1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "clang/CodeGen/SwiftCallingConv.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm> // std::sort
33 
34 using namespace clang;
35 using namespace CodeGen;
36 
37 // Helper for coercing an aggregate argument or return value into an integer
38 // array of the same size (including padding) and alignment.  This alternate
39 // coercion happens only for the RenderScript ABI and can be removed after
40 // runtimes that rely on it are no longer supported.
41 //
42 // RenderScript assumes that the size of the argument / return value in the IR
43 // is the same as the size of the corresponding qualified type. This helper
44 // coerces the aggregate type into an array of the same size (including
45 // padding).  This coercion is used in lieu of expansion of struct members or
46 // other canonical coercions that return a coerced-type of larger size.
47 //
48 // Ty          - The argument / return value type
49 // Context     - The associated ASTContext
50 // LLVMContext - The associated LLVMContext
51 static ABIArgInfo coerceToIntArray(QualType Ty,
52                                    ASTContext &Context,
53                                    llvm::LLVMContext &LLVMContext) {
54   // Alignment and Size are measured in bits.
55   const uint64_t Size = Context.getTypeSize(Ty);
56   const uint64_t Alignment = Context.getTypeAlign(Ty);
57   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
58   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
59   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
60 }
61 
62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
63                                llvm::Value *Array,
64                                llvm::Value *Value,
65                                unsigned FirstIndex,
66                                unsigned LastIndex) {
67   // Alternatively, we could emit this as a loop in the source.
68   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
69     llvm::Value *Cell =
70         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
71     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
72   }
73 }
74 
75 static bool isAggregateTypeForABI(QualType T) {
76   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
77          T->isMemberFunctionPointerType();
78 }
79 
80 ABIArgInfo
81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
82                                  llvm::Type *Padding) const {
83   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
84                                  ByRef, Realign, Padding);
85 }
86 
87 ABIArgInfo
88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
89   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
90                                       /*ByRef*/ false, Realign);
91 }
92 
93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
94                              QualType Ty) const {
95   return Address::invalid();
96 }
97 
98 ABIInfo::~ABIInfo() {}
99 
100 /// Does the given lowering require more than the given number of
101 /// registers when expanded?
102 ///
103 /// This is intended to be the basis of a reasonable basic implementation
104 /// of should{Pass,Return}IndirectlyForSwift.
105 ///
106 /// For most targets, a limit of four total registers is reasonable; this
107 /// limits the amount of code required in order to move around the value
108 /// in case it wasn't produced immediately prior to the call by the caller
109 /// (or wasn't produced in exactly the right registers) or isn't used
110 /// immediately within the callee.  But some targets may need to further
111 /// limit the register count due to an inability to support that many
112 /// return registers.
113 static bool occupiesMoreThan(CodeGenTypes &cgt,
114                              ArrayRef<llvm::Type*> scalarTypes,
115                              unsigned maxAllRegisters) {
116   unsigned intCount = 0, fpCount = 0;
117   for (llvm::Type *type : scalarTypes) {
118     if (type->isPointerTy()) {
119       intCount++;
120     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
121       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
122       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
123     } else {
124       assert(type->isVectorTy() || type->isFloatingPointTy());
125       fpCount++;
126     }
127   }
128 
129   return (intCount + fpCount > maxAllRegisters);
130 }
131 
132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
133                                              llvm::Type *eltTy,
134                                              unsigned numElts) const {
135   // The default implementation of this assumes that the target guarantees
136   // 128-bit SIMD support but nothing more.
137   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
138 }
139 
140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
141                                               CGCXXABI &CXXABI) {
142   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143   if (!RD) {
144     if (!RT->getDecl()->canPassInRegisters())
145       return CGCXXABI::RAA_Indirect;
146     return CGCXXABI::RAA_Default;
147   }
148   return CXXABI.getRecordArgABI(RD);
149 }
150 
151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
152                                               CGCXXABI &CXXABI) {
153   const RecordType *RT = T->getAs<RecordType>();
154   if (!RT)
155     return CGCXXABI::RAA_Default;
156   return getRecordArgABI(RT, CXXABI);
157 }
158 
159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
160                                const ABIInfo &Info) {
161   QualType Ty = FI.getReturnType();
162 
163   if (const auto *RT = Ty->getAs<RecordType>())
164     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
165         !RT->getDecl()->canPassInRegisters()) {
166       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
167       return true;
168     }
169 
170   return CXXABI.classifyReturnType(FI);
171 }
172 
173 /// Pass transparent unions as if they were the type of the first element. Sema
174 /// should ensure that all elements of the union have the same "machine type".
175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
176   if (const RecordType *UT = Ty->getAsUnionType()) {
177     const RecordDecl *UD = UT->getDecl();
178     if (UD->hasAttr<TransparentUnionAttr>()) {
179       assert(!UD->field_empty() && "sema created an empty transparent union");
180       return UD->field_begin()->getType();
181     }
182   }
183   return Ty;
184 }
185 
186 CGCXXABI &ABIInfo::getCXXABI() const {
187   return CGT.getCXXABI();
188 }
189 
190 ASTContext &ABIInfo::getContext() const {
191   return CGT.getContext();
192 }
193 
194 llvm::LLVMContext &ABIInfo::getVMContext() const {
195   return CGT.getLLVMContext();
196 }
197 
198 const llvm::DataLayout &ABIInfo::getDataLayout() const {
199   return CGT.getDataLayout();
200 }
201 
202 const TargetInfo &ABIInfo::getTarget() const {
203   return CGT.getTarget();
204 }
205 
206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
207   return CGT.getCodeGenOpts();
208 }
209 
210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
211 
212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
213   return false;
214 }
215 
216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
217                                                 uint64_t Members) const {
218   return false;
219 }
220 
221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
222   raw_ostream &OS = llvm::errs();
223   OS << "(ABIArgInfo Kind=";
224   switch (TheKind) {
225   case Direct:
226     OS << "Direct Type=";
227     if (llvm::Type *Ty = getCoerceToType())
228       Ty->print(OS);
229     else
230       OS << "null";
231     break;
232   case Extend:
233     OS << "Extend";
234     break;
235   case Ignore:
236     OS << "Ignore";
237     break;
238   case InAlloca:
239     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
240     break;
241   case Indirect:
242     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
243        << " ByVal=" << getIndirectByVal()
244        << " Realign=" << getIndirectRealign();
245     break;
246   case Expand:
247     OS << "Expand";
248     break;
249   case CoerceAndExpand:
250     OS << "CoerceAndExpand Type=";
251     getCoerceAndExpandType()->print(OS);
252     break;
253   }
254   OS << ")\n";
255 }
256 
257 // Dynamically round a pointer up to a multiple of the given alignment.
