1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = 41 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 42 Builder.CreateStore(Value, Cell); 43 } 44 } 45 46 static bool isAggregateTypeForABI(QualType T) { 47 return !CodeGenFunction::hasScalarEvaluationKind(T) || 48 T->isMemberFunctionPointerType(); 49 } 50 51 ABIInfo::~ABIInfo() {} 52 53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 54 CGCXXABI &CXXABI) { 55 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 56 if (!RD) 57 return CGCXXABI::RAA_Default; 58 return CXXABI.getRecordArgABI(RD); 59 } 60 61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 62 CGCXXABI &CXXABI) { 63 const RecordType *RT = T->getAs<RecordType>(); 64 if (!RT) 65 return CGCXXABI::RAA_Default; 66 return getRecordArgABI(RT, CXXABI); 67 } 68 69 /// Pass transparent unions as if they were the type of the first element. Sema 70 /// should ensure that all elements of the union have the same "machine type". 71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 72 if (const RecordType *UT = Ty->getAsUnionType()) { 73 const RecordDecl *UD = UT->getDecl(); 74 if (UD->hasAttr<TransparentUnionAttr>()) { 75 assert(!UD->field_empty() && "sema created an empty transparent union"); 76 return UD->field_begin()->getType(); 77 } 78 } 79 return Ty; 80 } 81 82 CGCXXABI &ABIInfo::getCXXABI() const { 83 return CGT.getCXXABI(); 84 } 85 86 ASTContext &ABIInfo::getContext() const { 87 return CGT.getContext(); 88 } 89 90 llvm::LLVMContext &ABIInfo::getVMContext() const { 91 return CGT.getLLVMContext(); 92 } 93 94 const llvm::DataLayout &ABIInfo::getDataLayout() const { 95 return CGT.getDataLayout(); 96 } 97 98 const TargetInfo &ABIInfo::getTarget() const { 99 return CGT.getTarget(); 100 } 101 102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 103 return false; 104 } 105 106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 107 uint64_t Members) const { 108 return false; 109 } 110 111 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 112 return false; 113 } 114 115 void ABIArgInfo::dump() const { 116 raw_ostream &OS = llvm::errs(); 117 OS << "(ABIArgInfo Kind="; 118 switch (TheKind) { 119 case Direct: 120 OS << "Direct Type="; 121 if (llvm::Type *Ty = getCoerceToType()) 122 Ty->print(OS); 123 else 124 OS << "null"; 125 break; 126 case Extend: 127 OS << "Extend"; 128 break; 129 case Ignore: 130 OS << "Ignore"; 131 break; 132 case InAlloca: 133 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 134 break; 135 case Indirect: 136 OS << "Indirect Align=" << getIndirectAlign() 137 << " ByVal=" << getIndirectByVal() 138 << " Realign=" << getIndirectRealign(); 139 break; 140 case Expand: 141 OS << "Expand"; 142 break; 143 } 144 OS << ")\n"; 145 } 146 147 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 148 149 // If someone can figure out a general rule for this, that would be great. 150 // It's probably just doomed to be platform-dependent, though. 151 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 152 // Verified for: 153 // x86-64 FreeBSD, Linux, Darwin 154 // x86-32 FreeBSD, Linux, Darwin 155 // PowerPC Linux, Darwin 156 // ARM Darwin (*not* EABI) 157 // AArch64 Linux 158 return 32; 159 } 160 161 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 162 const FunctionNoProtoType *fnType) const { 163 // The following conventions are known to require this to be false: 164 // x86_stdcall 165 // MIPS 166 // For everything else, we just prefer false unless we opt out. 167 return false; 168 } 169 170 void 171 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 172 llvm::SmallString<24> &Opt) const { 173 // This assumes the user is passing a library name like "rt" instead of a 174 // filename like "librt.a/so", and that they don't care whether it's static or 175 // dynamic. 176 Opt = "-l"; 177 Opt += Lib; 178 } 179 180 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 181 182 /// isEmptyField - Return true iff a the field is "empty", that is it 183 /// is an unnamed bit-field or an (array of) empty record(s). 184 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 185 bool AllowArrays) { 186 if (FD->isUnnamedBitfield()) 187 return true; 188 189 QualType FT = FD->getType(); 190 191 // Constant arrays of empty records count as empty, strip them off. 192 // Constant arrays of zero length always count as empty. 193 if (AllowArrays) 194 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 195 if (AT->getSize() == 0) 196 return true; 197 FT = AT->getElementType(); 198 } 199 200 const RecordType *RT = FT->getAs<RecordType>(); 201 if (!RT) 202 return false; 203 204 // C++ record fields are never empty, at least in the Itanium ABI. 205 // 206 // FIXME: We should use a predicate for whether this behavior is true in the 207 // current ABI. 208 if (isa<CXXRecordDecl>(RT->getDecl())) 209 return false; 210 211 return isEmptyRecord(Context, FT, AllowArrays); 212 } 213 214 /// isEmptyRecord - Return true iff a structure contains only empty 215 /// fields. Note that a structure with a flexible array member is not 216 /// considered empty. 217 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 218 const RecordType *RT = T->getAs<RecordType>(); 219 if (!RT) 220 return 0; 221 const RecordDecl *RD = RT->getDecl(); 222 if (RD->hasFlexibleArrayMember()) 223 return false; 224 225 // If this is a C++ record, check the bases first. 226 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 227 for (const auto &I : CXXRD->bases()) 228 if (!isEmptyRecord(Context, I.getType(), true)) 229 return false; 230 231 for (const auto *I : RD->fields()) 232 if (!isEmptyField(Context, I, AllowArrays)) 233 return false; 234 return true; 235 } 236 237 /// isSingleElementStruct - Determine if a structure is a "single 238 /// element struct", i.e. it has exactly one non-empty field or 239 /// exactly one field which is itself a single element 240 /// struct. Structures with flexible array members are never 241 /// considered single element structs. 242 /// 243 /// \return The field declaration for the single non-empty field, if 244 /// it exists. 245 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 246 const RecordType *RT = T->getAs<RecordType>(); 247 if (!RT) 248 return nullptr; 249 250 const RecordDecl *RD = RT->getDecl(); 251 if (RD->hasFlexibleArrayMember()) 252 return nullptr; 253 254 const Type *Found = nullptr; 255 256 // If this is a C++ record, check the bases first. 257 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 258 for (const auto &I : CXXRD->bases()) { 259 // Ignore empty records. 260 if (isEmptyRecord(Context, I.getType(), true)) 261 continue; 262 263 // If we already found an element then this isn't a single-element struct. 264 if (Found) 265 return nullptr; 266 267 // If this is non-empty and not a single element struct, the composite 268 // cannot be a single element struct. 269 Found = isSingleElementStruct(I.getType(), Context); 270 if (!Found) 271 return nullptr; 272 } 273 } 274 275 // Check for single element. 276 for (const auto *FD : RD->fields()) { 277 QualType FT = FD->getType(); 278 279 // Ignore empty fields. 280 if (isEmptyField(Context, FD, true)) 281 continue; 282 283 // If we already found an element then this isn't a single-element 284 // struct. 285 if (Found) 286 return nullptr; 287 288 // Treat single element arrays as the element. 289 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 290 if (AT->getSize().getZExtValue() != 1) 291 break; 292 FT = AT->getElementType(); 293 } 294 295 if (!isAggregateTypeForABI(FT)) { 296 Found = FT.getTypePtr(); 297 } else { 298 Found = isSingleElementStruct(FT, Context); 299 if (!Found) 300 return nullptr; 301 } 302 } 303 304 // We don't consider a struct a single-element struct if it has 305 // padding beyond the element type. 306 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 307 return nullptr; 308 309 return Found; 310 } 311 312 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 313 // Treat complex types as the element type. 314 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 315 Ty = CTy->getElementType(); 316 317 // Check for a type which we know has a simple scalar argument-passing 318 // convention without any padding. (We're specifically looking for 32 319 // and 64-bit integer and integer-equivalents, float, and double.) 320 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 321 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 322 return false; 323 324 uint64_t Size = Context.getTypeSize(Ty); 325 return Size == 32 || Size == 64; 326 } 327 328 /// canExpandIndirectArgument - Test whether an argument type which is to be 329 /// passed indirectly (on the stack) would have the equivalent layout if it was 330 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 331 /// inhibiting optimizations. 332 /// 333 // FIXME: This predicate is missing many cases, currently it just follows 334 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 335 // should probably make this smarter, or better yet make the LLVM backend 336 // capable of handling it. 337 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 338 // We can only expand structure types. 339 const RecordType *RT = Ty->getAs<RecordType>(); 340 if (!RT) 341 return false; 342 343 // We can only expand (C) structures. 344 // 345 // FIXME: This needs to be generalized to handle classes as well. 346 const RecordDecl *RD = RT->getDecl(); 347 if (!RD->isStruct()) 348 return false; 349 350 // We try to expand CLike CXXRecordDecl. 351 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 352 if (!CXXRD->isCLike()) 353 return false; 354 } 355 356 uint64_t Size = 0; 357 358 for (const auto *FD : RD->fields()) { 359 if (!is32Or64BitBasicType(FD->getType(), Context)) 360 return false; 361 362 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 363 // how to expand them yet, and the predicate for telling if a bitfield still 364 // counts as "basic" is more complicated than what we were doing previously. 365 if (FD->isBitField()) 366 return false; 367 368 Size += Context.getTypeSize(FD->getType()); 369 } 370 371 // Make sure there are not any holes in the struct. 372 if (Size != Context.getTypeSize(Ty)) 373 return false; 374 375 return true; 376 } 377 378 namespace { 379 /// DefaultABIInfo - The default implementation for ABI specific 380 /// details. This implementation provides information which results in 381 /// self-consistent and sensible LLVM IR generation, but does not 382 /// conform to any particular ABI. 383 class DefaultABIInfo : public ABIInfo { 384 public: 385 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 386 387 ABIArgInfo classifyReturnType(QualType RetTy) const; 388 ABIArgInfo classifyArgumentType(QualType RetTy) const; 389 390 void computeInfo(CGFunctionInfo &FI) const override { 391 if (!getCXXABI().classifyReturnType(FI)) 392 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 393 for (auto &I : FI.arguments()) 394 I.info = classifyArgumentType(I.type); 395 } 396 397 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 398 CodeGenFunction &CGF) const override; 399 }; 400 401 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 402 public: 403 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 404 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 405 }; 406 407 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 408 CodeGenFunction &CGF) const { 409 return nullptr; 410 } 411 412 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 413 Ty = useFirstFieldIfTransparentUnion(Ty); 414 415 if (isAggregateTypeForABI(Ty)) { 416 // Records with non-trivial destructors/copy-constructors should not be 417 // passed by value. 418 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 419 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 420 421 return ABIArgInfo::getIndirect(0); 422 } 423 424 // Treat an enum type as its underlying type. 425 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 426 Ty = EnumTy->getDecl()->getIntegerType(); 427 428 return (Ty->isPromotableIntegerType() ? 429 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 430 } 431 432 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 433 if (RetTy->isVoidType()) 434 return ABIArgInfo::getIgnore(); 435 436 if (isAggregateTypeForABI(RetTy)) 437 return ABIArgInfo::getIndirect(0); 438 439 // Treat an enum type as its underlying type. 440 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 441 RetTy = EnumTy->getDecl()->getIntegerType(); 442 443 return (RetTy->isPromotableIntegerType() ? 444 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 445 } 446 447 //===----------------------------------------------------------------------===// 448 // le32/PNaCl bitcode ABI Implementation 449 // 450 // This is a simplified version of the x86_32 ABI. Arguments and return values 451 // are always passed on the stack. 452 //===----------------------------------------------------------------------===// 453 454 class PNaClABIInfo : public ABIInfo { 455 public: 456 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 457 458 ABIArgInfo classifyReturnType(QualType RetTy) const; 459 ABIArgInfo classifyArgumentType(QualType RetTy) const; 460 461 void computeInfo(CGFunctionInfo &FI) const override; 462 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 463 CodeGenFunction &CGF) const override; 464 }; 465 466 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 467 public: 468 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 469 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 470 }; 471 472 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 473 if (!getCXXABI().classifyReturnType(FI)) 474 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 475 476 for (auto &I : FI.arguments()) 477 I.info = classifyArgumentType(I.type); 478 } 479 480 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 481 CodeGenFunction &CGF) const { 482 return nullptr; 483 } 484 485 /// \brief Classify argument of given type \p Ty. 486 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 487 if (isAggregateTypeForABI(Ty)) { 488 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 489 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 490 return ABIArgInfo::getIndirect(0); 491 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 492 // Treat an enum type as its underlying type. 493 Ty = EnumTy->getDecl()->getIntegerType(); 494 } else if (Ty->isFloatingType()) { 495 // Floating-point types don't go inreg. 496 return ABIArgInfo::getDirect(); 497 } 498 499 return (Ty->isPromotableIntegerType() ? 500 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 501 } 502 503 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 504 if (RetTy->isVoidType()) 505 return ABIArgInfo::getIgnore(); 506 507 // In the PNaCl ABI we always return records/structures on the stack. 508 if (isAggregateTypeForABI(RetTy)) 509 return ABIArgInfo::getIndirect(0); 510 511 // Treat an enum type as its underlying type. 512 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 513 RetTy = EnumTy->getDecl()->getIntegerType(); 514 515 return (RetTy->isPromotableIntegerType() ? 516 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 517 } 518 519 /// IsX86_MMXType - Return true if this is an MMX type. 520 bool IsX86_MMXType(llvm::Type *IRType) { 521 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 522 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 523 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 524 IRType->getScalarSizeInBits() != 64; 525 } 526 527 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 528 StringRef Constraint, 529 llvm::Type* Ty) { 530 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 531 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 532 // Invalid MMX constraint 533 return nullptr; 534 } 535 536 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 537 } 538 539 // No operation needed 540 return Ty; 541 } 542 543 /// Returns true if this type can be passed in SSE registers with the 544 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 545 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 546 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 547 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 548 return true; 549 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 550 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 551 // registers specially. 552 unsigned VecSize = Context.getTypeSize(VT); 553 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 554 return true; 555 } 556 return false; 557 } 558 559 /// Returns true if this aggregate is small enough to be passed in SSE registers 560 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 561 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 562 return NumMembers <= 4; 563 } 564 565 //===----------------------------------------------------------------------===// 566 // X86-32 ABI Implementation 567 //===----------------------------------------------------------------------===// 568 569 /// \brief Similar to llvm::CCState, but for Clang. 570 struct CCState { 571 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 572 573 unsigned CC; 574 unsigned FreeRegs; 575 unsigned FreeSSERegs; 576 }; 577 578 /// X86_32ABIInfo - The X86-32 ABI information. 579 class X86_32ABIInfo : public ABIInfo { 580 enum Class { 581 Integer, 582 Float 583 }; 584 585 static const unsigned MinABIStackAlignInBytes = 4; 586 587 bool IsDarwinVectorABI; 588 bool IsSmallStructInRegABI; 589 bool IsWin32StructABI; 590 unsigned DefaultNumRegisterParameters; 591 592 static bool isRegisterSize(unsigned Size) { 593 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 594 } 595 596 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 597 // FIXME: Assumes vectorcall is in use. 598 return isX86VectorTypeForVectorCall(getContext(), Ty); 599 } 600 601 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 602 uint64_t NumMembers) const override { 603 // FIXME: Assumes vectorcall is in use. 604 return isX86VectorCallAggregateSmallEnough(NumMembers); 605 } 606 607 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 608 609 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 610 /// such that the argument will be passed in memory. 611 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 612 613 ABIArgInfo getIndirectReturnResult(CCState &State) const; 614 615 /// \brief Return the alignment to use for the given type on the stack. 616 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 617 618 Class classify(QualType Ty) const; 619 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 620 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 621 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 622 623 /// \brief Rewrite the function info so that all memory arguments use 624 /// inalloca. 625 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 626 627 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 628 unsigned &StackOffset, ABIArgInfo &Info, 629 QualType Type) const; 630 631 public: 632 633 void computeInfo(CGFunctionInfo &FI) const override; 634 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 635 CodeGenFunction &CGF) const override; 636 637 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 638 unsigned r) 639 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 640 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 641 }; 642 643 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 644 public: 645 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 646 bool d, bool p, bool w, unsigned r) 647 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 648 649 static bool isStructReturnInRegABI( 650 const llvm::Triple &Triple, const CodeGenOptions &Opts); 651 652 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 653 CodeGen::CodeGenModule &CGM) const override; 654 655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 656 // Darwin uses different dwarf register numbers for EH. 657 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 658 return 4; 659 } 660 661 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 662 llvm::Value *Address) const override; 663 664 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 665 StringRef Constraint, 666 llvm::Type* Ty) const override { 667 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 668 } 669 670 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 671 std::string &Constraints, 672 std::vector<llvm::Type *> &ResultRegTypes, 673 std::vector<llvm::Type *> &ResultTruncRegTypes, 674 std::vector<LValue> &ResultRegDests, 675 std::string &AsmString, 676 unsigned NumOutputs) const override; 677 678 llvm::Constant * 679 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 680 unsigned Sig = (0xeb << 0) | // jmp rel8 681 (0x06 << 8) | // .+0x08 682 ('F' << 16) | 683 ('T' << 24); 684 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 685 } 686 }; 687 688 } 689 690 /// Rewrite input constraint references after adding some output constraints. 691 /// In the case where there is one output and one input and we add one output, 692 /// we need to replace all operand references greater than or equal to 1: 693 /// mov $0, $1 694 /// mov eax, $1 695 /// The result will be: 696 /// mov $0, $2 697 /// mov eax, $2 698 static void rewriteInputConstraintReferences(unsigned FirstIn, 699 unsigned NumNewOuts, 700 std::string &AsmString) { 701 std::string Buf; 702 llvm::raw_string_ostream OS(Buf); 703 size_t Pos = 0; 704 while (Pos < AsmString.size()) { 705 size_t DollarStart = AsmString.find('$', Pos); 706 if (DollarStart == std::string::npos) 707 DollarStart = AsmString.size(); 708 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 709 if (DollarEnd == std::string::npos) 710 DollarEnd = AsmString.size(); 711 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 712 Pos = DollarEnd; 713 size_t NumDollars = DollarEnd - DollarStart; 714 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 715 // We have an operand reference. 716 size_t DigitStart = Pos; 717 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 718 if (DigitEnd == std::string::npos) 719 DigitEnd = AsmString.size(); 720 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 721 unsigned OperandIndex; 722 if (!OperandStr.getAsInteger(10, OperandIndex)) { 723 if (OperandIndex >= FirstIn) 724 OperandIndex += NumNewOuts; 725 OS << OperandIndex; 726 } else { 727 OS << OperandStr; 728 } 729 Pos = DigitEnd; 730 } 731 } 732 AsmString = std::move(OS.str()); 733 } 734 735 /// Add output constraints for EAX:EDX because they are return registers. 736 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 737 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 738 std::vector<llvm::Type *> &ResultRegTypes, 739 std::vector<llvm::Type *> &ResultTruncRegTypes, 740 std::vector<LValue> &ResultRegDests, std::string &AsmString, 741 unsigned NumOutputs) const { 742 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 743 744 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 745 // larger. 746 if (!Constraints.empty()) 747 Constraints += ','; 748 if (RetWidth <= 32) { 749 Constraints += "={eax}"; 750 ResultRegTypes.push_back(CGF.Int32Ty); 751 } else { 752 // Use the 'A' constraint for EAX:EDX. 753 Constraints += "=A"; 754 ResultRegTypes.push_back(CGF.Int64Ty); 755 } 756 757 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 758 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 759 ResultTruncRegTypes.push_back(CoerceTy); 760 761 // Coerce the integer by bitcasting the return slot pointer. 762 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 763 CoerceTy->getPointerTo())); 764 ResultRegDests.push_back(ReturnSlot); 765 766 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 767 } 768 769 /// shouldReturnTypeInRegister - Determine if the given type should be 770 /// passed in a register (for the Darwin ABI). 771 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 772 ASTContext &Context) const { 773 uint64_t Size = Context.getTypeSize(Ty); 774 775 // Type must be register sized. 776 if (!isRegisterSize(Size)) 777 return false; 778 779 if (Ty->isVectorType()) { 780 // 64- and 128- bit vectors inside structures are not returned in 781 // registers. 782 if (Size == 64 || Size == 128) 783 return false; 784 785 return true; 786 } 787 788 // If this is a builtin, pointer, enum, complex type, member pointer, or 789 // member function pointer it is ok. 790 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 791 Ty->isAnyComplexType() || Ty->isEnumeralType() || 792 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 793 return true; 794 795 // Arrays are treated like records. 796 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 797 return shouldReturnTypeInRegister(AT->getElementType(), Context); 798 799 // Otherwise, it must be a record type. 800 const RecordType *RT = Ty->getAs<RecordType>(); 801 if (!RT) return false; 802 803 // FIXME: Traverse bases here too. 804 805 // Structure types are passed in register if all fields would be 806 // passed in a register. 807 for (const auto *FD : RT->getDecl()->fields()) { 808 // Empty fields are ignored. 809 if (isEmptyField(Context, FD, true)) 810 continue; 811 812 // Check fields recursively. 813 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 814 return false; 815 } 816 return true; 817 } 818 819 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 820 // If the return value is indirect, then the hidden argument is consuming one 821 // integer register. 822 if (State.FreeRegs) { 823 --State.FreeRegs; 824 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 825 } 826 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 827 } 828 829 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 830 if (RetTy->isVoidType()) 831 return ABIArgInfo::getIgnore(); 832 833 const Type *Base = nullptr; 834 uint64_t NumElts = 0; 835 if (State.CC == llvm::CallingConv::X86_VectorCall && 836 isHomogeneousAggregate(RetTy, Base, NumElts)) { 837 // The LLVM struct type for such an aggregate should lower properly. 838 return ABIArgInfo::getDirect(); 839 } 840 841 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 842 // On Darwin, some vectors are returned in registers. 843 if (IsDarwinVectorABI) { 844 uint64_t Size = getContext().getTypeSize(RetTy); 845 846 // 128-bit vectors are a special case; they are returned in 847 // registers and we need to make sure to pick a type the LLVM 848 // backend will like. 849 if (Size == 128) 850 return ABIArgInfo::getDirect(llvm::VectorType::get( 851 llvm::Type::getInt64Ty(getVMContext()), 2)); 852 853 // Always return in register if it fits in a general purpose 854 // register, or if it is 64 bits and has a single element. 855 if ((Size == 8 || Size == 16 || Size == 32) || 856 (Size == 64 && VT->getNumElements() == 1)) 857 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 858 Size)); 859 860 return getIndirectReturnResult(State); 861 } 862 863 return ABIArgInfo::getDirect(); 864 } 865 866 if (isAggregateTypeForABI(RetTy)) { 867 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 868 // Structures with flexible arrays are always indirect. 869 if (RT->getDecl()->hasFlexibleArrayMember()) 870 return getIndirectReturnResult(State); 871 } 872 873 // If specified, structs and unions are always indirect. 874 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 875 return getIndirectReturnResult(State); 876 877 // Small structures which are register sized are generally returned 878 // in a register. 879 if (shouldReturnTypeInRegister(RetTy, getContext())) { 880 uint64_t Size = getContext().getTypeSize(RetTy); 881 882 // As a special-case, if the struct is a "single-element" struct, and 883 // the field is of type "float" or "double", return it in a 884 // floating-point register. (MSVC does not apply this special case.) 885 // We apply a similar transformation for pointer types to improve the 886 // quality of the generated IR. 887 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 888 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 889 || SeltTy->hasPointerRepresentation()) 890 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 891 892 // FIXME: We should be able to narrow this integer in cases with dead 893 // padding. 894 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 895 } 896 897 return getIndirectReturnResult(State); 898 } 899 900 // Treat an enum type as its underlying type. 901 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 902 RetTy = EnumTy->getDecl()->getIntegerType(); 903 904 return (RetTy->isPromotableIntegerType() ? 905 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 906 } 907 908 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 909 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 910 } 911 912 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 913 const RecordType *RT = Ty->getAs<RecordType>(); 914 if (!RT) 915 return 0; 916 const RecordDecl *RD = RT->getDecl(); 917 918 // If this is a C++ record, check the bases first. 919 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 920 for (const auto &I : CXXRD->bases()) 921 if (!isRecordWithSSEVectorType(Context, I.getType())) 922 return false; 923 924 for (const auto *i : RD->fields()) { 925 QualType FT = i->getType(); 926 927 if (isSSEVectorType(Context, FT)) 928 return true; 929 930 if (isRecordWithSSEVectorType(Context, FT)) 931 return true; 932 } 933 934 return false; 935 } 936 937 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 938 unsigned Align) const { 939 // Otherwise, if the alignment is less than or equal to the minimum ABI 940 // alignment, just use the default; the backend will handle this. 941 if (Align <= MinABIStackAlignInBytes) 942 return 0; // Use default alignment. 943 944 // On non-Darwin, the stack type alignment is always 4. 945 if (!IsDarwinVectorABI) { 946 // Set explicit alignment, since we may need to realign the top. 947 return MinABIStackAlignInBytes; 948 } 949 950 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 951 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 952 isRecordWithSSEVectorType(getContext(), Ty))) 953 return 16; 954 955 return MinABIStackAlignInBytes; 956 } 957 958 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 959 CCState &State) const { 960 if (!ByVal) { 961 if (State.FreeRegs) { 962 --State.FreeRegs; // Non-byval indirects just use one pointer. 963 return ABIArgInfo::getIndirectInReg(0, false); 964 } 965 return ABIArgInfo::getIndirect(0, false); 966 } 967 968 // Compute the byval alignment. 969 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 970 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 971 if (StackAlign == 0) 972 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 973 974 // If the stack alignment is less than the type alignment, realign the 975 // argument. 