1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) { 144 if (!RT->getDecl()->canPassInRegisters()) 145 return CGCXXABI::RAA_Indirect; 146 return CGCXXABI::RAA_Default; 147 } 148 return CXXABI.getRecordArgABI(RD); 149 } 150 151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 152 CGCXXABI &CXXABI) { 153 const RecordType *RT = T->getAs<RecordType>(); 154 if (!RT) 155 return CGCXXABI::RAA_Default; 156 return getRecordArgABI(RT, CXXABI); 157 } 158 159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 160 const ABIInfo &Info) { 161 QualType Ty = FI.getReturnType(); 162 163 if (const auto *RT = Ty->getAs<RecordType>()) 164 if (!isa<CXXRecordDecl>(RT->getDecl()) && 165 !RT->getDecl()->canPassInRegisters()) { 166 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 167 return true; 168 } 169 170 return CXXABI.classifyReturnType(FI); 171 } 172 173 /// Pass transparent unions as if they were the type of the first element. Sema 174 /// should ensure that all elements of the union have the same "machine type". 175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 176 if (const RecordType *UT = Ty->getAsUnionType()) { 177 const RecordDecl *UD = UT->getDecl(); 178 if (UD->hasAttr<TransparentUnionAttr>()) { 179 assert(!UD->field_empty() && "sema created an empty transparent union"); 180 return UD->field_begin()->getType(); 181 } 182 } 183 return Ty; 184 } 185 186 CGCXXABI &ABIInfo::getCXXABI() const { 187 return CGT.getCXXABI(); 188 } 189 190 ASTContext &ABIInfo::getContext() const { 191 return CGT.getContext(); 192 } 193 194 llvm::LLVMContext &ABIInfo::getVMContext() const { 195 return CGT.getLLVMContext(); 196 } 197 198 const llvm::DataLayout &ABIInfo::getDataLayout() const { 199 return CGT.getDataLayout(); 200 } 201 202 const TargetInfo &ABIInfo::getTarget() const { 203 return CGT.getTarget(); 204 } 205 206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 207 return CGT.getCodeGenOpts(); 208 } 209 210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 211 212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 213 return false; 214 } 215 216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 217 uint64_t Members) const { 218 return false; 219 } 220 221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 222 raw_ostream &OS = llvm::errs(); 223 OS << "(ABIArgInfo Kind="; 224 switch (TheKind) { 225 case Direct: 226 OS << "Direct Type="; 227 if (llvm::Type *Ty = getCoerceToType()) 228 Ty->print(OS); 229 else 230 OS << "null"; 231 break; 232 case Extend: 233 OS << "Extend"; 234 break; 235 case Ignore: 236 OS << "Ignore"; 237 break; 238 case InAlloca: 239 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 240 break; 241 case Indirect: 242 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 243 << " ByVal=" << getIndirectByVal() 244 << " Realign=" << getIndirectRealign(); 245 break; 246 case Expand: 247 OS << "Expand"; 248 break; 249 case CoerceAndExpand: 250 OS << "CoerceAndExpand Type="; 251 getCoerceAndExpandType()->print(OS); 252 break; 253 } 254 OS << ")\n"; 255 } 256 257 // Dynamically round a pointer up to a multiple of the given alignment. 258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 259 llvm::Value *Ptr, 260 CharUnits Align) { 261 llvm::Value *PtrAsInt = Ptr; 262 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 263 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 264 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 265 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 266 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 267 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 268 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 269 Ptr->getType(), 270 Ptr->getName() + ".aligned"); 271 return PtrAsInt; 272 } 273 274 /// Emit va_arg for a platform using the common void* representation, 275 /// where arguments are simply emitted in an array of slots on the stack. 276 /// 277 /// This version implements the core direct-value passing rules. 278 /// 279 /// \param SlotSize - The size and alignment of a stack slot. 280 /// Each argument will be allocated to a multiple of this number of 281 /// slots, and all the slots will be aligned to this value. 282 /// \param AllowHigherAlign - The slot alignment is not a cap; 283 /// an argument type with an alignment greater than the slot size 284 /// will be emitted on a higher-alignment address, potentially 285 /// leaving one or more empty slots behind as padding. If this 286 /// is false, the returned address might be less-aligned than 287 /// DirectAlign. 288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 289 Address VAListAddr, 290 llvm::Type *DirectTy, 291 CharUnits DirectSize, 292 CharUnits DirectAlign, 293 CharUnits SlotSize, 294 bool AllowHigherAlign) { 295 // Cast the element type to i8* if necessary. Some platforms define 296 // va_list as a struct containing an i8* instead of just an i8*. 297 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 298 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 299 300 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 301 302 // If the CC aligns values higher than the slot size, do so if needed. 303 Address Addr = Address::invalid(); 304 if (AllowHigherAlign && DirectAlign > SlotSize) { 305 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 306 DirectAlign); 307 } else { 308 Addr = Address(Ptr, SlotSize); 309 } 310 311 // Advance the pointer past the argument, then store that back. 312 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 313 Address NextPtr = 314 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 315 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 316 317 // If the argument is smaller than a slot, and this is a big-endian 318 // target, the argument will be right-adjusted in its slot. 319 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 320 !DirectTy->isStructTy()) { 321 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 322 } 323 324 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 325 return Addr; 326 } 327 328 /// Emit va_arg for a platform using the common void* representation, 329 /// where arguments are simply emitted in an array of slots on the stack. 330 /// 331 /// \param IsIndirect - Values of this type are passed indirectly. 332 /// \param ValueInfo - The size and alignment of this type, generally 333 /// computed with getContext().getTypeInfoInChars(ValueTy). 334 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 335 /// Each argument will be allocated to a multiple of this number of 336 /// slots, and all the slots will be aligned to this value. 337 /// \param AllowHigherAlign - The slot alignment is not a cap; 338 /// an argument type with an alignment greater than the slot size 339 /// will be emitted on a higher-alignment address, potentially 340 /// leaving one or more empty slots behind as padding. 341 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 342 QualType ValueTy, bool IsIndirect, 343 std::pair<CharUnits, CharUnits> ValueInfo, 344 CharUnits SlotSizeAndAlign, 345 bool AllowHigherAlign) { 346 // The size and alignment of the value that was passed directly. 347 CharUnits DirectSize, DirectAlign; 348 if (IsIndirect) { 349 DirectSize = CGF.getPointerSize(); 350 DirectAlign = CGF.getPointerAlign(); 351 } else { 352 DirectSize = ValueInfo.first; 353 DirectAlign = ValueInfo.second; 354 } 355 356 // Cast the address we've calculated to the right type. 357 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 358 if (IsIndirect) 359 DirectTy = DirectTy->getPointerTo(0); 360 361 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 362 DirectSize, DirectAlign, 363 SlotSizeAndAlign, 364 AllowHigherAlign); 365 366 if (IsIndirect) { 367 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 368 } 369 370 return Addr; 371 372 } 373 374 static Address emitMergePHI(CodeGenFunction &CGF, 375 Address Addr1, llvm::BasicBlock *Block1, 376 Address Addr2, llvm::BasicBlock *Block2, 377 const llvm::Twine &Name = "") { 378 assert(Addr1.getType() == Addr2.getType()); 379 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 380 PHI->addIncoming(Addr1.getPointer(), Block1); 381 PHI->addIncoming(Addr2.getPointer(), Block2); 382 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 383 return Address(PHI, Align); 384 } 385 386 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 387 388 // If someone can figure out a general rule for this, that would be great. 389 // It's probably just doomed to be platform-dependent, though. 390 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 391 // Verified for: 392 // x86-64 FreeBSD, Linux, Darwin 393 // x86-32 FreeBSD, Linux, Darwin 394 // PowerPC Linux, Darwin 395 // ARM Darwin (*not* EABI) 396 // AArch64 Linux 397 return 32; 398 } 399 400 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 401 const FunctionNoProtoType *fnType) const { 402 // The following conventions are known to require this to be false: 403 // x86_stdcall 404 // MIPS 405 // For everything else, we just prefer false unless we opt out. 406 return false; 407 } 408 409 void 410 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 411 llvm::SmallString<24> &Opt) const { 412 // This assumes the user is passing a library name like "rt" instead of a 413 // filename like "librt.a/so", and that they don't care whether it's static or 414 // dynamic. 415 Opt = "-l"; 416 Opt += Lib; 417 } 418 419 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 420 // OpenCL kernels are called via an explicit runtime API with arguments 421 // set with clSetKernelArg(), not as normal sub-functions. 422 // Return SPIR_KERNEL by default as the kernel calling convention to 423 // ensure the fingerprint is fixed such way that each OpenCL argument 424 // gets one matching argument in the produced kernel function argument 425 // list to enable feasible implementation of clSetKernelArg() with 426 // aggregates etc. In case we would use the default C calling conv here, 427 // clSetKernelArg() might break depending on the target-specific 428 // conventions; different targets might split structs passed as values 429 // to multiple function arguments etc. 430 return llvm::CallingConv::SPIR_KERNEL; 431 } 432 433 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 434 llvm::PointerType *T, QualType QT) const { 435 return llvm::ConstantPointerNull::get(T); 436 } 437 438 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 439 const VarDecl *D) const { 440 assert(!CGM.getLangOpts().OpenCL && 441 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 442 "Address space agnostic languages only"); 443 return D ? D->getType().getAddressSpace() : LangAS::Default; 444 } 445 446 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 447 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 448 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 449 // Since target may map different address spaces in AST to the same address 450 // space, an address space conversion may end up as a bitcast. 451 if (auto *C = dyn_cast<llvm::Constant>(Src)) 452 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 453 // Try to preserve the source's name to make IR more readable. 454 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 455 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 456 } 457 458 llvm::Constant * 459 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 460 LangAS SrcAddr, LangAS DestAddr, 461 llvm::Type *DestTy) const { 462 // Since target may map different address spaces in AST to the same address 463 // space, an address space conversion may end up as a bitcast. 464 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 465 } 466 467 llvm::SyncScope::ID 468 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 469 SyncScope Scope, 470 llvm::AtomicOrdering Ordering, 471 llvm::LLVMContext &Ctx) const { 472 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 473 } 474 475 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 476 477 /// isEmptyField - Return true iff a the field is "empty", that is it 478 /// is an unnamed bit-field or an (array of) empty record(s). 479 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 480 bool AllowArrays) { 481 if (FD->isUnnamedBitfield()) 482 return true; 483 484 QualType FT = FD->getType(); 485 486 // Constant arrays of empty records count as empty, strip them off. 487 // Constant arrays of zero length always count as empty. 488 if (AllowArrays) 489 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 490 if (AT->getSize() == 0) 491 return true; 492 FT = AT->getElementType(); 493 } 494 495 const RecordType *RT = FT->getAs<RecordType>(); 496 if (!RT) 497 return false; 498 499 // C++ record fields are never empty, at least in the Itanium ABI. 500 // 501 // FIXME: We should use a predicate for whether this behavior is true in the 502 // current ABI. 503 if (isa<CXXRecordDecl>(RT->getDecl())) 504 return false; 505 506 return isEmptyRecord(Context, FT, AllowArrays); 507 } 508 509 /// isEmptyRecord - Return true iff a structure contains only empty 510 /// fields. Note that a structure with a flexible array member is not 511 /// considered empty. 512 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 513 const RecordType *RT = T->getAs<RecordType>(); 514 if (!RT) 515 return false; 516 const RecordDecl *RD = RT->getDecl(); 517 if (RD->hasFlexibleArrayMember()) 518 return false; 519 520 // If this is a C++ record, check the bases first. 521 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 522 for (const auto &I : CXXRD->bases()) 523 if (!isEmptyRecord(Context, I.getType(), true)) 524 return false; 525 526 for (const auto *I : RD->fields()) 527 if (!isEmptyField(Context, I, AllowArrays)) 528 return false; 529 return true; 530 } 531 532 /// isSingleElementStruct - Determine if a structure is a "single 533 /// element struct", i.e. it has exactly one non-empty field or 534 /// exactly one field which is itself a single element 535 /// struct. Structures with flexible array members are never 536 /// considered single element structs. 537 /// 538 /// \return The field declaration for the single non-empty field, if 539 /// it exists. 540 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 541 const RecordType *RT = T->getAs<RecordType>(); 542 if (!RT) 543 return nullptr; 544 545 const RecordDecl *RD = RT->getDecl(); 546 if (RD->hasFlexibleArrayMember()) 547 return nullptr; 548 549 const Type *Found = nullptr; 550 551 // If this is a C++ record, check the bases first. 552 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 553 for (const auto &I : CXXRD->bases()) { 554 // Ignore empty records. 555 if (isEmptyRecord(Context, I.getType(), true)) 556 continue; 557 558 // If we already found an element then this isn't a single-element struct. 559 if (Found) 560 return nullptr; 561 562 // If this is non-empty and not a single element struct, the composite 563 // cannot be a single element struct. 564 Found = isSingleElementStruct(I.getType(), Context); 565 if (!Found) 566 return nullptr; 567 } 568 } 569 570 // Check for single element. 571 for (const auto *FD : RD->fields()) { 572 QualType FT = FD->getType(); 573 574 // Ignore empty fields. 575 if (isEmptyField(Context, FD, true)) 576 continue; 577 578 // If we already found an element then this isn't a single-element 579 // struct. 580 if (Found) 581 return nullptr; 582 583 // Treat single element arrays as the element. 584 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 585 if (AT->getSize().getZExtValue() != 1) 586 break; 587 FT = AT->getElementType(); 588 } 589 590 if (!isAggregateTypeForABI(FT)) { 591 Found = FT.getTypePtr(); 592 } else { 593 Found = isSingleElementStruct(FT, Context); 594 if (!Found) 595 return nullptr; 596 } 597 } 598 599 // We don't consider a struct a single-element struct if it has 600 // padding beyond the element type. 601 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 602 return nullptr; 603 604 return Found; 605 } 606 607 namespace { 608 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 609 const ABIArgInfo &AI) { 610 // This default implementation defers to the llvm backend's va_arg 611 // instruction. It can handle only passing arguments directly 612 // (typically only handled in the backend for primitive types), or 613 // aggregates passed indirectly by pointer (NOTE: if the "byval" 614 // flag has ABI impact in the callee, this implementation cannot 615 // work.) 616 617 // Only a few cases are covered here at the moment -- those needed 618 // by the default abi. 619 llvm::Value *Val; 620 621 if (AI.isIndirect()) { 622 assert(!AI.getPaddingType() && 623 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 624 assert( 625 !AI.getIndirectRealign() && 626 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 627 628 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 629 CharUnits TyAlignForABI = TyInfo.second; 630 631 llvm::Type *BaseTy = 632 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 633 llvm::Value *Addr = 634 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 635 return Address(Addr, TyAlignForABI); 636 } else { 637 assert((AI.isDirect() || AI.isExtend()) && 638 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 639 640 assert(!AI.getInReg() && 641 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 642 assert(!AI.getPaddingType() && 643 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 644 assert(!AI.getDirectOffset() && 645 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 646 assert(!AI.getCoerceToType() && 647 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 648 649 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 650 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 651 CGF.Builder.CreateStore(Val, Temp); 652 return Temp; 653 } 654 } 655 656 /// DefaultABIInfo - The default implementation for ABI specific 657 /// details. This implementation provides information which results in 658 /// self-consistent and sensible LLVM IR generation, but does not 659 /// conform to any particular ABI. 660 class DefaultABIInfo : public ABIInfo { 661 public: 662 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 663 664 ABIArgInfo classifyReturnType(QualType RetTy) const; 665 ABIArgInfo classifyArgumentType(QualType RetTy) const; 666 667 void computeInfo(CGFunctionInfo &FI) const override { 668 if (!getCXXABI().classifyReturnType(FI)) 669 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 670 for (auto &I : FI.arguments()) 671 I.info = classifyArgumentType(I.type); 672 } 673 674 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 675 QualType Ty) const override { 676 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 677 } 678 }; 679 680 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 681 public: 682 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 683 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 684 }; 685 686 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 687 Ty = useFirstFieldIfTransparentUnion(Ty); 688 689 if (isAggregateTypeForABI(Ty)) { 690 // Records with non-trivial destructors/copy-constructors should not be 691 // passed by value. 692 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 693 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 694 695 return getNaturalAlignIndirect(Ty); 696 } 697 698 // Treat an enum type as its underlying type. 699 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 700 Ty = EnumTy->getDecl()->getIntegerType(); 701 702 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 703 : ABIArgInfo::getDirect()); 704 } 705 706 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 707 if (RetTy->isVoidType()) 708 return ABIArgInfo::getIgnore(); 709 710 if (isAggregateTypeForABI(RetTy)) 711 return getNaturalAlignIndirect(RetTy); 712 713 // Treat an enum type as its underlying type. 714 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 715 RetTy = EnumTy->getDecl()->getIntegerType(); 716 717 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 718 : ABIArgInfo::getDirect()); 719 } 720 721 //===----------------------------------------------------------------------===// 722 // WebAssembly ABI Implementation 723 // 724 // This is a very simple ABI that relies a lot on DefaultABIInfo. 725 //===----------------------------------------------------------------------===// 726 727 class WebAssemblyABIInfo final : public SwiftABIInfo { 728 DefaultABIInfo defaultInfo; 729 730 public: 731 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 732 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 733 734 private: 735 ABIArgInfo classifyReturnType(QualType RetTy) const; 736 ABIArgInfo classifyArgumentType(QualType Ty) const; 737 738 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 739 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 740 // overload them. 741 void computeInfo(CGFunctionInfo &FI) const override { 742 if (!getCXXABI().classifyReturnType(FI)) 743 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 744 for (auto &Arg : FI.arguments()) 745 Arg.info = classifyArgumentType(Arg.type); 746 } 747 748 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 749 QualType Ty) const override; 750 751 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 752 bool asReturnValue) const override { 753 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 754 } 755 756 bool isSwiftErrorInRegister() const override { 757 return false; 758 } 759 }; 760 761 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 762 public: 763 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 764 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 765 766 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 767 CodeGen::CodeGenModule &CGM) const override { 768 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 769 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 770 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 771 llvm::Function *Fn = cast<llvm::Function>(GV); 772 llvm::AttrBuilder B; 773 B.addAttribute("wasm-import-module", Attr->getImportModule()); 774 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 775 } 776 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 777 llvm::Function *Fn = cast<llvm::Function>(GV); 778 llvm::AttrBuilder B; 779 B.addAttribute("wasm-import-name", Attr->getImportName()); 780 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 781 } 782 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 783 llvm::Function *Fn = cast<llvm::Function>(GV); 784 llvm::AttrBuilder B; 785 B.addAttribute("wasm-export-name", Attr->getExportName()); 786 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 787 } 788 } 789 790 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 791 llvm::Function *Fn = cast<llvm::Function>(GV); 792 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 793 Fn->addFnAttr("no-prototype"); 794 } 795 } 796 }; 797 798 /// Classify argument of given type \p Ty. 799 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 800 Ty = useFirstFieldIfTransparentUnion(Ty); 801 802 if (isAggregateTypeForABI(Ty)) { 803 // Records with non-trivial destructors/copy-constructors should not be 804 // passed by value. 805 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 806 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 807 // Ignore empty structs/unions. 808 if (isEmptyRecord(getContext(), Ty, true)) 809 return ABIArgInfo::getIgnore(); 810 // Lower single-element structs to just pass a regular value. TODO: We 811 // could do reasonable-size multiple-element structs too, using getExpand(), 812 // though watch out for things like bitfields. 813 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 814 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 815 } 816 817 // Otherwise just do the default thing. 818 return defaultInfo.classifyArgumentType(Ty); 819 } 820 821 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 822 if (isAggregateTypeForABI(RetTy)) { 823 // Records with non-trivial destructors/copy-constructors should not be 824 // returned by value. 825 if (!getRecordArgABI(RetTy, getCXXABI())) { 826 // Ignore empty structs/unions. 827 if (isEmptyRecord(getContext(), RetTy, true)) 828 return ABIArgInfo::getIgnore(); 829 // Lower single-element structs to just return a regular value. TODO: We 830 // could do reasonable-size multiple-element structs too, using 831 // ABIArgInfo::getDirect(). 832 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 833 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 834 } 835 } 836 837 // Otherwise just do the default thing. 838 return defaultInfo.classifyReturnType(RetTy); 839 } 840 841 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 842 QualType Ty) const { 843 bool IsIndirect = isAggregateTypeForABI(Ty) && 844 !isEmptyRecord(getContext(), Ty, true) && 845 !isSingleElementStruct(Ty, getContext()); 846 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 847 getContext().getTypeInfoInChars(Ty), 848 CharUnits::fromQuantity(4), 849 /*AllowHigherAlign=*/true); 850 } 851 852 //===----------------------------------------------------------------------===// 853 // le32/PNaCl bitcode ABI Implementation 854 // 855 // This is a simplified version of the x86_32 ABI. Arguments and return values 856 // are always passed on the stack. 857 //===----------------------------------------------------------------------===// 858 859 class PNaClABIInfo : public ABIInfo { 860 public: 861 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 862 863 ABIArgInfo classifyReturnType(QualType RetTy) const; 864 ABIArgInfo classifyArgumentType(QualType RetTy) const; 865 866 void computeInfo(CGFunctionInfo &FI) const override; 867 Address EmitVAArg(CodeGenFunction &CGF, 868 Address VAListAddr, QualType Ty) const override; 869 }; 870 871 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 872 public: 873 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 874 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 875 }; 876 877 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 878 if (!getCXXABI().classifyReturnType(FI)) 879 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 880 881 for (auto &I : FI.arguments()) 882 I.info = classifyArgumentType(I.type); 883 } 884 885 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 886 QualType Ty) const { 887 // The PNaCL ABI is a bit odd, in that varargs don't use normal 888 // function classification. Structs get passed directly for varargs 889 // functions, through a rewriting transform in 890 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 891 // this target to actually support a va_arg instructions with an 892 // aggregate type, unlike other targets. 893 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 894 } 895 896 /// Classify argument of given type \p Ty. 897 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 898 if (isAggregateTypeForABI(Ty)) { 899 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 900 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 901 return getNaturalAlignIndirect(Ty); 902 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 903 // Treat an enum type as its underlying type. 904 Ty = EnumTy->getDecl()->getIntegerType(); 905 } else if (Ty->isFloatingType()) { 906 // Floating-point types don't go inreg. 907 return ABIArgInfo::getDirect(); 908 } 909 910 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 911 : ABIArgInfo::getDirect()); 912 } 913 914 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 915 if (RetTy->isVoidType()) 916 return ABIArgInfo::getIgnore(); 917 918 // In the PNaCl ABI we always return records/structures on the stack. 919 if (isAggregateTypeForABI(RetTy)) 920 return getNaturalAlignIndirect(RetTy); 921 922 // Treat an enum type as its underlying type. 923 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 924 RetTy = EnumTy->getDecl()->getIntegerType(); 925 926 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 927 : ABIArgInfo::getDirect()); 928 } 929 930 /// IsX86_MMXType - Return true if this is an MMX type. 931 bool IsX86_MMXType(llvm::Type *IRType) { 932 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 933 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 934 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 935 IRType->getScalarSizeInBits() != 64; 936 } 937 938 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 939 StringRef Constraint, 940 llvm::Type* Ty) { 941 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 942 .Cases("y", "&y", "^Ym", true) 943 .Default(false); 944 if (IsMMXCons && Ty->isVectorTy()) { 945 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 946 // Invalid MMX constraint 947 return nullptr; 948 } 949 950 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 951 } 952 953 // No operation needed 954 return Ty; 955 } 956 957 /// Returns true if this type can be passed in SSE registers with the 958 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 959 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 960 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 961 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 962 if (BT->getKind() == BuiltinType::LongDouble) { 963 if (&Context.getTargetInfo().getLongDoubleFormat() == 964 &llvm::APFloat::x87DoubleExtended()) 965 return false; 966 } 967 return true; 968 } 969 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 970 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 971 // registers specially. 972 unsigned VecSize = Context.getTypeSize(VT); 973 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 974 return true; 975 } 976 return false; 977 } 978 979 /// Returns true if this aggregate is small enough to be passed in SSE registers 980 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 981 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 982 return NumMembers <= 4; 983 } 984 985 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 986 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 987 auto AI = ABIArgInfo::getDirect(T); 988 AI.setInReg(true); 989 AI.setCanBeFlattened(false); 990 return AI; 991 } 992 993 //===----------------------------------------------------------------------===// 994 // X86-32 ABI Implementation 995 //===----------------------------------------------------------------------===// 996 997 /// Similar to llvm::CCState, but for Clang. 998 struct CCState { 999 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 1000 1001 unsigned CC; 1002 unsigned FreeRegs; 1003 unsigned FreeSSERegs; 1004 }; 1005 1006 enum { 1007 // Vectorcall only allows the first 6 parameters to be passed in registers. 1008 VectorcallMaxParamNumAsReg = 6 1009 }; 1010 1011 /// X86_32ABIInfo - The X86-32 ABI information. 1012 class X86_32ABIInfo : public SwiftABIInfo { 1013 enum Class { 1014 Integer, 1015 Float 1016 }; 1017 1018 static const unsigned MinABIStackAlignInBytes = 4; 1019 1020 bool IsDarwinVectorABI; 1021 bool IsRetSmallStructInRegABI; 1022 bool IsWin32StructABI; 1023 bool IsSoftFloatABI; 1024 bool IsMCUABI; 1025 unsigned DefaultNumRegisterParameters; 1026 1027 static bool isRegisterSize(unsigned Size) { 1028 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1029 } 1030 1031 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1032 // FIXME: Assumes vectorcall is in use. 1033 return isX86VectorTypeForVectorCall(getContext(), Ty); 1034 } 1035 1036 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1037 uint64_t NumMembers) const override { 1038 // FIXME: Assumes vectorcall is in use. 1039 return isX86VectorCallAggregateSmallEnough(NumMembers); 1040 } 1041 1042 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1043 1044 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1045 /// such that the argument will be passed in memory. 1046 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1047 1048 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1049 1050 /// Return the alignment to use for the given type on the stack. 1051 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1052 1053 Class classify(QualType Ty) const; 1054 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1055 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1056 1057 /// Updates the number of available free registers, returns 1058 /// true if any registers were allocated. 1059 bool updateFreeRegs(QualType Ty, CCState &State) const; 1060 1061 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1062 bool &NeedsPadding) const; 1063 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1064 1065 bool canExpandIndirectArgument(QualType Ty) const; 1066 1067 /// Rewrite the function info so that all memory arguments use 1068 /// inalloca. 1069 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1070 1071 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1072 CharUnits &StackOffset, ABIArgInfo &Info, 1073 QualType Type) const; 1074 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1075 bool &UsedInAlloca) const; 1076 1077 public: 1078 1079 void computeInfo(CGFunctionInfo &FI) const override; 1080 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1081 QualType Ty) const override; 1082 1083 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1084 bool RetSmallStructInRegABI, bool Win32StructABI, 1085 unsigned NumRegisterParameters, bool SoftFloatABI) 1086 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1087 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1088 IsWin32StructABI(Win32StructABI), 1089 IsSoftFloatABI(SoftFloatABI), 1090 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1091 DefaultNumRegisterParameters(NumRegisterParameters) {} 1092 1093 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1094 bool asReturnValue) const override { 1095 // LLVM's x86-32 lowering currently only assigns up to three 1096 // integer registers and three fp registers. Oddly, it'll use up to 1097 // four vector registers for vectors, but those can overlap with the 1098 // scalar registers. 1099 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1100 } 1101 1102 bool isSwiftErrorInRegister() const override { 1103 // x86-32 lowering does not support passing swifterror in a register. 1104 return false; 1105 } 1106 }; 1107 1108 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1109 public: 1110 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1111 bool RetSmallStructInRegABI, bool Win32StructABI, 1112 unsigned NumRegisterParameters, bool SoftFloatABI) 1113 : TargetCodeGenInfo(new X86_32ABIInfo( 1114 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1115 NumRegisterParameters, SoftFloatABI)) {} 1116 1117 static bool isStructReturnInRegABI( 1118 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1119 1120 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1121 CodeGen::CodeGenModule &CGM) const override; 1122 1123 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1124 // Darwin uses different dwarf register numbers for EH. 1125 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1126 return 4; 1127 } 1128 1129 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1130 llvm::Value *Address) const override; 1131 1132 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1133 StringRef Constraint, 1134 llvm::Type* Ty) const override { 1135 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1136 } 1137 1138 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1139 std::string &Constraints, 1140 std::vector<llvm::Type *> &ResultRegTypes, 1141 std::vector<llvm::Type *> &ResultTruncRegTypes, 1142 std::vector<LValue> &ResultRegDests, 1143 std::string &AsmString, 1144 unsigned NumOutputs) const override; 1145 1146 llvm::Constant * 1147 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1148 unsigned Sig = (0xeb << 0) | // jmp rel8 1149 (0x06 << 8) | // .+0x08 1150 ('v' << 16) | 1151 ('2' << 24); 1152 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1153 } 1154 1155 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1156 return "movl\t%ebp, %ebp" 1157 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1158 } 1159 }; 1160 1161 } 1162 1163 /// Rewrite input constraint references after adding some output constraints. 1164 /// In the case where there is one output and one input and we add one output, 1165 /// we need to replace all operand references greater than or equal to 1: 1166 /// mov $0, $1 1167 /// mov eax, $1 1168 /// The result will be: 1169 /// mov $0, $2 1170 /// mov eax, $2 1171 static void rewriteInputConstraintReferences(unsigned FirstIn, 1172 unsigned NumNewOuts, 1173 std::string &AsmString) { 1174 std::string Buf; 1175 llvm::raw_string_ostream OS(Buf); 1176 size_t Pos = 0; 1177 while (Pos < AsmString.size()) { 1178 size_t DollarStart = AsmString.find('$', Pos); 1179 if (DollarStart == std::string::npos) 1180 DollarStart = AsmString.size(); 1181 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1182 if (DollarEnd == std::string::npos) 1183 DollarEnd = AsmString.size(); 1184 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1185 Pos = DollarEnd; 1186 size_t NumDollars = DollarEnd - DollarStart; 1187 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1188 // We have an operand reference. 1189 size_t DigitStart = Pos; 1190 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1191 if (DigitEnd == std::string::npos) 1192 DigitEnd = AsmString.size(); 1193 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1194 unsigned OperandIndex; 1195 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1196 if (OperandIndex >= FirstIn) 1197 OperandIndex += NumNewOuts; 1198 OS << OperandIndex; 1199 } else { 1200 OS << OperandStr; 1201 } 1202 Pos = DigitEnd; 1203 } 1204 } 1205 AsmString = std::move(OS.str()); 1206 } 1207 1208 /// Add output constraints for EAX:EDX because they are return registers. 1209 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1210 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1211 std::vector<llvm::Type *> &ResultRegTypes, 1212 std::vector<llvm::Type *> &ResultTruncRegTypes, 1213 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1214 unsigned NumOutputs) const { 1215 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1216 1217 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1218 // larger. 1219 if (!Constraints.empty()) 1220 Constraints += ','; 1221 if (RetWidth <= 32) { 1222 Constraints += "={eax}"; 1223 ResultRegTypes.push_back(CGF.Int32Ty); 1224 } else { 1225 // Use the 'A' constraint for EAX:EDX. 1226 Constraints += "=A"; 1227 ResultRegTypes.push_back(CGF.Int64Ty); 1228 } 1229 1230 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1231 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1232 ResultTruncRegTypes.push_back(CoerceTy); 1233 1234 // Coerce the integer by bitcasting the return slot pointer. 1235 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1236 CoerceTy->getPointerTo())); 1237 ResultRegDests.push_back(ReturnSlot); 1238 1239 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1240 } 1241 1242 /// shouldReturnTypeInRegister - Determine if the given type should be 1243 /// returned in a register (for the Darwin and MCU ABI). 1244 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1245 ASTContext &Context) const { 1246 uint64_t Size = Context.getTypeSize(Ty); 1247 1248 // For i386, type must be register sized. 1249 // For the MCU ABI, it only needs to be <= 8-byte 1250 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1251 return false; 1252 1253 if (Ty->isVectorType()) { 1254 // 64- and 128- bit vectors inside structures are not returned in 1255 // registers. 1256 if (Size == 64 || Size == 128) 1257 return false; 1258 1259 return true; 1260 } 1261 1262 // If this is a builtin, pointer, enum, complex type, member pointer, or 1263 // member function pointer it is ok. 1264 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1265 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1266 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1267 return true; 1268 1269 // Arrays are treated like records. 1270 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1271 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1272 1273 // Otherwise, it must be a record type. 1274 const RecordType *RT = Ty->getAs<RecordType>(); 1275 if (!RT) return false; 1276 1277 // FIXME: Traverse bases here too. 1278 1279 // Structure types are passed in register if all fields would be 1280 // passed in a register. 1281 for (const auto *FD : RT->getDecl()->fields()) { 1282 // Empty fields are ignored. 1283 if (isEmptyField(Context, FD, true)) 1284 continue; 1285 1286 // Check fields recursively. 1287 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1288 return false; 1289 } 1290 return true; 1291 } 1292 1293 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1294 // Treat complex types as the element type. 1295 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1296 Ty = CTy->getElementType(); 1297 1298 // Check for a type which we know has a simple scalar argument-passing 1299 // convention without any padding. (We're specifically looking for 32 1300 // and 64-bit integer and integer-equivalents, float, and double.) 1301 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1302 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1303 return false; 1304 1305 uint64_t Size = Context.getTypeSize(Ty); 1306 return Size == 32 || Size == 64; 1307 } 1308 1309 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1310 uint64_t &Size) { 1311 for (const auto *FD : RD->fields()) { 1312 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1313 // argument is smaller than 32-bits, expanding the struct will create 1314 // alignment padding. 1315 if (!is32Or64BitBasicType(FD->getType(), Context)) 1316 return false; 1317 1318 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1319 // how to expand them yet, and the predicate for telling if a bitfield still 1320 // counts as "basic" is more complicated than what we were doing previously. 1321 if (FD->isBitField()) 1322 return false; 1323 1324 Size += Context.getTypeSize(FD->getType()); 1325 } 1326 return true; 1327 } 1328 1329 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1330 uint64_t &Size) { 1331 // Don't do this if there are any non-empty bases. 1332 for (const CXXBaseSpecifier &Base : RD->bases()) { 1333 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1334 Size)) 1335 return false; 1336 } 1337 if (!addFieldSizes(Context, RD, Size)) 1338 return false; 1339 return true; 1340 } 1341 1342 /// Test whether an argument type which is to be passed indirectly (on the 1343 /// stack) would have the equivalent layout if it was expanded into separate 1344 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1345 /// optimizations. 1346 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1347 // We can only expand structure types. 1348 const RecordType *RT = Ty->getAs<RecordType>(); 1349 if (!RT) 1350 return false; 1351 const RecordDecl *RD = RT->getDecl(); 1352 uint64_t Size = 0; 1353 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1354 if (!IsWin32StructABI) { 1355 // On non-Windows, we have to conservatively match our old bitcode 1356 // prototypes in order to be ABI-compatible at the bitcode level. 1357 if (!CXXRD->isCLike()) 1358 return false; 1359 } else { 1360 // Don't do this for dynamic classes. 1361 if (CXXRD->isDynamicClass()) 1362 return false; 1363 } 1364 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1365 return false; 1366 } else { 1367 if (!addFieldSizes(getContext(), RD, Size)) 1368 return false; 1369 } 1370 1371 // We can do this if there was no alignment padding. 1372 return Size == getContext().getTypeSize(Ty); 1373 } 1374 1375 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1376 // If the return value is indirect, then the hidden argument is consuming one 1377 // integer register. 