1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/DataLayout.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::DataLayout &ABIInfo::getDataLayout() const {
55   return CGT.getDataLayout();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   return 32;
99 }
100 
101 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                      const FunctionNoProtoType *fnType) const {
103   // The following conventions are known to require this to be false:
104   //   x86_stdcall
105   //   MIPS
106   // For everything else, we just prefer false unless we opt out.
107   return false;
108 }
109 
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111 
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                          bool AllowArrays) {
116   if (FD->isUnnamedBitfield())
117     return true;
118 
119   QualType FT = FD->getType();
120 
121   // Constant arrays of empty records count as empty, strip them off.
122   // Constant arrays of zero length always count as empty.
123   if (AllowArrays)
124     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125       if (AT->getSize() == 0)
126         return true;
127       FT = AT->getElementType();
128     }
129 
130   const RecordType *RT = FT->getAs<RecordType>();
131   if (!RT)
132     return false;
133 
134   // C++ record fields are never empty, at least in the Itanium ABI.
135   //
136   // FIXME: We should use a predicate for whether this behavior is true in the
137   // current ABI.
138   if (isa<CXXRecordDecl>(RT->getDecl()))
139     return false;
140 
141   return isEmptyRecord(Context, FT, AllowArrays);
142 }
143 
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148   const RecordType *RT = T->getAs<RecordType>();
149   if (!RT)
150     return 0;
151   const RecordDecl *RD = RT->getDecl();
152   if (RD->hasFlexibleArrayMember())
153     return false;
154 
155   // If this is a C++ record, check the bases first.
156   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158            e = CXXRD->bases_end(); i != e; ++i)
159       if (!isEmptyRecord(Context, i->getType(), true))
160         return false;
161 
162   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163          i != e; ++i)
164     if (!isEmptyField(Context, *i, AllowArrays))
165       return false;
166   return true;
167 }
168 
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173   if (!RD)
174     return false;
175 
176   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177 }
178 
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183   const RecordType *RT = T->getAs<RecordType>();
184   if (!RT)
185     return false;
186 
187   return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189 
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199   const RecordType *RT = T->getAsStructureType();
200   if (!RT)
201     return 0;
202 
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return 0;
206 
207   const Type *Found = 0;
208 
209   // If this is a C++ record, check the bases first.
210   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212            e = CXXRD->bases_end(); i != e; ++i) {
213       // Ignore empty records.
214       if (isEmptyRecord(Context, i->getType(), true))
215         continue;
216 
217       // If we already found an element then this isn't a single-element struct.
218       if (Found)
219         return 0;
220 
221       // If this is non-empty and not a single element struct, the composite
222       // cannot be a single element struct.
223       Found = isSingleElementStruct(i->getType(), Context);
224       if (!Found)
225         return 0;
226     }
227   }
228 
229   // Check for single element.
230   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231          i != e; ++i) {
232     const FieldDecl *FD = *i;
233     QualType FT = FD->getType();
234 
235     // Ignore empty fields.
236     if (isEmptyField(Context, FD, true))
237       continue;
238 
239     // If we already found an element then this isn't a single-element
240     // struct.
241     if (Found)
242       return 0;
243 
244     // Treat single element arrays as the element.
245     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246       if (AT->getSize().getZExtValue() != 1)
247         break;
248       FT = AT->getElementType();
249     }
250 
251     if (!isAggregateTypeForABI(FT)) {
252       Found = FT.getTypePtr();
253     } else {
254       Found = isSingleElementStruct(FT, Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // We don't consider a struct a single-element struct if it has
261   // padding beyond the element type.
262   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263     return 0;
264 
265   return Found;
266 }
267 
268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271       !Ty->isBlockPointerType())
272     return false;
273 
274   uint64_t Size = Context.getTypeSize(Ty);
275   return Size == 32 || Size == 64;
276 }
277 
278 /// canExpandIndirectArgument - Test whether an argument type which is to be
279 /// passed indirectly (on the stack) would have the equivalent layout if it was
280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
281 /// inhibiting optimizations.
282 ///
283 // FIXME: This predicate is missing many cases, currently it just follows
284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285 // should probably make this smarter, or better yet make the LLVM backend
286 // capable of handling it.
287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288   // We can only expand structure types.
289   const RecordType *RT = Ty->getAs<RecordType>();
290   if (!RT)
291     return false;
292 
293   // We can only expand (C) structures.
294   //
295   // FIXME: This needs to be generalized to handle classes as well.
296   const RecordDecl *RD = RT->getDecl();
297   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298     return false;
299 
300   uint64_t Size = 0;
301 
302   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303          i != e; ++i) {
304     const FieldDecl *FD = *i;
305 
306     if (!is32Or64BitBasicType(FD->getType(), Context))
307       return false;
308 
309     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310     // how to expand them yet, and the predicate for telling if a bitfield still
311     // counts as "basic" is more complicated than what we were doing previously.
312     if (FD->isBitField())
313       return false;
314 
315     Size += Context.getTypeSize(FD->getType());
316   }
317 
318   // Make sure there are not any holes in the struct.
319   if (Size != Context.getTypeSize(Ty))
320     return false;
321 
322   return true;
323 }
324 
325 namespace {
326 /// DefaultABIInfo - The default implementation for ABI specific
327 /// details. This implementation provides information which results in
328 /// self-consistent and sensible LLVM IR generation, but does not
329 /// conform to any particular ABI.
330 class DefaultABIInfo : public ABIInfo {
331 public:
332   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333 
334   ABIArgInfo classifyReturnType(QualType RetTy) const;
335   ABIArgInfo classifyArgumentType(QualType RetTy) const;
336 
337   virtual void computeInfo(CGFunctionInfo &FI) const {
338     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340          it != ie; ++it)
341       it->info = classifyArgumentType(it->type);
342   }
343 
344   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                  CodeGenFunction &CGF) const;
346 };
347 
348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349 public:
350   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352 };
353 
354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                        CodeGenFunction &CGF) const {
356   return 0;
357 }
358 
359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360   if (isAggregateTypeForABI(Ty)) {
361     // Records with non trivial destructors/constructors should not be passed
362     // by value.
363     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365 
366     return ABIArgInfo::getIndirect(0);
367   }
368 
369   // Treat an enum type as its underlying type.
370   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371     Ty = EnumTy->getDecl()->getIntegerType();
372 
373   return (Ty->isPromotableIntegerType() ?
374           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375 }
376 
377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378   if (RetTy->isVoidType())
379     return ABIArgInfo::getIgnore();
380 
381   if (isAggregateTypeForABI(RetTy))
382     return ABIArgInfo::getIndirect(0);
383 
384   // Treat an enum type as its underlying type.
385   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386     RetTy = EnumTy->getDecl()->getIntegerType();
387 
388   return (RetTy->isPromotableIntegerType() ?
389           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390 }
391 
392 //===----------------------------------------------------------------------===//
393 // le32/PNaCl bitcode ABI Implementation
394 //===----------------------------------------------------------------------===//
395 
396 class PNaClABIInfo : public ABIInfo {
397  public:
398   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
399 
400   ABIArgInfo classifyReturnType(QualType RetTy) const;
401   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
402 
403   virtual void computeInfo(CGFunctionInfo &FI) const;
404   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
405                                  CodeGenFunction &CGF) const;
406 };
407 
408 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
409  public:
410   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
411     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
412 };
413 
414 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
415     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
416 
417     unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
418 
419     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
420          it != ie; ++it)
421       it->info = classifyArgumentType(it->type, FreeRegs);
422   }
423 
424 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
425                                        CodeGenFunction &CGF) const {
426   return 0;
427 }
428 
429 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
430                                               unsigned &FreeRegs) const {
431   if (isAggregateTypeForABI(Ty)) {
432     // Records with non trivial destructors/constructors should not be passed
433     // by value.
434     FreeRegs = 0;
435     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
436       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
437 
438     return ABIArgInfo::getIndirect(0);
439   }
440 
441   // Treat an enum type as its underlying type.
442   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
443     Ty = EnumTy->getDecl()->getIntegerType();
444 
445   ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
446           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
447 
448   // Regparm regs hold 32 bits.
449   unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
450   if (SizeInRegs == 0) return BaseInfo;
451   if (SizeInRegs > FreeRegs) {
452     FreeRegs = 0;
453     return BaseInfo;
454   }
455   FreeRegs -= SizeInRegs;
456   return BaseInfo.isDirect() ?
457       ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
458       ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
459 }
460 
461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462   if (RetTy->isVoidType())
463     return ABIArgInfo::getIgnore();
464 
465   if (isAggregateTypeForABI(RetTy))
466     return ABIArgInfo::getIndirect(0);
467 
468   // Treat an enum type as its underlying type.
469   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
470     RetTy = EnumTy->getDecl()->getIntegerType();
471 
472   return (RetTy->isPromotableIntegerType() ?
473           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
474 }
475 
476 /// UseX86_MMXType - Return true if this is an MMX type that should use the
477 /// special x86_mmx type.
478 bool UseX86_MMXType(llvm::Type *IRType) {
479   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
480   // special x86_mmx type.
481   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
482     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
483     IRType->getScalarSizeInBits() != 64;
484 }
485 
486 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
487                                           StringRef Constraint,
488                                           llvm::Type* Ty) {
489   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
490     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
491   return Ty;
492 }
493 
494 //===----------------------------------------------------------------------===//
495 // X86-32 ABI Implementation
496 //===----------------------------------------------------------------------===//
497 
498 /// X86_32ABIInfo - The X86-32 ABI information.
499 class X86_32ABIInfo : public ABIInfo {
500   enum Class {
501     Integer,
502     Float
503   };
504 
505   static const unsigned MinABIStackAlignInBytes = 4;
506 
507   bool IsDarwinVectorABI;
508   bool IsSmallStructInRegABI;
509   bool IsMMXDisabled;
510   bool IsWin32FloatStructABI;
511   unsigned DefaultNumRegisterParameters;
512 
513   static bool isRegisterSize(unsigned Size) {
514     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
515   }
516 
517   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
518                                           unsigned callingConvention);
519 
520   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
521   /// such that the argument will be passed in memory.
522   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
523                                unsigned &FreeRegs) const;
524 
525   /// \brief Return the alignment to use for the given type on the stack.
526   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
527 
528   Class classify(QualType Ty) const;
529   ABIArgInfo classifyReturnType(QualType RetTy,
530                                 unsigned callingConvention) const;
531   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
532   bool shouldUseInReg(QualType Ty, unsigned &FreeRegs) const;
533 
534 public:
535 
536   virtual void computeInfo(CGFunctionInfo &FI) const;
537   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
538                                  CodeGenFunction &CGF) const;
539 
540   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
541                 unsigned r)
542     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
543       IsMMXDisabled(m), IsWin32FloatStructABI(w),
544       DefaultNumRegisterParameters(r) {}
545 };
546 
547 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
548 public:
549   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
550       bool d, bool p, bool m, bool w, unsigned r)
551     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
552 
553   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
554                            CodeGen::CodeGenModule &CGM) const;
555 
556   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
557     // Darwin uses different dwarf register numbers for EH.
558     if (CGM.isTargetDarwin()) return 5;
559 
560     return 4;
561   }
562 
563   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
564                                llvm::Value *Address) const;
565 
566   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
567                                   StringRef Constraint,
568                                   llvm::Type* Ty) const {
569     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
570   }
571 
572 };
573 
574 }
575 
576 /// shouldReturnTypeInRegister - Determine if the given type should be
577 /// passed in a register (for the Darwin ABI).
578 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
579                                                ASTContext &Context,
580                                                unsigned callingConvention) {
581   uint64_t Size = Context.getTypeSize(Ty);
582 
583   // Type must be register sized.
584   if (!isRegisterSize(Size))
585     return false;
586 
587   if (Ty->isVectorType()) {
588     // 64- and 128- bit vectors inside structures are not returned in
589     // registers.
590     if (Size == 64 || Size == 128)
591       return false;
592 
593     return true;
594   }
595 
596   // If this is a builtin, pointer, enum, complex type, member pointer, or
597   // member function pointer it is ok.
598   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
599       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
600       Ty->isBlockPointerType() || Ty->isMemberPointerType())
601     return true;
602 
603   // Arrays are treated like records.
604   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
605     return shouldReturnTypeInRegister(AT->getElementType(), Context,
606                                       callingConvention);
607 
608   // Otherwise, it must be a record type.
609   const RecordType *RT = Ty->getAs<RecordType>();
610   if (!RT) return false;
611 
612   // FIXME: Traverse bases here too.
613 
614   // For thiscall conventions, structures will never be returned in
615   // a register.  This is for compatibility with the MSVC ABI
616   if (callingConvention == llvm::CallingConv::X86_ThisCall &&
617       RT->isStructureType()) {
618     return false;
619   }
620 
621   // Structure types are passed in register if all fields would be
622   // passed in a register.
623   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
624          e = RT->getDecl()->field_end(); i != e; ++i) {
625     const FieldDecl *FD = *i;
626 
627     // Empty fields are ignored.
628     if (isEmptyField(Context, FD, true))
629       continue;
630 
631     // Check fields recursively.
632     if (!shouldReturnTypeInRegister(FD->getType(), Context,
633                                     callingConvention))
634       return false;
635   }
636   return true;
637 }
638 
639 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
640                                             unsigned callingConvention) const {
641   if (RetTy->isVoidType())
642     return ABIArgInfo::getIgnore();
643 
644   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
645     // On Darwin, some vectors are returned in registers.
646     if (IsDarwinVectorABI) {
647       uint64_t Size = getContext().getTypeSize(RetTy);
648 
649       // 128-bit vectors are a special case; they are returned in
650       // registers and we need to make sure to pick a type the LLVM
651       // backend will like.
652       if (Size == 128)
653         return ABIArgInfo::getDirect(llvm::VectorType::get(
654                   llvm::Type::getInt64Ty(getVMContext()), 2));
655 
656       // Always return in register if it fits in a general purpose
657       // register, or if it is 64 bits and has a single element.
658       if ((Size == 8 || Size == 16 || Size == 32) ||
659           (Size == 64 && VT->getNumElements() == 1))
660         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
661                                                             Size));
662 
663       return ABIArgInfo::getIndirect(0);
664     }
665 
666     return ABIArgInfo::getDirect();
667   }
668 
669   if (isAggregateTypeForABI(RetTy)) {
670     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
671       // Structures with either a non-trivial destructor or a non-trivial
672       // copy constructor are always indirect.
673       if (hasNonTrivialDestructorOrCopyConstructor(RT))
674         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
675 
676       // Structures with flexible arrays are always indirect.