976 bool Realign = TypeAlign > StackAlign; 977 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 978 } 979 980 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 981 const Type *T = isSingleElementStruct(Ty, getContext()); 982 if (!T) 983 T = Ty.getTypePtr(); 984 985 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 986 BuiltinType::Kind K = BT->getKind(); 987 if (K == BuiltinType::Float || K == BuiltinType::Double) 988 return Float; 989 } 990 return Integer; 991 } 992 993 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 994 bool &NeedsPadding) const { 995 NeedsPadding = false; 996 Class C = classify(Ty); 997 if (C == Float) 998 return false; 999 1000 unsigned Size = getContext().getTypeSize(Ty); 1001 unsigned SizeInRegs = (Size + 31) / 32; 1002 1003 if (SizeInRegs == 0) 1004 return false; 1005 1006 if (SizeInRegs > State.FreeRegs) { 1007 State.FreeRegs = 0; 1008 return false; 1009 } 1010 1011 State.FreeRegs -= SizeInRegs; 1012 1013 if (State.CC == llvm::CallingConv::X86_FastCall || 1014 State.CC == llvm::CallingConv::X86_VectorCall) { 1015 if (Size > 32) 1016 return false; 1017 1018 if (Ty->isIntegralOrEnumerationType()) 1019 return true; 1020 1021 if (Ty->isPointerType()) 1022 return true; 1023 1024 if (Ty->isReferenceType()) 1025 return true; 1026 1027 if (State.FreeRegs) 1028 NeedsPadding = true; 1029 1030 return false; 1031 } 1032 1033 return true; 1034 } 1035 1036 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1037 CCState &State) const { 1038 // FIXME: Set alignment on indirect arguments. 1039 1040 Ty = useFirstFieldIfTransparentUnion(Ty); 1041 1042 // Check with the C++ ABI first. 1043 const RecordType *RT = Ty->getAs<RecordType>(); 1044 if (RT) { 1045 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1046 if (RAA == CGCXXABI::RAA_Indirect) { 1047 return getIndirectResult(Ty, false, State); 1048 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1049 // The field index doesn't matter, we'll fix it up later. 1050 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1051 } 1052 } 1053 1054 // vectorcall adds the concept of a homogenous vector aggregate, similar 1055 // to other targets. 1056 const Type *Base = nullptr; 1057 uint64_t NumElts = 0; 1058 if (State.CC == llvm::CallingConv::X86_VectorCall && 1059 isHomogeneousAggregate(Ty, Base, NumElts)) { 1060 if (State.FreeSSERegs >= NumElts) { 1061 State.FreeSSERegs -= NumElts; 1062 if (Ty->isBuiltinType() || Ty->isVectorType()) 1063 return ABIArgInfo::getDirect(); 1064 return ABIArgInfo::getExpand(); 1065 } 1066 return getIndirectResult(Ty, /*ByVal=*/false, State); 1067 } 1068 1069 if (isAggregateTypeForABI(Ty)) { 1070 if (RT) { 1071 // Structs are always byval on win32, regardless of what they contain. 1072 if (IsWin32StructABI) 1073 return getIndirectResult(Ty, true, State); 1074 1075 // Structures with flexible arrays are always indirect. 1076 if (RT->getDecl()->hasFlexibleArrayMember()) 1077 return getIndirectResult(Ty, true, State); 1078 } 1079 1080 // Ignore empty structs/unions. 1081 if (isEmptyRecord(getContext(), Ty, true)) 1082 return ABIArgInfo::getIgnore(); 1083 1084 llvm::LLVMContext &LLVMContext = getVMContext(); 1085 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1086 bool NeedsPadding; 1087 if (shouldUseInReg(Ty, State, NeedsPadding)) { 1088 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1089 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1090 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1091 return ABIArgInfo::getDirectInReg(Result); 1092 } 1093 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1094 1095 // Expand small (<= 128-bit) record types when we know that the stack layout 1096 // of those arguments will match the struct. This is important because the 1097 // LLVM backend isn't smart enough to remove byval, which inhibits many 1098 // optimizations. 1099 if (getContext().getTypeSize(Ty) <= 4*32 && 1100 canExpandIndirectArgument(Ty, getContext())) 1101 return ABIArgInfo::getExpandWithPadding( 1102 State.CC == llvm::CallingConv::X86_FastCall || 1103 State.CC == llvm::CallingConv::X86_VectorCall, 1104 PaddingType); 1105 1106 return getIndirectResult(Ty, true, State); 1107 } 1108 1109 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1110 // On Darwin, some vectors are passed in memory, we handle this by passing 1111 // it as an i8/i16/i32/i64. 1112 if (IsDarwinVectorABI) { 1113 uint64_t Size = getContext().getTypeSize(Ty); 1114 if ((Size == 8 || Size == 16 || Size == 32) || 1115 (Size == 64 && VT->getNumElements() == 1)) 1116 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1117 Size)); 1118 } 1119 1120 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1121 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1122 1123 return ABIArgInfo::getDirect(); 1124 } 1125 1126 1127 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1128 Ty = EnumTy->getDecl()->getIntegerType(); 1129 1130 bool NeedsPadding; 1131 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 1132 1133 if (Ty->isPromotableIntegerType()) { 1134 if (InReg) 1135 return ABIArgInfo::getExtendInReg(); 1136 return ABIArgInfo::getExtend(); 1137 } 1138 if (InReg) 1139 return ABIArgInfo::getDirectInReg(); 1140 return ABIArgInfo::getDirect(); 1141 } 1142 1143 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1144 CCState State(FI.getCallingConvention()); 1145 if (State.CC == llvm::CallingConv::X86_FastCall) 1146 State.FreeRegs = 2; 1147 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1148 State.FreeRegs = 2; 1149 State.FreeSSERegs = 6; 1150 } else if (FI.getHasRegParm()) 1151 State.FreeRegs = FI.getRegParm(); 1152 else 1153 State.FreeRegs = DefaultNumRegisterParameters; 1154 1155 if (!getCXXABI().classifyReturnType(FI)) { 1156 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1157 } else if (FI.getReturnInfo().isIndirect()) { 1158 // The C++ ABI is not aware of register usage, so we have to check if the 1159 // return value was sret and put it in a register ourselves if appropriate. 1160 if (State.FreeRegs) { 1161 --State.FreeRegs; // The sret parameter consumes a register. 1162 FI.getReturnInfo().setInReg(true); 1163 } 1164 } 1165 1166 // The chain argument effectively gives us another free register. 1167 if (FI.isChainCall()) 1168 ++State.FreeRegs; 1169 1170 bool UsedInAlloca = false; 1171 for (auto &I : FI.arguments()) { 1172 I.info = classifyArgumentType(I.type, State); 1173 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1174 } 1175 1176 // If we needed to use inalloca for any argument, do a second pass and rewrite 1177 // all the memory arguments to use inalloca. 1178 if (UsedInAlloca) 1179 rewriteWithInAlloca(FI); 1180 } 1181 1182 void 1183 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1184 unsigned &StackOffset, 1185 ABIArgInfo &Info, QualType Type) const { 1186 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 1187 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1188 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1189 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 1190 1191 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 1192 // byte aligned. 1193 if (StackOffset % 4U) { 1194 unsigned OldOffset = StackOffset; 1195 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 1196 unsigned NumBytes = StackOffset - OldOffset; 1197 assert(NumBytes); 1198 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1199 Ty = llvm::ArrayType::get(Ty, NumBytes); 1200 FrameFields.push_back(Ty); 1201 } 1202 } 1203 1204 static bool isArgInAlloca(const ABIArgInfo &Info) { 1205 // Leave ignored and inreg arguments alone. 1206 switch (Info.getKind()) { 1207 case ABIArgInfo::InAlloca: 1208 return true; 1209 case ABIArgInfo::Indirect: 1210 assert(Info.getIndirectByVal()); 1211 return true; 1212 case ABIArgInfo::Ignore: 1213 return false; 1214 case ABIArgInfo::Direct: 1215 case ABIArgInfo::Extend: 1216 case ABIArgInfo::Expand: 1217 if (Info.getInReg()) 1218 return false; 1219 return true; 1220 } 1221 llvm_unreachable("invalid enum"); 1222 } 1223 1224 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1225 assert(IsWin32StructABI && "inalloca only supported on win32"); 1226 1227 // Build a packed struct type for all of the arguments in memory. 1228 SmallVector<llvm::Type *, 6> FrameFields; 1229 1230 unsigned StackOffset = 0; 1231 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1232 1233 // Put 'this' into the struct before 'sret', if necessary. 1234 bool IsThisCall = 1235 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1236 ABIArgInfo &Ret = FI.getReturnInfo(); 1237 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1238 isArgInAlloca(I->info)) { 1239 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1240 ++I; 1241 } 1242 1243 // Put the sret parameter into the inalloca struct if it's in memory. 1244 if (Ret.isIndirect() && !Ret.getInReg()) { 1245 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1246 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1247 // On Windows, the hidden sret parameter is always returned in eax. 1248 Ret.setInAllocaSRet(IsWin32StructABI); 1249 } 1250 1251 // Skip the 'this' parameter in ecx. 1252 if (IsThisCall) 1253 ++I; 1254 1255 // Put arguments passed in memory into the struct. 1256 for (; I != E; ++I) { 1257 if (isArgInAlloca(I->info)) 1258 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1259 } 1260 1261 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1262 /*isPacked=*/true)); 1263 } 1264 1265 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1266 CodeGenFunction &CGF) const { 1267 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1268 1269 CGBuilderTy &Builder = CGF.Builder; 1270 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1271 "ap"); 1272 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1273 1274 // Compute if the address needs to be aligned 1275 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1276 Align = getTypeStackAlignInBytes(Ty, Align); 1277 Align = std::max(Align, 4U); 1278 if (Align > 4) { 1279 // addr = (addr + align - 1) & -align; 1280 llvm::Value *Offset = 1281 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1282 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1283 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1284 CGF.Int32Ty); 1285 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1286 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1287 Addr->getType(), 1288 "ap.cur.aligned"); 1289 } 1290 1291 llvm::Type *PTy = 1292 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1293 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1294 1295 uint64_t Offset = 1296 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1297 llvm::Value *NextAddr = 1298 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1299 "ap.next"); 1300 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1301 1302 return AddrTyped; 1303 } 1304 1305 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1306 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1307 assert(Triple.getArch() == llvm::Triple::x86); 1308 1309 switch (Opts.getStructReturnConvention()) { 1310 case CodeGenOptions::SRCK_Default: 1311 break; 1312 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1313 return false; 1314 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1315 return true; 1316 } 1317 1318 if (Triple.isOSDarwin()) 1319 return true; 1320 1321 switch (Triple.getOS()) { 1322 case llvm::Triple::DragonFly: 1323 case llvm::Triple::FreeBSD: 1324 case llvm::Triple::OpenBSD: 1325 case llvm::Triple::Bitrig: 1326 case llvm::Triple::Win32: 1327 return true; 1328 default: 1329 return false; 1330 } 1331 } 1332 1333 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1334 llvm::GlobalValue *GV, 1335 CodeGen::CodeGenModule &CGM) const { 1336 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1337 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1338 // Get the LLVM function. 1339 llvm::Function *Fn = cast<llvm::Function>(GV); 1340 1341 // Now add the 'alignstack' attribute with a value of 16. 1342 llvm::AttrBuilder B; 1343 B.addStackAlignmentAttr(16); 1344 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1345 llvm::AttributeSet::get(CGM.getLLVMContext(), 1346 llvm::AttributeSet::FunctionIndex, 1347 B)); 1348 } 1349 } 1350 } 1351 1352 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1353 CodeGen::CodeGenFunction &CGF, 1354 llvm::Value *Address) const { 1355 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1356 1357 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1358 1359 // 0-7 are the eight integer registers; the order is different 1360 // on Darwin (for EH), but the range is the same. 1361 // 8 is %eip. 1362 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1363 1364 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1365 // 12-16 are st(0..4). Not sure why we stop at 4. 1366 // These have size 16, which is sizeof(long double) on 1367 // platforms with 8-byte alignment for that type. 1368 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1369 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1370 1371 } else { 1372 // 9 is %eflags, which doesn't get a size on Darwin for some 1373 // reason. 1374 Builder.CreateStore( 1375 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9)); 1376 1377 // 11-16 are st(0..5). Not sure why we stop at 5. 1378 // These have size 12, which is sizeof(long double) on 1379 // platforms with 4-byte alignment for that type. 1380 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1381 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1382 } 1383 1384 return false; 1385 } 1386 1387 //===----------------------------------------------------------------------===// 1388 // X86-64 ABI Implementation 1389 //===----------------------------------------------------------------------===// 1390 1391 1392 namespace { 1393 /// X86_64ABIInfo - The X86_64 ABI information. 1394 class X86_64ABIInfo : public ABIInfo { 1395 enum Class { 1396 Integer = 0, 1397 SSE, 1398 SSEUp, 1399 X87, 1400 X87Up, 1401 ComplexX87, 1402 NoClass, 1403 Memory 1404 }; 1405 1406 /// merge - Implement the X86_64 ABI merging algorithm. 1407 /// 1408 /// Merge an accumulating classification \arg Accum with a field 1409 /// classification \arg Field. 1410 /// 1411 /// \param Accum - The accumulating classification. This should 1412 /// always be either NoClass or the result of a previous merge 1413 /// call. In addition, this should never be Memory (the caller 1414 /// should just return Memory for the aggregate). 1415 static Class merge(Class Accum, Class Field); 1416 1417 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1418 /// 1419 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1420 /// final MEMORY or SSE classes when necessary. 1421 /// 1422 /// \param AggregateSize - The size of the current aggregate in 1423 /// the classification process. 1424 /// 1425 /// \param Lo - The classification for the parts of the type 1426 /// residing in the low word of the containing object. 1427 /// 1428 /// \param Hi - The classification for the parts of the type 1429 /// residing in the higher words of the containing object. 1430 /// 1431 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1432 1433 /// classify - Determine the x86_64 register classes in which the 1434 /// given type T should be passed. 1435 /// 1436 /// \param Lo - The classification for the parts of the type 1437 /// residing in the low word of the containing object. 1438 /// 1439 /// \param Hi - The classification for the parts of the type 1440 /// residing in the high word of the containing object. 1441 /// 1442 /// \param OffsetBase - The bit offset of this type in the 1443 /// containing object. Some parameters are classified different 1444 /// depending on whether they straddle an eightbyte boundary. 1445 /// 1446 /// \param isNamedArg - Whether the argument in question is a "named" 1447 /// argument, as used in AMD64-ABI 3.5.7. 1448 /// 1449 /// If a word is unused its result will be NoClass; if a type should 1450 /// be passed in Memory then at least the classification of \arg Lo 1451 /// will be Memory. 1452 /// 1453 /// The \arg Lo class will be NoClass iff the argument is ignored. 1454 /// 1455 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1456 /// also be ComplexX87. 1457 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1458 bool isNamedArg) const; 1459 1460 llvm::Type *GetByteVectorType(QualType Ty) const; 1461 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1462 unsigned IROffset, QualType SourceTy, 1463 unsigned SourceOffset) const; 1464 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1465 unsigned IROffset, QualType SourceTy, 1466 unsigned SourceOffset) const; 1467 1468 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1469 /// such that the argument will be returned in memory. 1470 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1471 1472 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1473 /// such that the argument will be passed in memory. 1474 /// 1475 /// \param freeIntRegs - The number of free integer registers remaining 1476 /// available. 1477 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1478 1479 ABIArgInfo classifyReturnType(QualType RetTy) const; 1480 1481 ABIArgInfo classifyArgumentType(QualType Ty, 1482 unsigned freeIntRegs, 1483 unsigned &neededInt, 1484 unsigned &neededSSE, 1485 bool isNamedArg) const; 1486 1487 bool IsIllegalVectorType(QualType Ty) const; 1488 1489 /// The 0.98 ABI revision clarified a lot of ambiguities, 1490 /// unfortunately in ways that were not always consistent with 1491 /// certain previous compilers. In particular, platforms which 1492 /// required strict binary compatibility with older versions of GCC 1493 /// may need to exempt themselves. 1494 bool honorsRevision0_98() const { 1495 return !getTarget().getTriple().isOSDarwin(); 1496 } 1497 1498 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1499 // 64-bit hardware. 1500 bool Has64BitPointers; 1501 1502 public: 1503 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : 1504 ABIInfo(CGT), 1505 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1506 } 1507 1508 bool isPassedUsingAVXType(QualType type) const { 1509 unsigned neededInt, neededSSE; 1510 // The freeIntRegs argument doesn't matter here. 1511 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1512 /*isNamedArg*/true); 1513 if (info.isDirect()) { 1514 llvm::Type *ty = info.getCoerceToType(); 1515 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1516 return (vectorTy->getBitWidth() > 128); 1517 } 1518 return false; 1519 } 1520 1521 void computeInfo(CGFunctionInfo &FI) const override; 1522 1523 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1524 CodeGenFunction &CGF) const override; 1525 1526 bool has64BitPointers() const { 1527 return Has64BitPointers; 1528 } 1529 1530 bool hasAVX() const { 1531 return getTarget().getABI() == "avx"; 1532 } 1533 }; 1534 1535 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1536 class WinX86_64ABIInfo : public ABIInfo { 1537 1538 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1539 bool IsReturnType) const; 1540 1541 public: 1542 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1543 1544 void computeInfo(CGFunctionInfo &FI) const override; 1545 1546 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1547 CodeGenFunction &CGF) const override; 1548 1549 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1550 // FIXME: Assumes vectorcall is in use. 1551 return isX86VectorTypeForVectorCall(getContext(), Ty); 1552 } 1553 1554 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1555 uint64_t NumMembers) const override { 1556 // FIXME: Assumes vectorcall is in use. 1557 return isX86VectorCallAggregateSmallEnough(NumMembers); 1558 } 1559 }; 1560 1561 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1562 public: 1563 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1564 : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {} 1565 1566 const X86_64ABIInfo &getABIInfo() const { 1567 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1568 } 1569 1570 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1571 return 7; 1572 } 1573 1574 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1575 llvm::Value *Address) const override { 1576 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1577 1578 // 0-15 are the 16 integer registers. 1579 // 16 is %rip. 1580 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1581 return false; 1582 } 1583 1584 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1585 StringRef Constraint, 1586 llvm::Type* Ty) const override { 1587 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1588 } 1589 1590 bool isNoProtoCallVariadic(const CallArgList &args, 1591 const FunctionNoProtoType *fnType) const override { 1592 // The default CC on x86-64 sets %al to the number of SSA 1593 // registers used, and GCC sets this when calling an unprototyped 1594 // function, so we override the default behavior. However, don't do 1595 // that when AVX types are involved: the ABI explicitly states it is 1596 // undefined, and it doesn't work in practice because of how the ABI 1597 // defines varargs anyway. 1598 if (fnType->getCallConv() == CC_C) { 1599 bool HasAVXType = false; 1600 for (CallArgList::const_iterator 1601 it = args.begin(), ie = args.end(); it != ie; ++it) { 1602 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1603 HasAVXType = true; 1604 break; 1605 } 1606 } 1607 1608 if (!HasAVXType) 1609 return true; 1610 } 1611 1612 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1613 } 1614 1615 llvm::Constant * 1616 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1617 unsigned Sig; 1618 if (getABIInfo().has64BitPointers()) 1619 Sig = (0xeb << 0) | // jmp rel8 1620 (0x0a << 8) | // .+0x0c 1621 ('F' << 16) | 1622 ('T' << 24); 1623 else 1624 Sig = (0xeb << 0) | // jmp rel8 1625 (0x06 << 8) | // .+0x08 1626 ('F' << 16) | 1627 ('T' << 24); 1628 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1629 } 1630 1631 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 1632 return getABIInfo().hasAVX() ? 32 : 16; 1633 } 1634 }; 1635 1636 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 1637 public: 1638 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1639 : X86_64TargetCodeGenInfo(CGT) {} 1640 1641 void getDependentLibraryOption(llvm::StringRef Lib, 1642 llvm::SmallString<24> &Opt) const override { 1643 Opt = "\01"; 1644 Opt += Lib; 1645 } 1646 }; 1647 1648 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1649 // If the argument does not end in .lib, automatically add the suffix. 1650 // If the argument contains a space, enclose it in quotes. 1651 // This matches the behavior of MSVC. 1652 bool Quote = (Lib.find(" ") != StringRef::npos); 1653 std::string ArgStr = Quote ? "\"" : ""; 1654 ArgStr += Lib; 1655 if (!Lib.endswith_lower(".lib")) 1656 ArgStr += ".lib"; 1657 ArgStr += Quote ? "\"" : ""; 1658 return ArgStr; 1659 } 1660 1661 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1662 public: 1663 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1664 bool d, bool p, bool w, unsigned RegParms) 1665 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1666 1667 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1668 CodeGen::CodeGenModule &CGM) const override; 1669 1670 void getDependentLibraryOption(llvm::StringRef Lib, 1671 llvm::SmallString<24> &Opt) const override { 1672 Opt = "/DEFAULTLIB:"; 1673 Opt += qualifyWindowsLibrary(Lib); 1674 } 1675 1676 void getDetectMismatchOption(llvm::StringRef Name, 1677 llvm::StringRef Value, 1678 llvm::SmallString<32> &Opt) const override { 1679 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1680 } 1681 }; 1682 1683 static void addStackProbeSizeTargetAttribute(const Decl *D, 1684 llvm::GlobalValue *GV, 1685 CodeGen::CodeGenModule &CGM) { 1686 if (isa<FunctionDecl>(D)) { 1687 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 1688 llvm::Function *Fn = cast<llvm::Function>(GV); 1689 1690 Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 1691 } 1692 } 1693 } 1694 1695 void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1696 llvm::GlobalValue *GV, 1697 CodeGen::CodeGenModule &CGM) const { 1698 X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM); 1699 1700 addStackProbeSizeTargetAttribute(D, GV, CGM); 1701 } 1702 1703 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1704 bool hasAVX() const { return getABIInfo().getTarget().getABI() == "avx"; } 1705 1706 public: 1707 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1708 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1709 1710 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1711 CodeGen::CodeGenModule &CGM) const override; 1712 1713 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1714 return 7; 1715 } 1716 1717 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1718 llvm::Value *Address) const override { 1719 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1720 1721 // 0-15 are the 16 integer registers. 1722 // 16 is %rip. 1723 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1724 return false; 1725 } 1726 1727 void getDependentLibraryOption(llvm::StringRef Lib, 1728 llvm::SmallString<24> &Opt) const override { 1729 Opt = "/DEFAULTLIB:"; 1730 Opt += qualifyWindowsLibrary(Lib); 1731 } 1732 1733 void getDetectMismatchOption(llvm::StringRef Name, 1734 llvm::StringRef Value, 1735 llvm::SmallString<32> &Opt) const override { 1736 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1737 } 1738 1739 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 1740 return hasAVX() ? 32 : 16; 1741 } 1742 }; 1743 1744 void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1745 llvm::GlobalValue *GV, 1746 CodeGen::CodeGenModule &CGM) const { 1747 TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM); 1748 1749 addStackProbeSizeTargetAttribute(D, GV, CGM); 1750 } 1751 } 1752 1753 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1754 Class &Hi) const { 1755 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1756 // 1757 // (a) If one of the classes is Memory, the whole argument is passed in 1758 // memory. 1759 // 1760 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1761 // memory. 1762 // 1763 // (c) If the size of the aggregate exceeds two eightbytes and the first 1764 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1765 // argument is passed in memory. NOTE: This is necessary to keep the 1766 // ABI working for processors that don't support the __m256 type. 1767 // 1768 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1769 // 1770 // Some of these are enforced by the merging logic. Others can arise 1771 // only with unions; for example: 1772 // union { _Complex double; unsigned; } 1773 // 1774 // Note that clauses (b) and (c) were added in 0.98. 1775 // 1776 if (Hi == Memory) 1777 Lo = Memory; 1778 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1779 Lo = Memory; 1780 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1781 Lo = Memory; 1782 if (Hi == SSEUp && Lo != SSE) 1783 Hi = SSE; 1784 } 1785 1786 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1787 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1788 // classified recursively so that always two fields are 1789 // considered. The resulting class is calculated according to 1790 // the classes of the fields in the eightbyte: 1791 // 1792 // (a) If both classes are equal, this is the resulting class. 1793 // 1794 // (b) If one of the classes is NO_CLASS, the resulting class is 1795 // the other class. 1796 // 1797 // (c) If one of the classes is MEMORY, the result is the MEMORY 1798 // class. 1799 // 1800 // (d) If one of the classes is INTEGER, the result is the 1801 // INTEGER. 1802 // 1803 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1804 // MEMORY is used as class. 1805 // 1806 // (f) Otherwise class SSE is used. 1807 1808 // Accum should never be memory (we should have returned) or 1809 // ComplexX87 (because this cannot be passed in a structure). 1810 assert((Accum != Memory && Accum != ComplexX87) && 1811 "Invalid accumulated classification during merge."); 1812 if (Accum == Field || Field == NoClass) 1813 return Accum; 1814 if (Field == Memory) 1815 return Memory; 1816 if (Accum == NoClass) 1817 return Field; 1818 if (Accum == Integer || Field == Integer) 1819 return Integer; 1820 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1821 Accum == X87 || Accum == X87Up) 1822 return Memory; 1823 return SSE; 1824 } 1825 1826 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1827 Class &Lo, Class &Hi, bool isNamedArg) const { 1828 // FIXME: This code can be simplified by introducing a simple value class for 1829 // Class pairs with appropriate constructor methods for the various 1830 // situations. 1831 1832 // FIXME: Some of the split computations are wrong; unaligned vectors 1833 // shouldn't be passed in registers for example, so there is no chance they 1834 // can straddle an eightbyte. Verify & simplify. 1835 1836 Lo = Hi = NoClass; 1837 1838 Class &Current = OffsetBase < 64 ? Lo : Hi; 1839 Current = Memory; 1840 1841 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1842 BuiltinType::Kind k = BT->getKind(); 1843 1844 if (k == BuiltinType::Void) { 1845 Current = NoClass; 1846 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1847 Lo = Integer; 1848 Hi = Integer; 1849 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1850 Current = Integer; 1851 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1852 (k == BuiltinType::LongDouble && 1853 getTarget().getTriple().isOSNaCl())) { 1854 Current = SSE; 1855 } else if (k == BuiltinType::LongDouble) { 1856 Lo = X87; 1857 Hi = X87Up; 1858 } 1859 // FIXME: _Decimal32 and _Decimal64 are SSE. 1860 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1861 return; 1862 } 1863 1864 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1865 // Classify the underlying integer type. 1866 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1867 return; 1868 } 1869 1870 if (Ty->hasPointerRepresentation()) { 1871 Current = Integer; 1872 return; 1873 } 1874 1875 if (Ty->isMemberPointerType()) { 1876 if (Ty->isMemberFunctionPointerType()) { 1877 if (Has64BitPointers) { 1878 // If Has64BitPointers, this is an {i64, i64}, so classify both 1879 // Lo and Hi now. 1880 Lo = Hi = Integer; 1881 } else { 1882 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1883 // straddles an eightbyte boundary, Hi should be classified as well. 1884 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1885 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1886 if (EB_FuncPtr != EB_ThisAdj) { 1887 Lo = Hi = Integer; 1888 } else { 1889 Current = Integer; 1890 } 1891 } 1892 } else { 1893 Current = Integer; 1894 } 1895 return; 1896 } 1897 1898 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1899 uint64_t Size = getContext().getTypeSize(VT); 1900 if (Size == 32) { 1901 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1902 // float> as integer. 1903 Current = Integer; 1904 1905 // If this type crosses an eightbyte boundary, it should be 1906 // split. 1907 uint64_t EB_Real = (OffsetBase) / 64; 1908 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1909 if (EB_Real != EB_Imag) 1910 Hi = Lo; 1911 } else if (Size == 64) { 1912 // gcc passes <1 x double> in memory. :( 1913 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1914 return; 1915 1916 // gcc passes <1 x long long> as INTEGER. 1917 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1918 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1919 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1920 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1921 Current = Integer; 1922 else 1923 Current = SSE; 1924 1925 // If this type crosses an eightbyte boundary, it should be 1926 // split. 