1378 if (State.FreeRegs) { 1379 --State.FreeRegs; 1380 if (!IsMCUABI) 1381 return getNaturalAlignIndirectInReg(RetTy); 1382 } 1383 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1384 } 1385 1386 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1387 CCState &State) const { 1388 if (RetTy->isVoidType()) 1389 return ABIArgInfo::getIgnore(); 1390 1391 const Type *Base = nullptr; 1392 uint64_t NumElts = 0; 1393 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1394 State.CC == llvm::CallingConv::X86_RegCall) && 1395 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1396 // The LLVM struct type for such an aggregate should lower properly. 1397 return ABIArgInfo::getDirect(); 1398 } 1399 1400 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1401 // On Darwin, some vectors are returned in registers. 1402 if (IsDarwinVectorABI) { 1403 uint64_t Size = getContext().getTypeSize(RetTy); 1404 1405 // 128-bit vectors are a special case; they are returned in 1406 // registers and we need to make sure to pick a type the LLVM 1407 // backend will like. 1408 if (Size == 128) 1409 return ABIArgInfo::getDirect(llvm::VectorType::get( 1410 llvm::Type::getInt64Ty(getVMContext()), 2)); 1411 1412 // Always return in register if it fits in a general purpose 1413 // register, or if it is 64 bits and has a single element. 1414 if ((Size == 8 || Size == 16 || Size == 32) || 1415 (Size == 64 && VT->getNumElements() == 1)) 1416 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1417 Size)); 1418 1419 return getIndirectReturnResult(RetTy, State); 1420 } 1421 1422 return ABIArgInfo::getDirect(); 1423 } 1424 1425 if (isAggregateTypeForABI(RetTy)) { 1426 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1427 // Structures with flexible arrays are always indirect. 1428 if (RT->getDecl()->hasFlexibleArrayMember()) 1429 return getIndirectReturnResult(RetTy, State); 1430 } 1431 1432 // If specified, structs and unions are always indirect. 1433 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1434 return getIndirectReturnResult(RetTy, State); 1435 1436 // Ignore empty structs/unions. 1437 if (isEmptyRecord(getContext(), RetTy, true)) 1438 return ABIArgInfo::getIgnore(); 1439 1440 // Small structures which are register sized are generally returned 1441 // in a register. 1442 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1443 uint64_t Size = getContext().getTypeSize(RetTy); 1444 1445 // As a special-case, if the struct is a "single-element" struct, and 1446 // the field is of type "float" or "double", return it in a 1447 // floating-point register. (MSVC does not apply this special case.) 1448 // We apply a similar transformation for pointer types to improve the 1449 // quality of the generated IR. 1450 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1451 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1452 || SeltTy->hasPointerRepresentation()) 1453 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1454 1455 // FIXME: We should be able to narrow this integer in cases with dead 1456 // padding. 1457 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1458 } 1459 1460 return getIndirectReturnResult(RetTy, State); 1461 } 1462 1463 // Treat an enum type as its underlying type. 1464 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1465 RetTy = EnumTy->getDecl()->getIntegerType(); 1466 1467 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1468 : ABIArgInfo::getDirect()); 1469 } 1470 1471 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1472 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1473 } 1474 1475 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1476 const RecordType *RT = Ty->getAs<RecordType>(); 1477 if (!RT) 1478 return 0; 1479 const RecordDecl *RD = RT->getDecl(); 1480 1481 // If this is a C++ record, check the bases first. 1482 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1483 for (const auto &I : CXXRD->bases()) 1484 if (!isRecordWithSSEVectorType(Context, I.getType())) 1485 return false; 1486 1487 for (const auto *i : RD->fields()) { 1488 QualType FT = i->getType(); 1489 1490 if (isSSEVectorType(Context, FT)) 1491 return true; 1492 1493 if (isRecordWithSSEVectorType(Context, FT)) 1494 return true; 1495 } 1496 1497 return false; 1498 } 1499 1500 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1501 unsigned Align) const { 1502 // Otherwise, if the alignment is less than or equal to the minimum ABI 1503 // alignment, just use the default; the backend will handle this. 1504 if (Align <= MinABIStackAlignInBytes) 1505 return 0; // Use default alignment. 1506 1507 // On non-Darwin, the stack type alignment is always 4. 1508 if (!IsDarwinVectorABI) { 1509 // Set explicit alignment, since we may need to realign the top. 1510 return MinABIStackAlignInBytes; 1511 } 1512 1513 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1514 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1515 isRecordWithSSEVectorType(getContext(), Ty))) 1516 return 16; 1517 1518 return MinABIStackAlignInBytes; 1519 } 1520 1521 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1522 CCState &State) const { 1523 if (!ByVal) { 1524 if (State.FreeRegs) { 1525 --State.FreeRegs; // Non-byval indirects just use one pointer. 1526 if (!IsMCUABI) 1527 return getNaturalAlignIndirectInReg(Ty); 1528 } 1529 return getNaturalAlignIndirect(Ty, false); 1530 } 1531 1532 // Compute the byval alignment. 1533 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1534 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1535 if (StackAlign == 0) 1536 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1537 1538 // If the stack alignment is less than the type alignment, realign the 1539 // argument. 1540 bool Realign = TypeAlign > StackAlign; 1541 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1542 /*ByVal=*/true, Realign); 1543 } 1544 1545 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1546 const Type *T = isSingleElementStruct(Ty, getContext()); 1547 if (!T) 1548 T = Ty.getTypePtr(); 1549 1550 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1551 BuiltinType::Kind K = BT->getKind(); 1552 if (K == BuiltinType::Float || K == BuiltinType::Double) 1553 return Float; 1554 } 1555 return Integer; 1556 } 1557 1558 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1559 if (!IsSoftFloatABI) { 1560 Class C = classify(Ty); 1561 if (C == Float) 1562 return false; 1563 } 1564 1565 unsigned Size = getContext().getTypeSize(Ty); 1566 unsigned SizeInRegs = (Size + 31) / 32; 1567 1568 if (SizeInRegs == 0) 1569 return false; 1570 1571 if (!IsMCUABI) { 1572 if (SizeInRegs > State.FreeRegs) { 1573 State.FreeRegs = 0; 1574 return false; 1575 } 1576 } else { 1577 // The MCU psABI allows passing parameters in-reg even if there are 1578 // earlier parameters that are passed on the stack. Also, 1579 // it does not allow passing >8-byte structs in-register, 1580 // even if there are 3 free registers available. 1581 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1582 return false; 1583 } 1584 1585 State.FreeRegs -= SizeInRegs; 1586 return true; 1587 } 1588 1589 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1590 bool &InReg, 1591 bool &NeedsPadding) const { 1592 // On Windows, aggregates other than HFAs are never passed in registers, and 1593 // they do not consume register slots. Homogenous floating-point aggregates 1594 // (HFAs) have already been dealt with at this point. 1595 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1596 return false; 1597 1598 NeedsPadding = false; 1599 InReg = !IsMCUABI; 1600 1601 if (!updateFreeRegs(Ty, State)) 1602 return false; 1603 1604 if (IsMCUABI) 1605 return true; 1606 1607 if (State.CC == llvm::CallingConv::X86_FastCall || 1608 State.CC == llvm::CallingConv::X86_VectorCall || 1609 State.CC == llvm::CallingConv::X86_RegCall) { 1610 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1611 NeedsPadding = true; 1612 1613 return false; 1614 } 1615 1616 return true; 1617 } 1618 1619 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1620 if (!updateFreeRegs(Ty, State)) 1621 return false; 1622 1623 if (IsMCUABI) 1624 return false; 1625 1626 if (State.CC == llvm::CallingConv::X86_FastCall || 1627 State.CC == llvm::CallingConv::X86_VectorCall || 1628 State.CC == llvm::CallingConv::X86_RegCall) { 1629 if (getContext().getTypeSize(Ty) > 32) 1630 return false; 1631 1632 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1633 Ty->isReferenceType()); 1634 } 1635 1636 return true; 1637 } 1638 1639 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1640 CCState &State) const { 1641 // FIXME: Set alignment on indirect arguments. 1642 1643 Ty = useFirstFieldIfTransparentUnion(Ty); 1644 1645 // Check with the C++ ABI first. 1646 const RecordType *RT = Ty->getAs<RecordType>(); 1647 if (RT) { 1648 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1649 if (RAA == CGCXXABI::RAA_Indirect) { 1650 return getIndirectResult(Ty, false, State); 1651 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1652 // The field index doesn't matter, we'll fix it up later. 1653 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1654 } 1655 } 1656 1657 // Regcall uses the concept of a homogenous vector aggregate, similar 1658 // to other targets. 1659 const Type *Base = nullptr; 1660 uint64_t NumElts = 0; 1661 if (State.CC == llvm::CallingConv::X86_RegCall && 1662 isHomogeneousAggregate(Ty, Base, NumElts)) { 1663 1664 if (State.FreeSSERegs >= NumElts) { 1665 State.FreeSSERegs -= NumElts; 1666 if (Ty->isBuiltinType() || Ty->isVectorType()) 1667 return ABIArgInfo::getDirect(); 1668 return ABIArgInfo::getExpand(); 1669 } 1670 return getIndirectResult(Ty, /*ByVal=*/false, State); 1671 } 1672 1673 if (isAggregateTypeForABI(Ty)) { 1674 // Structures with flexible arrays are always indirect. 1675 // FIXME: This should not be byval! 1676 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1677 return getIndirectResult(Ty, true, State); 1678 1679 // Ignore empty structs/unions on non-Windows. 1680 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1681 return ABIArgInfo::getIgnore(); 1682 1683 llvm::LLVMContext &LLVMContext = getVMContext(); 1684 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1685 bool NeedsPadding = false; 1686 bool InReg; 1687 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1688 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1689 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1690 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1691 if (InReg) 1692 return ABIArgInfo::getDirectInReg(Result); 1693 else 1694 return ABIArgInfo::getDirect(Result); 1695 } 1696 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1697 1698 // Expand small (<= 128-bit) record types when we know that the stack layout 1699 // of those arguments will match the struct. This is important because the 1700 // LLVM backend isn't smart enough to remove byval, which inhibits many 1701 // optimizations. 1702 // Don't do this for the MCU if there are still free integer registers 1703 // (see X86_64 ABI for full explanation). 1704 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1705 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1706 return ABIArgInfo::getExpandWithPadding( 1707 State.CC == llvm::CallingConv::X86_FastCall || 1708 State.CC == llvm::CallingConv::X86_VectorCall || 1709 State.CC == llvm::CallingConv::X86_RegCall, 1710 PaddingType); 1711 1712 return getIndirectResult(Ty, true, State); 1713 } 1714 1715 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1716 // On Darwin, some vectors are passed in memory, we handle this by passing 1717 // it as an i8/i16/i32/i64. 1718 if (IsDarwinVectorABI) { 1719 uint64_t Size = getContext().getTypeSize(Ty); 1720 if ((Size == 8 || Size == 16 || Size == 32) || 1721 (Size == 64 && VT->getNumElements() == 1)) 1722 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1723 Size)); 1724 } 1725 1726 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1727 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1728 1729 return ABIArgInfo::getDirect(); 1730 } 1731 1732 1733 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1734 Ty = EnumTy->getDecl()->getIntegerType(); 1735 1736 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1737 1738 if (Ty->isPromotableIntegerType()) { 1739 if (InReg) 1740 return ABIArgInfo::getExtendInReg(Ty); 1741 return ABIArgInfo::getExtend(Ty); 1742 } 1743 1744 if (InReg) 1745 return ABIArgInfo::getDirectInReg(); 1746 return ABIArgInfo::getDirect(); 1747 } 1748 1749 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1750 bool &UsedInAlloca) const { 1751 // Vectorcall x86 works subtly different than in x64, so the format is 1752 // a bit different than the x64 version. First, all vector types (not HVAs) 1753 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1754 // This differs from the x64 implementation, where the first 6 by INDEX get 1755 // registers. 1756 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1757 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1758 // first take up the remaining YMM/XMM registers. If insufficient registers 1759 // remain but an integer register (ECX/EDX) is available, it will be passed 1760 // in that, else, on the stack. 1761 for (auto &I : FI.arguments()) { 1762 // First pass do all the vector types. 1763 const Type *Base = nullptr; 1764 uint64_t NumElts = 0; 1765 const QualType& Ty = I.type; 1766 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1767 isHomogeneousAggregate(Ty, Base, NumElts)) { 1768 if (State.FreeSSERegs >= NumElts) { 1769 State.FreeSSERegs -= NumElts; 1770 I.info = ABIArgInfo::getDirect(); 1771 } else { 1772 I.info = classifyArgumentType(Ty, State); 1773 } 1774 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1775 } 1776 } 1777 1778 for (auto &I : FI.arguments()) { 1779 // Second pass, do the rest! 1780 const Type *Base = nullptr; 1781 uint64_t NumElts = 0; 1782 const QualType& Ty = I.type; 1783 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1784 1785 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1786 // Assign true HVAs (non vector/native FP types). 1787 if (State.FreeSSERegs >= NumElts) { 1788 State.FreeSSERegs -= NumElts; 1789 I.info = getDirectX86Hva(); 1790 } else { 1791 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1792 } 1793 } else if (!IsHva) { 1794 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1795 I.info = classifyArgumentType(Ty, State); 1796 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1797 } 1798 } 1799 } 1800 1801 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1802 CCState State(FI.getCallingConvention()); 1803 if (IsMCUABI) 1804 State.FreeRegs = 3; 1805 else if (State.CC == llvm::CallingConv::X86_FastCall) 1806 State.FreeRegs = 2; 1807 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1808 State.FreeRegs = 2; 1809 State.FreeSSERegs = 6; 1810 } else if (FI.getHasRegParm()) 1811 State.FreeRegs = FI.getRegParm(); 1812 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1813 State.FreeRegs = 5; 1814 State.FreeSSERegs = 8; 1815 } else 1816 State.FreeRegs = DefaultNumRegisterParameters; 1817 1818 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1819 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1820 } else if (FI.getReturnInfo().isIndirect()) { 1821 // The C++ ABI is not aware of register usage, so we have to check if the 1822 // return value was sret and put it in a register ourselves if appropriate. 1823 if (State.FreeRegs) { 1824 --State.FreeRegs; // The sret parameter consumes a register. 1825 if (!IsMCUABI) 1826 FI.getReturnInfo().setInReg(true); 1827 } 1828 } 1829 1830 // The chain argument effectively gives us another free register. 1831 if (FI.isChainCall()) 1832 ++State.FreeRegs; 1833 1834 bool UsedInAlloca = false; 1835 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1836 computeVectorCallArgs(FI, State, UsedInAlloca); 1837 } else { 1838 // If not vectorcall, revert to normal behavior. 1839 for (auto &I : FI.arguments()) { 1840 I.info = classifyArgumentType(I.type, State); 1841 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1842 } 1843 } 1844 1845 // If we needed to use inalloca for any argument, do a second pass and rewrite 1846 // all the memory arguments to use inalloca. 1847 if (UsedInAlloca) 1848 rewriteWithInAlloca(FI); 1849 } 1850 1851 void 1852 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1853 CharUnits &StackOffset, ABIArgInfo &Info, 1854 QualType Type) const { 1855 // Arguments are always 4-byte-aligned. 1856 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1857 1858 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1859 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1860 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1861 StackOffset += getContext().getTypeSizeInChars(Type); 1862 1863 // Insert padding bytes to respect alignment. 1864 CharUnits FieldEnd = StackOffset; 1865 StackOffset = FieldEnd.alignTo(FieldAlign); 1866 if (StackOffset != FieldEnd) { 1867 CharUnits NumBytes = StackOffset - FieldEnd; 1868 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1869 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1870 FrameFields.push_back(Ty); 1871 } 1872 } 1873 1874 static bool isArgInAlloca(const ABIArgInfo &Info) { 1875 // Leave ignored and inreg arguments alone. 1876 switch (Info.getKind()) { 1877 case ABIArgInfo::InAlloca: 1878 return true; 1879 case ABIArgInfo::Indirect: 1880 assert(Info.getIndirectByVal()); 1881 return true; 1882 case ABIArgInfo::Ignore: 1883 return false; 1884 case ABIArgInfo::Direct: 1885 case ABIArgInfo::Extend: 1886 if (Info.getInReg()) 1887 return false; 1888 return true; 1889 case ABIArgInfo::Expand: 1890 case ABIArgInfo::CoerceAndExpand: 1891 // These are aggregate types which are never passed in registers when 1892 // inalloca is involved. 1893 return true; 1894 } 1895 llvm_unreachable("invalid enum"); 1896 } 1897 1898 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1899 assert(IsWin32StructABI && "inalloca only supported on win32"); 1900 1901 // Build a packed struct type for all of the arguments in memory. 1902 SmallVector<llvm::Type *, 6> FrameFields; 1903 1904 // The stack alignment is always 4. 1905 CharUnits StackAlign = CharUnits::fromQuantity(4); 1906 1907 CharUnits StackOffset; 1908 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1909 1910 // Put 'this' into the struct before 'sret', if necessary. 1911 bool IsThisCall = 1912 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1913 ABIArgInfo &Ret = FI.getReturnInfo(); 1914 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1915 isArgInAlloca(I->info)) { 1916 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1917 ++I; 1918 } 1919 1920 // Put the sret parameter into the inalloca struct if it's in memory. 1921 if (Ret.isIndirect() && !Ret.getInReg()) { 1922 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1923 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1924 // On Windows, the hidden sret parameter is always returned in eax. 1925 Ret.setInAllocaSRet(IsWin32StructABI); 1926 } 1927 1928 // Skip the 'this' parameter in ecx. 1929 if (IsThisCall) 1930 ++I; 1931 1932 // Put arguments passed in memory into the struct. 1933 for (; I != E; ++I) { 1934 if (isArgInAlloca(I->info)) 1935 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1936 } 1937 1938 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1939 /*isPacked=*/true), 1940 StackAlign); 1941 } 1942 1943 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1944 Address VAListAddr, QualType Ty) const { 1945 1946 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1947 1948 // x86-32 changes the alignment of certain arguments on the stack. 1949 // 1950 // Just messing with TypeInfo like this works because we never pass 1951 // anything indirectly. 1952 TypeInfo.second = CharUnits::fromQuantity( 1953 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1954 1955 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1956 TypeInfo, CharUnits::fromQuantity(4), 1957 /*AllowHigherAlign*/ true); 1958 } 1959 1960 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1961 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1962 assert(Triple.getArch() == llvm::Triple::x86); 1963 1964 switch (Opts.getStructReturnConvention()) { 1965 case CodeGenOptions::SRCK_Default: 1966 break; 1967 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1968 return false; 1969 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1970 return true; 1971 } 1972 1973 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1974 return true; 1975 1976 switch (Triple.getOS()) { 1977 case llvm::Triple::DragonFly: 1978 case llvm::Triple::FreeBSD: 1979 case llvm::Triple::OpenBSD: 1980 case llvm::Triple::Win32: 1981 return true; 1982 default: 1983 return false; 1984 } 1985 } 1986 1987 void X86_32TargetCodeGenInfo::setTargetAttributes( 1988 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1989 if (GV->isDeclaration()) 1990 return; 1991 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1992 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1993 llvm::Function *Fn = cast<llvm::Function>(GV); 1994 Fn->addFnAttr("stackrealign"); 1995 } 1996 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1997 llvm::Function *Fn = cast<llvm::Function>(GV); 1998 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1999 } 2000 } 2001 } 2002 2003 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2004 CodeGen::CodeGenFunction &CGF, 2005 llvm::Value *Address) const { 2006 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2007 2008 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2009 2010 // 0-7 are the eight integer registers; the order is different 2011 // on Darwin (for EH), but the range is the same. 2012 // 8 is %eip. 2013 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2014 2015 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2016 // 12-16 are st(0..4). Not sure why we stop at 4. 2017 // These have size 16, which is sizeof(long double) on 2018 // platforms with 8-byte alignment for that type. 2019 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2020 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2021 2022 } else { 2023 // 9 is %eflags, which doesn't get a size on Darwin for some 2024 // reason. 2025 Builder.CreateAlignedStore( 2026 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2027 CharUnits::One()); 2028 2029 // 11-16 are st(0..5). Not sure why we stop at 5. 2030 // These have size 12, which is sizeof(long double) on 2031 // platforms with 4-byte alignment for that type. 2032 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2033 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2034 } 2035 2036 return false; 2037 } 2038 2039 //===----------------------------------------------------------------------===// 2040 // X86-64 ABI Implementation 2041 //===----------------------------------------------------------------------===// 2042 2043 2044 namespace { 2045 /// The AVX ABI level for X86 targets. 2046 enum class X86AVXABILevel { 2047 None, 2048 AVX, 2049 AVX512 2050 }; 2051 2052 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2053 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2054 switch (AVXLevel) { 2055 case X86AVXABILevel::AVX512: 2056 return 512; 2057 case X86AVXABILevel::AVX: 2058 return 256; 2059 case X86AVXABILevel::None: 2060 return 128; 2061 } 2062 llvm_unreachable("Unknown AVXLevel"); 2063 } 2064 2065 /// X86_64ABIInfo - The X86_64 ABI information. 2066 class X86_64ABIInfo : public SwiftABIInfo { 2067 enum Class { 2068 Integer = 0, 2069 SSE, 2070 SSEUp, 2071 X87, 2072 X87Up, 2073 ComplexX87, 2074 NoClass, 2075 Memory 2076 }; 2077 2078 /// merge - Implement the X86_64 ABI merging algorithm. 2079 /// 2080 /// Merge an accumulating classification \arg Accum with a field 2081 /// classification \arg Field. 2082 /// 2083 /// \param Accum - The accumulating classification. This should 2084 /// always be either NoClass or the result of a previous merge 2085 /// call. In addition, this should never be Memory (the caller 2086 /// should just return Memory for the aggregate). 2087 static Class merge(Class Accum, Class Field); 2088 2089 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2090 /// 2091 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2092 /// final MEMORY or SSE classes when necessary. 2093 /// 2094 /// \param AggregateSize - The size of the current aggregate in 2095 /// the classification process. 2096 /// 2097 /// \param Lo - The classification for the parts of the type 2098 /// residing in the low word of the containing object. 2099 /// 2100 /// \param Hi - The classification for the parts of the type 2101 /// residing in the higher words of the containing object. 2102 /// 2103 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2104 2105 /// classify - Determine the x86_64 register classes in which the 2106 /// given type T should be passed. 2107 /// 2108 /// \param Lo - The classification for the parts of the type 2109 /// residing in the low word of the containing object. 2110 /// 2111 /// \param Hi - The classification for the parts of the type 2112 /// residing in the high word of the containing object. 2113 /// 2114 /// \param OffsetBase - The bit offset of this type in the 2115 /// containing object. Some parameters are classified different 2116 /// depending on whether they straddle an eightbyte boundary. 2117 /// 2118 /// \param isNamedArg - Whether the argument in question is a "named" 2119 /// argument, as used in AMD64-ABI 3.5.7. 2120 /// 2121 /// If a word is unused its result will be NoClass; if a type should 2122 /// be passed in Memory then at least the classification of \arg Lo 2123 /// will be Memory. 2124 /// 2125 /// The \arg Lo class will be NoClass iff the argument is ignored. 2126 /// 2127 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2128 /// also be ComplexX87. 2129 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2130 bool isNamedArg) const; 2131 2132 llvm::Type *GetByteVectorType(QualType Ty) const; 2133 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2134 unsigned IROffset, QualType SourceTy, 2135 unsigned SourceOffset) const; 2136 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2137 unsigned IROffset, QualType SourceTy, 2138 unsigned SourceOffset) const; 2139 2140 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2141 /// such that the argument will be returned in memory. 2142 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2143 2144 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2145 /// such that the argument will be passed in memory. 2146 /// 2147 /// \param freeIntRegs - The number of free integer registers remaining 2148 /// available. 2149 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2150 2151 ABIArgInfo classifyReturnType(QualType RetTy) const; 2152 2153 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2154 unsigned &neededInt, unsigned &neededSSE, 2155 bool isNamedArg) const; 2156 2157 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2158 unsigned &NeededSSE) const; 2159 2160 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2161 unsigned &NeededSSE) const; 2162 2163 bool IsIllegalVectorType(QualType Ty) const; 2164 2165 /// The 0.98 ABI revision clarified a lot of ambiguities, 2166 /// unfortunately in ways that were not always consistent with 2167 /// certain previous compilers. In particular, platforms which 2168 /// required strict binary compatibility with older versions of GCC 2169 /// may need to exempt themselves. 2170 bool honorsRevision0_98() const { 2171 return !getTarget().getTriple().isOSDarwin(); 2172 } 2173 2174 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2175 /// classify it as INTEGER (for compatibility with older clang compilers). 2176 bool classifyIntegerMMXAsSSE() const { 2177 // Clang <= 3.8 did not do this. 2178 if (getContext().getLangOpts().getClangABICompat() <= 2179 LangOptions::ClangABI::Ver3_8) 2180 return false; 2181 2182 const llvm::Triple &Triple = getTarget().getTriple(); 2183 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2184 return false; 2185 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2186 return false; 2187 return true; 2188 } 2189 2190 // GCC classifies vectors of __int128 as memory. 2191 bool passInt128VectorsInMem() const { 2192 // Clang <= 9.0 did not do this. 2193 if (getContext().getLangOpts().getClangABICompat() <= 2194 LangOptions::ClangABI::Ver9) 2195 return false; 2196 2197 const llvm::Triple &T = getTarget().getTriple(); 2198 return T.isOSLinux() || T.isOSNetBSD(); 2199 } 2200 2201 X86AVXABILevel AVXLevel; 2202 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2203 // 64-bit hardware. 2204 bool Has64BitPointers; 2205 2206 public: 2207 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2208 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2209 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2210 } 2211 2212 bool isPassedUsingAVXType(QualType type) const { 2213 unsigned neededInt, neededSSE; 2214 // The freeIntRegs argument doesn't matter here. 2215 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2216 /*isNamedArg*/true); 2217 if (info.isDirect()) { 2218 llvm::Type *ty = info.getCoerceToType(); 2219 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2220 return (vectorTy->getBitWidth() > 128); 2221 } 2222 return false; 2223 } 2224 2225 void computeInfo(CGFunctionInfo &FI) const override; 2226 2227 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2228 QualType Ty) const override; 2229 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2230 QualType Ty) const override; 2231 2232 bool has64BitPointers() const { 2233 return Has64BitPointers; 2234 } 2235 2236 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2237 bool asReturnValue) const override { 2238 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2239 } 2240 bool isSwiftErrorInRegister() const override { 2241 return true; 2242 } 2243 }; 2244 2245 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2246 class WinX86_64ABIInfo : public SwiftABIInfo { 2247 public: 2248 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2249 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2250 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2251 2252 void computeInfo(CGFunctionInfo &FI) const override; 2253 2254 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2255 QualType Ty) const override; 2256 2257 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2258 // FIXME: Assumes vectorcall is in use. 2259 return isX86VectorTypeForVectorCall(getContext(), Ty); 2260 } 2261 2262 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2263 uint64_t NumMembers) const override { 2264 // FIXME: Assumes vectorcall is in use. 2265 return isX86VectorCallAggregateSmallEnough(NumMembers); 2266 } 2267 2268 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2269 bool asReturnValue) const override { 2270 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2271 } 2272 2273 bool isSwiftErrorInRegister() const override { 2274 return true; 2275 } 2276 2277 private: 2278 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2279 bool IsVectorCall, bool IsRegCall) const; 2280 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2281 const ABIArgInfo ¤t) const; 2282 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2283 bool IsVectorCall, bool IsRegCall) const; 2284 2285 X86AVXABILevel AVXLevel; 2286 2287 bool IsMingw64; 2288 }; 2289 2290 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2291 public: 2292 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2293 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2294 2295 const X86_64ABIInfo &getABIInfo() const { 2296 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2297 } 2298 2299 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2300 /// the autoreleaseRV/retainRV optimization. 2301 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2302 return true; 2303 } 2304 2305 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2306 return 7; 2307 } 2308 2309 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2310 llvm::Value *Address) const override { 2311 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2312 2313 // 0-15 are the 16 integer registers. 2314 // 16 is %rip. 2315 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2316 return false; 2317 } 2318 2319 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2320 StringRef Constraint, 2321 llvm::Type* Ty) const override { 2322 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2323 } 2324 2325 bool isNoProtoCallVariadic(const CallArgList &args, 2326 const FunctionNoProtoType *fnType) const override { 2327 // The default CC on x86-64 sets %al to the number of SSA 2328 // registers used, and GCC sets this when calling an unprototyped 2329 // function, so we override the default behavior. However, don't do 2330 // that when AVX types are involved: the ABI explicitly states it is 2331 // undefined, and it doesn't work in practice because of how the ABI 2332 // defines varargs anyway. 2333 if (fnType->getCallConv() == CC_C) { 2334 bool HasAVXType = false; 2335 for (CallArgList::const_iterator 2336 it = args.begin(), ie = args.end(); it != ie; ++it) { 2337 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2338 HasAVXType = true; 2339 break; 2340 } 2341 } 2342 2343 if (!HasAVXType) 2344 return true; 2345 } 2346 2347 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2348 } 2349 2350 llvm::Constant * 2351 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2352 unsigned Sig = (0xeb << 0) | // jmp rel8 2353 (0x06 << 8) | // .+0x08 2354 ('v' << 16) | 2355 ('2' << 24); 2356 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2357 } 2358 2359 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2360 CodeGen::CodeGenModule &CGM) const override { 2361 if (GV->isDeclaration()) 2362 return; 2363 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2364 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2365 llvm::Function *Fn = cast<llvm::Function>(GV); 2366 Fn->addFnAttr("stackrealign"); 2367 } 2368 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2369 llvm::Function *Fn = cast<llvm::Function>(GV); 2370 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2371 } 2372 } 2373 } 2374 }; 2375 2376 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2377 // If the argument does not end in .lib, automatically add the suffix. 2378 // If the argument contains a space, enclose it in quotes. 2379 // This matches the behavior of MSVC. 2380 bool Quote = (Lib.find(" ") != StringRef::npos); 2381 std::string ArgStr = Quote ? "\"" : ""; 2382 ArgStr += Lib; 2383 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2384 ArgStr += ".lib"; 2385 ArgStr += Quote ? "\"" : ""; 2386 return ArgStr; 2387 } 2388 2389 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2390 public: 2391 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2392 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2393 unsigned NumRegisterParameters) 2394 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2395 Win32StructABI, NumRegisterParameters, false) {} 2396 2397 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2398 CodeGen::CodeGenModule &CGM) const override; 2399 2400 void getDependentLibraryOption(llvm::StringRef Lib, 2401 llvm::SmallString<24> &Opt) const override { 2402 Opt = "/DEFAULTLIB:"; 2403 Opt += qualifyWindowsLibrary(Lib); 2404 } 2405 2406 void getDetectMismatchOption(llvm::StringRef Name, 2407 llvm::StringRef Value, 2408 llvm::SmallString<32> &Opt) const override { 2409 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2410 } 2411 }; 2412 2413 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2414 CodeGen::CodeGenModule &CGM) { 2415 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2416 2417 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2418 Fn->addFnAttr("stack-probe-size", 2419 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2420 if (CGM.getCodeGenOpts().NoStackArgProbe) 2421 Fn->addFnAttr("no-stack-arg-probe"); 2422 } 2423 } 2424 2425 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2426 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2427 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2428 if (GV->isDeclaration()) 2429 return; 2430 addStackProbeTargetAttributes(D, GV, CGM); 2431 } 2432 2433 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2434 public: 2435 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2436 X86AVXABILevel AVXLevel) 2437 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {} 2438 2439 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2440 CodeGen::CodeGenModule &CGM) const override; 2441 2442 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2443 return 7; 2444 } 2445 2446 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2447 llvm::Value *Address) const override { 2448 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2449 2450 // 0-15 are the 16 integer registers. 2451 // 16 is %rip. 2452 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2453 return false; 2454 } 2455 2456 void getDependentLibraryOption(llvm::StringRef Lib, 2457 llvm::SmallString<24> &Opt) const override { 2458 Opt = "/DEFAULTLIB:"; 2459 Opt += qualifyWindowsLibrary(Lib); 2460 } 2461 2462 void getDetectMismatchOption(llvm::StringRef Name, 2463 llvm::StringRef Value, 2464 llvm::SmallString<32> &Opt) const override { 2465 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2466 } 2467 }; 2468 2469 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2470 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2471 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2472 if (GV->isDeclaration()) 2473 return; 2474 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2475 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2476 llvm::Function *Fn = cast<llvm::Function>(GV); 2477 Fn->addFnAttr("stackrealign"); 2478 } 2479 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2480 llvm::Function *Fn = cast<llvm::Function>(GV); 2481 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2482 } 2483 } 2484 2485 addStackProbeTargetAttributes(D, GV, CGM); 2486 } 2487 } 2488 2489 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2490 Class &Hi) const { 2491 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2492 // 2493 // (a) If one of the classes is Memory, the whole argument is passed in 2494 // memory. 2495 // 2496 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2497 // memory. 2498 // 2499 // (c) If the size of the aggregate exceeds two eightbytes and the first 2500 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2501 // argument is passed in memory. NOTE: This is necessary to keep the 2502 // ABI working for processors that don't support the __m256 type. 2503 // 2504 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2505 // 2506 // Some of these are enforced by the merging logic. Others can arise 2507 // only with unions; for example: 2508 // union { _Complex double; unsigned; } 2509 // 2510 // Note that clauses (b) and (c) were added in 0.98. 2511 // 2512 if (Hi == Memory) 2513 Lo = Memory; 2514 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2515 Lo = Memory; 2516 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2517 Lo = Memory; 2518 if (Hi == SSEUp && Lo != SSE) 2519 Hi = SSE; 2520 } 2521 2522 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2523 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2524 // classified recursively so that always two fields are 2525 // considered. The resulting class is calculated according to 2526 // the classes of the fields in the eightbyte: 2527 // 2528 // (a) If both classes are equal, this is the resulting class. 2529 // 2530 // (b) If one of the classes is NO_CLASS, the resulting class is 2531 // the other class. 2532 // 2533 // (c) If one of the classes is MEMORY, the result is the MEMORY 2534 // class. 2535 // 2536 // (d) If one of the classes is INTEGER, the result is the 2537 // INTEGER. 2538 // 2539 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2540 // MEMORY is used as class. 2541 // 2542 // (f) Otherwise class SSE is used. 2543 2544 // Accum should never be memory (we should have returned) or 2545 // ComplexX87 (because this cannot be passed in a structure). 2546 assert((Accum != Memory && Accum != ComplexX87) && 2547 "Invalid accumulated classification during merge."); 2548 if (Accum == Field || Field == NoClass) 2549 return Accum; 2550 if (Field == Memory) 2551 return Memory; 2552 if (Accum == NoClass) 2553 return Field; 2554 if (Accum == Integer || Field == Integer) 2555 return Integer; 2556 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2557 Accum == X87 || Accum == X87Up) 2558 return Memory; 2559 return SSE; 2560 } 2561 2562 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2563 Class &Lo, Class &Hi, bool isNamedArg) const { 2564 // FIXME: This code can be simplified by introducing a simple value class for 2565 // Class pairs with appropriate constructor methods for the various 2566 // situations. 2567 2568 // FIXME: Some of the split computations are wrong; unaligned vectors 2569 // shouldn't be passed in registers for example, so there is no chance they 2570 // can straddle an eightbyte. Verify & simplify. 2571 2572 Lo = Hi = NoClass; 2573 2574 Class &Current = OffsetBase < 64 ? Lo : Hi; 2575 Current = Memory; 2576 2577 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2578 BuiltinType::Kind k = BT->getKind(); 2579 2580 if (k == BuiltinType::Void) { 2581 Current = NoClass; 2582 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2583 Lo = Integer; 2584 Hi = Integer; 2585 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2586 Current = Integer; 2587 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2588 Current = SSE; 2589 } else if (k == BuiltinType::LongDouble) { 2590 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2591 if (LDF == &llvm::APFloat::IEEEquad()) { 2592 Lo = SSE; 2593 Hi = SSEUp; 2594 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2595 Lo = X87; 2596 Hi = X87Up; 2597 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2598 Current = SSE; 2599 } else 2600 llvm_unreachable("unexpected long double representation!"); 2601 } 2602 // FIXME: _Decimal32 and _Decimal64 are SSE. 2603 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2604 return; 2605 } 2606 2607 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2608 // Classify the underlying integer type. 2609 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2610 return; 2611 } 2612 2613 if (Ty->hasPointerRepresentation()) { 2614 Current = Integer; 2615 return; 2616 } 2617 2618 if (Ty->isMemberPointerType()) { 2619 if (Ty->isMemberFunctionPointerType()) { 2620 if (Has64BitPointers) { 2621 // If Has64BitPointers, this is an {i64, i64}, so classify both 2622 // Lo and Hi now. 2623 Lo = Hi = Integer; 2624 } else { 2625 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2626 // straddles an eightbyte boundary, Hi should be classified as well. 2627 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2628 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2629 if (EB_FuncPtr != EB_ThisAdj) { 2630 Lo = Hi = Integer; 2631 } else { 2632 Current = Integer; 2633 } 2634 } 2635 } else { 2636 Current = Integer; 2637 } 2638 return; 2639 } 2640 2641 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2642 uint64_t Size = getContext().getTypeSize(VT); 2643 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2644 // gcc passes the following as integer: 2645 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2646 // 2 bytes - <2 x char>, <1 x short> 2647 // 1 byte - <1 x char> 2648 Current = Integer; 2649 2650 // If this type crosses an eightbyte boundary, it should be 2651 // split. 