258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
259                                                   llvm::Value *Ptr,
260                                                   CharUnits Align) {
261   llvm::Value *PtrAsInt = Ptr;
262   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
263   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
264   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
265         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
266   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
267            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
268   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
269                                         Ptr->getType(),
270                                         Ptr->getName() + ".aligned");
271   return PtrAsInt;
272 }
273 
274 /// Emit va_arg for a platform using the common void* representation,
275 /// where arguments are simply emitted in an array of slots on the stack.
276 ///
277 /// This version implements the core direct-value passing rules.
278 ///
279 /// \param SlotSize - The size and alignment of a stack slot.
280 ///   Each argument will be allocated to a multiple of this number of
281 ///   slots, and all the slots will be aligned to this value.
282 /// \param AllowHigherAlign - The slot alignment is not a cap;
283 ///   an argument type with an alignment greater than the slot size
284 ///   will be emitted on a higher-alignment address, potentially
285 ///   leaving one or more empty slots behind as padding.  If this
286 ///   is false, the returned address might be less-aligned than
287 ///   DirectAlign.
288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
289                                       Address VAListAddr,
290                                       llvm::Type *DirectTy,
291                                       CharUnits DirectSize,
292                                       CharUnits DirectAlign,
293                                       CharUnits SlotSize,
294                                       bool AllowHigherAlign) {
295   // Cast the element type to i8* if necessary.  Some platforms define
296   // va_list as a struct containing an i8* instead of just an i8*.
297   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
298     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
299 
300   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
301 
302   // If the CC aligns values higher than the slot size, do so if needed.
303   Address Addr = Address::invalid();
304   if (AllowHigherAlign && DirectAlign > SlotSize) {
305     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
306                                                  DirectAlign);
307   } else {
308     Addr = Address(Ptr, SlotSize);
309   }
310 
311   // Advance the pointer past the argument, then store that back.
312   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
313   Address NextPtr =
314       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
315   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
316 
317   // If the argument is smaller than a slot, and this is a big-endian
318   // target, the argument will be right-adjusted in its slot.
319   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
320       !DirectTy->isStructTy()) {
321     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
322   }
323 
324   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
325   return Addr;
326 }
327 
328 /// Emit va_arg for a platform using the common void* representation,
329 /// where arguments are simply emitted in an array of slots on the stack.
330 ///
331 /// \param IsIndirect - Values of this type are passed indirectly.
332 /// \param ValueInfo - The size and alignment of this type, generally
333 ///   computed with getContext().getTypeInfoInChars(ValueTy).
334 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
335 ///   Each argument will be allocated to a multiple of this number of
336 ///   slots, and all the slots will be aligned to this value.
337 /// \param AllowHigherAlign - The slot alignment is not a cap;
338 ///   an argument type with an alignment greater than the slot size
339 ///   will be emitted on a higher-alignment address, potentially
340 ///   leaving one or more empty slots behind as padding.
341 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
342                                 QualType ValueTy, bool IsIndirect,
343                                 std::pair<CharUnits, CharUnits> ValueInfo,
344                                 CharUnits SlotSizeAndAlign,
345                                 bool AllowHigherAlign) {
346   // The size and alignment of the value that was passed directly.
347   CharUnits DirectSize, DirectAlign;
348   if (IsIndirect) {
349     DirectSize = CGF.getPointerSize();
350     DirectAlign = CGF.getPointerAlign();
351   } else {
352     DirectSize = ValueInfo.first;
353     DirectAlign = ValueInfo.second;
354   }
355 
356   // Cast the address we've calculated to the right type.
357   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
358   if (IsIndirect)
359     DirectTy = DirectTy->getPointerTo(0);
360 
361   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
362                                         DirectSize, DirectAlign,
363                                         SlotSizeAndAlign,
364                                         AllowHigherAlign);
365 
366   if (IsIndirect) {
367     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
368   }
369 
370   return Addr;
371 
372 }
373 
374 static Address emitMergePHI(CodeGenFunction &CGF,
375                             Address Addr1, llvm::BasicBlock *Block1,
376                             Address Addr2, llvm::BasicBlock *Block2,
377                             const llvm::Twine &Name = "") {
378   assert(Addr1.getType() == Addr2.getType());
379   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
380   PHI->addIncoming(Addr1.getPointer(), Block1);
381   PHI->addIncoming(Addr2.getPointer(), Block2);
382   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
383   return Address(PHI, Align);
384 }
385 
386 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
387 
388 // If someone can figure out a general rule for this, that would be great.
389 // It's probably just doomed to be platform-dependent, though.
390 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
391   // Verified for:
392   //   x86-64     FreeBSD, Linux, Darwin
393   //   x86-32     FreeBSD, Linux, Darwin
394   //   PowerPC    Linux, Darwin
395   //   ARM        Darwin (*not* EABI)
396   //   AArch64    Linux
397   return 32;
398 }
399 
400 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
401                                      const FunctionNoProtoType *fnType) const {
402   // The following conventions are known to require this to be false:
403   //   x86_stdcall
404   //   MIPS
405   // For everything else, we just prefer false unless we opt out.
406   return false;
407 }
408 
409 void
410 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
411                                              llvm::SmallString<24> &Opt) const {
412   // This assumes the user is passing a library name like "rt" instead of a
413   // filename like "librt.a/so", and that they don't care whether it's static or
414   // dynamic.
415   Opt = "-l";
416   Opt += Lib;
417 }
418 
419 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
420   // OpenCL kernels are called via an explicit runtime API with arguments
421   // set with clSetKernelArg(), not as normal sub-functions.
422   // Return SPIR_KERNEL by default as the kernel calling convention to
423   // ensure the fingerprint is fixed such way that each OpenCL argument
424   // gets one matching argument in the produced kernel function argument
425   // list to enable feasible implementation of clSetKernelArg() with
426   // aggregates etc. In case we would use the default C calling conv here,
427   // clSetKernelArg() might break depending on the target-specific
428   // conventions; different targets might split structs passed as values
429   // to multiple function arguments etc.
430   return llvm::CallingConv::SPIR_KERNEL;
431 }
432 
433 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
434     llvm::PointerType *T, QualType QT) const {
435   return llvm::ConstantPointerNull::get(T);
436 }
437 
438 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
439                                                    const VarDecl *D) const {
440   assert(!CGM.getLangOpts().OpenCL &&
441          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
442          "Address space agnostic languages only");
443   return D ? D->getType().getAddressSpace() : LangAS::Default;
444 }
445 
446 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
447     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
448     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
449   // Since target may map different address spaces in AST to the same address
450   // space, an address space conversion may end up as a bitcast.