1927 if (OffsetBase && OffsetBase != 64) 1928 Hi = Lo; 1929 } else if (Size == 128 || (hasAVX() && isNamedArg && Size == 256)) { 1930 // Arguments of 256-bits are split into four eightbyte chunks. The 1931 // least significant one belongs to class SSE and all the others to class 1932 // SSEUP. The original Lo and Hi design considers that types can't be 1933 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1934 // This design isn't correct for 256-bits, but since there're no cases 1935 // where the upper parts would need to be inspected, avoid adding 1936 // complexity and just consider Hi to match the 64-256 part. 1937 // 1938 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1939 // registers if they are "named", i.e. not part of the "..." of a 1940 // variadic function. 1941 Lo = SSE; 1942 Hi = SSEUp; 1943 } 1944 return; 1945 } 1946 1947 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1948 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1949 1950 uint64_t Size = getContext().getTypeSize(Ty); 1951 if (ET->isIntegralOrEnumerationType()) { 1952 if (Size <= 64) 1953 Current = Integer; 1954 else if (Size <= 128) 1955 Lo = Hi = Integer; 1956 } else if (ET == getContext().FloatTy) 1957 Current = SSE; 1958 else if (ET == getContext().DoubleTy || 1959 (ET == getContext().LongDoubleTy && 1960 getTarget().getTriple().isOSNaCl())) 1961 Lo = Hi = SSE; 1962 else if (ET == getContext().LongDoubleTy) 1963 Current = ComplexX87; 1964 1965 // If this complex type crosses an eightbyte boundary then it 1966 // should be split. 1967 uint64_t EB_Real = (OffsetBase) / 64; 1968 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1969 if (Hi == NoClass && EB_Real != EB_Imag) 1970 Hi = Lo; 1971 1972 return; 1973 } 1974 1975 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1976 // Arrays are treated like structures. 1977 1978 uint64_t Size = getContext().getTypeSize(Ty); 1979 1980 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1981 // than four eightbytes, ..., it has class MEMORY. 1982 if (Size > 256) 1983 return; 1984 1985 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1986 // fields, it has class MEMORY. 1987 // 1988 // Only need to check alignment of array base. 1989 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1990 return; 1991 1992 // Otherwise implement simplified merge. We could be smarter about 1993 // this, but it isn't worth it and would be harder to verify. 1994 Current = NoClass; 1995 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1996 uint64_t ArraySize = AT->getSize().getZExtValue(); 1997 1998 // The only case a 256-bit wide vector could be used is when the array 1999 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2000 // to work for sizes wider than 128, early check and fallback to memory. 2001 if (Size > 128 && EltSize != 256) 2002 return; 2003 2004 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2005 Class FieldLo, FieldHi; 2006 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2007 Lo = merge(Lo, FieldLo); 2008 Hi = merge(Hi, FieldHi); 2009 if (Lo == Memory || Hi == Memory) 2010 break; 2011 } 2012 2013 postMerge(Size, Lo, Hi); 2014 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2015 return; 2016 } 2017 2018 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2019 uint64_t Size = getContext().getTypeSize(Ty); 2020 2021 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2022 // than four eightbytes, ..., it has class MEMORY. 2023 if (Size > 256) 2024 return; 2025 2026 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2027 // copy constructor or a non-trivial destructor, it is passed by invisible 2028 // reference. 2029 if (getRecordArgABI(RT, getCXXABI())) 2030 return; 2031 2032 const RecordDecl *RD = RT->getDecl(); 2033 2034 // Assume variable sized types are passed in memory. 2035 if (RD->hasFlexibleArrayMember()) 2036 return; 2037 2038 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2039 2040 // Reset Lo class, this will be recomputed. 2041 Current = NoClass; 2042 2043 // If this is a C++ record, classify the bases first. 2044 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2045 for (const auto &I : CXXRD->bases()) { 2046 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2047 "Unexpected base class!"); 2048 const CXXRecordDecl *Base = 2049 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2050 2051 // Classify this field. 2052 // 2053 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2054 // single eightbyte, each is classified separately. Each eightbyte gets 2055 // initialized to class NO_CLASS. 2056 Class FieldLo, FieldHi; 2057 uint64_t Offset = 2058 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2059 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2060 Lo = merge(Lo, FieldLo); 2061 Hi = merge(Hi, FieldHi); 2062 if (Lo == Memory || Hi == Memory) 2063 break; 2064 } 2065 } 2066 2067 // Classify the fields one at a time, merging the results. 2068 unsigned idx = 0; 2069 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2070 i != e; ++i, ++idx) { 2071 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2072 bool BitField = i->isBitField(); 2073 2074 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2075 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2076 // 2077 // The only case a 256-bit wide vector could be used is when the struct 2078 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2079 // to work for sizes wider than 128, early check and fallback to memory. 2080 // 2081 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2082 Lo = Memory; 2083 return; 2084 } 2085 // Note, skip this test for bit-fields, see below. 2086 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2087 Lo = Memory; 2088 return; 2089 } 2090 2091 // Classify this field. 2092 // 2093 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2094 // exceeds a single eightbyte, each is classified 2095 // separately. Each eightbyte gets initialized to class 2096 // NO_CLASS. 2097 Class FieldLo, FieldHi; 2098 2099 // Bit-fields require special handling, they do not force the 2100 // structure to be passed in memory even if unaligned, and 2101 // therefore they can straddle an eightbyte. 2102 if (BitField) { 2103 // Ignore padding bit-fields. 2104 if (i->isUnnamedBitfield()) 2105 continue; 2106 2107 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2108 uint64_t Size = i->getBitWidthValue(getContext()); 2109 2110 uint64_t EB_Lo = Offset / 64; 2111 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2112 2113 if (EB_Lo) { 2114 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2115 FieldLo = NoClass; 2116 FieldHi = Integer; 2117 } else { 2118 FieldLo = Integer; 2119 FieldHi = EB_Hi ? Integer : NoClass; 2120 } 2121 } else 2122 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2123 Lo = merge(Lo, FieldLo); 2124 Hi = merge(Hi, FieldHi); 2125 if (Lo == Memory || Hi == Memory) 2126 break; 2127 } 2128 2129 postMerge(Size, Lo, Hi); 2130 } 2131 } 2132 2133 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2134 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2135 // place naturally. 2136 if (!isAggregateTypeForABI(Ty)) { 2137 // Treat an enum type as its underlying type. 2138 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2139 Ty = EnumTy->getDecl()->getIntegerType(); 2140 2141 return (Ty->isPromotableIntegerType() ? 2142 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2143 } 2144 2145 return ABIArgInfo::getIndirect(0); 2146 } 2147 2148 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2149 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2150 uint64_t Size = getContext().getTypeSize(VecTy); 2151 unsigned LargestVector = hasAVX() ? 256 : 128; 2152 if (Size <= 64 || Size > LargestVector) 2153 return true; 2154 } 2155 2156 return false; 2157 } 2158 2159 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2160 unsigned freeIntRegs) const { 2161 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2162 // place naturally. 2163 // 2164 // This assumption is optimistic, as there could be free registers available 2165 // when we need to pass this argument in memory, and LLVM could try to pass 2166 // the argument in the free register. This does not seem to happen currently, 2167 // but this code would be much safer if we could mark the argument with 2168 // 'onstack'. See PR12193. 2169 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2170 // Treat an enum type as its underlying type. 2171 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2172 Ty = EnumTy->getDecl()->getIntegerType(); 2173 2174 return (Ty->isPromotableIntegerType() ? 2175 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2176 } 2177 2178 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2179 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2180 2181 // Compute the byval alignment. We specify the alignment of the byval in all 2182 // cases so that the mid-level optimizer knows the alignment of the byval. 2183 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2184 2185 // Attempt to avoid passing indirect results using byval when possible. This 2186 // is important for good codegen. 2187 // 2188 // We do this by coercing the value into a scalar type which the backend can 2189 // handle naturally (i.e., without using byval). 2190 // 2191 // For simplicity, we currently only do this when we have exhausted all of the 2192 // free integer registers. Doing this when there are free integer registers 2193 // would require more care, as we would have to ensure that the coerced value 2194 // did not claim the unused register. That would require either reording the 2195 // arguments to the function (so that any subsequent inreg values came first), 2196 // or only doing this optimization when there were no following arguments that 2197 // might be inreg. 2198 // 2199 // We currently expect it to be rare (particularly in well written code) for 2200 // arguments to be passed on the stack when there are still free integer 2201 // registers available (this would typically imply large structs being passed 2202 // by value), so this seems like a fair tradeoff for now. 2203 // 2204 // We can revisit this if the backend grows support for 'onstack' parameter 2205 // attributes. See PR12193. 2206 if (freeIntRegs == 0) { 2207 uint64_t Size = getContext().getTypeSize(Ty); 2208 2209 // If this type fits in an eightbyte, coerce it into the matching integral 2210 // type, which will end up on the stack (with alignment 8). 2211 if (Align == 8 && Size <= 64) 2212 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2213 Size)); 2214 } 2215 2216 return ABIArgInfo::getIndirect(Align); 2217 } 2218 2219 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2220 /// register. Pick an LLVM IR type that will be passed as a vector register. 2221 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2222 // Wrapper structs/arrays that only contain vectors are passed just like 2223 // vectors; strip them off if present. 2224 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2225 Ty = QualType(InnerTy, 0); 2226 2227 llvm::Type *IRType = CGT.ConvertType(Ty); 2228 assert(isa<llvm::VectorType>(IRType) && 2229 "Trying to return a non-vector type in a vector register!"); 2230 return IRType; 2231 } 2232 2233 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2234 /// is known to either be off the end of the specified type or being in 2235 /// alignment padding. The user type specified is known to be at most 128 bits 2236 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2237 /// classification that put one of the two halves in the INTEGER class. 2238 /// 2239 /// It is conservatively correct to return false. 2240 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2241 unsigned EndBit, ASTContext &Context) { 2242 // If the bytes being queried are off the end of the type, there is no user 2243 // data hiding here. This handles analysis of builtins, vectors and other 2244 // types that don't contain interesting padding. 2245 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2246 if (TySize <= StartBit) 2247 return true; 2248 2249 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2250 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2251 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2252 2253 // Check each element to see if the element overlaps with the queried range. 2254 for (unsigned i = 0; i != NumElts; ++i) { 2255 // If the element is after the span we care about, then we're done.. 2256 unsigned EltOffset = i*EltSize; 2257 if (EltOffset >= EndBit) break; 2258 2259 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2260 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2261 EndBit-EltOffset, Context)) 2262 return false; 2263 } 2264 // If it overlaps no elements, then it is safe to process as padding. 2265 return true; 2266 } 2267 2268 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2269 const RecordDecl *RD = RT->getDecl(); 2270 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2271 2272 // If this is a C++ record, check the bases first. 2273 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2274 for (const auto &I : CXXRD->bases()) { 2275 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2276 "Unexpected base class!"); 2277 const CXXRecordDecl *Base = 2278 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2279 2280 // If the base is after the span we care about, ignore it. 2281 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2282 if (BaseOffset >= EndBit) continue; 2283 2284 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2285 if (!BitsContainNoUserData(I.getType(), BaseStart, 2286 EndBit-BaseOffset, Context)) 2287 return false; 2288 } 2289 } 2290 2291 // Verify that no field has data that overlaps the region of interest. Yes 2292 // this could be sped up a lot by being smarter about queried fields, 2293 // however we're only looking at structs up to 16 bytes, so we don't care 2294 // much. 2295 unsigned idx = 0; 2296 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2297 i != e; ++i, ++idx) { 2298 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2299 2300 // If we found a field after the region we care about, then we're done. 2301 if (FieldOffset >= EndBit) break; 2302 2303 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2304 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2305 Context)) 2306 return false; 2307 } 2308 2309 // If nothing in this record overlapped the area of interest, then we're 2310 // clean. 2311 return true; 2312 } 2313 2314 return false; 2315 } 2316 2317 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2318 /// float member at the specified offset. For example, {int,{float}} has a 2319 /// float at offset 4. It is conservatively correct for this routine to return 2320 /// false. 2321 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2322 const llvm::DataLayout &TD) { 2323 // Base case if we find a float. 2324 if (IROffset == 0 && IRType->isFloatTy()) 2325 return true; 2326 2327 // If this is a struct, recurse into the field at the specified offset. 2328 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2329 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2330 unsigned Elt = SL->getElementContainingOffset(IROffset); 2331 IROffset -= SL->getElementOffset(Elt); 2332 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2333 } 2334 2335 // If this is an array, recurse into the field at the specified offset. 2336 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2337 llvm::Type *EltTy = ATy->getElementType(); 2338 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2339 IROffset -= IROffset/EltSize*EltSize; 2340 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2341 } 2342 2343 return false; 2344 } 2345 2346 2347 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2348 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2349 llvm::Type *X86_64ABIInfo:: 2350 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2351 QualType SourceTy, unsigned SourceOffset) const { 2352 // The only three choices we have are either double, <2 x float>, or float. We 2353 // pass as float if the last 4 bytes is just padding. This happens for 2354 // structs that contain 3 floats. 2355 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2356 SourceOffset*8+64, getContext())) 2357 return llvm::Type::getFloatTy(getVMContext()); 2358 2359 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2360 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2361 // case. 2362 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2363 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2364 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2365 2366 return llvm::Type::getDoubleTy(getVMContext()); 2367 } 2368 2369 2370 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2371 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2372 /// about the high or low part of an up-to-16-byte struct. This routine picks 2373 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2374 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2375 /// etc). 2376 /// 2377 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2378 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2379 /// the 8-byte value references. PrefType may be null. 2380 /// 2381 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2382 /// an offset into this that we're processing (which is always either 0 or 8). 2383 /// 2384 llvm::Type *X86_64ABIInfo:: 2385 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2386 QualType SourceTy, unsigned SourceOffset) const { 2387 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2388 // returning an 8-byte unit starting with it. See if we can safely use it. 2389 if (IROffset == 0) { 2390 // Pointers and int64's always fill the 8-byte unit. 2391 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2392 IRType->isIntegerTy(64)) 2393 return IRType; 2394 2395 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2396 // goodness in the source type is just tail padding. This is allowed to 2397 // kick in for struct {double,int} on the int, but not on 2398 // struct{double,int,int} because we wouldn't return the second int. We 2399 // have to do this analysis on the source type because we can't depend on 2400 // unions being lowered a specific way etc. 2401 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2402 IRType->isIntegerTy(32) || 2403 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2404 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2405 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2406 2407 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2408 SourceOffset*8+64, getContext())) 2409 return IRType; 2410 } 2411 } 2412 2413 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2414 // If this is a struct, recurse into the field at the specified offset. 2415 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2416 if (IROffset < SL->getSizeInBytes()) { 2417 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2418 IROffset -= SL->getElementOffset(FieldIdx); 2419 2420 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2421 SourceTy, SourceOffset); 2422 } 2423 } 2424 2425 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2426 llvm::Type *EltTy = ATy->getElementType(); 2427 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2428 unsigned EltOffset = IROffset/EltSize*EltSize; 2429 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2430 SourceOffset); 2431 } 2432 2433 // Okay, we don't have any better idea of what to pass, so we pass this in an 2434 // integer register that isn't too big to fit the rest of the struct. 2435 unsigned TySizeInBytes = 2436 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2437 2438 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2439 2440 // It is always safe to classify this as an integer type up to i64 that 2441 // isn't larger than the structure. 2442 return llvm::IntegerType::get(getVMContext(), 2443 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2444 } 2445 2446 2447 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2448 /// be used as elements of a two register pair to pass or return, return a 2449 /// first class aggregate to represent them. For example, if the low part of 2450 /// a by-value argument should be passed as i32* and the high part as float, 2451 /// return {i32*, float}. 2452 static llvm::Type * 2453 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2454 const llvm::DataLayout &TD) { 2455 // In order to correctly satisfy the ABI, we need to the high part to start 2456 // at offset 8. If the high and low parts we inferred are both 4-byte types 2457 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2458 // the second element at offset 8. Check for this: 2459 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2460 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2461 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign); 2462 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2463 2464 // To handle this, we have to increase the size of the low part so that the 2465 // second element will start at an 8 byte offset. We can't increase the size 2466 // of the second element because it might make us access off the end of the 2467 // struct. 2468 if (HiStart != 8) { 2469 // There are only two sorts of types the ABI generation code can produce for 2470 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2471 // Promote these to a larger type. 2472 if (Lo->isFloatTy()) 2473 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2474 else { 2475 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2476 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2477 } 2478 } 2479 2480 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2481 2482 2483 // Verify that the second element is at an 8-byte offset. 2484 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2485 "Invalid x86-64 argument pair!"); 2486 return Result; 2487 } 2488 2489 ABIArgInfo X86_64ABIInfo:: 2490 classifyReturnType(QualType RetTy) const { 2491 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2492 // classification algorithm. 2493 X86_64ABIInfo::Class Lo, Hi; 2494 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2495 2496 // Check some invariants. 2497 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2498 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2499 2500 llvm::Type *ResType = nullptr; 2501 switch (Lo) { 2502 case NoClass: 2503 if (Hi == NoClass) 2504 return ABIArgInfo::getIgnore(); 2505 // If the low part is just padding, it takes no register, leave ResType 2506 // null. 2507 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2508 "Unknown missing lo part"); 2509 break; 2510 2511 case SSEUp: 2512 case X87Up: 2513 llvm_unreachable("Invalid classification for lo word."); 2514 2515 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2516 // hidden argument. 2517 case Memory: 2518 return getIndirectReturnResult(RetTy); 2519 2520 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2521 // available register of the sequence %rax, %rdx is used. 2522 case Integer: 2523 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2524 2525 // If we have a sign or zero extended integer, make sure to return Extend 2526 // so that the parameter gets the right LLVM IR attributes. 2527 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2528 // Treat an enum type as its underlying type. 2529 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2530 RetTy = EnumTy->getDecl()->getIntegerType(); 2531 2532 if (RetTy->isIntegralOrEnumerationType() && 2533 RetTy->isPromotableIntegerType()) 2534 return ABIArgInfo::getExtend(); 2535 } 2536 break; 2537 2538 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2539 // available SSE register of the sequence %xmm0, %xmm1 is used. 2540 case SSE: 2541 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2542 break; 2543 2544 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2545 // returned on the X87 stack in %st0 as 80-bit x87 number. 2546 case X87: 2547 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2548 break; 2549 2550 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2551 // part of the value is returned in %st0 and the imaginary part in 2552 // %st1. 2553 case ComplexX87: 2554 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2555 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2556 llvm::Type::getX86_FP80Ty(getVMContext()), 2557 nullptr); 2558 break; 2559 } 2560 2561 llvm::Type *HighPart = nullptr; 2562 switch (Hi) { 2563 // Memory was handled previously and X87 should 2564 // never occur as a hi class. 2565 case Memory: 2566 case X87: 2567 llvm_unreachable("Invalid classification for hi word."); 2568 2569 case ComplexX87: // Previously handled. 2570 case NoClass: 2571 break; 2572 2573 case Integer: 2574 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2575 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2576 return ABIArgInfo::getDirect(HighPart, 8); 2577 break; 2578 case SSE: 2579 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2580 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2581 return ABIArgInfo::getDirect(HighPart, 8); 2582 break; 2583 2584 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2585 // is passed in the next available eightbyte chunk if the last used 2586 // vector register. 2587 // 2588 // SSEUP should always be preceded by SSE, just widen. 2589 case SSEUp: 2590 assert(Lo == SSE && "Unexpected SSEUp classification."); 2591 ResType = GetByteVectorType(RetTy); 2592 break; 2593 2594 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2595 // returned together with the previous X87 value in %st0. 2596 case X87Up: 2597 // If X87Up is preceded by X87, we don't need to do 2598 // anything. However, in some cases with unions it may not be 2599 // preceded by X87. In such situations we follow gcc and pass the 2600 // extra bits in an SSE reg. 2601 if (Lo != X87) { 2602 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2603 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2604 return ABIArgInfo::getDirect(HighPart, 8); 2605 } 2606 break; 2607 } 2608 2609 // If a high part was specified, merge it together with the low part. It is 2610 // known to pass in the high eightbyte of the result. We do this by forming a 2611 // first class struct aggregate with the high and low part: {low, high} 2612 if (HighPart) 2613 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2614 2615 return ABIArgInfo::getDirect(ResType); 2616 } 2617 2618 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2619 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2620 bool isNamedArg) 2621 const 2622 { 2623 Ty = useFirstFieldIfTransparentUnion(Ty); 2624 2625 X86_64ABIInfo::Class Lo, Hi; 2626 classify(Ty, 0, Lo, Hi, isNamedArg); 2627 2628 // Check some invariants. 2629 // FIXME: Enforce these by construction. 2630 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2631 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2632 2633 neededInt = 0; 2634 neededSSE = 0; 2635 llvm::Type *ResType = nullptr; 2636 switch (Lo) { 2637 case NoClass: 2638 if (Hi == NoClass) 2639 return ABIArgInfo::getIgnore(); 2640 // If the low part is just padding, it takes no register, leave ResType 2641 // null. 2642 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2643 "Unknown missing lo part"); 2644 break; 2645 2646 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2647 // on the stack. 2648 case Memory: 2649 2650 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2651 // COMPLEX_X87, it is passed in memory. 2652 case X87: 2653 case ComplexX87: 2654 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2655 ++neededInt; 2656 return getIndirectResult(Ty, freeIntRegs); 2657 2658 case SSEUp: 2659 case X87Up: 2660 llvm_unreachable("Invalid classification for lo word."); 2661 2662 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2663 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2664 // and %r9 is used. 2665 case Integer: 2666 ++neededInt; 2667 2668 // Pick an 8-byte type based on the preferred type. 2669 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2670 2671 // If we have a sign or zero extended integer, make sure to return Extend 2672 // so that the parameter gets the right LLVM IR attributes. 2673 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2674 // Treat an enum type as its underlying type. 2675 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2676 Ty = EnumTy->getDecl()->getIntegerType(); 2677 2678 if (Ty->isIntegralOrEnumerationType() && 2679 Ty->isPromotableIntegerType()) 2680 return ABIArgInfo::getExtend(); 2681 } 2682 2683 break; 2684 2685 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2686 // available SSE register is used, the registers are taken in the 2687 // order from %xmm0 to %xmm7. 2688 case SSE: { 2689 llvm::Type *IRType = CGT.ConvertType(Ty); 2690 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2691 ++neededSSE; 2692 break; 2693 } 2694 } 2695 2696 llvm::Type *HighPart = nullptr; 2697 switch (Hi) { 2698 // Memory was handled previously, ComplexX87 and X87 should 2699 // never occur as hi classes, and X87Up must be preceded by X87, 2700 // which is passed in memory. 2701 case Memory: 2702 case X87: 2703 case ComplexX87: 2704 llvm_unreachable("Invalid classification for hi word."); 2705 2706 case NoClass: break; 2707 2708 case Integer: 2709 ++neededInt; 2710 // Pick an 8-byte type based on the preferred type. 2711 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2712 2713 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2714 return ABIArgInfo::getDirect(HighPart, 8); 2715 break; 2716 2717 // X87Up generally doesn't occur here (long double is passed in 2718 // memory), except in situations involving unions. 2719 case X87Up: 2720 case SSE: 2721 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2722 2723 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2724 return ABIArgInfo::getDirect(HighPart, 8); 2725 2726 ++neededSSE; 2727 break; 2728 2729 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2730 // eightbyte is passed in the upper half of the last used SSE 2731 // register. This only happens when 128-bit vectors are passed. 2732 case SSEUp: 2733 assert(Lo == SSE && "Unexpected SSEUp classification"); 2734 ResType = GetByteVectorType(Ty); 2735 break; 2736 } 2737 2738 // If a high part was specified, merge it together with the low part. It is 2739 // known to pass in the high eightbyte of the result. We do this by forming a 2740 // first class struct aggregate with the high and low part: {low, high} 2741 if (HighPart) 2742 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2743 2744 return ABIArgInfo::getDirect(ResType); 2745 } 2746 2747 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2748 2749 if (!getCXXABI().classifyReturnType(FI)) 2750 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2751 2752 // Keep track of the number of assigned registers. 2753 unsigned freeIntRegs = 6, freeSSERegs = 8; 2754 2755 // If the return value is indirect, then the hidden argument is consuming one 2756 // integer register. 2757 if (FI.getReturnInfo().isIndirect()) 2758 --freeIntRegs; 2759 2760 // The chain argument effectively gives us another free register. 2761 if (FI.isChainCall()) 2762 ++freeIntRegs; 2763 2764 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2765 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2766 // get assigned (in left-to-right order) for passing as follows... 