2652 uint64_t EB_Lo = (OffsetBase) / 64; 2653 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2654 if (EB_Lo != EB_Hi) 2655 Hi = Lo; 2656 } else if (Size == 64) { 2657 QualType ElementType = VT->getElementType(); 2658 2659 // gcc passes <1 x double> in memory. :( 2660 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2661 return; 2662 2663 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2664 // pass them as integer. For platforms where clang is the de facto 2665 // platform compiler, we must continue to use integer. 2666 if (!classifyIntegerMMXAsSSE() && 2667 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2668 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2669 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2670 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2671 Current = Integer; 2672 else 2673 Current = SSE; 2674 2675 // If this type crosses an eightbyte boundary, it should be 2676 // split. 2677 if (OffsetBase && OffsetBase != 64) 2678 Hi = Lo; 2679 } else if (Size == 128 || 2680 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2681 QualType ElementType = VT->getElementType(); 2682 2683 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2684 if (passInt128VectorsInMem() && Size != 128 && 2685 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2686 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2687 return; 2688 2689 // Arguments of 256-bits are split into four eightbyte chunks. The 2690 // least significant one belongs to class SSE and all the others to class 2691 // SSEUP. The original Lo and Hi design considers that types can't be 2692 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2693 // This design isn't correct for 256-bits, but since there're no cases 2694 // where the upper parts would need to be inspected, avoid adding 2695 // complexity and just consider Hi to match the 64-256 part. 2696 // 2697 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2698 // registers if they are "named", i.e. not part of the "..." of a 2699 // variadic function. 2700 // 2701 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2702 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2703 Lo = SSE; 2704 Hi = SSEUp; 2705 } 2706 return; 2707 } 2708 2709 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2710 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2711 2712 uint64_t Size = getContext().getTypeSize(Ty); 2713 if (ET->isIntegralOrEnumerationType()) { 2714 if (Size <= 64) 2715 Current = Integer; 2716 else if (Size <= 128) 2717 Lo = Hi = Integer; 2718 } else if (ET == getContext().FloatTy) { 2719 Current = SSE; 2720 } else if (ET == getContext().DoubleTy) { 2721 Lo = Hi = SSE; 2722 } else if (ET == getContext().LongDoubleTy) { 2723 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2724 if (LDF == &llvm::APFloat::IEEEquad()) 2725 Current = Memory; 2726 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2727 Current = ComplexX87; 2728 else if (LDF == &llvm::APFloat::IEEEdouble()) 2729 Lo = Hi = SSE; 2730 else 2731 llvm_unreachable("unexpected long double representation!"); 2732 } 2733 2734 // If this complex type crosses an eightbyte boundary then it 2735 // should be split. 2736 uint64_t EB_Real = (OffsetBase) / 64; 2737 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2738 if (Hi == NoClass && EB_Real != EB_Imag) 2739 Hi = Lo; 2740 2741 return; 2742 } 2743 2744 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2745 // Arrays are treated like structures. 2746 2747 uint64_t Size = getContext().getTypeSize(Ty); 2748 2749 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2750 // than eight eightbytes, ..., it has class MEMORY. 2751 if (Size > 512) 2752 return; 2753 2754 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2755 // fields, it has class MEMORY. 2756 // 2757 // Only need to check alignment of array base. 2758 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2759 return; 2760 2761 // Otherwise implement simplified merge. We could be smarter about 2762 // this, but it isn't worth it and would be harder to verify. 2763 Current = NoClass; 2764 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2765 uint64_t ArraySize = AT->getSize().getZExtValue(); 2766 2767 // The only case a 256-bit wide vector could be used is when the array 2768 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2769 // to work for sizes wider than 128, early check and fallback to memory. 2770 // 2771 if (Size > 128 && 2772 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2773 return; 2774 2775 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2776 Class FieldLo, FieldHi; 2777 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2778 Lo = merge(Lo, FieldLo); 2779 Hi = merge(Hi, FieldHi); 2780 if (Lo == Memory || Hi == Memory) 2781 break; 2782 } 2783 2784 postMerge(Size, Lo, Hi); 2785 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2786 return; 2787 } 2788 2789 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2790 uint64_t Size = getContext().getTypeSize(Ty); 2791 2792 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2793 // than eight eightbytes, ..., it has class MEMORY. 2794 if (Size > 512) 2795 return; 2796 2797 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2798 // copy constructor or a non-trivial destructor, it is passed by invisible 2799 // reference. 2800 if (getRecordArgABI(RT, getCXXABI())) 2801 return; 2802 2803 const RecordDecl *RD = RT->getDecl(); 2804 2805 // Assume variable sized types are passed in memory. 2806 if (RD->hasFlexibleArrayMember()) 2807 return; 2808 2809 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2810 2811 // Reset Lo class, this will be recomputed. 2812 Current = NoClass; 2813 2814 // If this is a C++ record, classify the bases first. 2815 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2816 for (const auto &I : CXXRD->bases()) { 2817 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2818 "Unexpected base class!"); 2819 const auto *Base = 2820 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2821 2822 // Classify this field. 2823 // 2824 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2825 // single eightbyte, each is classified separately. Each eightbyte gets 2826 // initialized to class NO_CLASS. 2827 Class FieldLo, FieldHi; 2828 uint64_t Offset = 2829 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2830 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2831 Lo = merge(Lo, FieldLo); 2832 Hi = merge(Hi, FieldHi); 2833 if (Lo == Memory || Hi == Memory) { 2834 postMerge(Size, Lo, Hi); 2835 return; 2836 } 2837 } 2838 } 2839 2840 // Classify the fields one at a time, merging the results. 2841 unsigned idx = 0; 2842 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2843 i != e; ++i, ++idx) { 2844 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2845 bool BitField = i->isBitField(); 2846 2847 // Ignore padding bit-fields. 2848 if (BitField && i->isUnnamedBitfield()) 2849 continue; 2850 2851 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2852 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2853 // 2854 // The only case a 256-bit wide vector could be used is when the struct 2855 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2856 // to work for sizes wider than 128, early check and fallback to memory. 2857 // 2858 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2859 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2860 Lo = Memory; 2861 postMerge(Size, Lo, Hi); 2862 return; 2863 } 2864 // Note, skip this test for bit-fields, see below. 2865 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2866 Lo = Memory; 2867 postMerge(Size, Lo, Hi); 2868 return; 2869 } 2870 2871 // Classify this field. 2872 // 2873 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2874 // exceeds a single eightbyte, each is classified 2875 // separately. Each eightbyte gets initialized to class 2876 // NO_CLASS. 2877 Class FieldLo, FieldHi; 2878 2879 // Bit-fields require special handling, they do not force the 2880 // structure to be passed in memory even if unaligned, and 2881 // therefore they can straddle an eightbyte. 2882 if (BitField) { 2883 assert(!i->isUnnamedBitfield()); 2884 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2885 uint64_t Size = i->getBitWidthValue(getContext()); 2886 2887 uint64_t EB_Lo = Offset / 64; 2888 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2889 2890 if (EB_Lo) { 2891 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2892 FieldLo = NoClass; 2893 FieldHi = Integer; 2894 } else { 2895 FieldLo = Integer; 2896 FieldHi = EB_Hi ? Integer : NoClass; 2897 } 2898 } else 2899 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2900 Lo = merge(Lo, FieldLo); 2901 Hi = merge(Hi, FieldHi); 2902 if (Lo == Memory || Hi == Memory) 2903 break; 2904 } 2905 2906 postMerge(Size, Lo, Hi); 2907 } 2908 } 2909 2910 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2911 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2912 // place naturally. 2913 if (!isAggregateTypeForABI(Ty)) { 2914 // Treat an enum type as its underlying type. 2915 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2916 Ty = EnumTy->getDecl()->getIntegerType(); 2917 2918 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2919 : ABIArgInfo::getDirect()); 2920 } 2921 2922 return getNaturalAlignIndirect(Ty); 2923 } 2924 2925 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2926 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2927 uint64_t Size = getContext().getTypeSize(VecTy); 2928 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2929 if (Size <= 64 || Size > LargestVector) 2930 return true; 2931 QualType EltTy = VecTy->getElementType(); 2932 if (passInt128VectorsInMem() && 2933 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 2934 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 2935 return true; 2936 } 2937 2938 return false; 2939 } 2940 2941 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2942 unsigned freeIntRegs) const { 2943 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2944 // place naturally. 2945 // 2946 // This assumption is optimistic, as there could be free registers available 2947 // when we need to pass this argument in memory, and LLVM could try to pass 2948 // the argument in the free register. This does not seem to happen currently, 2949 // but this code would be much safer if we could mark the argument with 2950 // 'onstack'. See PR12193. 2951 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2952 // Treat an enum type as its underlying type. 2953 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2954 Ty = EnumTy->getDecl()->getIntegerType(); 2955 2956 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2957 : ABIArgInfo::getDirect()); 2958 } 2959 2960 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2961 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2962 2963 // Compute the byval alignment. We specify the alignment of the byval in all 2964 // cases so that the mid-level optimizer knows the alignment of the byval. 2965 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2966 2967 // Attempt to avoid passing indirect results using byval when possible. This 2968 // is important for good codegen. 2969 // 2970 // We do this by coercing the value into a scalar type which the backend can 2971 // handle naturally (i.e., without using byval). 2972 // 2973 // For simplicity, we currently only do this when we have exhausted all of the 2974 // free integer registers. Doing this when there are free integer registers 2975 // would require more care, as we would have to ensure that the coerced value 2976 // did not claim the unused register. That would require either reording the 2977 // arguments to the function (so that any subsequent inreg values came first), 2978 // or only doing this optimization when there were no following arguments that 2979 // might be inreg. 2980 // 2981 // We currently expect it to be rare (particularly in well written code) for 2982 // arguments to be passed on the stack when there are still free integer 2983 // registers available (this would typically imply large structs being passed 2984 // by value), so this seems like a fair tradeoff for now. 2985 // 2986 // We can revisit this if the backend grows support for 'onstack' parameter 2987 // attributes. See PR12193. 2988 if (freeIntRegs == 0) { 2989 uint64_t Size = getContext().getTypeSize(Ty); 2990 2991 // If this type fits in an eightbyte, coerce it into the matching integral 2992 // type, which will end up on the stack (with alignment 8). 2993 if (Align == 8 && Size <= 64) 2994 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2995 Size)); 2996 } 2997 2998 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2999 } 3000 3001 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3002 /// register. Pick an LLVM IR type that will be passed as a vector register. 3003 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3004 // Wrapper structs/arrays that only contain vectors are passed just like 3005 // vectors; strip them off if present. 3006 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3007 Ty = QualType(InnerTy, 0); 3008 3009 llvm::Type *IRType = CGT.ConvertType(Ty); 3010 if (isa<llvm::VectorType>(IRType)) { 3011 // Don't pass vXi128 vectors in their native type, the backend can't 3012 // legalize them. 3013 if (passInt128VectorsInMem() && 3014 IRType->getVectorElementType()->isIntegerTy(128)) { 3015 // Use a vXi64 vector. 3016 uint64_t Size = getContext().getTypeSize(Ty); 3017 return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3018 Size / 64); 3019 } 3020 3021 return IRType; 3022 } 3023 3024 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3025 return IRType; 3026 3027 // We couldn't find the preferred IR vector type for 'Ty'. 3028 uint64_t Size = getContext().getTypeSize(Ty); 3029 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3030 3031 3032 // Return a LLVM IR vector type based on the size of 'Ty'. 3033 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3034 Size / 64); 3035 } 3036 3037 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3038 /// is known to either be off the end of the specified type or being in 3039 /// alignment padding. The user type specified is known to be at most 128 bits 3040 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3041 /// classification that put one of the two halves in the INTEGER class. 3042 /// 3043 /// It is conservatively correct to return false. 3044 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3045 unsigned EndBit, ASTContext &Context) { 3046 // If the bytes being queried are off the end of the type, there is no user 3047 // data hiding here. This handles analysis of builtins, vectors and other 3048 // types that don't contain interesting padding. 3049 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3050 if (TySize <= StartBit) 3051 return true; 3052 3053 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3054 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3055 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3056 3057 // Check each element to see if the element overlaps with the queried range. 3058 for (unsigned i = 0; i != NumElts; ++i) { 3059 // If the element is after the span we care about, then we're done.. 3060 unsigned EltOffset = i*EltSize; 3061 if (EltOffset >= EndBit) break; 3062 3063 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3064 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3065 EndBit-EltOffset, Context)) 3066 return false; 3067 } 3068 // If it overlaps no elements, then it is safe to process as padding. 3069 return true; 3070 } 3071 3072 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3073 const RecordDecl *RD = RT->getDecl(); 3074 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3075 3076 // If this is a C++ record, check the bases first. 3077 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3078 for (const auto &I : CXXRD->bases()) { 3079 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3080 "Unexpected base class!"); 3081 const auto *Base = 3082 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3083 3084 // If the base is after the span we care about, ignore it. 3085 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3086 if (BaseOffset >= EndBit) continue; 3087 3088 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3089 if (!BitsContainNoUserData(I.getType(), BaseStart, 3090 EndBit-BaseOffset, Context)) 3091 return false; 3092 } 3093 } 3094 3095 // Verify that no field has data that overlaps the region of interest. Yes 3096 // this could be sped up a lot by being smarter about queried fields, 3097 // however we're only looking at structs up to 16 bytes, so we don't care 3098 // much. 3099 unsigned idx = 0; 3100 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3101 i != e; ++i, ++idx) { 3102 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3103 3104 // If we found a field after the region we care about, then we're done. 3105 if (FieldOffset >= EndBit) break; 3106 3107 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3108 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3109 Context)) 3110 return false; 3111 } 3112 3113 // If nothing in this record overlapped the area of interest, then we're 3114 // clean. 3115 return true; 3116 } 3117 3118 return false; 3119 } 3120 3121 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3122 /// float member at the specified offset. For example, {int,{float}} has a 3123 /// float at offset 4. It is conservatively correct for this routine to return 3124 /// false. 3125 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3126 const llvm::DataLayout &TD) { 3127 // Base case if we find a float. 3128 if (IROffset == 0 && IRType->isFloatTy()) 3129 return true; 3130 3131 // If this is a struct, recurse into the field at the specified offset. 3132 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3133 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3134 unsigned Elt = SL->getElementContainingOffset(IROffset); 3135 IROffset -= SL->getElementOffset(Elt); 3136 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3137 } 3138 3139 // If this is an array, recurse into the field at the specified offset. 3140 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3141 llvm::Type *EltTy = ATy->getElementType(); 3142 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3143 IROffset -= IROffset/EltSize*EltSize; 3144 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3145 } 3146 3147 return false; 3148 } 3149 3150 3151 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3152 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3153 llvm::Type *X86_64ABIInfo:: 3154 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3155 QualType SourceTy, unsigned SourceOffset) const { 3156 // The only three choices we have are either double, <2 x float>, or float. We 3157 // pass as float if the last 4 bytes is just padding. This happens for 3158 // structs that contain 3 floats. 3159 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3160 SourceOffset*8+64, getContext())) 3161 return llvm::Type::getFloatTy(getVMContext()); 3162 3163 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3164 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3165 // case. 3166 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3167 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3168 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3169 3170 return llvm::Type::getDoubleTy(getVMContext()); 3171 } 3172 3173 3174 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3175 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3176 /// about the high or low part of an up-to-16-byte struct. This routine picks 3177 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3178 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3179 /// etc). 3180 /// 3181 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3182 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3183 /// the 8-byte value references. PrefType may be null. 3184 /// 3185 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3186 /// an offset into this that we're processing (which is always either 0 or 8). 3187 /// 3188 llvm::Type *X86_64ABIInfo:: 3189 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3190 QualType SourceTy, unsigned SourceOffset) const { 3191 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3192 // returning an 8-byte unit starting with it. See if we can safely use it. 3193 if (IROffset == 0) { 3194 // Pointers and int64's always fill the 8-byte unit. 3195 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3196 IRType->isIntegerTy(64)) 3197 return IRType; 3198 3199 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3200 // goodness in the source type is just tail padding. This is allowed to 3201 // kick in for struct {double,int} on the int, but not on 3202 // struct{double,int,int} because we wouldn't return the second int. We 3203 // have to do this analysis on the source type because we can't depend on 3204 // unions being lowered a specific way etc. 3205 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3206 IRType->isIntegerTy(32) || 3207 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3208 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3209 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3210 3211 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3212 SourceOffset*8+64, getContext())) 3213 return IRType; 3214 } 3215 } 3216 3217 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3218 // If this is a struct, recurse into the field at the specified offset. 3219 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3220 if (IROffset < SL->getSizeInBytes()) { 3221 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3222 IROffset -= SL->getElementOffset(FieldIdx); 3223 3224 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3225 SourceTy, SourceOffset); 3226 } 3227 } 3228 3229 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3230 llvm::Type *EltTy = ATy->getElementType(); 3231 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3232 unsigned EltOffset = IROffset/EltSize*EltSize; 3233 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3234 SourceOffset); 3235 } 3236 3237 // Okay, we don't have any better idea of what to pass, so we pass this in an 3238 // integer register that isn't too big to fit the rest of the struct. 3239 unsigned TySizeInBytes = 3240 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3241 3242 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3243 3244 // It is always safe to classify this as an integer type up to i64 that 3245 // isn't larger than the structure. 3246 return llvm::IntegerType::get(getVMContext(), 3247 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3248 } 3249 3250 3251 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3252 /// be used as elements of a two register pair to pass or return, return a 3253 /// first class aggregate to represent them. For example, if the low part of 3254 /// a by-value argument should be passed as i32* and the high part as float, 3255 /// return {i32*, float}. 3256 static llvm::Type * 3257 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3258 const llvm::DataLayout &TD) { 3259 // In order to correctly satisfy the ABI, we need to the high part to start 3260 // at offset 8. If the high and low parts we inferred are both 4-byte types 3261 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3262 // the second element at offset 8. Check for this: 3263 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3264 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3265 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3266 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3267 3268 // To handle this, we have to increase the size of the low part so that the 3269 // second element will start at an 8 byte offset. We can't increase the size 3270 // of the second element because it might make us access off the end of the 3271 // struct. 3272 if (HiStart != 8) { 3273 // There are usually two sorts of types the ABI generation code can produce 3274 // for the low part of a pair that aren't 8 bytes in size: float or 3275 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3276 // NaCl). 3277 // Promote these to a larger type. 3278 if (Lo->isFloatTy()) 3279 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3280 else { 3281 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3282 && "Invalid/unknown lo type"); 3283 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3284 } 3285 } 3286 3287 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3288 3289 // Verify that the second element is at an 8-byte offset. 3290 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3291 "Invalid x86-64 argument pair!"); 3292 return Result; 3293 } 3294 3295 ABIArgInfo X86_64ABIInfo:: 3296 classifyReturnType(QualType RetTy) const { 3297 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3298 // classification algorithm. 3299 X86_64ABIInfo::Class Lo, Hi; 3300 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3301 3302 // Check some invariants. 3303 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3304 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3305 3306 llvm::Type *ResType = nullptr; 3307 switch (Lo) { 3308 case NoClass: 3309 if (Hi == NoClass) 3310 return ABIArgInfo::getIgnore(); 3311 // If the low part is just padding, it takes no register, leave ResType 3312 // null. 3313 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3314 "Unknown missing lo part"); 3315 break; 3316 3317 case SSEUp: 3318 case X87Up: 3319 llvm_unreachable("Invalid classification for lo word."); 3320 3321 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3322 // hidden argument. 3323 case Memory: 3324 return getIndirectReturnResult(RetTy); 3325 3326 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3327 // available register of the sequence %rax, %rdx is used. 3328 case Integer: 3329 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3330 3331 // If we have a sign or zero extended integer, make sure to return Extend 3332 // so that the parameter gets the right LLVM IR attributes. 3333 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3334 // Treat an enum type as its underlying type. 3335 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3336 RetTy = EnumTy->getDecl()->getIntegerType(); 3337 3338 if (RetTy->isIntegralOrEnumerationType() && 3339 RetTy->isPromotableIntegerType()) 3340 return ABIArgInfo::getExtend(RetTy); 3341 } 3342 break; 3343 3344 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3345 // available SSE register of the sequence %xmm0, %xmm1 is used. 3346 case SSE: 3347 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3348 break; 3349 3350 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3351 // returned on the X87 stack in %st0 as 80-bit x87 number. 3352 case X87: 3353 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3354 break; 3355 3356 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3357 // part of the value is returned in %st0 and the imaginary part in 3358 // %st1. 3359 case ComplexX87: 3360 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3361 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3362 llvm::Type::getX86_FP80Ty(getVMContext())); 3363 break; 3364 } 3365 3366 llvm::Type *HighPart = nullptr; 3367 switch (Hi) { 3368 // Memory was handled previously and X87 should 3369 // never occur as a hi class. 3370 case Memory: 3371 case X87: 3372 llvm_unreachable("Invalid classification for hi word."); 3373 3374 case ComplexX87: // Previously handled. 3375 case NoClass: 3376 break; 3377 3378 case Integer: 3379 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3380 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3381 return ABIArgInfo::getDirect(HighPart, 8); 3382 break; 3383 case SSE: 3384 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3385 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3386 return ABIArgInfo::getDirect(HighPart, 8); 3387 break; 3388 3389 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3390 // is passed in the next available eightbyte chunk if the last used 3391 // vector register. 3392 // 3393 // SSEUP should always be preceded by SSE, just widen. 3394 case SSEUp: 3395 assert(Lo == SSE && "Unexpected SSEUp classification."); 3396 ResType = GetByteVectorType(RetTy); 3397 break; 3398 3399 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3400 // returned together with the previous X87 value in %st0. 3401 case X87Up: 3402 // If X87Up is preceded by X87, we don't need to do 3403 // anything. However, in some cases with unions it may not be 3404 // preceded by X87. In such situations we follow gcc and pass the 3405 // extra bits in an SSE reg. 3406 if (Lo != X87) { 3407 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3408 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3409 return ABIArgInfo::getDirect(HighPart, 8); 3410 } 3411 break; 3412 } 3413 3414 // If a high part was specified, merge it together with the low part. It is 3415 // known to pass in the high eightbyte of the result. We do this by forming a 3416 // first class struct aggregate with the high and low part: {low, high} 3417 if (HighPart) 3418 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3419 3420 return ABIArgInfo::getDirect(ResType); 3421 } 3422 3423 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3424 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3425 bool isNamedArg) 3426 const 3427 { 3428 Ty = useFirstFieldIfTransparentUnion(Ty); 3429 3430 X86_64ABIInfo::Class Lo, Hi; 3431 classify(Ty, 0, Lo, Hi, isNamedArg); 3432 3433 // Check some invariants. 3434 // FIXME: Enforce these by construction. 3435 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3436 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3437 3438 neededInt = 0; 3439 neededSSE = 0; 3440 llvm::Type *ResType = nullptr; 3441 switch (Lo) { 3442 case NoClass: 3443 if (Hi == NoClass) 3444 return ABIArgInfo::getIgnore(); 3445 // If the low part is just padding, it takes no register, leave ResType 3446 // null. 3447 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3448 "Unknown missing lo part"); 3449 break; 3450 3451 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3452 // on the stack. 3453 case Memory: 3454 3455 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3456 // COMPLEX_X87, it is passed in memory. 3457 case X87: 3458 case ComplexX87: 3459 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3460 ++neededInt; 3461 return getIndirectResult(Ty, freeIntRegs); 3462 3463 case SSEUp: 3464 case X87Up: 3465 llvm_unreachable("Invalid classification for lo word."); 3466 3467 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3468 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3469 // and %r9 is used. 3470 case Integer: 3471 ++neededInt; 3472 3473 // Pick an 8-byte type based on the preferred type. 3474 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3475 3476 // If we have a sign or zero extended integer, make sure to return Extend 3477 // so that the parameter gets the right LLVM IR attributes. 3478 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3479 // Treat an enum type as its underlying type. 3480 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3481 Ty = EnumTy->getDecl()->getIntegerType(); 3482 3483 if (Ty->isIntegralOrEnumerationType() && 3484 Ty->isPromotableIntegerType()) 3485 return ABIArgInfo::getExtend(Ty); 3486 } 3487 3488 break; 3489 3490 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3491 // available SSE register is used, the registers are taken in the 3492 // order from %xmm0 to %xmm7. 3493 case SSE: { 3494 llvm::Type *IRType = CGT.ConvertType(Ty); 3495 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3496 ++neededSSE; 3497 break; 3498 } 3499 } 3500 3501 llvm::Type *HighPart = nullptr; 3502 switch (Hi) { 3503 // Memory was handled previously, ComplexX87 and X87 should 3504 // never occur as hi classes, and X87Up must be preceded by X87, 3505 // which is passed in memory. 3506 case Memory: 3507 case X87: 3508 case ComplexX87: 3509 llvm_unreachable("Invalid classification for hi word."); 3510 3511 case NoClass: break; 3512 3513 case Integer: 3514 ++neededInt; 3515 // Pick an 8-byte type based on the preferred type. 3516 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3517 3518 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3519 return ABIArgInfo::getDirect(HighPart, 8); 3520 break; 3521 3522 // X87Up generally doesn't occur here (long double is passed in 3523 // memory), except in situations involving unions. 3524 case X87Up: 3525 case SSE: 3526 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3527 3528 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3529 return ABIArgInfo::getDirect(HighPart, 8); 3530 3531 ++neededSSE; 3532 break; 3533 3534 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3535 // eightbyte is passed in the upper half of the last used SSE 3536 // register. This only happens when 128-bit vectors are passed. 3537 case SSEUp: 3538 assert(Lo == SSE && "Unexpected SSEUp classification"); 3539 ResType = GetByteVectorType(Ty); 3540 break; 3541 } 3542 3543 // If a high part was specified, merge it together with the low part. It is 3544 // known to pass in the high eightbyte of the result. We do this by forming a 3545 // first class struct aggregate with the high and low part: {low, high} 3546 if (HighPart) 3547 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3548 3549 return ABIArgInfo::getDirect(ResType); 3550 } 3551 3552 ABIArgInfo 3553 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3554 unsigned &NeededSSE) const { 3555 auto RT = Ty->getAs<RecordType>(); 3556 assert(RT && "classifyRegCallStructType only valid with struct types"); 3557 3558 if (RT->getDecl()->hasFlexibleArrayMember()) 3559 return getIndirectReturnResult(Ty); 3560 3561 // Sum up bases 3562 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3563 if (CXXRD->isDynamicClass()) { 3564 NeededInt = NeededSSE = 0; 3565 return getIndirectReturnResult(Ty); 3566 } 3567 3568 for (const auto &I : CXXRD->bases()) 3569 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3570 .isIndirect()) { 3571 NeededInt = NeededSSE = 0; 3572 return getIndirectReturnResult(Ty); 3573 } 3574 } 3575 3576 // Sum up members 3577 for (const auto *FD : RT->getDecl()->fields()) { 3578 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3579 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3580 .isIndirect()) { 3581 NeededInt = NeededSSE = 0; 3582 return getIndirectReturnResult(Ty); 3583 } 3584 } else { 3585 unsigned LocalNeededInt, LocalNeededSSE; 3586 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3587 LocalNeededSSE, true) 3588 .isIndirect()) { 3589 NeededInt = NeededSSE = 0; 3590 return getIndirectReturnResult(Ty); 3591 } 3592 NeededInt += LocalNeededInt; 3593 NeededSSE += LocalNeededSSE; 3594 } 3595 } 3596 3597 return ABIArgInfo::getDirect(); 3598 } 3599 3600 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3601 unsigned &NeededInt, 3602 unsigned &NeededSSE) const { 3603 3604 NeededInt = 0; 3605 NeededSSE = 0; 3606 3607 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3608 } 3609 3610 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3611 3612 const unsigned CallingConv = FI.getCallingConvention(); 3613 // It is possible to force Win64 calling convention on any x86_64 target by 3614 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3615 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3616 if (CallingConv == llvm::CallingConv::Win64) { 3617 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3618 Win64ABIInfo.computeInfo(FI); 3619 return; 3620 } 3621 3622 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3623 3624 // Keep track of the number of assigned registers. 3625 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3626 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3627 unsigned NeededInt, NeededSSE; 3628 3629 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3630 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3631 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3632 FI.getReturnInfo() = 3633 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3634 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3635 FreeIntRegs -= NeededInt; 3636 FreeSSERegs -= NeededSSE; 3637 } else { 3638 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3639 } 3640 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3641 // Complex Long Double Type is passed in Memory when Regcall 3642 // calling convention is used. 3643 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3644 if (getContext().getCanonicalType(CT->getElementType()) == 3645 getContext().LongDoubleTy) 3646 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3647 } else 3648 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3649 } 3650 3651 // If the return value is indirect, then the hidden argument is consuming one 3652 // integer register. 3653 if (FI.getReturnInfo().isIndirect()) 3654 --FreeIntRegs; 3655 3656 // The chain argument effectively gives us another free register. 3657 if (FI.isChainCall()) 3658 ++FreeIntRegs; 3659 3660 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3661 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3662 // get assigned (in left-to-right order) for passing as follows... 3663 unsigned ArgNo = 0; 3664 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3665 it != ie; ++it, ++ArgNo) { 3666 bool IsNamedArg = ArgNo < NumRequiredArgs; 3667 3668 if (IsRegCall && it->type->isStructureOrClassType()) 3669 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3670 else 3671 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3672 NeededSSE, IsNamedArg); 3673 3674 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3675 // eightbyte of an argument, the whole argument is passed on the 3676 // stack. If registers have already been assigned for some 3677 // eightbytes of such an argument, the assignments get reverted. 3678 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3679 FreeIntRegs -= NeededInt; 3680 FreeSSERegs -= NeededSSE; 3681 } else { 3682 it->info = getIndirectResult(it->type, FreeIntRegs); 3683 } 3684 } 3685 } 3686 3687 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3688 Address VAListAddr, QualType Ty) { 3689 Address overflow_arg_area_p = 3690 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3691 llvm::Value *overflow_arg_area = 3692 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3693 3694 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3695 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3696 // It isn't stated explicitly in the standard, but in practice we use 3697 // alignment greater than 16 where necessary. 3698 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3699 if (Align > CharUnits::fromQuantity(8)) { 3700 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3701 Align); 3702 } 3703 3704 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3705 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3706 llvm::Value *Res = 3707 CGF.Builder.CreateBitCast(overflow_arg_area, 3708 llvm::PointerType::getUnqual(LTy)); 3709 3710 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3711 // l->overflow_arg_area + sizeof(type). 3712 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3713 // an 8 byte boundary. 3714 3715 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3716 llvm::Value *Offset = 3717 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3718 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3719 "overflow_arg_area.next"); 3720 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3721 3722 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3723 return Address(Res, Align); 3724 } 3725 3726 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3727 QualType Ty) const { 3728 // Assume that va_list type is correct; should be pointer to LLVM type: 3729 // struct { 3730 // i32 gp_offset; 3731 // i32 fp_offset; 3732 // i8* overflow_arg_area; 3733 // i8* reg_save_area; 3734 // }; 3735 unsigned neededInt, neededSSE; 3736 3737 Ty = getContext().getCanonicalType(Ty); 3738 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3739 /*isNamedArg*/false); 3740 3741 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3742 // in the registers. If not go to step 7. 3743 if (!neededInt && !neededSSE) 3744 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3745 3746 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3747 // general purpose registers needed to pass type and num_fp to hold 3748 // the number of floating point registers needed. 3749 3750 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3751 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3752 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3753 // 3754 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3755 // register save space). 3756 3757 llvm::Value *InRegs = nullptr; 3758 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3759 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3760 if (neededInt) { 3761 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3762 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3763 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3764 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3765 } 3766 3767 if (neededSSE) { 3768 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3769 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3770 llvm::Value *FitsInFP = 3771 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3772 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3773 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3774 } 3775 3776 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3777 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3778 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3779 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3780 3781 // Emit code to load the value if it was passed in registers. 3782 3783 CGF.EmitBlock(InRegBlock); 3784 3785 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3786 // an offset of l->gp_offset and/or l->fp_offset. This may require 3787 // copying to a temporary location in case the parameter is passed 3788 // in different register classes or requires an alignment greater 3789 // than 8 for general purpose registers and 16 for XMM registers. 3790 // 3791 // FIXME: This really results in shameful code when we end up needing to 3792 // collect arguments from different places; often what should result in a 3793 // simple assembling of a structure from scattered addresses has many more 3794 // loads than necessary. Can we clean this up? 3795 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3796 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3797 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3798 3799 Address RegAddr = Address::invalid(); 3800 if (neededInt && neededSSE) { 3801 // FIXME: Cleanup. 3802 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3803 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3804 Address Tmp = CGF.CreateMemTemp(Ty); 3805 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3806 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3807 llvm::Type *TyLo = ST->getElementType(0); 3808 llvm::Type *TyHi = ST->getElementType(1); 3809 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3810 "Unexpected ABI info for mixed regs"); 3811 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3812 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3813 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3814 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3815 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3816 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3817 3818 // Copy the first element. 3819 // FIXME: Our choice of alignment here and below is probably pessimistic. 