SparcV8ABIInfo : public DefaultABIInfo { 7185 public: 7186 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7187 7188 private: 7189 ABIArgInfo classifyReturnType(QualType RetTy) const; 7190 void computeInfo(CGFunctionInfo &FI) const override; 7191 }; 7192 } // end anonymous namespace 7193 7194 7195 ABIArgInfo 7196 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7197 if (Ty->isAnyComplexType()) { 7198 return ABIArgInfo::getDirect(); 7199 } 7200 else { 7201 return DefaultABIInfo::classifyReturnType(Ty); 7202 } 7203 } 7204 7205 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7206 7207 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7208 for (auto &Arg : FI.arguments()) 7209 Arg.info = classifyArgumentType(Arg.type); 7210 } 7211 7212 namespace { 7213 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7214 public: 7215 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7216 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7217 }; 7218 } // end anonymous namespace 7219 7220 //===----------------------------------------------------------------------===// 7221 // SPARC v9 ABI Implementation. 7222 // Based on the SPARC Compliance Definition version 2.4.1. 7223 // 7224 // Function arguments a mapped to a nominal "parameter array" and promoted to 7225 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7226 // the array, structs larger than 16 bytes are passed indirectly. 7227 // 7228 // One case requires special care: 7229 // 7230 // struct mixed { 7231 // int i; 7232 // float f; 7233 // }; 7234 // 7235 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7236 // parameter array, but the int is passed in an integer register, and the float 7237 // is passed in a floating point register. This is represented as two arguments 7238 // with the LLVM IR inreg attribute: 7239 // 7240 // declare void f(i32 inreg %i, float inreg %f) 7241 // 7242 // The code generator will only allocate 4 bytes from the parameter array for 7243 // the inreg arguments. All other arguments are allocated a multiple of 8 7244 // bytes. 7245 // 7246 namespace { 7247 class SparcV9ABIInfo : public ABIInfo { 7248 public: 7249 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7250 7251 private: 7252 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7253 void computeInfo(CGFunctionInfo &FI) const override; 7254 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7255 QualType Ty) const override; 7256 7257 // Coercion type builder for structs passed in registers. The coercion type 7258 // serves two purposes: 7259 // 7260 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7261 // in registers. 7262 // 2. Expose aligned floating point elements as first-level elements, so the 7263 // code generator knows to pass them in floating point registers. 7264 // 7265 // We also compute the InReg flag which indicates that the struct contains 7266 // aligned 32-bit floats. 7267 // 7268 struct CoerceBuilder { 7269 llvm::LLVMContext &Context; 7270 const llvm::DataLayout &DL; 7271 SmallVector<llvm::Type*, 8> Elems; 7272 uint64_t Size; 7273 bool InReg; 7274 7275 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7276 : Context(c), DL(dl), Size(0), InReg(false) {} 7277 7278 // Pad Elems with integers until Size is ToSize. 7279 void pad(uint64_t ToSize) { 7280 assert(ToSize >= Size && "Cannot remove elements"); 7281 if (ToSize == Size) 7282 return; 7283 7284 // Finish the current 64-bit word. 7285 uint64_t Aligned = llvm::alignTo(Size, 64); 7286 if (Aligned > Size && Aligned <= ToSize) { 7287 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7288 Size = Aligned; 7289 } 7290 7291 // Add whole 64-bit words. 7292 while (Size + 64 <= ToSize) { 7293 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7294 Size += 64; 7295 } 7296 7297 // Final in-word padding. 7298 if (Size < ToSize) { 7299 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7300 Size = ToSize; 7301 } 7302 } 7303 7304 // Add a floating point element at Offset. 7305 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7306 // Unaligned floats are treated as integers. 7307 if (Offset % Bits) 7308 return; 7309 // The InReg flag is only required if there are any floats < 64 bits. 7310 if (Bits < 64) 7311 InReg = true; 7312 pad(Offset); 7313 Elems.push_back(Ty); 7314 Size = Offset + Bits; 7315 } 7316 7317 // Add a struct type to the coercion type, starting at Offset (in bits). 7318 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7319 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7320 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7321 llvm::Type *ElemTy = StrTy->getElementType(i); 7322 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7323 switch (ElemTy->getTypeID()) { 7324 case llvm::Type::StructTyID: 7325 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7326 break; 7327 case llvm::Type::FloatTyID: 7328 addFloat(ElemOffset, ElemTy, 32); 7329 break; 7330 case llvm::Type::DoubleTyID: 7331 addFloat(ElemOffset, ElemTy, 64); 7332 break; 7333 case llvm::Type::FP128TyID: 7334 addFloat(ElemOffset, ElemTy, 128); 7335 break; 7336 case llvm::Type::PointerTyID: 7337 if (ElemOffset % 64 == 0) { 7338 pad(ElemOffset); 7339 Elems.push_back(ElemTy); 7340 Size += 