451   if (auto *C = dyn_cast<llvm::Constant>(Src))
452     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
453   // Try to preserve the source's name to make IR more readable.
454   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
455       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
456 }
457 
458 llvm::Constant *
459 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
460                                         LangAS SrcAddr, LangAS DestAddr,
461                                         llvm::Type *DestTy) const {
462   // Since target may map different address spaces in AST to the same address
463   // space, an address space conversion may end up as a bitcast.
464   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
465 }
466 
467 llvm::SyncScope::ID
468 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
469                                       SyncScope Scope,
470                                       llvm::AtomicOrdering Ordering,
471                                       llvm::LLVMContext &Ctx) const {
472   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
473 }
474 
475 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
476 
477 /// isEmptyField - Return true iff a the field is "empty", that is it
478 /// is an unnamed bit-field or an (array of) empty record(s).
479 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
480                          bool AllowArrays) {
481   if (FD->isUnnamedBitfield())
482     return true;
483 
484   QualType FT = FD->getType();
485 
486   // Constant arrays of empty records count as empty, strip them off.
487   // Constant arrays of zero length always count as empty.
488   if (AllowArrays)
489     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
490       if (AT->getSize() == 0)
491         return true;
492       FT = AT->getElementType();
493     }
494 
495   const RecordType *RT = FT->getAs<RecordType>();
496   if (!RT)
497     return false;
498 
499   // C++ record fields are never empty, at least in the Itanium ABI.
500   //
501   // FIXME: We should use a predicate for whether this behavior is true in the
502   // current ABI.
503   if (isa<CXXRecordDecl>(RT->getDecl()))
504     return false;
505 
506   return isEmptyRecord(Context, FT, AllowArrays);
507 }
508 
509 /// isEmptyRecord - Return true iff a structure contains only empty
510 /// fields. Note that a structure with a flexible array member is not
511 /// considered empty.
512 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
513   const RecordType *RT = T->getAs<RecordType>();
514   if (!RT)
515     return false;
516   const RecordDecl *RD = RT->getDecl();
517   if (RD->hasFlexibleArrayMember())
518     return false;
519 
520   // If this is a C++ record, check the bases first.
521   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
522     for (const auto &I : CXXRD->bases())
523       if (!isEmptyRecord(Context, I.getType(), true))
524         return false;
525 
526   for (const auto *I : RD->fields())
527     if (!isEmptyField(Context, I, AllowArrays))
528       return false;
529   return true;
530 }
531 
532 /// isSingleElementStruct - Determine if a structure is a "single
533 /// element struct", i.e. it has exactly one non-empty field or
534 /// exactly one field which is itself a single element
535 /// struct. Structures with flexible array members are never
536 /// considered single element structs.
537 ///
538 /// \return The field declaration for the single non-empty field, if
539 /// it exists.
540 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
541   const RecordType *RT = T->getAs<RecordType>();
542   if (!RT)
543     return nullptr;
544 
545   const RecordDecl *RD = RT->getDecl();
546   if (RD->hasFlexibleArrayMember())
547     return nullptr;
548 
549   const Type *Found = nullptr;
550 
551   // If this is a C++ record, check the bases first.
552   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
553     for (const auto &I : CXXRD->bases()) {
554       // Ignore empty records.
555       if (isEmptyRecord(Context, I.getType(), true))
556         continue;
557 
558       // If we already found an element then this isn't a single-element struct.
559       if (Found)
560         return nullptr;
561 
562       // If this is non-empty and not a single element struct, the composite
563       // cannot be a single element struct.
564       Found = isSingleElementStruct(I.getType(), Context);
565       if (!Found)
566         return nullptr;
567     }
568   }
569 
570   // Check for single element.
571   for (const auto *FD : RD->fields()) {
572     QualType FT = FD->getType();
573 
574     // Ignore empty fields.
575     if (isEmptyField(Context, FD, true))
576       continue;
577 
578     // If we already found an element then this isn't a single-element
579     // struct.
580     if (Found)
581       return nullptr;
582 
583     // Treat single element arrays as the element.
584     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
585       if (AT->getSize().getZExtValue() != 1)
586         break;
587       FT = AT->getElementType();
588     }
589 
590     if (!isAggregateTypeForABI(FT)) {
591       Found = FT.getTypePtr();
592     } else {
593       Found = isSingleElementStruct(FT, Context);
594       if (!Found)
595         return nullptr;
596     }
597   }
598 
599   // We don't consider a struct a single-element struct if it has
600   // padding beyond the element type.
601   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
602     return nullptr;
603 
604   return Found;
605 }
606 
607 namespace {
608 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
609                        const ABIArgInfo &AI) {
610   // This default implementation defers to the llvm backend's va_arg
611   // instruction. It can handle only passing arguments directly
612   // (typically only handled in the backend for primitive types), or
613   // aggregates passed indirectly by pointer (NOTE: if the "byval"
614   // flag has ABI impact in the callee, this implementation cannot
615   // work.)
616 
617   // Only a few cases are covered here at the moment -- those needed
618   // by the default abi.
619   llvm::Value *Val;
620 
621   if (AI.isIndirect()) {
622     assert(!AI.getPaddingType() &&
623            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
624     assert(
625         !AI.getIndirectRealign() &&
626         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
627 
628     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
629     CharUnits TyAlignForABI = TyInfo.second;
630 
631     llvm::Type *BaseTy =
632         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
633     llvm::Value *Addr =
634         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
635     return Address(Addr, TyAlignForABI);
636   } else {
637     assert((AI.isDirect() || AI.isExtend()) &&
638            "Unexpected ArgInfo Kind in generic VAArg emitter!");
639 
640     assert(!AI.getInReg() &&
641            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
642     assert(!AI.getPaddingType() &&
643            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
644     assert(!AI.getDirectOffset() &&
645            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
646     assert(!AI.getCoerceToType() &&
647            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
648 
649     Address Temp = CGF.CreateMemTemp(Ty, "varet");
650     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
651     CGF.Builder.CreateStore(Val, Temp);
652     return Temp;
653   }
654 }
655 
656 /// DefaultABIInfo - The default implementation for ABI specific
657 /// details. This implementation provides information which results in
658 /// self-consistent and sensible LLVM IR generation, but does not
659 /// conform to any particular ABI.