677       if (RT->getDecl()->hasFlexibleArrayMember())
678         return ABIArgInfo::getIndirect(0);
679     }
680 
681     // If specified, structs and unions are always indirect.
682     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
683       return ABIArgInfo::getIndirect(0);
684 
685     // Small structures which are register sized are generally returned
686     // in a register.
687     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
688                                                   callingConvention)) {
689       uint64_t Size = getContext().getTypeSize(RetTy);
690 
691       // As a special-case, if the struct is a "single-element" struct, and
692       // the field is of type "float" or "double", return it in a
693       // floating-point register. (MSVC does not apply this special case.)
694       // We apply a similar transformation for pointer types to improve the
695       // quality of the generated IR.
696       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
697         if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
698             || SeltTy->hasPointerRepresentation())
699           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
700 
701       // FIXME: We should be able to narrow this integer in cases with dead
702       // padding.
703       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
704     }
705 
706     return ABIArgInfo::getIndirect(0);
707   }
708 
709   // Treat an enum type as its underlying type.
710   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
711     RetTy = EnumTy->getDecl()->getIntegerType();
712 
713   return (RetTy->isPromotableIntegerType() ?
714           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
715 }
716 
717 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
718   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
719 }
720 
721 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
722   const RecordType *RT = Ty->getAs<RecordType>();
723   if (!RT)
724     return 0;
725   const RecordDecl *RD = RT->getDecl();
726 
727   // If this is a C++ record, check the bases first.
728   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
729     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
730            e = CXXRD->bases_end(); i != e; ++i)
731       if (!isRecordWithSSEVectorType(Context, i->getType()))
732         return false;
733 
734   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
735        i != e; ++i) {
736     QualType FT = i->getType();
737 
738     if (isSSEVectorType(Context, FT))
739       return true;
740 
741     if (isRecordWithSSEVectorType(Context, FT))
742       return true;
743   }
744 
745   return false;
746 }
747 
748 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
749                                                  unsigned Align) const {
750   // Otherwise, if the alignment is less than or equal to the minimum ABI
751   // alignment, just use the default; the backend will handle this.
752   if (Align <= MinABIStackAlignInBytes)
753     return 0; // Use default alignment.
754 
755   // On non-Darwin, the stack type alignment is always 4.
756   if (!IsDarwinVectorABI) {
757     // Set explicit alignment, since we may need to realign the top.
758     return MinABIStackAlignInBytes;
759   }
760 
761   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
762   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
763                       isRecordWithSSEVectorType(getContext(), Ty)))
764     return 16;
765 
766   return MinABIStackAlignInBytes;
767 }
768 
769 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
770                                             unsigned &FreeRegs) const {
771   if (!ByVal) {
772     if (FreeRegs) {
773       --FreeRegs; // Non byval indirects just use one pointer.
774       return ABIArgInfo::getIndirectInReg(0, false);
775     }
776     return ABIArgInfo::getIndirect(0, false);
777   }
778 
779   // Compute the byval alignment.
780   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
781   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
782   if (StackAlign == 0)
783     return ABIArgInfo::getIndirect(4);
784 
785   // If the stack alignment is less than the type alignment, realign the
786   // argument.
787   if (StackAlign < TypeAlign)
788     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
789                                    /*Realign=*/true);
790 
791   return ABIArgInfo::getIndirect(StackAlign);
792 }
793 
794 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
795   const Type *T = isSingleElementStruct(Ty, getContext());
796   if (!T)
797     T = Ty.getTypePtr();
798 
799   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
800     BuiltinType::Kind K = BT->getKind();
801     if (K == BuiltinType::Float || K == BuiltinType::Double)
802       return Float;
803   }
804   return Integer;
805 }
806 
807 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs) const {
808   Class C = classify(Ty);
809   if (C == Float)
810     return false;
811 
812   unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
813   if (SizeInRegs > FreeRegs) {
814     FreeRegs = 0;
815     return false;
816   }
817 
818   FreeRegs -= SizeInRegs;
819   return true;
820 }
821 
822 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
823                                                unsigned &FreeRegs) const {
824   // FIXME: Set alignment on indirect arguments.
825   if (isAggregateTypeForABI(Ty)) {
826     // Structures with flexible arrays are always indirect.
827     if (const RecordType *RT = Ty->getAs<RecordType>()) {
828       // Structures with either a non-trivial destructor or a non-trivial
829       // copy constructor are always indirect.
830       if (hasNonTrivialDestructorOrCopyConstructor(RT))
831         return getIndirectResult(Ty, false, FreeRegs);
832 
833       if (RT->getDecl()->hasFlexibleArrayMember())
834         return getIndirectResult(Ty, true, FreeRegs);
835     }
836 
837     // Ignore empty structs/unions.
838     if (isEmptyRecord(getContext(), Ty, true))
839       return ABIArgInfo::getIgnore();
840 
841     if (shouldUseInReg(Ty, FreeRegs)) {
842       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
843       llvm::LLVMContext &LLVMContext = getVMContext();
844       llvm::Type *Int32 = llvm::Type::getInt32Ty(LLVMContext);
845       SmallVector<llvm::Type*, 3> Elements;
846       for (unsigned I = 0; I < SizeInRegs; ++I)
847         Elements.push_back(Int32);
848       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
849       return ABIArgInfo::getDirectInReg(Result);
850     }
851 
852     // Expand small (<= 128-bit) record types when we know that the stack layout
853     // of those arguments will match the struct. This is important because the
854     // LLVM backend isn't smart enough to remove byval, which inhibits many
855     // optimizations.
856     if (getContext().getTypeSize(Ty) <= 4*32 &&
857         canExpandIndirectArgument(Ty, getContext()))
858       return ABIArgInfo::getExpand();
859 
860     return getIndirectResult(Ty, true, FreeRegs);
861   }
862 
863   if (const VectorType *VT = Ty->getAs<VectorType>()) {
864     // On Darwin, some vectors are passed in memory, we handle this by passing
865     // it as an i8/i16/i32/i64.
866     if (IsDarwinVectorABI) {
867       uint64_t Size = getContext().getTypeSize(Ty);
868       if ((Size == 8 || Size == 16 || Size == 32) ||
869           (Size == 64 && VT->getNumElements() == 1))
870         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
871                                                             Size));
872     }
873 
874     llvm::Type *IRType = CGT.ConvertType(Ty);
875     if (UseX86_MMXType(IRType)) {
876       if (IsMMXDisabled)
877         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
878                                                             64));
879       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
880       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
881       return AAI;
882     }
883 
884     return ABIArgInfo::getDirect();
885   }
886 
887 
888   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
889     Ty = EnumTy->getDecl()->getIntegerType();
890 
891   bool InReg = shouldUseInReg(Ty, FreeRegs);
892 
893   if (Ty->isPromotableIntegerType()) {
894     if (InReg)
895       return ABIArgInfo::getExtendInReg();
896     return ABIArgInfo::getExtend();
897   }
898   if (InReg)
899     return ABIArgInfo::getDirectInReg();
900   return ABIArgInfo::getDirect();
901 }
902 
903 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
904   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
905                                           FI.getCallingConvention());
906 
907   unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() :
908     DefaultNumRegisterParameters;
909 
910   // If the return value is indirect, then the hidden argument is consuming one
911   // integer register.
912   if (FI.getReturnInfo().isIndirect() && FreeRegs) {
913     --FreeRegs;
914     ABIArgInfo &Old = FI.getReturnInfo();
915     Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
916                                        Old.getIndirectByVal(),
917                                        Old.getIndirectRealign());
918   }
919 
920   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
921        it != ie; ++it)
922     it->info = classifyArgumentType(it->type, FreeRegs);
923 }
924 
925 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
926                                       CodeGenFunction &CGF) const {
927   llvm::Type *BPP = CGF.Int8PtrPtrTy;
928 
929   CGBuilderTy &Builder = CGF.Builder;
930   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
931                                                        "ap");
932   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
933 
934   // Compute if the address needs to be aligned
935   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
936   Align = getTypeStackAlignInBytes(Ty, Align);
937   Align = std::max(Align, 4U);
938   if (Align > 4) {
939     // addr = (addr + align - 1) & -align;
940     llvm::Value *Offset =
941       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
942     Addr = CGF.Builder.CreateGEP(Addr, Offset);
943     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
944                                                     CGF.Int32Ty);
945     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
946     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
947                                       Addr->getType(),
948                                       "ap.cur.aligned");
949   }
950 
951   llvm::Type *PTy =
952     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
953   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
954 
955   uint64_t Offset =
956     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
957   llvm::Value *NextAddr =
958     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
959                       "ap.next");
960   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
961 
962   return AddrTyped;
963 }
964 
965 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
966                                                   llvm::GlobalValue *GV,
967                                             CodeGen::CodeGenModule &CGM) const {
968   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
969     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
970       // Get the LLVM function.
971       llvm::Function *Fn = cast<llvm::Function>(GV);
972 
973       // Now add the 'alignstack' attribute with a value of 16.
974       llvm::AttrBuilder B;
975       B.addStackAlignmentAttr(16);
976       Fn->addAttribute(llvm::AttrListPtr::FunctionIndex,
977                        llvm::Attributes::get(CGM.getLLVMContext(), B));
978     }
979   }
980 }
981 
982 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
983                                                CodeGen::CodeGenFunction &CGF,
984                                                llvm::Value *Address) const {
985   CodeGen::CGBuilderTy &Builder = CGF.Builder;
986 
987   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
988 
989   // 0-7 are the eight integer registers;  the order is different
990   //   on Darwin (for EH), but the range is the same.
991   // 8 is %eip.
992   AssignToArrayRange(Builder, Address, Four8, 0, 8);
993 
994   if (CGF.CGM.isTargetDarwin()) {
995     // 12-16 are st(0..4).  Not sure why we stop at 4.
996     // These have size 16, which is sizeof(long double) on
997     // platforms with 8-byte alignment for that type.
998     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
999     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1000 
1001   } else {
1002     // 9 is %eflags, which doesn't get a size on Darwin for some
1003     // reason.
1004     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1005 
1006     // 11-16 are st(0..5).  Not sure why we stop at 5.
1007     // These have size 12, which is sizeof(long double) on
1008     // platforms with 4-byte alignment for that type.
1009     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1010     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1011   }
1012 
1013   return false;
1014 }
1015 
1016 //===----------------------------------------------------------------------===//
1017 // X86-64 ABI Implementation
1018 //===----------------------------------------------------------------------===//
1019 
1020 
1021 namespace {
1022 /// X86_64ABIInfo - The X86_64 ABI information.
1023 class X86_64ABIInfo : public ABIInfo {
1024   enum Class {
1025     Integer = 0,
1026     SSE,
1027     SSEUp,
1028     X87,
1029     X87Up,
1030     ComplexX87,
1031     NoClass,
1032     Memory
1033   };
1034 
1035   /// merge - Implement the X86_64 ABI merging algorithm.
1036   ///
1037   /// Merge an accumulating classification \arg Accum with a field
1038   /// classification \arg Field.
1039   ///
1040   /// \param Accum - The accumulating classification. This should
1041   /// always be either NoClass or the result of a previous merge
1042   /// call. In addition, this should never be Memory (the caller
1043   /// should just return Memory for the aggregate).
1044   static Class merge(Class Accum, Class Field);
1045 
1046   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1047   ///
1048   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1049   /// final MEMORY or SSE classes when necessary.
1050   ///
1051   /// \param AggregateSize - The size of the current aggregate in
1052   /// the classification process.
1053   ///
1054   /// \param Lo - The classification for the parts of the type
1055   /// residing in the low word of the containing object.
1056   ///
1057   /// \param Hi - The classification for the parts of the type
1058   /// residing in the higher words of the containing object.
1059   ///
1060   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1061 
1062   /// classify - Determine the x86_64 register classes in which the
1063   /// given type T should be passed.
1064   ///
1065   /// \param Lo - The classification for the parts of the type
1066   /// residing in the low word of the containing object.
1067   ///
1068   /// \param Hi - The classification for the parts of the type
1069   /// residing in the high word of the containing object.
1070   ///
1071   /// \param OffsetBase - The bit offset of this type in the
1072   /// containing object.  Some parameters are classified different
1073   /// depending on whether they straddle an eightbyte boundary.
1074   ///
1075   /// If a word is unused its result will be NoClass; if a type should
1076   /// be passed in Memory then at least the classification of \arg Lo
1077   /// will be Memory.
1078   ///
1079   /// The \arg Lo class will be NoClass iff the argument is ignored.
1080   ///
1081   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1082   /// also be ComplexX87.
1083   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1084 
1085   llvm::Type *GetByteVectorType(QualType Ty) const;
1086   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1087                                  unsigned IROffset, QualType SourceTy,
1088                                  unsigned SourceOffset) const;
1089   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1090                                      unsigned IROffset, QualType SourceTy,
1091                                      unsigned SourceOffset) const;
1092 
1093   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1094   /// such that the argument will be returned in memory.
1095   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1096 
1097   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1098   /// such that the argument will be passed in memory.
1099   ///
1100   /// \param freeIntRegs - The number of free integer registers remaining
1101   /// available.
1102   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1103 
1104   ABIArgInfo classifyReturnType(QualType RetTy) const;
1105 
1106   ABIArgInfo classifyArgumentType(QualType Ty,
1107                                   unsigned freeIntRegs,
1108                                   unsigned &neededInt,
1109                                   unsigned &neededSSE) const;
1110 
1111   bool IsIllegalVectorType(QualType Ty) const;
1112 
1113   /// The 0.98 ABI revision clarified a lot of ambiguities,
1114   /// unfortunately in ways that were not always consistent with
1115   /// certain previous compilers.  In particular, platforms which
1116   /// required strict binary compatibility with older versions of GCC
1117   /// may need to exempt themselves.
1118   bool honorsRevision0_98() const {
1119     return !getContext().getTargetInfo().getTriple().isOSDarwin();
1120   }
1121 
1122   bool HasAVX;
1123   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1124   // 64-bit hardware.
1125   bool Has64BitPointers;
1126 
1127 public:
1128   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1129       ABIInfo(CGT), HasAVX(hasavx),
1130       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1131   }
1132 
1133   bool isPassedUsingAVXType(QualType type) const {
1134     unsigned neededInt, neededSSE;
1135     // The freeIntRegs argument doesn't matter here.