64; 7341 } 7342 break; 7343 default: 7344 break; 7345 } 7346 } 7347 } 7348 7349 // Check if Ty is a usable substitute for the coercion type. 7350 bool isUsableType(llvm::StructType *Ty) const { 7351 return llvm::makeArrayRef(Elems) == Ty->elements(); 7352 } 7353 7354 // Get the coercion type as a literal struct type. 7355 llvm::Type *getType() const { 7356 if (Elems.size() == 1) 7357 return Elems.front(); 7358 else 7359 return llvm::StructType::get(Context, Elems); 7360 } 7361 }; 7362 }; 7363 } // end anonymous namespace 7364 7365 ABIArgInfo 7366 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7367 if (Ty->isVoidType()) 7368 return ABIArgInfo::getIgnore(); 7369 7370 uint64_t Size = getContext().getTypeSize(Ty); 7371 7372 // Anything too big to fit in registers is passed with an explicit indirect 7373 // pointer / sret pointer. 7374 if (Size > SizeLimit) 7375 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7376 7377 // Treat an enum type as its underlying type. 7378 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7379 Ty = EnumTy->getDecl()->getIntegerType(); 7380 7381 // Integer types smaller than a register are extended. 7382 if (Size < 64 && Ty->isIntegerType()) 7383 return ABIArgInfo::getExtend(); 7384 7385 // Other non-aggregates go in registers. 7386 if (!isAggregateTypeForABI(Ty)) 7387 return ABIArgInfo::getDirect(); 7388 7389 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7390 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7391 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7392 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7393 7394 // This is a small aggregate type that should be passed in registers. 7395 // Build a coercion type from the LLVM struct type. 7396 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 7397 if (!StrTy) 7398 return ABIArgInfo::getDirect(); 7399 7400 CoerceBuilder CB(getVMContext(), getDataLayout()); 7401 CB.addStruct(0, StrTy); 7402 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 7403 7404 // Try to use the original type for coercion. 7405 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 7406 7407 if (CB.InReg) 7408 return ABIArgInfo::getDirectInReg(CoerceTy); 7409 else 7410 return ABIArgInfo::getDirect(CoerceTy); 7411 } 7412 7413 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7414 QualType Ty) const { 7415 ABIArgInfo AI = classifyType(Ty, 16 * 8); 7416 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7417 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7418 AI.setCoerceToType(ArgTy); 7419 7420 CharUnits SlotSize = CharUnits::fromQuantity(8); 7421 7422 CGBuilderTy &Builder = CGF.Builder; 7423 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 7424 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7425 7426 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 7427 7428 Address ArgAddr = Address::invalid(); 7429 CharUnits Stride; 7430 switch (AI.getKind()) { 7431 case ABIArgInfo::Expand: 7432 case ABIArgInfo::CoerceAndExpand: 7433 case ABIArgInfo::InAlloca: 7434 llvm_unreachable("Unsupported ABI kind for va_arg"); 7435 7436 case ABIArgInfo::Extend: { 7437 Stride = SlotSize; 7438 CharUnits Offset = SlotSize - TypeInfo.first; 7439 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 7440 break; 7441 } 7442 7443 case ABIArgInfo::Direct: { 7444 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 7445 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 7446 ArgAddr = Addr; 7447 break; 7448 } 7449 7450 case ABIArgInfo::Indirect: 7451 Stride = SlotSize; 7452 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 7453 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 7454 TypeInfo.second); 7455 break; 7456 7457 case ABIArgInfo::Ignore: 7458 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 7459 } 7460 7461 // Update VAList. 7462 llvm::Value *NextPtr = 7463 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 7464 Builder.CreateStore(NextPtr, VAListAddr); 7465 7466 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 7467 } 7468 7469 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7470 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 7471 for (auto &I : FI.arguments()) 7472 I.info = classifyType(I.type, 16 * 8); 7473 } 7474 7475 namespace { 7476 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 7477 public: 7478 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 7479 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 7480 7481 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7482 return 14; 7483 } 7484 7485 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7486 llvm::Value *Address) const override; 7487 }; 7488 } // end anonymous namespace 7489 7490 bool 7491 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7492 llvm::Value *Address) const { 7493 // This is calculated from the LLVM and GCC tables and verified 7494 // against gcc output. AFAIK all ABIs use the same encoding. 