3820 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3821 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3822 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3823 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3824 3825 // Copy the second element. 3826 V = CGF.Builder.CreateAlignedLoad( 3827 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3828 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3829 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3830 3831 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3832 } else if (neededInt) { 3833 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3834 CharUnits::fromQuantity(8)); 3835 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3836 3837 // Copy to a temporary if necessary to ensure the appropriate alignment. 3838 std::pair<CharUnits, CharUnits> SizeAlign = 3839 getContext().getTypeInfoInChars(Ty); 3840 uint64_t TySize = SizeAlign.first.getQuantity(); 3841 CharUnits TyAlign = SizeAlign.second; 3842 3843 // Copy into a temporary if the type is more aligned than the 3844 // register save area. 3845 if (TyAlign.getQuantity() > 8) { 3846 Address Tmp = CGF.CreateMemTemp(Ty); 3847 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3848 RegAddr = Tmp; 3849 } 3850 3851 } else if (neededSSE == 1) { 3852 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3853 CharUnits::fromQuantity(16)); 3854 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3855 } else { 3856 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3857 // SSE registers are spaced 16 bytes apart in the register save 3858 // area, we need to collect the two eightbytes together. 3859 // The ABI isn't explicit about this, but it seems reasonable 3860 // to assume that the slots are 16-byte aligned, since the stack is 3861 // naturally 16-byte aligned and the prologue is expected to store 3862 // all the SSE registers to the RSA. 3863 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3864 CharUnits::fromQuantity(16)); 3865 Address RegAddrHi = 3866 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3867 CharUnits::fromQuantity(16)); 3868 llvm::Type *ST = AI.canHaveCoerceToType() 3869 ? AI.getCoerceToType() 3870 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3871 llvm::Value *V; 3872 Address Tmp = CGF.CreateMemTemp(Ty); 3873 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3874 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3875 RegAddrLo, ST->getStructElementType(0))); 3876 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3877 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3878 RegAddrHi, ST->getStructElementType(1))); 3879 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3880 3881 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3882 } 3883 3884 // AMD64-ABI 3.5.7p5: Step 5. Set: 3885 // l->gp_offset = l->gp_offset + num_gp * 8 3886 // l->fp_offset = l->fp_offset + num_fp * 16. 3887 if (neededInt) { 3888 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3889 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3890 gp_offset_p); 3891 } 3892 if (neededSSE) { 3893 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3894 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3895 fp_offset_p); 3896 } 3897 CGF.EmitBranch(ContBlock); 3898 3899 // Emit code to load the value if it was passed in memory. 3900 3901 CGF.EmitBlock(InMemBlock); 3902 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3903 3904 // Return the appropriate result. 3905 3906 CGF.EmitBlock(ContBlock); 3907 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3908 "vaarg.addr"); 3909 return ResAddr; 3910 } 3911 3912 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3913 QualType Ty) const { 3914 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3915 CGF.getContext().getTypeInfoInChars(Ty), 3916 CharUnits::fromQuantity(8), 3917 /*allowHigherAlign*/ false); 3918 } 3919 3920 ABIArgInfo 3921 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3922 const ABIArgInfo ¤t) const { 3923 // Assumes vectorCall calling convention. 3924 const Type *Base = nullptr; 3925 uint64_t NumElts = 0; 3926 3927 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3928 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3929 FreeSSERegs -= NumElts; 3930 return getDirectX86Hva(); 3931 } 3932 return current; 3933 } 3934 3935 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3936 bool IsReturnType, bool IsVectorCall, 3937 bool IsRegCall) const { 3938 3939 if (Ty->isVoidType()) 3940 return ABIArgInfo::getIgnore(); 3941 3942 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3943 Ty = EnumTy->getDecl()->getIntegerType(); 3944 3945 TypeInfo Info = getContext().getTypeInfo(Ty); 3946 uint64_t Width = Info.Width; 3947 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3948 3949 const RecordType *RT = Ty->getAs<RecordType>(); 3950 if (RT) { 3951 if (!IsReturnType) { 3952 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3953 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3954 } 3955 3956 if (RT->getDecl()->hasFlexibleArrayMember()) 3957 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3958 3959 } 3960 3961 const Type *Base = nullptr; 3962 uint64_t NumElts = 0; 3963 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3964 // other targets. 3965 if ((IsVectorCall || IsRegCall) && 3966 isHomogeneousAggregate(Ty, Base, NumElts)) { 3967 if (IsRegCall) { 3968 if (FreeSSERegs >= NumElts) { 3969 FreeSSERegs -= NumElts; 3970 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3971 return ABIArgInfo::getDirect(); 3972 return ABIArgInfo::getExpand(); 3973 } 3974 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3975 } else if (IsVectorCall) { 3976 if (FreeSSERegs >= NumElts && 3977 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3978 FreeSSERegs -= NumElts; 3979 return ABIArgInfo::getDirect(); 3980 } else if (IsReturnType) { 3981 return ABIArgInfo::getExpand(); 3982 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3983 // HVAs are delayed and reclassified in the 2nd step. 3984 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3985 } 3986 } 3987 } 3988 3989 if (Ty->isMemberPointerType()) { 3990 // If the member pointer is represented by an LLVM int or ptr, pass it 3991 // directly. 3992 llvm::Type *LLTy = CGT.ConvertType(Ty); 3993 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3994 return ABIArgInfo::getDirect(); 3995 } 3996 3997 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3998 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3999 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4000 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4001 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4002 4003 // Otherwise, coerce it to a small integer. 4004 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4005 } 4006 4007 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4008 switch (BT->getKind()) { 4009 case BuiltinType::Bool: 4010 // Bool type is always extended to the ABI, other builtin types are not 4011 // extended. 4012 return ABIArgInfo::getExtend(Ty); 4013 4014 case BuiltinType::LongDouble: 4015 // Mingw64 GCC uses the old 80 bit extended precision floating point 4016 // unit. It passes them indirectly through memory. 4017 if (IsMingw64) { 4018 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4019 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4020 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4021 } 4022 break; 4023 4024 case BuiltinType::Int128: 4025 case BuiltinType::UInt128: 4026 // If it's a parameter type, the normal ABI rule is that arguments larger 4027 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4028 // even though it isn't particularly efficient. 4029 if (!IsReturnType) 4030 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4031 4032 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4033 // Clang matches them for compatibility. 4034 return ABIArgInfo::getDirect( 4035 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4036 4037 default: 4038 break; 4039 } 4040 } 4041 4042 return ABIArgInfo::getDirect(); 4043 } 4044 4045 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4046 unsigned FreeSSERegs, 4047 bool IsVectorCall, 4048 bool IsRegCall) const { 4049 unsigned Count = 0; 4050 for (auto &I : FI.arguments()) { 4051 // Vectorcall in x64 only permits the first 6 arguments to be passed 4052 // as XMM/YMM registers. 4053 if (Count < VectorcallMaxParamNumAsReg) 4054 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4055 else { 4056 // Since these cannot be passed in registers, pretend no registers 4057 // are left. 4058 unsigned ZeroSSERegsAvail = 0; 4059 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4060 IsVectorCall, IsRegCall); 4061 } 4062 ++Count; 4063 } 4064 4065 for (auto &I : FI.arguments()) { 4066 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4067 } 4068 } 4069 4070 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4071 const unsigned CC = FI.getCallingConvention(); 4072 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4073 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4074 4075 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4076 // classification rules. 4077 if (CC == llvm::CallingConv::X86_64_SysV) { 4078 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4079 SysVABIInfo.computeInfo(FI); 4080 return; 4081 } 4082 4083 unsigned FreeSSERegs = 0; 4084 if (IsVectorCall) { 4085 // We can use up to 4 SSE return registers with vectorcall. 4086 FreeSSERegs = 4; 4087 } else if (IsRegCall) { 4088 // RegCall gives us 16 SSE registers. 4089 FreeSSERegs = 16; 4090 } 4091 4092 if (!getCXXABI().classifyReturnType(FI)) 4093 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4094 IsVectorCall, IsRegCall); 4095 4096 if (IsVectorCall) { 4097 // We can use up to 6 SSE register parameters with vectorcall. 4098 FreeSSERegs = 6; 4099 } else if (IsRegCall) { 4100 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4101 FreeSSERegs = 16; 4102 } 4103 4104 if (IsVectorCall) { 4105 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4106 } else { 4107 for (auto &I : FI.arguments()) 4108 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4109 } 4110 4111 } 4112 4113 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4114 QualType Ty) const { 4115 4116 bool IsIndirect = false; 4117 4118 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4119 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4120 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4121 uint64_t Width = getContext().getTypeSize(Ty); 4122 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4123 } 4124 4125 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4126 CGF.getContext().getTypeInfoInChars(Ty), 4127 CharUnits::fromQuantity(8), 4128 /*allowHigherAlign*/ false); 4129 } 4130 4131 // PowerPC-32 4132 namespace { 4133 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4134 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4135 bool IsSoftFloatABI; 4136 4137 CharUnits getParamTypeAlignment(QualType Ty) const; 4138 4139 public: 4140 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4141 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4142 4143 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4144 QualType Ty) const override; 4145 }; 4146 4147 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4148 public: 4149 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4150 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4151 4152 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4153 // This is recovered from gcc output. 4154 return 1; // r1 is the dedicated stack pointer 4155 } 4156 4157 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4158 llvm::Value *Address) const override; 4159 }; 4160 } 4161 4162 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4163 // Complex types are passed just like their elements 4164 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4165 Ty = CTy->getElementType(); 4166 4167 if (Ty->isVectorType()) 4168 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4169 : 4); 4170 4171 // For single-element float/vector structs, we consider the whole type 4172 // to have the same alignment requirements as its single element. 4173 const Type *AlignTy = nullptr; 4174 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4175 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4176 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4177 (BT && BT->isFloatingPoint())) 4178 AlignTy = EltType; 4179 } 4180 4181 if (AlignTy) 4182 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4183 return CharUnits::fromQuantity(4); 4184 } 4185 4186 // TODO: this implementation is now likely redundant with 4187 // DefaultABIInfo::EmitVAArg. 4188 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4189 QualType Ty) const { 4190 if (getTarget().getTriple().isOSDarwin()) { 4191 auto TI = getContext().getTypeInfoInChars(Ty); 4192 TI.second = getParamTypeAlignment(Ty); 4193 4194 CharUnits SlotSize = CharUnits::fromQuantity(4); 4195 return emitVoidPtrVAArg(CGF, VAList, Ty, 4196 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4197 /*AllowHigherAlign=*/true); 4198 } 4199 4200 const unsigned OverflowLimit = 8; 4201 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4202 // TODO: Implement this. For now ignore. 4203 (void)CTy; 4204 return Address::invalid(); // FIXME? 4205 } 4206 4207 // struct __va_list_tag { 4208 // unsigned char gpr; 4209 // unsigned char fpr; 4210 // unsigned short reserved; 4211 // void *overflow_arg_area; 4212 // void *reg_save_area; 4213 // }; 4214 4215 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4216 bool isInt = 4217 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4218 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4219 4220 // All aggregates are passed indirectly? That doesn't seem consistent 4221 // with the argument-lowering code. 4222 bool isIndirect = Ty->isAggregateType(); 4223 4224 CGBuilderTy &Builder = CGF.Builder; 4225 4226 // The calling convention either uses 1-2 GPRs or 1 FPR. 4227 Address NumRegsAddr = Address::invalid(); 4228 if (isInt || IsSoftFloatABI) { 4229 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4230 } else { 4231 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4232 } 4233 4234 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4235 4236 // "Align" the register count when TY is i64. 4237 if (isI64 || (isF64 && IsSoftFloatABI)) { 4238 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4239 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4240 } 4241 4242 llvm::Value *CC = 4243 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4244 4245 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4246 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4247 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4248 4249 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4250 4251 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4252 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4253 4254 // Case 1: consume registers. 4255 Address RegAddr = Address::invalid(); 4256 { 4257 CGF.EmitBlock(UsingRegs); 4258 4259 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4260 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4261 CharUnits::fromQuantity(8)); 4262 assert(RegAddr.getElementType() == CGF.Int8Ty); 4263 4264 // Floating-point registers start after the general-purpose registers. 4265 if (!(isInt || IsSoftFloatABI)) { 4266 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4267 CharUnits::fromQuantity(32)); 4268 } 4269 4270 // Get the address of the saved value by scaling the number of 4271 // registers we've used by the number of 4272 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4273 llvm::Value *RegOffset = 4274 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4275 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4276 RegAddr.getPointer(), RegOffset), 4277 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4278 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4279 4280 // Increase the used-register count. 4281 NumRegs = 4282 Builder.CreateAdd(NumRegs, 4283 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4284 Builder.CreateStore(NumRegs, NumRegsAddr); 4285 4286 CGF.EmitBranch(Cont); 4287 } 4288 4289 // Case 2: consume space in the overflow area. 4290 Address MemAddr = Address::invalid(); 4291 { 4292 CGF.EmitBlock(UsingOverflow); 4293 4294 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4295 4296 // Everything in the overflow area is rounded up to a size of at least 4. 4297 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4298 4299 CharUnits Size; 4300 if (!isIndirect) { 4301 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4302 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4303 } else { 4304 Size = CGF.getPointerSize(); 4305 } 4306 4307 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4308 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4309 OverflowAreaAlign); 4310 // Round up address of argument to alignment 4311 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4312 if (Align > OverflowAreaAlign) { 4313 llvm::Value *Ptr = OverflowArea.getPointer(); 4314 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4315 Align); 4316 } 4317 4318 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4319 4320 // Increase the overflow area. 4321 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4322 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4323 CGF.EmitBranch(Cont); 4324 } 4325 4326 CGF.EmitBlock(Cont); 4327 4328 // Merge the cases with a phi. 4329 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4330 "vaarg.addr"); 4331 4332 // Load the pointer if the argument was passed indirectly. 4333 if (isIndirect) { 4334 Result = Address(Builder.CreateLoad(Result, "aggr"), 4335 getContext().getTypeAlignInChars(Ty)); 4336 } 4337 4338 return Result; 4339 } 4340 4341 bool 4342 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4343 llvm::Value *Address) const { 4344 // This is calculated from the LLVM and GCC tables and verified 4345 // against gcc output. AFAIK all ABIs use the same encoding. 4346 4347 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4348 4349 llvm::IntegerType *i8 = CGF.Int8Ty; 4350 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4351 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4352 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4353 4354 // 0-31: r0-31, the 4-byte general-purpose registers 4355 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4356 4357 // 32-63: fp0-31, the 8-byte floating-point registers 4358 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4359 4360 // 64-76 are various 4-byte special-purpose registers: 4361 // 64: mq 4362 // 65: lr 4363 // 66: ctr 4364 // 67: ap 4365 // 68-75 cr0-7 4366 // 76: xer 4367 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4368 4369 // 77-108: v0-31, the 16-byte vector registers 4370 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4371 4372 // 109: vrsave 4373 // 110: vscr 4374 // 111: spe_acc 4375 // 112: spefscr 4376 // 113: sfp 4377 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4378 4379 return false; 4380 } 4381 4382 // PowerPC-64 4383 4384 namespace { 4385 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4386 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4387 public: 4388 enum ABIKind { 4389 ELFv1 = 0, 4390 ELFv2 4391 }; 4392 4393 private: 4394 static const unsigned GPRBits = 64; 4395 ABIKind Kind; 4396 bool HasQPX; 4397 bool IsSoftFloatABI; 4398 4399 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4400 // will be passed in a QPX register. 4401 bool IsQPXVectorTy(const Type *Ty) const { 4402 if (!HasQPX) 4403 return false; 4404 4405 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4406 unsigned NumElements = VT->getNumElements(); 4407 if (NumElements == 1) 4408 return false; 4409 4410 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4411 if (getContext().getTypeSize(Ty) <= 256) 4412 return true; 4413 } else if (VT->getElementType()-> 4414 isSpecificBuiltinType(BuiltinType::Float)) { 4415 if (getContext().getTypeSize(Ty) <= 128) 4416 return true; 4417 } 4418 } 4419 4420 return false; 4421 } 4422 4423 bool IsQPXVectorTy(QualType Ty) const { 4424 return IsQPXVectorTy(Ty.getTypePtr()); 4425 } 4426 4427 public: 4428 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4429 bool SoftFloatABI) 4430 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4431 IsSoftFloatABI(SoftFloatABI) {} 4432 4433 bool isPromotableTypeForABI(QualType Ty) const; 4434 CharUnits getParamTypeAlignment(QualType Ty) const; 4435 4436 ABIArgInfo classifyReturnType(QualType RetTy) const; 4437 ABIArgInfo classifyArgumentType(QualType Ty) const; 4438 4439 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4440 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4441 uint64_t Members) const override; 4442 4443 // TODO: We can add more logic to computeInfo to improve performance. 4444 // Example: For aggregate arguments that fit in a register, we could 4445 // use getDirectInReg (as is done below for structs containing a single 4446 // floating-point value) to avoid pushing them to memory on function 4447 // entry. This would require changing the logic in PPCISelLowering 4448 // when lowering the parameters in the caller and args in the callee. 4449 void computeInfo(CGFunctionInfo &FI) const override { 4450 if (!getCXXABI().classifyReturnType(FI)) 4451 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4452 for (auto &I : FI.arguments()) { 4453 // We rely on the default argument classification for the most part. 4454 // One exception: An aggregate containing a single floating-point 4455 // or vector item must be passed in a register if one is available. 4456 const Type *T = isSingleElementStruct(I.type, getContext()); 4457 if (T) { 4458 const BuiltinType *BT = T->getAs<BuiltinType>(); 4459 if (IsQPXVectorTy(T) || 4460 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4461 (BT && BT->isFloatingPoint())) { 4462 QualType QT(T, 0); 4463 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4464 continue; 4465 } 4466 } 4467 I.info = classifyArgumentType(I.type); 4468 } 4469 } 4470 4471 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4472 QualType Ty) const override; 4473 4474 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4475 bool asReturnValue) const override { 4476 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4477 } 4478 4479 bool isSwiftErrorInRegister() const override { 4480 return false; 4481 } 4482 }; 4483 4484 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4485 4486 public: 4487 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4488 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4489 bool SoftFloatABI) 4490 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4491 SoftFloatABI)) {} 4492 4493 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4494 // This is recovered from gcc output. 4495 return 1; // r1 is the dedicated stack pointer 4496 } 4497 4498 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4499 llvm::Value *Address) const override; 4500 }; 4501 4502 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4503 public: 4504 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4505 4506 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4507 // This is recovered from gcc output. 4508 return 1; // r1 is the dedicated stack pointer 4509 } 4510 4511 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4512 llvm::Value *Address) const override; 4513 }; 4514 4515 } 4516 4517 // Return true if the ABI requires Ty to be passed sign- or zero- 4518 // extended to 64 bits. 4519 bool 4520 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4521 // Treat an enum type as its underlying type. 4522 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4523 Ty = EnumTy->getDecl()->getIntegerType(); 4524 4525 // Promotable integer types are required to be promoted by the ABI. 4526 if (Ty->isPromotableIntegerType()) 4527 return true; 4528 4529 // In addition to the usual promotable integer types, we also need to 4530 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4531 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4532 switch (BT->getKind()) { 4533 case BuiltinType::Int: 4534 case BuiltinType::UInt: 4535 return true; 4536 default: 4537 break; 4538 } 4539 4540 return false; 4541 } 4542 4543 /// isAlignedParamType - Determine whether a type requires 16-byte or 4544 /// higher alignment in the parameter area. Always returns at least 8. 4545 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4546 // Complex types are passed just like their elements. 4547 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4548 Ty = CTy->getElementType(); 4549 4550 // Only vector types of size 16 bytes need alignment (larger types are 4551 // passed via reference, smaller types are not aligned). 4552 if (IsQPXVectorTy(Ty)) { 4553 if (getContext().getTypeSize(Ty) > 128) 4554 return CharUnits::fromQuantity(32); 4555 4556 return CharUnits::fromQuantity(16); 4557 } else if (Ty->isVectorType()) { 4558 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4559 } 4560 4561 // For single-element float/vector structs, we consider the whole type 4562 // to have the same alignment requirements as its single element. 4563 const Type *AlignAsType = nullptr; 4564 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4565 if (EltType) { 4566 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4567 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4568 getContext().getTypeSize(EltType) == 128) || 4569 (BT && BT->isFloatingPoint())) 4570 AlignAsType = EltType; 4571 } 4572 4573 // Likewise for ELFv2 homogeneous aggregates. 4574 const Type *Base = nullptr; 4575 uint64_t Members = 0; 4576 if (!AlignAsType && Kind == ELFv2 && 4577 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4578 AlignAsType = Base; 4579 4580 // With special case aggregates, only vector base types need alignment. 4581 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4582 if (getContext().getTypeSize(AlignAsType) > 128) 4583 return CharUnits::fromQuantity(32); 4584 4585 return CharUnits::fromQuantity(16); 4586 } else if (AlignAsType) { 4587 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4588 } 4589 4590 // Otherwise, we only need alignment for any aggregate type that 4591 // has an alignment requirement of >= 16 bytes. 4592 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4593 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4594 return CharUnits::fromQuantity(32); 4595 return CharUnits::fromQuantity(16); 4596 } 4597 4598 return CharUnits::fromQuantity(8); 4599 } 4600 4601 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4602 /// aggregate. Base is set to the base element type, and Members is set 4603 /// to the number of base elements. 4604 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4605 uint64_t &Members) const { 4606 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4607 uint64_t NElements = AT->getSize().getZExtValue(); 4608 if (NElements == 0) 4609 return false; 4610 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4611 return false; 4612 Members *= NElements; 4613 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4614 const RecordDecl *RD = RT->getDecl(); 4615 if (RD->hasFlexibleArrayMember()) 4616 return false; 4617 4618 Members = 0; 4619 4620 // If this is a C++ record, check the bases first. 4621 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4622 for (const auto &I : CXXRD->bases()) { 4623 // Ignore empty records. 4624 if (isEmptyRecord(getContext(), I.getType(), true)) 4625 continue; 4626 4627 uint64_t FldMembers; 4628 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4629 return false; 4630 4631 Members += FldMembers; 4632 } 4633 } 4634 4635 for (const auto *FD : RD->fields()) { 4636 // Ignore (non-zero arrays of) empty records. 4637 QualType FT = FD->getType(); 4638 while (const ConstantArrayType *AT = 4639 getContext().getAsConstantArrayType(FT)) { 4640 if (AT->getSize().getZExtValue() == 0) 4641 return false; 4642 FT = AT->getElementType(); 4643 } 4644 if (isEmptyRecord(getContext(), FT, true)) 4645 continue; 4646 4647 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4648 if (getContext().getLangOpts().CPlusPlus && 4649 FD->isZeroLengthBitField(getContext())) 4650 continue; 4651 4652 uint64_t FldMembers; 4653 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4654 return false; 4655 4656 Members = (RD->isUnion() ? 4657 std::max(Members, FldMembers) : Members + FldMembers); 4658 } 4659 4660 if (!Base) 4661 return false; 4662 4663 // Ensure there is no padding. 4664 if (getContext().getTypeSize(Base) * Members != 4665 getContext().getTypeSize(Ty)) 4666 return false; 4667 } else { 4668 Members = 1; 4669 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4670 Members = 2; 4671 Ty = CT->getElementType(); 4672 } 4673 4674 // Most ABIs only support float, double, and some vector type widths. 4675 if (!isHomogeneousAggregateBaseType(Ty)) 4676 return false; 4677 4678 // The base type must be the same for all members. Types that 4679 // agree in both total size and mode (float vs. vector) are 4680 // treated as being equivalent here. 4681 const Type *TyPtr = Ty.getTypePtr(); 4682 if (!Base) { 4683 Base = TyPtr; 4684 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4685 // so make sure to widen it explicitly. 4686 if (const VectorType *VT = Base->getAs<VectorType>()) { 4687 QualType EltTy = VT->getElementType(); 4688 unsigned NumElements = 4689 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4690 Base = getContext() 4691 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4692 .getTypePtr(); 4693 } 4694 } 4695 4696 if (Base->isVectorType() != TyPtr->isVectorType() || 4697 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4698 return false; 4699 } 4700 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4701 } 4702 4703 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4704 // Homogeneous aggregates for ELFv2 must have base types of float, 4705 // double, long double, or 128-bit vectors. 4706 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4707 if (BT->getKind() == BuiltinType::Float || 4708 BT->getKind() == BuiltinType::Double || 4709 BT->getKind() == BuiltinType::LongDouble || 4710 (getContext().getTargetInfo().hasFloat128Type() && 4711 (BT->getKind() == BuiltinType::Float128))) { 4712 if (IsSoftFloatABI) 4713 return false; 4714 return true; 4715 } 4716 } 4717 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4718 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4719 return true; 4720 } 4721 return false; 4722 } 4723 4724 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4725 const Type *Base, uint64_t Members) const { 4726 // Vector and fp128 types require one register, other floating point types 4727 // require one or two registers depending on their size. 4728 uint32_t NumRegs = 4729 ((getContext().getTargetInfo().hasFloat128Type() && 4730 Base->isFloat128Type()) || 4731 Base->isVectorType()) ? 1 4732 : (getContext().getTypeSize(Base) + 63) / 64; 4733 4734 // Homogeneous Aggregates may occupy at most 8 registers. 4735 return Members * NumRegs <= 8; 4736 } 4737 4738 ABIArgInfo 4739 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4740 Ty = useFirstFieldIfTransparentUnion(Ty); 4741 4742 if (Ty->isAnyComplexType()) 4743 return ABIArgInfo::getDirect(); 4744 4745 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4746 // or via reference (larger than 16 bytes). 4747 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4748 uint64_t Size = getContext().getTypeSize(Ty); 4749 if (Size > 128) 4750 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4751 else if (Size < 128) { 4752 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4753 return ABIArgInfo::getDirect(CoerceTy); 4754 } 4755 } 4756 4757 if (isAggregateTypeForABI(Ty)) { 4758 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4759 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4760 4761 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4762 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4763 4764 // ELFv2 homogeneous aggregates are passed as array types. 4765 const Type *Base = nullptr; 4766 uint64_t Members = 0; 4767 if (Kind == ELFv2 && 4768 isHomogeneousAggregate(Ty, Base, Members)) { 4769 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4770 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4771 return ABIArgInfo::getDirect(CoerceTy); 4772 } 4773 4774 // If an aggregate may end up fully in registers, we do not 4775 // use the ByVal method, but pass the aggregate as array. 4776 // This is usually beneficial since we avoid forcing the 4777 // back-end to store the argument to memory. 4778 uint64_t Bits = getContext().getTypeSize(Ty); 4779 if (Bits > 0 && Bits <= 8 * GPRBits) { 4780 llvm::Type *CoerceTy; 4781 4782 // Types up to 8 bytes are passed as integer type (which will be 4783 // properly aligned in the argument save area doubleword). 4784 if (Bits <= GPRBits) 4785 CoerceTy = 4786 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4787 // Larger types are passed as arrays, with the base type selected 4788 // according to the required alignment in the save area. 4789 else { 4790 uint64_t RegBits = ABIAlign * 8; 4791 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4792 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4793 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4794 } 4795 4796 return ABIArgInfo::getDirect(CoerceTy); 4797 } 4798 4799 // All other aggregates are passed ByVal. 4800 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4801 /*ByVal=*/true, 4802 /*Realign=*/TyAlign > ABIAlign); 4803 } 4804 4805 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4806 : ABIArgInfo::getDirect()); 4807 } 4808 4809 ABIArgInfo 4810 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4811 if (RetTy->isVoidType()) 4812 return ABIArgInfo::getIgnore(); 4813 4814 if (RetTy->isAnyComplexType()) 4815 return ABIArgInfo::getDirect(); 4816 4817 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4818 // or via reference (larger than 16 bytes). 4819 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4820 uint64_t Size = getContext().getTypeSize(RetTy); 4821 if (Size > 128) 4822 return getNaturalAlignIndirect(RetTy); 4823 else if (Size < 128) { 4824 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4825 return ABIArgInfo::getDirect(CoerceTy); 4826 } 4827 } 4828 4829 if (isAggregateTypeForABI(RetTy)) { 4830 // ELFv2 homogeneous aggregates are returned as array types. 4831 const Type *Base = nullptr; 4832 uint64_t Members = 0; 4833 if (Kind == ELFv2 && 4834 isHomogeneousAggregate(RetTy, Base, Members)) { 4835 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4836 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4837 return ABIArgInfo::getDirect(CoerceTy); 4838 } 4839 4840 // ELFv2 small aggregates are returned in up to two registers. 4841 uint64_t Bits = getContext().getTypeSize(RetTy); 4842 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4843 if (Bits == 0) 4844 return ABIArgInfo::getIgnore(); 4845 4846 llvm::Type *CoerceTy; 4847 if (Bits > GPRBits) { 4848 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4849 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4850 } else 4851 CoerceTy = 4852 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4853 return ABIArgInfo::getDirect(CoerceTy); 4854 } 4855 4856 // All other aggregates are returned indirectly. 4857 return getNaturalAlignIndirect(RetTy); 4858 } 4859 4860 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4861 : ABIArgInfo::getDirect()); 4862 } 4863 4864 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4865 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4866 QualType Ty) const { 4867 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4868 TypeInfo.second = getParamTypeAlignment(Ty); 4869 4870 CharUnits SlotSize = CharUnits::fromQuantity(8); 4871 4872 // If we have a complex type and the base type is smaller than 8 bytes, 4873 // the ABI calls for the real and imaginary parts to be right-adjusted 4874 // in separate doublewords. However, Clang expects us to produce a 4875 // pointer to a structure with the two parts packed tightly. So generate 4876 // loads of the real and imaginary parts relative to the va_list pointer, 4877 // and store them to a temporary structure. 4878 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4879 CharUnits EltSize = TypeInfo.first / 2; 4880 if (EltSize < SlotSize) { 4881 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4882 SlotSize * 2, SlotSize, 4883 SlotSize, /*AllowHigher*/ true); 4884 4885 Address RealAddr = Addr; 4886 Address ImagAddr = RealAddr; 4887 if (CGF.CGM.getDataLayout().isBigEndian()) { 4888 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4889 SlotSize - EltSize); 4890 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4891 2 * SlotSize - EltSize); 4892 } else { 4893 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4894 } 4895 4896 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4897 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4898 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4899 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4900 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4901 4902 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4903 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4904 /*init*/ true); 4905 return Temp; 4906 } 4907 } 4908 4909 // Otherwise, just use the general rule. 4910 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4911 TypeInfo, SlotSize, /*AllowHigher*/ true); 4912 } 4913 4914 static bool 4915 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4916 llvm::Value *Address) { 4917 // This is calculated from the LLVM and GCC tables and verified 4918 // against gcc output. AFAIK all ABIs use the same encoding. 4919 4920 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4921 4922 llvm::IntegerType *i8 = CGF.Int8Ty; 4923 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4924 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4925 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4926 4927 // 0-31: r0-31, the 8-byte general-purpose registers 4928 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4929 4930 // 32-63: fp0-31, the 8-byte floating-point registers 4931 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4932 4933 // 64-67 are various 8-byte special-purpose registers: 4934 // 64: mq 4935 // 65: lr 4936 // 66: ctr 4937 // 67: ap 4938 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4939 4940 // 68-76 are various 4-byte special-purpose registers: 4941 // 68-75 cr0-7 4942 // 76: xer 4943 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4944 4945 // 77-108: v0-31, the 16-byte vector registers 4946 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4947 4948 // 109: vrsave 4949 // 110: vscr 4950 // 111: spe_acc 4951 // 112: spefscr 4952 // 113: sfp 4953 // 114: tfhar 4954 // 115: tfiar 4955 // 116: texasr 4956 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4957 4958 return false; 4959 } 4960 4961 bool 4962 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4963 CodeGen::CodeGenFunction &CGF, 4964 llvm::Value *Address) const { 4965 4966 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4967 } 4968 4969 bool 4970 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4971 llvm::Value *Address) const { 4972 4973 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4974 } 4975 4976 //===----------------------------------------------------------------------===// 4977 // AArch64 ABI Implementation 4978 //===----------------------------------------------------------------------===// 4979 4980 namespace { 4981 4982 class AArch64ABIInfo : public SwiftABIInfo { 4983 public: 4984 enum ABIKind { 4985 AAPCS = 0, 4986 DarwinPCS, 4987 Win64 4988 }; 4989 4990 private: 4991 ABIKind Kind; 4992 4993 public: 4994 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4995 : SwiftABIInfo(CGT), Kind(Kind) {} 4996 4997 private: 4998 ABIKind getABIKind() const { return Kind; } 4999 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5000 5001 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5002 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5003 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5004 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5005 uint64_t Members) const override; 5006 5007 bool isIllegalVectorType(QualType Ty) const; 5008 5009 void computeInfo(CGFunctionInfo &FI) const override { 5010 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5011 FI.getReturnInfo() = 5012 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5013 5014 for (auto &it : FI.arguments()) 5015 it.info = classifyArgumentType(it.type); 5016 } 5017 5018 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5019 CodeGenFunction &CGF) const; 5020 5021 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5022 CodeGenFunction &CGF) const; 5023 5024 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5025 QualType Ty) const override { 5026 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5027 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5028 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5029 } 5030 5031 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5032 QualType Ty) const override; 5033 5034 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5035 bool asReturnValue) const override { 5036 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5037 } 5038 bool isSwiftErrorInRegister() const override { 5039 return true; 5040 } 5041 5042 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5043 unsigned elts) const override; 5044 }; 5045 5046 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5047 public: 5048 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5049 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5050 5051 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5052 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5053 } 5054 5055 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5056 return 31; 5057 } 5058 5059 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5060 5061 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5062 CodeGen::CodeGenModule &CGM) const override { 5063 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5064 if (!FD) 5065 return; 5066 5067 CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress(); 5068 CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5069 bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement; 5070 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5071 ParsedTargetAttr Attr = TA->parse(); 5072 if (!Attr.BranchProtection.empty()) { 5073 TargetInfo::BranchProtectionInfo BPI; 5074 StringRef Error; 5075 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5076 BPI, Error); 5077 assert(Error.empty()); 5078 Scope = BPI.SignReturnAddr; 5079 Key = BPI.SignKey; 5080 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5081 } 5082 } 5083 5084 auto *Fn = cast<llvm::Function>(GV); 5085 if (Scope != CodeGenOptions::SignReturnAddressScope::None) { 5086 Fn->addFnAttr("sign-return-address", 5087 Scope == CodeGenOptions::SignReturnAddressScope::All 5088 ? "all" 5089 : "non-leaf"); 5090 5091 Fn->addFnAttr("sign-return-address-key", 5092 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5093 ? "a_key" 5094 : "b_key"); 5095 } 5096 5097 if (BranchTargetEnforcement) 5098 Fn->addFnAttr("branch-target-enforcement"); 5099 } 5100 }; 5101 5102 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5103 public: 5104 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5105 : AArch64TargetCodeGenInfo(CGT, K) {} 5106 5107 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5108 CodeGen::CodeGenModule &CGM) const override; 5109 5110 void getDependentLibraryOption(llvm::StringRef Lib, 5111 llvm::SmallString<24> &Opt) const override { 5112 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5113 } 5114 5115 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5116 llvm::SmallString<32> &Opt) const override { 5117 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5118 } 5119 }; 5120 5121 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5122 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5123 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5124 if (GV->isDeclaration()) 5125 return; 5126 addStackProbeTargetAttributes(D, GV, CGM); 5127 } 5128 } 5129 5130 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5131 Ty = useFirstFieldIfTransparentUnion(Ty); 5132 5133 // Handle illegal vector types here. 5134 if (isIllegalVectorType(Ty)) { 5135 uint64_t Size = getContext().getTypeSize(Ty); 5136 // Android promotes <2 x i8> to i16, not i32 5137 if (isAndroid() && (Size <= 16)) { 5138 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5139 return ABIArgInfo::getDirect(ResType); 5140 } 5141 if (Size <= 32) { 5142 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5143 return ABIArgInfo::getDirect(ResType); 5144 } 5145 if (Size == 64) { 5146 llvm::Type *ResType = 5147 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5148 return ABIArgInfo::getDirect(ResType); 5149 } 5150 if (Size == 128) { 5151 llvm::Type *ResType = 5152 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5153 return ABIArgInfo::getDirect(ResType); 5154 } 5155 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5156 } 5157 5158 if (!isAggregateTypeForABI(Ty)) { 5159 // Treat an enum type as its underlying type. 5160 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5161 Ty = EnumTy->getDecl()->getIntegerType(); 5162 5163 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5164 ? ABIArgInfo::getExtend(Ty) 5165 : ABIArgInfo::getDirect()); 5166 } 5167 5168 // Structures with either a non-trivial destructor or a non-trivial 5169 // copy constructor are always indirect. 