660 class DefaultABIInfo : public ABIInfo {
661 public:
662   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
663 
664   ABIArgInfo classifyReturnType(QualType RetTy) const;
665   ABIArgInfo classifyArgumentType(QualType RetTy) const;
666 
667   void computeInfo(CGFunctionInfo &FI) const override {
668     if (!getCXXABI().classifyReturnType(FI))
669       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
670     for (auto &I : FI.arguments())
671       I.info = classifyArgumentType(I.type);
672   }
673 
674   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
675                     QualType Ty) const override {
676     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
677   }
678 };
679 
680 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
681 public:
682   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
683     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
684 };
685 
686 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
687   Ty = useFirstFieldIfTransparentUnion(Ty);
688 
689   if (isAggregateTypeForABI(Ty)) {
690     // Records with non-trivial destructors/copy-constructors should not be
691     // passed by value.
692     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
693       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
694 
695     return getNaturalAlignIndirect(Ty);
696   }
697 
698   // Treat an enum type as its underlying type.
699   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
700     Ty = EnumTy->getDecl()->getIntegerType();
701 
702   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
703                                         : ABIArgInfo::getDirect());
704 }
705 
706 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
707   if (RetTy->isVoidType())
708     return ABIArgInfo::getIgnore();
709 
710   if (isAggregateTypeForABI(RetTy))
711     return getNaturalAlignIndirect(RetTy);
712 
713   // Treat an enum type as its underlying type.
714   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
715     RetTy = EnumTy->getDecl()->getIntegerType();
716 
717   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
718                                            : ABIArgInfo::getDirect());
719 }
720 
721 //===----------------------------------------------------------------------===//
722 // WebAssembly ABI Implementation
723 //
724 // This is a very simple ABI that relies a lot on DefaultABIInfo.
725 //===----------------------------------------------------------------------===//
726 
727 class WebAssemblyABIInfo final : public SwiftABIInfo {
728   DefaultABIInfo defaultInfo;
729 
730 public:
731   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
732       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
733 
734 private:
735   ABIArgInfo classifyReturnType(QualType RetTy) const;
736   ABIArgInfo classifyArgumentType(QualType Ty) const;
737 
738   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
739   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
740   // overload them.
741   void computeInfo(CGFunctionInfo &FI) const override {
742     if (!getCXXABI().classifyReturnType(FI))
743       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
744     for (auto &Arg : FI.arguments())
745       Arg.info = classifyArgumentType(Arg.type);
746   }
747 
748   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
749                     QualType Ty) const override;
750 
751   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
752                                     bool asReturnValue) const override {
753     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
754   }
755 
756   bool isSwiftErrorInRegister() const override {
757     return false;
758   }
759 };
760 
761 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
762 public:
763   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
764       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
765 
766   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
767                            CodeGen::CodeGenModule &CGM) const override {
768     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
769     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
770       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
771         llvm::Function *Fn = cast<llvm::Function>(GV);
772         llvm::AttrBuilder B;
773         B.addAttribute("wasm-import-module", Attr->getImportModule());
774         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
775       }
776       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
777         llvm::Function *Fn = cast<llvm::Function>(GV);
778         llvm::AttrBuilder B;
779         B.addAttribute("wasm-import-name", Attr->getImportName());
780         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
781       }
782       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
783         llvm::Function *Fn = cast<llvm::Function>(GV);
784         llvm::AttrBuilder B;
785         B.addAttribute("wasm-export-name", Attr->getExportName());
786         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
787       }
788     }
789 
790     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
791       llvm::Function *Fn = cast<llvm::Function>(GV);
792       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
793         Fn->addFnAttr("no-prototype");
794     }
795   }
796 };
797 
798 /// Classify argument of given type \p Ty.
799 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
800   Ty = useFirstFieldIfTransparentUnion(Ty);
801 
802   if (isAggregateTypeForABI(Ty)) {
803     // Records with non-trivial destructors/copy-constructors should not be
804     // passed by value.
805     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
806       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
807     // Ignore empty structs/unions.
808     if (isEmptyRecord(getContext(), Ty, true))
809       return ABIArgInfo::getIgnore();
810     // Lower single-element structs to just pass a regular value. TODO: We
811     // could do reasonable-size multiple-element structs too, using getExpand(),
812     // though watch out for things like bitfields.
813     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
814       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
815   }
816 
817   // Otherwise just do the default thing.
818   return defaultInfo.classifyArgumentType(Ty);
819 }
820 
821 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
822   if (isAggregateTypeForABI(RetTy)) {
823     // Records with non-trivial destructors/copy-constructors should not be
824     // returned by value.
825     if (!getRecordArgABI(RetTy, getCXXABI())) {
826       // Ignore empty structs/unions.
827       if (isEmptyRecord(getContext(), RetTy, true))
828         return ABIArgInfo::getIgnore();
829       // Lower single-element structs to just return a regular value. TODO: We
830       // could do reasonable-size multiple-element structs too, using
831       // ABIArgInfo::getDirect().
832       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
833         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
834     }
835   }
836 
837   // Otherwise just do the default thing.
838   return defaultInfo.classifyReturnType(RetTy);
839 }
840 
841 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
842                                       QualType Ty) const {
843   bool IsIndirect = isAggregateTypeForABI(Ty) &&
844                     !isEmptyRecord(getContext(), Ty, true) &&
845                     !isSingleElementStruct(Ty, getContext());
846   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
847                           getContext().getTypeInfoInChars(Ty),
848                           CharUnits::fromQuantity(4),
849                           /*AllowHigherAlign=*/true);
850 }
851 
852 //===----------------------------------------------------------------------===//
853 // le32/PNaCl bitcode ABI Implementation
854 //
855 // This is a simplified version of the x86_32 ABI.  Arguments and return values
856 // are always passed on the stack.
857 //===----------------------------------------------------------------------===//
858 
859 class PNaClABIInfo : public ABIInfo {
860  public:
861   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
862 
863   ABIArgInfo classifyReturnType(QualType RetTy) const;
864   ABIArgInfo classifyArgumentType(QualType RetTy) const;
865 
866   void computeInfo(CGFunctionInfo &FI) const override;
867   Address EmitVAArg(CodeGenFunction &CGF,
868                     Address VAListAddr, QualType Ty) const override;
869 };
870 
871 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
872  public:
873   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
874     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
875 };
876 
877 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
878   if (!getCXXABI().classifyReturnType(FI))
879     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
880 
881   for (auto &I : FI.arguments())
882     I.info = classifyArgumentType(I.type);
883 }
884 
885 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
886                                 QualType Ty) const {
887   // The PNaCL ABI is a bit odd, in that varargs don't use normal
888   // function classification. Structs get passed directly for varargs
889   // functions, through a rewriting transform in
890   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
891   // this target to actually support a va_arg instructions with an
892   // aggregate type, unlike other targets.