7495 7496 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7497 7498 llvm::IntegerType *i8 = CGF.Int8Ty; 7499 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 7500 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 7501 7502 // 0-31: the 8-byte general-purpose registers 7503 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 7504 7505 // 32-63: f0-31, the 4-byte floating-point registers 7506 AssignToArrayRange(Builder, Address, Four8, 32, 63); 7507 7508 // Y = 64 7509 // PSR = 65 7510 // WIM = 66 7511 // TBR = 67 7512 // PC = 68 7513 // NPC = 69 7514 // FSR = 70 7515 // CSR = 71 7516 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 7517 7518 // 72-87: d0-15, the 8-byte floating-point registers 7519 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 7520 7521 return false; 7522 } 7523 7524 7525 //===----------------------------------------------------------------------===// 7526 // XCore ABI Implementation 7527 //===----------------------------------------------------------------------===// 7528 7529 namespace { 7530 7531 /// A SmallStringEnc instance is used to build up the TypeString by passing 7532 /// it by reference between functions that append to it. 7533 typedef llvm::SmallString<128> SmallStringEnc; 7534 7535 /// TypeStringCache caches the meta encodings of Types. 7536 /// 7537 /// The reason for caching TypeStrings is two fold: 7538 /// 1. To cache a type's encoding for later uses; 7539 /// 2. As a means to break recursive member type inclusion. 7540 /// 7541 /// A cache Entry can have a Status of: 7542 /// NonRecursive: The type encoding is not recursive; 7543 /// Recursive: The type encoding is recursive; 7544 /// Incomplete: An incomplete TypeString; 7545 /// IncompleteUsed: An incomplete TypeString that has been used in a 7546 /// Recursive type encoding. 7547 /// 7548 /// A NonRecursive entry will have all of its sub-members expanded as fully 7549 /// as possible. Whilst it may contain types which are recursive, the type 7550 /// itself is not recursive and thus its encoding may be safely used whenever 7551 /// the type is encountered. 7552 /// 7553 /// A Recursive entry will have all of its sub-members expanded as fully as 7554 /// possible. The type itself is recursive and it may contain other types which 7555 /// are recursive. The Recursive encoding must not be used during the expansion 7556 /// of a recursive type's recursive branch. For simplicity the code uses 7557 /// IncompleteCount to reject all usage of Recursive encodings for member types. 7558 /// 7559 /// An Incomplete entry is always a RecordType and only encodes its 7560 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 7561 /// are placed into the cache during type expansion as a means to identify and 7562 /// handle recursive inclusion of types as sub-members. If there is recursion 7563 /// the entry becomes IncompleteUsed. 7564 /// 7565 /// During the expansion of a RecordType's members: 7566 /// 7567 /// If the cache contains a NonRecursive encoding for the member type, the 7568 /// cached encoding is used; 7569 /// 7570 /// If the cache contains a Recursive encoding for the member type, the 7571 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 7572 /// 7573 /// If the member is a RecordType, an Incomplete encoding is placed into the 7574 /// cache to break potential recursive inclusion of itself as a sub-member; 7575 /// 7576 /// Once a member RecordType has been expanded, its temporary incomplete 7577 /// entry is removed from the cache. If a Recursive encoding was swapped out 7578 /// it is swapped back in; 7579 /// 7580 /// If an incomplete entry is used to expand a sub-member, the incomplete 7581 /// entry is marked as IncompleteUsed. The cache keeps count of how many 7582 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 7583 /// 7584 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 7585 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 7586 /// Else the member is part of a recursive type and thus the recursion has 7587 /// been exited too soon for the encoding to be correct for the member. 7588 /// 7589 class TypeStringCache { 7590 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 7591 struct Entry { 7592 std::string Str; // The encoded TypeString for the type. 7593 enum Status State; // Information about the encoding in 'Str'. 7594 std::string Swapped; // A temporary place holder for a Recursive encoding 7595 // during the expansion of RecordType's members. 7596 }; 7597 std::map<const IdentifierInfo *, struct Entry> Map; 7598 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 7599 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 7600 public: 7601 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 7602 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 7603 bool removeIncomplete(const IdentifierInfo *ID); 7604 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 7605 bool IsRecursive); 7606 StringRef lookupStr(const IdentifierInfo *ID); 7607 }; 7608 7609 /// TypeString encodings for enum & union fields must be order. 7610 /// FieldEncoding is a helper for this ordering process. 