5170 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5171 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5172 CGCXXABI::RAA_DirectInMemory); 5173 } 5174 5175 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5176 // elsewhere for GNU compatibility. 5177 uint64_t Size = getContext().getTypeSize(Ty); 5178 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5179 if (IsEmpty || Size == 0) { 5180 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5181 return ABIArgInfo::getIgnore(); 5182 5183 // GNU C mode. The only argument that gets ignored is an empty one with size 5184 // 0. 5185 if (IsEmpty && Size == 0) 5186 return ABIArgInfo::getIgnore(); 5187 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5188 } 5189 5190 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5191 const Type *Base = nullptr; 5192 uint64_t Members = 0; 5193 if (isHomogeneousAggregate(Ty, Base, Members)) { 5194 return ABIArgInfo::getDirect( 5195 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5196 } 5197 5198 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5199 if (Size <= 128) { 5200 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5201 // same size and alignment. 5202 if (getTarget().isRenderScriptTarget()) { 5203 return coerceToIntArray(Ty, getContext(), getVMContext()); 5204 } 5205 unsigned Alignment; 5206 if (Kind == AArch64ABIInfo::AAPCS) { 5207 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5208 Alignment = Alignment < 128 ? 64 : 128; 5209 } else { 5210 Alignment = std::max(getContext().getTypeAlign(Ty), 5211 (unsigned)getTarget().getPointerWidth(0)); 5212 } 5213 Size = llvm::alignTo(Size, Alignment); 5214 5215 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5216 // For aggregates with 16-byte alignment, we use i128. 5217 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5218 return ABIArgInfo::getDirect( 5219 Size == Alignment ? BaseTy 5220 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5221 } 5222 5223 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5224 } 5225 5226 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5227 bool IsVariadic) const { 5228 if (RetTy->isVoidType()) 5229 return ABIArgInfo::getIgnore(); 5230 5231 // Large vector types should be returned via memory. 5232 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5233 return getNaturalAlignIndirect(RetTy); 5234 5235 if (!isAggregateTypeForABI(RetTy)) { 5236 // Treat an enum type as its underlying type. 5237 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5238 RetTy = EnumTy->getDecl()->getIntegerType(); 5239 5240 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5241 ? ABIArgInfo::getExtend(RetTy) 5242 : ABIArgInfo::getDirect()); 5243 } 5244 5245 uint64_t Size = getContext().getTypeSize(RetTy); 5246 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5247 return ABIArgInfo::getIgnore(); 5248 5249 const Type *Base = nullptr; 5250 uint64_t Members = 0; 5251 if (isHomogeneousAggregate(RetTy, Base, Members) && 5252 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5253 IsVariadic)) 5254 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5255 return ABIArgInfo::getDirect(); 5256 5257 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5258 if (Size <= 128) { 5259 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5260 // same size and alignment. 5261 if (getTarget().isRenderScriptTarget()) { 5262 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5263 } 5264 unsigned Alignment = getContext().getTypeAlign(RetTy); 5265 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5266 5267 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5268 // For aggregates with 16-byte alignment, we use i128. 5269 if (Alignment < 128 && Size == 128) { 5270 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5271 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5272 } 5273 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5274 } 5275 5276 return getNaturalAlignIndirect(RetTy); 5277 } 5278 5279 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5280 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5281 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5282 // Check whether VT is legal. 5283 unsigned NumElements = VT->getNumElements(); 5284 uint64_t Size = getContext().getTypeSize(VT); 5285 // NumElements should be power of 2. 5286 if (!llvm::isPowerOf2_32(NumElements)) 5287 return true; 5288 5289 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5290 // vectors for some reason. 5291 llvm::Triple Triple = getTarget().getTriple(); 5292 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5293 Triple.isOSBinFormatMachO()) 5294 return Size <= 32; 5295 5296 return Size != 64 && (Size != 128 || NumElements == 1); 5297 } 5298 return false; 5299 } 5300 5301 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5302 llvm::Type *eltTy, 5303 unsigned elts) const { 5304 if (!llvm::isPowerOf2_32(elts)) 5305 return false; 5306 if (totalSize.getQuantity() != 8 && 5307 (totalSize.getQuantity() != 16 || elts == 1)) 5308 return false; 5309 return true; 5310 } 5311 5312 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5313 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5314 // point type or a short-vector type. This is the same as the 32-bit ABI, 5315 // but with the difference that any floating-point type is allowed, 5316 // including __fp16. 5317 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5318 if (BT->isFloatingPoint()) 5319 return true; 5320 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5321 unsigned VecSize = getContext().getTypeSize(VT); 5322 if (VecSize == 64 || VecSize == 128) 5323 return true; 5324 } 5325 return false; 5326 } 5327 5328 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5329 uint64_t Members) const { 5330 return Members <= 4; 5331 } 5332 5333 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5334 QualType Ty, 5335 CodeGenFunction &CGF) const { 5336 ABIArgInfo AI = classifyArgumentType(Ty); 5337 bool IsIndirect = AI.isIndirect(); 5338 5339 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5340 if (IsIndirect) 5341 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5342 else if (AI.getCoerceToType()) 5343 BaseTy = AI.getCoerceToType(); 5344 5345 unsigned NumRegs = 1; 5346 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5347 BaseTy = ArrTy->getElementType(); 5348 NumRegs = ArrTy->getNumElements(); 5349 } 5350 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5351 5352 // The AArch64 va_list type and handling is specified in the Procedure Call 5353 // Standard, section B.4: 5354 // 5355 // struct { 5356 // void *__stack; 5357 // void *__gr_top; 5358 // void *__vr_top; 5359 // int __gr_offs; 5360 // int __vr_offs; 5361 // }; 5362 5363 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5364 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5365 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5366 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5367 5368 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5369 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5370 5371 Address reg_offs_p = Address::invalid(); 5372 llvm::Value *reg_offs = nullptr; 5373 int reg_top_index; 5374 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5375 if (!IsFPR) { 5376 // 3 is the field number of __gr_offs 5377 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5378 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5379 reg_top_index = 1; // field number for __gr_top 5380 RegSize = llvm::alignTo(RegSize, 8); 5381 } else { 5382 // 4 is the field number of __vr_offs. 5383 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5384 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5385 reg_top_index = 2; // field number for __vr_top 5386 RegSize = 16 * NumRegs; 5387 } 5388 5389 //======================================= 5390 // Find out where argument was passed 5391 //======================================= 5392 5393 // If reg_offs >= 0 we're already using the stack for this type of 5394 // argument. We don't want to keep updating reg_offs (in case it overflows, 5395 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5396 // whatever they get). 5397 llvm::Value *UsingStack = nullptr; 5398 UsingStack = CGF.Builder.CreateICmpSGE( 5399 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5400 5401 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5402 5403 // Otherwise, at least some kind of argument could go in these registers, the 5404 // question is whether this particular type is too big. 5405 CGF.EmitBlock(MaybeRegBlock); 5406 5407 // Integer arguments may need to correct register alignment (for example a 5408 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5409 // align __gr_offs to calculate the potential address. 5410 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5411 int Align = TyAlign.getQuantity(); 5412 5413 reg_offs = CGF.Builder.CreateAdd( 5414 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5415 "align_regoffs"); 5416 reg_offs = CGF.Builder.CreateAnd( 5417 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5418 "aligned_regoffs"); 5419 } 5420 5421 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5422 // The fact that this is done unconditionally reflects the fact that 5423 // allocating an argument to the stack also uses up all the remaining 5424 // registers of the appropriate kind. 5425 llvm::Value *NewOffset = nullptr; 5426 NewOffset = CGF.Builder.CreateAdd( 5427 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5428 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5429 5430 // Now we're in a position to decide whether this argument really was in 5431 // registers or not. 5432 llvm::Value *InRegs = nullptr; 5433 InRegs = CGF.Builder.CreateICmpSLE( 5434 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5435 5436 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5437 5438 //======================================= 5439 // Argument was in registers 5440 //======================================= 5441 5442 // Now we emit the code for if the argument was originally passed in 5443 // registers. First start the appropriate block: 5444 CGF.EmitBlock(InRegBlock); 5445 5446 llvm::Value *reg_top = nullptr; 5447 Address reg_top_p = 5448 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5449 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5450 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5451 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5452 Address RegAddr = Address::invalid(); 5453 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5454 5455 if (IsIndirect) { 5456 // If it's been passed indirectly (actually a struct), whatever we find from 5457 // stored registers or on the stack will actually be a struct **. 5458 MemTy = llvm::PointerType::getUnqual(MemTy); 5459 } 5460 5461 const Type *Base = nullptr; 5462 uint64_t NumMembers = 0; 5463 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5464 if (IsHFA && NumMembers > 1) { 5465 // Homogeneous aggregates passed in registers will have their elements split 5466 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5467 // qN+1, ...). We reload and store into a temporary local variable 5468 // contiguously. 5469 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5470 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5471 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5472 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5473 Address Tmp = CGF.CreateTempAlloca(HFATy, 5474 std::max(TyAlign, BaseTyInfo.second)); 5475 5476 // On big-endian platforms, the value will be right-aligned in its slot. 5477 int Offset = 0; 5478 if (CGF.CGM.getDataLayout().isBigEndian() && 5479 BaseTyInfo.first.getQuantity() < 16) 5480 Offset = 16 - BaseTyInfo.first.getQuantity(); 5481 5482 for (unsigned i = 0; i < NumMembers; ++i) { 5483 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5484 Address LoadAddr = 5485 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5486 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5487 5488 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5489 5490 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5491 CGF.Builder.CreateStore(Elem, StoreAddr); 5492 } 5493 5494 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5495 } else { 5496 // Otherwise the object is contiguous in memory. 5497 5498 // It might be right-aligned in its slot. 5499 CharUnits SlotSize = BaseAddr.getAlignment(); 5500 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5501 (IsHFA || !isAggregateTypeForABI(Ty)) && 5502 TySize < SlotSize) { 5503 CharUnits Offset = SlotSize - TySize; 5504 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5505 } 5506 5507 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5508 } 5509 5510 CGF.EmitBranch(ContBlock); 5511 5512 //======================================= 5513 // Argument was on the stack 5514 //======================================= 5515 CGF.EmitBlock(OnStackBlock); 5516 5517 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5518 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5519 5520 // Again, stack arguments may need realignment. In this case both integer and 5521 // floating-point ones might be affected. 5522 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5523 int Align = TyAlign.getQuantity(); 5524 5525 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5526 5527 OnStackPtr = CGF.Builder.CreateAdd( 5528 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5529 "align_stack"); 5530 OnStackPtr = CGF.Builder.CreateAnd( 5531 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5532 "align_stack"); 5533 5534 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5535 } 5536 Address OnStackAddr(OnStackPtr, 5537 std::max(CharUnits::fromQuantity(8), TyAlign)); 5538 5539 // All stack slots are multiples of 8 bytes. 5540 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5541 CharUnits StackSize; 5542 if (IsIndirect) 5543 StackSize = StackSlotSize; 5544 else 5545 StackSize = TySize.alignTo(StackSlotSize); 5546 5547 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5548 llvm::Value *NewStack = 5549 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5550 5551 // Write the new value of __stack for the next call to va_arg 5552 CGF.Builder.CreateStore(NewStack, stack_p); 5553 5554 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5555 TySize < StackSlotSize) { 5556 CharUnits Offset = StackSlotSize - TySize; 5557 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5558 } 5559 5560 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5561 5562 CGF.EmitBranch(ContBlock); 5563 5564 //======================================= 5565 // Tidy up 5566 //======================================= 5567 CGF.EmitBlock(ContBlock); 5568 5569 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5570 OnStackAddr, OnStackBlock, "vaargs.addr"); 5571 5572 if (IsIndirect) 5573 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5574 TyAlign); 5575 5576 return ResAddr; 5577 } 5578 5579 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5580 CodeGenFunction &CGF) const { 5581 // The backend's lowering doesn't support va_arg for aggregates or 5582 // illegal vector types. Lower VAArg here for these cases and use 5583 // the LLVM va_arg instruction for everything else. 5584 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5585 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5586 5587 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5588 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5589 5590 // Empty records are ignored for parameter passing purposes. 5591 if (isEmptyRecord(getContext(), Ty, true)) { 5592 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5593 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5594 return Addr; 5595 } 5596 5597 // The size of the actual thing passed, which might end up just 5598 // being a pointer for indirect types. 5599 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5600 5601 // Arguments bigger than 16 bytes which aren't homogeneous 5602 // aggregates should be passed indirectly. 5603 bool IsIndirect = false; 5604 if (TyInfo.first.getQuantity() > 16) { 5605 const Type *Base = nullptr; 5606 uint64_t Members = 0; 5607 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5608 } 5609 5610 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5611 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5612 } 5613 5614 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5615 QualType Ty) const { 5616 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5617 CGF.getContext().getTypeInfoInChars(Ty), 5618 CharUnits::fromQuantity(8), 5619 /*allowHigherAlign*/ false); 5620 } 5621 5622 //===----------------------------------------------------------------------===// 5623 // ARM ABI Implementation 5624 //===----------------------------------------------------------------------===// 5625 5626 namespace { 5627 5628 class ARMABIInfo : public SwiftABIInfo { 5629 public: 5630 enum ABIKind { 5631 APCS = 0, 5632 AAPCS = 1, 5633 AAPCS_VFP = 2, 5634 AAPCS16_VFP = 3, 5635 }; 5636 5637 private: 5638 ABIKind Kind; 5639 5640 public: 5641 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5642 : SwiftABIInfo(CGT), Kind(_Kind) { 5643 setCCs(); 5644 } 5645 5646 bool isEABI() const { 5647 switch (getTarget().getTriple().getEnvironment()) { 5648 case llvm::Triple::Android: 5649 case llvm::Triple::EABI: 5650 case llvm::Triple::EABIHF: 5651 case llvm::Triple::GNUEABI: 5652 case llvm::Triple::GNUEABIHF: 5653 case llvm::Triple::MuslEABI: 5654 case llvm::Triple::MuslEABIHF: 5655 return true; 5656 default: 5657 return false; 5658 } 5659 } 5660 5661 bool isEABIHF() const { 5662 switch (getTarget().getTriple().getEnvironment()) { 5663 case llvm::Triple::EABIHF: 5664 case llvm::Triple::GNUEABIHF: 5665 case llvm::Triple::MuslEABIHF: 5666 return true; 5667 default: 5668 return false; 5669 } 5670 } 5671 5672 ABIKind getABIKind() const { return Kind; } 5673 5674 private: 5675 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5676 unsigned functionCallConv) const; 5677 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5678 unsigned functionCallConv) const; 5679 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5680 uint64_t Members) const; 5681 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5682 bool isIllegalVectorType(QualType Ty) const; 5683 bool containsAnyFP16Vectors(QualType Ty) const; 5684 5685 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5686 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5687 uint64_t Members) const override; 5688 5689 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5690 5691 void computeInfo(CGFunctionInfo &FI) const override; 5692 5693 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5694 QualType Ty) const override; 5695 5696 llvm::CallingConv::ID getLLVMDefaultCC() const; 5697 llvm::CallingConv::ID getABIDefaultCC() const; 5698 void setCCs(); 5699 5700 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5701 bool asReturnValue) const override { 5702 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5703 } 5704 bool isSwiftErrorInRegister() const override { 5705 return true; 5706 } 5707 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5708 unsigned elts) const override; 5709 }; 5710 5711 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5712 public: 5713 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5714 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5715 5716 const ARMABIInfo &getABIInfo() const { 5717 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5718 } 5719 5720 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5721 return 13; 5722 } 5723 5724 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5725 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5726 } 5727 5728 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5729 llvm::Value *Address) const override { 5730 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5731 5732 // 0-15 are the 16 integer registers. 5733 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5734 return false; 5735 } 5736 5737 unsigned getSizeOfUnwindException() const override { 5738 if (getABIInfo().isEABI()) return 88; 5739 return TargetCodeGenInfo::getSizeOfUnwindException(); 5740 } 5741 5742 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5743 CodeGen::CodeGenModule &CGM) const override { 5744 if (GV->isDeclaration()) 5745 return; 5746 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5747 if (!FD) 5748 return; 5749 5750 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5751 if (!Attr) 5752 return; 5753 5754 const char *Kind; 5755 switch (Attr->getInterrupt()) { 5756 case ARMInterruptAttr::Generic: Kind = ""; break; 5757 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5758 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5759 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5760 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5761 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5762 } 5763 5764 llvm::Function *Fn = cast<llvm::Function>(GV); 5765 5766 Fn->addFnAttr("interrupt", Kind); 5767 5768 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5769 if (ABI == ARMABIInfo::APCS) 5770 return; 5771 5772 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5773 // however this is not necessarily true on taking any interrupt. Instruct 5774 // the backend to perform a realignment as part of the function prologue. 5775 llvm::AttrBuilder B; 5776 B.addStackAlignmentAttr(8); 5777 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5778 } 5779 }; 5780 5781 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5782 public: 5783 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5784 : ARMTargetCodeGenInfo(CGT, K) {} 5785 5786 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5787 CodeGen::CodeGenModule &CGM) const override; 5788 5789 void getDependentLibraryOption(llvm::StringRef Lib, 5790 llvm::SmallString<24> &Opt) const override { 5791 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5792 } 5793 5794 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5795 llvm::SmallString<32> &Opt) const override { 5796 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5797 } 5798 }; 5799 5800 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5801 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5802 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5803 if (GV->isDeclaration()) 5804 return; 5805 addStackProbeTargetAttributes(D, GV, CGM); 5806 } 5807 } 5808 5809 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5810 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5811 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5812 FI.getCallingConvention()); 5813 5814 for (auto &I : FI.arguments()) 5815 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5816 FI.getCallingConvention()); 5817 5818 5819 // Always honor user-specified calling convention. 5820 if (FI.getCallingConvention() != llvm::CallingConv::C) 5821 return; 5822 5823 llvm::CallingConv::ID cc = getRuntimeCC(); 5824 if (cc != llvm::CallingConv::C) 5825 FI.setEffectiveCallingConvention(cc); 5826 } 5827 5828 /// Return the default calling convention that LLVM will use. 5829 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5830 // The default calling convention that LLVM will infer. 5831 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5832 return llvm::CallingConv::ARM_AAPCS_VFP; 5833 else if (isEABI()) 5834 return llvm::CallingConv::ARM_AAPCS; 5835 else 5836 return llvm::CallingConv::ARM_APCS; 5837 } 5838 5839 /// Return the calling convention that our ABI would like us to use 5840 /// as the C calling convention. 5841 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5842 switch (getABIKind()) { 5843 case APCS: return llvm::CallingConv::ARM_APCS; 5844 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5845 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5846 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5847 } 5848 llvm_unreachable("bad ABI kind"); 5849 } 5850 5851 void ARMABIInfo::setCCs() { 5852 assert(getRuntimeCC() == llvm::CallingConv::C); 5853 5854 // Don't muddy up the IR with a ton of explicit annotations if 5855 // they'd just match what LLVM will infer from the triple. 5856 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5857 if (abiCC != getLLVMDefaultCC()) 5858 RuntimeCC = abiCC; 5859 } 5860 5861 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5862 uint64_t Size = getContext().getTypeSize(Ty); 5863 if (Size <= 32) { 5864 llvm::Type *ResType = 5865 llvm::Type::getInt32Ty(getVMContext()); 5866 return ABIArgInfo::getDirect(ResType); 5867 } 5868 if (Size == 64 || Size == 128) { 5869 llvm::Type *ResType = llvm::VectorType::get( 5870 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5871 return ABIArgInfo::getDirect(ResType); 5872 } 5873 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5874 } 5875 5876 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5877 const Type *Base, 5878 uint64_t Members) const { 5879 assert(Base && "Base class should be set for homogeneous aggregate"); 5880 // Base can be a floating-point or a vector. 5881 if (const VectorType *VT = Base->getAs<VectorType>()) { 5882 // FP16 vectors should be converted to integer vectors 5883 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 5884 uint64_t Size = getContext().getTypeSize(VT); 5885 llvm::Type *NewVecTy = llvm::VectorType::get( 5886 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5887 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5888 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5889 } 5890 } 5891 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5892 } 5893 5894 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5895 unsigned functionCallConv) const { 5896 // 6.1.2.1 The following argument types are VFP CPRCs: 5897 // A single-precision floating-point type (including promoted 5898 // half-precision types); A double-precision floating-point type; 5899 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5900 // with a Base Type of a single- or double-precision floating-point type, 5901 // 64-bit containerized vectors or 128-bit containerized vectors with one 5902 // to four Elements. 5903 // Variadic functions should always marshal to the base standard. 5904 bool IsAAPCS_VFP = 5905 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5906 5907 Ty = useFirstFieldIfTransparentUnion(Ty); 5908 5909 // Handle illegal vector types here. 5910 if (isIllegalVectorType(Ty)) 5911 return coerceIllegalVector(Ty); 5912 5913 // _Float16 and __fp16 get passed as if it were an int or float, but with 5914 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5915 // half type natively, and does not need to interwork with AAPCS code. 5916 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5917 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5918 llvm::Type *ResType = IsAAPCS_VFP ? 5919 llvm::Type::getFloatTy(getVMContext()) : 5920 llvm::Type::getInt32Ty(getVMContext()); 5921 return ABIArgInfo::getDirect(ResType); 5922 } 5923 5924 if (!isAggregateTypeForABI(Ty)) { 5925 // Treat an enum type as its underlying type. 5926 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5927 Ty = EnumTy->getDecl()->getIntegerType(); 5928 } 5929 5930 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5931 : ABIArgInfo::getDirect()); 5932 } 5933 5934 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5935 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5936 } 5937 5938 // Ignore empty records. 5939 if (isEmptyRecord(getContext(), Ty, true)) 5940 return ABIArgInfo::getIgnore(); 5941 5942 if (IsAAPCS_VFP) { 5943 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5944 // into VFP registers. 5945 const Type *Base = nullptr; 5946 uint64_t Members = 0; 5947 if (isHomogeneousAggregate(Ty, Base, Members)) 5948 return classifyHomogeneousAggregate(Ty, Base, Members); 5949 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5950 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5951 // this convention even for a variadic function: the backend will use GPRs 5952 // if needed. 5953 const Type *Base = nullptr; 5954 uint64_t Members = 0; 5955 if (isHomogeneousAggregate(Ty, Base, Members)) { 5956 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5957 llvm::Type *Ty = 5958 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5959 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5960 } 5961 } 5962 5963 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5964 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5965 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5966 // bigger than 128-bits, they get placed in space allocated by the caller, 5967 // and a pointer is passed. 5968 return ABIArgInfo::getIndirect( 5969 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5970 } 5971 5972 // Support byval for ARM. 5973 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5974 // most 8-byte. We realign the indirect argument if type alignment is bigger 5975 // than ABI alignment. 5976 uint64_t ABIAlign = 4; 5977 uint64_t TyAlign; 5978 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5979 getABIKind() == ARMABIInfo::AAPCS) { 5980 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5981 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5982 } else { 5983 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5984 } 5985 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5986 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5987 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5988 /*ByVal=*/true, 5989 /*Realign=*/TyAlign > ABIAlign); 5990 } 5991 5992 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5993 // same size and alignment. 5994 if (getTarget().isRenderScriptTarget()) { 5995 return coerceToIntArray(Ty, getContext(), getVMContext()); 5996 } 5997 5998 // Otherwise, pass by coercing to a structure of the appropriate size. 5999 llvm::Type* ElemTy; 6000 unsigned SizeRegs; 6001 // FIXME: Try to match the types of the arguments more accurately where 6002 // we can. 6003 if (TyAlign <= 4) { 6004 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6005 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6006 } else { 6007 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6008 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6009 } 6010 6011 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6012 } 6013 6014 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6015 llvm::LLVMContext &VMContext) { 6016 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6017 // is called integer-like if its size is less than or equal to one word, and 6018 // the offset of each of its addressable sub-fields is zero. 6019 6020 uint64_t Size = Context.getTypeSize(Ty); 6021 6022 // Check that the type fits in a word. 6023 if (Size > 32) 6024 return false; 6025 6026 // FIXME: Handle vector types! 6027 if (Ty->isVectorType()) 6028 return false; 6029 6030 // Float types are never treated as "integer like". 6031 if (Ty->isRealFloatingType()) 6032 return false; 6033 6034 // If this is a builtin or pointer type then it is ok. 6035 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6036 return true; 6037 6038 // Small complex integer types are "integer like". 6039 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6040 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6041 6042 // Single element and zero sized arrays should be allowed, by the definition 6043 // above, but they are not. 6044 6045 // Otherwise, it must be a record type. 6046 const RecordType *RT = Ty->getAs<RecordType>(); 6047 if (!RT) return false; 6048 6049 // Ignore records with flexible arrays. 6050 const RecordDecl *RD = RT->getDecl(); 6051 if (RD->hasFlexibleArrayMember()) 6052 return false; 6053 6054 // Check that all sub-fields are at offset 0, and are themselves "integer 6055 // like". 6056 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6057 6058 bool HadField = false; 6059 unsigned idx = 0; 6060 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6061 i != e; ++i, ++idx) { 6062 const FieldDecl *FD = *i; 6063 6064 // Bit-fields are not addressable, we only need to verify they are "integer 6065 // like". We still have to disallow a subsequent non-bitfield, for example: 6066 // struct { int : 0; int x } 6067 // is non-integer like according to gcc. 6068 if (FD->isBitField()) { 6069 if (!RD->isUnion()) 6070 HadField = true; 6071 6072 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6073 return false; 6074 6075 continue; 6076 } 6077 6078 // Check if this field is at offset 0. 6079 if (Layout.getFieldOffset(idx) != 0) 6080 return false; 6081 6082 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6083 return false; 6084 6085 // Only allow at most one field in a structure. This doesn't match the 6086 // wording above, but follows gcc in situations with a field following an 6087 // empty structure. 6088 if (!RD->isUnion()) { 6089 if (HadField) 6090 return false; 6091 6092 HadField = true; 6093 } 6094 } 6095 6096 return true; 6097 } 6098 6099 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6100 unsigned functionCallConv) const { 6101 6102 // Variadic functions should always marshal to the base standard. 6103 bool IsAAPCS_VFP = 6104 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6105 6106 if (RetTy->isVoidType()) 6107 return ABIArgInfo::getIgnore(); 6108 6109 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6110 // Large vector types should be returned via memory. 6111 if (getContext().getTypeSize(RetTy) > 128) 6112 return getNaturalAlignIndirect(RetTy); 6113 // FP16 vectors should be converted to integer vectors 6114 if (!getTarget().hasLegalHalfType() && 6115 (VT->getElementType()->isFloat16Type() || 6116 VT->getElementType()->isHalfType())) 6117 return coerceIllegalVector(RetTy); 6118 } 6119 6120 // _Float16 and __fp16 get returned as if it were an int or float, but with 6121 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6122 // half type natively, and does not need to interwork with AAPCS code. 6123 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6124 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6125 llvm::Type *ResType = IsAAPCS_VFP ? 6126 llvm::Type::getFloatTy(getVMContext()) : 6127 llvm::Type::getInt32Ty(getVMContext()); 6128 return ABIArgInfo::getDirect(ResType); 6129 } 6130 6131 if (!isAggregateTypeForABI(RetTy)) { 6132 // Treat an enum type as its underlying type. 6133 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6134 RetTy = EnumTy->getDecl()->getIntegerType(); 6135 6136 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6137 : ABIArgInfo::getDirect(); 6138 } 6139 6140 // Are we following APCS? 6141 if (getABIKind() == APCS) { 6142 if (isEmptyRecord(getContext(), RetTy, false)) 6143 return ABIArgInfo::getIgnore(); 6144 6145 // Complex types are all returned as packed integers. 6146 // 6147 // FIXME: Consider using 2 x vector types if the back end handles them 6148 // correctly. 6149 if (RetTy->isAnyComplexType()) 6150 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6151 getVMContext(), getContext().getTypeSize(RetTy))); 6152 6153 // Integer like structures are returned in r0. 6154 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6155 // Return in the smallest viable integer type. 6156 uint64_t Size = getContext().getTypeSize(RetTy); 6157 if (Size <= 8) 6158 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6159 if (Size <= 16) 6160 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6161 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6162 } 6163 6164 // Otherwise return in memory. 6165 return getNaturalAlignIndirect(RetTy); 6166 } 6167 6168 // Otherwise this is an AAPCS variant. 6169 6170 if (isEmptyRecord(getContext(), RetTy, true)) 6171 return ABIArgInfo::getIgnore(); 6172 6173 // Check for homogeneous aggregates with AAPCS-VFP. 6174 if (IsAAPCS_VFP) { 6175 const Type *Base = nullptr; 6176 uint64_t Members = 0; 6177 if (isHomogeneousAggregate(RetTy, Base, Members)) 6178 return classifyHomogeneousAggregate(RetTy, Base, Members); 6179 } 6180 6181 // Aggregates <= 4 bytes are returned in r0; other aggregates 6182 // are returned indirectly. 6183 uint64_t Size = getContext().getTypeSize(RetTy); 6184 if (Size <= 32) { 6185 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6186 // same size and alignment. 6187 if (getTarget().isRenderScriptTarget()) { 6188 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6189 } 6190 if (getDataLayout().isBigEndian()) 6191 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6192 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6193 6194 // Return in the smallest viable integer type. 6195 if (Size <= 8) 6196 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6197 if (Size <= 16) 6198 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6199 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6200 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6201 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6202 llvm::Type *CoerceTy = 6203 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6204 return ABIArgInfo::getDirect(CoerceTy); 6205 } 6206 6207 return getNaturalAlignIndirect(RetTy); 6208 } 6209 6210 /// isIllegalVector - check whether Ty is an illegal vector type. 6211 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6212 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6213 // On targets that don't support FP16, FP16 is expanded into float, and we 6214 // don't want the ABI to depend on whether or not FP16 is supported in 6215 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6216 if (!getTarget().hasLegalHalfType() && 6217 (VT->getElementType()->isFloat16Type() || 6218 VT->getElementType()->isHalfType())) 6219 return true; 6220 if (isAndroid()) { 6221 // Android shipped using Clang 3.1, which supported a slightly different 6222 // vector ABI. The primary differences were that 3-element vector types 6223 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6224 // accepts that legacy behavior for Android only. 6225 // Check whether VT is legal. 6226 unsigned NumElements = VT->getNumElements(); 6227 // NumElements should be power of 2 or equal to 3. 6228 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6229 return true; 6230 } else { 6231 // Check whether VT is legal. 6232 unsigned NumElements = VT->getNumElements(); 6233 uint64_t Size = getContext().getTypeSize(VT); 6234 // NumElements should be power of 2. 6235 if (!llvm::isPowerOf2_32(NumElements)) 6236 return true; 6237 // Size should be greater than 32 bits. 6238 return Size <= 32; 6239 } 6240 } 6241 return false; 6242 } 6243 6244 /// Return true if a type contains any 16-bit floating point vectors 6245 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6246 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6247 uint64_t NElements = AT->getSize().getZExtValue(); 6248 if (NElements == 0) 6249 return false; 6250 return containsAnyFP16Vectors(AT->getElementType()); 6251 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6252 const RecordDecl *RD = RT->getDecl(); 6253 6254 // If this is a C++ record, check the bases first. 6255 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6256 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6257 return containsAnyFP16Vectors(B.getType()); 6258 })) 6259 return true; 6260 6261 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6262 return FD && containsAnyFP16Vectors(FD->getType()); 6263 })) 6264 return true; 6265 6266 return false; 6267 } else { 6268 if (const VectorType *VT = Ty->getAs<VectorType>()) 6269 return (VT->getElementType()->isFloat16Type() || 6270 VT->getElementType()->isHalfType()); 6271 return false; 6272 } 6273 } 6274 6275 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6276 llvm::Type *eltTy, 6277 unsigned numElts) const { 6278 if (!llvm::isPowerOf2_32(numElts)) 6279 return false; 6280 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6281 if (size > 64) 6282 return false; 6283 if (vectorSize.getQuantity() != 8 && 6284 (vectorSize.getQuantity() != 16 || numElts == 1)) 6285 return false; 6286 return true; 6287 } 6288 6289 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6290 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6291 // double, or 64-bit or 128-bit vectors. 6292 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6293 if (BT->getKind() == BuiltinType::Float || 6294 BT->getKind() == BuiltinType::Double || 6295 BT->getKind() == BuiltinType::LongDouble) 6296 return true; 6297 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6298 unsigned VecSize = getContext().getTypeSize(VT); 6299 if (VecSize == 64 || VecSize == 128) 6300 return true; 6301 } 6302 return false; 6303 } 6304 6305 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6306 uint64_t Members) const { 6307 return Members <= 4; 6308 } 6309 6310 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6311 bool acceptHalf) const { 6312 // Give precedence to user-specified calling conventions. 6313 if (callConvention != llvm::CallingConv::C) 6314 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6315 else 6316 return (getABIKind() == AAPCS_VFP) || 6317 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6318 } 6319 6320 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6321 QualType Ty) const { 6322 CharUnits SlotSize = CharUnits::fromQuantity(4); 6323 6324 // Empty records are ignored for parameter passing purposes. 