893   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
894 }
895 
896 /// Classify argument of given type \p Ty.
897 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
898   if (isAggregateTypeForABI(Ty)) {
899     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
900       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
901     return getNaturalAlignIndirect(Ty);
902   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
903     // Treat an enum type as its underlying type.
904     Ty = EnumTy->getDecl()->getIntegerType();
905   } else if (Ty->isFloatingType()) {
906     // Floating-point types don't go inreg.
907     return ABIArgInfo::getDirect();
908   }
909 
910   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
911                                         : ABIArgInfo::getDirect());
912 }
913 
914 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
915   if (RetTy->isVoidType())
916     return ABIArgInfo::getIgnore();
917 
918   // In the PNaCl ABI we always return records/structures on the stack.
919   if (isAggregateTypeForABI(RetTy))
920     return getNaturalAlignIndirect(RetTy);
921 
922   // Treat an enum type as its underlying type.
923   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
924     RetTy = EnumTy->getDecl()->getIntegerType();
925 
926   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
927                                            : ABIArgInfo::getDirect());
928 }
929 
930 /// IsX86_MMXType - Return true if this is an MMX type.
931 bool IsX86_MMXType(llvm::Type *IRType) {
932   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
933   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
934     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
935     IRType->getScalarSizeInBits() != 64;
936 }
937 
938 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
939                                           StringRef Constraint,
940                                           llvm::Type* Ty) {
941   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
942                      .Cases("y", "&y", "^Ym", true)
943                      .Default(false);
944   if (IsMMXCons && Ty->isVectorTy()) {
945     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
946       // Invalid MMX constraint
947       return nullptr;
948     }
949 
950     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
951   }
952 
953   // No operation needed
954   return Ty;
955 }
956 
957 /// Returns true if this type can be passed in SSE registers with the
958 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
959 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
960   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
961     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
962       if (BT->getKind() == BuiltinType::LongDouble) {
963         if (&Context.getTargetInfo().getLongDoubleFormat() ==
964             &llvm::APFloat::x87DoubleExtended())
965           return false;
966       }
967       return true;
968     }
969   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
970     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
971     // registers specially.
972     unsigned VecSize = Context.getTypeSize(VT);
973     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
974       return true;
975   }
976   return false;
977 }
978 
979 /// Returns true if this aggregate is small enough to be passed in SSE registers
980 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
981 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
982   return NumMembers <= 4;
983 }
984 
985 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
986 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
987   auto AI = ABIArgInfo::getDirect(T);
988   AI.setInReg(true);
989   AI.setCanBeFlattened(false);
990   return AI;
991 }
992 
993 //===----------------------------------------------------------------------===//
994 // X86-32 ABI Implementation
995 //===----------------------------------------------------------------------===//
996 
997 /// Similar to llvm::CCState, but for Clang.
998 struct CCState {
999   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
1000 
1001   unsigned CC;
1002   unsigned FreeRegs;
1003   unsigned FreeSSERegs;
1004 };
1005 
1006 enum {
1007   // Vectorcall only allows the first 6 parameters to be passed in registers.
1008   VectorcallMaxParamNumAsReg = 6
1009 };
1010 
1011 /// X86_32ABIInfo - The X86-32 ABI information.
1012 class X86_32ABIInfo : public SwiftABIInfo {
1013   enum Class {
1014     Integer,
1015     Float
1016   };
1017 
1018   static const unsigned MinABIStackAlignInBytes = 4;
1019 
1020   bool IsDarwinVectorABI;
1021   bool IsRetSmallStructInRegABI;
1022   bool IsWin32StructABI;
1023   bool IsSoftFloatABI;
1024   bool IsMCUABI;
1025   unsigned DefaultNumRegisterParameters;
1026 
1027   static bool isRegisterSize(unsigned Size) {
1028     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1029   }
1030 
1031   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1032     // FIXME: Assumes vectorcall is in use.
1033     return isX86VectorTypeForVectorCall(getContext(), Ty);
1034   }
1035 
1036   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1037                                          uint64_t NumMembers) const override {
1038     // FIXME: Assumes vectorcall is in use.
1039     return isX86VectorCallAggregateSmallEnough(NumMembers);
1040   }
1041 
1042   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1043 
1044   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1045   /// such that the argument will be passed in memory.
1046   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1047 
1048   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1049 
1050   /// Return the alignment to use for the given type on the stack.
1051   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1052 
1053   Class classify(QualType Ty) const;
1054   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1055   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1056 
1057   /// Updates the number of available free registers, returns
1058   /// true if any registers were allocated.
1059   bool updateFreeRegs(QualType Ty, CCState &State) const;
1060 
1061   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1062                                 bool &NeedsPadding) const;
1063   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1064 
1065   bool canExpandIndirectArgument(QualType Ty) const;
1066 
1067   /// Rewrite the function info so that all memory arguments use
1068   /// inalloca.
1069   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1070 
1071   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1072                            CharUnits &StackOffset, ABIArgInfo &Info,
1073                            QualType Type) const;
1074   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1075                              bool &UsedInAlloca) const;
1076 
1077 public:
1078 
1079   void computeInfo(CGFunctionInfo &FI) const override;
1080   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1081                     QualType Ty) const override;
1082 
1083   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1084                 bool RetSmallStructInRegABI, bool Win32StructABI,
1085                 unsigned NumRegisterParameters, bool SoftFloatABI)
1086     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1087       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1088       IsWin32StructABI(Win32StructABI),
1089       IsSoftFloatABI(SoftFloatABI),
1090       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1091       DefaultNumRegisterParameters(NumRegisterParameters) {}
1092 
1093   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1094                                     bool asReturnValue) const override {
1095     // LLVM's x86-32 lowering currently only assigns up to three
1096     // integer registers and three fp registers.  Oddly, it'll use up to
1097     // four vector registers for vectors, but those can overlap with the
1098     // scalar registers.
1099     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1100   }
1101 
1102   bool isSwiftErrorInRegister() const override {
1103     // x86-32 lowering does not support passing swifterror in a register.
1104     return false;
1105   }
1106 };
1107 
1108 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1109 public:
1110   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1111                           bool RetSmallStructInRegABI, bool Win32StructABI,
1112                           unsigned NumRegisterParameters, bool SoftFloatABI)
1113       : TargetCodeGenInfo(new X86_32ABIInfo(
1114             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1115             NumRegisterParameters, SoftFloatABI)) {}
1116 
1117   static bool isStructReturnInRegABI(
1118       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1119 
1120   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1121                            CodeGen::CodeGenModule &CGM) const override;
1122 
1123   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1124     // Darwin uses different dwarf register numbers for EH.