7611 class FieldEncoding { 7612 bool HasName; 7613 std::string Enc; 7614 public: 7615 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 7616 StringRef str() { return Enc; } 7617 bool operator<(const FieldEncoding &rhs) const { 7618 if (HasName != rhs.HasName) return HasName; 7619 return Enc < rhs.Enc; 7620 } 7621 }; 7622 7623 class XCoreABIInfo : public DefaultABIInfo { 7624 public: 7625 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7626 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7627 QualType Ty) const override; 7628 }; 7629 7630 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 7631 mutable TypeStringCache TSC; 7632 public: 7633 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 7634 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 7635 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7636 CodeGen::CodeGenModule &M) const override; 7637 }; 7638 7639 } // End anonymous namespace. 7640 7641 // TODO: this implementation is likely now redundant with the default 7642 // EmitVAArg. 7643 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7644 QualType Ty) const { 7645 CGBuilderTy &Builder = CGF.Builder; 7646 7647 // Get the VAList. 7648 CharUnits SlotSize = CharUnits::fromQuantity(4); 7649 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 7650 7651 // Handle the argument. 7652 ABIArgInfo AI = classifyArgumentType(Ty); 7653 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 7654 llvm::Type *ArgTy = CGT.ConvertType(Ty); 7655 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 7656 AI.setCoerceToType(ArgTy); 7657 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 7658 7659 Address Val = Address::invalid(); 7660 CharUnits ArgSize = CharUnits::Zero(); 7661 switch (AI.getKind()) { 7662 case ABIArgInfo::Expand: 7663 case ABIArgInfo::CoerceAndExpand: 7664 case ABIArgInfo::InAlloca: 7665 llvm_unreachable("Unsupported ABI kind for va_arg"); 7666 case ABIArgInfo::Ignore: 7667 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 7668 ArgSize = CharUnits::Zero(); 7669 break; 7670 case ABIArgInfo::Extend: 7671 case ABIArgInfo::Direct: 7672 Val = Builder.CreateBitCast(AP, ArgPtrTy); 7673 ArgSize = CharUnits::fromQuantity( 7674 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 7675 ArgSize = ArgSize.alignTo(SlotSize); 7676 break; 7677 case ABIArgInfo::Indirect: 7678 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 7679 Val = Address(Builder.CreateLoad(Val), TypeAlign); 7680 ArgSize = SlotSize; 7681 break; 7682 } 7683 7684 // Increment the VAList. 7685 if (!ArgSize.isZero()) { 7686 llvm::Value *APN = 7687 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 7688 Builder.CreateStore(APN, VAListAddr); 7689 } 7690 7691 return Val; 7692 } 7693 7694 /// During the expansion of a RecordType, an incomplete TypeString is placed 7695 /// into the cache as a means to identify and break recursion. 7696 /// If there is a Recursive encoding in the cache, it is swapped out and will 7697 /// be reinserted by removeIncomplete(). 7698 /// All other types of encoding should have been used rather than arriving here. 7699 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 7700 std::string StubEnc) { 7701 if (!ID) 7702 return; 7703 Entry &E = Map[ID]; 7704 assert( (E.Str.empty() || E.State == Recursive) && 7705 "Incorrectly use of addIncomplete"); 7706 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 7707 E.Swapped.swap(E.Str); // swap out the Recursive 7708 E.Str.swap(StubEnc); 7709 E.State = Incomplete; 7710 ++IncompleteCount; 7711 } 7712 7713 /// Once the RecordType has been expanded, the temporary incomplete TypeString 7714 /// must be removed from the cache. 7715 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 7716 /// Returns true if the RecordType was defined recursively. 7717 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 7718 if (!ID) 7719 return false; 7720 auto I = Map.find(ID); 7721 assert(I != Map.end() && "Entry not present"); 7722 Entry &E = I->second; 7723 assert( (E.State == Incomplete || 7724 E.State == IncompleteUsed) && 7725 "Entry must be an incomplete type"); 7726 bool IsRecursive = false; 7727 if (E.State == IncompleteUsed) { 7728 // We made use of our Incomplete encoding, thus we are recursive. 7729 IsRecursive = true; 7730 --IncompleteUsedCount; 7731 } 7732 if (E.Swapped.empty()) 7733 Map.erase(I); 7734 else { 7735 // Swap the Recursive back. 7736 E.Swapped.swap(E.Str); 7737 E.Swapped.clear(); 7738 E.State = Recursive; 7739 } 7740 --IncompleteCount; 7741 return IsRecursive; 7742 } 7743 7744 /// Add the encoded TypeString to the cache only if it is NonRecursive or 7745 /// Recursive (viz: all sub-members were expanded as fully as possible). 7746 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 7747 bool IsRecursive) { 7748 if (!ID || IncompleteUsedCount) 7749 return; // No key or it is is an incomplete sub-type so don't add. 7750 Entry &E = Map[ID]; 7751 if (IsRecursive && !E.Str.empty()) { 7752 assert(E.State==Recursive && E.Str.size() == Str.size() && 7753 "This is not the same Recursive entry"); 7754 // The parent container was not recursive after all, so we could have used 7755 // this Recursive sub-member entry after all, but we assumed the worse when 7756 // we started viz: IncompleteCount!=0. 7757 return; 7758 } 7759 assert(E.Str.empty() && "Entry already present"); 7760 E.Str = Str.str(); 7761 E.State = IsRecursive? Recursive : NonRecursive; 7762 } 7763 7764 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 7765 /// are recursively expanding a type (IncompleteCount != 0) and the cached 7766 /// encoding is Recursive, return an empty StringRef. 