1136     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1137     if (info.isDirect()) {
1138       llvm::Type *ty = info.getCoerceToType();
1139       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1140         return (vectorTy->getBitWidth() > 128);
1141     }
1142     return false;
1143   }
1144 
1145   virtual void computeInfo(CGFunctionInfo &FI) const;
1146 
1147   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1148                                  CodeGenFunction &CGF) const;
1149 };
1150 
1151 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1152 class WinX86_64ABIInfo : public ABIInfo {
1153 
1154   ABIArgInfo classify(QualType Ty) const;
1155 
1156 public:
1157   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1158 
1159   virtual void computeInfo(CGFunctionInfo &FI) const;
1160 
1161   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1162                                  CodeGenFunction &CGF) const;
1163 };
1164 
1165 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1166 public:
1167   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1168       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1169 
1170   const X86_64ABIInfo &getABIInfo() const {
1171     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1172   }
1173 
1174   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1175     return 7;
1176   }
1177 
1178   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1179                                llvm::Value *Address) const {
1180     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1181 
1182     // 0-15 are the 16 integer registers.
1183     // 16 is %rip.
1184     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1185     return false;
1186   }
1187 
1188   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1189                                   StringRef Constraint,
1190                                   llvm::Type* Ty) const {
1191     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1192   }
1193 
1194   bool isNoProtoCallVariadic(const CallArgList &args,
1195                              const FunctionNoProtoType *fnType) const {
1196     // The default CC on x86-64 sets %al to the number of SSA
1197     // registers used, and GCC sets this when calling an unprototyped
1198     // function, so we override the default behavior.  However, don't do
1199     // that when AVX types are involved: the ABI explicitly states it is
1200     // undefined, and it doesn't work in practice because of how the ABI
1201     // defines varargs anyway.
1202     if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1203       bool HasAVXType = false;
1204       for (CallArgList::const_iterator
1205              it = args.begin(), ie = args.end(); it != ie; ++it) {
1206         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1207           HasAVXType = true;
1208           break;
1209         }
1210       }
1211 
1212       if (!HasAVXType)
1213         return true;
1214     }
1215 
1216     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1217   }
1218 
1219 };
1220 
1221 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1222 public:
1223   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1224     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1225 
1226   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1227     return 7;
1228   }
1229 
1230   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1231                                llvm::Value *Address) const {
1232     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1233 
1234     // 0-15 are the 16 integer registers.
1235     // 16 is %rip.
1236     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1237     return false;
1238   }
1239 };
1240 
1241 }
1242 
1243 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1244                               Class &Hi) const {
1245   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1246   //
1247   // (a) If one of the classes is Memory, the whole argument is passed in
1248   //     memory.
1249   //
1250   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1251   //     memory.
1252   //
1253   // (c) If the size of the aggregate exceeds two eightbytes and the first
1254   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1255   //     argument is passed in memory. NOTE: This is necessary to keep the
1256   //     ABI working for processors that don't support the __m256 type.
1257   //
1258   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1259   //
1260   // Some of these are enforced by the merging logic.  Others can arise
1261   // only with unions; for example:
1262   //   union { _Complex double; unsigned; }
1263   //
1264   // Note that clauses (b) and (c) were added in 0.98.
1265   //
1266   if (Hi == Memory)
1267     Lo = Memory;
1268   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1269     Lo = Memory;
1270   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1271     Lo = Memory;
1272   if (Hi == SSEUp && Lo != SSE)
1273     Hi = SSE;
1274 }
1275 
1276 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1277   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1278   // classified recursively so that always two fields are
1279   // considered. The resulting class is calculated according to
1280   // the classes of the fields in the eightbyte:
1281   //
1282   // (a) If both classes are equal, this is the resulting class.
1283   //
1284   // (b) If one of the classes is NO_CLASS, the resulting class is
1285   // the other class.
1286   //
1287   // (c) If one of the classes is MEMORY, the result is the MEMORY
1288   // class.
1289   //
1290   // (d) If one of the classes is INTEGER, the result is the
1291   // INTEGER.
1292   //
1293   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1294   // MEMORY is used as class.
1295   //
1296   // (f) Otherwise class SSE is used.
1297 
1298   // Accum should never be memory (we should have returned) or
1299   // ComplexX87 (because this cannot be passed in a structure).
1300   assert((Accum != Memory && Accum != ComplexX87) &&
1301          "Invalid accumulated classification during merge.");
1302   if (Accum == Field || Field == NoClass)
1303     return Accum;
1304   if (Field == Memory)
1305     return Memory;
1306   if (Accum == NoClass)
1307     return Field;
1308   if (Accum == Integer || Field == Integer)
1309     return Integer;
1310   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1311       Accum == X87 || Accum == X87Up)
1312     return Memory;
1313   return SSE;
1314 }
1315 
1316 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1317                              Class &Lo, Class &Hi) const {
1318   // FIXME: This code can be simplified by introducing a simple value class for
1319   // Class pairs with appropriate constructor methods for the various
1320   // situations.
1321 
1322   // FIXME: Some of the split computations are wrong; unaligned vectors
1323   // shouldn't be passed in registers for example, so there is no chance they
1324   // can straddle an eightbyte. Verify & simplify.
1325 
1326   Lo = Hi = NoClass;
1327 
1328   Class &Current = OffsetBase < 64 ? Lo : Hi;
1329   Current = Memory;
1330 
1331   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1332     BuiltinType::Kind k = BT->getKind();
1333 
1334     if (k == BuiltinType::Void) {
1335       Current = NoClass;
1336     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1337       Lo = Integer;
1338       Hi = Integer;
1339     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1340       Current = Integer;
1341     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1342                (k == BuiltinType::LongDouble &&
1343                 getContext().getTargetInfo().getTriple().getOS() ==
1344                 llvm::Triple::NativeClient)) {
1345       Current = SSE;
1346     } else if (k == BuiltinType::LongDouble) {
1347       Lo = X87;
1348       Hi = X87Up;
1349     }
1350     // FIXME: _Decimal32 and _Decimal64 are SSE.
1351     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1352     return;
1353   }
1354 
1355   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1356     // Classify the underlying integer type.
1357     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1358     return;
1359   }
1360 
1361   if (Ty->hasPointerRepresentation()) {
1362     Current = Integer;
1363     return;
1364   }
1365 
1366   if (Ty->isMemberPointerType()) {
1367     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1368       Lo = Hi = Integer;
1369     else
1370       Current = Integer;
1371     return;
1372   }
1373 
1374   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1375     uint64_t Size = getContext().getTypeSize(VT);
1376     if (Size == 32) {
1377       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1378       // float> as integer.
1379       Current = Integer;
1380 
1381       // If this type crosses an eightbyte boundary, it should be
1382       // split.
1383       uint64_t EB_Real = (OffsetBase) / 64;
1384       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1385       if (EB_Real != EB_Imag)
1386         Hi = Lo;
1387     } else if (Size == 64) {
1388       // gcc passes <1 x double> in memory. :(
1389       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1390         return;
1391 
1392       // gcc passes <1 x long long> as INTEGER.
1393       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1394           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1395           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1396           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1397         Current = Integer;
1398       else
1399         Current = SSE;
1400 
1401       // If this type crosses an eightbyte boundary, it should be
1402       // split.
1403       if (OffsetBase && OffsetBase != 64)
1404         Hi = Lo;
1405     } else if (Size == 128 || (HasAVX && Size == 256)) {
1406       // Arguments of 256-bits are split into four eightbyte chunks. The
1407       // least significant one belongs to class SSE and all the others to class
1408       // SSEUP. The original Lo and Hi design considers that types can't be
1409       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1410       // This design isn't correct for 256-bits, but since there're no cases
1411       // where the upper parts would need to be inspected, avoid adding
1412       // complexity and just consider Hi to match the 64-256 part.
1413       Lo = SSE;
1414       Hi = SSEUp;
1415     }
1416     return;
1417   }
1418 
1419   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1420     QualType ET = getContext().getCanonicalType(CT->getElementType());
1421 
1422     uint64_t Size = getContext().getTypeSize(Ty);
1423     if (ET->isIntegralOrEnumerationType()) {
1424       if (Size <= 64)
1425         Current = Integer;
1426       else if (Size <= 128)
1427         Lo = Hi = Integer;
1428     } else if (ET == getContext().FloatTy)
1429       Current = SSE;
1430     else if (ET == getContext().DoubleTy ||
1431              (ET == getContext().LongDoubleTy &&
1432               getContext().getTargetInfo().getTriple().getOS() ==
1433               llvm::Triple::NativeClient))
1434       Lo = Hi = SSE;
1435     else if (ET == getContext().LongDoubleTy)
1436       Current = ComplexX87;
1437 
1438     // If this complex type crosses an eightbyte boundary then it
1439     // should be split.
1440     uint64_t EB_Real = (OffsetBase) / 64;
1441     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1442     if (Hi == NoClass && EB_Real != EB_Imag)
1443       Hi = Lo;
1444 
1445     return;
1446   }
1447 
1448   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1449     // Arrays are treated like structures.
1450 
1451     uint64_t Size = getContext().getTypeSize(Ty);
1452 
1453     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1454     // than four eightbytes, ..., it has class MEMORY.
1455     if (Size > 256)
1456       return;
1457 
1458     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1459     // fields, it has class MEMORY.
1460     //
1461     // Only need to check alignment of array base.
1462     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1463       return;
1464 
1465     // Otherwise implement simplified merge. We could be smarter about
1466     // this, but it isn't worth it and would be harder to verify.
1467     Current = NoClass;
1468     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1469     uint64_t ArraySize = AT->getSize().getZExtValue();
1470 
1471     // The only case a 256-bit wide vector could be used is when the array
1472     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1473     // to work for sizes wider than 128, early check and fallback to memory.
1474     if (Size > 128 && EltSize != 256)
1475       return;
1476 
1477     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1478       Class FieldLo, FieldHi;
1479       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1480       Lo = merge(Lo, FieldLo);
1481       Hi = merge(Hi, FieldHi);
1482       if (Lo == Memory || Hi == Memory)
1483         break;
1484     }
1485 
1486     postMerge(Size, Lo, Hi);
1487     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1488     return;
1489   }
1490 
1491   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1492     uint64_t Size = getContext().getTypeSize(Ty);
1493 
1494     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1495     // than four eightbytes, ..., it has class MEMORY.
1496     if (Size > 256)
1497       return;
1498 
1499     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1500     // copy constructor or a non-trivial destructor, it is passed by invisible
1501     // reference.
1502     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1503       return;
1504 
1505     const RecordDecl *RD = RT->getDecl();
1506 
1507     // Assume variable sized types are passed in memory.
1508     if (RD->hasFlexibleArrayMember())
1509       return;
1510 
1511     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1512 
1513     // Reset Lo class, this will be recomputed.
1514     Current = NoClass;
1515 
1516     // If this is a C++ record, classify the bases first.
1517     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1518       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1519              e = CXXRD->bases_end(); i != e; ++i) {
1520         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1521                "Unexpected base class!");
1522         const CXXRecordDecl *Base =
1523           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1524 
1525         // Classify this field.
1526         //
1527         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1528         // single eightbyte, each is classified separately. Each eightbyte gets
1529         // initialized to class NO_CLASS.
1530         Class FieldLo, FieldHi;
1531         uint64_t Offset =
1532           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1533         classify(i->getType(), Offset, FieldLo, FieldHi);
1534         Lo = merge(Lo, FieldLo);
1535         Hi = merge(Hi, FieldHi);
1536         if (Lo == Memory || Hi == Memory)
1537           break;
1538       }
1539     }
1540 
1541     // Classify the fields one at a time, merging the results.
1542     unsigned idx = 0;
1543     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1544            i != e; ++i, ++idx) {
1545       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1546       bool BitField = i->isBitField();
1547 
1548       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1549       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1550       //
1551       // The only case a 256-bit wide vector could be used is when the struct
1552       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1553       // to work for sizes wider than 128, early check and fallback to memory.
1554       //
1555       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1556         Lo = Memory;
1557         return;
1558       }
1559       // Note, skip this test for bit-fields, see below.
1560       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1561         Lo = Memory;
1562         return;
1563       }
1564 
1565       // Classify this field.
1566       //
1567       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1568       // exceeds a single eightbyte, each is classified
1569       // separately. Each eightbyte gets initialized to class
1570       // NO_CLASS.
1571       Class FieldLo, FieldHi;
1572 
1573       // Bit-fields require special handling, they do not force the
1574       // structure to be passed in memory even if unaligned, and
1575       // therefore they can straddle an eightbyte.
1576       if (BitField) {
1577         // Ignore padding bit-fields.
1578         if (i->isUnnamedBitfield())
1579           continue;
1580 
1581         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1582         uint64_t Size = i->getBitWidthValue(getContext());
1583 
1584         uint64_t EB_Lo = Offset / 64;
1585         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1586         FieldLo = FieldHi = NoClass;
1587         if (EB_Lo) {
1588           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1589           FieldLo = NoClass;
1590           FieldHi = Integer;
1591         } else {
1592           FieldLo = Integer;
1593           FieldHi = EB_Hi ? Integer : NoClass;
1594         }
1595       } else
1596         classify(i->getType(), Offset, FieldLo, FieldHi);
1597       Lo = merge(Lo, FieldLo);
1598       Hi = merge(Hi, FieldHi);
1599       if (Lo == Memory || Hi == Memory)
1600         break;
1601     }
1602 
1603     postMerge(Size, Lo, Hi);
1604   }
1605 }
1606 
1607 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1608   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1609   // place naturally.
1610   if (!isAggregateTypeForABI(Ty)) {
1611     // Treat an enum type as its underlying type.
1612     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1613       Ty = EnumTy->getDecl()->getIntegerType();
1614 
1615     return (Ty->isPromotableIntegerType() ?
1616             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1617   }
1618 
1619   return ABIArgInfo::getIndirect(0);
1620 }
1621 
1622 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1623   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1624     uint64_t Size = getContext().getTypeSize(VecTy);
1625     unsigned LargestVector = HasAVX ? 256 : 128;
1626     if (Size <= 64 || Size > LargestVector)
1627       return true;
1628   }
1629 
1630   return false;
1631 }
1632 
1633 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1634                                             unsigned freeIntRegs) const {
1635   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1636   // place naturally.
1637   //
1638   // This assumption is optimistic, as there could be free registers available
1639   // when we need to pass this argument in memory, and LLVM could try to pass
1640   // the argument in the free register. This does not seem to happen currently,
1641   // but this code would be much safer if we could mark the argument with
1642   // 'onstack'. See PR12193.
1643   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1644     // Treat an enum type as its underlying type.
1645     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1646       Ty = EnumTy->getDecl()->getIntegerType();
1647 
1648     return (Ty->isPromotableIntegerType() ?
1649             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1650   }
1651 
1652   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1653     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1654 
1655   // Compute the byval alignment. We specify the alignment of the byval in all
1656   // cases so that the mid-level optimizer knows the alignment of the byval.