1125     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1126     return 4;
1127   }
1128 
1129   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1130                                llvm::Value *Address) const override;
1131 
1132   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1133                                   StringRef Constraint,
1134                                   llvm::Type* Ty) const override {
1135     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1136   }
1137 
1138   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1139                                 std::string &Constraints,
1140                                 std::vector<llvm::Type *> &ResultRegTypes,
1141                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1142                                 std::vector<LValue> &ResultRegDests,
1143                                 std::string &AsmString,
1144                                 unsigned NumOutputs) const override;
1145 
1146   llvm::Constant *
1147   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1148     unsigned Sig = (0xeb << 0) |  // jmp rel8
1149                    (0x06 << 8) |  //           .+0x08
1150                    ('v' << 16) |
1151                    ('2' << 24);
1152     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1153   }
1154 
1155   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1156     return "movl\t%ebp, %ebp"
1157            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1158   }
1159 };
1160 
1161 }
1162 
1163 /// Rewrite input constraint references after adding some output constraints.
1164 /// In the case where there is one output and one input and we add one output,
1165 /// we need to replace all operand references greater than or equal to 1:
1166 ///     mov $0, $1
1167 ///     mov eax, $1
1168 /// The result will be:
1169 ///     mov $0, $2
1170 ///     mov eax, $2
1171 static void rewriteInputConstraintReferences(unsigned FirstIn,
1172                                              unsigned NumNewOuts,
1173                                              std::string &AsmString) {
1174   std::string Buf;
1175   llvm::raw_string_ostream OS(Buf);
1176   size_t Pos = 0;
1177   while (Pos < AsmString.size()) {
1178     size_t DollarStart = AsmString.find('$', Pos);
1179     if (DollarStart == std::string::npos)
1180       DollarStart = AsmString.size();
1181     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1182     if (DollarEnd == std::string::npos)
1183       DollarEnd = AsmString.size();
1184     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1185     Pos = DollarEnd;
1186     size_t NumDollars = DollarEnd - DollarStart;
1187     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1188       // We have an operand reference.
1189       size_t DigitStart = Pos;
1190       if (AsmString[DigitStart] == '{') {
1191         OS << '{';
1192         ++DigitStart;
1193       }
1194       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1195       if (DigitEnd == std::string::npos)
1196         DigitEnd = AsmString.size();
1197       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1198       unsigned OperandIndex;
1199       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1200         if (OperandIndex >= FirstIn)
1201           OperandIndex += NumNewOuts;
1202         OS << OperandIndex;
1203       } else {
1204         OS << OperandStr;
1205       }
1206       Pos = DigitEnd;
1207     }
1208   }
1209   AsmString = std::move(OS.str());
1210 }
1211 
1212 /// Add output constraints for EAX:EDX because they are return registers.
1213 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1214     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1215     std::vector<llvm::Type *> &ResultRegTypes,
1216     std::vector<llvm::Type *> &ResultTruncRegTypes,
1217     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1218     unsigned NumOutputs) const {
1219   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1220 
1221   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1222   // larger.
1223   if (!Constraints.empty())
1224     Constraints += ',';
1225   if (RetWidth <= 32) {
1226     Constraints += "={eax}";
1227     ResultRegTypes.push_back(CGF.Int32Ty);
1228   } else {
1229     // Use the 'A' constraint for EAX:EDX.
1230     Constraints += "=A";
1231     ResultRegTypes.push_back(CGF.Int64Ty);
1232   }
1233 
1234   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1235   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1236   ResultTruncRegTypes.push_back(CoerceTy);
1237 
1238   // Coerce the integer by bitcasting the return slot pointer.
1239   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1240                                                   CoerceTy->getPointerTo()));
1241   ResultRegDests.push_back(ReturnSlot);
1242 
1243   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1244 }
1245 
1246 /// shouldReturnTypeInRegister - Determine if the given type should be
1247 /// returned in a register (for the Darwin and MCU ABI).
1248 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1249                                                ASTContext &Context) const {
1250   uint64_t Size = Context.getTypeSize(Ty);
1251 
1252   // For i386, type must be register sized.
1253   // For the MCU ABI, it only needs to be <= 8-byte
1254   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1255    return false;
1256 
1257   if (Ty->isVectorType()) {
1258     // 64- and 128- bit vectors inside structures are not returned in
1259     // registers.
1260     if (Size == 64 || Size == 128)
1261       return false;
1262 
1263     return true;
1264   }
1265 
1266   // If this is a builtin, pointer, enum, complex type, member pointer, or
1267   // member function pointer it is ok.
1268   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1269       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1270       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1271     return true;
1272 
1273   // Arrays are treated like records.
1274   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1275     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1276 
1277   // Otherwise, it must be a record type.
1278   const RecordType *RT = Ty->getAs<RecordType>();
1279   if (!RT) return false;
1280 
1281   // FIXME: Traverse bases here too.
1282 
1283   // Structure types are passed in register if all fields would be
1284   // passed in a register.
1285   for (const auto *FD : RT->getDecl()->fields()) {
1286     // Empty fields are ignored.
1287     if (isEmptyField(Context, FD, true))
1288       continue;
1289 
1290     // Check fields recursively.
1291     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1292       return false;
1293   }
1294   return true;
1295 }
1296 
1297 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1298   // Treat complex types as the element type.
1299   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1300     Ty = CTy->getElementType();
1301 
1302   // Check for a type which we know has a simple scalar argument-passing
1303   // convention without any padding.  (We're specifically looking for 32
1304   // and 64-bit integer and integer-equivalents, float, and double.)
1305   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1306       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1307     return false;
1308 
1309   uint64_t Size = Context.getTypeSize(Ty);
1310   return Size == 32 || Size == 64;
1311 }
1312 
1313 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1314                           uint64_t &Size) {
1315   for (const auto *FD : RD->fields()) {
1316     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1317     // argument is smaller than 32-bits, expanding the struct will create
1318     // alignment padding.
1319     if (!is32Or64BitBasicType(FD->getType(), Context))
1320       return false;
1321 
1322     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1323     // how to expand them yet, and the predicate for telling if a bitfield still
1324     // counts as "basic" is more complicated than what we were doing previously.
1325     if (FD->isBitField())
1326       return false;
1327 
1328     Size += Context.getTypeSize(FD->getType());
1329   }
1330   return true;
1331 }
1332 
1333 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1334                                  uint64_t &Size) {
1335   // Don't do this if there are any non-empty bases.