2767 unsigned ArgNo = 0; 2768 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2769 it != ie; ++it, ++ArgNo) { 2770 bool IsNamedArg = ArgNo < NumRequiredArgs; 2771 2772 unsigned neededInt, neededSSE; 2773 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2774 neededSSE, IsNamedArg); 2775 2776 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2777 // eightbyte of an argument, the whole argument is passed on the 2778 // stack. If registers have already been assigned for some 2779 // eightbytes of such an argument, the assignments get reverted. 2780 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2781 freeIntRegs -= neededInt; 2782 freeSSERegs -= neededSSE; 2783 } else { 2784 it->info = getIndirectResult(it->type, freeIntRegs); 2785 } 2786 } 2787 } 2788 2789 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2790 QualType Ty, 2791 CodeGenFunction &CGF) { 2792 llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP( 2793 nullptr, VAListAddr, 2, "overflow_arg_area_p"); 2794 llvm::Value *overflow_arg_area = 2795 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2796 2797 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2798 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2799 // It isn't stated explicitly in the standard, but in practice we use 2800 // alignment greater than 16 where necessary. 2801 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2802 if (Align > 8) { 2803 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2804 llvm::Value *Offset = 2805 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2806 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2807 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2808 CGF.Int64Ty); 2809 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2810 overflow_arg_area = 2811 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2812 overflow_arg_area->getType(), 2813 "overflow_arg_area.align"); 2814 } 2815 2816 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2817 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2818 llvm::Value *Res = 2819 CGF.Builder.CreateBitCast(overflow_arg_area, 2820 llvm::PointerType::getUnqual(LTy)); 2821 2822 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2823 // l->overflow_arg_area + sizeof(type). 2824 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2825 // an 8 byte boundary. 2826 2827 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2828 llvm::Value *Offset = 2829 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2830 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2831 "overflow_arg_area.next"); 2832 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2833 2834 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2835 return Res; 2836 } 2837 2838 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2839 CodeGenFunction &CGF) const { 2840 // Assume that va_list type is correct; should be pointer to LLVM type: 2841 // struct { 2842 // i32 gp_offset; 2843 // i32 fp_offset; 2844 // i8* overflow_arg_area; 2845 // i8* reg_save_area; 2846 // }; 2847 unsigned neededInt, neededSSE; 2848 2849 Ty = CGF.getContext().getCanonicalType(Ty); 2850 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2851 /*isNamedArg*/false); 2852 2853 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2854 // in the registers. If not go to step 7. 2855 if (!neededInt && !neededSSE) 2856 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2857 2858 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2859 // general purpose registers needed to pass type and num_fp to hold 2860 // the number of floating point registers needed. 2861 2862 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2863 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2864 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2865 // 2866 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2867 // register save space). 2868 2869 llvm::Value *InRegs = nullptr; 2870 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2871 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2872 if (neededInt) { 2873 gp_offset_p = 2874 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p"); 2875 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2876 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2877 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2878 } 2879 2880 if (neededSSE) { 2881 fp_offset_p = 2882 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p"); 2883 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2884 llvm::Value *FitsInFP = 2885 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2886 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2887 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2888 } 2889 2890 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2891 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2892 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2893 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2894 2895 // Emit code to load the value if it was passed in registers. 2896 2897 CGF.EmitBlock(InRegBlock); 2898 2899 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2900 // an offset of l->gp_offset and/or l->fp_offset. This may require 2901 // copying to a temporary location in case the parameter is passed 2902 // in different register classes or requires an alignment greater 2903 // than 8 for general purpose registers and 16 for XMM registers. 2904 // 2905 // FIXME: This really results in shameful code when we end up needing to 2906 // collect arguments from different places; often what should result in a 2907 // simple assembling of a structure from scattered addresses has many more 2908 // loads than necessary. Can we clean this up? 2909 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2910 llvm::Value *RegAddr = CGF.Builder.CreateLoad( 2911 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area"); 2912 if (neededInt && neededSSE) { 2913 // FIXME: Cleanup. 2914 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2915 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2916 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2917 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2918 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2919 llvm::Type *TyLo = ST->getElementType(0); 2920 llvm::Type *TyHi = ST->getElementType(1); 2921 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2922 "Unexpected ABI info for mixed regs"); 2923 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2924 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2925 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2926 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2927 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2928 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2929 llvm::Value *V = 2930 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2931 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 2932 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2933 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 2934 2935 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2936 llvm::PointerType::getUnqual(LTy)); 2937 } else if (neededInt) { 2938 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2939 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2940 llvm::PointerType::getUnqual(LTy)); 2941 2942 // Copy to a temporary if necessary to ensure the appropriate alignment. 2943 std::pair<CharUnits, CharUnits> SizeAlign = 2944 CGF.getContext().getTypeInfoInChars(Ty); 2945 uint64_t TySize = SizeAlign.first.getQuantity(); 2946 unsigned TyAlign = SizeAlign.second.getQuantity(); 2947 if (TyAlign > 8) { 2948 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2949 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2950 RegAddr = Tmp; 2951 } 2952 } else if (neededSSE == 1) { 2953 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2954 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2955 llvm::PointerType::getUnqual(LTy)); 2956 } else { 2957 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2958 // SSE registers are spaced 16 bytes apart in the register save 2959 // area, we need to collect the two eightbytes together. 2960 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2961 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2962 llvm::Type *DoubleTy = CGF.DoubleTy; 2963 llvm::Type *DblPtrTy = 2964 llvm::PointerType::getUnqual(DoubleTy); 2965 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 2966 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2967 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2968 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2969 DblPtrTy)); 2970 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 2971 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2972 DblPtrTy)); 2973 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 2974 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2975 llvm::PointerType::getUnqual(LTy)); 2976 } 2977 2978 // AMD64-ABI 3.5.7p5: Step 5. Set: 2979 // l->gp_offset = l->gp_offset + num_gp * 8 2980 // l->fp_offset = l->fp_offset + num_fp * 16. 2981 if (neededInt) { 2982 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2983 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2984 gp_offset_p); 2985 } 2986 if (neededSSE) { 2987 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2988 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2989 fp_offset_p); 2990 } 2991 CGF.EmitBranch(ContBlock); 2992 2993 // Emit code to load the value if it was passed in memory. 2994 2995 CGF.EmitBlock(InMemBlock); 2996 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2997 2998 // Return the appropriate result. 2999 3000 CGF.EmitBlock(ContBlock); 3001 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 3002 "vaarg.addr"); 3003 ResAddr->addIncoming(RegAddr, InRegBlock); 3004 ResAddr->addIncoming(MemAddr, InMemBlock); 3005 return ResAddr; 3006 } 3007 3008 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3009 bool IsReturnType) const { 3010 3011 if (Ty->isVoidType()) 3012 return ABIArgInfo::getIgnore(); 3013 3014 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3015 Ty = EnumTy->getDecl()->getIntegerType(); 3016 3017 TypeInfo Info = getContext().getTypeInfo(Ty); 3018 uint64_t Width = Info.Width; 3019 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity(); 3020 3021 const RecordType *RT = Ty->getAs<RecordType>(); 3022 if (RT) { 3023 if (!IsReturnType) { 3024 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3025 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3026 } 3027 3028 if (RT->getDecl()->hasFlexibleArrayMember()) 3029 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3030 3031 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 3032 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 3033 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3034 Width)); 3035 } 3036 3037 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3038 // other targets. 3039 const Type *Base = nullptr; 3040 uint64_t NumElts = 0; 3041 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3042 if (FreeSSERegs >= NumElts) { 3043 FreeSSERegs -= NumElts; 3044 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3045 return ABIArgInfo::getDirect(); 3046 return ABIArgInfo::getExpand(); 3047 } 3048 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3049 } 3050 3051 3052 if (Ty->isMemberPointerType()) { 3053 // If the member pointer is represented by an LLVM int or ptr, pass it 3054 // directly. 3055 llvm::Type *LLTy = CGT.ConvertType(Ty); 3056 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3057 return ABIArgInfo::getDirect(); 3058 } 3059 3060 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3061 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3062 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3063 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3064 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3065 3066 // Otherwise, coerce it to a small integer. 3067 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3068 } 3069 3070 // Bool type is always extended to the ABI, other builtin types are not 3071 // extended. 3072 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3073 if (BT && BT->getKind() == BuiltinType::Bool) 3074 return ABIArgInfo::getExtend(); 3075 3076 return ABIArgInfo::getDirect(); 3077 } 3078 3079 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3080 bool IsVectorCall = 3081 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3082 3083 // We can use up to 4 SSE return registers with vectorcall. 3084 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3085 if (!getCXXABI().classifyReturnType(FI)) 3086 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3087 3088 // We can use up to 6 SSE register parameters with vectorcall. 3089 FreeSSERegs = IsVectorCall ? 6 : 0; 3090 for (auto &I : FI.arguments()) 3091 I.info = classify(I.type, FreeSSERegs, false); 3092 } 3093 3094 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3095 CodeGenFunction &CGF) const { 3096 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3097 3098 CGBuilderTy &Builder = CGF.Builder; 3099 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 3100 "ap"); 3101 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3102 llvm::Type *PTy = 3103 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3104 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3105 3106 uint64_t Offset = 3107 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 3108 llvm::Value *NextAddr = 3109 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3110 "ap.next"); 3111 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3112 3113 return AddrTyped; 3114 } 3115 3116 // PowerPC-32 3117 namespace { 3118 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3119 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3120 public: 3121 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 3122 3123 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3124 CodeGenFunction &CGF) const override; 3125 }; 3126 3127 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3128 public: 3129 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {} 3130 3131 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3132 // This is recovered from gcc output. 3133 return 1; // r1 is the dedicated stack pointer 3134 } 3135 3136 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3137 llvm::Value *Address) const override; 3138 3139 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3140 return 16; // Natural alignment for Altivec vectors. 3141 } 3142 }; 3143 3144 } 3145 3146 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3147 QualType Ty, 3148 CodeGenFunction &CGF) const { 3149 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3150 // TODO: Implement this. For now ignore. 3151 (void)CTy; 3152 return nullptr; 3153 } 3154 3155 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3156 bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3157 llvm::Type *CharPtr = CGF.Int8PtrTy; 3158 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy; 3159 3160 CGBuilderTy &Builder = CGF.Builder; 3161 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr"); 3162 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty); 3163 llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1)); 3164 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr); 3165 llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3)); 3166 llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr); 3167 llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4)); 3168 llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr); 3169 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr"); 3170 // Align GPR when TY is i64. 3171 if (isI64) { 3172 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1)); 3173 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1)); 3174 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1)); 3175 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR); 3176 } 3177 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr"); 3178 llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area"); 3179 llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty); 3180 llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area"); 3181 llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty); 3182 3183 llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR, 3184 Builder.getInt8(8), "cond"); 3185 3186 llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR, 3187 Builder.getInt8(isInt ? 4 : 8)); 3188 3189 llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty)); 3190 3191 if (Ty->isFloatingType()) 3192 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32)); 3193 3194 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3195 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3196 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3197 3198 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3199 3200 CGF.EmitBlock(UsingRegs); 3201 3202 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3203 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy); 3204 // Increase the GPR/FPR indexes. 3205 if (isInt) { 3206 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1)); 3207 Builder.CreateStore(GPR, GPRPtr); 3208 } else { 3209 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1)); 3210 Builder.CreateStore(FPR, FPRPtr); 3211 } 3212 CGF.EmitBranch(Cont); 3213 3214 CGF.EmitBlock(UsingOverflow); 3215 3216 // Increase the overflow area. 3217 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy); 3218 OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8)); 3219 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr); 3220 CGF.EmitBranch(Cont); 3221 3222 CGF.EmitBlock(Cont); 3223 3224 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr"); 3225 Result->addIncoming(Result1, UsingRegs); 3226 Result->addIncoming(Result2, UsingOverflow); 3227 3228 if (Ty->isAggregateType()) { 3229 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr") ; 3230 return Builder.CreateLoad(AGGPtr, false, "aggr"); 3231 } 3232 3233 return Result; 3234 } 3235 3236 bool 3237 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3238 llvm::Value *Address) const { 3239 // This is calculated from the LLVM and GCC tables and verified 3240 // against gcc output. AFAIK all ABIs use the same encoding. 3241 3242 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3243 3244 llvm::IntegerType *i8 = CGF.Int8Ty; 3245 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3246 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3247 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3248 3249 // 0-31: r0-31, the 4-byte general-purpose registers 3250 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3251 3252 // 32-63: fp0-31, the 8-byte floating-point registers 3253 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3254 3255 // 64-76 are various 4-byte special-purpose registers: 3256 // 64: mq 3257 // 65: lr 3258 // 66: ctr 3259 // 67: ap 3260 // 68-75 cr0-7 3261 // 76: xer 3262 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3263 3264 // 77-108: v0-31, the 16-byte vector registers 3265 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3266 3267 // 109: vrsave 3268 // 110: vscr 3269 // 111: spe_acc 3270 // 112: spefscr 3271 // 113: sfp 3272 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3273 3274 return false; 3275 } 3276 3277 // PowerPC-64 3278 3279 namespace { 3280 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3281 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3282 public: 3283 enum ABIKind { 3284 ELFv1 = 0, 3285 ELFv2 3286 }; 3287 3288 private: 3289 static const unsigned GPRBits = 64; 3290 ABIKind Kind; 3291 bool HasQPX; 3292 3293 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3294 // will be passed in a QPX register. 3295 bool IsQPXVectorTy(const Type *Ty) const { 3296 if (!HasQPX) 3297 return false; 3298 3299 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3300 unsigned NumElements = VT->getNumElements(); 3301 if (NumElements == 1) 3302 return false; 3303 3304 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3305 if (getContext().getTypeSize(Ty) <= 256) 3306 return true; 3307 } else if (VT->getElementType()-> 3308 isSpecificBuiltinType(BuiltinType::Float)) { 3309 if (getContext().getTypeSize(Ty) <= 128) 3310 return true; 3311 } 3312 } 3313 3314 return false; 3315 } 3316 3317 bool IsQPXVectorTy(QualType Ty) const { 3318 return IsQPXVectorTy(Ty.getTypePtr()); 3319 } 3320 3321 public: 3322 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3323 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3324 3325 bool isPromotableTypeForABI(QualType Ty) const; 3326 bool isAlignedParamType(QualType Ty, bool &Align32) const; 3327 3328 ABIArgInfo classifyReturnType(QualType RetTy) const; 3329 ABIArgInfo classifyArgumentType(QualType Ty) const; 3330 3331 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3332 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3333 uint64_t Members) const override; 3334 3335 // TODO: We can add more logic to computeInfo to improve performance. 3336 // Example: For aggregate arguments that fit in a register, we could 3337 // use getDirectInReg (as is done below for structs containing a single 3338 // floating-point value) to avoid pushing them to memory on function 3339 // entry. This would require changing the logic in PPCISelLowering 3340 // when lowering the parameters in the caller and args in the callee. 3341 void computeInfo(CGFunctionInfo &FI) const override { 3342 if (!getCXXABI().classifyReturnType(FI)) 3343 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3344 for (auto &I : FI.arguments()) { 3345 // We rely on the default argument classification for the most part. 3346 // One exception: An aggregate containing a single floating-point 3347 // or vector item must be passed in a register if one is available. 3348 const Type *T = isSingleElementStruct(I.type, getContext()); 3349 if (T) { 3350 const BuiltinType *BT = T->getAs<BuiltinType>(); 3351 if (IsQPXVectorTy(T) || 3352 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3353 (BT && BT->isFloatingPoint())) { 3354 QualType QT(T, 0); 3355 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3356 continue; 3357 } 3358 } 3359 I.info = classifyArgumentType(I.type); 3360 } 3361 } 3362 3363 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3364 CodeGenFunction &CGF) const override; 3365 }; 3366 3367 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3368 bool HasQPX; 3369 3370 public: 3371 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3372 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3373 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)), 3374 HasQPX(HasQPX) {} 3375 3376 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3377 // This is recovered from gcc output. 3378 return 1; // r1 is the dedicated stack pointer 3379 } 3380 3381 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3382 llvm::Value *Address) const override; 3383 3384 unsigned getOpenMPSimdDefaultAlignment(QualType QT) const override { 3385 if (HasQPX) 3386 if (const PointerType *PT = QT->getAs<PointerType>()) 3387 if (PT->getPointeeType()->isSpecificBuiltinType(BuiltinType::Double)) 3388 return 32; // Natural alignment for QPX doubles. 3389 3390 return 16; // Natural alignment for Altivec and VSX vectors. 3391 } 3392 }; 3393 3394 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3395 public: 3396 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3397 3398 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3399 // This is recovered from gcc output. 3400 return 1; // r1 is the dedicated stack pointer 3401 } 3402 3403 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3404 llvm::Value *Address) const override; 3405 3406 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3407 return 16; // Natural alignment for Altivec vectors. 3408 } 3409 }; 3410 3411 } 3412 3413 // Return true if the ABI requires Ty to be passed sign- or zero- 3414 // extended to 64 bits. 3415 bool 3416 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3417 // Treat an enum type as its underlying type. 3418 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3419 Ty = EnumTy->getDecl()->getIntegerType(); 3420 3421 // Promotable integer types are required to be promoted by the ABI. 3422 if (Ty->isPromotableIntegerType()) 3423 return true; 3424 3425 // In addition to the usual promotable integer types, we also need to 3426 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3427 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3428 switch (BT->getKind()) { 3429 case BuiltinType::Int: 3430 case BuiltinType::UInt: 3431 return true; 3432 default: 3433 break; 3434 } 3435 3436 return false; 3437 } 3438 3439 /// isAlignedParamType - Determine whether a type requires 16-byte 3440 /// alignment in the parameter area. 3441 bool 3442 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const { 3443 Align32 = false; 3444 3445 // Complex types are passed just like their elements. 3446 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3447 Ty = CTy->getElementType(); 3448 3449 // Only vector types of size 16 bytes need alignment (larger types are 3450 // passed via reference, smaller types are not aligned). 3451 if (IsQPXVectorTy(Ty)) { 3452 if (getContext().getTypeSize(Ty) > 128) 3453 Align32 = true; 3454 3455 return true; 3456 } else if (Ty->isVectorType()) { 3457 return getContext().getTypeSize(Ty) == 128; 3458 } 3459 3460 // For single-element float/vector structs, we consider the whole type 3461 // to have the same alignment requirements as its single element. 3462 const Type *AlignAsType = nullptr; 3463 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3464 if (EltType) { 3465 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3466 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 3467 getContext().getTypeSize(EltType) == 128) || 3468 (BT && BT->isFloatingPoint())) 3469 AlignAsType = EltType; 3470 } 3471 3472 // Likewise for ELFv2 homogeneous aggregates. 3473 const Type *Base = nullptr; 3474 uint64_t Members = 0; 3475 if (!AlignAsType && Kind == ELFv2 && 3476 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3477 AlignAsType = Base; 3478 3479 // With special case aggregates, only vector base types need alignment. 3480 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 3481 if (getContext().getTypeSize(AlignAsType) > 128) 3482 Align32 = true; 3483 3484 return true; 3485 } else if (AlignAsType) { 3486 return AlignAsType->isVectorType(); 3487 } 3488 3489 // Otherwise, we only need alignment for any aggregate type that 3490 // has an alignment requirement of >= 16 bytes. 3491 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 3492 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 3493 Align32 = true; 3494 return true; 3495 } 3496 3497 return false; 3498 } 3499 3500 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3501 /// aggregate. Base is set to the base element type, and Members is set 3502 /// to the number of base elements. 3503 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3504 uint64_t &Members) const { 3505 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3506 uint64_t NElements = AT->getSize().getZExtValue(); 3507 if (NElements == 0) 3508 return false; 3509 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3510 return false; 3511 Members *= NElements; 3512 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3513 const RecordDecl *RD = RT->getDecl(); 3514 if (RD->hasFlexibleArrayMember()) 3515 return false; 3516 3517 Members = 0; 3518 3519 // If this is a C++ record, check the bases first. 3520 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3521 for (const auto &I : CXXRD->bases()) { 3522 // Ignore empty records. 3523 if (isEmptyRecord(getContext(), I.getType(), true)) 3524 continue; 3525 3526 uint64_t FldMembers; 3527 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3528 return false; 3529 3530 Members += FldMembers; 3531 } 3532 } 3533 3534 for (const auto *FD : RD->fields()) { 3535 // Ignore (non-zero arrays of) empty records. 3536 QualType FT = FD->getType(); 3537 while (const ConstantArrayType *AT = 3538 getContext().getAsConstantArrayType(FT)) { 3539 if (AT->getSize().getZExtValue() == 0) 3540 return false; 3541 FT = AT->getElementType(); 3542 } 3543 if (isEmptyRecord(getContext(), FT, true)) 3544 continue; 3545 3546 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3547 if (getContext().getLangOpts().CPlusPlus && 3548 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3549 continue; 3550 3551 uint64_t FldMembers; 3552 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3553 return false; 3554 3555 Members = (RD->isUnion() ? 3556 std::max(Members, FldMembers) : Members + FldMembers); 3557 } 3558 3559 if (!Base) 3560 return false; 3561 3562 // Ensure there is no padding. 3563 if (getContext().getTypeSize(Base) * Members != 3564 getContext().getTypeSize(Ty)) 3565 return false; 3566 } else { 3567 Members = 1; 3568 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3569 Members = 2; 3570 Ty = CT->getElementType(); 3571 } 3572 3573 // Most ABIs only support float, double, and some vector type widths. 3574 if (!isHomogeneousAggregateBaseType(Ty)) 3575 return false; 3576 3577 // The base type must be the same for all members. Types that 3578 // agree in both total size and mode (float vs. vector) are 3579 // treated as being equivalent here. 3580 const Type *TyPtr = Ty.getTypePtr(); 3581 if (!Base) 3582 Base = TyPtr; 3583 3584 if (Base->isVectorType() != TyPtr->isVectorType() || 3585 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3586 return false; 3587 } 3588 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3589 } 3590 3591 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3592 // Homogeneous aggregates for ELFv2 must have base types of float, 3593 // double, long double, or 128-bit vectors. 3594 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3595 if (BT->getKind() == BuiltinType::Float || 3596 BT->getKind() == BuiltinType::Double || 3597 BT->getKind() == BuiltinType::LongDouble) 3598 return true; 3599 } 3600 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3601 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 3602 return true; 3603 } 3604 return false; 3605 } 3606 3607 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 3608 const Type *Base, uint64_t Members) const { 3609 // Vector types require one register, floating point types require one 3610 // or two registers depending on their size. 3611 uint32_t NumRegs = 3612 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 3613 3614 // Homogeneous Aggregates may occupy at most 8 registers. 3615 return Members * NumRegs <= 8; 3616 } 3617 3618 ABIArgInfo 3619 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3620 Ty = useFirstFieldIfTransparentUnion(Ty); 3621 3622 if (Ty->isAnyComplexType()) 3623 return ABIArgInfo::getDirect(); 3624 3625 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3626 // or via reference (larger than 16 bytes). 