1657   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1658 
1659   // Attempt to avoid passing indirect results using byval when possible. This
1660   // is important for good codegen.
1661   //
1662   // We do this by coercing the value into a scalar type which the backend can
1663   // handle naturally (i.e., without using byval).
1664   //
1665   // For simplicity, we currently only do this when we have exhausted all of the
1666   // free integer registers. Doing this when there are free integer registers
1667   // would require more care, as we would have to ensure that the coerced value
1668   // did not claim the unused register. That would require either reording the
1669   // arguments to the function (so that any subsequent inreg values came first),
1670   // or only doing this optimization when there were no following arguments that
1671   // might be inreg.
1672   //
1673   // We currently expect it to be rare (particularly in well written code) for
1674   // arguments to be passed on the stack when there are still free integer
1675   // registers available (this would typically imply large structs being passed
1676   // by value), so this seems like a fair tradeoff for now.
1677   //
1678   // We can revisit this if the backend grows support for 'onstack' parameter
1679   // attributes. See PR12193.
1680   if (freeIntRegs == 0) {
1681     uint64_t Size = getContext().getTypeSize(Ty);
1682 
1683     // If this type fits in an eightbyte, coerce it into the matching integral
1684     // type, which will end up on the stack (with alignment 8).
1685     if (Align == 8 && Size <= 64)
1686       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1687                                                           Size));
1688   }
1689 
1690   return ABIArgInfo::getIndirect(Align);
1691 }
1692 
1693 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1694 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1695 /// vector register.
1696 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1697   llvm::Type *IRType = CGT.ConvertType(Ty);
1698 
1699   // Wrapper structs that just contain vectors are passed just like vectors,
1700   // strip them off if present.
1701   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1702   while (STy && STy->getNumElements() == 1) {
1703     IRType = STy->getElementType(0);
1704     STy = dyn_cast<llvm::StructType>(IRType);
1705   }
1706 
1707   // If the preferred type is a 16-byte vector, prefer to pass it.
1708   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1709     llvm::Type *EltTy = VT->getElementType();
1710     unsigned BitWidth = VT->getBitWidth();
1711     if ((BitWidth >= 128 && BitWidth <= 256) &&
1712         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1713          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1714          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1715          EltTy->isIntegerTy(128)))
1716       return VT;
1717   }
1718 
1719   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1720 }
1721 
1722 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1723 /// is known to either be off the end of the specified type or being in
1724 /// alignment padding.  The user type specified is known to be at most 128 bits
1725 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1726 /// classification that put one of the two halves in the INTEGER class.
1727 ///
1728 /// It is conservatively correct to return false.
1729 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1730                                   unsigned EndBit, ASTContext &Context) {
1731   // If the bytes being queried are off the end of the type, there is no user
1732   // data hiding here.  This handles analysis of builtins, vectors and other
1733   // types that don't contain interesting padding.
1734   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1735   if (TySize <= StartBit)
1736     return true;
1737 
1738   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1739     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1740     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1741 
1742     // Check each element to see if the element overlaps with the queried range.
1743     for (unsigned i = 0; i != NumElts; ++i) {
1744       // If the element is after the span we care about, then we're done..
1745       unsigned EltOffset = i*EltSize;
1746       if (EltOffset >= EndBit) break;
1747 
1748       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1749       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1750                                  EndBit-EltOffset, Context))
1751         return false;
1752     }
1753     // If it overlaps no elements, then it is safe to process as padding.
1754     return true;
1755   }
1756 
1757   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1758     const RecordDecl *RD = RT->getDecl();
1759     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1760 
1761     // If this is a C++ record, check the bases first.
1762     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1763       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1764            e = CXXRD->bases_end(); i != e; ++i) {
1765         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1766                "Unexpected base class!");
1767         const CXXRecordDecl *Base =
1768           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1769 
1770         // If the base is after the span we care about, ignore it.
1771         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1772         if (BaseOffset >= EndBit) continue;
1773 
1774         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1775         if (!BitsContainNoUserData(i->getType(), BaseStart,
1776                                    EndBit-BaseOffset, Context))
1777           return false;
1778       }
1779     }
1780 
1781     // Verify that no field has data that overlaps the region of interest.  Yes
1782     // this could be sped up a lot by being smarter about queried fields,
1783     // however we're only looking at structs up to 16 bytes, so we don't care
1784     // much.
1785     unsigned idx = 0;
1786     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1787          i != e; ++i, ++idx) {
1788       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1789 
1790       // If we found a field after the region we care about, then we're done.
1791       if (FieldOffset >= EndBit) break;
1792 
1793       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1794       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1795                                  Context))
1796         return false;
1797     }
1798 
1799     // If nothing in this record overlapped the area of interest, then we're
1800     // clean.
1801     return true;
1802   }
1803 
1804   return false;
1805 }
1806 
1807 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1808 /// float member at the specified offset.  For example, {int,{float}} has a
1809 /// float at offset 4.  It is conservatively correct for this routine to return
1810 /// false.
1811 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1812                                   const llvm::DataLayout &TD) {
1813   // Base case if we find a float.
1814   if (IROffset == 0 && IRType->isFloatTy())
1815     return true;
1816 
1817   // If this is a struct, recurse into the field at the specified offset.
1818   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1819     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1820     unsigned Elt = SL->getElementContainingOffset(IROffset);
1821     IROffset -= SL->getElementOffset(Elt);
1822     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1823   }
1824 
1825   // If this is an array, recurse into the field at the specified offset.
1826   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1827     llvm::Type *EltTy = ATy->getElementType();
1828     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1829     IROffset -= IROffset/EltSize*EltSize;
1830     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1831   }
1832 
1833   return false;
1834 }
1835 
1836 
1837 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1838 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1839 llvm::Type *X86_64ABIInfo::
1840 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1841                    QualType SourceTy, unsigned SourceOffset) const {
1842   // The only three choices we have are either double, <2 x float>, or float. We
1843   // pass as float if the last 4 bytes is just padding.  This happens for
1844   // structs that contain 3 floats.
1845   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1846                             SourceOffset*8+64, getContext()))
1847     return llvm::Type::getFloatTy(getVMContext());
1848 
1849   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1850   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1851   // case.
1852   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1853       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1854     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1855 
1856   return llvm::Type::getDoubleTy(getVMContext());
1857 }
1858 
1859 
1860 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1861 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1862 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1863 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1864 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1865 /// etc).
1866 ///
1867 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1868 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1869 /// the 8-byte value references.  PrefType may be null.
1870 ///
1871 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1872 /// an offset into this that we're processing (which is always either 0 or 8).
1873 ///
1874 llvm::Type *X86_64ABIInfo::
1875 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1876                        QualType SourceTy, unsigned SourceOffset) const {
1877   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1878   // returning an 8-byte unit starting with it.  See if we can safely use it.
1879   if (IROffset == 0) {
1880     // Pointers and int64's always fill the 8-byte unit.
1881     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
1882         IRType->isIntegerTy(64))
1883       return IRType;
1884 
1885     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1886     // goodness in the source type is just tail padding.  This is allowed to
1887     // kick in for struct {double,int} on the int, but not on
1888     // struct{double,int,int} because we wouldn't return the second int.  We
1889     // have to do this analysis on the source type because we can't depend on
1890     // unions being lowered a specific way etc.
1891     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1892         IRType->isIntegerTy(32) ||
1893         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
1894       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
1895           cast<llvm::IntegerType>(IRType)->getBitWidth();
1896 
1897       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1898                                 SourceOffset*8+64, getContext()))
1899         return IRType;
1900     }
1901   }
1902 
1903   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1904     // If this is a struct, recurse into the field at the specified offset.
1905     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
1906     if (IROffset < SL->getSizeInBytes()) {
1907       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1908       IROffset -= SL->getElementOffset(FieldIdx);
1909 
1910       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1911                                     SourceTy, SourceOffset);
1912     }
1913   }
1914 
1915   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1916     llvm::Type *EltTy = ATy->getElementType();
1917     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
1918     unsigned EltOffset = IROffset/EltSize*EltSize;
1919     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1920                                   SourceOffset);
1921   }
1922 
1923   // Okay, we don't have any better idea of what to pass, so we pass this in an
1924   // integer register that isn't too big to fit the rest of the struct.
1925   unsigned TySizeInBytes =
1926     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1927 
1928   assert(TySizeInBytes != SourceOffset && "Empty field?");
1929 
1930   // It is always safe to classify this as an integer type up to i64 that
1931   // isn't larger than the structure.
1932   return llvm::IntegerType::get(getVMContext(),
1933                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1934 }
1935 
1936 
1937 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1938 /// be used as elements of a two register pair to pass or return, return a
1939 /// first class aggregate to represent them.  For example, if the low part of
1940 /// a by-value argument should be passed as i32* and the high part as float,
1941 /// return {i32*, float}.
1942 static llvm::Type *
1943 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1944                            const llvm::DataLayout &TD) {
1945   // In order to correctly satisfy the ABI, we need to the high part to start
1946   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1947   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1948   // the second element at offset 8.  Check for this:
1949   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1950   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1951   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
1952   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1953 
1954   // To handle this, we have to increase the size of the low part so that the
1955   // second element will start at an 8 byte offset.  We can't increase the size
1956   // of the second element because it might make us access off the end of the
1957   // struct.
1958   if (HiStart != 8) {
1959     // There are only two sorts of types the ABI generation code can produce for
1960     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1961     // Promote these to a larger type.
1962     if (Lo->isFloatTy())
1963       Lo = llvm::Type::getDoubleTy(Lo->getContext());
1964     else {
1965       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1966       Lo = llvm::Type::getInt64Ty(Lo->getContext());
1967     }
1968   }
1969 
1970   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1971 
1972 
1973   // Verify that the second element is at an 8-byte offset.
1974   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1975          "Invalid x86-64 argument pair!");
1976   return Result;
1977 }
1978 
1979 ABIArgInfo X86_64ABIInfo::
1980 classifyReturnType(QualType RetTy) const {
1981   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1982   // classification algorithm.
1983   X86_64ABIInfo::Class Lo, Hi;
1984   classify(RetTy, 0, Lo, Hi);
1985 
1986   // Check some invariants.
1987   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1988   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1989 
1990   llvm::Type *ResType = 0;
1991   switch (Lo) {
1992   case NoClass:
1993     if (Hi == NoClass)
1994       return ABIArgInfo::getIgnore();
1995     // If the low part is just padding, it takes no register, leave ResType
1996     // null.
1997     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1998            "Unknown missing lo part");
1999     break;
2000 
2001   case SSEUp:
2002   case X87Up:
2003     llvm_unreachable("Invalid classification for lo word.");
2004 
2005     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2006     // hidden argument.
2007   case Memory:
2008     return getIndirectReturnResult(RetTy);
2009 
2010     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2011     // available register of the sequence %rax, %rdx is used.
2012   case Integer:
2013     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2014 
2015     // If we have a sign or zero extended integer, make sure to return Extend
2016     // so that the parameter gets the right LLVM IR attributes.
2017     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2018       // Treat an enum type as its underlying type.
2019       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2020         RetTy = EnumTy->getDecl()->getIntegerType();
2021 
2022       if (RetTy->isIntegralOrEnumerationType() &&
2023           RetTy->isPromotableIntegerType())
2024         return ABIArgInfo::getExtend();
2025     }
2026     break;
2027 
2028     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2029     // available SSE register of the sequence %xmm0, %xmm1 is used.
2030   case SSE:
2031     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2032     break;
2033 
2034     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2035     // returned on the X87 stack in %st0 as 80-bit x87 number.
2036   case X87:
2037     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2038     break;
2039 
2040     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2041     // part of the value is returned in %st0 and the imaginary part in
2042     // %st1.
2043   case ComplexX87:
2044     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2045     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2046                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2047                                     NULL);
2048     break;
2049   }
2050 
2051   llvm::Type *HighPart = 0;
2052   switch (Hi) {
2053     // Memory was handled previously and X87 should
2054     // never occur as a hi class.
2055   case Memory:
2056   case X87:
2057     llvm_unreachable("Invalid classification for hi word.");
2058 
2059   case ComplexX87: // Previously handled.
2060   case NoClass:
2061     break;
2062 
2063   case Integer:
2064     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2065     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2066       return ABIArgInfo::getDirect(HighPart, 8);
2067     break;
2068   case SSE:
2069     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2070     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2071       return ABIArgInfo::getDirect(HighPart, 8);
2072     break;
2073 
2074     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2075     // is passed in the next available eightbyte chunk if the last used
2076     // vector register.
2077     //
2078     // SSEUP should always be preceded by SSE, just widen.
2079   case SSEUp:
2080     assert(Lo == SSE && "Unexpected SSEUp classification.");
2081     ResType = GetByteVectorType(RetTy);
2082     break;
2083 
2084     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2085     // returned together with the previous X87 value in %st0.
2086   case X87Up:
2087     // If X87Up is preceded by X87, we don't need to do
2088     // anything. However, in some cases with unions it may not be
2089     // preceded by X87. In such situations we follow gcc and pass the
2090     // extra bits in an SSE reg.
2091     if (Lo != X87) {
2092       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2093       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2094         return ABIArgInfo::getDirect(HighPart, 8);
2095     }
2096     break;
2097   }
2098 
2099   // If a high part was specified, merge it together with the low part.  It is
2100   // known to pass in the high eightbyte of the result.  We do this by forming a
2101   // first class struct aggregate with the high and low part: {low, high}
2102   if (HighPart)
2103     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2104 
2105   return ABIArgInfo::getDirect(ResType);
2106 }
2107 
2108 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2109   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2110   const
2111 {
2112   X86_64ABIInfo::Class Lo, Hi;
2113   classify(Ty, 0, Lo, Hi);
2114 
2115   // Check some invariants.
2116   // FIXME: Enforce these by construction.
2117   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2118   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2119 
2120   neededInt = 0;
2121   neededSSE = 0;
2122   llvm::Type *ResType = 0;
2123   switch (Lo) {
2124   case NoClass:
2125     if (Hi == NoClass)
2126       return ABIArgInfo::getIgnore();
2127     // If the low part is just padding, it takes no register, leave ResType
2128     // null.
2129     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2130            "Unknown missing lo part");
2131     break;
2132 
2133     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2134     // on the stack.
2135   case Memory:
2136 
2137     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2138     // COMPLEX_X87, it is passed in memory.
2139   case X87:
2140   case ComplexX87:
2141     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2142       ++neededInt;
2143     return getIndirectResult(Ty, freeIntRegs);
2144 
2145   case SSEUp:
2146   case X87Up:
2147     llvm_unreachable("Invalid classification for lo word.");
2148 
2149     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2150     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2151     // and %r9 is used.