1336   for (const CXXBaseSpecifier &Base : RD->bases()) {
1337     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1338                               Size))
1339       return false;
1340   }
1341   if (!addFieldSizes(Context, RD, Size))
1342     return false;
1343   return true;
1344 }
1345 
1346 /// Test whether an argument type which is to be passed indirectly (on the
1347 /// stack) would have the equivalent layout if it was expanded into separate
1348 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1349 /// optimizations.
1350 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1351   // We can only expand structure types.
1352   const RecordType *RT = Ty->getAs<RecordType>();
1353   if (!RT)
1354     return false;
1355   const RecordDecl *RD = RT->getDecl();
1356   uint64_t Size = 0;
1357   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1358     if (!IsWin32StructABI) {
1359       // On non-Windows, we have to conservatively match our old bitcode
1360       // prototypes in order to be ABI-compatible at the bitcode level.
1361       if (!CXXRD->isCLike())
1362         return false;
1363     } else {
1364       // Don't do this for dynamic classes.
1365       if (CXXRD->isDynamicClass())
1366         return false;
1367     }
1368     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1369       return false;
1370   } else {
1371     if (!addFieldSizes(getContext(), RD, Size))
1372       return false;
1373   }
1374 
1375   // We can do this if there was no alignment padding.
1376   return Size == getContext().getTypeSize(Ty);
1377 }
1378 
1379 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1380   // If the return value is indirect, then the hidden argument is consuming one
1381   // integer register.
1382   if (State.FreeRegs) {
1383     --State.FreeRegs;
1384     if (!IsMCUABI)
1385       return getNaturalAlignIndirectInReg(RetTy);
1386   }
1387   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1388 }
1389 
1390 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1391                                              CCState &State) const {
1392   if (RetTy->isVoidType())
1393     return ABIArgInfo::getIgnore();
1394 
1395   const Type *Base = nullptr;
1396   uint64_t NumElts = 0;
1397   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1398        State.CC == llvm::CallingConv::X86_RegCall) &&
1399       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1400     // The LLVM struct type for such an aggregate should lower properly.
1401     return ABIArgInfo::getDirect();
1402   }
1403 
1404   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1405     // On Darwin, some vectors are returned in registers.
1406     if (IsDarwinVectorABI) {
1407       uint64_t Size = getContext().getTypeSize(RetTy);
1408 
1409       // 128-bit vectors are a special case; they are returned in
1410       // registers and we need to make sure to pick a type the LLVM
1411       // backend will like.
1412       if (Size == 128)
1413         return ABIArgInfo::getDirect(llvm::VectorType::get(
1414                   llvm::Type::getInt64Ty(getVMContext()), 2));
1415 
1416       // Always return in register if it fits in a general purpose
1417       // register, or if it is 64 bits and has a single element.
1418       if ((Size == 8 || Size == 16 || Size == 32) ||
1419           (Size == 64 && VT->getNumElements() == 1))
1420         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1421                                                             Size));
1422 
1423       return getIndirectReturnResult(RetTy, State);
1424     }
1425 
1426     return ABIArgInfo::getDirect();
1427   }
1428 
1429   if (isAggregateTypeForABI(RetTy)) {
1430     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1431       // Structures with flexible arrays are always indirect.
1432       if (RT->getDecl()->hasFlexibleArrayMember())
1433         return getIndirectReturnResult(RetTy, State);
1434     }
1435 
1436     // If specified, structs and unions are always indirect.
1437     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1438       return getIndirectReturnResult(RetTy, State);
1439 
1440     // Ignore empty structs/unions.
1441     if (isEmptyRecord(getContext(), RetTy, true))
1442       return ABIArgInfo::getIgnore();
1443 
1444     // Small structures which are register sized are generally returned
1445     // in a register.
1446     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1447       uint64_t Size = getContext().getTypeSize(RetTy);
1448 
1449       // As a special-case, if the struct is a "single-element" struct, and
1450       // the field is of type "float" or "double", return it in a
1451       // floating-point register. (MSVC does not apply this special case.)
1452       // We apply a similar transformation for pointer types to improve the
1453       // quality of the generated IR.
1454       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1455         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1456             || SeltTy->hasPointerRepresentation())
1457           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1458 
1459       // FIXME: We should be able to narrow this integer in cases with dead
1460       // padding.
1461       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1462     }
1463 
1464     return getIndirectReturnResult(RetTy, State);
1465   }
1466 
1467   // Treat an enum type as its underlying type.
1468   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1469     RetTy = EnumTy->getDecl()->getIntegerType();
1470 
1471   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1472                                            : ABIArgInfo::getDirect());
1473 }
1474 
1475 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1476   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1477 }
1478 
1479 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1480   const RecordType *RT = Ty->getAs<RecordType>();
1481   if (!RT)
1482     return 0;
1483   const RecordDecl *RD = RT->getDecl();
1484 
1485   // If this is a C++ record, check the bases first.
1486   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1487     for (const auto &I : CXXRD->bases())
1488       if (!isRecordWithSSEVectorType(Context, I.getType()))
1489         return false;
1490 
1491   for (const auto *i : RD->fields()) {
1492     QualType FT = i->getType();
1493 
1494     if (isSSEVectorType(Context, FT))
1495       return true;
1496 
1497     if (isRecordWithSSEVectorType(Context, FT))
1498       return true;
1499   }
1500 
1501   return false;
1502 }
1503 
1504 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1505                                                  unsigned Align) const {
1506   // Otherwise, if the alignment is less than or equal to the minimum ABI
1507   // alignment, just use the default; the backend will handle this.
1508   if (Align <= MinABIStackAlignInBytes)
1509     return 0; // Use default alignment.
1510 
1511   // On non-Darwin, the stack type alignment is always 4.
1512   if (!IsDarwinVectorABI) {
1513     // Set explicit alignment, since we may need to realign the top.
1514     return MinABIStackAlignInBytes;
1515   }
1516 
1517   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1518   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1519                       isRecordWithSSEVectorType(getContext(), Ty)))
1520     return 16;
1521 
1522   return MinABIStackAlignInBytes;
1523 }
1524 
1525 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1526                                             CCState &State) const {
1527   if (!ByVal) {
1528     if (State.FreeRegs) {
1529       --State.FreeRegs; // Non-byval indirects just use one pointer.
1530       if (!IsMCUABI)
1531         return getNaturalAlignIndirectInReg(Ty);
1532     }
1533     return getNaturalAlignIndirect(Ty, false);
1534   }
1535 
1536   // Compute the byval alignment.
1537   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1538   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1539   if (StackAlign == 0)
1540     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1541 
1542   // If the stack alignment is less than the type alignment, realign the
1543   // argument.