3627 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 3628 uint64_t Size = getContext().getTypeSize(Ty); 3629 if (Size > 128) 3630 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3631 else if (Size < 128) { 3632 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3633 return ABIArgInfo::getDirect(CoerceTy); 3634 } 3635 } 3636 3637 if (isAggregateTypeForABI(Ty)) { 3638 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3639 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3640 3641 bool Align32; 3642 uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ? 3643 (Align32 ? 32 : 16) : 8; 3644 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3645 3646 // ELFv2 homogeneous aggregates are passed as array types. 3647 const Type *Base = nullptr; 3648 uint64_t Members = 0; 3649 if (Kind == ELFv2 && 3650 isHomogeneousAggregate(Ty, Base, Members)) { 3651 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3652 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3653 return ABIArgInfo::getDirect(CoerceTy); 3654 } 3655 3656 // If an aggregate may end up fully in registers, we do not 3657 // use the ByVal method, but pass the aggregate as array. 3658 // This is usually beneficial since we avoid forcing the 3659 // back-end to store the argument to memory. 3660 uint64_t Bits = getContext().getTypeSize(Ty); 3661 if (Bits > 0 && Bits <= 8 * GPRBits) { 3662 llvm::Type *CoerceTy; 3663 3664 // Types up to 8 bytes are passed as integer type (which will be 3665 // properly aligned in the argument save area doubleword). 3666 if (Bits <= GPRBits) 3667 CoerceTy = llvm::IntegerType::get(getVMContext(), 3668 llvm::RoundUpToAlignment(Bits, 8)); 3669 // Larger types are passed as arrays, with the base type selected 3670 // according to the required alignment in the save area. 3671 else { 3672 uint64_t RegBits = ABIAlign * 8; 3673 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3674 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3675 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3676 } 3677 3678 return ABIArgInfo::getDirect(CoerceTy); 3679 } 3680 3681 // All other aggregates are passed ByVal. 3682 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3683 /*Realign=*/TyAlign > ABIAlign); 3684 } 3685 3686 return (isPromotableTypeForABI(Ty) ? 3687 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3688 } 3689 3690 ABIArgInfo 3691 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3692 if (RetTy->isVoidType()) 3693 return ABIArgInfo::getIgnore(); 3694 3695 if (RetTy->isAnyComplexType()) 3696 return ABIArgInfo::getDirect(); 3697 3698 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3699 // or via reference (larger than 16 bytes). 3700 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 3701 uint64_t Size = getContext().getTypeSize(RetTy); 3702 if (Size > 128) 3703 return ABIArgInfo::getIndirect(0); 3704 else if (Size < 128) { 3705 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3706 return ABIArgInfo::getDirect(CoerceTy); 3707 } 3708 } 3709 3710 if (isAggregateTypeForABI(RetTy)) { 3711 // ELFv2 homogeneous aggregates are returned as array types. 3712 const Type *Base = nullptr; 3713 uint64_t Members = 0; 3714 if (Kind == ELFv2 && 3715 isHomogeneousAggregate(RetTy, Base, Members)) { 3716 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3717 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3718 return ABIArgInfo::getDirect(CoerceTy); 3719 } 3720 3721 // ELFv2 small aggregates are returned in up to two registers. 3722 uint64_t Bits = getContext().getTypeSize(RetTy); 3723 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3724 if (Bits == 0) 3725 return ABIArgInfo::getIgnore(); 3726 3727 llvm::Type *CoerceTy; 3728 if (Bits > GPRBits) { 3729 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3730 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 3731 } else 3732 CoerceTy = llvm::IntegerType::get(getVMContext(), 3733 llvm::RoundUpToAlignment(Bits, 8)); 3734 return ABIArgInfo::getDirect(CoerceTy); 3735 } 3736 3737 // All other aggregates are returned indirectly. 3738 return ABIArgInfo::getIndirect(0); 3739 } 3740 3741 return (isPromotableTypeForABI(RetTy) ? 3742 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3743 } 3744 3745 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3746 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3747 QualType Ty, 3748 CodeGenFunction &CGF) const { 3749 llvm::Type *BP = CGF.Int8PtrTy; 3750 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3751 3752 CGBuilderTy &Builder = CGF.Builder; 3753 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3754 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3755 3756 // Handle types that require 16-byte alignment in the parameter save area. 3757 bool Align32; 3758 if (isAlignedParamType(Ty, Align32)) { 3759 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3760 AddrAsInt = Builder.CreateAdd(AddrAsInt, 3761 Builder.getInt64(Align32 ? 31 : 15)); 3762 AddrAsInt = Builder.CreateAnd(AddrAsInt, 3763 Builder.getInt64(Align32 ? -32 : -16)); 3764 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3765 } 3766 3767 // Update the va_list pointer. The pointer should be bumped by the 3768 // size of the object. We can trust getTypeSize() except for a complex 3769 // type whose base type is smaller than a doubleword. For these, the 3770 // size of the object is 16 bytes; see below for further explanation. 3771 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3772 QualType BaseTy; 3773 unsigned CplxBaseSize = 0; 3774 3775 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3776 BaseTy = CTy->getElementType(); 3777 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3778 if (CplxBaseSize < 8) 3779 SizeInBytes = 16; 3780 } 3781 3782 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3783 llvm::Value *NextAddr = 3784 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3785 "ap.next"); 3786 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3787 3788 // If we have a complex type and the base type is smaller than 8 bytes, 3789 // the ABI calls for the real and imaginary parts to be right-adjusted 3790 // in separate doublewords. However, Clang expects us to produce a 3791 // pointer to a structure with the two parts packed tightly. So generate 3792 // loads of the real and imaginary parts relative to the va_list pointer, 3793 // and store them to a temporary structure. 3794 if (CplxBaseSize && CplxBaseSize < 8) { 3795 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3796 llvm::Value *ImagAddr = RealAddr; 3797 if (CGF.CGM.getDataLayout().isBigEndian()) { 3798 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3799 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3800 } else { 3801 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3802 } 3803 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3804 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3805 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3806 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3807 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3808 llvm::AllocaInst *Ptr = 3809 CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx"); 3810 llvm::Value *RealPtr = 3811 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real"); 3812 llvm::Value *ImagPtr = 3813 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag"); 3814 Builder.CreateStore(Real, RealPtr, false); 3815 Builder.CreateStore(Imag, ImagPtr, false); 3816 return Ptr; 3817 } 3818 3819 // If the argument is smaller than 8 bytes, it is right-adjusted in 3820 // its doubleword slot. Adjust the pointer to pick it up from the 3821 // correct offset. 3822 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3823 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3824 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3825 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3826 } 3827 3828 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3829 return Builder.CreateBitCast(Addr, PTy); 3830 } 3831 3832 static bool 3833 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3834 llvm::Value *Address) { 3835 // This is calculated from the LLVM and GCC tables and verified 3836 // against gcc output. AFAIK all ABIs use the same encoding. 3837 3838 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3839 3840 llvm::IntegerType *i8 = CGF.Int8Ty; 3841 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3842 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3843 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3844 3845 // 0-31: r0-31, the 8-byte general-purpose registers 3846 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3847 3848 // 32-63: fp0-31, the 8-byte floating-point registers 3849 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3850 3851 // 64-76 are various 4-byte special-purpose registers: 3852 // 64: mq 3853 // 65: lr 3854 // 66: ctr 3855 // 67: ap 3856 // 68-75 cr0-7 3857 // 76: xer 3858 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3859 3860 // 77-108: v0-31, the 16-byte vector registers 3861 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3862 3863 // 109: vrsave 3864 // 110: vscr 3865 // 111: spe_acc 3866 // 112: spefscr 3867 // 113: sfp 3868 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3869 3870 return false; 3871 } 3872 3873 bool 3874 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3875 CodeGen::CodeGenFunction &CGF, 3876 llvm::Value *Address) const { 3877 3878 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3879 } 3880 3881 bool 3882 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3883 llvm::Value *Address) const { 3884 3885 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3886 } 3887 3888 //===----------------------------------------------------------------------===// 3889 // AArch64 ABI Implementation 3890 //===----------------------------------------------------------------------===// 3891 3892 namespace { 3893 3894 class AArch64ABIInfo : public ABIInfo { 3895 public: 3896 enum ABIKind { 3897 AAPCS = 0, 3898 DarwinPCS 3899 }; 3900 3901 private: 3902 ABIKind Kind; 3903 3904 public: 3905 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3906 3907 private: 3908 ABIKind getABIKind() const { return Kind; } 3909 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3910 3911 ABIArgInfo classifyReturnType(QualType RetTy) const; 3912 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3913 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3914 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3915 uint64_t Members) const override; 3916 3917 bool isIllegalVectorType(QualType Ty) const; 3918 3919 void computeInfo(CGFunctionInfo &FI) const override { 3920 if (!getCXXABI().classifyReturnType(FI)) 3921 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3922 3923 for (auto &it : FI.arguments()) 3924 it.info = classifyArgumentType(it.type); 3925 } 3926 3927 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3928 CodeGenFunction &CGF) const; 3929 3930 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3931 CodeGenFunction &CGF) const; 3932 3933 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3934 CodeGenFunction &CGF) const override { 3935 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3936 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3937 } 3938 }; 3939 3940 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3941 public: 3942 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3943 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3944 3945 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3946 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3947 } 3948 3949 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3950 return 31; 3951 } 3952 3953 bool doesReturnSlotInterfereWithArgs() const override { return false; } 3954 }; 3955 } 3956 3957 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 3958 Ty = useFirstFieldIfTransparentUnion(Ty); 3959 3960 // Handle illegal vector types here. 3961 if (isIllegalVectorType(Ty)) { 3962 uint64_t Size = getContext().getTypeSize(Ty); 3963 if (Size <= 32) { 3964 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3965 return ABIArgInfo::getDirect(ResType); 3966 } 3967 if (Size == 64) { 3968 llvm::Type *ResType = 3969 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3970 return ABIArgInfo::getDirect(ResType); 3971 } 3972 if (Size == 128) { 3973 llvm::Type *ResType = 3974 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3975 return ABIArgInfo::getDirect(ResType); 3976 } 3977 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3978 } 3979 3980 if (!isAggregateTypeForABI(Ty)) { 3981 // Treat an enum type as its underlying type. 3982 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3983 Ty = EnumTy->getDecl()->getIntegerType(); 3984 3985 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3986 ? ABIArgInfo::getExtend() 3987 : ABIArgInfo::getDirect()); 3988 } 3989 3990 // Structures with either a non-trivial destructor or a non-trivial 3991 // copy constructor are always indirect. 3992 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3993 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3994 CGCXXABI::RAA_DirectInMemory); 3995 } 3996 3997 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3998 // elsewhere for GNU compatibility. 3999 if (isEmptyRecord(getContext(), Ty, true)) { 4000 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4001 return ABIArgInfo::getIgnore(); 4002 4003 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4004 } 4005 4006 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4007 const Type *Base = nullptr; 4008 uint64_t Members = 0; 4009 if (isHomogeneousAggregate(Ty, Base, Members)) { 4010 return ABIArgInfo::getDirect( 4011 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4012 } 4013 4014 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4015 uint64_t Size = getContext().getTypeSize(Ty); 4016 if (Size <= 128) { 4017 unsigned Alignment = getContext().getTypeAlign(Ty); 4018 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4019 4020 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4021 // For aggregates with 16-byte alignment, we use i128. 4022 if (Alignment < 128 && Size == 128) { 4023 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4024 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4025 } 4026 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4027 } 4028 4029 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4030 } 4031 4032 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4033 if (RetTy->isVoidType()) 4034 return ABIArgInfo::getIgnore(); 4035 4036 // Large vector types should be returned via memory. 4037 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4038 return ABIArgInfo::getIndirect(0); 4039 4040 if (!isAggregateTypeForABI(RetTy)) { 4041 // Treat an enum type as its underlying type. 4042 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4043 RetTy = EnumTy->getDecl()->getIntegerType(); 4044 4045 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4046 ? ABIArgInfo::getExtend() 4047 : ABIArgInfo::getDirect()); 4048 } 4049 4050 if (isEmptyRecord(getContext(), RetTy, true)) 4051 return ABIArgInfo::getIgnore(); 4052 4053 const Type *Base = nullptr; 4054 uint64_t Members = 0; 4055 if (isHomogeneousAggregate(RetTy, Base, Members)) 4056 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4057 return ABIArgInfo::getDirect(); 4058 4059 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4060 uint64_t Size = getContext().getTypeSize(RetTy); 4061 if (Size <= 128) { 4062 unsigned Alignment = getContext().getTypeAlign(RetTy); 4063 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4064 4065 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4066 // For aggregates with 16-byte alignment, we use i128. 4067 if (Alignment < 128 && Size == 128) { 4068 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4069 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4070 } 4071 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4072 } 4073 4074 return ABIArgInfo::getIndirect(0); 4075 } 4076 4077 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4078 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4079 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4080 // Check whether VT is legal. 4081 unsigned NumElements = VT->getNumElements(); 4082 uint64_t Size = getContext().getTypeSize(VT); 4083 // NumElements should be power of 2 between 1 and 16. 4084 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 4085 return true; 4086 return Size != 64 && (Size != 128 || NumElements == 1); 4087 } 4088 return false; 4089 } 4090 4091 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4092 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4093 // point type or a short-vector type. This is the same as the 32-bit ABI, 4094 // but with the difference that any floating-point type is allowed, 4095 // including __fp16. 4096 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4097 if (BT->isFloatingPoint()) 4098 return true; 4099 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4100 unsigned VecSize = getContext().getTypeSize(VT); 4101 if (VecSize == 64 || VecSize == 128) 4102 return true; 4103 } 4104 return false; 4105 } 4106 4107 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4108 uint64_t Members) const { 4109 return Members <= 4; 4110 } 4111 4112 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, 4113 QualType Ty, 4114 CodeGenFunction &CGF) const { 4115 ABIArgInfo AI = classifyArgumentType(Ty); 4116 bool IsIndirect = AI.isIndirect(); 4117 4118 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4119 if (IsIndirect) 4120 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4121 else if (AI.getCoerceToType()) 4122 BaseTy = AI.getCoerceToType(); 4123 4124 unsigned NumRegs = 1; 4125 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4126 BaseTy = ArrTy->getElementType(); 4127 NumRegs = ArrTy->getNumElements(); 4128 } 4129 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4130 4131 // The AArch64 va_list type and handling is specified in the Procedure Call 4132 // Standard, section B.4: 4133 // 4134 // struct { 4135 // void *__stack; 4136 // void *__gr_top; 4137 // void *__vr_top; 4138 // int __gr_offs; 4139 // int __vr_offs; 4140 // }; 4141 4142 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4143 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4144 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4145 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4146 auto &Ctx = CGF.getContext(); 4147 4148 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 4149 int reg_top_index; 4150 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8; 4151 if (!IsFPR) { 4152 // 3 is the field number of __gr_offs 4153 reg_offs_p = 4154 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p"); 4155 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4156 reg_top_index = 1; // field number for __gr_top 4157 RegSize = llvm::RoundUpToAlignment(RegSize, 8); 4158 } else { 4159 // 4 is the field number of __vr_offs. 4160 reg_offs_p = 4161 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p"); 4162 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4163 reg_top_index = 2; // field number for __vr_top 4164 RegSize = 16 * NumRegs; 4165 } 4166 4167 //======================================= 4168 // Find out where argument was passed 4169 //======================================= 4170 4171 // If reg_offs >= 0 we're already using the stack for this type of 4172 // argument. We don't want to keep updating reg_offs (in case it overflows, 4173 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4174 // whatever they get). 4175 llvm::Value *UsingStack = nullptr; 4176 UsingStack = CGF.Builder.CreateICmpSGE( 4177 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4178 4179 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4180 4181 // Otherwise, at least some kind of argument could go in these registers, the 4182 // question is whether this particular type is too big. 4183 CGF.EmitBlock(MaybeRegBlock); 4184 4185 // Integer arguments may need to correct register alignment (for example a 4186 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4187 // align __gr_offs to calculate the potential address. 4188 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4189 int Align = Ctx.getTypeAlign(Ty) / 8; 4190 4191 reg_offs = CGF.Builder.CreateAdd( 4192 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4193 "align_regoffs"); 4194 reg_offs = CGF.Builder.CreateAnd( 4195 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4196 "aligned_regoffs"); 4197 } 4198 4199 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4200 llvm::Value *NewOffset = nullptr; 4201 NewOffset = CGF.Builder.CreateAdd( 4202 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4203 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4204 4205 // Now we're in a position to decide whether this argument really was in 4206 // registers or not. 4207 llvm::Value *InRegs = nullptr; 4208 InRegs = CGF.Builder.CreateICmpSLE( 4209 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4210 4211 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4212 4213 //======================================= 4214 // Argument was in registers 4215 //======================================= 4216 4217 // Now we emit the code for if the argument was originally passed in 4218 // registers. First start the appropriate block: 4219 CGF.EmitBlock(InRegBlock); 4220 4221 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 4222 reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index, 4223 "reg_top_p"); 4224 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4225 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4226 llvm::Value *RegAddr = nullptr; 4227 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4228 4229 if (IsIndirect) { 4230 // If it's been passed indirectly (actually a struct), whatever we find from 4231 // stored registers or on the stack will actually be a struct **. 4232 MemTy = llvm::PointerType::getUnqual(MemTy); 4233 } 4234 4235 const Type *Base = nullptr; 4236 uint64_t NumMembers = 0; 4237 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4238 if (IsHFA && NumMembers > 1) { 4239 // Homogeneous aggregates passed in registers will have their elements split 4240 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4241 // qN+1, ...). We reload and store into a temporary local variable 4242 // contiguously. 4243 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4244 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4245 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4246 llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy); 4247 int Offset = 0; 4248 4249 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 4250 Offset = 16 - Ctx.getTypeSize(Base) / 8; 4251 for (unsigned i = 0; i < NumMembers; ++i) { 4252 llvm::Value *BaseOffset = 4253 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 4254 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4255 LoadAddr = CGF.Builder.CreateBitCast( 4256 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 4257 llvm::Value *StoreAddr = 4258 CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i); 4259 4260 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4261 CGF.Builder.CreateStore(Elem, StoreAddr); 4262 } 4263 4264 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4265 } else { 4266 // Otherwise the object is contiguous in memory 4267 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 4268 if (CGF.CGM.getDataLayout().isBigEndian() && 4269 (IsHFA || !isAggregateTypeForABI(Ty)) && 4270 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 4271 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 4272 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 4273 4274 BaseAddr = CGF.Builder.CreateAdd( 4275 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4276 4277 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 4278 } 4279 4280 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4281 } 4282 4283 CGF.EmitBranch(ContBlock); 4284 4285 //======================================= 4286 // Argument was on the stack 4287 //======================================= 4288 CGF.EmitBlock(OnStackBlock); 4289 4290 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 4291 stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p"); 4292 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4293 4294 // Again, stack arguments may need realigmnent. In this case both integer and 4295 // floating-point ones might be affected. 4296 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4297 int Align = Ctx.getTypeAlign(Ty) / 8; 4298 4299 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4300 4301 OnStackAddr = CGF.Builder.CreateAdd( 4302 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4303 "align_stack"); 4304 OnStackAddr = CGF.Builder.CreateAnd( 4305 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4306 "align_stack"); 4307 4308 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4309 } 4310 4311 uint64_t StackSize; 4312 if (IsIndirect) 4313 StackSize = 8; 4314 else 4315 StackSize = Ctx.getTypeSize(Ty) / 8; 4316 4317 // All stack slots are 8 bytes 4318 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4319 4320 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4321 llvm::Value *NewStack = 4322 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 4323 4324 // Write the new value of __stack for the next call to va_arg 4325 CGF.Builder.CreateStore(NewStack, stack_p); 4326 4327 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4328 Ctx.getTypeSize(Ty) < 64) { 4329 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 4330 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4331 4332 OnStackAddr = CGF.Builder.CreateAdd( 4333 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4334 4335 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4336 } 4337 4338 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4339 4340 CGF.EmitBranch(ContBlock); 4341 4342 //======================================= 4343 // Tidy up 4344 //======================================= 4345 CGF.EmitBlock(ContBlock); 4346 4347 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4348 ResAddr->addIncoming(RegAddr, InRegBlock); 4349 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4350 4351 if (IsIndirect) 4352 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4353 4354 return ResAddr; 4355 } 4356 4357 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 4358 CodeGenFunction &CGF) const { 4359 // We do not support va_arg for aggregates or illegal vector types. 4360 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 4361 // other cases. 4362 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4363 return nullptr; 4364 4365 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4366 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 4367 4368 const Type *Base = nullptr; 4369 uint64_t Members = 0; 4370 bool isHA = isHomogeneousAggregate(Ty, Base, Members); 4371 4372 bool isIndirect = false; 4373 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 4374 // be passed indirectly. 4375 if (Size > 16 && !isHA) { 4376 isIndirect = true; 4377 Size = 8; 4378 Align = 8; 4379 } 4380 4381 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 4382 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 4383 4384 CGBuilderTy &Builder = CGF.Builder; 4385 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4386 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4387 4388 if (isEmptyRecord(getContext(), Ty, true)) { 4389 // These are ignored for parameter passing purposes. 4390 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4391 return Builder.CreateBitCast(Addr, PTy); 4392 } 4393 4394 const uint64_t MinABIAlign = 8; 4395 if (Align > MinABIAlign) { 4396 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 4397 Addr = Builder.CreateGEP(Addr, Offset); 4398 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 4399 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 4400 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 4401 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 4402 } 4403 4404 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4405 llvm::Value *NextAddr = Builder.CreateGEP( 4406 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4407 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4408 4409 if (isIndirect) 4410 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4411 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4412 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4413 4414 return AddrTyped; 4415 } 4416 4417 //===----------------------------------------------------------------------===// 4418 // ARM ABI Implementation 4419 //===----------------------------------------------------------------------===// 4420 4421 namespace { 4422 4423 class ARMABIInfo : public ABIInfo { 4424 public: 4425 enum ABIKind { 4426 APCS = 0, 4427 AAPCS = 1, 4428 AAPCS_VFP 4429 }; 4430 4431 private: 4432 ABIKind Kind; 4433 4434 public: 4435 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 4436 setCCs(); 4437 } 4438 4439 bool isEABI() const { 4440 switch (getTarget().getTriple().getEnvironment()) { 4441 case llvm::Triple::Android: 4442 case llvm::Triple::EABI: 4443 case llvm::Triple::EABIHF: 4444 case llvm::Triple::GNUEABI: 4445 case llvm::Triple::GNUEABIHF: 4446 return true; 4447 default: 4448 return false; 4449 } 4450 } 4451 4452 bool isEABIHF() const { 4453 switch (getTarget().getTriple().getEnvironment()) { 4454 case llvm::Triple::EABIHF: 4455 case llvm::Triple::GNUEABIHF: 4456 return true; 4457 default: 4458 return false; 4459 } 4460 } 4461 4462 ABIKind getABIKind() const { return Kind; } 4463 4464 private: 4465 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4466 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4467 bool isIllegalVectorType(QualType Ty) const; 4468 4469 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4470 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4471 uint64_t Members) const override; 4472 4473 void computeInfo(CGFunctionInfo &FI) const override; 4474 4475 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4476 CodeGenFunction &CGF) const override; 4477 4478 llvm::CallingConv::ID getLLVMDefaultCC() const; 4479 llvm::CallingConv::ID getABIDefaultCC() const; 4480 void setCCs(); 4481 }; 4482 4483 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4484 public: 4485 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4486 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4487 4488 const ARMABIInfo &getABIInfo() const { 4489 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4490 } 4491 4492 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4493 return 13; 4494 } 4495 4496 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4497 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4498 } 4499 4500 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4501 llvm::Value *Address) const override { 4502 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4503 4504 // 0-15 are the 16 integer registers. 