2152   case Integer:
2153     ++neededInt;
2154 
2155     // Pick an 8-byte type based on the preferred type.
2156     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2157 
2158     // If we have a sign or zero extended integer, make sure to return Extend
2159     // so that the parameter gets the right LLVM IR attributes.
2160     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2161       // Treat an enum type as its underlying type.
2162       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2163         Ty = EnumTy->getDecl()->getIntegerType();
2164 
2165       if (Ty->isIntegralOrEnumerationType() &&
2166           Ty->isPromotableIntegerType())
2167         return ABIArgInfo::getExtend();
2168     }
2169 
2170     break;
2171 
2172     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2173     // available SSE register is used, the registers are taken in the
2174     // order from %xmm0 to %xmm7.
2175   case SSE: {
2176     llvm::Type *IRType = CGT.ConvertType(Ty);
2177     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2178     ++neededSSE;
2179     break;
2180   }
2181   }
2182 
2183   llvm::Type *HighPart = 0;
2184   switch (Hi) {
2185     // Memory was handled previously, ComplexX87 and X87 should
2186     // never occur as hi classes, and X87Up must be preceded by X87,
2187     // which is passed in memory.
2188   case Memory:
2189   case X87:
2190   case ComplexX87:
2191     llvm_unreachable("Invalid classification for hi word.");
2192 
2193   case NoClass: break;
2194 
2195   case Integer:
2196     ++neededInt;
2197     // Pick an 8-byte type based on the preferred type.
2198     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2199 
2200     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2201       return ABIArgInfo::getDirect(HighPart, 8);
2202     break;
2203 
2204     // X87Up generally doesn't occur here (long double is passed in
2205     // memory), except in situations involving unions.
2206   case X87Up:
2207   case SSE:
2208     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2209 
2210     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2211       return ABIArgInfo::getDirect(HighPart, 8);
2212 
2213     ++neededSSE;
2214     break;
2215 
2216     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2217     // eightbyte is passed in the upper half of the last used SSE
2218     // register.  This only happens when 128-bit vectors are passed.
2219   case SSEUp:
2220     assert(Lo == SSE && "Unexpected SSEUp classification");
2221     ResType = GetByteVectorType(Ty);
2222     break;
2223   }
2224 
2225   // If a high part was specified, merge it together with the low part.  It is
2226   // known to pass in the high eightbyte of the result.  We do this by forming a
2227   // first class struct aggregate with the high and low part: {low, high}
2228   if (HighPart)
2229     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2230 
2231   return ABIArgInfo::getDirect(ResType);
2232 }
2233 
2234 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2235 
2236   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2237 
2238   // Keep track of the number of assigned registers.
2239   unsigned freeIntRegs = 6, freeSSERegs = 8;
2240 
2241   // If the return value is indirect, then the hidden argument is consuming one
2242   // integer register.
2243   if (FI.getReturnInfo().isIndirect())
2244     --freeIntRegs;
2245 
2246   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2247   // get assigned (in left-to-right order) for passing as follows...
2248   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2249        it != ie; ++it) {
2250     unsigned neededInt, neededSSE;
2251     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2252                                     neededSSE);
2253 
2254     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2255     // eightbyte of an argument, the whole argument is passed on the
2256     // stack. If registers have already been assigned for some
2257     // eightbytes of such an argument, the assignments get reverted.
2258     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2259       freeIntRegs -= neededInt;
2260       freeSSERegs -= neededSSE;
2261     } else {
2262       it->info = getIndirectResult(it->type, freeIntRegs);
2263     }
2264   }
2265 }
2266 
2267 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2268                                         QualType Ty,
2269                                         CodeGenFunction &CGF) {
2270   llvm::Value *overflow_arg_area_p =
2271     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2272   llvm::Value *overflow_arg_area =
2273     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2274 
2275   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2276   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2277   // It isn't stated explicitly in the standard, but in practice we use
2278   // alignment greater than 16 where necessary.
2279   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2280   if (Align > 8) {
2281     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2282     llvm::Value *Offset =
2283       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2284     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2285     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2286                                                     CGF.Int64Ty);
2287     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2288     overflow_arg_area =
2289       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2290                                  overflow_arg_area->getType(),
2291                                  "overflow_arg_area.align");
2292   }
2293 
2294   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2295   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2296   llvm::Value *Res =
2297     CGF.Builder.CreateBitCast(overflow_arg_area,
2298                               llvm::PointerType::getUnqual(LTy));
2299 
2300   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2301   // l->overflow_arg_area + sizeof(type).
2302   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2303   // an 8 byte boundary.
2304 
2305   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2306   llvm::Value *Offset =
2307       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2308   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2309                                             "overflow_arg_area.next");
2310   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2311 
2312   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2313   return Res;
2314 }
2315 
2316 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2317                                       CodeGenFunction &CGF) const {
2318   // Assume that va_list type is correct; should be pointer to LLVM type:
2319   // struct {
2320   //   i32 gp_offset;
2321   //   i32 fp_offset;
2322   //   i8* overflow_arg_area;
2323   //   i8* reg_save_area;
2324   // };
2325   unsigned neededInt, neededSSE;
2326 
2327   Ty = CGF.getContext().getCanonicalType(Ty);
2328   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2329 
2330   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2331   // in the registers. If not go to step 7.
2332   if (!neededInt && !neededSSE)
2333     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2334 
2335   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2336   // general purpose registers needed to pass type and num_fp to hold
2337   // the number of floating point registers needed.
2338 
2339   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2340   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2341   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2342   //
2343   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2344   // register save space).
2345 
2346   llvm::Value *InRegs = 0;
2347   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2348   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2349   if (neededInt) {
2350     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2351     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2352     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2353     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2354   }
2355 
2356   if (neededSSE) {
2357     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2358     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2359     llvm::Value *FitsInFP =
2360       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2361     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2362     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2363   }
2364 
2365   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2366   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2367   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2368   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2369 
2370   // Emit code to load the value if it was passed in registers.
2371 
2372   CGF.EmitBlock(InRegBlock);
2373 
2374   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2375   // an offset of l->gp_offset and/or l->fp_offset. This may require
2376   // copying to a temporary location in case the parameter is passed
2377   // in different register classes or requires an alignment greater
2378   // than 8 for general purpose registers and 16 for XMM registers.
2379   //
2380   // FIXME: This really results in shameful code when we end up needing to
2381   // collect arguments from different places; often what should result in a
2382   // simple assembling of a structure from scattered addresses has many more
2383   // loads than necessary. Can we clean this up?
2384   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2385   llvm::Value *RegAddr =
2386     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2387                            "reg_save_area");
2388   if (neededInt && neededSSE) {
2389     // FIXME: Cleanup.
2390     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2391     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2392     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2393     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2394     llvm::Type *TyLo = ST->getElementType(0);
2395     llvm::Type *TyHi = ST->getElementType(1);
2396     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2397            "Unexpected ABI info for mixed regs");
2398     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2399     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2400     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2401     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2402     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2403     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2404     llvm::Value *V =
2405       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2406     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2407     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2408     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2409 
2410     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2411                                         llvm::PointerType::getUnqual(LTy));
2412   } else if (neededInt) {
2413     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2414     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2415                                         llvm::PointerType::getUnqual(LTy));
2416   } else if (neededSSE == 1) {
2417     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2418     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2419                                         llvm::PointerType::getUnqual(LTy));
2420   } else {
2421     assert(neededSSE == 2 && "Invalid number of needed registers!");
2422     // SSE registers are spaced 16 bytes apart in the register save
2423     // area, we need to collect the two eightbytes together.
2424     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2425     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2426     llvm::Type *DoubleTy = CGF.DoubleTy;
2427     llvm::Type *DblPtrTy =
2428       llvm::PointerType::getUnqual(DoubleTy);
2429     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2430                                                        DoubleTy, NULL);
2431     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2432     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2433                                                          DblPtrTy));
2434     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2435     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2436                                                          DblPtrTy));
2437     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2438     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2439                                         llvm::PointerType::getUnqual(LTy));
2440   }
2441 
2442   // AMD64-ABI 3.5.7p5: Step 5. Set:
2443   // l->gp_offset = l->gp_offset + num_gp * 8
2444   // l->fp_offset = l->fp_offset + num_fp * 16.
2445   if (neededInt) {
2446     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2447     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2448                             gp_offset_p);
2449   }
2450   if (neededSSE) {
2451     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2452     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2453                             fp_offset_p);
2454   }
2455   CGF.EmitBranch(ContBlock);
2456 
2457   // Emit code to load the value if it was passed in memory.
2458 
2459   CGF.EmitBlock(InMemBlock);
2460   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2461 
2462   // Return the appropriate result.
2463 
2464   CGF.EmitBlock(ContBlock);
2465   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2466                                                  "vaarg.addr");
2467   ResAddr->addIncoming(RegAddr, InRegBlock);
2468   ResAddr->addIncoming(MemAddr, InMemBlock);
2469   return ResAddr;
2470 }
2471 
2472 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2473 
2474   if (Ty->isVoidType())
2475     return ABIArgInfo::getIgnore();
2476 
2477   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2478     Ty = EnumTy->getDecl()->getIntegerType();
2479 
2480   uint64_t Size = getContext().getTypeSize(Ty);
2481 
2482   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2483     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2484         RT->getDecl()->hasFlexibleArrayMember())
2485       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2486 
2487     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2488     if (Size == 128 &&
2489         getContext().getTargetInfo().getTriple().getOS()
2490           == llvm::Triple::MinGW32)
2491       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2492                                                           Size));
2493 
2494     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2495     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2496     if (Size <= 64 &&
2497         (Size & (Size - 1)) == 0)
2498       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2499                                                           Size));
2500 
2501     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2502   }
2503 
2504   if (Ty->isPromotableIntegerType())
2505     return ABIArgInfo::getExtend();
2506 
2507   return ABIArgInfo::getDirect();
2508 }
2509 
2510 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2511 
2512   QualType RetTy = FI.getReturnType();
2513   FI.getReturnInfo() = classify(RetTy);
2514 
2515   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2516        it != ie; ++it)
2517     it->info = classify(it->type);
2518 }
2519 
2520 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2521                                       CodeGenFunction &CGF) const {
2522   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2523 
2524   CGBuilderTy &Builder = CGF.Builder;
2525   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2526                                                        "ap");
2527   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2528   llvm::Type *PTy =
2529     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2530   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2531 
2532   uint64_t Offset =
2533     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2534   llvm::Value *NextAddr =
2535     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2536                       "ap.next");
2537   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2538 
2539   return AddrTyped;
2540 }
2541 
2542 class NaClX86_64ABIInfo : public ABIInfo {
2543  public:
2544   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2545       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2546   virtual void computeInfo(CGFunctionInfo &FI) const;
2547   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2548                                  CodeGenFunction &CGF) const;
2549  private:
2550   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2551   X86_64ABIInfo NInfo; // Used for everything else.
2552 };
2553 
2554 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2555  public:
2556   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2557       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2558 };
2559 
2560 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2561   if (FI.getASTCallingConvention() == CC_PnaclCall)
2562     PInfo.computeInfo(FI);
2563   else
2564     NInfo.computeInfo(FI);
2565 }
2566 
2567 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2568                                           CodeGenFunction &CGF) const {
2569   // Always use the native convention; calling pnacl-style varargs functions
2570   // is unuspported.
2571   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2572 }
2573 
2574 
2575 // PowerPC-32
2576 
2577 namespace {
2578 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2579 public:
2580   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2581 
2582   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2583     // This is recovered from gcc output.
2584     return 1; // r1 is the dedicated stack pointer
2585   }
2586 
2587   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2588                                llvm::Value *Address) const;
2589 };
2590 
2591 }
2592 
2593 bool
2594 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2595                                                 llvm::Value *Address) const {
2596   // This is calculated from the LLVM and GCC tables and verified
2597   // against gcc output.  AFAIK all ABIs use the same encoding.
2598 
2599   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2600 
2601   llvm::IntegerType *i8 = CGF.Int8Ty;
2602   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2603   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2604   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2605 
2606   // 0-31: r0-31, the 4-byte general-purpose registers
2607   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2608 
2609   // 32-63: fp0-31, the 8-byte floating-point registers
2610   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2611 
2612   // 64-76 are various 4-byte special-purpose registers:
2613   // 64: mq
2614   // 65: lr
2615   // 66: ctr
2616   // 67: ap
2617   // 68-75 cr0-7
2618   // 76: xer
2619   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2620 
2621   // 77-108: v0-31, the 16-byte vector registers
2622   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2623 
2624   // 109: vrsave
2625   // 110: vscr
2626   // 111: spe_acc
2627   // 112: spefscr
2628   // 113: sfp
2629   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2630 
2631   return false;
2632 }
2633 
2634 // PowerPC-64
2635 
2636 namespace {
2637 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2638 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2639 
2640 public:
2641   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2642 
2643   // TODO: We can add more logic to computeInfo to improve performance.
2644   // Example: For aggregate arguments that fit in a register, we could
2645   // use getDirectInReg (as is done below for structs containing a single
2646   // floating-point value) to avoid pushing them to memory on function
2647   // entry.  This would require changing the logic in PPCISelLowering
2648   // when lowering the parameters in the caller and args in the callee.
2649   virtual void computeInfo(CGFunctionInfo &FI) const {
2650     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2651     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2652          it != ie; ++it) {
2653       // We rely on the default argument classification for the most part.
2654       // One exception:  An aggregate containing a single floating-point
2655       // item must be passed in a register if one is available.
2656       const Type *T = isSingleElementStruct(it->type, getContext());
2657       if (T) {
2658         const BuiltinType *BT = T->getAs<BuiltinType>();
2659         if (BT && BT->isFloatingPoint()) {
2660           QualType QT(T, 0);
2661           it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2662           continue;
2663         }
2664       }
2665       it->info = classifyArgumentType(it->type);
2666     }
2667   }
2668 
2669   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2670                                  QualType Ty,
2671                                  CodeGenFunction &CGF) const;
2672 };
2673 
2674 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2675 public:
2676   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2677     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2678 
2679   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2680     // This is recovered from gcc output.
2681     return 1; // r1 is the dedicated stack pointer
2682   }
2683 
2684   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2685                                llvm::Value *Address) const;
2686 };
2687 
2688 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2689 public:
2690   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2691 
2692   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2693     // This is recovered from gcc output.