7767 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 7768 if (!ID) 7769 return StringRef(); // We have no key. 7770 auto I = Map.find(ID); 7771 if (I == Map.end()) 7772 return StringRef(); // We have no encoding. 7773 Entry &E = I->second; 7774 if (E.State == Recursive && IncompleteCount) 7775 return StringRef(); // We don't use Recursive encodings for member types. 7776 7777 if (E.State == Incomplete) { 7778 // The incomplete type is being used to break out of recursion. 7779 E.State = IncompleteUsed; 7780 ++IncompleteUsedCount; 7781 } 7782 return E.Str; 7783 } 7784 7785 /// The XCore ABI includes a type information section that communicates symbol 7786 /// type information to the linker. The linker uses this information to verify 7787 /// safety/correctness of things such as array bound and pointers et al. 7788 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 7789 /// This type information (TypeString) is emitted into meta data for all global 7790 /// symbols: definitions, declarations, functions & variables. 7791 /// 7792 /// The TypeString carries type, qualifier, name, size & value details. 7793 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 7794 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 7795 /// The output is tested by test/CodeGen/xcore-stringtype.c. 7796 /// 7797 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7798 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 7799 7800 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 7801 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7802 CodeGen::CodeGenModule &CGM) const { 7803 SmallStringEnc Enc; 7804 if (getTypeString(Enc, D, CGM, TSC)) { 7805 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7806 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 7807 llvm::MDString::get(Ctx, Enc.str())}; 7808 llvm::NamedMDNode *MD = 7809 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 7810 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7811 } 7812 } 7813 7814 //===----------------------------------------------------------------------===// 7815 // SPIR ABI Implementation 7816 //===----------------------------------------------------------------------===// 7817 7818 namespace { 7819 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 7820 public: 7821 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7822 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 7823 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7824 CodeGen::CodeGenModule &M) const override; 7825 unsigned getOpenCLKernelCallingConv() const override; 7826 }; 7827 } // End anonymous namespace. 7828 7829 /// Emit SPIR specific metadata: OpenCL and SPIR version. 7830 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 7831 CodeGen::CodeGenModule &CGM) const { 7832 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7833 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7834 llvm::Module &M = CGM.getModule(); 7835 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 7836 // opencl.spir.version named metadata. 7837 llvm::Metadata *SPIRVerElts[] = { 7838 llvm::ConstantAsMetadata::get( 7839 llvm::ConstantInt::get(Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7840 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7841 Int32Ty, (CGM.getLangOpts().OpenCLVersion / 100 > 1) ? 0 : 2))}; 7842 llvm::NamedMDNode *SPIRVerMD = 7843 M.getOrInsertNamedMetadata("opencl.spir.version"); 7844 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 7845 appendOpenCLVersionMD(CGM); 7846 } 7847 7848 static void appendOpenCLVersionMD(CodeGen::CodeGenModule &CGM) { 7849 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 7850 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx); 7851 llvm::Module &M = CGM.getModule(); 7852 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 7853 // opencl.ocl.version named metadata node. 7854 llvm::Metadata *OCLVerElts[] = { 7855 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7856 Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)), 7857 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 7858 Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))}; 7859 llvm::NamedMDNode *OCLVerMD = 7860 M.getOrInsertNamedMetadata("opencl.ocl.version"); 7861 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 7862 } 7863 7864 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7865 return llvm::CallingConv::SPIR_KERNEL; 7866 } 7867 7868 static bool appendType(SmallStringEnc &Enc, QualType QType, 7869 const CodeGen::CodeGenModule &CGM, 7870 TypeStringCache &TSC); 7871 7872 /// Helper function for appendRecordType(). 7873 /// Builds a SmallVector containing the encoded field types in declaration 7874 /// order. 7875 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 7876 const RecordDecl *RD, 7877 const CodeGen::CodeGenModule &CGM, 7878 TypeStringCache &TSC) { 7879 for (const auto *Field : RD->fields()) { 7880 SmallStringEnc Enc; 7881 Enc += "m("; 7882 Enc += Field->getName(); 7883 Enc += "){"; 7884 if (Field->isBitField()) { 7885 Enc += "b("; 7886 llvm::raw_svector_ostream OS(Enc); 7887 OS << Field->getBitWidthValue(CGM.getContext()); 7888 Enc += ':'; 7889 } 7890 if (!appendType(Enc, Field->getType(), CGM, TSC)) 7891 return false; 7892 if (Field->isBitField()) 7893 Enc += ')'; 7894 Enc += '}'; 7895 FE.emplace_back(!Field->getName().empty(), Enc); 7896 } 7897 return true; 7898 } 7899 7900 /// Appends structure and union types to Enc and adds encoding to cache. 