4505 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4506 return false; 4507 } 4508 4509 unsigned getSizeOfUnwindException() const override { 4510 if (getABIInfo().isEABI()) return 88; 4511 return TargetCodeGenInfo::getSizeOfUnwindException(); 4512 } 4513 4514 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4515 CodeGen::CodeGenModule &CGM) const override { 4516 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4517 if (!FD) 4518 return; 4519 4520 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4521 if (!Attr) 4522 return; 4523 4524 const char *Kind; 4525 switch (Attr->getInterrupt()) { 4526 case ARMInterruptAttr::Generic: Kind = ""; break; 4527 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4528 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4529 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4530 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4531 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4532 } 4533 4534 llvm::Function *Fn = cast<llvm::Function>(GV); 4535 4536 Fn->addFnAttr("interrupt", Kind); 4537 4538 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4539 return; 4540 4541 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4542 // however this is not necessarily true on taking any interrupt. Instruct 4543 // the backend to perform a realignment as part of the function prologue. 4544 llvm::AttrBuilder B; 4545 B.addStackAlignmentAttr(8); 4546 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4547 llvm::AttributeSet::get(CGM.getLLVMContext(), 4548 llvm::AttributeSet::FunctionIndex, 4549 B)); 4550 } 4551 }; 4552 4553 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 4554 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV, 4555 CodeGen::CodeGenModule &CGM) const; 4556 4557 public: 4558 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4559 : ARMTargetCodeGenInfo(CGT, K) {} 4560 4561 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4562 CodeGen::CodeGenModule &CGM) const override; 4563 }; 4564 4565 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute( 4566 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4567 if (!isa<FunctionDecl>(D)) 4568 return; 4569 if (CGM.getCodeGenOpts().StackProbeSize == 4096) 4570 return; 4571 4572 llvm::Function *F = cast<llvm::Function>(GV); 4573 F->addFnAttr("stack-probe-size", 4574 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 4575 } 4576 4577 void WindowsARMTargetCodeGenInfo::SetTargetAttributes( 4578 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4579 ARMTargetCodeGenInfo::SetTargetAttributes(D, GV, CGM); 4580 addStackProbeSizeTargetAttribute(D, GV, CGM); 4581 } 4582 } 4583 4584 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4585 if (!getCXXABI().classifyReturnType(FI)) 4586 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4587 4588 for (auto &I : FI.arguments()) 4589 I.info = classifyArgumentType(I.type, FI.isVariadic()); 4590 4591 // Always honor user-specified calling convention. 4592 if (FI.getCallingConvention() != llvm::CallingConv::C) 4593 return; 4594 4595 llvm::CallingConv::ID cc = getRuntimeCC(); 4596 if (cc != llvm::CallingConv::C) 4597 FI.setEffectiveCallingConvention(cc); 4598 } 4599 4600 /// Return the default calling convention that LLVM will use. 4601 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4602 // The default calling convention that LLVM will infer. 4603 if (isEABIHF()) 4604 return llvm::CallingConv::ARM_AAPCS_VFP; 4605 else if (isEABI()) 4606 return llvm::CallingConv::ARM_AAPCS; 4607 else 4608 return llvm::CallingConv::ARM_APCS; 4609 } 4610 4611 /// Return the calling convention that our ABI would like us to use 4612 /// as the C calling convention. 4613 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4614 switch (getABIKind()) { 4615 case APCS: return llvm::CallingConv::ARM_APCS; 4616 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4617 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4618 } 4619 llvm_unreachable("bad ABI kind"); 4620 } 4621 4622 void ARMABIInfo::setCCs() { 4623 assert(getRuntimeCC() == llvm::CallingConv::C); 4624 4625 // Don't muddy up the IR with a ton of explicit annotations if 4626 // they'd just match what LLVM will infer from the triple. 4627 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4628 if (abiCC != getLLVMDefaultCC()) 4629 RuntimeCC = abiCC; 4630 4631 BuiltinCC = (getABIKind() == APCS ? 4632 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS); 4633 } 4634 4635 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 4636 bool isVariadic) const { 4637 // 6.1.2.1 The following argument types are VFP CPRCs: 4638 // A single-precision floating-point type (including promoted 4639 // half-precision types); A double-precision floating-point type; 4640 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4641 // with a Base Type of a single- or double-precision floating-point type, 4642 // 64-bit containerized vectors or 128-bit containerized vectors with one 4643 // to four Elements. 4644 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4645 4646 Ty = useFirstFieldIfTransparentUnion(Ty); 4647 4648 // Handle illegal vector types here. 4649 if (isIllegalVectorType(Ty)) { 4650 uint64_t Size = getContext().getTypeSize(Ty); 4651 if (Size <= 32) { 4652 llvm::Type *ResType = 4653 llvm::Type::getInt32Ty(getVMContext()); 4654 return ABIArgInfo::getDirect(ResType); 4655 } 4656 if (Size == 64) { 4657 llvm::Type *ResType = llvm::VectorType::get( 4658 llvm::Type::getInt32Ty(getVMContext()), 2); 4659 return ABIArgInfo::getDirect(ResType); 4660 } 4661 if (Size == 128) { 4662 llvm::Type *ResType = llvm::VectorType::get( 4663 llvm::Type::getInt32Ty(getVMContext()), 4); 4664 return ABIArgInfo::getDirect(ResType); 4665 } 4666 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4667 } 4668 4669 if (!isAggregateTypeForABI(Ty)) { 4670 // Treat an enum type as its underlying type. 4671 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4672 Ty = EnumTy->getDecl()->getIntegerType(); 4673 } 4674 4675 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4676 : ABIArgInfo::getDirect()); 4677 } 4678 4679 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4680 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4681 } 4682 4683 // Ignore empty records. 4684 if (isEmptyRecord(getContext(), Ty, true)) 4685 return ABIArgInfo::getIgnore(); 4686 4687 if (IsEffectivelyAAPCS_VFP) { 4688 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4689 // into VFP registers. 4690 const Type *Base = nullptr; 4691 uint64_t Members = 0; 4692 if (isHomogeneousAggregate(Ty, Base, Members)) { 4693 assert(Base && "Base class should be set for homogeneous aggregate"); 4694 // Base can be a floating-point or a vector. 4695 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4696 } 4697 } 4698 4699 // Support byval for ARM. 4700 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4701 // most 8-byte. We realign the indirect argument if type alignment is bigger 4702 // than ABI alignment. 4703 uint64_t ABIAlign = 4; 4704 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4705 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4706 getABIKind() == ARMABIInfo::AAPCS) 4707 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4708 4709 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4710 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 4711 /*Realign=*/TyAlign > ABIAlign); 4712 } 4713 4714 // Otherwise, pass by coercing to a structure of the appropriate size. 4715 llvm::Type* ElemTy; 4716 unsigned SizeRegs; 4717 // FIXME: Try to match the types of the arguments more accurately where 4718 // we can. 4719 if (getContext().getTypeAlign(Ty) <= 32) { 4720 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4721 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4722 } else { 4723 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4724 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4725 } 4726 4727 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 4728 } 4729 4730 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4731 llvm::LLVMContext &VMContext) { 4732 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4733 // is called integer-like if its size is less than or equal to one word, and 4734 // the offset of each of its addressable sub-fields is zero. 4735 4736 uint64_t Size = Context.getTypeSize(Ty); 4737 4738 // Check that the type fits in a word. 4739 if (Size > 32) 4740 return false; 4741 4742 // FIXME: Handle vector types! 4743 if (Ty->isVectorType()) 4744 return false; 4745 4746 // Float types are never treated as "integer like". 4747 if (Ty->isRealFloatingType()) 4748 return false; 4749 4750 // If this is a builtin or pointer type then it is ok. 4751 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4752 return true; 4753 4754 // Small complex integer types are "integer like". 4755 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4756 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4757 4758 // Single element and zero sized arrays should be allowed, by the definition 4759 // above, but they are not. 4760 4761 // Otherwise, it must be a record type. 4762 const RecordType *RT = Ty->getAs<RecordType>(); 4763 if (!RT) return false; 4764 4765 // Ignore records with flexible arrays. 4766 const RecordDecl *RD = RT->getDecl(); 4767 if (RD->hasFlexibleArrayMember()) 4768 return false; 4769 4770 // Check that all sub-fields are at offset 0, and are themselves "integer 4771 // like". 4772 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4773 4774 bool HadField = false; 4775 unsigned idx = 0; 4776 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4777 i != e; ++i, ++idx) { 4778 const FieldDecl *FD = *i; 4779 4780 // Bit-fields are not addressable, we only need to verify they are "integer 4781 // like". We still have to disallow a subsequent non-bitfield, for example: 4782 // struct { int : 0; int x } 4783 // is non-integer like according to gcc. 4784 if (FD->isBitField()) { 4785 if (!RD->isUnion()) 4786 HadField = true; 4787 4788 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4789 return false; 4790 4791 continue; 4792 } 4793 4794 // Check if this field is at offset 0. 4795 if (Layout.getFieldOffset(idx) != 0) 4796 return false; 4797 4798 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4799 return false; 4800 4801 // Only allow at most one field in a structure. This doesn't match the 4802 // wording above, but follows gcc in situations with a field following an 4803 // empty structure. 4804 if (!RD->isUnion()) { 4805 if (HadField) 4806 return false; 4807 4808 HadField = true; 4809 } 4810 } 4811 4812 return true; 4813 } 4814 4815 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4816 bool isVariadic) const { 4817 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4818 4819 if (RetTy->isVoidType()) 4820 return ABIArgInfo::getIgnore(); 4821 4822 // Large vector types should be returned via memory. 4823 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4824 return ABIArgInfo::getIndirect(0); 4825 } 4826 4827 if (!isAggregateTypeForABI(RetTy)) { 4828 // Treat an enum type as its underlying type. 4829 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4830 RetTy = EnumTy->getDecl()->getIntegerType(); 4831 4832 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4833 : ABIArgInfo::getDirect(); 4834 } 4835 4836 // Are we following APCS? 4837 if (getABIKind() == APCS) { 4838 if (isEmptyRecord(getContext(), RetTy, false)) 4839 return ABIArgInfo::getIgnore(); 4840 4841 // Complex types are all returned as packed integers. 4842 // 4843 // FIXME: Consider using 2 x vector types if the back end handles them 4844 // correctly. 4845 if (RetTy->isAnyComplexType()) 4846 return ABIArgInfo::getDirect(llvm::IntegerType::get( 4847 getVMContext(), getContext().getTypeSize(RetTy))); 4848 4849 // Integer like structures are returned in r0. 4850 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4851 // Return in the smallest viable integer type. 4852 uint64_t Size = getContext().getTypeSize(RetTy); 4853 if (Size <= 8) 4854 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4855 if (Size <= 16) 4856 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4857 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4858 } 4859 4860 // Otherwise return in memory. 4861 return ABIArgInfo::getIndirect(0); 4862 } 4863 4864 // Otherwise this is an AAPCS variant. 4865 4866 if (isEmptyRecord(getContext(), RetTy, true)) 4867 return ABIArgInfo::getIgnore(); 4868 4869 // Check for homogeneous aggregates with AAPCS-VFP. 4870 if (IsEffectivelyAAPCS_VFP) { 4871 const Type *Base = nullptr; 4872 uint64_t Members; 4873 if (isHomogeneousAggregate(RetTy, Base, Members)) { 4874 assert(Base && "Base class should be set for homogeneous aggregate"); 4875 // Homogeneous Aggregates are returned directly. 4876 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4877 } 4878 } 4879 4880 // Aggregates <= 4 bytes are returned in r0; other aggregates 4881 // are returned indirectly. 4882 uint64_t Size = getContext().getTypeSize(RetTy); 4883 if (Size <= 32) { 4884 if (getDataLayout().isBigEndian()) 4885 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4886 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4887 4888 // Return in the smallest viable integer type. 4889 if (Size <= 8) 4890 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4891 if (Size <= 16) 4892 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4893 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4894 } 4895 4896 return ABIArgInfo::getIndirect(0); 4897 } 4898 4899 /// isIllegalVector - check whether Ty is an illegal vector type. 4900 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4901 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4902 // Check whether VT is legal. 4903 unsigned NumElements = VT->getNumElements(); 4904 uint64_t Size = getContext().getTypeSize(VT); 4905 // NumElements should be power of 2. 4906 if ((NumElements & (NumElements - 1)) != 0) 4907 return true; 4908 // Size should be greater than 32 bits. 4909 return Size <= 32; 4910 } 4911 return false; 4912 } 4913 4914 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4915 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4916 // double, or 64-bit or 128-bit vectors. 4917 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4918 if (BT->getKind() == BuiltinType::Float || 4919 BT->getKind() == BuiltinType::Double || 4920 BT->getKind() == BuiltinType::LongDouble) 4921 return true; 4922 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4923 unsigned VecSize = getContext().getTypeSize(VT); 4924 if (VecSize == 64 || VecSize == 128) 4925 return true; 4926 } 4927 return false; 4928 } 4929 4930 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4931 uint64_t Members) const { 4932 return Members <= 4; 4933 } 4934 4935 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4936 CodeGenFunction &CGF) const { 4937 llvm::Type *BP = CGF.Int8PtrTy; 4938 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4939 4940 CGBuilderTy &Builder = CGF.Builder; 4941 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4942 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4943 4944 if (isEmptyRecord(getContext(), Ty, true)) { 4945 // These are ignored for parameter passing purposes. 4946 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4947 return Builder.CreateBitCast(Addr, PTy); 4948 } 4949 4950 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4951 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4952 bool IsIndirect = false; 4953 4954 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4955 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4956 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4957 getABIKind() == ARMABIInfo::AAPCS) 4958 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4959 else 4960 TyAlign = 4; 4961 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4962 if (isIllegalVectorType(Ty) && Size > 16) { 4963 IsIndirect = true; 4964 Size = 4; 4965 TyAlign = 4; 4966 } 4967 4968 // Handle address alignment for ABI alignment > 4 bytes. 4969 if (TyAlign > 4) { 4970 assert((TyAlign & (TyAlign - 1)) == 0 && 4971 "Alignment is not power of 2!"); 4972 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4973 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4974 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4975 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4976 } 4977 4978 uint64_t Offset = 4979 llvm::RoundUpToAlignment(Size, 4); 4980 llvm::Value *NextAddr = 4981 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 4982 "ap.next"); 4983 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4984 4985 if (IsIndirect) 4986 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4987 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 4988 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 4989 // may not be correctly aligned for the vector type. We create an aligned 4990 // temporary space and copy the content over from ap.cur to the temporary 4991 // space. This is necessary if the natural alignment of the type is greater 4992 // than the ABI alignment. 4993 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 4994 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 4995 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 4996 "var.align"); 4997 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 4998 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 4999 Builder.CreateMemCpy(Dst, Src, 5000 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 5001 TyAlign, false); 5002 Addr = AlignedTemp; //The content is in aligned location. 5003 } 5004 llvm::Type *PTy = 5005 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5006 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5007 5008 return AddrTyped; 5009 } 5010 5011 //===----------------------------------------------------------------------===// 5012 // NVPTX ABI Implementation 5013 //===----------------------------------------------------------------------===// 5014 5015 namespace { 5016 5017 class NVPTXABIInfo : public ABIInfo { 5018 public: 5019 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5020 5021 ABIArgInfo classifyReturnType(QualType RetTy) const; 5022 ABIArgInfo classifyArgumentType(QualType Ty) const; 5023 5024 void computeInfo(CGFunctionInfo &FI) const override; 5025 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5026 CodeGenFunction &CFG) const override; 5027 }; 5028 5029 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5030 public: 5031 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5032 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5033 5034 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5035 CodeGen::CodeGenModule &M) const override; 5036 private: 5037 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5038 // resulting MDNode to the nvvm.annotations MDNode. 5039 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5040 }; 5041 5042 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5043 if (RetTy->isVoidType()) 5044 return ABIArgInfo::getIgnore(); 5045 5046 // note: this is different from default ABI 5047 if (!RetTy->isScalarType()) 5048 return ABIArgInfo::getDirect(); 5049 5050 // Treat an enum type as its underlying type. 5051 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5052 RetTy = EnumTy->getDecl()->getIntegerType(); 5053 5054 return (RetTy->isPromotableIntegerType() ? 5055 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5056 } 5057 5058 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5059 // Treat an enum type as its underlying type. 5060 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5061 Ty = EnumTy->getDecl()->getIntegerType(); 5062 5063 // Return aggregates type as indirect by value 5064 if (isAggregateTypeForABI(Ty)) 5065 return ABIArgInfo::getIndirect(0, /* byval */ true); 5066 5067 return (Ty->isPromotableIntegerType() ? 5068 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5069 } 5070 5071 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5072 if (!getCXXABI().classifyReturnType(FI)) 5073 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5074 for (auto &I : FI.arguments()) 5075 I.info = classifyArgumentType(I.type); 5076 5077 // Always honor user-specified calling convention. 5078 if (FI.getCallingConvention() != llvm::CallingConv::C) 5079 return; 5080 5081 FI.setEffectiveCallingConvention(getRuntimeCC()); 5082 } 5083 5084 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5085 CodeGenFunction &CFG) const { 5086 llvm_unreachable("NVPTX does not support varargs"); 5087 } 5088 5089 void NVPTXTargetCodeGenInfo:: 5090 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5091 CodeGen::CodeGenModule &M) const{ 5092 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5093 if (!FD) return; 5094 5095 llvm::Function *F = cast<llvm::Function>(GV); 5096 5097 // Perform special handling in OpenCL mode 5098 if (M.getLangOpts().OpenCL) { 5099 // Use OpenCL function attributes to check for kernel functions 5100 // By default, all functions are device functions 5101 if (FD->hasAttr<OpenCLKernelAttr>()) { 5102 // OpenCL __kernel functions get kernel metadata 5103 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5104 addNVVMMetadata(F, "kernel", 1); 5105 // And kernel functions are not subject to inlining 5106 F->addFnAttr(llvm::Attribute::NoInline); 5107 } 5108 } 5109 5110 // Perform special handling in CUDA mode. 5111 if (M.getLangOpts().CUDA) { 5112 // CUDA __global__ functions get a kernel metadata entry. Since 5113 // __global__ functions cannot be called from the device, we do not 5114 // need to set the noinline attribute. 5115 if (FD->hasAttr<CUDAGlobalAttr>()) { 5116 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5117 addNVVMMetadata(F, "kernel", 1); 5118 } 5119 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5120 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5121 llvm::APSInt MaxThreads(32); 5122 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5123 if (MaxThreads > 0) 5124 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5125 5126 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5127 // not specified in __launch_bounds__ or if the user specified a 0 value, 5128 // we don't have to add a PTX directive. 5129 if (Attr->getMinBlocks()) { 5130 llvm::APSInt MinBlocks(32); 5131 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5132 if (MinBlocks > 0) 5133 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5134 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5135 } 5136 } 5137 } 5138 } 5139 5140 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5141 int Operand) { 5142 llvm::Module *M = F->getParent(); 5143 llvm::LLVMContext &Ctx = M->getContext(); 5144 5145 // Get "nvvm.annotations" metadata node 5146 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5147 5148 llvm::Metadata *MDVals[] = { 5149 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5150 llvm::ConstantAsMetadata::get( 5151 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5152 // Append metadata to nvvm.annotations 5153 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5154 } 5155 } 5156 5157 //===----------------------------------------------------------------------===// 5158 // SystemZ ABI Implementation 5159 //===----------------------------------------------------------------------===// 5160 5161 namespace { 5162 5163 class SystemZABIInfo : public ABIInfo { 5164 bool HasVector; 5165 5166 public: 5167 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5168 : ABIInfo(CGT), HasVector(HV) {} 5169 5170 bool isPromotableIntegerType(QualType Ty) const; 5171 bool isCompoundType(QualType Ty) const; 5172 bool isVectorArgumentType(QualType Ty) const; 5173 bool isFPArgumentType(QualType Ty) const; 5174 QualType GetSingleElementType(QualType Ty) const; 5175 5176 ABIArgInfo classifyReturnType(QualType RetTy) const; 5177 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5178 5179 void computeInfo(CGFunctionInfo &FI) const override { 5180 if (!getCXXABI().classifyReturnType(FI)) 5181 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5182 for (auto &I : FI.arguments()) 5183 I.info = classifyArgumentType(I.type); 5184 } 5185 5186 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5187 CodeGenFunction &CGF) const override; 5188 }; 5189 5190 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5191 public: 5192 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5193 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5194 }; 5195 5196 } 5197 5198 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5199 // Treat an enum type as its underlying type. 5200 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5201 Ty = EnumTy->getDecl()->getIntegerType(); 5202 5203 // Promotable integer types are required to be promoted by the ABI. 5204 if (Ty->isPromotableIntegerType()) 5205 return true; 5206 5207 // 32-bit values must also be promoted. 5208 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5209 switch (BT->getKind()) { 5210 case BuiltinType::Int: 5211 case BuiltinType::UInt: 5212 return true; 5213 default: 5214 return false; 5215 } 5216 return false; 5217 } 5218 5219 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5220 return (Ty->isAnyComplexType() || 5221 Ty->isVectorType() || 5222 isAggregateTypeForABI(Ty)); 5223 } 5224 5225 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5226 return (HasVector && 5227 Ty->isVectorType() && 5228 getContext().getTypeSize(Ty) <= 128); 5229 } 5230 5231 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5232 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5233 switch (BT->getKind()) { 5234 case BuiltinType::Float: 5235 case BuiltinType::Double: 5236 return true; 5237 default: 5238 return false; 5239 } 5240 5241 return false; 5242 } 5243 5244 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5245 if (const RecordType *RT = Ty->getAsStructureType()) { 5246 const RecordDecl *RD = RT->getDecl(); 5247 QualType Found; 5248 5249 // If this is a C++ record, check the bases first. 5250 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5251 for (const auto &I : CXXRD->bases()) { 5252 QualType Base = I.getType(); 5253 5254 // Empty bases don't affect things either way. 5255 if (isEmptyRecord(getContext(), Base, true)) 5256 continue; 5257 5258 if (!Found.isNull()) 5259 return Ty; 5260 Found = GetSingleElementType(Base); 5261 } 5262 5263 // Check the fields. 5264 for (const auto *FD : RD->fields()) { 5265 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5266 // Unlike isSingleElementStruct(), empty structure and array fields 5267 // do count. So do anonymous bitfields that aren't zero-sized. 5268 if (getContext().getLangOpts().CPlusPlus && 5269 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5270 continue; 5271 5272 // Unlike isSingleElementStruct(), arrays do not count. 5273 // Nested structures still do though. 5274 if (!Found.isNull()) 5275 return Ty; 5276 Found = GetSingleElementType(FD->getType()); 5277 } 5278 5279 // Unlike isSingleElementStruct(), trailing padding is allowed. 5280 // An 8-byte aligned struct s { float f; } is passed as a double. 5281 if (!Found.isNull()) 5282 return Found; 5283 } 5284 5285 return Ty; 5286 } 5287 5288 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5289 CodeGenFunction &CGF) const { 5290 // Assume that va_list type is correct; should be pointer to LLVM type: 5291 // struct { 5292 // i64 __gpr; 5293 // i64 __fpr; 5294 // i8 *__overflow_arg_area; 5295 // i8 *__reg_save_area; 5296 // }; 5297 5298 // Every non-vector argument occupies 8 bytes and is passed by preference 5299 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5300 // always passed on the stack. 5301 Ty = CGF.getContext().getCanonicalType(Ty); 5302 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5303 llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy); 5304 ABIArgInfo AI = classifyArgumentType(Ty); 5305 bool IsIndirect = AI.isIndirect(); 5306 bool InFPRs = false; 5307 bool IsVector = false; 5308 unsigned UnpaddedBitSize; 5309 if (IsIndirect) { 5310 APTy = llvm::PointerType::getUnqual(APTy); 5311 UnpaddedBitSize = 64; 5312 } else { 5313 if (AI.getCoerceToType()) 5314 ArgTy = AI.getCoerceToType(); 5315 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5316 IsVector = ArgTy->isVectorTy(); 5317 UnpaddedBitSize = getContext().getTypeSize(Ty); 5318 } 5319 unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64; 5320 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5321 5322 unsigned PaddedSize = PaddedBitSize / 8; 5323 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5324 5325 llvm::Type *IndexTy = CGF.Int64Ty; 5326 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5327 5328 if (IsVector) { 5329 // Work out the address of a vector argument on the stack. 5330 // Vector arguments are always passed in the high bits of a 5331 // single (8 byte) or double (16 byte) stack slot. 5332 llvm::Value *OverflowArgAreaPtr = 5333 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2, 5334 "overflow_arg_area_ptr"); 5335 llvm::Value *OverflowArgArea = 5336 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5337 llvm::Value *MemAddr = 5338 CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr"); 5339 5340 // Update overflow_arg_area_ptr pointer 5341 llvm::Value *NewOverflowArgArea = 5342 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5343 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5344 5345 return MemAddr; 5346 } 5347 5348 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5349 if (InFPRs) { 5350 MaxRegs = 4; // Maximum of 4 FPR arguments 5351 RegCountField = 1; // __fpr 5352 RegSaveIndex = 16; // save offset for f0 5353 RegPadding = 0; // floats are passed in the high bits of an FPR 5354 } else { 5355 MaxRegs = 5; // Maximum of 5 GPR arguments 5356 RegCountField = 0; // __gpr 5357 RegSaveIndex = 2; // save offset for r2 5358 RegPadding = Padding; // values are passed in the low bits of a GPR 5359 } 5360 5361 llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP( 5362 nullptr, VAListAddr, RegCountField, "reg_count_ptr"); 5363 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5364 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5365 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5366 "fits_in_regs"); 5367 5368 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5369 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5370 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5371 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5372 5373 // Emit code to load the value if it was passed in registers. 5374 CGF.EmitBlock(InRegBlock); 5375 5376 // Work out the address of an argument register. 5377 llvm::Value *ScaledRegCount = 5378 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5379 llvm::Value *RegBase = 5380 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5381 llvm::Value *RegOffset = 5382 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5383 llvm::Value *RegSaveAreaPtr = 5384 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr"); 5385 llvm::Value *RegSaveArea = 5386 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5387 llvm::Value *RawRegAddr = 5388 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5389 llvm::Value *RegAddr = 5390 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5391 5392 // Update the register count 5393 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5394 llvm::Value *NewRegCount = 5395 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5396 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5397 CGF.EmitBranch(ContBlock); 5398 5399 // Emit code to load the value if it was passed in memory. 5400 CGF.EmitBlock(InMemBlock); 5401 5402 // Work out the address of a stack argument. 