2694     return 1; // r1 is the dedicated stack pointer
2695   }
2696 
2697   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2698                                llvm::Value *Address) const;
2699 };
2700 
2701 }
2702 
2703 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2704 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2705                                            QualType Ty,
2706                                            CodeGenFunction &CGF) const {
2707   llvm::Type *BP = CGF.Int8PtrTy;
2708   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2709 
2710   CGBuilderTy &Builder = CGF.Builder;
2711   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2712   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2713 
2714   // Handle address alignment for type alignment > 64 bits.  Although
2715   // long double normally requires 16-byte alignment, this is not the
2716   // case when it is passed as an argument; so handle that special case.
2717   const BuiltinType *BT = Ty->getAs<BuiltinType>();
2718   unsigned TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2719 
2720   if (TyAlign > 8 && (!BT || !BT->isFloatingPoint())) {
2721     assert((TyAlign & (TyAlign - 1)) == 0 &&
2722            "Alignment is not power of 2!");
2723     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2724     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(TyAlign - 1));
2725     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(~(TyAlign - 1)));
2726     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2727   }
2728 
2729   // Update the va_list pointer.
2730   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2731   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2732   llvm::Value *NextAddr =
2733     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2734                       "ap.next");
2735   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2736 
2737   // If the argument is smaller than 8 bytes, it is right-adjusted in
2738   // its doubleword slot.  Adjust the pointer to pick it up from the
2739   // correct offset.
2740   if (SizeInBytes < 8) {
2741     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2742     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2743     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2744   }
2745 
2746   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2747   return Builder.CreateBitCast(Addr, PTy);
2748 }
2749 
2750 static bool
2751 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2752                               llvm::Value *Address) {
2753   // This is calculated from the LLVM and GCC tables and verified
2754   // against gcc output.  AFAIK all ABIs use the same encoding.
2755 
2756   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2757 
2758   llvm::IntegerType *i8 = CGF.Int8Ty;
2759   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2760   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2761   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2762 
2763   // 0-31: r0-31, the 8-byte general-purpose registers
2764   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2765 
2766   // 32-63: fp0-31, the 8-byte floating-point registers
2767   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2768 
2769   // 64-76 are various 4-byte special-purpose registers:
2770   // 64: mq
2771   // 65: lr
2772   // 66: ctr
2773   // 67: ap
2774   // 68-75 cr0-7
2775   // 76: xer
2776   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2777 
2778   // 77-108: v0-31, the 16-byte vector registers
2779   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2780 
2781   // 109: vrsave
2782   // 110: vscr
2783   // 111: spe_acc
2784   // 112: spefscr
2785   // 113: sfp
2786   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2787 
2788   return false;
2789 }
2790 
2791 bool
2792 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
2793   CodeGen::CodeGenFunction &CGF,
2794   llvm::Value *Address) const {
2795 
2796   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2797 }
2798 
2799 bool
2800 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2801                                                 llvm::Value *Address) const {
2802 
2803   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
2804 }
2805 
2806 //===----------------------------------------------------------------------===//
2807 // ARM ABI Implementation
2808 //===----------------------------------------------------------------------===//
2809 
2810 namespace {
2811 
2812 class ARMABIInfo : public ABIInfo {
2813 public:
2814   enum ABIKind {
2815     APCS = 0,
2816     AAPCS = 1,
2817     AAPCS_VFP
2818   };
2819 
2820 private:
2821   ABIKind Kind;
2822 
2823 public:
2824   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2825 
2826   bool isEABI() const {
2827     StringRef Env =
2828       getContext().getTargetInfo().getTriple().getEnvironmentName();
2829     return (Env == "gnueabi" || Env == "eabi" ||
2830             Env == "android" || Env == "androideabi");
2831   }
2832 
2833 private:
2834   ABIKind getABIKind() const { return Kind; }
2835 
2836   ABIArgInfo classifyReturnType(QualType RetTy) const;
2837   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2838   bool isIllegalVectorType(QualType Ty) const;
2839 
2840   virtual void computeInfo(CGFunctionInfo &FI) const;
2841 
2842   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2843                                  CodeGenFunction &CGF) const;
2844 };
2845 
2846 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2847 public:
2848   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2849     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2850 
2851   const ARMABIInfo &getABIInfo() const {
2852     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2853   }
2854 
2855   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2856     return 13;
2857   }
2858 
2859   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2860     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2861   }
2862 
2863   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2864                                llvm::Value *Address) const {
2865     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2866 
2867     // 0-15 are the 16 integer registers.
2868     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2869     return false;
2870   }
2871 
2872   unsigned getSizeOfUnwindException() const {
2873     if (getABIInfo().isEABI()) return 88;
2874     return TargetCodeGenInfo::getSizeOfUnwindException();
2875   }
2876 };
2877 
2878 }
2879 
2880 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2881   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2882   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2883        it != ie; ++it)
2884     it->info = classifyArgumentType(it->type);
2885 
2886   // Always honor user-specified calling convention.
2887   if (FI.getCallingConvention() != llvm::CallingConv::C)
2888     return;
2889 
2890   // Calling convention as default by an ABI.
2891   llvm::CallingConv::ID DefaultCC;
2892   if (isEABI())
2893     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2894   else
2895     DefaultCC = llvm::CallingConv::ARM_APCS;
2896 
2897   // If user did not ask for specific calling convention explicitly (e.g. via
2898   // pcs attribute), set effective calling convention if it's different than ABI
2899   // default.
2900   switch (getABIKind()) {
2901   case APCS:
2902     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2903       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2904     break;
2905   case AAPCS:
2906     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2907       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2908     break;
2909   case AAPCS_VFP:
2910     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2911       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2912     break;
2913   }
2914 }
2915 
2916 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2917 /// aggregate.  If HAMembers is non-null, the number of base elements
2918 /// contained in the type is returned through it; this is used for the
2919 /// recursive calls that check aggregate component types.
2920 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2921                                    ASTContext &Context,
2922                                    uint64_t *HAMembers = 0) {
2923   uint64_t Members = 0;
2924   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2925     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2926       return false;
2927     Members *= AT->getSize().getZExtValue();
2928   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2929     const RecordDecl *RD = RT->getDecl();
2930     if (RD->hasFlexibleArrayMember())
2931       return false;
2932 
2933     Members = 0;
2934     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2935          i != e; ++i) {
2936       const FieldDecl *FD = *i;
2937       uint64_t FldMembers;
2938       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2939         return false;
2940 
2941       Members = (RD->isUnion() ?
2942                  std::max(Members, FldMembers) : Members + FldMembers);
2943     }
2944   } else {
2945     Members = 1;
2946     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2947       Members = 2;
2948       Ty = CT->getElementType();
2949     }
2950 
2951     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2952     // double, or 64-bit or 128-bit vectors.
2953     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2954       if (BT->getKind() != BuiltinType::Float &&
2955           BT->getKind() != BuiltinType::Double &&
2956           BT->getKind() != BuiltinType::LongDouble)
2957         return false;
2958     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2959       unsigned VecSize = Context.getTypeSize(VT);
2960       if (VecSize != 64 && VecSize != 128)
2961         return false;
2962     } else {
2963       return false;
2964     }
2965 
2966     // The base type must be the same for all members.  Vector types of the
2967     // same total size are treated as being equivalent here.
2968     const Type *TyPtr = Ty.getTypePtr();
2969     if (!Base)
2970       Base = TyPtr;
2971     if (Base != TyPtr &&
2972         (!Base->isVectorType() || !TyPtr->isVectorType() ||
2973          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2974       return false;
2975   }
2976 
2977   // Homogeneous Aggregates can have at most 4 members of the base type.
2978   if (HAMembers)
2979     *HAMembers = Members;
2980 
2981   return (Members > 0 && Members <= 4);
2982 }
2983 
2984 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2985   // Handle illegal vector types here.
2986   if (isIllegalVectorType(Ty)) {
2987     uint64_t Size = getContext().getTypeSize(Ty);
2988     if (Size <= 32) {
2989       llvm::Type *ResType =
2990           llvm::Type::getInt32Ty(getVMContext());
2991       return ABIArgInfo::getDirect(ResType);
2992     }
2993     if (Size == 64) {
2994       llvm::Type *ResType = llvm::VectorType::get(
2995           llvm::Type::getInt32Ty(getVMContext()), 2);
2996       return ABIArgInfo::getDirect(ResType);
2997     }
2998     if (Size == 128) {
2999       llvm::Type *ResType = llvm::VectorType::get(
3000           llvm::Type::getInt32Ty(getVMContext()), 4);
3001       return ABIArgInfo::getDirect(ResType);
3002     }
3003     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3004   }
3005 
3006   if (!isAggregateTypeForABI(Ty)) {
3007     // Treat an enum type as its underlying type.
3008     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3009       Ty = EnumTy->getDecl()->getIntegerType();
3010 
3011     return (Ty->isPromotableIntegerType() ?
3012             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3013   }
3014 
3015   // Ignore empty records.
3016   if (isEmptyRecord(getContext(), Ty, true))
3017     return ABIArgInfo::getIgnore();
3018 
3019   // Structures with either a non-trivial destructor or a non-trivial
3020   // copy constructor are always indirect.
3021   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3022     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3023 
3024   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3025     // Homogeneous Aggregates need to be expanded.
3026     const Type *Base = 0;
3027     if (isHomogeneousAggregate(Ty, Base, getContext())) {
3028       assert(Base && "Base class should be set for homogeneous aggregate");
3029       return ABIArgInfo::getExpand();
3030     }
3031   }
3032 
3033   // Support byval for ARM.
3034   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64) ||
3035       getContext().getTypeAlign(Ty) > 64) {
3036     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3037   }
3038 
3039   // Otherwise, pass by coercing to a structure of the appropriate size.
3040   llvm::Type* ElemTy;
3041   unsigned SizeRegs;
3042   // FIXME: Try to match the types of the arguments more accurately where
3043   // we can.
3044   if (getContext().getTypeAlign(Ty) <= 32) {
3045     ElemTy = llvm::Type::getInt32Ty(getVMContext());
3046     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3047   } else {
3048     ElemTy = llvm::Type::getInt64Ty(getVMContext());
3049     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3050   }
3051 
3052   llvm::Type *STy =
3053     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3054   return ABIArgInfo::getDirect(STy);
3055 }
3056 
3057 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3058                               llvm::LLVMContext &VMContext) {
3059   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3060   // is called integer-like if its size is less than or equal to one word, and
3061   // the offset of each of its addressable sub-fields is zero.
3062 
3063   uint64_t Size = Context.getTypeSize(Ty);
3064 
3065   // Check that the type fits in a word.
3066   if (Size > 32)
3067     return false;
3068 
3069   // FIXME: Handle vector types!
3070   if (Ty->isVectorType())
3071     return false;
3072 
3073   // Float types are never treated as "integer like".
3074   if (Ty->isRealFloatingType())
3075     return false;
3076 
3077   // If this is a builtin or pointer type then it is ok.
3078   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3079     return true;
3080 
3081   // Small complex integer types are "integer like".
3082   if (const ComplexType *CT = Ty->getAs<ComplexType>())
3083     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3084 
3085   // Single element and zero sized arrays should be allowed, by the definition
3086   // above, but they are not.
3087 
3088   // Otherwise, it must be a record type.
3089   const RecordType *RT = Ty->getAs<RecordType>();
3090   if (!RT) return false;
3091 
3092   // Ignore records with flexible arrays.
3093   const RecordDecl *RD = RT->getDecl();
3094   if (RD->hasFlexibleArrayMember())
3095     return false;
3096 
3097   // Check that all sub-fields are at offset 0, and are themselves "integer
3098   // like".
3099   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3100 
3101   bool HadField = false;
3102   unsigned idx = 0;
3103   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3104        i != e; ++i, ++idx) {
3105     const FieldDecl *FD = *i;
3106 
3107     // Bit-fields are not addressable, we only need to verify they are "integer
3108     // like". We still have to disallow a subsequent non-bitfield, for example:
3109     //   struct { int : 0; int x }
3110     // is non-integer like according to gcc.
3111     if (FD->isBitField()) {
3112       if (!RD->isUnion())
3113         HadField = true;
3114 
3115       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3116         return false;
3117 
3118       continue;
3119     }
3120 
3121     // Check if this field is at offset 0.
3122     if (Layout.getFieldOffset(idx) != 0)
3123       return false;
3124 
3125     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3126       return false;
3127 
3128     // Only allow at most one field in a structure. This doesn't match the
3129     // wording above, but follows gcc in situations with a field following an
3130     // empty structure.
3131     if (!RD->isUnion()) {
3132       if (HadField)
3133         return false;
3134 
3135       HadField = true;
3136     }
3137   }
3138 
3139   return true;
3140 }
3141 
3142 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3143   if (RetTy->isVoidType())
3144     return ABIArgInfo::getIgnore();
3145 
3146   // Large vector types should be returned via memory.
3147   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3148     return ABIArgInfo::getIndirect(0);
3149 
3150   if (!isAggregateTypeForABI(RetTy)) {
3151     // Treat an enum type as its underlying type.
3152     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3153       RetTy = EnumTy->getDecl()->getIntegerType();
3154 
3155     return (RetTy->isPromotableIntegerType() ?
3156             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3157   }
3158 
3159   // Structures with either a non-trivial destructor or a non-trivial
3160   // copy constructor are always indirect.
3161   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3162     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3163 
3164   // Are we following APCS?
3165   if (getABIKind() == APCS) {
3166     if (isEmptyRecord(getContext(), RetTy, false))
3167       return ABIArgInfo::getIgnore();
3168 
3169     // Complex types are all returned as packed integers.
3170     //
3171     // FIXME: Consider using 2 x vector types if the back end handles them
3172     // correctly.
3173     if (RetTy->isAnyComplexType())
3174       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3175                                               getContext().getTypeSize(RetTy)));
3176 
3177     // Integer like structures are returned in r0.
3178     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3179       // Return in the smallest viable integer type.
3180       uint64_t Size = getContext().getTypeSize(RetTy);
3181       if (Size <= 8)
3182         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3183       if (Size <= 16)
3184         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3185       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3186     }
3187 
3188     // Otherwise return in memory.
3189     return ABIArgInfo::getIndirect(0);
3190   }
3191 
3192   // Otherwise this is an AAPCS variant.
3193 
3194   if (isEmptyRecord(getContext(), RetTy, true))
3195     return ABIArgInfo::getIgnore();
3196 
3197   // Check for homogeneous aggregates with AAPCS-VFP.
3198   if (getABIKind() == AAPCS_VFP) {
3199     const Type *Base = 0;
3200     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3201       assert(Base && "Base class should be set for homogeneous aggregate");
3202       // Homogeneous Aggregates are returned directly.