7901 /// Recursively calls appendType (via extractFieldType) for each field. 7902 /// Union types have their fields ordered according to the ABI. 7903 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 7904 const CodeGen::CodeGenModule &CGM, 7905 TypeStringCache &TSC, const IdentifierInfo *ID) { 7906 // Append the cached TypeString if we have one. 7907 StringRef TypeString = TSC.lookupStr(ID); 7908 if (!TypeString.empty()) { 7909 Enc += TypeString; 7910 return true; 7911 } 7912 7913 // Start to emit an incomplete TypeString. 7914 size_t Start = Enc.size(); 7915 Enc += (RT->isUnionType()? 'u' : 's'); 7916 Enc += '('; 7917 if (ID) 7918 Enc += ID->getName(); 7919 Enc += "){"; 7920 7921 // We collect all encoded fields and order as necessary. 7922 bool IsRecursive = false; 7923 const RecordDecl *RD = RT->getDecl()->getDefinition(); 7924 if (RD && !RD->field_empty()) { 7925 // An incomplete TypeString stub is placed in the cache for this RecordType 7926 // so that recursive calls to this RecordType will use it whilst building a 7927 // complete TypeString for this RecordType. 7928 SmallVector<FieldEncoding, 16> FE; 7929 std::string StubEnc(Enc.substr(Start).str()); 7930 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 7931 TSC.addIncomplete(ID, std::move(StubEnc)); 7932 if (!extractFieldType(FE, RD, CGM, TSC)) { 7933 (void) TSC.removeIncomplete(ID); 7934 return false; 7935 } 7936 IsRecursive = TSC.removeIncomplete(ID); 7937 // The ABI requires unions to be sorted but not structures. 7938 // See FieldEncoding::operator< for sort algorithm. 7939 if (RT->isUnionType()) 7940 std::sort(FE.begin(), FE.end()); 7941 // We can now complete the TypeString. 7942 unsigned E = FE.size(); 7943 for (unsigned I = 0; I != E; ++I) { 7944 if (I) 7945 Enc += ','; 7946 Enc += FE[I].str(); 7947 } 7948 } 7949 Enc += '}'; 7950 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 7951 return true; 7952 } 7953 7954 /// Appends enum types to Enc and adds the encoding to the cache. 7955 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 7956 TypeStringCache &TSC, 7957 const IdentifierInfo *ID) { 7958 // Append the cached TypeString if we have one. 7959 StringRef TypeString = TSC.lookupStr(ID); 7960 if (!TypeString.empty()) { 7961 Enc += TypeString; 7962 return true; 7963 } 7964 7965 size_t Start = Enc.size(); 7966 Enc += "e("; 7967 if (ID) 7968 Enc += ID->getName(); 7969 Enc += "){"; 7970 7971 // We collect all encoded enumerations and order them alphanumerically. 7972 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 7973 SmallVector<FieldEncoding, 16> FE; 7974 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 7975 ++I) { 7976 SmallStringEnc EnumEnc; 7977 EnumEnc += "m("; 7978 EnumEnc += I->getName(); 7979 EnumEnc += "){"; 7980 I->getInitVal().toString(EnumEnc); 7981 EnumEnc += '}'; 7982 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 7983 } 7984 std::sort(FE.begin(), FE.end()); 7985 unsigned E = FE.size(); 7986 for (unsigned I = 0; I != E; ++I) { 7987 if (I) 7988 Enc += ','; 7989 Enc += FE[I].str(); 7990 } 7991 } 7992 Enc += '}'; 7993 TSC.addIfComplete(ID, Enc.substr(Start), false); 7994 return true; 7995 } 7996 7997 /// Appends type's qualifier to Enc. 7998 /// This is done prior to appending the type's encoding. 7999 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8000 // Qualifiers are emitted in alphabetical order. 8001 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8002 int Lookup = 0; 8003 if (QT.isConstQualified()) 8004 Lookup += 1<<0; 8005 if (QT.isRestrictQualified()) 8006 Lookup += 1<<1; 8007 if (QT.isVolatileQualified()) 8008 Lookup += 1<<2; 8009 Enc += Table[Lookup]; 8010 } 8011 8012 /// Appends built-in types to Enc. 8013 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8014 const char *EncType; 8015 switch (BT->getKind()) { 8016 case BuiltinType::Void: 8017 EncType = "0"; 8018 break; 8019 case BuiltinType::Bool: 8020 EncType = "b"; 8021 break; 8022 case BuiltinType::Char_U: 8023 EncType = "uc"; 8024 break; 8025 case BuiltinType::UChar: 8026 EncType = "uc"; 8027 break; 8028 case BuiltinType::SChar: 8029 EncType = "sc"; 8030 break; 8031 case BuiltinType::UShort: 8032 EncType = "us"; 8033 break; 8034 case BuiltinType::Short: 8035 EncType = "ss"; 8036 break; 8037 case BuiltinType::UInt: 8038 EncType = "ui"; 8039 break; 8040 case BuiltinType::Int: 8041 EncType = "si"; 8042 break; 8043 case BuiltinType::ULong: 8044 EncType = "ul"; 8045 break; 8046 case BuiltinType::Long: 8047 EncType = "sl"; 8048 break; 8049 case BuiltinType::ULongLong: 8050 EncType = "ull"; 8051 break; 8052 case BuiltinType::LongLong: 8053 EncType = "sll"; 8054 break; 8055 case BuiltinType::Float: 8056 EncType = "ft"; 8057 break; 8058 case BuiltinType::Double: 8059 EncType = "d"; 8060 break; 8061 case BuiltinType::LongDouble: 8062 EncType = "ld"; 8063 break; 8064 default: 8065 return false; 8066 } 8067 Enc += EncType; 8068 return true; 8069 } 8070 8071 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8072 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8073 const CodeGen::CodeGenModule &CGM, 8074 TypeStringCache &TSC) { 8075 Enc += "p("; 8076 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8077 return false; 8078 Enc += ')'; 8079 return true; 8080 } 8081 8082 /// Appends array encoding to Enc before calling appendType for the element. 