5403 llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 5404 nullptr, VAListAddr, 2, "overflow_arg_area_ptr"); 5405 llvm::Value *OverflowArgArea = 5406 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5407 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5408 llvm::Value *RawMemAddr = 5409 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5410 llvm::Value *MemAddr = 5411 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5412 5413 // Update overflow_arg_area_ptr pointer 5414 llvm::Value *NewOverflowArgArea = 5415 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5416 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5417 CGF.EmitBranch(ContBlock); 5418 5419 // Return the appropriate result. 5420 CGF.EmitBlock(ContBlock); 5421 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5422 ResAddr->addIncoming(RegAddr, InRegBlock); 5423 ResAddr->addIncoming(MemAddr, InMemBlock); 5424 5425 if (IsIndirect) 5426 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5427 5428 return ResAddr; 5429 } 5430 5431 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5432 if (RetTy->isVoidType()) 5433 return ABIArgInfo::getIgnore(); 5434 if (isVectorArgumentType(RetTy)) 5435 return ABIArgInfo::getDirect(); 5436 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5437 return ABIArgInfo::getIndirect(0); 5438 return (isPromotableIntegerType(RetTy) ? 5439 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5440 } 5441 5442 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5443 // Handle the generic C++ ABI. 5444 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5445 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5446 5447 // Integers and enums are extended to full register width. 5448 if (isPromotableIntegerType(Ty)) 5449 return ABIArgInfo::getExtend(); 5450 5451 // Handle vector types and vector-like structure types. Note that 5452 // as opposed to float-like structure types, we do not allow any 5453 // padding for vector-like structures, so verify the sizes match. 5454 uint64_t Size = getContext().getTypeSize(Ty); 5455 QualType SingleElementTy = GetSingleElementType(Ty); 5456 if (isVectorArgumentType(SingleElementTy) && 5457 getContext().getTypeSize(SingleElementTy) == Size) 5458 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 5459 5460 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5461 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5462 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5463 5464 // Handle small structures. 5465 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5466 // Structures with flexible arrays have variable length, so really 5467 // fail the size test above. 5468 const RecordDecl *RD = RT->getDecl(); 5469 if (RD->hasFlexibleArrayMember()) 5470 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5471 5472 // The structure is passed as an unextended integer, a float, or a double. 5473 llvm::Type *PassTy; 5474 if (isFPArgumentType(SingleElementTy)) { 5475 assert(Size == 32 || Size == 64); 5476 if (Size == 32) 5477 PassTy = llvm::Type::getFloatTy(getVMContext()); 5478 else 5479 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5480 } else 5481 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5482 return ABIArgInfo::getDirect(PassTy); 5483 } 5484 5485 // Non-structure compounds are passed indirectly. 5486 if (isCompoundType(Ty)) 5487 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5488 5489 return ABIArgInfo::getDirect(nullptr); 5490 } 5491 5492 //===----------------------------------------------------------------------===// 5493 // MSP430 ABI Implementation 5494 //===----------------------------------------------------------------------===// 5495 5496 namespace { 5497 5498 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5499 public: 5500 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5501 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5502 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5503 CodeGen::CodeGenModule &M) const override; 5504 }; 5505 5506 } 5507 5508 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5509 llvm::GlobalValue *GV, 5510 CodeGen::CodeGenModule &M) const { 5511 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5512 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5513 // Handle 'interrupt' attribute: 5514 llvm::Function *F = cast<llvm::Function>(GV); 5515 5516 // Step 1: Set ISR calling convention. 5517 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5518 5519 // Step 2: Add attributes goodness. 5520 F->addFnAttr(llvm::Attribute::NoInline); 5521 5522 // Step 3: Emit ISR vector alias. 5523 unsigned Num = attr->getNumber() / 2; 5524 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5525 "__isr_" + Twine(Num), F); 5526 } 5527 } 5528 } 5529 5530 //===----------------------------------------------------------------------===// 5531 // MIPS ABI Implementation. This works for both little-endian and 5532 // big-endian variants. 5533 //===----------------------------------------------------------------------===// 5534 5535 namespace { 5536 class MipsABIInfo : public ABIInfo { 5537 bool IsO32; 5538 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5539 void CoerceToIntArgs(uint64_t TySize, 5540 SmallVectorImpl<llvm::Type *> &ArgList) const; 5541 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5542 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5543 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5544 public: 5545 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5546 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5547 StackAlignInBytes(IsO32 ? 8 : 16) {} 5548 5549 ABIArgInfo classifyReturnType(QualType RetTy) const; 5550 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5551 void computeInfo(CGFunctionInfo &FI) const override; 5552 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5553 CodeGenFunction &CGF) const override; 5554 bool shouldSignExtUnsignedType(QualType Ty) const override; 5555 }; 5556 5557 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5558 unsigned SizeOfUnwindException; 5559 public: 5560 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5561 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5562 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5563 5564 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5565 return 29; 5566 } 5567 5568 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5569 CodeGen::CodeGenModule &CGM) const override { 5570 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5571 if (!FD) return; 5572 llvm::Function *Fn = cast<llvm::Function>(GV); 5573 if (FD->hasAttr<Mips16Attr>()) { 5574 Fn->addFnAttr("mips16"); 5575 } 5576 else if (FD->hasAttr<NoMips16Attr>()) { 5577 Fn->addFnAttr("nomips16"); 5578 } 5579 } 5580 5581 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5582 llvm::Value *Address) const override; 5583 5584 unsigned getSizeOfUnwindException() const override { 5585 return SizeOfUnwindException; 5586 } 5587 }; 5588 } 5589 5590 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5591 SmallVectorImpl<llvm::Type *> &ArgList) const { 5592 llvm::IntegerType *IntTy = 5593 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5594 5595 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5596 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5597 ArgList.push_back(IntTy); 5598 5599 // If necessary, add one more integer type to ArgList. 5600 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5601 5602 if (R) 5603 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5604 } 5605 5606 // In N32/64, an aligned double precision floating point field is passed in 5607 // a register. 5608 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5609 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5610 5611 if (IsO32) { 5612 CoerceToIntArgs(TySize, ArgList); 5613 return llvm::StructType::get(getVMContext(), ArgList); 5614 } 5615 5616 if (Ty->isComplexType()) 5617 return CGT.ConvertType(Ty); 5618 5619 const RecordType *RT = Ty->getAs<RecordType>(); 5620 5621 // Unions/vectors are passed in integer registers. 5622 if (!RT || !RT->isStructureOrClassType()) { 5623 CoerceToIntArgs(TySize, ArgList); 5624 return llvm::StructType::get(getVMContext(), ArgList); 5625 } 5626 5627 const RecordDecl *RD = RT->getDecl(); 5628 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5629 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5630 5631 uint64_t LastOffset = 0; 5632 unsigned idx = 0; 5633 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5634 5635 // Iterate over fields in the struct/class and check if there are any aligned 5636 // double fields. 5637 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5638 i != e; ++i, ++idx) { 5639 const QualType Ty = i->getType(); 5640 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5641 5642 if (!BT || BT->getKind() != BuiltinType::Double) 5643 continue; 5644 5645 uint64_t Offset = Layout.getFieldOffset(idx); 5646 if (Offset % 64) // Ignore doubles that are not aligned. 5647 continue; 5648 5649 // Add ((Offset - LastOffset) / 64) args of type i64. 5650 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5651 ArgList.push_back(I64); 5652 5653 // Add double type. 5654 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5655 LastOffset = Offset + 64; 5656 } 5657 5658 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5659 ArgList.append(IntArgList.begin(), IntArgList.end()); 5660 5661 return llvm::StructType::get(getVMContext(), ArgList); 5662 } 5663 5664 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5665 uint64_t Offset) const { 5666 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5667 return nullptr; 5668 5669 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5670 } 5671 5672 ABIArgInfo 5673 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5674 Ty = useFirstFieldIfTransparentUnion(Ty); 5675 5676 uint64_t OrigOffset = Offset; 5677 uint64_t TySize = getContext().getTypeSize(Ty); 5678 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5679 5680 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5681 (uint64_t)StackAlignInBytes); 5682 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5683 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5684 5685 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5686 // Ignore empty aggregates. 5687 if (TySize == 0) 5688 return ABIArgInfo::getIgnore(); 5689 5690 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5691 Offset = OrigOffset + MinABIStackAlignInBytes; 5692 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5693 } 5694 5695 // If we have reached here, aggregates are passed directly by coercing to 5696 // another structure type. Padding is inserted if the offset of the 5697 // aggregate is unaligned. 5698 ABIArgInfo ArgInfo = 5699 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5700 getPaddingType(OrigOffset, CurrOffset)); 5701 ArgInfo.setInReg(true); 5702 return ArgInfo; 5703 } 5704 5705 // Treat an enum type as its underlying type. 5706 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5707 Ty = EnumTy->getDecl()->getIntegerType(); 5708 5709 // All integral types are promoted to the GPR width. 5710 if (Ty->isIntegralOrEnumerationType()) 5711 return ABIArgInfo::getExtend(); 5712 5713 return ABIArgInfo::getDirect( 5714 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5715 } 5716 5717 llvm::Type* 5718 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5719 const RecordType *RT = RetTy->getAs<RecordType>(); 5720 SmallVector<llvm::Type*, 8> RTList; 5721 5722 if (RT && RT->isStructureOrClassType()) { 5723 const RecordDecl *RD = RT->getDecl(); 5724 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5725 unsigned FieldCnt = Layout.getFieldCount(); 5726 5727 // N32/64 returns struct/classes in floating point registers if the 5728 // following conditions are met: 5729 // 1. The size of the struct/class is no larger than 128-bit. 5730 // 2. The struct/class has one or two fields all of which are floating 5731 // point types. 5732 // 3. The offset of the first field is zero (this follows what gcc does). 5733 // 5734 // Any other composite results are returned in integer registers. 5735 // 5736 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5737 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5738 for (; b != e; ++b) { 5739 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5740 5741 if (!BT || !BT->isFloatingPoint()) 5742 break; 5743 5744 RTList.push_back(CGT.ConvertType(b->getType())); 5745 } 5746 5747 if (b == e) 5748 return llvm::StructType::get(getVMContext(), RTList, 5749 RD->hasAttr<PackedAttr>()); 5750 5751 RTList.clear(); 5752 } 5753 } 5754 5755 CoerceToIntArgs(Size, RTList); 5756 return llvm::StructType::get(getVMContext(), RTList); 5757 } 5758 5759 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5760 uint64_t Size = getContext().getTypeSize(RetTy); 5761 5762 if (RetTy->isVoidType()) 5763 return ABIArgInfo::getIgnore(); 5764 5765 // O32 doesn't treat zero-sized structs differently from other structs. 5766 // However, N32/N64 ignores zero sized return values. 5767 if (!IsO32 && Size == 0) 5768 return ABIArgInfo::getIgnore(); 5769 5770 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5771 if (Size <= 128) { 5772 if (RetTy->isAnyComplexType()) 5773 return ABIArgInfo::getDirect(); 5774 5775 // O32 returns integer vectors in registers and N32/N64 returns all small 5776 // aggregates in registers. 5777 if (!IsO32 || 5778 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 5779 ABIArgInfo ArgInfo = 5780 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5781 ArgInfo.setInReg(true); 5782 return ArgInfo; 5783 } 5784 } 5785 5786 return ABIArgInfo::getIndirect(0); 5787 } 5788 5789 // Treat an enum type as its underlying type. 5790 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5791 RetTy = EnumTy->getDecl()->getIntegerType(); 5792 5793 return (RetTy->isPromotableIntegerType() ? 5794 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5795 } 5796 5797 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5798 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5799 if (!getCXXABI().classifyReturnType(FI)) 5800 RetInfo = classifyReturnType(FI.getReturnType()); 5801 5802 // Check if a pointer to an aggregate is passed as a hidden argument. 5803 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5804 5805 for (auto &I : FI.arguments()) 5806 I.info = classifyArgumentType(I.type, Offset); 5807 } 5808 5809 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5810 CodeGenFunction &CGF) const { 5811 llvm::Type *BP = CGF.Int8PtrTy; 5812 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5813 5814 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 5815 // Pointers are also promoted in the same way but this only matters for N32. 5816 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 5817 unsigned PtrWidth = getTarget().getPointerWidth(0); 5818 if ((Ty->isIntegerType() && 5819 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) || 5820 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 5821 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits, 5822 Ty->isSignedIntegerType()); 5823 } 5824 5825 CGBuilderTy &Builder = CGF.Builder; 5826 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5827 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5828 int64_t TypeAlign = 5829 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes); 5830 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5831 llvm::Value *AddrTyped; 5832 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5833 5834 if (TypeAlign > MinABIStackAlignInBytes) { 5835 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5836 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5837 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5838 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5839 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5840 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5841 } 5842 else 5843 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5844 5845 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5846 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5847 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty); 5848 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign); 5849 llvm::Value *NextAddr = 5850 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5851 "ap.next"); 5852 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5853 5854 return AddrTyped; 5855 } 5856 5857 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 5858 int TySize = getContext().getTypeSize(Ty); 5859 5860 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 5861 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 5862 return true; 5863 5864 return false; 5865 } 5866 5867 bool 5868 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5869 llvm::Value *Address) const { 5870 // This information comes from gcc's implementation, which seems to 5871 // as canonical as it gets. 5872 5873 // Everything on MIPS is 4 bytes. Double-precision FP registers 5874 // are aliased to pairs of single-precision FP registers. 5875 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5876 5877 // 0-31 are the general purpose registers, $0 - $31. 5878 // 32-63 are the floating-point registers, $f0 - $f31. 5879 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5880 // 66 is the (notional, I think) register for signal-handler return. 5881 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5882 5883 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5884 // They are one bit wide and ignored here. 5885 5886 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5887 // (coprocessor 1 is the FP unit) 5888 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5889 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5890 // 176-181 are the DSP accumulator registers. 5891 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5892 return false; 5893 } 5894 5895 //===----------------------------------------------------------------------===// 5896 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5897 // Currently subclassed only to implement custom OpenCL C function attribute 5898 // handling. 5899 //===----------------------------------------------------------------------===// 5900 5901 namespace { 5902 5903 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5904 public: 5905 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5906 : DefaultTargetCodeGenInfo(CGT) {} 5907 5908 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5909 CodeGen::CodeGenModule &M) const override; 5910 }; 5911 5912 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5913 llvm::GlobalValue *GV, 5914 CodeGen::CodeGenModule &M) const { 5915 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5916 if (!FD) return; 5917 5918 llvm::Function *F = cast<llvm::Function>(GV); 5919 5920 if (M.getLangOpts().OpenCL) { 5921 if (FD->hasAttr<OpenCLKernelAttr>()) { 5922 // OpenCL C Kernel functions are not subject to inlining 5923 F->addFnAttr(llvm::Attribute::NoInline); 5924 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5925 if (Attr) { 5926 // Convert the reqd_work_group_size() attributes to metadata. 5927 llvm::LLVMContext &Context = F->getContext(); 5928 llvm::NamedMDNode *OpenCLMetadata = 5929 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5930 5931 SmallVector<llvm::Metadata *, 5> Operands; 5932 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 5933 5934 Operands.push_back( 5935 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5936 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 5937 Operands.push_back( 5938 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5939 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 5940 Operands.push_back( 5941 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5942 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 5943 5944 // Add a boolean constant operand for "required" (true) or "hint" (false) 5945 // for implementing the work_group_size_hint attr later. Currently 5946 // always true as the hint is not yet implemented. 5947 Operands.push_back( 5948 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 5949 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5950 } 5951 } 5952 } 5953 } 5954 5955 } 5956 5957 //===----------------------------------------------------------------------===// 5958 // Hexagon ABI Implementation 5959 //===----------------------------------------------------------------------===// 5960 5961 namespace { 5962 5963 class HexagonABIInfo : public ABIInfo { 5964 5965 5966 public: 5967 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5968 5969 private: 5970 5971 ABIArgInfo classifyReturnType(QualType RetTy) const; 5972 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5973 5974 void computeInfo(CGFunctionInfo &FI) const override; 5975 5976 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5977 CodeGenFunction &CGF) const override; 5978 }; 5979 5980 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5981 public: 5982 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5983 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5984 5985 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5986 return 29; 5987 } 5988 }; 5989 5990 } 5991 5992 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5993 if (!getCXXABI().classifyReturnType(FI)) 5994 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5995 for (auto &I : FI.arguments()) 5996 I.info = classifyArgumentType(I.type); 5997 } 5998 5999 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6000 if (!isAggregateTypeForABI(Ty)) { 6001 // Treat an enum type as its underlying type. 6002 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6003 Ty = EnumTy->getDecl()->getIntegerType(); 6004 6005 return (Ty->isPromotableIntegerType() ? 6006 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6007 } 6008 6009 // Ignore empty records. 6010 if (isEmptyRecord(getContext(), Ty, true)) 6011 return ABIArgInfo::getIgnore(); 6012 6013 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6014 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6015 6016 uint64_t Size = getContext().getTypeSize(Ty); 6017 if (Size > 64) 6018 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6019 // Pass in the smallest viable integer type. 6020 else if (Size > 32) 6021 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6022 else if (Size > 16) 6023 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6024 else if (Size > 8) 6025 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6026 else 6027 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6028 } 6029 6030 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6031 if (RetTy->isVoidType()) 6032 return ABIArgInfo::getIgnore(); 6033 6034 // Large vector types should be returned via memory. 6035 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6036 return ABIArgInfo::getIndirect(0); 6037 6038 if (!isAggregateTypeForABI(RetTy)) { 6039 // Treat an enum type as its underlying type. 6040 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6041 RetTy = EnumTy->getDecl()->getIntegerType(); 6042 6043 return (RetTy->isPromotableIntegerType() ? 6044 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6045 } 6046 6047 if (isEmptyRecord(getContext(), RetTy, true)) 6048 return ABIArgInfo::getIgnore(); 6049 6050 // Aggregates <= 8 bytes are returned in r0; other aggregates 6051 // are returned indirectly. 6052 uint64_t Size = getContext().getTypeSize(RetTy); 6053 if (Size <= 64) { 6054 // Return in the smallest viable integer type. 6055 if (Size <= 8) 6056 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6057 if (Size <= 16) 6058 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6059 if (Size <= 32) 6060 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6061 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6062 } 6063 6064 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6065 } 6066 6067 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6068 CodeGenFunction &CGF) const { 6069 // FIXME: Need to handle alignment 6070 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6071 6072 CGBuilderTy &Builder = CGF.Builder; 6073 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 6074 "ap"); 6075 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6076 llvm::Type *PTy = 6077 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 6078 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 6079 6080 uint64_t Offset = 6081 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 6082 llvm::Value *NextAddr = 6083 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 6084 "ap.next"); 6085 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 6086 6087 return AddrTyped; 6088 } 6089 6090 //===----------------------------------------------------------------------===// 6091 // AMDGPU ABI Implementation 6092 //===----------------------------------------------------------------------===// 6093 6094 namespace { 6095 6096 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6097 public: 6098 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6099 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6100 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6101 CodeGen::CodeGenModule &M) const override; 6102 }; 6103 6104 } 6105 6106 void AMDGPUTargetCodeGenInfo::SetTargetAttributes( 6107 const Decl *D, 6108 llvm::GlobalValue *GV, 6109 CodeGen::CodeGenModule &M) const { 6110 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 6111 if (!FD) 6112 return; 6113 6114 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6115 llvm::Function *F = cast<llvm::Function>(GV); 6116 uint32_t NumVGPR = Attr->getNumVGPR(); 6117 if (NumVGPR != 0) 6118 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6119 } 6120 6121 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6122 llvm::Function *F = cast<llvm::Function>(GV); 6123 unsigned NumSGPR = Attr->getNumSGPR(); 6124 if (NumSGPR != 0) 6125 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6126 } 6127 } 6128 6129 6130 //===----------------------------------------------------------------------===// 6131 // SPARC v9 ABI Implementation. 6132 // Based on the SPARC Compliance Definition version 2.4.1. 6133 // 6134 // Function arguments a mapped to a nominal "parameter array" and promoted to 6135 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6136 // the array, structs larger than 16 bytes are passed indirectly. 6137 // 6138 // One case requires special care: 6139 // 6140 // struct mixed { 6141 // int i; 6142 // float f; 6143 // }; 6144 // 6145 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6146 // parameter array, but the int is passed in an integer register, and the float 6147 // is passed in a floating point register. This is represented as two arguments 6148 // with the LLVM IR inreg attribute: 6149 // 6150 // declare void f(i32 inreg %i, float inreg %f) 6151 // 6152 // The code generator will only allocate 4 bytes from the parameter array for 6153 // the inreg arguments. All other arguments are allocated a multiple of 8 6154 // bytes. 6155 // 6156 namespace { 6157 class SparcV9ABIInfo : public ABIInfo { 6158 public: 6159 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6160 6161 private: 6162 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6163 void computeInfo(CGFunctionInfo &FI) const override; 6164 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6165 CodeGenFunction &CGF) const override; 6166 6167 // Coercion type builder for structs passed in registers. The coercion type 6168 // serves two purposes: 6169 // 6170 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6171 // in registers. 6172 // 2. Expose aligned floating point elements as first-level elements, so the 6173 // code generator knows to pass them in floating point registers. 6174 // 6175 // We also compute the InReg flag which indicates that the struct contains 6176 // aligned 32-bit floats. 6177 // 6178 struct CoerceBuilder { 6179 llvm::LLVMContext &Context; 6180 const llvm::DataLayout &DL; 6181 SmallVector<llvm::Type*, 8> Elems; 6182 uint64_t Size; 6183 bool InReg; 6184 6185 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6186 : Context(c), DL(dl), Size(0), InReg(false) {} 6187 6188 // Pad Elems with integers until Size is ToSize. 6189 void pad(uint64_t ToSize) { 6190 assert(ToSize >= Size && "Cannot remove elements"); 6191 if (ToSize == Size) 6192 return; 6193 6194 // Finish the current 64-bit word. 6195 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 6196 if (Aligned > Size && Aligned <= ToSize) { 6197 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6198 Size = Aligned; 6199 } 6200 6201 // Add whole 64-bit words. 6202 while (Size + 64 <= ToSize) { 6203 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6204 Size += 64; 6205 } 6206 6207 // Final in-word padding. 6208 if (Size < ToSize) { 6209 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6210 Size = ToSize; 6211 } 6212 } 6213 6214 // Add a floating point element at Offset. 6215 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6216 // Unaligned floats are treated as integers. 6217 if (Offset % Bits) 6218 return; 6219 // The InReg flag is only required if there are any floats < 64 bits. 6220 if (Bits < 64) 6221 InReg = true; 6222 pad(Offset); 6223 Elems.push_back(Ty); 6224 Size = Offset + Bits; 6225 } 6226 6227 // Add a struct type to the coercion type, starting at Offset (in bits). 6228 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6229 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6230 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6231 llvm::Type *ElemTy = StrTy->getElementType(i); 6232 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6233 switch (ElemTy->getTypeID()) { 6234 case llvm::Type::StructTyID: 6235 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6236 break; 6237 case llvm::Type::FloatTyID: 6238 addFloat(ElemOffset, ElemTy, 32); 6239 break; 6240 case llvm::Type::DoubleTyID: 6241 addFloat(ElemOffset, ElemTy, 64); 6242 break; 6243 case llvm::Type::FP128TyID: 6244 addFloat(ElemOffset, ElemTy, 128); 6245 break; 6246 case llvm::Type::PointerTyID: 6247 if (ElemOffset % 64 == 0) { 6248 pad(ElemOffset); 6249 Elems.push_back(ElemTy); 6250 Size += 64; 6251 } 6252 break; 6253 default: 6254 break; 6255 } 6256 } 6257 } 6258 6259 // Check if Ty is a usable substitute for the coercion type. 6260 bool isUsableType(llvm::StructType *Ty) const { 6261 return llvm::makeArrayRef(Elems) == Ty->elements(); 6262 } 6263 6264 // Get the coercion type as a literal struct type. 6265 llvm::Type *getType() const { 6266 if (Elems.size() == 1) 6267 return Elems.front(); 6268 else 6269 return llvm::StructType::get(Context, Elems); 6270 } 6271 }; 6272 }; 6273 } // end anonymous namespace 6274 6275 ABIArgInfo 6276 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6277 if (Ty->isVoidType()) 6278 return ABIArgInfo::getIgnore(); 6279 6280 uint64_t Size = getContext().getTypeSize(Ty); 6281 6282 // Anything too big to fit in registers is passed with an explicit indirect 6283 // pointer / sret pointer. 6284 if (Size > SizeLimit) 6285 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 6286 6287 // Treat an enum type as its underlying type. 6288 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6289 Ty = EnumTy->getDecl()->getIntegerType(); 6290 6291 // Integer types smaller than a register are extended. 