3203       return ABIArgInfo::getDirect();
3204     }
3205   }
3206 
3207   // Aggregates <= 4 bytes are returned in r0; other aggregates
3208   // are returned indirectly.
3209   uint64_t Size = getContext().getTypeSize(RetTy);
3210   if (Size <= 32) {
3211     // Return in the smallest viable integer type.
3212     if (Size <= 8)
3213       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3214     if (Size <= 16)
3215       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3216     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3217   }
3218 
3219   return ABIArgInfo::getIndirect(0);
3220 }
3221 
3222 /// isIllegalVector - check whether Ty is an illegal vector type.
3223 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3224   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3225     // Check whether VT is legal.
3226     unsigned NumElements = VT->getNumElements();
3227     uint64_t Size = getContext().getTypeSize(VT);
3228     // NumElements should be power of 2.
3229     if ((NumElements & (NumElements - 1)) != 0)
3230       return true;
3231     // Size should be greater than 32 bits.
3232     return Size <= 32;
3233   }
3234   return false;
3235 }
3236 
3237 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3238                                    CodeGenFunction &CGF) const {
3239   llvm::Type *BP = CGF.Int8PtrTy;
3240   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3241 
3242   CGBuilderTy &Builder = CGF.Builder;
3243   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3244   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3245 
3246   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3247   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3248   bool IsIndirect = false;
3249 
3250   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3251   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3252   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3253       getABIKind() == ARMABIInfo::AAPCS)
3254     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3255   else
3256     TyAlign = 4;
3257   // Use indirect if size of the illegal vector is bigger than 16 bytes.
3258   if (isIllegalVectorType(Ty) && Size > 16) {
3259     IsIndirect = true;
3260     Size = 4;
3261     TyAlign = 4;
3262   }
3263 
3264   // Handle address alignment for ABI alignment > 4 bytes.
3265   if (TyAlign > 4) {
3266     assert((TyAlign & (TyAlign - 1)) == 0 &&
3267            "Alignment is not power of 2!");
3268     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3269     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3270     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3271     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3272   }
3273 
3274   uint64_t Offset =
3275     llvm::RoundUpToAlignment(Size, 4);
3276   llvm::Value *NextAddr =
3277     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3278                       "ap.next");
3279   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3280 
3281   if (IsIndirect)
3282     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3283   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3284     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3285     // may not be correctly aligned for the vector type. We create an aligned
3286     // temporary space and copy the content over from ap.cur to the temporary
3287     // space. This is necessary if the natural alignment of the type is greater
3288     // than the ABI alignment.
3289     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3290     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3291     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3292                                                     "var.align");
3293     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3294     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3295     Builder.CreateMemCpy(Dst, Src,
3296         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3297         TyAlign, false);
3298     Addr = AlignedTemp; //The content is in aligned location.
3299   }
3300   llvm::Type *PTy =
3301     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3302   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3303 
3304   return AddrTyped;
3305 }
3306 
3307 class NaClARMABIInfo : public ABIInfo {
3308  public:
3309   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3310       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3311   virtual void computeInfo(CGFunctionInfo &FI) const;
3312   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3313                                  CodeGenFunction &CGF) const;
3314  private:
3315   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3316   ARMABIInfo NInfo; // Used for everything else.
3317 };
3318 
3319 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3320  public:
3321   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3322       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3323 };
3324 
3325 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3326   if (FI.getASTCallingConvention() == CC_PnaclCall)
3327     PInfo.computeInfo(FI);
3328   else
3329     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3330 }
3331 
3332 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3333                                        CodeGenFunction &CGF) const {
3334   // Always use the native convention; calling pnacl-style varargs functions
3335   // is unsupported.
3336   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3337 }
3338 
3339 //===----------------------------------------------------------------------===//
3340 // NVPTX ABI Implementation
3341 //===----------------------------------------------------------------------===//
3342 
3343 namespace {
3344 
3345 class NVPTXABIInfo : public ABIInfo {
3346 public:
3347   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3348 
3349   ABIArgInfo classifyReturnType(QualType RetTy) const;
3350   ABIArgInfo classifyArgumentType(QualType Ty) const;
3351 
3352   virtual void computeInfo(CGFunctionInfo &FI) const;
3353   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3354                                  CodeGenFunction &CFG) const;
3355 };
3356 
3357 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3358 public:
3359   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3360     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3361 
3362   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3363                                    CodeGen::CodeGenModule &M) const;
3364 };
3365 
3366 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3367   if (RetTy->isVoidType())
3368     return ABIArgInfo::getIgnore();
3369   if (isAggregateTypeForABI(RetTy))
3370     return ABIArgInfo::getIndirect(0);
3371   return ABIArgInfo::getDirect();
3372 }
3373 
3374 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3375   if (isAggregateTypeForABI(Ty))
3376     return ABIArgInfo::getIndirect(0);
3377 
3378   return ABIArgInfo::getDirect();
3379 }
3380 
3381 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3382   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3383   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3384        it != ie; ++it)
3385     it->info = classifyArgumentType(it->type);
3386 
3387   // Always honor user-specified calling convention.
3388   if (FI.getCallingConvention() != llvm::CallingConv::C)
3389     return;
3390 
3391   // Calling convention as default by an ABI.
3392   // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3393   // but we should switch to NVVM metadata later on.
3394   llvm::CallingConv::ID DefaultCC;
3395   const LangOptions &LangOpts = getContext().getLangOpts();
3396   if (LangOpts.OpenCL || LangOpts.CUDA) {
3397     // If we are in OpenCL or CUDA mode, then default to device functions
3398     DefaultCC = llvm::CallingConv::PTX_Device;
3399   } else {
3400     // If we are in standard C/C++ mode, use the triple to decide on the default
3401     StringRef Env =
3402       getContext().getTargetInfo().getTriple().getEnvironmentName();
3403     if (Env == "device")
3404       DefaultCC = llvm::CallingConv::PTX_Device;
3405     else
3406       DefaultCC = llvm::CallingConv::PTX_Kernel;
3407   }
3408   FI.setEffectiveCallingConvention(DefaultCC);
3409 
3410 }
3411 
3412 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3413                                      CodeGenFunction &CFG) const {
3414   llvm_unreachable("NVPTX does not support varargs");
3415 }
3416 
3417 void NVPTXTargetCodeGenInfo::
3418 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3419                     CodeGen::CodeGenModule &M) const{
3420   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3421   if (!FD) return;
3422 
3423   llvm::Function *F = cast<llvm::Function>(GV);
3424 
3425   // Perform special handling in OpenCL mode
3426   if (M.getLangOpts().OpenCL) {
3427     // Use OpenCL function attributes to set proper calling conventions
3428     // By default, all functions are device functions
3429     if (FD->hasAttr<OpenCLKernelAttr>()) {
3430       // OpenCL __kernel functions get a kernel calling convention
3431       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3432       // And kernel functions are not subject to inlining
3433       F->addFnAttr(llvm::Attributes::NoInline);
3434     }
3435   }
3436 
3437   // Perform special handling in CUDA mode.
3438   if (M.getLangOpts().CUDA) {
3439     // CUDA __global__ functions get a kernel calling convention.  Since
3440     // __global__ functions cannot be called from the device, we do not
3441     // need to set the noinline attribute.
3442     if (FD->getAttr<CUDAGlobalAttr>())
3443       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3444   }
3445 }
3446 
3447 }
3448 
3449 //===----------------------------------------------------------------------===//
3450 // MBlaze ABI Implementation
3451 //===----------------------------------------------------------------------===//
3452 
3453 namespace {
3454 
3455 class MBlazeABIInfo : public ABIInfo {
3456 public:
3457   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3458 
3459   bool isPromotableIntegerType(QualType Ty) const;
3460 
3461   ABIArgInfo classifyReturnType(QualType RetTy) const;
3462   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3463 
3464   virtual void computeInfo(CGFunctionInfo &FI) const {
3465     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3466     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3467          it != ie; ++it)
3468       it->info = classifyArgumentType(it->type);
3469   }
3470 
3471   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3472                                  CodeGenFunction &CGF) const;
3473 };
3474 
3475 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3476 public:
3477   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3478     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3479   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3480                            CodeGen::CodeGenModule &M) const;
3481 };
3482 
3483 }
3484 
3485 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3486   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3487   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3488     switch (BT->getKind()) {
3489     case BuiltinType::Bool:
3490     case BuiltinType::Char_S:
3491     case BuiltinType::Char_U:
3492     case BuiltinType::SChar:
3493     case BuiltinType::UChar:
3494     case BuiltinType::Short:
3495     case BuiltinType::UShort:
3496       return true;
3497     default:
3498       return false;
3499     }
3500   return false;
3501 }
3502 
3503 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3504                                       CodeGenFunction &CGF) const {
3505   // FIXME: Implement
3506   return 0;
3507 }
3508 
3509 
3510 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3511   if (RetTy->isVoidType())
3512     return ABIArgInfo::getIgnore();
3513   if (isAggregateTypeForABI(RetTy))
3514     return ABIArgInfo::getIndirect(0);
3515 
3516   return (isPromotableIntegerType(RetTy) ?
3517           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3518 }
3519 
3520 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3521   if (isAggregateTypeForABI(Ty))
3522     return ABIArgInfo::getIndirect(0);
3523 
3524   return (isPromotableIntegerType(Ty) ?
3525           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3526 }
3527 
3528 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3529                                                   llvm::GlobalValue *GV,
3530                                                   CodeGen::CodeGenModule &M)
3531                                                   const {
3532   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3533   if (!FD) return;
3534 
3535   llvm::CallingConv::ID CC = llvm::CallingConv::C;
3536   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3537     CC = llvm::CallingConv::MBLAZE_INTR;
3538   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3539     CC = llvm::CallingConv::MBLAZE_SVOL;
3540 
3541   if (CC != llvm::CallingConv::C) {
3542       // Handle 'interrupt_handler' attribute:
3543       llvm::Function *F = cast<llvm::Function>(GV);
3544 
3545       // Step 1: Set ISR calling convention.
3546       F->setCallingConv(CC);
3547 
3548       // Step 2: Add attributes goodness.
3549       F->addFnAttr(llvm::Attributes::NoInline);
3550   }
3551 
3552   // Step 3: Emit _interrupt_handler alias.
3553   if (CC == llvm::CallingConv::MBLAZE_INTR)
3554     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3555                           "_interrupt_handler", GV, &M.getModule());
3556 }
3557 
3558 
3559 //===----------------------------------------------------------------------===//
3560 // MSP430 ABI Implementation
3561 //===----------------------------------------------------------------------===//
3562 
3563 namespace {
3564 
3565 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3566 public:
3567   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3568     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3569   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3570                            CodeGen::CodeGenModule &M) const;
3571 };
3572 
3573 }
3574 
3575 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3576                                                   llvm::GlobalValue *GV,
3577                                              CodeGen::CodeGenModule &M) const {
3578   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3579     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3580       // Handle 'interrupt' attribute:
3581       llvm::Function *F = cast<llvm::Function>(GV);
3582 
3583       // Step 1: Set ISR calling convention.
3584       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3585 
3586       // Step 2: Add attributes goodness.
3587       F->addFnAttr(llvm::Attributes::NoInline);
3588 
3589       // Step 3: Emit ISR vector alias.
3590       unsigned Num = attr->getNumber() + 0xffe0;
3591       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3592                             "vector_" + Twine::utohexstr(Num),
3593                             GV, &M.getModule());
3594     }
3595   }
3596 }
3597 
3598 //===----------------------------------------------------------------------===//
3599 // MIPS ABI Implementation.  This works for both little-endian and
3600 // big-endian variants.
3601 //===----------------------------------------------------------------------===//
3602 
3603 namespace {
3604 class MipsABIInfo : public ABIInfo {
3605   bool IsO32;
3606   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3607   void CoerceToIntArgs(uint64_t TySize,
3608                        SmallVector<llvm::Type*, 8> &ArgList) const;
3609   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3610   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3611   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3612 public:
3613   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3614     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3615     StackAlignInBytes(IsO32 ? 8 : 16) {}
3616 
3617   ABIArgInfo classifyReturnType(QualType RetTy) const;
3618   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3619   virtual void computeInfo(CGFunctionInfo &FI) const;
3620   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3621                                  CodeGenFunction &CGF) const;
3622 };
3623 
3624 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3625   unsigned SizeOfUnwindException;
3626 public:
3627   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3628     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3629       SizeOfUnwindException(IsO32 ? 24 : 32) {}
3630 
3631   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3632     return 29;
3633   }
3634 
3635   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3636                                llvm::Value *Address) const;
3637 
3638   unsigned getSizeOfUnwindException() const {
3639     return SizeOfUnwindException;
3640   }
3641 };
3642 }
3643 
3644 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3645                                   SmallVector<llvm::Type*, 8> &ArgList) const {
3646   llvm::IntegerType *IntTy =
3647     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3648 
3649   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3650   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3651     ArgList.push_back(IntTy);
3652 
3653   // If necessary, add one more integer type to ArgList.
3654   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3655 
3656   if (R)
3657     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3658 }
3659 
3660 // In N32/64, an aligned double precision floating point field is passed in
3661 // a register.
3662 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3663   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3664 
3665   if (IsO32) {
3666     CoerceToIntArgs(TySize, ArgList);
3667     return llvm::StructType::get(getVMContext(), ArgList);
3668   }
3669 
3670   if (Ty->isComplexType())
3671     return CGT.ConvertType(Ty);
3672 
3673   const RecordType *RT = Ty->getAs<RecordType>();
3674 
3675   // Unions/vectors are passed in integer registers.
3676   if (!RT || !RT->isStructureOrClassType()) {
3677     CoerceToIntArgs(TySize, ArgList);
3678     return llvm::StructType::get(getVMContext(), ArgList);
3679   }
3680 
3681   const RecordDecl *RD = RT->getDecl();
3682   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3683   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3684 
3685   uint64_t LastOffset = 0;
3686   unsigned idx = 0;
3687   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3688 
3689   // Iterate over fields in the struct/class and check if there are any aligned
3690   // double fields.
3691   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3692        i != e; ++i, ++idx) {
3693     const QualType Ty = i->getType();
3694     const BuiltinType *BT = Ty->getAs<BuiltinType>();
3695 
3696     if (!BT || BT->getKind() != BuiltinType::Double)
3697       continue;
3698 
3699     uint64_t Offset = Layout.getFieldOffset(idx);
3700     if (Offset % 64) // Ignore doubles that are not aligned.
3701       continue;
3702 
3703     // Add ((Offset - LastOffset) / 64) args of type i64.
3704     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3705       ArgList.push_back(I64);
3706 
3707     // Add double type.