6325 if (isEmptyRecord(getContext(), Ty, true)) { 6326 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6327 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6328 return Addr; 6329 } 6330 6331 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6332 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6333 6334 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6335 bool IsIndirect = false; 6336 const Type *Base = nullptr; 6337 uint64_t Members = 0; 6338 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6339 IsIndirect = true; 6340 6341 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6342 // allocated by the caller. 6343 } else if (TySize > CharUnits::fromQuantity(16) && 6344 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6345 !isHomogeneousAggregate(Ty, Base, Members)) { 6346 IsIndirect = true; 6347 6348 // Otherwise, bound the type's ABI alignment. 6349 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6350 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6351 // Our callers should be prepared to handle an under-aligned address. 6352 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6353 getABIKind() == ARMABIInfo::AAPCS) { 6354 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6355 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6356 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6357 // ARMv7k allows type alignment up to 16 bytes. 6358 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6359 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6360 } else { 6361 TyAlignForABI = CharUnits::fromQuantity(4); 6362 } 6363 6364 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6365 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6366 SlotSize, /*AllowHigherAlign*/ true); 6367 } 6368 6369 //===----------------------------------------------------------------------===// 6370 // NVPTX ABI Implementation 6371 //===----------------------------------------------------------------------===// 6372 6373 namespace { 6374 6375 class NVPTXABIInfo : public ABIInfo { 6376 public: 6377 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6378 6379 ABIArgInfo classifyReturnType(QualType RetTy) const; 6380 ABIArgInfo classifyArgumentType(QualType Ty) const; 6381 6382 void computeInfo(CGFunctionInfo &FI) const override; 6383 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6384 QualType Ty) const override; 6385 }; 6386 6387 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6388 public: 6389 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6390 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6391 6392 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6393 CodeGen::CodeGenModule &M) const override; 6394 bool shouldEmitStaticExternCAliases() const override; 6395 6396 private: 6397 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6398 // resulting MDNode to the nvvm.annotations MDNode. 6399 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6400 }; 6401 6402 /// Checks if the type is unsupported directly by the current target. 6403 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6404 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6405 return true; 6406 if (!Context.getTargetInfo().hasFloat128Type() && 6407 (T->isFloat128Type() || 6408 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6409 return true; 6410 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6411 Context.getTypeSize(T) > 64) 6412 return true; 6413 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6414 return isUnsupportedType(Context, AT->getElementType()); 6415 const auto *RT = T->getAs<RecordType>(); 6416 if (!RT) 6417 return false; 6418 const RecordDecl *RD = RT->getDecl(); 6419 6420 // If this is a C++ record, check the bases first. 6421 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6422 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6423 if (isUnsupportedType(Context, I.getType())) 6424 return true; 6425 6426 for (const FieldDecl *I : RD->fields()) 6427 if (isUnsupportedType(Context, I->getType())) 6428 return true; 6429 return false; 6430 } 6431 6432 /// Coerce the given type into an array with maximum allowed size of elements. 6433 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6434 llvm::LLVMContext &LLVMContext, 6435 unsigned MaxSize) { 6436 // Alignment and Size are measured in bits. 6437 const uint64_t Size = Context.getTypeSize(Ty); 6438 const uint64_t Alignment = Context.getTypeAlign(Ty); 6439 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6440 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6441 const uint64_t NumElements = (Size + Div - 1) / Div; 6442 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6443 } 6444 6445 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6446 if (RetTy->isVoidType()) 6447 return ABIArgInfo::getIgnore(); 6448 6449 if (getContext().getLangOpts().OpenMP && 6450 getContext().getLangOpts().OpenMPIsDevice && 6451 isUnsupportedType(getContext(), RetTy)) 6452 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6453 6454 // note: this is different from default ABI 6455 if (!RetTy->isScalarType()) 6456 return ABIArgInfo::getDirect(); 6457 6458 // Treat an enum type as its underlying type. 6459 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6460 RetTy = EnumTy->getDecl()->getIntegerType(); 6461 6462 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6463 : ABIArgInfo::getDirect()); 6464 } 6465 6466 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6467 // Treat an enum type as its underlying type. 6468 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6469 Ty = EnumTy->getDecl()->getIntegerType(); 6470 6471 // Return aggregates type as indirect by value 6472 if (isAggregateTypeForABI(Ty)) 6473 return getNaturalAlignIndirect(Ty, /* byval */ true); 6474 6475 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6476 : ABIArgInfo::getDirect()); 6477 } 6478 6479 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6480 if (!getCXXABI().classifyReturnType(FI)) 6481 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6482 for (auto &I : FI.arguments()) 6483 I.info = classifyArgumentType(I.type); 6484 6485 // Always honor user-specified calling convention. 6486 if (FI.getCallingConvention() != llvm::CallingConv::C) 6487 return; 6488 6489 FI.setEffectiveCallingConvention(getRuntimeCC()); 6490 } 6491 6492 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6493 QualType Ty) const { 6494 llvm_unreachable("NVPTX does not support varargs"); 6495 } 6496 6497 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6498 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6499 if (GV->isDeclaration()) 6500 return; 6501 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6502 if (!FD) return; 6503 6504 llvm::Function *F = cast<llvm::Function>(GV); 6505 6506 // Perform special handling in OpenCL mode 6507 if (M.getLangOpts().OpenCL) { 6508 // Use OpenCL function attributes to check for kernel functions 6509 // By default, all functions are device functions 6510 if (FD->hasAttr<OpenCLKernelAttr>()) { 6511 // OpenCL __kernel functions get kernel metadata 6512 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6513 addNVVMMetadata(F, "kernel", 1); 6514 // And kernel functions are not subject to inlining 6515 F->addFnAttr(llvm::Attribute::NoInline); 6516 } 6517 } 6518 6519 // Perform special handling in CUDA mode. 6520 if (M.getLangOpts().CUDA) { 6521 // CUDA __global__ functions get a kernel metadata entry. Since 6522 // __global__ functions cannot be called from the device, we do not 6523 // need to set the noinline attribute. 6524 if (FD->hasAttr<CUDAGlobalAttr>()) { 6525 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6526 addNVVMMetadata(F, "kernel", 1); 6527 } 6528 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6529 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6530 llvm::APSInt MaxThreads(32); 6531 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6532 if (MaxThreads > 0) 6533 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6534 6535 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6536 // not specified in __launch_bounds__ or if the user specified a 0 value, 6537 // we don't have to add a PTX directive. 6538 if (Attr->getMinBlocks()) { 6539 llvm::APSInt MinBlocks(32); 6540 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6541 if (MinBlocks > 0) 6542 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6543 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6544 } 6545 } 6546 } 6547 } 6548 6549 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6550 int Operand) { 6551 llvm::Module *M = F->getParent(); 6552 llvm::LLVMContext &Ctx = M->getContext(); 6553 6554 // Get "nvvm.annotations" metadata node 6555 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6556 6557 llvm::Metadata *MDVals[] = { 6558 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6559 llvm::ConstantAsMetadata::get( 6560 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6561 // Append metadata to nvvm.annotations 6562 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6563 } 6564 6565 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6566 return false; 6567 } 6568 } 6569 6570 //===----------------------------------------------------------------------===// 6571 // SystemZ ABI Implementation 6572 //===----------------------------------------------------------------------===// 6573 6574 namespace { 6575 6576 class SystemZABIInfo : public SwiftABIInfo { 6577 bool HasVector; 6578 6579 public: 6580 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6581 : SwiftABIInfo(CGT), HasVector(HV) {} 6582 6583 bool isPromotableIntegerType(QualType Ty) const; 6584 bool isCompoundType(QualType Ty) const; 6585 bool isVectorArgumentType(QualType Ty) const; 6586 bool isFPArgumentType(QualType Ty) const; 6587 QualType GetSingleElementType(QualType Ty) const; 6588 6589 ABIArgInfo classifyReturnType(QualType RetTy) const; 6590 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6591 6592 void computeInfo(CGFunctionInfo &FI) const override { 6593 if (!getCXXABI().classifyReturnType(FI)) 6594 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6595 for (auto &I : FI.arguments()) 6596 I.info = classifyArgumentType(I.type); 6597 } 6598 6599 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6600 QualType Ty) const override; 6601 6602 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6603 bool asReturnValue) const override { 6604 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6605 } 6606 bool isSwiftErrorInRegister() const override { 6607 return false; 6608 } 6609 }; 6610 6611 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6612 public: 6613 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6614 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6615 }; 6616 6617 } 6618 6619 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6620 // Treat an enum type as its underlying type. 6621 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6622 Ty = EnumTy->getDecl()->getIntegerType(); 6623 6624 // Promotable integer types are required to be promoted by the ABI. 6625 if (Ty->isPromotableIntegerType()) 6626 return true; 6627 6628 // 32-bit values must also be promoted. 6629 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6630 switch (BT->getKind()) { 6631 case BuiltinType::Int: 6632 case BuiltinType::UInt: 6633 return true; 6634 default: 6635 return false; 6636 } 6637 return false; 6638 } 6639 6640 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6641 return (Ty->isAnyComplexType() || 6642 Ty->isVectorType() || 6643 isAggregateTypeForABI(Ty)); 6644 } 6645 6646 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6647 return (HasVector && 6648 Ty->isVectorType() && 6649 getContext().getTypeSize(Ty) <= 128); 6650 } 6651 6652 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6653 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6654 switch (BT->getKind()) { 6655 case BuiltinType::Float: 6656 case BuiltinType::Double: 6657 return true; 6658 default: 6659 return false; 6660 } 6661 6662 return false; 6663 } 6664 6665 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6666 if (const RecordType *RT = Ty->getAsStructureType()) { 6667 const RecordDecl *RD = RT->getDecl(); 6668 QualType Found; 6669 6670 // If this is a C++ record, check the bases first. 6671 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6672 for (const auto &I : CXXRD->bases()) { 6673 QualType Base = I.getType(); 6674 6675 // Empty bases don't affect things either way. 6676 if (isEmptyRecord(getContext(), Base, true)) 6677 continue; 6678 6679 if (!Found.isNull()) 6680 return Ty; 6681 Found = GetSingleElementType(Base); 6682 } 6683 6684 // Check the fields. 6685 for (const auto *FD : RD->fields()) { 6686 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6687 // Unlike isSingleElementStruct(), empty structure and array fields 6688 // do count. So do anonymous bitfields that aren't zero-sized. 6689 if (getContext().getLangOpts().CPlusPlus && 6690 FD->isZeroLengthBitField(getContext())) 6691 continue; 6692 6693 // Unlike isSingleElementStruct(), arrays do not count. 6694 // Nested structures still do though. 6695 if (!Found.isNull()) 6696 return Ty; 6697 Found = GetSingleElementType(FD->getType()); 6698 } 6699 6700 // Unlike isSingleElementStruct(), trailing padding is allowed. 6701 // An 8-byte aligned struct s { float f; } is passed as a double. 6702 if (!Found.isNull()) 6703 return Found; 6704 } 6705 6706 return Ty; 6707 } 6708 6709 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6710 QualType Ty) const { 6711 // Assume that va_list type is correct; should be pointer to LLVM type: 6712 // struct { 6713 // i64 __gpr; 6714 // i64 __fpr; 6715 // i8 *__overflow_arg_area; 6716 // i8 *__reg_save_area; 6717 // }; 6718 6719 // Every non-vector argument occupies 8 bytes and is passed by preference 6720 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6721 // always passed on the stack. 6722 Ty = getContext().getCanonicalType(Ty); 6723 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6724 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6725 llvm::Type *DirectTy = ArgTy; 6726 ABIArgInfo AI = classifyArgumentType(Ty); 6727 bool IsIndirect = AI.isIndirect(); 6728 bool InFPRs = false; 6729 bool IsVector = false; 6730 CharUnits UnpaddedSize; 6731 CharUnits DirectAlign; 6732 if (IsIndirect) { 6733 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6734 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6735 } else { 6736 if (AI.getCoerceToType()) 6737 ArgTy = AI.getCoerceToType(); 6738 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6739 IsVector = ArgTy->isVectorTy(); 6740 UnpaddedSize = TyInfo.first; 6741 DirectAlign = TyInfo.second; 6742 } 6743 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6744 if (IsVector && UnpaddedSize > PaddedSize) 6745 PaddedSize = CharUnits::fromQuantity(16); 6746 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6747 6748 CharUnits Padding = (PaddedSize - UnpaddedSize); 6749 6750 llvm::Type *IndexTy = CGF.Int64Ty; 6751 llvm::Value *PaddedSizeV = 6752 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6753 6754 if (IsVector) { 6755 // Work out the address of a vector argument on the stack. 6756 // Vector arguments are always passed in the high bits of a 6757 // single (8 byte) or double (16 byte) stack slot. 6758 Address OverflowArgAreaPtr = 6759 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6760 Address OverflowArgArea = 6761 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6762 TyInfo.second); 6763 Address MemAddr = 6764 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6765 6766 // Update overflow_arg_area_ptr pointer 6767 llvm::Value *NewOverflowArgArea = 6768 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6769 "overflow_arg_area"); 6770 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6771 6772 return MemAddr; 6773 } 6774 6775 assert(PaddedSize.getQuantity() == 8); 6776 6777 unsigned MaxRegs, RegCountField, RegSaveIndex; 6778 CharUnits RegPadding; 6779 if (InFPRs) { 6780 MaxRegs = 4; // Maximum of 4 FPR arguments 6781 RegCountField = 1; // __fpr 6782 RegSaveIndex = 16; // save offset for f0 6783 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6784 } else { 6785 MaxRegs = 5; // Maximum of 5 GPR arguments 6786 RegCountField = 0; // __gpr 6787 RegSaveIndex = 2; // save offset for r2 6788 RegPadding = Padding; // values are passed in the low bits of a GPR 6789 } 6790 6791 Address RegCountPtr = 6792 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6793 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6794 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6795 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6796 "fits_in_regs"); 6797 6798 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6799 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6800 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6801 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6802 6803 // Emit code to load the value if it was passed in registers. 6804 CGF.EmitBlock(InRegBlock); 6805 6806 // Work out the address of an argument register. 6807 llvm::Value *ScaledRegCount = 6808 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6809 llvm::Value *RegBase = 6810 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6811 + RegPadding.getQuantity()); 6812 llvm::Value *RegOffset = 6813 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6814 Address RegSaveAreaPtr = 6815 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6816 llvm::Value *RegSaveArea = 6817 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6818 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6819 "raw_reg_addr"), 6820 PaddedSize); 6821 Address RegAddr = 6822 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6823 6824 // Update the register count 6825 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6826 llvm::Value *NewRegCount = 6827 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6828 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6829 CGF.EmitBranch(ContBlock); 6830 6831 // Emit code to load the value if it was passed in memory. 6832 CGF.EmitBlock(InMemBlock); 6833 6834 // Work out the address of a stack argument. 6835 Address OverflowArgAreaPtr = 6836 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6837 Address OverflowArgArea = 6838 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6839 PaddedSize); 6840 Address RawMemAddr = 6841 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6842 Address MemAddr = 6843 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6844 6845 // Update overflow_arg_area_ptr pointer 6846 llvm::Value *NewOverflowArgArea = 6847 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6848 "overflow_arg_area"); 6849 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6850 CGF.EmitBranch(ContBlock); 6851 6852 // Return the appropriate result. 6853 CGF.EmitBlock(ContBlock); 6854 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6855 MemAddr, InMemBlock, "va_arg.addr"); 6856 6857 if (IsIndirect) 6858 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6859 TyInfo.second); 6860 6861 return ResAddr; 6862 } 6863 6864 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6865 if (RetTy->isVoidType()) 6866 return ABIArgInfo::getIgnore(); 6867 if (isVectorArgumentType(RetTy)) 6868 return ABIArgInfo::getDirect(); 6869 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6870 return getNaturalAlignIndirect(RetTy); 6871 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6872 : ABIArgInfo::getDirect()); 6873 } 6874 6875 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6876 // Handle the generic C++ ABI. 6877 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6878 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6879 6880 // Integers and enums are extended to full register width. 6881 if (isPromotableIntegerType(Ty)) 6882 return ABIArgInfo::getExtend(Ty); 6883 6884 // Handle vector types and vector-like structure types. Note that 6885 // as opposed to float-like structure types, we do not allow any 6886 // padding for vector-like structures, so verify the sizes match. 6887 uint64_t Size = getContext().getTypeSize(Ty); 6888 QualType SingleElementTy = GetSingleElementType(Ty); 6889 if (isVectorArgumentType(SingleElementTy) && 6890 getContext().getTypeSize(SingleElementTy) == Size) 6891 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6892 6893 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6894 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6895 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6896 6897 // Handle small structures. 6898 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6899 // Structures with flexible arrays have variable length, so really 6900 // fail the size test above. 6901 const RecordDecl *RD = RT->getDecl(); 6902 if (RD->hasFlexibleArrayMember()) 6903 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6904 6905 // The structure is passed as an unextended integer, a float, or a double. 6906 llvm::Type *PassTy; 6907 if (isFPArgumentType(SingleElementTy)) { 6908 assert(Size == 32 || Size == 64); 6909 if (Size == 32) 6910 PassTy = llvm::Type::getFloatTy(getVMContext()); 6911 else 6912 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6913 } else 6914 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6915 return ABIArgInfo::getDirect(PassTy); 6916 } 6917 6918 // Non-structure compounds are passed indirectly. 6919 if (isCompoundType(Ty)) 6920 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6921 6922 return ABIArgInfo::getDirect(nullptr); 6923 } 6924 6925 //===----------------------------------------------------------------------===// 6926 // MSP430 ABI Implementation 6927 //===----------------------------------------------------------------------===// 6928 6929 namespace { 6930 6931 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6932 public: 6933 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6934 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6935 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6936 CodeGen::CodeGenModule &M) const override; 6937 }; 6938 6939 } 6940 6941 void MSP430TargetCodeGenInfo::setTargetAttributes( 6942 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6943 if (GV->isDeclaration()) 6944 return; 6945 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6946 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6947 if (!InterruptAttr) 6948 return; 6949 6950 // Handle 'interrupt' attribute: 6951 llvm::Function *F = cast<llvm::Function>(GV); 6952 6953 // Step 1: Set ISR calling convention. 6954 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6955 6956 // Step 2: Add attributes goodness. 6957 F->addFnAttr(llvm::Attribute::NoInline); 6958 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6959 } 6960 } 6961 6962 //===----------------------------------------------------------------------===// 6963 // MIPS ABI Implementation. This works for both little-endian and 6964 // big-endian variants. 6965 //===----------------------------------------------------------------------===// 6966 6967 namespace { 6968 class MipsABIInfo : public ABIInfo { 6969 bool IsO32; 6970 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6971 void CoerceToIntArgs(uint64_t TySize, 6972 SmallVectorImpl<llvm::Type *> &ArgList) const; 6973 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6974 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6975 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6976 public: 6977 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6978 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6979 StackAlignInBytes(IsO32 ? 8 : 16) {} 6980 6981 ABIArgInfo classifyReturnType(QualType RetTy) const; 6982 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6983 void computeInfo(CGFunctionInfo &FI) const override; 6984 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6985 QualType Ty) const override; 6986 ABIArgInfo extendType(QualType Ty) const; 6987 }; 6988 6989 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6990 unsigned SizeOfUnwindException; 6991 public: 6992 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6993 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6994 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6995 6996 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6997 return 29; 6998 } 6999 7000 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7001 CodeGen::CodeGenModule &CGM) const override { 7002 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7003 if (!FD) return; 7004 llvm::Function *Fn = cast<llvm::Function>(GV); 7005 7006 if (FD->hasAttr<MipsLongCallAttr>()) 7007 Fn->addFnAttr("long-call"); 7008 else if (FD->hasAttr<MipsShortCallAttr>()) 7009 Fn->addFnAttr("short-call"); 7010 7011 // Other attributes do not have a meaning for declarations. 7012 if (GV->isDeclaration()) 7013 return; 7014 7015 if (FD->hasAttr<Mips16Attr>()) { 7016 Fn->addFnAttr("mips16"); 7017 } 7018 else if (FD->hasAttr<NoMips16Attr>()) { 7019 Fn->addFnAttr("nomips16"); 7020 } 7021 7022 if (FD->hasAttr<MicroMipsAttr>()) 7023 Fn->addFnAttr("micromips"); 7024 else if (FD->hasAttr<NoMicroMipsAttr>()) 7025 Fn->addFnAttr("nomicromips"); 7026 7027 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7028 if (!Attr) 7029 return; 7030 7031 const char *Kind; 7032 switch (Attr->getInterrupt()) { 7033 case MipsInterruptAttr::eic: Kind = "eic"; break; 7034 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7035 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7036 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7037 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7038 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7039 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7040 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7041 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7042 } 7043 7044 Fn->addFnAttr("interrupt", Kind); 7045 7046 } 7047 7048 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7049 llvm::Value *Address) const override; 7050 7051 unsigned getSizeOfUnwindException() const override { 7052 return SizeOfUnwindException; 7053 } 7054 }; 7055 } 7056 7057 void MipsABIInfo::CoerceToIntArgs( 7058 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7059 llvm::IntegerType *IntTy = 7060 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7061 7062 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7063 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7064 ArgList.push_back(IntTy); 7065 7066 // If necessary, add one more integer type to ArgList. 7067 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7068 7069 if (R) 7070 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7071 } 7072 7073 // In N32/64, an aligned double precision floating point field is passed in 7074 // a register. 7075 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7076 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7077 7078 if (IsO32) { 7079 CoerceToIntArgs(TySize, ArgList); 7080 return llvm::StructType::get(getVMContext(), ArgList); 7081 } 7082 7083 if (Ty->isComplexType()) 7084 return CGT.ConvertType(Ty); 7085 7086 const RecordType *RT = Ty->getAs<RecordType>(); 7087 7088 // Unions/vectors are passed in integer registers. 7089 if (!RT || !RT->isStructureOrClassType()) { 7090 CoerceToIntArgs(TySize, ArgList); 7091 return llvm::StructType::get(getVMContext(), ArgList); 7092 } 7093 7094 const RecordDecl *RD = RT->getDecl(); 7095 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7096 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7097 7098 uint64_t LastOffset = 0; 7099 unsigned idx = 0; 7100 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7101 7102 // Iterate over fields in the struct/class and check if there are any aligned 7103 // double fields. 7104 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7105 i != e; ++i, ++idx) { 7106 const QualType Ty = i->getType(); 7107 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7108 7109 if (!BT || BT->getKind() != BuiltinType::Double) 7110 continue; 7111 7112 uint64_t Offset = Layout.getFieldOffset(idx); 7113 if (Offset % 64) // Ignore doubles that are not aligned. 7114 continue; 7115 7116 // Add ((Offset - LastOffset) / 64) args of type i64. 7117 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7118 ArgList.push_back(I64); 7119 7120 // Add double type. 7121 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7122 LastOffset = Offset + 64; 7123 } 7124 7125 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7126 ArgList.append(IntArgList.begin(), IntArgList.end()); 7127 7128 return llvm::StructType::get(getVMContext(), ArgList); 7129 } 7130 7131 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7132 uint64_t Offset) const { 7133 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7134 return nullptr; 7135 7136 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7137 } 7138 7139 ABIArgInfo 7140 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7141 Ty = useFirstFieldIfTransparentUnion(Ty); 7142 7143 uint64_t OrigOffset = Offset; 7144 uint64_t TySize = getContext().getTypeSize(Ty); 7145 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7146 7147 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7148 (uint64_t)StackAlignInBytes); 7149 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7150 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7151 7152 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7153 // Ignore empty aggregates. 7154 if (TySize == 0) 7155 return ABIArgInfo::getIgnore(); 7156 7157 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7158 Offset = OrigOffset + MinABIStackAlignInBytes; 7159 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7160 } 7161 7162 // If we have reached here, aggregates are passed directly by coercing to 7163 // another structure type. Padding is inserted if the offset of the 7164 // aggregate is unaligned. 7165 ABIArgInfo ArgInfo = 7166 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7167 getPaddingType(OrigOffset, CurrOffset)); 7168 ArgInfo.setInReg(true); 7169 return ArgInfo; 7170 } 7171 7172 // Treat an enum type as its underlying type. 7173 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7174 Ty = EnumTy->getDecl()->getIntegerType(); 7175 7176 // All integral types are promoted to the GPR width. 7177 if (Ty->isIntegralOrEnumerationType()) 7178 return extendType(Ty); 7179 7180 return ABIArgInfo::getDirect( 7181 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7182 } 7183 7184 llvm::Type* 7185 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7186 const RecordType *RT = RetTy->getAs<RecordType>(); 7187 SmallVector<llvm::Type*, 8> RTList; 7188 7189 if (RT && RT->isStructureOrClassType()) { 7190 const RecordDecl *RD = RT->getDecl(); 7191 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7192 unsigned FieldCnt = Layout.getFieldCount(); 7193 7194 // N32/64 returns struct/classes in floating point registers if the 7195 // following conditions are met: 7196 // 1. The size of the struct/class is no larger than 128-bit. 7197 // 2. The struct/class has one or two fields all of which are floating 7198 // point types. 7199 // 3. The offset of the first field is zero (this follows what gcc does). 7200 // 7201 // Any other composite results are returned in integer registers. 7202 // 7203 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7204 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7205 for (; b != e; ++b) { 7206 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7207 7208 if (!BT || !BT->isFloatingPoint()) 7209 break; 7210 7211 RTList.push_back(CGT.ConvertType(b->getType())); 7212 } 7213 7214 if (b == e) 7215 return llvm::StructType::get(getVMContext(), RTList, 7216 RD->hasAttr<PackedAttr>()); 7217 7218 RTList.clear(); 7219 } 7220 } 7221 7222 CoerceToIntArgs(Size, RTList); 7223 return llvm::StructType::get(getVMContext(), RTList); 7224 } 7225 7226 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7227 uint64_t Size = getContext().getTypeSize(RetTy); 7228 7229 if (RetTy->isVoidType()) 7230 return ABIArgInfo::getIgnore(); 7231 7232 // O32 doesn't treat zero-sized structs differently from other structs. 7233 // However, N32/N64 ignores zero sized return values. 7234 if (!IsO32 && Size == 0) 7235 return ABIArgInfo::getIgnore(); 7236 7237 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7238 if (Size <= 128) { 7239 if (RetTy->isAnyComplexType()) 7240 return ABIArgInfo::getDirect(); 7241 7242 // O32 returns integer vectors in registers and N32/N64 returns all small 7243 // aggregates in registers. 7244 if (!IsO32 || 7245 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7246 ABIArgInfo ArgInfo = 7247 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7248 ArgInfo.setInReg(true); 7249 return ArgInfo; 7250 } 7251 } 7252 7253 return getNaturalAlignIndirect(RetTy); 7254 } 7255 7256 // Treat an enum type as its underlying type. 7257 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7258 RetTy = EnumTy->getDecl()->getIntegerType(); 7259 7260 if (RetTy->isPromotableIntegerType()) 7261 return ABIArgInfo::getExtend(RetTy); 7262 7263 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7264 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7265 return ABIArgInfo::getSignExtend(RetTy); 7266 7267 return ABIArgInfo::getDirect(); 7268 } 7269 7270 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7271 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7272 if (!getCXXABI().classifyReturnType(FI)) 7273 RetInfo = classifyReturnType(FI.getReturnType()); 7274 7275 // Check if a pointer to an aggregate is passed as a hidden argument. 7276 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7277 7278 for (auto &I : FI.arguments()) 7279 I.info = classifyArgumentType(I.type, Offset); 7280 } 7281 7282 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7283 QualType OrigTy) const { 7284 QualType Ty = OrigTy; 7285 7286 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7287 // Pointers are also promoted in the same way but this only matters for N32. 7288 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7289 unsigned PtrWidth = getTarget().getPointerWidth(0); 7290 bool DidPromote = false; 7291 if ((Ty->isIntegerType() && 7292 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7293 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7294 DidPromote = true; 7295 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7296 Ty->isSignedIntegerType()); 7297 } 7298 7299 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7300 7301 // The alignment of things in the argument area is never larger than 7302 // StackAlignInBytes. 7303 TyInfo.second = 7304 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7305 7306 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7307 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7308 7309 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7310 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7311 7312 7313 // If there was a promotion, "unpromote" into a temporary. 7314 // TODO: can we just use a pointer into a subset of the original slot? 7315 if (DidPromote) { 7316 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7317 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7318 7319 // Truncate down to the right width. 7320 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7321 : CGF.IntPtrTy); 7322 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7323 if (OrigTy->isPointerType()) 7324 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7325 7326 CGF.Builder.CreateStore(V, Temp); 7327 Addr = Temp; 7328 } 7329 7330 return Addr; 7331 } 7332 7333 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7334 int TySize = getContext().getTypeSize(Ty); 7335 7336 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7337 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7338 return ABIArgInfo::getSignExtend(Ty); 7339 7340 return ABIArgInfo::getExtend(Ty); 7341 } 7342 7343 bool 7344 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7345 llvm::Value *Address) const { 7346 // This information comes from gcc's implementation, which seems to 7347 // as canonical as it gets. 7348 7349 // Everything on MIPS is 4 bytes. Double-precision FP registers 7350 // are aliased to pairs of single-precision FP registers. 7351 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7352 7353 // 0-31 are the general purpose registers, $0 - $31. 7354 // 32-63 are the floating-point registers, $f0 - $f31. 7355 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7356 // 66 is the (notional, I think) register for signal-handler return. 7357 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7358 7359 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7360 // They are one bit wide and ignored here. 7361 7362 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7363 // (coprocessor 1 is the FP unit) 7364 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7365 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7366 // 176-181 are the DSP accumulator registers. 7367 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7368 return false; 7369 } 7370 7371 //===----------------------------------------------------------------------===// 7372 // AVR ABI Implementation. 7373 //===----------------------------------------------------------------------===// 7374 7375 namespace { 7376 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7377 public: 7378 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7379 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7380 7381 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7382 CodeGen::CodeGenModule &CGM) const override { 7383 if (GV->isDeclaration()) 7384 return; 7385 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7386 if (!FD) return; 7387 auto *Fn = cast<llvm::Function>(GV); 7388 7389 if (FD->getAttr<AVRInterruptAttr>()) 7390 Fn->addFnAttr("interrupt"); 7391 7392 if (FD->getAttr<AVRSignalAttr>()) 7393 Fn->addFnAttr("signal"); 7394 } 7395 }; 7396 } 7397 7398 //===----------------------------------------------------------------------===// 7399 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7400 // Currently subclassed only to implement custom OpenCL C function attribute 7401 // handling. 7402 //===----------------------------------------------------------------------===// 7403 7404 namespace { 7405 7406 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7407 public: 7408 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7409 : DefaultTargetCodeGenInfo(CGT) {} 7410 7411 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7412 CodeGen::CodeGenModule &M) const override; 7413 }; 7414 7415 void TCETargetCodeGenInfo::setTargetAttributes( 7416 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7417 if (GV->isDeclaration()) 7418 return; 7419 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7420 if (!FD) return; 7421 7422 llvm::Function *F = cast<llvm::Function>(GV); 7423 7424 if (M.getLangOpts().OpenCL) { 7425 if (FD->hasAttr<OpenCLKernelAttr>()) { 7426 // OpenCL C Kernel functions are not subject to inlining 7427 F->addFnAttr(llvm::Attribute::NoInline); 7428 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7429 if (Attr) { 7430 // Convert the reqd_work_group_size() attributes to metadata. 7431 llvm::LLVMContext &Context = F->getContext(); 7432 llvm::NamedMDNode *OpenCLMetadata = 7433 M.getModule().getOrInsertNamedMetadata( 7434 "opencl.kernel_wg_size_info"); 7435 7436 SmallVector<llvm::Metadata *, 5> Operands; 7437 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7438 7439 Operands.push_back( 7440 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7441 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7442 Operands.push_back( 7443 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7444 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7445 Operands.push_back( 7446 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7447 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7448 7449 // Add a boolean constant operand for "required" (true) or "hint" 7450 // (false) for implementing the work_group_size_hint attr later. 7451 // Currently always true as the hint is not yet implemented. 7452 Operands.push_back( 7453 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7454 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7455 } 7456 } 7457 } 7458 } 7459 7460 } 7461 7462 //===----------------------------------------------------------------------===// 7463 // Hexagon ABI Implementation 7464 //===----------------------------------------------------------------------===// 7465 7466 namespace { 7467 7468 class HexagonABIInfo : public ABIInfo { 7469 7470 7471 public: 7472 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7473 7474 private: 7475 7476 ABIArgInfo classifyReturnType(QualType RetTy) const; 7477 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7478 7479 void computeInfo(CGFunctionInfo &FI) const override; 7480 7481 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7482 QualType Ty) const override; 7483 }; 7484 7485 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7486 public: 7487 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7488 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7489 7490 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7491 return 29; 7492 } 7493 }; 7494 7495 } 7496 7497 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7498 if (!getCXXABI().classifyReturnType(FI)) 7499 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7500 for (auto &I : FI.arguments()) 7501 I.info = classifyArgumentType(I.type); 7502 } 7503 7504 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7505 if (!isAggregateTypeForABI(Ty)) { 7506 // Treat an enum type as its underlying type. 7507 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7508 Ty = EnumTy->getDecl()->getIntegerType(); 7509 7510 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7511 : ABIArgInfo::getDirect()); 7512 } 7513 7514 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7515 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7516 7517 // Ignore empty records. 7518 if (isEmptyRecord(getContext(), Ty, true)) 7519 return ABIArgInfo::getIgnore(); 7520 7521 uint64_t Size = getContext().getTypeSize(Ty); 7522 if (Size > 64) 7523 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7524 // Pass in the smallest viable integer type. 7525 else if (Size > 32) 7526 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7527 else if (Size > 16) 7528 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7529 else if (Size > 8) 7530 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7531 else 7532 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7533 } 7534 7535 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7536 if (RetTy->isVoidType()) 7537 return ABIArgInfo::getIgnore(); 7538 7539 // Large vector types should be returned via memory. 7540 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7541 return getNaturalAlignIndirect(RetTy); 7542 7543 if (!isAggregateTypeForABI(RetTy)) { 7544 // Treat an enum type as its underlying type. 7545 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7546 RetTy = EnumTy->getDecl()->getIntegerType(); 7547 7548 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7549 : ABIArgInfo::getDirect()); 7550 } 7551 7552 if (isEmptyRecord(getContext(), RetTy, true)) 7553 return ABIArgInfo::getIgnore(); 7554 7555 // Aggregates <= 8 bytes are returned in r0; other aggregates 7556 // are returned indirectly. 7557 uint64_t Size = getContext().getTypeSize(RetTy); 7558 if (Size <= 64) { 7559 // Return in the smallest viable integer type. 7560 if (Size <= 8) 7561 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7562 if (Size <= 16) 7563 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7564 if (Size <= 32) 7565 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7566 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7567 } 7568 7569 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7570 } 7571 7572 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7573 QualType Ty) const { 7574 // FIXME: Someone needs to audit that this handle alignment correctly. 