6292 if (Size < 64 && Ty->isIntegerType()) 6293 return ABIArgInfo::getExtend(); 6294 6295 // Other non-aggregates go in registers. 6296 if (!isAggregateTypeForABI(Ty)) 6297 return ABIArgInfo::getDirect(); 6298 6299 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6300 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6301 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6302 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6303 6304 // This is a small aggregate type that should be passed in registers. 6305 // Build a coercion type from the LLVM struct type. 6306 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6307 if (!StrTy) 6308 return ABIArgInfo::getDirect(); 6309 6310 CoerceBuilder CB(getVMContext(), getDataLayout()); 6311 CB.addStruct(0, StrTy); 6312 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6313 6314 // Try to use the original type for coercion. 6315 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6316 6317 if (CB.InReg) 6318 return ABIArgInfo::getDirectInReg(CoerceTy); 6319 else 6320 return ABIArgInfo::getDirect(CoerceTy); 6321 } 6322 6323 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6324 CodeGenFunction &CGF) const { 6325 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6326 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6327 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6328 AI.setCoerceToType(ArgTy); 6329 6330 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6331 CGBuilderTy &Builder = CGF.Builder; 6332 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6333 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6334 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6335 llvm::Value *ArgAddr; 6336 unsigned Stride; 6337 6338 switch (AI.getKind()) { 6339 case ABIArgInfo::Expand: 6340 case ABIArgInfo::InAlloca: 6341 llvm_unreachable("Unsupported ABI kind for va_arg"); 6342 6343 case ABIArgInfo::Extend: 6344 Stride = 8; 6345 ArgAddr = Builder 6346 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6347 "extend"); 6348 break; 6349 6350 case ABIArgInfo::Direct: 6351 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6352 ArgAddr = Addr; 6353 break; 6354 6355 case ABIArgInfo::Indirect: 6356 Stride = 8; 6357 ArgAddr = Builder.CreateBitCast(Addr, 6358 llvm::PointerType::getUnqual(ArgPtrTy), 6359 "indirect"); 6360 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6361 break; 6362 6363 case ABIArgInfo::Ignore: 6364 return llvm::UndefValue::get(ArgPtrTy); 6365 } 6366 6367 // Update VAList. 6368 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6369 Builder.CreateStore(Addr, VAListAddrAsBPP); 6370 6371 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6372 } 6373 6374 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6375 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6376 for (auto &I : FI.arguments()) 6377 I.info = classifyType(I.type, 16 * 8); 6378 } 6379 6380 namespace { 6381 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6382 public: 6383 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6384 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6385 6386 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6387 return 14; 6388 } 6389 6390 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6391 llvm::Value *Address) const override; 6392 }; 6393 } // end anonymous namespace 6394 6395 bool 6396 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6397 llvm::Value *Address) const { 6398 // This is calculated from the LLVM and GCC tables and verified 6399 // against gcc output. AFAIK all ABIs use the same encoding. 6400 6401 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6402 6403 llvm::IntegerType *i8 = CGF.Int8Ty; 6404 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6405 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6406 6407 // 0-31: the 8-byte general-purpose registers 6408 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6409 6410 // 32-63: f0-31, the 4-byte floating-point registers 6411 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6412 6413 // Y = 64 6414 // PSR = 65 6415 // WIM = 66 6416 // TBR = 67 6417 // PC = 68 6418 // NPC = 69 6419 // FSR = 70 6420 // CSR = 71 6421 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6422 6423 // 72-87: d0-15, the 8-byte floating-point registers 6424 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6425 6426 return false; 6427 } 6428 6429 6430 //===----------------------------------------------------------------------===// 6431 // XCore ABI Implementation 6432 //===----------------------------------------------------------------------===// 6433 6434 namespace { 6435 6436 /// A SmallStringEnc instance is used to build up the TypeString by passing 6437 /// it by reference between functions that append to it. 6438 typedef llvm::SmallString<128> SmallStringEnc; 6439 6440 /// TypeStringCache caches the meta encodings of Types. 6441 /// 6442 /// The reason for caching TypeStrings is two fold: 6443 /// 1. To cache a type's encoding for later uses; 6444 /// 2. As a means to break recursive member type inclusion. 6445 /// 6446 /// A cache Entry can have a Status of: 6447 /// NonRecursive: The type encoding is not recursive; 6448 /// Recursive: The type encoding is recursive; 6449 /// Incomplete: An incomplete TypeString; 6450 /// IncompleteUsed: An incomplete TypeString that has been used in a 6451 /// Recursive type encoding. 6452 /// 6453 /// A NonRecursive entry will have all of its sub-members expanded as fully 6454 /// as possible. Whilst it may contain types which are recursive, the type 6455 /// itself is not recursive and thus its encoding may be safely used whenever 6456 /// the type is encountered. 6457 /// 6458 /// A Recursive entry will have all of its sub-members expanded as fully as 6459 /// possible. The type itself is recursive and it may contain other types which 6460 /// are recursive. The Recursive encoding must not be used during the expansion 6461 /// of a recursive type's recursive branch. For simplicity the code uses 6462 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6463 /// 6464 /// An Incomplete entry is always a RecordType and only encodes its 6465 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6466 /// are placed into the cache during type expansion as a means to identify and 6467 /// handle recursive inclusion of types as sub-members. If there is recursion 6468 /// the entry becomes IncompleteUsed. 6469 /// 6470 /// During the expansion of a RecordType's members: 6471 /// 6472 /// If the cache contains a NonRecursive encoding for the member type, the 6473 /// cached encoding is used; 6474 /// 6475 /// If the cache contains a Recursive encoding for the member type, the 6476 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6477 /// 6478 /// If the member is a RecordType, an Incomplete encoding is placed into the 6479 /// cache to break potential recursive inclusion of itself as a sub-member; 6480 /// 6481 /// Once a member RecordType has been expanded, its temporary incomplete 6482 /// entry is removed from the cache. If a Recursive encoding was swapped out 6483 /// it is swapped back in; 6484 /// 6485 /// If an incomplete entry is used to expand a sub-member, the incomplete 6486 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6487 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6488 /// 6489 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6490 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6491 /// Else the member is part of a recursive type and thus the recursion has 6492 /// been exited too soon for the encoding to be correct for the member. 6493 /// 6494 class TypeStringCache { 6495 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6496 struct Entry { 6497 std::string Str; // The encoded TypeString for the type. 6498 enum Status State; // Information about the encoding in 'Str'. 6499 std::string Swapped; // A temporary place holder for a Recursive encoding 6500 // during the expansion of RecordType's members. 6501 }; 6502 std::map<const IdentifierInfo *, struct Entry> Map; 6503 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6504 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6505 public: 6506 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6507 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6508 bool removeIncomplete(const IdentifierInfo *ID); 6509 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6510 bool IsRecursive); 6511 StringRef lookupStr(const IdentifierInfo *ID); 6512 }; 6513 6514 /// TypeString encodings for enum & union fields must be order. 6515 /// FieldEncoding is a helper for this ordering process. 6516 class FieldEncoding { 6517 bool HasName; 6518 std::string Enc; 6519 public: 6520 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6521 StringRef str() {return Enc.c_str();}; 6522 bool operator<(const FieldEncoding &rhs) const { 6523 if (HasName != rhs.HasName) return HasName; 6524 return Enc < rhs.Enc; 6525 } 6526 }; 6527 6528 class XCoreABIInfo : public DefaultABIInfo { 6529 public: 6530 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6531 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6532 CodeGenFunction &CGF) const override; 6533 }; 6534 6535 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6536 mutable TypeStringCache TSC; 6537 public: 6538 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6539 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6540 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6541 CodeGen::CodeGenModule &M) const override; 6542 }; 6543 6544 } // End anonymous namespace. 6545 6546 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6547 CodeGenFunction &CGF) const { 6548 CGBuilderTy &Builder = CGF.Builder; 6549 6550 // Get the VAList. 6551 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6552 CGF.Int8PtrPtrTy); 6553 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6554 6555 // Handle the argument. 6556 ABIArgInfo AI = classifyArgumentType(Ty); 6557 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6558 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6559 AI.setCoerceToType(ArgTy); 6560 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6561 llvm::Value *Val; 6562 uint64_t ArgSize = 0; 6563 switch (AI.getKind()) { 6564 case ABIArgInfo::Expand: 6565 case ABIArgInfo::InAlloca: 6566 llvm_unreachable("Unsupported ABI kind for va_arg"); 6567 case ABIArgInfo::Ignore: 6568 Val = llvm::UndefValue::get(ArgPtrTy); 6569 ArgSize = 0; 6570 break; 6571 case ABIArgInfo::Extend: 6572 case ABIArgInfo::Direct: 6573 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6574 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6575 if (ArgSize < 4) 6576 ArgSize = 4; 6577 break; 6578 case ABIArgInfo::Indirect: 6579 llvm::Value *ArgAddr; 6580 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6581 ArgAddr = Builder.CreateLoad(ArgAddr); 6582 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6583 ArgSize = 4; 6584 break; 6585 } 6586 6587 // Increment the VAList. 6588 if (ArgSize) { 6589 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6590 Builder.CreateStore(APN, VAListAddrAsBPP); 6591 } 6592 return Val; 6593 } 6594 6595 /// During the expansion of a RecordType, an incomplete TypeString is placed 6596 /// into the cache as a means to identify and break recursion. 6597 /// If there is a Recursive encoding in the cache, it is swapped out and will 6598 /// be reinserted by removeIncomplete(). 6599 /// All other types of encoding should have been used rather than arriving here. 6600 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6601 std::string StubEnc) { 6602 if (!ID) 6603 return; 6604 Entry &E = Map[ID]; 6605 assert( (E.Str.empty() || E.State == Recursive) && 6606 "Incorrectly use of addIncomplete"); 6607 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6608 E.Swapped.swap(E.Str); // swap out the Recursive 6609 E.Str.swap(StubEnc); 6610 E.State = Incomplete; 6611 ++IncompleteCount; 6612 } 6613 6614 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6615 /// must be removed from the cache. 6616 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6617 /// Returns true if the RecordType was defined recursively. 6618 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6619 if (!ID) 6620 return false; 6621 auto I = Map.find(ID); 6622 assert(I != Map.end() && "Entry not present"); 6623 Entry &E = I->second; 6624 assert( (E.State == Incomplete || 6625 E.State == IncompleteUsed) && 6626 "Entry must be an incomplete type"); 6627 bool IsRecursive = false; 6628 if (E.State == IncompleteUsed) { 6629 // We made use of our Incomplete encoding, thus we are recursive. 6630 IsRecursive = true; 6631 --IncompleteUsedCount; 6632 } 6633 if (E.Swapped.empty()) 6634 Map.erase(I); 6635 else { 6636 // Swap the Recursive back. 6637 E.Swapped.swap(E.Str); 6638 E.Swapped.clear(); 6639 E.State = Recursive; 6640 } 6641 --IncompleteCount; 6642 return IsRecursive; 6643 } 6644 6645 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6646 /// Recursive (viz: all sub-members were expanded as fully as possible). 6647 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6648 bool IsRecursive) { 6649 if (!ID || IncompleteUsedCount) 6650 return; // No key or it is is an incomplete sub-type so don't add. 6651 Entry &E = Map[ID]; 6652 if (IsRecursive && !E.Str.empty()) { 6653 assert(E.State==Recursive && E.Str.size() == Str.size() && 6654 "This is not the same Recursive entry"); 6655 // The parent container was not recursive after all, so we could have used 6656 // this Recursive sub-member entry after all, but we assumed the worse when 6657 // we started viz: IncompleteCount!=0. 6658 return; 6659 } 6660 assert(E.Str.empty() && "Entry already present"); 6661 E.Str = Str.str(); 6662 E.State = IsRecursive? Recursive : NonRecursive; 6663 } 6664 6665 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6666 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6667 /// encoding is Recursive, return an empty StringRef. 6668 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6669 if (!ID) 6670 return StringRef(); // We have no key. 6671 auto I = Map.find(ID); 6672 if (I == Map.end()) 6673 return StringRef(); // We have no encoding. 6674 Entry &E = I->second; 6675 if (E.State == Recursive && IncompleteCount) 6676 return StringRef(); // We don't use Recursive encodings for member types. 6677 6678 if (E.State == Incomplete) { 6679 // The incomplete type is being used to break out of recursion. 6680 E.State = IncompleteUsed; 6681 ++IncompleteUsedCount; 6682 } 6683 return E.Str.c_str(); 6684 } 6685 6686 /// The XCore ABI includes a type information section that communicates symbol 6687 /// type information to the linker. The linker uses this information to verify 6688 /// safety/correctness of things such as array bound and pointers et al. 6689 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6690 /// This type information (TypeString) is emitted into meta data for all global 6691 /// symbols: definitions, declarations, functions & variables. 6692 /// 6693 /// The TypeString carries type, qualifier, name, size & value details. 6694 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6695 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6696 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6697 /// 6698 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6699 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6700 6701 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6702 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6703 CodeGen::CodeGenModule &CGM) const { 6704 SmallStringEnc Enc; 6705 if (getTypeString(Enc, D, CGM, TSC)) { 6706 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6707 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 6708 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 6709 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6710 llvm::NamedMDNode *MD = 6711 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6712 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6713 } 6714 } 6715 6716 static bool appendType(SmallStringEnc &Enc, QualType QType, 6717 const CodeGen::CodeGenModule &CGM, 6718 TypeStringCache &TSC); 6719 6720 /// Helper function for appendRecordType(). 6721 /// Builds a SmallVector containing the encoded field types in declaration order. 6722 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6723 const RecordDecl *RD, 6724 const CodeGen::CodeGenModule &CGM, 6725 TypeStringCache &TSC) { 6726 for (const auto *Field : RD->fields()) { 6727 SmallStringEnc Enc; 6728 Enc += "m("; 6729 Enc += Field->getName(); 6730 Enc += "){"; 6731 if (Field->isBitField()) { 6732 Enc += "b("; 6733 llvm::raw_svector_ostream OS(Enc); 6734 OS.resync(); 6735 OS << Field->getBitWidthValue(CGM.getContext()); 6736 OS.flush(); 6737 Enc += ':'; 6738 } 6739 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6740 return false; 6741 if (Field->isBitField()) 6742 Enc += ')'; 6743 Enc += '}'; 6744 FE.push_back(FieldEncoding(!Field->getName().empty(), Enc)); 6745 } 6746 return true; 6747 } 6748 6749 /// Appends structure and union types to Enc and adds encoding to cache. 6750 /// Recursively calls appendType (via extractFieldType) for each field. 6751 /// Union types have their fields ordered according to the ABI. 6752 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6753 const CodeGen::CodeGenModule &CGM, 6754 TypeStringCache &TSC, const IdentifierInfo *ID) { 6755 // Append the cached TypeString if we have one. 6756 StringRef TypeString = TSC.lookupStr(ID); 6757 if (!TypeString.empty()) { 6758 Enc += TypeString; 6759 return true; 6760 } 6761 6762 // Start to emit an incomplete TypeString. 6763 size_t Start = Enc.size(); 6764 Enc += (RT->isUnionType()? 'u' : 's'); 6765 Enc += '('; 6766 if (ID) 6767 Enc += ID->getName(); 6768 Enc += "){"; 6769 6770 // We collect all encoded fields and order as necessary. 6771 bool IsRecursive = false; 6772 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6773 if (RD && !RD->field_empty()) { 6774 // An incomplete TypeString stub is placed in the cache for this RecordType 6775 // so that recursive calls to this RecordType will use it whilst building a 6776 // complete TypeString for this RecordType. 6777 SmallVector<FieldEncoding, 16> FE; 6778 std::string StubEnc(Enc.substr(Start).str()); 6779 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6780 TSC.addIncomplete(ID, std::move(StubEnc)); 6781 if (!extractFieldType(FE, RD, CGM, TSC)) { 6782 (void) TSC.removeIncomplete(ID); 6783 return false; 6784 } 6785 IsRecursive = TSC.removeIncomplete(ID); 6786 // The ABI requires unions to be sorted but not structures. 6787 // See FieldEncoding::operator< for sort algorithm. 6788 if (RT->isUnionType()) 6789 std::sort(FE.begin(), FE.end()); 6790 // We can now complete the TypeString. 6791 unsigned E = FE.size(); 6792 for (unsigned I = 0; I != E; ++I) { 6793 if (I) 6794 Enc += ','; 6795 Enc += FE[I].str(); 6796 } 6797 } 6798 Enc += '}'; 6799 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6800 return true; 6801 } 6802 6803 /// Appends enum types to Enc and adds the encoding to the cache. 6804 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6805 TypeStringCache &TSC, 6806 const IdentifierInfo *ID) { 6807 // Append the cached TypeString if we have one. 6808 StringRef TypeString = TSC.lookupStr(ID); 6809 if (!TypeString.empty()) { 6810 Enc += TypeString; 6811 return true; 6812 } 6813 6814 size_t Start = Enc.size(); 6815 Enc += "e("; 6816 if (ID) 6817 Enc += ID->getName(); 6818 Enc += "){"; 6819 6820 // We collect all encoded enumerations and order them alphanumerically. 6821 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6822 SmallVector<FieldEncoding, 16> FE; 6823 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6824 ++I) { 6825 SmallStringEnc EnumEnc; 6826 EnumEnc += "m("; 6827 EnumEnc += I->getName(); 6828 EnumEnc += "){"; 6829 I->getInitVal().toString(EnumEnc); 6830 EnumEnc += '}'; 6831 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6832 } 6833 std::sort(FE.begin(), FE.end()); 6834 unsigned E = FE.size(); 6835 for (unsigned I = 0; I != E; ++I) { 6836 if (I) 6837 Enc += ','; 6838 Enc += FE[I].str(); 6839 } 6840 } 6841 Enc += '}'; 6842 TSC.addIfComplete(ID, Enc.substr(Start), false); 6843 return true; 6844 } 6845 6846 /// Appends type's qualifier to Enc. 6847 /// This is done prior to appending the type's encoding. 6848 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6849 // Qualifiers are emitted in alphabetical order. 6850 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6851 int Lookup = 0; 6852 if (QT.isConstQualified()) 6853 Lookup += 1<<0; 6854 if (QT.isRestrictQualified()) 6855 Lookup += 1<<1; 6856 if (QT.isVolatileQualified()) 6857 Lookup += 1<<2; 6858 Enc += Table[Lookup]; 6859 } 6860 6861 /// Appends built-in types to Enc. 6862 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6863 const char *EncType; 6864 switch (BT->getKind()) { 6865 case BuiltinType::Void: 6866 EncType = "0"; 6867 break; 6868 case BuiltinType::Bool: 6869 EncType = "b"; 6870 break; 6871 case BuiltinType::Char_U: 6872 EncType = "uc"; 6873 break; 6874 case BuiltinType::UChar: 6875 EncType = "uc"; 6876 break; 6877 case BuiltinType::SChar: 6878 EncType = "sc"; 6879 break; 6880 case BuiltinType::UShort: 6881 EncType = "us"; 6882 break; 6883 case BuiltinType::Short: 6884 EncType = "ss"; 6885 break; 6886 case BuiltinType::UInt: 6887 EncType = "ui"; 6888 break; 6889 case BuiltinType::Int: 6890 EncType = "si"; 6891 break; 6892 case BuiltinType::ULong: 6893 EncType = "ul"; 6894 break; 6895 case BuiltinType::Long: 6896 EncType = "sl"; 6897 break; 6898 case BuiltinType::ULongLong: 6899 EncType = "ull"; 6900 break; 6901 case BuiltinType::LongLong: 6902 EncType = "sll"; 6903 break; 6904 case BuiltinType::Float: 6905 EncType = "ft"; 6906 break; 6907 case BuiltinType::Double: 6908 EncType = "d"; 6909 break; 6910 case BuiltinType::LongDouble: 6911 EncType = "ld"; 6912 break; 6913 default: 6914 return false; 6915 } 6916 Enc += EncType; 6917 return true; 6918 } 6919 6920 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6921 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6922 const CodeGen::CodeGenModule &CGM, 6923 TypeStringCache &TSC) { 6924 Enc += "p("; 6925 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6926 return false; 6927 Enc += ')'; 6928 return true; 6929 } 6930 6931 /// Appends array encoding to Enc before calling appendType for the element. 6932 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6933 const ArrayType *AT, 6934 const CodeGen::CodeGenModule &CGM, 6935 TypeStringCache &TSC, StringRef NoSizeEnc) { 6936 if (AT->getSizeModifier() != ArrayType::Normal) 6937 return false; 6938 Enc += "a("; 6939 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6940 CAT->getSize().toStringUnsigned(Enc); 6941 else 6942 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6943 Enc += ':'; 6944 // The Qualifiers should be attached to the type rather than the array. 6945 appendQualifier(Enc, QT); 6946 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6947 return false; 6948 Enc += ')'; 6949 return true; 6950 } 6951 6952 /// Appends a function encoding to Enc, calling appendType for the return type 6953 /// and the arguments. 6954 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6955 const CodeGen::CodeGenModule &CGM, 6956 TypeStringCache &TSC) { 6957 Enc += "f{"; 6958 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6959 return false; 6960 Enc += "}("; 6961 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6962 // N.B. we are only interested in the adjusted param types. 6963 auto I = FPT->param_type_begin(); 6964 auto E = FPT->param_type_end(); 6965 if (I != E) { 6966 do { 6967 if (!appendType(Enc, *I, CGM, TSC)) 6968 return false; 6969 ++I; 6970 if (I != E) 6971 Enc += ','; 6972 } while (I != E); 6973 if (FPT->isVariadic()) 6974 Enc += ",va"; 6975 } else { 6976 if (FPT->isVariadic()) 6977 Enc += "va"; 6978 else 6979 Enc += '0'; 6980 } 6981 } 6982 Enc += ')'; 6983 return true; 6984 } 6985 6986 /// Handles the type's qualifier before dispatching a call to handle specific 6987 /// type encodings. 6988 static bool appendType(SmallStringEnc &Enc, QualType QType, 6989 const CodeGen::CodeGenModule &CGM, 6990 TypeStringCache &TSC) { 6991 6992 QualType QT = QType.getCanonicalType(); 6993 6994 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 6995 // The Qualifiers should be attached to the type rather than the array. 6996 // Thus we don't call appendQualifier() here. 6997 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 6998 6999 appendQualifier(Enc, QT); 7000 7001 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7002 return appendBuiltinType(Enc, BT); 7003 7004 if (const PointerType *PT = QT->getAs<PointerType>()) 7005 return appendPointerType(Enc, PT, CGM, TSC); 7006 7007 if (const EnumType *ET = QT->getAs<EnumType>()) 7008 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7009 7010 if (const RecordType *RT = QT->getAsStructureType()) 7011 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7012 7013 if (const RecordType *RT = QT->getAsUnionType()) 7014 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7015 7016 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7017 return appendFunctionType(Enc, FT, CGM, TSC); 7018 7019 return false; 7020 } 7021 7022 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7023 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7024 if (!D) 7025 return false; 7026 7027 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7028 if (FD->getLanguageLinkage() != CLanguageLinkage) 7029 return false; 7030 return appendType(Enc, FD->getType(), CGM, TSC); 7031 } 7032 7033 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7034 if (VD->getLanguageLinkage() != CLanguageLinkage) 7035 return false; 7036 QualType QT = VD->getType().getCanonicalType(); 7037 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7038 // Global ArrayTypes are given a size of '*' if the size is unknown. 7039 // The Qualifiers should be attached to the type rather than the array. 7040 // Thus we don't call appendQualifier() here. 7041 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7042 } 7043 return appendType(Enc, QT, CGM, TSC); 7044 } 7045 return false; 7046 } 7047 7048 7049 //===----------------------------------------------------------------------===// 7050 // Driver code 7051 //===----------------------------------------------------------------------===// 7052 7053 const llvm::Triple &CodeGenModule::getTriple() const { 7054 return getTarget().getTriple(); 7055 } 7056 7057 bool CodeGenModule::supportsCOMDAT() const { 7058 return !getTriple().isOSBinFormatMachO(); 7059 } 7060 7061 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7062 if (TheTargetCodeGenInfo) 7063 return *TheTargetCodeGenInfo; 7064 7065 const llvm::Triple &Triple = getTarget().getTriple(); 7066 switch (Triple.getArch()) { 7067 default: 7068 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7069 7070 case llvm::Triple::le32: 7071 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7072 case llvm::Triple::mips: 7073 case llvm::Triple::mipsel: 7074 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7075 7076 case llvm::Triple::mips64: 7077 case llvm::Triple::mips64el: 7078 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7079 7080 case llvm::Triple::aarch64: 7081 case llvm::Triple::aarch64_be: { 7082 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7083 if (getTarget().getABI() == "darwinpcs") 7084 Kind = AArch64ABIInfo::DarwinPCS; 7085 7086 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7087 } 7088 7089 case llvm::Triple::arm: 7090 case llvm::Triple::armeb: 7091 case llvm::Triple::thumb: 7092 case llvm::Triple::thumbeb: 7093 { 7094 if (Triple.getOS() == llvm::Triple::Win32) { 7095 TheTargetCodeGenInfo = 7096 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP); 7097 return *TheTargetCodeGenInfo; 7098 } 7099 7100 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7101 if (getTarget().getABI() == "apcs-gnu") 7102 Kind = ARMABIInfo::APCS; 7103 else if (CodeGenOpts.FloatABI == "hard" || 7104 (CodeGenOpts.FloatABI != "soft" && 7105 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7106 Kind = ARMABIInfo::AAPCS_VFP; 7107 7108 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 7109 } 7110 7111 case llvm::Triple::ppc: 7112 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 7113 case llvm::Triple::ppc64: 7114 if (Triple.isOSBinFormatELF()) { 7115 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7116 if (getTarget().getABI() == "elfv2") 7117 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7118 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7119 7120 return *(TheTargetCodeGenInfo = 7121 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7122 } else 7123 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7124 case llvm::Triple::ppc64le: { 7125 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7126 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7127 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7128 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7129 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7130 7131 return *(TheTargetCodeGenInfo = 7132 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7133 } 7134 7135 case llvm::Triple::nvptx: 7136 case llvm::Triple::nvptx64: 7137 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7138 7139 case llvm::Triple::msp430: 7140 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7141 7142 case llvm::Triple::systemz: { 7143 bool HasVector = getTarget().getABI() == "vector"; 7144 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types, 7145 HasVector)); 7146 } 7147 7148 case llvm::Triple::tce: 7149 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7150 7151 case llvm::Triple::x86: { 7152 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7153 bool IsSmallStructInRegABI = 7154 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7155 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7156 7157 if (Triple.getOS() == llvm::Triple::Win32) { 7158 return *(TheTargetCodeGenInfo = 7159 new WinX86_32TargetCodeGenInfo(Types, 7160 IsDarwinVectorABI, IsSmallStructInRegABI, 7161 IsWin32FloatStructABI, 7162 CodeGenOpts.NumRegisterParameters)); 7163 } else { 7164 return *(TheTargetCodeGenInfo = 7165 new X86_32TargetCodeGenInfo(Types, 7166 IsDarwinVectorABI, IsSmallStructInRegABI, 7167 IsWin32FloatStructABI, 7168 CodeGenOpts.NumRegisterParameters)); 7169 } 7170 } 7171 7172 case llvm::Triple::x86_64: { 7173 switch (Triple.getOS()) { 7174 case llvm::Triple::Win32: 7175 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 7176 case llvm::Triple::PS4: 7177 return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types)); 7178 default: 7179 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types)); 7180 } 7181 } 7182 case llvm::Triple::hexagon: 7183 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7184 case llvm::Triple::r600: 7185 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7186 case llvm::Triple::amdgcn: 7187 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7188 case llvm::Triple::sparcv9: 7189 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7190 case llvm::Triple::xcore: 7191 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7192 } 7193 } 7194