3708     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3709     LastOffset = Offset + 64;
3710   }
3711 
3712   CoerceToIntArgs(TySize - LastOffset, IntArgList);
3713   ArgList.append(IntArgList.begin(), IntArgList.end());
3714 
3715   return llvm::StructType::get(getVMContext(), ArgList);
3716 }
3717 
3718 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3719   assert((Offset % MinABIStackAlignInBytes) == 0);
3720 
3721   if ((Align - 1) & Offset)
3722     return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3723 
3724   return 0;
3725 }
3726 
3727 ABIArgInfo
3728 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3729   uint64_t OrigOffset = Offset;
3730   uint64_t TySize = getContext().getTypeSize(Ty);
3731   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3732 
3733   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3734                    (uint64_t)StackAlignInBytes);
3735   Offset = llvm::RoundUpToAlignment(Offset, Align);
3736   Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3737 
3738   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
3739     // Ignore empty aggregates.
3740     if (TySize == 0)
3741       return ABIArgInfo::getIgnore();
3742 
3743     // Records with non trivial destructors/constructors should not be passed
3744     // by value.
3745     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3746       Offset = OrigOffset + MinABIStackAlignInBytes;
3747       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3748     }
3749 
3750     // If we have reached here, aggregates are passed directly by coercing to
3751     // another structure type. Padding is inserted if the offset of the
3752     // aggregate is unaligned.
3753     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
3754                                  getPaddingType(Align, OrigOffset));
3755   }
3756 
3757   // Treat an enum type as its underlying type.
3758   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3759     Ty = EnumTy->getDecl()->getIntegerType();
3760 
3761   if (Ty->isPromotableIntegerType())
3762     return ABIArgInfo::getExtend();
3763 
3764   return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3765 }
3766 
3767 llvm::Type*
3768 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3769   const RecordType *RT = RetTy->getAs<RecordType>();
3770   SmallVector<llvm::Type*, 8> RTList;
3771 
3772   if (RT && RT->isStructureOrClassType()) {
3773     const RecordDecl *RD = RT->getDecl();
3774     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3775     unsigned FieldCnt = Layout.getFieldCount();
3776 
3777     // N32/64 returns struct/classes in floating point registers if the
3778     // following conditions are met:
3779     // 1. The size of the struct/class is no larger than 128-bit.
3780     // 2. The struct/class has one or two fields all of which are floating
3781     //    point types.
3782     // 3. The offset of the first field is zero (this follows what gcc does).
3783     //
3784     // Any other composite results are returned in integer registers.
3785     //
3786     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3787       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3788       for (; b != e; ++b) {
3789         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
3790 
3791         if (!BT || !BT->isFloatingPoint())
3792           break;
3793 
3794         RTList.push_back(CGT.ConvertType(b->getType()));
3795       }
3796 
3797       if (b == e)
3798         return llvm::StructType::get(getVMContext(), RTList,
3799                                      RD->hasAttr<PackedAttr>());
3800 
3801       RTList.clear();
3802     }
3803   }
3804 
3805   CoerceToIntArgs(Size, RTList);
3806   return llvm::StructType::get(getVMContext(), RTList);
3807 }
3808 
3809 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3810   uint64_t Size = getContext().getTypeSize(RetTy);
3811 
3812   if (RetTy->isVoidType() || Size == 0)
3813     return ABIArgInfo::getIgnore();
3814 
3815   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
3816     if (Size <= 128) {
3817       if (RetTy->isAnyComplexType())
3818         return ABIArgInfo::getDirect();
3819 
3820       // O32 returns integer vectors in registers.
3821       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
3822         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3823 
3824       if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3825         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3826     }
3827 
3828     return ABIArgInfo::getIndirect(0);
3829   }
3830 
3831   // Treat an enum type as its underlying type.
3832   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3833     RetTy = EnumTy->getDecl()->getIntegerType();
3834 
3835   return (RetTy->isPromotableIntegerType() ?
3836           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3837 }
3838 
3839 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3840   ABIArgInfo &RetInfo = FI.getReturnInfo();
3841   RetInfo = classifyReturnType(FI.getReturnType());
3842 
3843   // Check if a pointer to an aggregate is passed as a hidden argument.
3844   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
3845 
3846   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3847        it != ie; ++it)
3848     it->info = classifyArgumentType(it->type, Offset);
3849 }
3850 
3851 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3852                                     CodeGenFunction &CGF) const {
3853   llvm::Type *BP = CGF.Int8PtrTy;
3854   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3855 
3856   CGBuilderTy &Builder = CGF.Builder;
3857   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3858   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3859   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3860   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3861   llvm::Value *AddrTyped;
3862   unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3863   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3864 
3865   if (TypeAlign > MinABIStackAlignInBytes) {
3866     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3867     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3868     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3869     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3870     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3871     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3872   }
3873   else
3874     AddrTyped = Builder.CreateBitCast(Addr, PTy);
3875 
3876   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3877   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3878   uint64_t Offset =
3879     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3880   llvm::Value *NextAddr =
3881     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3882                       "ap.next");
3883   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3884 
3885   return AddrTyped;
3886 }
3887 
3888 bool
3889 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3890                                                llvm::Value *Address) const {
3891   // This information comes from gcc's implementation, which seems to
3892   // as canonical as it gets.
3893 
3894   // Everything on MIPS is 4 bytes.  Double-precision FP registers
3895   // are aliased to pairs of single-precision FP registers.
3896   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3897 
3898   // 0-31 are the general purpose registers, $0 - $31.
3899   // 32-63 are the floating-point registers, $f0 - $f31.
3900   // 64 and 65 are the multiply/divide registers, $hi and $lo.
3901   // 66 is the (notional, I think) register for signal-handler return.
3902   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3903 
3904   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3905   // They are one bit wide and ignored here.
3906 
3907   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3908   // (coprocessor 1 is the FP unit)
3909   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3910   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3911   // 176-181 are the DSP accumulator registers.
3912   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3913   return false;
3914 }
3915 
3916 //===----------------------------------------------------------------------===//
3917 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3918 // Currently subclassed only to implement custom OpenCL C function attribute
3919 // handling.
3920 //===----------------------------------------------------------------------===//
3921 
3922 namespace {
3923 
3924 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3925 public:
3926   TCETargetCodeGenInfo(CodeGenTypes &CGT)
3927     : DefaultTargetCodeGenInfo(CGT) {}
3928 
3929   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3930                                    CodeGen::CodeGenModule &M) const;
3931 };
3932 
3933 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3934                                                llvm::GlobalValue *GV,
3935                                                CodeGen::CodeGenModule &M) const {
3936   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3937   if (!FD) return;
3938 
3939   llvm::Function *F = cast<llvm::Function>(GV);
3940 
3941   if (M.getLangOpts().OpenCL) {
3942     if (FD->hasAttr<OpenCLKernelAttr>()) {
3943       // OpenCL C Kernel functions are not subject to inlining
3944       F->addFnAttr(llvm::Attributes::NoInline);
3945 
3946       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3947 
3948         // Convert the reqd_work_group_size() attributes to metadata.
3949         llvm::LLVMContext &Context = F->getContext();
3950         llvm::NamedMDNode *OpenCLMetadata =
3951             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3952 
3953         SmallVector<llvm::Value*, 5> Operands;
3954         Operands.push_back(F);
3955 
3956         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3957                              llvm::APInt(32,
3958                              FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3959         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3960                              llvm::APInt(32,
3961                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3962         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3963                              llvm::APInt(32,
3964                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3965 
3966         // Add a boolean constant operand for "required" (true) or "hint" (false)
3967         // for implementing the work_group_size_hint attr later. Currently
3968         // always true as the hint is not yet implemented.
3969         Operands.push_back(llvm::ConstantInt::getTrue(Context));
3970         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3971       }
3972     }
3973   }
3974 }
3975 
3976 }
3977 
3978 //===----------------------------------------------------------------------===//
3979 // Hexagon ABI Implementation
3980 //===----------------------------------------------------------------------===//
3981 
3982 namespace {
3983 
3984 class HexagonABIInfo : public ABIInfo {
3985 
3986 
3987 public:
3988   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3989 
3990 private:
3991 
3992   ABIArgInfo classifyReturnType(QualType RetTy) const;
3993   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3994 
3995   virtual void computeInfo(CGFunctionInfo &FI) const;
3996 
3997   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3998                                  CodeGenFunction &CGF) const;
3999 };
4000 
4001 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
4002 public:
4003   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
4004     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
4005 
4006   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
4007     return 29;
4008   }
4009 };
4010 
4011 }
4012 
4013 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
4014   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4015   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4016        it != ie; ++it)
4017     it->info = classifyArgumentType(it->type);
4018 }
4019 
4020 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
4021   if (!isAggregateTypeForABI(Ty)) {
4022     // Treat an enum type as its underlying type.
4023     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4024       Ty = EnumTy->getDecl()->getIntegerType();
4025 
4026     return (Ty->isPromotableIntegerType() ?
4027             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4028   }
4029 
4030   // Ignore empty records.
4031   if (isEmptyRecord(getContext(), Ty, true))
4032     return ABIArgInfo::getIgnore();
4033 
4034   // Structures with either a non-trivial destructor or a non-trivial
4035   // copy constructor are always indirect.
4036   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
4037     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4038 
4039   uint64_t Size = getContext().getTypeSize(Ty);
4040   if (Size > 64)
4041     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4042     // Pass in the smallest viable integer type.
4043   else if (Size > 32)
4044       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4045   else if (Size > 16)
4046       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4047   else if (Size > 8)
4048       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4049   else
4050       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4051 }
4052 
4053 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
4054   if (RetTy->isVoidType())
4055     return ABIArgInfo::getIgnore();
4056 
4057   // Large vector types should be returned via memory.
4058   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
4059     return ABIArgInfo::getIndirect(0);
4060 
4061   if (!isAggregateTypeForABI(RetTy)) {
4062     // Treat an enum type as its underlying type.
4063     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4064       RetTy = EnumTy->getDecl()->getIntegerType();
4065 
4066     return (RetTy->isPromotableIntegerType() ?
4067             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4068   }
4069 
4070   // Structures with either a non-trivial destructor or a non-trivial
4071   // copy constructor are always indirect.
4072   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
4073     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4074 
4075   if (isEmptyRecord(getContext(), RetTy, true))
4076     return ABIArgInfo::getIgnore();
4077 
4078   // Aggregates <= 8 bytes are returned in r0; other aggregates
4079   // are returned indirectly.
4080   uint64_t Size = getContext().getTypeSize(RetTy);
4081   if (Size <= 64) {
4082     // Return in the smallest viable integer type.
4083     if (Size <= 8)
4084       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4085     if (Size <= 16)
4086       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4087     if (Size <= 32)
4088       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4089     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
4090   }
4091 
4092   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
4093 }
4094 
4095 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4096                                        CodeGenFunction &CGF) const {
4097   // FIXME: Need to handle alignment
4098   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4099 
4100   CGBuilderTy &Builder = CGF.Builder;
4101   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
4102                                                        "ap");
4103   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4104   llvm::Type *PTy =
4105     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4106   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4107 
4108   uint64_t Offset =
4109     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
4110   llvm::Value *NextAddr =
4111     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4112                       "ap.next");
4113   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4114 
4115   return AddrTyped;
4116 }
4117 
4118 
4119 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
4120   if (TheTargetCodeGenInfo)
4121     return *TheTargetCodeGenInfo;
4122 
4123   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
4124   switch (Triple.getArch()) {
4125   default:
4126     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
4127 
4128   case llvm::Triple::le32:
4129     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
4130   case llvm::Triple::mips:
4131   case llvm::Triple::mipsel:
4132     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
4133 
4134   case llvm::Triple::mips64:
4135   case llvm::Triple::mips64el:
4136     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
4137 
4138   case llvm::Triple::arm:
4139   case llvm::Triple::thumb:
4140     {
4141       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
4142 
4143       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
4144         Kind = ARMABIInfo::APCS;
4145       else if (CodeGenOpts.FloatABI == "hard")
4146         Kind = ARMABIInfo::AAPCS_VFP;
4147 
4148       switch (Triple.getOS()) {
4149         case llvm::Triple::NativeClient:
4150           return *(TheTargetCodeGenInfo =
4151                    new NaClARMTargetCodeGenInfo(Types, Kind));
4152         default:
4153           return *(TheTargetCodeGenInfo =
4154                    new ARMTargetCodeGenInfo(Types, Kind));
4155       }
4156     }
4157 
4158   case llvm::Triple::ppc:
4159     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
4160   case llvm::Triple::ppc64:
4161     if (Triple.isOSBinFormatELF())
4162       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
4163     else
4164       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
4165 
4166   case llvm::Triple::nvptx:
4167   case llvm::Triple::nvptx64:
4168     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
4169 
4170   case llvm::Triple::mblaze:
4171     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
4172 
4173   case llvm::Triple::msp430:
4174     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
4175 
4176   case llvm::Triple::tce:
4177     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
4178 
4179   case llvm::Triple::x86: {
4180     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
4181 
4182     if (Triple.isOSDarwin())
4183       return *(TheTargetCodeGenInfo =
4184                new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
4185                                            CodeGenOpts.NumRegisterParameters));
4186 
4187     switch (Triple.getOS()) {
4188     case llvm::Triple::Cygwin:
4189     case llvm::Triple::MinGW32:
4190     case llvm::Triple::AuroraUX:
4191     case llvm::Triple::DragonFly:
4192     case llvm::Triple::FreeBSD:
4193     case llvm::Triple::OpenBSD:
4194     case llvm::Triple::Bitrig:
4195       return *(TheTargetCodeGenInfo =
4196                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
4197                                            false,
4198                                            CodeGenOpts.NumRegisterParameters));
4199 
4200     case llvm::Triple::Win32:
4201       return *(TheTargetCodeGenInfo =
4202                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
4203                                            CodeGenOpts.NumRegisterParameters));
4204 
4205     default:
4206       return *(TheTargetCodeGenInfo =
4207                new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
4208                                            false,
4209                                            CodeGenOpts.NumRegisterParameters));
4210     }
4211   }
4212 
4213   case llvm::Triple::x86_64: {
4214     bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
4215 
4216     switch (Triple.getOS()) {
4217     case llvm::Triple::Win32:
4218     case llvm::Triple::MinGW32:
4219     case llvm::Triple::Cygwin:
4220       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
4221     case llvm::Triple::NativeClient:
4222       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
4223     default:
4224       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
4225                                                                   HasAVX));
4226     }
4227   }
4228   case llvm::Triple::hexagon:
4229     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
4230   }
4231 }
4232