8083 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8084 const ArrayType *AT, 8085 const CodeGen::CodeGenModule &CGM, 8086 TypeStringCache &TSC, StringRef NoSizeEnc) { 8087 if (AT->getSizeModifier() != ArrayType::Normal) 8088 return false; 8089 Enc += "a("; 8090 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8091 CAT->getSize().toStringUnsigned(Enc); 8092 else 8093 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8094 Enc += ':'; 8095 // The Qualifiers should be attached to the type rather than the array. 8096 appendQualifier(Enc, QT); 8097 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8098 return false; 8099 Enc += ')'; 8100 return true; 8101 } 8102 8103 /// Appends a function encoding to Enc, calling appendType for the return type 8104 /// and the arguments. 8105 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8106 const CodeGen::CodeGenModule &CGM, 8107 TypeStringCache &TSC) { 8108 Enc += "f{"; 8109 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8110 return false; 8111 Enc += "}("; 8112 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8113 // N.B. we are only interested in the adjusted param types. 8114 auto I = FPT->param_type_begin(); 8115 auto E = FPT->param_type_end(); 8116 if (I != E) { 8117 do { 8118 if (!appendType(Enc, *I, CGM, TSC)) 8119 return false; 8120 ++I; 8121 if (I != E) 8122 Enc += ','; 8123 } while (I != E); 8124 if (FPT->isVariadic()) 8125 Enc += ",va"; 8126 } else { 8127 if (FPT->isVariadic()) 8128 Enc += "va"; 8129 else 8130 Enc += '0'; 8131 } 8132 } 8133 Enc += ')'; 8134 return true; 8135 } 8136 8137 /// Handles the type's qualifier before dispatching a call to handle specific 8138 /// type encodings. 8139 static bool appendType(SmallStringEnc &Enc, QualType QType, 8140 const CodeGen::CodeGenModule &CGM, 8141 TypeStringCache &TSC) { 8142 8143 QualType QT = QType.getCanonicalType(); 8144 8145 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8146 // The Qualifiers should be attached to the type rather than the array. 8147 // Thus we don't call appendQualifier() here. 8148 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8149 8150 appendQualifier(Enc, QT); 8151 8152 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8153 return appendBuiltinType(Enc, BT); 8154 8155 if (const PointerType *PT = QT->getAs<PointerType>()) 8156 return appendPointerType(Enc, PT, CGM, TSC); 8157 8158 if (const EnumType *ET = QT->getAs<EnumType>()) 8159 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8160 8161 if (const RecordType *RT = QT->getAsStructureType()) 8162 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8163 8164 if (const RecordType *RT = QT->getAsUnionType()) 8165 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8166 8167 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8168 return appendFunctionType(Enc, FT, CGM, TSC); 8169 8170 return false; 8171 } 8172 8173 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8174 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8175 if (!D) 8176 return false; 8177 8178 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8179 if (FD->getLanguageLinkage() != CLanguageLinkage) 8180 return false; 8181 return appendType(Enc, FD->getType(), CGM, TSC); 8182 } 8183 8184 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8185 if (VD->getLanguageLinkage() != CLanguageLinkage) 8186 return false; 8187 QualType QT = VD->getType().getCanonicalType(); 8188 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8189 // Global ArrayTypes are given a size of '*' if the size is unknown. 8190 // The Qualifiers should be attached to the type rather than the array. 8191 // Thus we don't call appendQualifier() here. 8192 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8193 } 8194 return appendType(Enc, QT, CGM, TSC); 8195 } 8196 return false; 8197 } 8198 8199 8200 //===----------------------------------------------------------------------===// 8201 // Driver code 8202 //===----------------------------------------------------------------------===// 8203 8204 bool CodeGenModule::supportsCOMDAT() const { 8205 return getTriple().supportsCOMDAT(); 8206 } 8207 8208 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8209 if (TheTargetCodeGenInfo) 8210 return *TheTargetCodeGenInfo; 8211 8212 // Helper to set the unique_ptr while still keeping the return value. 