7575 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7576 getContext().getTypeInfoInChars(Ty), 7577 CharUnits::fromQuantity(4), 7578 /*AllowHigherAlign*/ true); 7579 } 7580 7581 //===----------------------------------------------------------------------===// 7582 // Lanai ABI Implementation 7583 //===----------------------------------------------------------------------===// 7584 7585 namespace { 7586 class LanaiABIInfo : public DefaultABIInfo { 7587 public: 7588 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7589 7590 bool shouldUseInReg(QualType Ty, CCState &State) const; 7591 7592 void computeInfo(CGFunctionInfo &FI) const override { 7593 CCState State(FI.getCallingConvention()); 7594 // Lanai uses 4 registers to pass arguments unless the function has the 7595 // regparm attribute set. 7596 if (FI.getHasRegParm()) { 7597 State.FreeRegs = FI.getRegParm(); 7598 } else { 7599 State.FreeRegs = 4; 7600 } 7601 7602 if (!getCXXABI().classifyReturnType(FI)) 7603 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7604 for (auto &I : FI.arguments()) 7605 I.info = classifyArgumentType(I.type, State); 7606 } 7607 7608 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7609 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7610 }; 7611 } // end anonymous namespace 7612 7613 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7614 unsigned Size = getContext().getTypeSize(Ty); 7615 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7616 7617 if (SizeInRegs == 0) 7618 return false; 7619 7620 if (SizeInRegs > State.FreeRegs) { 7621 State.FreeRegs = 0; 7622 return false; 7623 } 7624 7625 State.FreeRegs -= SizeInRegs; 7626 7627 return true; 7628 } 7629 7630 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7631 CCState &State) const { 7632 if (!ByVal) { 7633 if (State.FreeRegs) { 7634 --State.FreeRegs; // Non-byval indirects just use one pointer. 7635 return getNaturalAlignIndirectInReg(Ty); 7636 } 7637 return getNaturalAlignIndirect(Ty, false); 7638 } 7639 7640 // Compute the byval alignment. 7641 const unsigned MinABIStackAlignInBytes = 4; 7642 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7643 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7644 /*Realign=*/TypeAlign > 7645 MinABIStackAlignInBytes); 7646 } 7647 7648 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7649 CCState &State) const { 7650 // Check with the C++ ABI first. 7651 const RecordType *RT = Ty->getAs<RecordType>(); 7652 if (RT) { 7653 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7654 if (RAA == CGCXXABI::RAA_Indirect) { 7655 return getIndirectResult(Ty, /*ByVal=*/false, State); 7656 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7657 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7658 } 7659 } 7660 7661 if (isAggregateTypeForABI(Ty)) { 7662 // Structures with flexible arrays are always indirect. 7663 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7664 return getIndirectResult(Ty, /*ByVal=*/true, State); 7665 7666 // Ignore empty structs/unions. 7667 if (isEmptyRecord(getContext(), Ty, true)) 7668 return ABIArgInfo::getIgnore(); 7669 7670 llvm::LLVMContext &LLVMContext = getVMContext(); 7671 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7672 if (SizeInRegs <= State.FreeRegs) { 7673 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7674 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7675 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7676 State.FreeRegs -= SizeInRegs; 7677 return ABIArgInfo::getDirectInReg(Result); 7678 } else { 7679 State.FreeRegs = 0; 7680 } 7681 return getIndirectResult(Ty, true, State); 7682 } 7683 7684 // Treat an enum type as its underlying type. 7685 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7686 Ty = EnumTy->getDecl()->getIntegerType(); 7687 7688 bool InReg = shouldUseInReg(Ty, State); 7689 if (Ty->isPromotableIntegerType()) { 7690 if (InReg) 7691 return ABIArgInfo::getDirectInReg(); 7692 return ABIArgInfo::getExtend(Ty); 7693 } 7694 if (InReg) 7695 return ABIArgInfo::getDirectInReg(); 7696 return ABIArgInfo::getDirect(); 7697 } 7698 7699 namespace { 7700 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7701 public: 7702 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7703 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7704 }; 7705 } 7706 7707 //===----------------------------------------------------------------------===// 7708 // AMDGPU ABI Implementation 7709 //===----------------------------------------------------------------------===// 7710 7711 namespace { 7712 7713 class AMDGPUABIInfo final : public DefaultABIInfo { 7714 private: 7715 static const unsigned MaxNumRegsForArgsRet = 16; 7716 7717 unsigned numRegsForType(QualType Ty) const; 7718 7719 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7720 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7721 uint64_t Members) const override; 7722 7723 // Coerce HIP pointer arguments from generic pointers to global ones. 7724 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 7725 unsigned ToAS) const { 7726 // Structure types. 7727 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 7728 SmallVector<llvm::Type *, 8> EltTys; 7729 bool Changed = false; 7730 for (auto T : STy->elements()) { 7731 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7732 EltTys.push_back(NT); 7733 Changed |= (NT != T); 7734 } 7735 // Skip if there is no change in element types. 7736 if (!Changed) 7737 return STy; 7738 if (STy->hasName()) 7739 return llvm::StructType::create( 7740 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 7741 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 7742 } 7743 // Arrary types. 7744 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 7745 auto T = ATy->getElementType(); 7746 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7747 // Skip if there is no change in that element type. 7748 if (NT == T) 7749 return ATy; 7750 return llvm::ArrayType::get(NT, ATy->getNumElements()); 7751 } 7752 // Single value types. 7753 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 7754 return llvm::PointerType::get( 7755 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 7756 return Ty; 7757 } 7758 7759 public: 7760 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7761 DefaultABIInfo(CGT) {} 7762 7763 ABIArgInfo classifyReturnType(QualType RetTy) const; 7764 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7765 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7766 7767 void computeInfo(CGFunctionInfo &FI) const override; 7768 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7769 QualType Ty) const override; 7770 }; 7771 7772 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7773 return true; 7774 } 7775 7776 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7777 const Type *Base, uint64_t Members) const { 7778 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7779 7780 // Homogeneous Aggregates may occupy at most 16 registers. 7781 return Members * NumRegs <= MaxNumRegsForArgsRet; 7782 } 7783 7784 /// Estimate number of registers the type will use when passed in registers. 7785 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7786 unsigned NumRegs = 0; 7787 7788 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7789 // Compute from the number of elements. The reported size is based on the 7790 // in-memory size, which includes the padding 4th element for 3-vectors. 7791 QualType EltTy = VT->getElementType(); 7792 unsigned EltSize = getContext().getTypeSize(EltTy); 7793 7794 // 16-bit element vectors should be passed as packed. 7795 if (EltSize == 16) 7796 return (VT->getNumElements() + 1) / 2; 7797 7798 unsigned EltNumRegs = (EltSize + 31) / 32; 7799 return EltNumRegs * VT->getNumElements(); 7800 } 7801 7802 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7803 const RecordDecl *RD = RT->getDecl(); 7804 assert(!RD->hasFlexibleArrayMember()); 7805 7806 for (const FieldDecl *Field : RD->fields()) { 7807 QualType FieldTy = Field->getType(); 7808 NumRegs += numRegsForType(FieldTy); 7809 } 7810 7811 return NumRegs; 7812 } 7813 7814 return (getContext().getTypeSize(Ty) + 31) / 32; 7815 } 7816 7817 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7818 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7819 7820 if (!getCXXABI().classifyReturnType(FI)) 7821 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7822 7823 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7824 for (auto &Arg : FI.arguments()) { 7825 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7826 Arg.info = classifyKernelArgumentType(Arg.type); 7827 } else { 7828 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7829 } 7830 } 7831 } 7832 7833 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7834 QualType Ty) const { 7835 llvm_unreachable("AMDGPU does not support varargs"); 7836 } 7837 7838 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7839 if (isAggregateTypeForABI(RetTy)) { 7840 // Records with non-trivial destructors/copy-constructors should not be 7841 // returned by value. 7842 if (!getRecordArgABI(RetTy, getCXXABI())) { 7843 // Ignore empty structs/unions. 7844 if (isEmptyRecord(getContext(), RetTy, true)) 7845 return ABIArgInfo::getIgnore(); 7846 7847 // Lower single-element structs to just return a regular value. 7848 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7849 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7850 7851 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7852 const RecordDecl *RD = RT->getDecl(); 7853 if (RD->hasFlexibleArrayMember()) 7854 return DefaultABIInfo::classifyReturnType(RetTy); 7855 } 7856 7857 // Pack aggregates <= 4 bytes into single VGPR or pair. 7858 uint64_t Size = getContext().getTypeSize(RetTy); 7859 if (Size <= 16) 7860 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7861 7862 if (Size <= 32) 7863 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7864 7865 if (Size <= 64) { 7866 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7867 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7868 } 7869 7870 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7871 return ABIArgInfo::getDirect(); 7872 } 7873 } 7874 7875 // Otherwise just do the default thing. 7876 return DefaultABIInfo::classifyReturnType(RetTy); 7877 } 7878 7879 /// For kernels all parameters are really passed in a special buffer. It doesn't 7880 /// make sense to pass anything byval, so everything must be direct. 7881 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7882 Ty = useFirstFieldIfTransparentUnion(Ty); 7883 7884 // TODO: Can we omit empty structs? 7885 7886 llvm::Type *LTy = nullptr; 7887 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7888 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 7889 7890 if (getContext().getLangOpts().HIP) { 7891 if (!LTy) 7892 LTy = CGT.ConvertType(Ty); 7893 LTy = coerceKernelArgumentType( 7894 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 7895 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 7896 } 7897 7898 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7899 // individual elements, which confuses the Clover OpenCL backend; therefore we 7900 // have to set it to false here. Other args of getDirect() are just defaults. 7901 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 7902 } 7903 7904 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7905 unsigned &NumRegsLeft) const { 7906 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7907 7908 Ty = useFirstFieldIfTransparentUnion(Ty); 7909 7910 if (isAggregateTypeForABI(Ty)) { 7911 // Records with non-trivial destructors/copy-constructors should not be 7912 // passed by value. 7913 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7914 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7915 7916 // Ignore empty structs/unions. 7917 if (isEmptyRecord(getContext(), Ty, true)) 7918 return ABIArgInfo::getIgnore(); 7919 7920 // Lower single-element structs to just pass a regular value. TODO: We 7921 // could do reasonable-size multiple-element structs too, using getExpand(), 7922 // though watch out for things like bitfields. 7923 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7924 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7925 7926 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7927 const RecordDecl *RD = RT->getDecl(); 7928 if (RD->hasFlexibleArrayMember()) 7929 return DefaultABIInfo::classifyArgumentType(Ty); 7930 } 7931 7932 // Pack aggregates <= 8 bytes into single VGPR or pair. 7933 uint64_t Size = getContext().getTypeSize(Ty); 7934 if (Size <= 64) { 7935 unsigned NumRegs = (Size + 31) / 32; 7936 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7937 7938 if (Size <= 16) 7939 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7940 7941 if (Size <= 32) 7942 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7943 7944 // XXX: Should this be i64 instead, and should the limit increase? 7945 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7946 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7947 } 7948 7949 if (NumRegsLeft > 0) { 7950 unsigned NumRegs = numRegsForType(Ty); 7951 if (NumRegsLeft >= NumRegs) { 7952 NumRegsLeft -= NumRegs; 7953 return ABIArgInfo::getDirect(); 7954 } 7955 } 7956 } 7957 7958 // Otherwise just do the default thing. 7959 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7960 if (!ArgInfo.isIndirect()) { 7961 unsigned NumRegs = numRegsForType(Ty); 7962 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7963 } 7964 7965 return ArgInfo; 7966 } 7967 7968 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7969 public: 7970 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7971 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7972 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7973 CodeGen::CodeGenModule &M) const override; 7974 unsigned getOpenCLKernelCallingConv() const override; 7975 7976 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7977 llvm::PointerType *T, QualType QT) const override; 7978 7979 LangAS getASTAllocaAddressSpace() const override { 7980 return getLangASFromTargetAS( 7981 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7982 } 7983 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7984 const VarDecl *D) const override; 7985 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 7986 SyncScope Scope, 7987 llvm::AtomicOrdering Ordering, 7988 llvm::LLVMContext &Ctx) const override; 7989 llvm::Function * 7990 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7991 llvm::Function *BlockInvokeFunc, 7992 llvm::Value *BlockLiteral) const override; 7993 bool shouldEmitStaticExternCAliases() const override; 7994 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7995 }; 7996 } 7997 7998 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 7999 llvm::GlobalValue *GV) { 8000 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8001 return false; 8002 8003 return D->hasAttr<OpenCLKernelAttr>() || 8004 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8005 (isa<VarDecl>(D) && 8006 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8007 D->hasAttr<HIPPinnedShadowAttr>())); 8008 } 8009 8010 static bool requiresAMDGPUDefaultVisibility(const Decl *D, 8011 llvm::GlobalValue *GV) { 8012 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8013 return false; 8014 8015 return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>(); 8016 } 8017 8018 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8019 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8020 if (requiresAMDGPUDefaultVisibility(D, GV)) { 8021 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 8022 GV->setDSOLocal(false); 8023 } else if (requiresAMDGPUProtectedVisibility(D, GV)) { 8024 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8025 GV->setDSOLocal(true); 8026 } 8027 8028 if (GV->isDeclaration()) 8029 return; 8030 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8031 if (!FD) 8032 return; 8033 8034 llvm::Function *F = cast<llvm::Function>(GV); 8035 8036 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8037 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8038 8039 8040 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8041 FD->hasAttr<OpenCLKernelAttr>(); 8042 const bool IsHIPKernel = M.getLangOpts().HIP && 8043 FD->hasAttr<CUDAGlobalAttr>(); 8044 if ((IsOpenCLKernel || IsHIPKernel) && 8045 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8046 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8047 8048 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8049 if (ReqdWGS || FlatWGS) { 8050 unsigned Min = 0; 8051 unsigned Max = 0; 8052 if (FlatWGS) { 8053 Min = FlatWGS->getMin() 8054 ->EvaluateKnownConstInt(M.getContext()) 8055 .getExtValue(); 8056 Max = FlatWGS->getMax() 8057 ->EvaluateKnownConstInt(M.getContext()) 8058 .getExtValue(); 8059 } 8060 if (ReqdWGS && Min == 0 && Max == 0) 8061 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8062 8063 if (Min != 0) { 8064 assert(Min <= Max && "Min must be less than or equal Max"); 8065 8066 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8067 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8068 } else 8069 assert(Max == 0 && "Max must be zero"); 8070 } else if (IsOpenCLKernel || IsHIPKernel) { 8071 // By default, restrict the maximum size to 256. 8072 F->addFnAttr("amdgpu-flat-work-group-size", "1,256"); 8073 } 8074 8075 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8076 unsigned Min = 8077 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8078 unsigned Max = Attr->getMax() ? Attr->getMax() 8079 ->EvaluateKnownConstInt(M.getContext()) 8080 .getExtValue() 8081 : 0; 8082 8083 if (Min != 0) { 8084 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8085 8086 std::string AttrVal = llvm::utostr(Min); 8087 if (Max != 0) 8088 AttrVal = AttrVal + "," + llvm::utostr(Max); 8089 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8090 } else 8091 assert(Max == 0 && "Max must be zero"); 8092 } 8093 8094 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8095 unsigned NumSGPR = Attr->getNumSGPR(); 8096 8097 if (NumSGPR != 0) 8098 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8099 } 8100 8101 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8102 uint32_t NumVGPR = Attr->getNumVGPR(); 8103 8104 if (NumVGPR != 0) 8105 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8106 } 8107 } 8108 8109 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8110 return llvm::CallingConv::AMDGPU_KERNEL; 8111 } 8112 8113 // Currently LLVM assumes null pointers always have value 0, 8114 // which results in incorrectly transformed IR. Therefore, instead of 8115 // emitting null pointers in private and local address spaces, a null 8116 // pointer in generic address space is emitted which is casted to a 8117 // pointer in local or private address space. 8118 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8119 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8120 QualType QT) const { 8121 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8122 return llvm::ConstantPointerNull::get(PT); 8123 8124 auto &Ctx = CGM.getContext(); 8125 auto NPT = llvm::PointerType::get(PT->getElementType(), 8126 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8127 return llvm::ConstantExpr::getAddrSpaceCast( 8128 llvm::ConstantPointerNull::get(NPT), PT); 8129 } 8130 8131 LangAS 8132 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8133 const VarDecl *D) const { 8134 assert(!CGM.getLangOpts().OpenCL && 8135 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8136 "Address space agnostic languages only"); 8137 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8138 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8139 if (!D) 8140 return DefaultGlobalAS; 8141 8142 LangAS AddrSpace = D->getType().getAddressSpace(); 8143 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8144 if (AddrSpace != LangAS::Default) 8145 return AddrSpace; 8146 8147 if (CGM.isTypeConstant(D->getType(), false)) { 8148 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8149 return ConstAS.getValue(); 8150 } 8151 return DefaultGlobalAS; 8152 } 8153 8154 llvm::SyncScope::ID 8155 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8156 SyncScope Scope, 8157 llvm::AtomicOrdering Ordering, 8158 llvm::LLVMContext &Ctx) const { 8159 std::string Name; 8160 switch (Scope) { 8161 case SyncScope::OpenCLWorkGroup: 8162 Name = "workgroup"; 8163 break; 8164 case SyncScope::OpenCLDevice: 8165 Name = "agent"; 8166 break; 8167 case SyncScope::OpenCLAllSVMDevices: 8168 Name = ""; 8169 break; 8170 case SyncScope::OpenCLSubGroup: 8171 Name = "wavefront"; 8172 } 8173 8174 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8175 if (!Name.empty()) 8176 Name = Twine(Twine(Name) + Twine("-")).str(); 8177 8178 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8179 } 8180 8181 return Ctx.getOrInsertSyncScopeID(Name); 8182 } 8183 8184 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8185 return false; 8186 } 8187 8188 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8189 const FunctionType *&FT) const { 8190 FT = getABIInfo().getContext().adjustFunctionType( 8191 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8192 } 8193 8194 //===----------------------------------------------------------------------===// 8195 // SPARC v8 ABI Implementation. 8196 // Based on the SPARC Compliance Definition version 2.4.1. 8197 // 8198 // Ensures that complex values are passed in registers. 8199 // 8200 namespace { 8201 class SparcV8ABIInfo : public DefaultABIInfo { 8202 public: 8203 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8204 8205 private: 8206 ABIArgInfo classifyReturnType(QualType RetTy) const; 8207 void computeInfo(CGFunctionInfo &FI) const override; 8208 }; 8209 } // end anonymous namespace 8210 8211 8212 ABIArgInfo 8213 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8214 if (Ty->isAnyComplexType()) { 8215 return ABIArgInfo::getDirect(); 8216 } 8217 else { 8218 return DefaultABIInfo::classifyReturnType(Ty); 8219 } 8220 } 8221 8222 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8223 8224 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8225 for (auto &Arg : FI.arguments()) 8226 Arg.info = classifyArgumentType(Arg.type); 8227 } 8228 8229 namespace { 8230 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8231 public: 8232 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8233 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8234 }; 8235 } // end anonymous namespace 8236 8237 //===----------------------------------------------------------------------===// 8238 // SPARC v9 ABI Implementation. 8239 // Based on the SPARC Compliance Definition version 2.4.1. 8240 // 8241 // Function arguments a mapped to a nominal "parameter array" and promoted to 8242 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8243 // the array, structs larger than 16 bytes are passed indirectly. 8244 // 8245 // One case requires special care: 8246 // 8247 // struct mixed { 8248 // int i; 8249 // float f; 8250 // }; 8251 // 8252 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8253 // parameter array, but the int is passed in an integer register, and the float 8254 // is passed in a floating point register. This is represented as two arguments 8255 // with the LLVM IR inreg attribute: 8256 // 8257 // declare void f(i32 inreg %i, float inreg %f) 8258 // 8259 // The code generator will only allocate 4 bytes from the parameter array for 8260 // the inreg arguments. All other arguments are allocated a multiple of 8 8261 // bytes. 8262 // 8263 namespace { 8264 class SparcV9ABIInfo : public ABIInfo { 8265 public: 8266 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8267 8268 private: 8269 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8270 void computeInfo(CGFunctionInfo &FI) const override; 8271 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8272 QualType Ty) const override; 8273 8274 // Coercion type builder for structs passed in registers. The coercion type 8275 // serves two purposes: 8276 // 8277 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8278 // in registers. 8279 // 2. Expose aligned floating point elements as first-level elements, so the 8280 // code generator knows to pass them in floating point registers. 8281 // 8282 // We also compute the InReg flag which indicates that the struct contains 8283 // aligned 32-bit floats. 8284 // 8285 struct CoerceBuilder { 8286 llvm::LLVMContext &Context; 8287 const llvm::DataLayout &DL; 8288 SmallVector<llvm::Type*, 8> Elems; 8289 uint64_t Size; 8290 bool InReg; 8291 8292 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8293 : Context(c), DL(dl), Size(0), InReg(false) {} 8294 8295 // Pad Elems with integers until Size is ToSize. 8296 void pad(uint64_t ToSize) { 8297 assert(ToSize >= Size && "Cannot remove elements"); 8298 if (ToSize == Size) 8299 return; 8300 8301 // Finish the current 64-bit word. 8302 uint64_t Aligned = llvm::alignTo(Size, 64); 8303 if (Aligned > Size && Aligned <= ToSize) { 8304 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8305 Size = Aligned; 8306 } 8307 8308 // Add whole 64-bit words. 8309 while (Size + 64 <= ToSize) { 8310 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8311 Size += 64; 8312 } 8313 8314 // Final in-word padding. 8315 if (Size < ToSize) { 8316 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8317 Size = ToSize; 8318 } 8319 } 8320 8321 // Add a floating point element at Offset. 8322 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8323 // Unaligned floats are treated as integers. 8324 if (Offset % Bits) 8325 return; 8326 // The InReg flag is only required if there are any floats < 64 bits. 8327 if (Bits < 64) 8328 InReg = true; 8329 pad(Offset); 8330 Elems.push_back(Ty); 8331 Size = Offset + Bits; 8332 } 8333 8334 // Add a struct type to the coercion type, starting at Offset (in bits). 8335 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8336 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8337 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8338 llvm::Type *ElemTy = StrTy->getElementType(i); 8339 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8340 switch (ElemTy->getTypeID()) { 8341 case llvm::Type::StructTyID: 8342 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8343 break; 8344 case llvm::Type::FloatTyID: 8345 addFloat(ElemOffset, ElemTy, 32); 8346 break; 8347 case llvm::Type::DoubleTyID: 8348 addFloat(ElemOffset, ElemTy, 64); 8349 break; 8350 case llvm::Type::FP128TyID: 8351 addFloat(ElemOffset, ElemTy, 128); 8352 break; 8353 case llvm::Type::PointerTyID: 8354 if (ElemOffset % 64 == 0) { 8355 pad(ElemOffset); 8356 Elems.push_back(ElemTy); 8357 Size += 64; 8358 } 8359 break; 8360 default: 8361 break; 8362 } 8363 } 8364 } 8365 8366 // Check if Ty is a usable substitute for the coercion type. 8367 bool isUsableType(llvm::StructType *Ty) const { 8368 return llvm::makeArrayRef(Elems) == Ty->elements(); 8369 } 8370 8371 // Get the coercion type as a literal struct type. 8372 llvm::Type *getType() const { 8373 if (Elems.size() == 1) 8374 return Elems.front(); 8375 else 8376 return llvm::StructType::get(Context, Elems); 8377 } 8378 }; 8379 }; 8380 } // end anonymous namespace 8381 8382 ABIArgInfo 8383 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8384 if (Ty->isVoidType()) 8385 return ABIArgInfo::getIgnore(); 8386 8387 uint64_t Size = getContext().getTypeSize(Ty); 8388 8389 // Anything too big to fit in registers is passed with an explicit indirect 8390 // pointer / sret pointer. 8391 if (Size > SizeLimit) 8392 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8393 8394 // Treat an enum type as its underlying type. 8395 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8396 Ty = EnumTy->getDecl()->getIntegerType(); 8397 8398 // Integer types smaller than a register are extended. 8399 if (Size < 64 && Ty->isIntegerType()) 8400 return ABIArgInfo::getExtend(Ty); 8401 8402 // Other non-aggregates go in registers. 8403 if (!isAggregateTypeForABI(Ty)) 8404 return ABIArgInfo::getDirect(); 8405 8406 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8407 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8408 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8409 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8410 8411 // This is a small aggregate type that should be passed in registers. 8412 // Build a coercion type from the LLVM struct type. 8413 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8414 if (!StrTy) 8415 return ABIArgInfo::getDirect(); 8416 8417 CoerceBuilder CB(getVMContext(), getDataLayout()); 8418 CB.addStruct(0, StrTy); 8419 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8420 8421 // Try to use the original type for coercion. 8422 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8423 8424 if (CB.InReg) 8425 return ABIArgInfo::getDirectInReg(CoerceTy); 8426 else 8427 return ABIArgInfo::getDirect(CoerceTy); 8428 } 8429 8430 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8431 QualType Ty) const { 8432 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8433 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8434 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8435 AI.setCoerceToType(ArgTy); 8436 8437 CharUnits SlotSize = CharUnits::fromQuantity(8); 8438 8439 CGBuilderTy &Builder = CGF.Builder; 8440 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8441 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8442 8443 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8444 8445 Address ArgAddr = Address::invalid(); 8446 CharUnits Stride; 8447 switch (AI.getKind()) { 8448 case ABIArgInfo::Expand: 8449 case ABIArgInfo::CoerceAndExpand: 8450 case ABIArgInfo::InAlloca: 8451 llvm_unreachable("Unsupported ABI kind for va_arg"); 8452 8453 case ABIArgInfo::Extend: { 8454 Stride = SlotSize; 8455 CharUnits Offset = SlotSize - TypeInfo.first; 8456 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8457 break; 8458 } 8459 8460 case ABIArgInfo::Direct: { 8461 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8462 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8463 ArgAddr = Addr; 8464 break; 8465 } 8466 8467 case ABIArgInfo::Indirect: 8468 Stride = SlotSize; 8469 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8470 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8471 TypeInfo.second); 8472 break; 8473 8474 case ABIArgInfo::Ignore: 8475 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8476 } 8477 8478 // Update VAList. 8479 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8480 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8481 8482 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8483 } 8484 8485 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8486 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8487 for (auto &I : FI.arguments()) 8488 I.info = classifyType(I.type, 16 * 8); 8489 } 8490 8491 namespace { 8492 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8493 public: 8494 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8495 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8496 8497 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8498 return 14; 8499 } 8500 8501 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8502 llvm::Value *Address) const override; 8503 }; 8504 } // end anonymous namespace 8505 8506 bool 8507 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8508 llvm::Value *Address) const { 8509 // This is calculated from the LLVM and GCC tables and verified 8510 // against gcc output. AFAIK all ABIs use the same encoding. 8511 8512 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8513 8514 llvm::IntegerType *i8 = CGF.Int8Ty; 8515 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8516 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8517 8518 // 0-31: the 8-byte general-purpose registers 8519 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8520 8521 // 32-63: f0-31, the 4-byte floating-point registers 8522 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8523 8524 // Y = 64 8525 // PSR = 65 8526 // WIM = 66 8527 // TBR = 67 8528 // PC = 68 8529 // NPC = 69 8530 // FSR = 70 8531 // CSR = 71 8532 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8533 8534 // 72-87: d0-15, the 8-byte floating-point registers 8535 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8536 8537 return false; 8538 } 8539 8540 // ARC ABI implementation. 8541 namespace { 8542 8543 class ARCABIInfo : public DefaultABIInfo { 8544 public: 8545 using DefaultABIInfo::DefaultABIInfo; 8546 8547 private: 8548 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8549 QualType Ty) const override; 8550 8551 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8552 if (!State.FreeRegs) 8553 return; 8554 if (Info.isIndirect() && Info.getInReg()) 8555 State.FreeRegs--; 8556 else if (Info.isDirect() && Info.getInReg()) { 8557 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8558 if (sz < State.FreeRegs) 8559 State.FreeRegs -= sz; 8560 else 8561 State.FreeRegs = 0; 8562 } 8563 } 8564 8565 void computeInfo(CGFunctionInfo &FI) const override { 8566 CCState State(FI.getCallingConvention()); 8567 // ARC uses 8 registers to pass arguments. 8568 State.FreeRegs = 8; 8569 8570 if (!getCXXABI().classifyReturnType(FI)) 8571 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8572 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8573 for (auto &I : FI.arguments()) { 8574 I.info = classifyArgumentType(I.type, State.FreeRegs); 8575 updateState(I.info, I.type, State); 8576 } 8577 } 8578 8579 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8580 ABIArgInfo getIndirectByValue(QualType Ty) const; 8581 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8582 ABIArgInfo classifyReturnType(QualType RetTy) const; 8583 }; 8584 8585 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8586 public: 8587 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8588 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8589 }; 8590 8591 8592 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8593 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8594 getNaturalAlignIndirect(Ty, false); 8595 } 8596 8597 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8598 // Compute the byval alignment. 8599 const unsigned MinABIStackAlignInBytes = 4; 8600 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8601 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8602 TypeAlign > MinABIStackAlignInBytes); 8603 } 8604 8605 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8606 QualType Ty) const { 8607 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8608 getContext().getTypeInfoInChars(Ty), 8609 CharUnits::fromQuantity(4), true); 8610 } 8611 8612 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8613 uint8_t FreeRegs) const { 8614 // Handle the generic C++ ABI. 8615 const RecordType *RT = Ty->getAs<RecordType>(); 8616 if (RT) { 8617 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8618 if (RAA == CGCXXABI::RAA_Indirect) 8619 return getIndirectByRef(Ty, FreeRegs > 0); 8620 8621 if (RAA == CGCXXABI::RAA_DirectInMemory) 8622 return getIndirectByValue(Ty); 8623 } 8624 8625 // Treat an enum type as its underlying type. 8626 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8627 Ty = EnumTy->getDecl()->getIntegerType(); 8628 8629 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8630 8631 if (isAggregateTypeForABI(Ty)) { 8632 // Structures with flexible arrays are always indirect. 8633 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8634 return getIndirectByValue(Ty); 8635 8636 // Ignore empty structs/unions. 8637 if (isEmptyRecord(getContext(), Ty, true)) 8638 return ABIArgInfo::getIgnore(); 8639 8640 llvm::LLVMContext &LLVMContext = getVMContext(); 8641 8642 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8643 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8644 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8645 8646 return FreeRegs >= SizeInRegs ? 8647 ABIArgInfo::getDirectInReg(Result) : 8648 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8649 } 8650 8651 return Ty->isPromotableIntegerType() ? 8652 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8653 ABIArgInfo::getExtend(Ty)) : 8654 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8655 ABIArgInfo::getDirect()); 8656 } 8657 8658 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8659 if (RetTy->isAnyComplexType()) 8660 return ABIArgInfo::getDirectInReg(); 8661 8662 // Arguments of size > 4 registers are indirect. 8663 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8664 if (RetSize > 4) 8665 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8666 8667 return DefaultABIInfo::classifyReturnType(RetTy); 8668 } 8669 8670 } // End anonymous namespace. 8671 8672 //===----------------------------------------------------------------------===// 8673 // XCore ABI Implementation 8674 //===----------------------------------------------------------------------===// 8675 8676 namespace { 8677 8678 /// A SmallStringEnc instance is used to build up the TypeString by passing 8679 /// it by reference between functions that append to it. 8680 typedef llvm::SmallString<128> SmallStringEnc; 8681 8682 /// TypeStringCache caches the meta encodings of Types. 8683 /// 8684 /// The reason for caching TypeStrings is two fold: 8685 /// 1. To cache a type's encoding for later uses; 8686 /// 2. As a means to break recursive member type inclusion. 8687 /// 8688 /// A cache Entry can have a Status of: 8689 /// NonRecursive: The type encoding is not recursive; 8690 /// Recursive: The type encoding is recursive; 8691 /// Incomplete: An incomplete TypeString; 8692 /// IncompleteUsed: An incomplete TypeString that has been used in a 8693 /// Recursive type encoding. 8694 /// 8695 /// A NonRecursive entry will have all of its sub-members expanded as fully 8696 /// as possible. Whilst it may contain types which are recursive, the type 8697 /// itself is not recursive and thus its encoding may be safely used whenever 8698 /// the type is encountered. 8699 /// 8700 /// A Recursive entry will have all of its sub-members expanded as fully as 8701 /// possible. The type itself is recursive and it may contain other types which 8702 /// are recursive. The Recursive encoding must not be used during the expansion 8703 /// of a recursive type's recursive branch. For simplicity the code uses 8704 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8705 /// 8706 /// An Incomplete entry is always a RecordType and only encodes its 8707 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8708 /// are placed into the cache during type expansion as a means to identify and 8709 /// handle recursive inclusion of types as sub-members. If there is recursion 8710 /// the entry becomes IncompleteUsed. 8711 /// 8712 /// During the expansion of a RecordType's members: 8713 /// 8714 /// If the cache contains a NonRecursive encoding for the member type, the 8715 /// cached encoding is used; 8716 /// 8717 /// If the cache contains a Recursive encoding for the member type, the 8718 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8719 /// 8720 /// If the member is a RecordType, an Incomplete encoding is placed into the 8721 /// cache to break potential recursive inclusion of itself as a sub-member; 8722 /// 8723 /// Once a member RecordType has been expanded, its temporary incomplete 8724 /// entry is removed from the cache. If a Recursive encoding was swapped out 8725 /// it is swapped back in; 8726 /// 8727 /// If an incomplete entry is used to expand a sub-member, the incomplete 8728 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8729 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8730 /// 8731 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8732 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8733 /// Else the member is part of a recursive type and thus the recursion has 8734 /// been exited too soon for the encoding to be correct for the member. 8735 /// 8736 class TypeStringCache { 8737 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8738 struct Entry { 8739 std::string Str; // The encoded TypeString for the type. 8740 enum Status State; // Information about the encoding in 'Str'. 8741 std::string Swapped; // A temporary place holder for a Recursive encoding 8742 // during the expansion of RecordType's members. 8743 }; 8744 std::map<const IdentifierInfo *, struct Entry> Map; 8745 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8746 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8747 public: 8748 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8749 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8750 bool removeIncomplete(const IdentifierInfo *ID); 8751 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8752 bool IsRecursive); 8753 StringRef lookupStr(const IdentifierInfo *ID); 8754 }; 8755 8756 /// TypeString encodings for enum & union fields must be order. 8757 /// FieldEncoding is a helper for this ordering process. 8758 class FieldEncoding { 8759 bool HasName; 8760 std::string Enc; 8761 public: 8762 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8763 StringRef str() { return Enc; } 8764 bool operator<(const FieldEncoding &rhs) const { 8765 if (HasName != rhs.HasName) return HasName; 8766 return Enc < rhs.Enc; 8767 } 8768 }; 8769 8770 class XCoreABIInfo : public DefaultABIInfo { 8771 public: 8772 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8773 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8774 QualType Ty) const override; 8775 }; 8776 8777 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8778 mutable TypeStringCache TSC; 8779 public: 8780 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8781 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8782 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8783 CodeGen::CodeGenModule &M) const override; 8784 }; 8785 8786 } // End anonymous namespace. 8787 8788 // TODO: this implementation is likely now redundant with the default 8789 // EmitVAArg. 8790 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8791 QualType Ty) const { 8792 CGBuilderTy &Builder = CGF.Builder; 8793 8794 // Get the VAList. 8795 CharUnits SlotSize = CharUnits::fromQuantity(4); 8796 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8797 8798 // Handle the argument. 8799 ABIArgInfo AI = classifyArgumentType(Ty); 8800 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8801 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8802 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8803 AI.setCoerceToType(ArgTy); 8804 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8805 8806 Address Val = Address::invalid(); 8807 CharUnits ArgSize = CharUnits::Zero(); 8808 switch (AI.getKind()) { 8809 case ABIArgInfo::Expand: 8810 case ABIArgInfo::CoerceAndExpand: 8811 case ABIArgInfo::InAlloca: 8812 llvm_unreachable("Unsupported ABI kind for va_arg"); 8813 case ABIArgInfo::Ignore: 8814 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8815 ArgSize = CharUnits::Zero(); 8816 break; 8817 case ABIArgInfo::Extend: 8818 case ABIArgInfo::Direct: 8819 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8820 ArgSize = CharUnits::fromQuantity( 8821 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8822 ArgSize = ArgSize.alignTo(SlotSize); 8823 break; 8824 case ABIArgInfo::Indirect: 8825 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8826 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8827 ArgSize = SlotSize; 8828 break; 8829 } 8830 8831 // Increment the VAList. 