8213 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8214 this->TheTargetCodeGenInfo.reset(P); 8215 return *P; 8216 }; 8217 8218 const llvm::Triple &Triple = getTarget().getTriple(); 8219 switch (Triple.getArch()) { 8220 default: 8221 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8222 8223 case llvm::Triple::le32: 8224 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8225 case llvm::Triple::mips: 8226 case llvm::Triple::mipsel: 8227 if (Triple.getOS() == llvm::Triple::NaCl) 8228 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8229 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8230 8231 case llvm::Triple::mips64: 8232 case llvm::Triple::mips64el: 8233 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8234 8235 case llvm::Triple::aarch64: 8236 case llvm::Triple::aarch64_be: { 8237 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8238 if (getTarget().getABI() == "darwinpcs") 8239 Kind = AArch64ABIInfo::DarwinPCS; 8240 8241 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8242 } 8243 8244 case llvm::Triple::wasm32: 8245 case llvm::Triple::wasm64: 8246 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8247 8248 case llvm::Triple::arm: 8249 case llvm::Triple::armeb: 8250 case llvm::Triple::thumb: 8251 case llvm::Triple::thumbeb: { 8252 if (Triple.getOS() == llvm::Triple::Win32) { 8253 return SetCGInfo( 8254 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 8255 } 8256 8257 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 8258 StringRef ABIStr = getTarget().getABI(); 8259 if (ABIStr == "apcs-gnu") 8260 Kind = ARMABIInfo::APCS; 8261 else if (ABIStr == "aapcs16") 8262 Kind = ARMABIInfo::AAPCS16_VFP; 8263 else if (CodeGenOpts.FloatABI == "hard" || 8264 (CodeGenOpts.FloatABI != "soft" && 8265 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8266 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8267 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8268 Kind = ARMABIInfo::AAPCS_VFP; 8269 8270 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8271 } 8272 8273 case llvm::Triple::ppc: 8274 return SetCGInfo( 8275 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8276 case llvm::Triple::ppc64: 8277 if (Triple.isOSBinFormatELF()) { 8278 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8279 if (getTarget().getABI() == "elfv2") 8280 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8281 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8282 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8283 8284 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8285 IsSoftFloat)); 8286 } else 8287 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8288 case llvm::Triple::ppc64le: { 8289 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8290 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8291 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8292 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8293 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8294 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8295 8296 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8297 IsSoftFloat)); 8298 } 8299 8300 case llvm::Triple::nvptx: 8301 case llvm::Triple::nvptx64: 8302 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8303 8304 case llvm::Triple::msp430: 8305 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8306 8307 case llvm::Triple::systemz: { 8308 bool HasVector = getTarget().getABI() == "vector"; 8309 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8310 } 8311 8312 case llvm::Triple::tce: 8313 case llvm::Triple::tcele: 8314 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8315 8316 case llvm::Triple::x86: { 8317 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8318 bool RetSmallStructInRegABI = 8319 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8320 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8321 8322 if (Triple.getOS() == llvm::Triple::Win32) { 8323 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8324 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8325 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8326 } else { 8327 return SetCGInfo(new X86_32TargetCodeGenInfo( 8328 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8329 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8330 CodeGenOpts.FloatABI == "soft")); 8331 } 8332 } 8333 8334 case llvm::Triple::x86_64: { 8335 StringRef ABI = getTarget().getABI(); 8336 X86AVXABILevel AVXLevel = 8337 (ABI == "avx512" 8338 ? X86AVXABILevel::AVX512 8339 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8340 8341 switch (Triple.getOS()) { 8342 case llvm::Triple::Win32: 8343 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8344 case llvm::Triple::PS4: 8345 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8346 default: 8347 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8348 } 8349 } 8350 case llvm::Triple::hexagon: 8351 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8352 case llvm::Triple::lanai: 8353 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8354 case llvm::Triple::r600: 8355 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8356 case llvm::Triple::amdgcn: 8357 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8358 case llvm::Triple::sparc: 8359 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8360 case llvm::Triple::sparcv9: 8361 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8362 case llvm::Triple::xcore: 8363 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8364 case llvm::Triple::spir: 8365 case llvm::Triple::spir64: 8366 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8367 } 8368 } 8369