8832 if (!ArgSize.isZero()) { 8833 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8834 Builder.CreateStore(APN.getPointer(), VAListAddr); 8835 } 8836 8837 return Val; 8838 } 8839 8840 /// During the expansion of a RecordType, an incomplete TypeString is placed 8841 /// into the cache as a means to identify and break recursion. 8842 /// If there is a Recursive encoding in the cache, it is swapped out and will 8843 /// be reinserted by removeIncomplete(). 8844 /// All other types of encoding should have been used rather than arriving here. 8845 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8846 std::string StubEnc) { 8847 if (!ID) 8848 return; 8849 Entry &E = Map[ID]; 8850 assert( (E.Str.empty() || E.State == Recursive) && 8851 "Incorrectly use of addIncomplete"); 8852 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8853 E.Swapped.swap(E.Str); // swap out the Recursive 8854 E.Str.swap(StubEnc); 8855 E.State = Incomplete; 8856 ++IncompleteCount; 8857 } 8858 8859 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8860 /// must be removed from the cache. 8861 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8862 /// Returns true if the RecordType was defined recursively. 8863 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8864 if (!ID) 8865 return false; 8866 auto I = Map.find(ID); 8867 assert(I != Map.end() && "Entry not present"); 8868 Entry &E = I->second; 8869 assert( (E.State == Incomplete || 8870 E.State == IncompleteUsed) && 8871 "Entry must be an incomplete type"); 8872 bool IsRecursive = false; 8873 if (E.State == IncompleteUsed) { 8874 // We made use of our Incomplete encoding, thus we are recursive. 8875 IsRecursive = true; 8876 --IncompleteUsedCount; 8877 } 8878 if (E.Swapped.empty()) 8879 Map.erase(I); 8880 else { 8881 // Swap the Recursive back. 8882 E.Swapped.swap(E.Str); 8883 E.Swapped.clear(); 8884 E.State = Recursive; 8885 } 8886 --IncompleteCount; 8887 return IsRecursive; 8888 } 8889 8890 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8891 /// Recursive (viz: all sub-members were expanded as fully as possible). 8892 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8893 bool IsRecursive) { 8894 if (!ID || IncompleteUsedCount) 8895 return; // No key or it is is an incomplete sub-type so don't add. 8896 Entry &E = Map[ID]; 8897 if (IsRecursive && !E.Str.empty()) { 8898 assert(E.State==Recursive && E.Str.size() == Str.size() && 8899 "This is not the same Recursive entry"); 8900 // The parent container was not recursive after all, so we could have used 8901 // this Recursive sub-member entry after all, but we assumed the worse when 8902 // we started viz: IncompleteCount!=0. 8903 return; 8904 } 8905 assert(E.Str.empty() && "Entry already present"); 8906 E.Str = Str.str(); 8907 E.State = IsRecursive? Recursive : NonRecursive; 8908 } 8909 8910 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8911 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8912 /// encoding is Recursive, return an empty StringRef. 8913 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8914 if (!ID) 8915 return StringRef(); // We have no key. 8916 auto I = Map.find(ID); 8917 if (I == Map.end()) 8918 return StringRef(); // We have no encoding. 8919 Entry &E = I->second; 8920 if (E.State == Recursive && IncompleteCount) 8921 return StringRef(); // We don't use Recursive encodings for member types. 8922 8923 if (E.State == Incomplete) { 8924 // The incomplete type is being used to break out of recursion. 8925 E.State = IncompleteUsed; 8926 ++IncompleteUsedCount; 8927 } 8928 return E.Str; 8929 } 8930 8931 /// The XCore ABI includes a type information section that communicates symbol 8932 /// type information to the linker. The linker uses this information to verify 8933 /// safety/correctness of things such as array bound and pointers et al. 8934 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8935 /// This type information (TypeString) is emitted into meta data for all global 8936 /// symbols: definitions, declarations, functions & variables. 8937 /// 8938 /// The TypeString carries type, qualifier, name, size & value details. 8939 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8940 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8941 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8942 /// 8943 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8944 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8945 8946 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8947 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8948 CodeGen::CodeGenModule &CGM) const { 8949 SmallStringEnc Enc; 8950 if (getTypeString(Enc, D, CGM, TSC)) { 8951 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8952 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8953 llvm::MDString::get(Ctx, Enc.str())}; 8954 llvm::NamedMDNode *MD = 8955 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8956 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8957 } 8958 } 8959 8960 //===----------------------------------------------------------------------===// 8961 // SPIR ABI Implementation 8962 //===----------------------------------------------------------------------===// 8963 8964 namespace { 8965 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8966 public: 8967 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8968 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8969 unsigned getOpenCLKernelCallingConv() const override; 8970 }; 8971 8972 } // End anonymous namespace. 8973 8974 namespace clang { 8975 namespace CodeGen { 8976 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8977 DefaultABIInfo SPIRABI(CGM.getTypes()); 8978 SPIRABI.computeInfo(FI); 8979 } 8980 } 8981 } 8982 8983 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8984 return llvm::CallingConv::SPIR_KERNEL; 8985 } 8986 8987 static bool appendType(SmallStringEnc &Enc, QualType QType, 8988 const CodeGen::CodeGenModule &CGM, 8989 TypeStringCache &TSC); 8990 8991 /// Helper function for appendRecordType(). 8992 /// Builds a SmallVector containing the encoded field types in declaration 8993 /// order. 8994 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8995 const RecordDecl *RD, 8996 const CodeGen::CodeGenModule &CGM, 8997 TypeStringCache &TSC) { 8998 for (const auto *Field : RD->fields()) { 8999 SmallStringEnc Enc; 9000 Enc += "m("; 9001 Enc += Field->getName(); 9002 Enc += "){"; 9003 if (Field->isBitField()) { 9004 Enc += "b("; 9005 llvm::raw_svector_ostream OS(Enc); 9006 OS << Field->getBitWidthValue(CGM.getContext()); 9007 Enc += ':'; 9008 } 9009 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9010 return false; 9011 if (Field->isBitField()) 9012 Enc += ')'; 9013 Enc += '}'; 9014 FE.emplace_back(!Field->getName().empty(), Enc); 9015 } 9016 return true; 9017 } 9018 9019 /// Appends structure and union types to Enc and adds encoding to cache. 9020 /// Recursively calls appendType (via extractFieldType) for each field. 9021 /// Union types have their fields ordered according to the ABI. 9022 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9023 const CodeGen::CodeGenModule &CGM, 9024 TypeStringCache &TSC, const IdentifierInfo *ID) { 9025 // Append the cached TypeString if we have one. 9026 StringRef TypeString = TSC.lookupStr(ID); 9027 if (!TypeString.empty()) { 9028 Enc += TypeString; 9029 return true; 9030 } 9031 9032 // Start to emit an incomplete TypeString. 9033 size_t Start = Enc.size(); 9034 Enc += (RT->isUnionType()? 'u' : 's'); 9035 Enc += '('; 9036 if (ID) 9037 Enc += ID->getName(); 9038 Enc += "){"; 9039 9040 // We collect all encoded fields and order as necessary. 9041 bool IsRecursive = false; 9042 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9043 if (RD && !RD->field_empty()) { 9044 // An incomplete TypeString stub is placed in the cache for this RecordType 9045 // so that recursive calls to this RecordType will use it whilst building a 9046 // complete TypeString for this RecordType. 9047 SmallVector<FieldEncoding, 16> FE; 9048 std::string StubEnc(Enc.substr(Start).str()); 9049 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9050 TSC.addIncomplete(ID, std::move(StubEnc)); 9051 if (!extractFieldType(FE, RD, CGM, TSC)) { 9052 (void) TSC.removeIncomplete(ID); 9053 return false; 9054 } 9055 IsRecursive = TSC.removeIncomplete(ID); 9056 // The ABI requires unions to be sorted but not structures. 9057 // See FieldEncoding::operator< for sort algorithm. 9058 if (RT->isUnionType()) 9059 llvm::sort(FE); 9060 // We can now complete the TypeString. 9061 unsigned E = FE.size(); 9062 for (unsigned I = 0; I != E; ++I) { 9063 if (I) 9064 Enc += ','; 9065 Enc += FE[I].str(); 9066 } 9067 } 9068 Enc += '}'; 9069 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9070 return true; 9071 } 9072 9073 /// Appends enum types to Enc and adds the encoding to the cache. 9074 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9075 TypeStringCache &TSC, 9076 const IdentifierInfo *ID) { 9077 // Append the cached TypeString if we have one. 9078 StringRef TypeString = TSC.lookupStr(ID); 9079 if (!TypeString.empty()) { 9080 Enc += TypeString; 9081 return true; 9082 } 9083 9084 size_t Start = Enc.size(); 9085 Enc += "e("; 9086 if (ID) 9087 Enc += ID->getName(); 9088 Enc += "){"; 9089 9090 // We collect all encoded enumerations and order them alphanumerically. 9091 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9092 SmallVector<FieldEncoding, 16> FE; 9093 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9094 ++I) { 9095 SmallStringEnc EnumEnc; 9096 EnumEnc += "m("; 9097 EnumEnc += I->getName(); 9098 EnumEnc += "){"; 9099 I->getInitVal().toString(EnumEnc); 9100 EnumEnc += '}'; 9101 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9102 } 9103 llvm::sort(FE); 9104 unsigned E = FE.size(); 9105 for (unsigned I = 0; I != E; ++I) { 9106 if (I) 9107 Enc += ','; 9108 Enc += FE[I].str(); 9109 } 9110 } 9111 Enc += '}'; 9112 TSC.addIfComplete(ID, Enc.substr(Start), false); 9113 return true; 9114 } 9115 9116 /// Appends type's qualifier to Enc. 9117 /// This is done prior to appending the type's encoding. 9118 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9119 // Qualifiers are emitted in alphabetical order. 9120 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9121 int Lookup = 0; 9122 if (QT.isConstQualified()) 9123 Lookup += 1<<0; 9124 if (QT.isRestrictQualified()) 9125 Lookup += 1<<1; 9126 if (QT.isVolatileQualified()) 9127 Lookup += 1<<2; 9128 Enc += Table[Lookup]; 9129 } 9130 9131 /// Appends built-in types to Enc. 9132 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9133 const char *EncType; 9134 switch (BT->getKind()) { 9135 case BuiltinType::Void: 9136 EncType = "0"; 9137 break; 9138 case BuiltinType::Bool: 9139 EncType = "b"; 9140 break; 9141 case BuiltinType::Char_U: 9142 EncType = "uc"; 9143 break; 9144 case BuiltinType::UChar: 9145 EncType = "uc"; 9146 break; 9147 case BuiltinType::SChar: 9148 EncType = "sc"; 9149 break; 9150 case BuiltinType::UShort: 9151 EncType = "us"; 9152 break; 9153 case BuiltinType::Short: 9154 EncType = "ss"; 9155 break; 9156 case BuiltinType::UInt: 9157 EncType = "ui"; 9158 break; 9159 case BuiltinType::Int: 9160 EncType = "si"; 9161 break; 9162 case BuiltinType::ULong: 9163 EncType = "ul"; 9164 break; 9165 case BuiltinType::Long: 9166 EncType = "sl"; 9167 break; 9168 case BuiltinType::ULongLong: 9169 EncType = "ull"; 9170 break; 9171 case BuiltinType::LongLong: 9172 EncType = "sll"; 9173 break; 9174 case BuiltinType::Float: 9175 EncType = "ft"; 9176 break; 9177 case BuiltinType::Double: 9178 EncType = "d"; 9179 break; 9180 case BuiltinType::LongDouble: 9181 EncType = "ld"; 9182 break; 9183 default: 9184 return false; 9185 } 9186 Enc += EncType; 9187 return true; 9188 } 9189 9190 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9191 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9192 const CodeGen::CodeGenModule &CGM, 9193 TypeStringCache &TSC) { 9194 Enc += "p("; 9195 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9196 return false; 9197 Enc += ')'; 9198 return true; 9199 } 9200 9201 /// Appends array encoding to Enc before calling appendType for the element. 9202 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9203 const ArrayType *AT, 9204 const CodeGen::CodeGenModule &CGM, 9205 TypeStringCache &TSC, StringRef NoSizeEnc) { 9206 if (AT->getSizeModifier() != ArrayType::Normal) 9207 return false; 9208 Enc += "a("; 9209 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9210 CAT->getSize().toStringUnsigned(Enc); 9211 else 9212 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9213 Enc += ':'; 9214 // The Qualifiers should be attached to the type rather than the array. 9215 appendQualifier(Enc, QT); 9216 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9217 return false; 9218 Enc += ')'; 9219 return true; 9220 } 9221 9222 /// Appends a function encoding to Enc, calling appendType for the return type 9223 /// and the arguments. 9224 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9225 const CodeGen::CodeGenModule &CGM, 9226 TypeStringCache &TSC) { 9227 Enc += "f{"; 9228 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9229 return false; 9230 Enc += "}("; 9231 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9232 // N.B. we are only interested in the adjusted param types. 9233 auto I = FPT->param_type_begin(); 9234 auto E = FPT->param_type_end(); 9235 if (I != E) { 9236 do { 9237 if (!appendType(Enc, *I, CGM, TSC)) 9238 return false; 9239 ++I; 9240 if (I != E) 9241 Enc += ','; 9242 } while (I != E); 9243 if (FPT->isVariadic()) 9244 Enc += ",va"; 9245 } else { 9246 if (FPT->isVariadic()) 9247 Enc += "va"; 9248 else 9249 Enc += '0'; 9250 } 9251 } 9252 Enc += ')'; 9253 return true; 9254 } 9255 9256 /// Handles the type's qualifier before dispatching a call to handle specific 9257 /// type encodings. 9258 static bool appendType(SmallStringEnc &Enc, QualType QType, 9259 const CodeGen::CodeGenModule &CGM, 9260 TypeStringCache &TSC) { 9261 9262 QualType QT = QType.getCanonicalType(); 9263 9264 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9265 // The Qualifiers should be attached to the type rather than the array. 9266 // Thus we don't call appendQualifier() here. 9267 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9268 9269 appendQualifier(Enc, QT); 9270 9271 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9272 return appendBuiltinType(Enc, BT); 9273 9274 if (const PointerType *PT = QT->getAs<PointerType>()) 9275 return appendPointerType(Enc, PT, CGM, TSC); 9276 9277 if (const EnumType *ET = QT->getAs<EnumType>()) 9278 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9279 9280 if (const RecordType *RT = QT->getAsStructureType()) 9281 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9282 9283 if (const RecordType *RT = QT->getAsUnionType()) 9284 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9285 9286 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9287 return appendFunctionType(Enc, FT, CGM, TSC); 9288 9289 return false; 9290 } 9291 9292 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9293 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9294 if (!D) 9295 return false; 9296 9297 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9298 if (FD->getLanguageLinkage() != CLanguageLinkage) 9299 return false; 9300 return appendType(Enc, FD->getType(), CGM, TSC); 9301 } 9302 9303 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9304 if (VD->getLanguageLinkage() != CLanguageLinkage) 9305 return false; 9306 QualType QT = VD->getType().getCanonicalType(); 9307 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9308 // Global ArrayTypes are given a size of '*' if the size is unknown. 9309 // The Qualifiers should be attached to the type rather than the array. 9310 // Thus we don't call appendQualifier() here. 9311 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9312 } 9313 return appendType(Enc, QT, CGM, TSC); 9314 } 9315 return false; 9316 } 9317 9318 //===----------------------------------------------------------------------===// 9319 // RISCV ABI Implementation 9320 //===----------------------------------------------------------------------===// 9321 9322 namespace { 9323 class RISCVABIInfo : public DefaultABIInfo { 9324 private: 9325 // Size of the integer ('x') registers in bits. 9326 unsigned XLen; 9327 // Size of the floating point ('f') registers in bits. Note that the target 9328 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 9329 // with soft float ABI has FLen==0). 9330 unsigned FLen; 9331 static const int NumArgGPRs = 8; 9332 static const int NumArgFPRs = 8; 9333 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9334 llvm::Type *&Field1Ty, 9335 CharUnits &Field1Off, 9336 llvm::Type *&Field2Ty, 9337 CharUnits &Field2Off) const; 9338 9339 public: 9340 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 9341 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 9342 9343 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9344 // non-virtual, but computeInfo is virtual, so we overload it. 9345 void computeInfo(CGFunctionInfo &FI) const override; 9346 9347 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 9348 int &ArgFPRsLeft) const; 9349 ABIArgInfo classifyReturnType(QualType RetTy) const; 9350 9351 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9352 QualType Ty) const override; 9353 9354 ABIArgInfo extendType(QualType Ty) const; 9355 9356 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9357 CharUnits &Field1Off, llvm::Type *&Field2Ty, 9358 CharUnits &Field2Off, int &NeededArgGPRs, 9359 int &NeededArgFPRs) const; 9360 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 9361 CharUnits Field1Off, 9362 llvm::Type *Field2Ty, 9363 CharUnits Field2Off) const; 9364 }; 9365 } // end anonymous namespace 9366 9367 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9368 QualType RetTy = FI.getReturnType(); 9369 if (!getCXXABI().classifyReturnType(FI)) 9370 FI.getReturnInfo() = classifyReturnType(RetTy); 9371 9372 // IsRetIndirect is true if classifyArgumentType indicated the value should 9373 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9374 // is passed direct in LLVM IR, relying on the backend lowering code to 9375 // rewrite the argument list and pass indirectly on RV32. 9376 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9377 getContext().getTypeSize(RetTy) > (2 * XLen); 9378 9379 // We must track the number of GPRs used in order to conform to the RISC-V 9380 // ABI, as integer scalars passed in registers should have signext/zeroext 9381 // when promoted, but are anyext if passed on the stack. As GPR usage is 9382 // different for variadic arguments, we must also track whether we are 9383 // examining a vararg or not. 9384 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9385 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 9386 int NumFixedArgs = FI.getNumRequiredArgs(); 9387 9388 int ArgNum = 0; 9389 for (auto &ArgInfo : FI.arguments()) { 9390 bool IsFixed = ArgNum < NumFixedArgs; 9391 ArgInfo.info = 9392 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 9393 ArgNum++; 9394 } 9395 } 9396 9397 // Returns true if the struct is a potential candidate for the floating point 9398 // calling convention. If this function returns true, the caller is 9399 // responsible for checking that if there is only a single field then that 9400 // field is a float. 9401 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9402 llvm::Type *&Field1Ty, 9403 CharUnits &Field1Off, 9404 llvm::Type *&Field2Ty, 9405 CharUnits &Field2Off) const { 9406 bool IsInt = Ty->isIntegralOrEnumerationType(); 9407 bool IsFloat = Ty->isRealFloatingType(); 9408 9409 if (IsInt || IsFloat) { 9410 uint64_t Size = getContext().getTypeSize(Ty); 9411 if (IsInt && Size > XLen) 9412 return false; 9413 // Can't be eligible if larger than the FP registers. Half precision isn't 9414 // currently supported on RISC-V and the ABI hasn't been confirmed, so 9415 // default to the integer ABI in that case. 9416 if (IsFloat && (Size > FLen || Size < 32)) 9417 return false; 9418 // Can't be eligible if an integer type was already found (int+int pairs 9419 // are not eligible). 9420 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 9421 return false; 9422 if (!Field1Ty) { 9423 Field1Ty = CGT.ConvertType(Ty); 9424 Field1Off = CurOff; 9425 return true; 9426 } 9427 if (!Field2Ty) { 9428 Field2Ty = CGT.ConvertType(Ty); 9429 Field2Off = CurOff; 9430 return true; 9431 } 9432 return false; 9433 } 9434 9435 if (auto CTy = Ty->getAs<ComplexType>()) { 9436 if (Field1Ty) 9437 return false; 9438 QualType EltTy = CTy->getElementType(); 9439 if (getContext().getTypeSize(EltTy) > FLen) 9440 return false; 9441 Field1Ty = CGT.ConvertType(EltTy); 9442 Field1Off = CurOff; 9443 assert(CurOff.isZero() && "Unexpected offset for first field"); 9444 Field2Ty = Field1Ty; 9445 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 9446 return true; 9447 } 9448 9449 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 9450 uint64_t ArraySize = ATy->getSize().getZExtValue(); 9451 QualType EltTy = ATy->getElementType(); 9452 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 9453 for (uint64_t i = 0; i < ArraySize; ++i) { 9454 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 9455 Field1Off, Field2Ty, Field2Off); 9456 if (!Ret) 9457 return false; 9458 CurOff += EltSize; 9459 } 9460 return true; 9461 } 9462 9463 if (const auto *RTy = Ty->getAs<RecordType>()) { 9464 // Structures with either a non-trivial destructor or a non-trivial 9465 // copy constructor are not eligible for the FP calling convention. 9466 if (getRecordArgABI(Ty, CGT.getCXXABI())) 9467 return false; 9468 if (isEmptyRecord(getContext(), Ty, true)) 9469 return true; 9470 const RecordDecl *RD = RTy->getDecl(); 9471 // Unions aren't eligible unless they're empty (which is caught above). 9472 if (RD->isUnion()) 9473 return false; 9474 int ZeroWidthBitFieldCount = 0; 9475 for (const FieldDecl *FD : RD->fields()) { 9476 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 9477 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 9478 QualType QTy = FD->getType(); 9479 if (FD->isBitField()) { 9480 unsigned BitWidth = FD->getBitWidthValue(getContext()); 9481 // Allow a bitfield with a type greater than XLen as long as the 9482 // bitwidth is XLen or less. 9483 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 9484 QTy = getContext().getIntTypeForBitwidth(XLen, false); 9485 if (BitWidth == 0) { 9486 ZeroWidthBitFieldCount++; 9487 continue; 9488 } 9489 } 9490 9491 bool Ret = detectFPCCEligibleStructHelper( 9492 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 9493 Field1Ty, Field1Off, Field2Ty, Field2Off); 9494 if (!Ret) 9495 return false; 9496 9497 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 9498 // or int+fp structs, but are ignored for a struct with an fp field and 9499 // any number of zero-width bitfields. 9500 if (Field2Ty && ZeroWidthBitFieldCount > 0) 9501 return false; 9502 } 9503 return Field1Ty != nullptr; 9504 } 9505 9506 return false; 9507 } 9508 9509 // Determine if a struct is eligible for passing according to the floating 9510 // point calling convention (i.e., when flattened it contains a single fp 9511 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 9512 // NeededArgGPRs are incremented appropriately. 9513 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9514 CharUnits &Field1Off, 9515 llvm::Type *&Field2Ty, 9516 CharUnits &Field2Off, 9517 int &NeededArgGPRs, 9518 int &NeededArgFPRs) const { 9519 Field1Ty = nullptr; 9520 Field2Ty = nullptr; 9521 NeededArgGPRs = 0; 9522 NeededArgFPRs = 0; 9523 bool IsCandidate = detectFPCCEligibleStructHelper( 9524 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 9525 // Not really a candidate if we have a single int but no float. 9526 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 9527 return false; 9528 if (!IsCandidate) 9529 return false; 9530 if (Field1Ty && Field1Ty->isFloatingPointTy()) 9531 NeededArgFPRs++; 9532 else if (Field1Ty) 9533 NeededArgGPRs++; 9534 if (Field2Ty && Field2Ty->isFloatingPointTy()) 9535 NeededArgFPRs++; 9536 else if (Field2Ty) 9537 NeededArgGPRs++; 9538 return IsCandidate; 9539 } 9540 9541 // Call getCoerceAndExpand for the two-element flattened struct described by 9542 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 9543 // appropriate coerceToType and unpaddedCoerceToType. 9544 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 9545 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 9546 CharUnits Field2Off) const { 9547 SmallVector<llvm::Type *, 3> CoerceElts; 9548 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 9549 if (!Field1Off.isZero()) 9550 CoerceElts.push_back(llvm::ArrayType::get( 9551 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 9552 9553 CoerceElts.push_back(Field1Ty); 9554 UnpaddedCoerceElts.push_back(Field1Ty); 9555 9556 if (!Field2Ty) { 9557 return ABIArgInfo::getCoerceAndExpand( 9558 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 9559 UnpaddedCoerceElts[0]); 9560 } 9561 9562 CharUnits Field2Align = 9563 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 9564 CharUnits Field1Size = 9565 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 9566 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 9567 9568 CharUnits Padding = CharUnits::Zero(); 9569 if (Field2Off > Field2OffNoPadNoPack) 9570 Padding = Field2Off - Field2OffNoPadNoPack; 9571 else if (Field2Off != Field2Align && Field2Off > Field1Size) 9572 Padding = Field2Off - Field1Size; 9573 9574 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 9575 9576 if (!Padding.isZero()) 9577 CoerceElts.push_back(llvm::ArrayType::get( 9578 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 9579 9580 CoerceElts.push_back(Field2Ty); 9581 UnpaddedCoerceElts.push_back(Field2Ty); 9582 9583 auto CoerceToType = 9584 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 9585 auto UnpaddedCoerceToType = 9586 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 9587 9588 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 9589 } 9590 9591 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9592 int &ArgGPRsLeft, 9593 int &ArgFPRsLeft) const { 9594 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9595 Ty = useFirstFieldIfTransparentUnion(Ty); 9596 9597 // Structures with either a non-trivial destructor or a non-trivial 9598 // copy constructor are always passed indirectly. 9599 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9600 if (ArgGPRsLeft) 9601 ArgGPRsLeft -= 1; 9602 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9603 CGCXXABI::RAA_DirectInMemory); 9604 } 9605 9606 // Ignore empty structs/unions. 9607 if (isEmptyRecord(getContext(), Ty, true)) 9608 return ABIArgInfo::getIgnore(); 9609 9610 uint64_t Size = getContext().getTypeSize(Ty); 9611 9612 // Pass floating point values via FPRs if possible. 9613 if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) { 9614 ArgFPRsLeft--; 9615 return ABIArgInfo::getDirect(); 9616 } 9617 9618 // Complex types for the hard float ABI must be passed direct rather than 9619 // using CoerceAndExpand. 9620 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 9621 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 9622 if (getContext().getTypeSize(EltTy) <= FLen) { 9623 ArgFPRsLeft -= 2; 9624 return ABIArgInfo::getDirect(); 9625 } 9626 } 9627 9628 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 9629 llvm::Type *Field1Ty = nullptr; 9630 llvm::Type *Field2Ty = nullptr; 9631 CharUnits Field1Off = CharUnits::Zero(); 9632 CharUnits Field2Off = CharUnits::Zero(); 9633 int NeededArgGPRs; 9634 int NeededArgFPRs; 9635 bool IsCandidate = 9636 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 9637 NeededArgGPRs, NeededArgFPRs); 9638 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 9639 NeededArgFPRs <= ArgFPRsLeft) { 9640 ArgGPRsLeft -= NeededArgGPRs; 9641 ArgFPRsLeft -= NeededArgFPRs; 9642 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 9643 Field2Off); 9644 } 9645 } 9646 9647 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9648 bool MustUseStack = false; 9649 // Determine the number of GPRs needed to pass the current argument 9650 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9651 // register pairs, so may consume 3 registers. 9652 int NeededArgGPRs = 1; 9653 if (!IsFixed && NeededAlign == 2 * XLen) 9654 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9655 else if (Size > XLen && Size <= 2 * XLen) 9656 NeededArgGPRs = 2; 9657 9658 if (NeededArgGPRs > ArgGPRsLeft) { 9659 MustUseStack = true; 9660 NeededArgGPRs = ArgGPRsLeft; 9661 } 9662 9663 ArgGPRsLeft -= NeededArgGPRs; 9664 9665 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9666 // Treat an enum type as its underlying type. 9667 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9668 Ty = EnumTy->getDecl()->getIntegerType(); 9669 9670 // All integral types are promoted to XLen width, unless passed on the 9671 // stack. 9672 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9673 return extendType(Ty); 9674 } 9675 9676 return ABIArgInfo::getDirect(); 9677 } 9678 9679 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9680 // so coerce to integers. 9681 if (Size <= 2 * XLen) { 9682 unsigned Alignment = getContext().getTypeAlign(Ty); 9683 9684 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9685 // required, and a 2-element XLen array if only XLen alignment is required. 9686 if (Size <= XLen) { 9687 return ABIArgInfo::getDirect( 9688 llvm::IntegerType::get(getVMContext(), XLen)); 9689 } else if (Alignment == 2 * XLen) { 9690 return ABIArgInfo::getDirect( 9691 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9692 } else { 9693 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9694 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9695 } 9696 } 9697 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9698 } 9699 9700 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9701 if (RetTy->isVoidType()) 9702 return ABIArgInfo::getIgnore(); 9703 9704 int ArgGPRsLeft = 2; 9705 int ArgFPRsLeft = FLen ? 2 : 0; 9706 9707 // The rules for return and argument types are the same, so defer to 9708 // classifyArgumentType. 9709 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 9710 ArgFPRsLeft); 9711 } 9712 9713 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9714 QualType Ty) const { 9715 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9716 9717 // Empty records are ignored for parameter passing purposes. 9718 if (isEmptyRecord(getContext(), Ty, true)) { 9719 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9720 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9721 return Addr; 9722 } 9723 9724 std::pair<CharUnits, CharUnits> SizeAndAlign = 9725 getContext().getTypeInfoInChars(Ty); 9726 9727 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9728 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9729 9730 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9731 SlotSize, /*AllowHigherAlign=*/true); 9732 } 9733 9734 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9735 int TySize = getContext().getTypeSize(Ty); 9736 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9737 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9738 return ABIArgInfo::getSignExtend(Ty); 9739 return ABIArgInfo::getExtend(Ty); 9740 } 9741 9742 namespace { 9743 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9744 public: 9745 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 9746 unsigned FLen) 9747 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {} 9748 9749 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9750 CodeGen::CodeGenModule &CGM) const override { 9751 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9752 if (!FD) return; 9753 9754 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9755 if (!Attr) 9756 return; 9757 9758 const char *Kind; 9759 switch (Attr->getInterrupt()) { 9760 case RISCVInterruptAttr::user: Kind = "user"; break; 9761 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9762 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9763 } 9764 9765 auto *Fn = cast<llvm::Function>(GV); 9766 9767 Fn->addFnAttr("interrupt", Kind); 9768 } 9769 }; 9770 } // namespace 9771 9772 //===----------------------------------------------------------------------===// 9773 // Driver code 9774 //===----------------------------------------------------------------------===// 9775 9776 bool CodeGenModule::supportsCOMDAT() const { 9777 return getTriple().supportsCOMDAT(); 9778 } 9779 9780 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9781 if (TheTargetCodeGenInfo) 9782 return *TheTargetCodeGenInfo; 9783 9784 // Helper to set the unique_ptr while still keeping the return value. 9785 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9786 this->TheTargetCodeGenInfo.reset(P); 9787 return *P; 9788 }; 9789 9790 const llvm::Triple &Triple = getTarget().getTriple(); 9791 switch (Triple.getArch()) { 9792 default: 9793 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9794 9795 case llvm::Triple::le32: 9796 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9797 case llvm::Triple::mips: 9798 case llvm::Triple::mipsel: 9799 if (Triple.getOS() == llvm::Triple::NaCl) 9800 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9801 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9802 9803 case llvm::Triple::mips64: 9804 case llvm::Triple::mips64el: 9805 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9806 9807 case llvm::Triple::avr: 9808 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9809 9810 case llvm::Triple::aarch64: 9811 case llvm::Triple::aarch64_32: 9812 case llvm::Triple::aarch64_be: { 9813 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9814 if (getTarget().getABI() == "darwinpcs") 9815 Kind = AArch64ABIInfo::DarwinPCS; 9816 else if (Triple.isOSWindows()) 9817 return SetCGInfo( 9818 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9819 9820 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9821 } 9822 9823 case llvm::Triple::wasm32: 9824 case llvm::Triple::wasm64: 9825 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9826 9827 case llvm::Triple::arm: 9828 case llvm::Triple::armeb: 9829 case llvm::Triple::thumb: 9830 case llvm::Triple::thumbeb: { 9831 if (Triple.getOS() == llvm::Triple::Win32) { 9832 return SetCGInfo( 9833 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9834 } 9835 9836 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9837 StringRef ABIStr = getTarget().getABI(); 9838 if (ABIStr == "apcs-gnu") 9839 Kind = ARMABIInfo::APCS; 9840 else if (ABIStr == "aapcs16") 9841 Kind = ARMABIInfo::AAPCS16_VFP; 9842 else if (CodeGenOpts.FloatABI == "hard" || 9843 (CodeGenOpts.FloatABI != "soft" && 9844 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9845 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9846 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9847 Kind = ARMABIInfo::AAPCS_VFP; 9848 9849 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9850 } 9851 9852 case llvm::Triple::ppc: 9853 return SetCGInfo( 9854 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" || 9855 getTarget().hasFeature("spe"))); 9856 case llvm::Triple::ppc64: 9857 if (Triple.isOSBinFormatELF()) { 9858 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9859 if (getTarget().getABI() == "elfv2") 9860 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9861 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9862 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9863 9864 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9865 IsSoftFloat)); 9866 } else 9867 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9868 case llvm::Triple::ppc64le: { 9869 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9870 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9871 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9872 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9873 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9874 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9875 9876 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9877 IsSoftFloat)); 9878 } 9879 9880 case llvm::Triple::nvptx: 9881 case llvm::Triple::nvptx64: 9882 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9883 9884 case llvm::Triple::msp430: 9885 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9886 9887 case llvm::Triple::riscv32: 9888 case llvm::Triple::riscv64: { 9889 StringRef ABIStr = getTarget().getABI(); 9890 unsigned XLen = getTarget().getPointerWidth(0); 9891 unsigned ABIFLen = 0; 9892 if (ABIStr.endswith("f")) 9893 ABIFLen = 32; 9894 else if (ABIStr.endswith("d")) 9895 ABIFLen = 64; 9896 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 9897 } 9898 9899 case llvm::Triple::systemz: { 9900 bool HasVector = getTarget().getABI() == "vector"; 9901 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9902 } 9903 9904 case llvm::Triple::tce: 9905 case llvm::Triple::tcele: 9906 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9907 9908 case llvm::Triple::x86: { 9909 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9910 bool RetSmallStructInRegABI = 9911 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9912 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9913 9914 if (Triple.getOS() == llvm::Triple::Win32) { 9915 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9916 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9917 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9918 } else { 9919 return SetCGInfo(new X86_32TargetCodeGenInfo( 9920 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9921 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9922 CodeGenOpts.FloatABI == "soft")); 9923 } 9924 } 9925 9926 case llvm::Triple::x86_64: { 9927 StringRef ABI = getTarget().getABI(); 9928 X86AVXABILevel AVXLevel = 9929 (ABI == "avx512" 9930 ? X86AVXABILevel::AVX512 9931 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9932 9933 switch (Triple.getOS()) { 9934 case llvm::Triple::Win32: 9935 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9936 default: 9937 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9938 } 9939 } 9940 case llvm::Triple::hexagon: 9941 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9942 case llvm::Triple::lanai: 9943 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9944 case llvm::Triple::r600: 9945 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9946 case llvm::Triple::amdgcn: 9947 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9948 case llvm::Triple::sparc: 9949 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9950 case llvm::Triple::sparcv9: 9951 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9952 case llvm::Triple::xcore: 9953 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9954 case llvm::Triple::arc: 9955 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9956 case llvm::Triple::spir: 9957 case llvm::Triple::spir64: 9958 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9959 } 9960 } 9961 9962 /// Create an OpenCL kernel for an enqueued block. 9963 /// 9964 /// The kernel has the same function type as the block invoke function. Its 9965 /// name is the name of the block invoke function postfixed with "_kernel". 9966 /// It simply calls the block invoke function then returns. 9967 llvm::Function * 9968 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9969 llvm::Function *Invoke, 9970 llvm::Value *BlockLiteral) const { 9971 auto *InvokeFT = Invoke->getFunctionType(); 9972 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9973 for (auto &P : InvokeFT->params()) 9974 ArgTys.push_back(P); 9975 auto &C = CGF.getLLVMContext(); 9976 std::string Name = Invoke->getName().str() + "_kernel"; 9977 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9978 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9979 &CGF.CGM.getModule()); 9980 auto IP = CGF.Builder.saveIP(); 9981 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9982 auto &Builder = CGF.Builder; 9983 Builder.SetInsertPoint(BB); 9984 llvm::SmallVector<llvm::Value *, 2> Args; 9985 for (auto &A : F->args()) 9986 Args.push_back(&A); 9987 Builder.CreateCall(Invoke, Args); 9988 Builder.CreateRetVoid(); 9989 Builder.restoreIP(IP); 9990 return F; 9991 } 9992 9993 /// Create an OpenCL kernel for an enqueued block. 9994 /// 9995 /// The type of the first argument (the block literal) is the struct type 9996 /// of the block literal instead of a pointer type. The first argument 9997 /// (block literal) is passed directly by value to the kernel. The kernel 9998 /// allocates the same type of struct on stack and stores the block literal 9999 /// to it and passes its pointer to the block invoke function. The kernel 10000 /// has "enqueued-block" function attribute and kernel argument metadata. 10001 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 10002 CodeGenFunction &CGF, llvm::Function *Invoke, 10003 llvm::Value *BlockLiteral) const { 10004 auto &Builder = CGF.Builder; 10005 auto &C = CGF.getLLVMContext(); 10006 10007 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10008 auto *InvokeFT = Invoke->getFunctionType(); 10009 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10010 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10011 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10012 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10013 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10014 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10015 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10016 10017 ArgTys.push_back(BlockTy); 10018 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10019 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10020 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10021 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10022 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10023 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10024 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10025 ArgTys.push_back(InvokeFT->getParamType(I)); 10026 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10027 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10028 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10029 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10030 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10031 ArgNames.push_back( 10032 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10033 } 10034 std::string Name = Invoke->getName().str() + "_kernel"; 10035 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10036 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10037 &CGF.CGM.getModule()); 10038 F->addFnAttr("enqueued-block"); 10039 auto IP = CGF.Builder.saveIP(); 10040 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10041 Builder.SetInsertPoint(BB); 10042 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 10043 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10044 BlockPtr->setAlignment(llvm::MaybeAlign(BlockAlign)); 10045 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10046 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10047 llvm::SmallVector<llvm::Value *, 2> Args; 10048 Args.push_back(Cast); 10049 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10050 Args.push_back(I); 10051 Builder.CreateCall(Invoke, Args); 10052 Builder.CreateRetVoid(); 10053 Builder.restoreIP(IP); 10054 10055 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10056 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10057 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10058 F->setMetadata("kernel_arg_base_type", 10059 llvm::MDNode::get(C, ArgBaseTypeNames)); 10060 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10061 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10062 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10063 10064 return F; 10065 } 10066