1544   bool Realign = TypeAlign > StackAlign;
1545   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1546                                  /*ByVal=*/true, Realign);
1547 }
1548 
1549 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1550   const Type *T = isSingleElementStruct(Ty, getContext());
1551   if (!T)
1552     T = Ty.getTypePtr();
1553 
1554   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1555     BuiltinType::Kind K = BT->getKind();
1556     if (K == BuiltinType::Float || K == BuiltinType::Double)
1557       return Float;
1558   }
1559   return Integer;
1560 }
1561 
1562 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1563   if (!IsSoftFloatABI) {
1564     Class C = classify(Ty);
1565     if (C == Float)
1566       return false;
1567   }
1568 
1569   unsigned Size = getContext().getTypeSize(Ty);
1570   unsigned SizeInRegs = (Size + 31) / 32;
1571 
1572   if (SizeInRegs == 0)
1573     return false;
1574 
1575   if (!IsMCUABI) {
1576     if (SizeInRegs > State.FreeRegs) {
1577       State.FreeRegs = 0;
1578       return false;
1579     }
1580   } else {
1581     // The MCU psABI allows passing parameters in-reg even if there are
1582     // earlier parameters that are passed on the stack. Also,
1583     // it does not allow passing >8-byte structs in-register,
1584     // even if there are 3 free registers available.
1585     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1586       return false;
1587   }
1588 
1589   State.FreeRegs -= SizeInRegs;
1590   return true;
1591 }
1592 
1593 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1594                                              bool &InReg,
1595                                              bool &NeedsPadding) const {
1596   // On Windows, aggregates other than HFAs are never passed in registers, and
1597   // they do not consume register slots. Homogenous floating-point aggregates
1598   // (HFAs) have already been dealt with at this point.
1599   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1600     return false;
1601 
1602   NeedsPadding = false;
1603   InReg = !IsMCUABI;
1604 
1605   if (!updateFreeRegs(Ty, State))
1606     return false;
1607 
1608   if (IsMCUABI)
1609     return true;
1610 
1611   if (State.CC == llvm::CallingConv::X86_FastCall ||
1612       State.CC == llvm::CallingConv::X86_VectorCall ||
1613       State.CC == llvm::CallingConv::X86_RegCall) {
1614     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1615       NeedsPadding = true;
1616 
1617     return false;
1618   }
1619 
1620   return true;
1621 }
1622 
1623 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1624   if (!updateFreeRegs(Ty, State))
1625     return false;
1626 
1627   if (IsMCUABI)
1628     return false;
1629 
1630   if (State.CC == llvm::CallingConv::X86_FastCall ||
1631       State.CC == llvm::CallingConv::X86_VectorCall ||
1632       State.CC == llvm::CallingConv::X86_RegCall) {
1633     if (getContext().getTypeSize(Ty) > 32)
1634       return false;
1635 
1636     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1637         Ty->isReferenceType());
1638   }
1639 
1640   return true;
1641 }
1642 
1643 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1644                                                CCState &State) const {
1645   // FIXME: Set alignment on indirect arguments.
1646 
1647   Ty = useFirstFieldIfTransparentUnion(Ty);
1648 
1649   // Check with the C++ ABI first.
1650   const RecordType *RT = Ty->getAs<RecordType>();
1651   if (RT) {
1652     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1653     if (RAA == CGCXXABI::RAA_Indirect) {
1654       return getIndirectResult(Ty, false, State);
1655     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1656       // The field index doesn't matter, we'll fix it up later.
1657       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1658     }
1659   }
1660 
1661   // Regcall uses the concept of a homogenous vector aggregate, similar
1662   // to other targets.
1663   const Type *Base = nullptr;
1664   uint64_t NumElts = 0;
1665   if (State.CC == llvm::CallingConv::X86_RegCall &&
1666       isHomogeneousAggregate(Ty, Base, NumElts)) {
1667 
1668     if (State.FreeSSERegs >= NumElts) {
1669       State.FreeSSERegs -= NumElts;
1670       if (Ty->isBuiltinType() || Ty->isVectorType())
1671         return ABIArgInfo::getDirect();
1672       return ABIArgInfo::getExpand();
1673     }
1674     return getIndirectResult(Ty, /*ByVal=*/false, State);
1675   }
1676 
1677   if (isAggregateTypeForABI(Ty)) {
1678     // Structures with flexible arrays are always indirect.
1679     // FIXME: This should not be byval!
1680     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1681       return getIndirectResult(Ty, true, State);
1682 
1683     // Ignore empty structs/unions on non-Windows.
1684     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1685       return ABIArgInfo::getIgnore();
1686 
1687     llvm::LLVMContext &LLVMContext = getVMContext();
1688     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1689     bool NeedsPadding = false;
1690     bool InReg;
1691     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1692       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1693       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1694       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1695       if (InReg)
1696         return ABIArgInfo::getDirectInReg(Result);
1697       else
1698         return ABIArgInfo::getDirect(Result);
1699     }
1700     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1701 
1702     // Expand small (<= 128-bit) record types when we know that the stack layout
1703     // of those arguments will match the struct. This is important because the
1704     // LLVM backend isn't smart enough to remove byval, which inhibits many
1705     // optimizations.
1706     // Don't do this for the MCU if there are still free integer registers
1707     // (see X86_64 ABI for full explanation).
1708     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1709         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1710       return ABIArgInfo::getExpandWithPadding(
1711           State.CC == llvm::CallingConv::X86_FastCall ||
1712               State.CC == llvm::CallingConv::X86_VectorCall ||
1713               State.CC == llvm::CallingConv::X86_RegCall,
1714           PaddingType);
1715 
1716     return getIndirectResult(Ty, true, State);
1717   }
1718 
1719   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1720     // On Darwin, some vectors are passed in memory, we handle this by passing
1721     // it as an i8/i16/i32/i64.
1722     if (IsDarwinVectorABI) {
1723       uint64_t Size = getContext().getTypeSize(Ty);
1724       if ((Size == 8 || Size == 16 || Size == 32) ||
1725           (Size == 64 && VT->getNumElements() == 1))
1726         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1727                                                             Size));
1728     }
1729 
1730     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1731       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1732 
1733     return ABIArgInfo::getDirect();
1734   }
1735 
1736 
1737   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1738     Ty = EnumTy->getDecl()->getIntegerType();
1739 
1740   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1741 
1742   if (Ty->isPromotableIntegerType()) {
1743     if (InReg)
1744       return ABIArgInfo::getExtendInReg(Ty);
1745     return ABIArgInfo::getExtend(Ty);
1746   }
1747 
1748   if (InReg)
1749     return ABIArgInfo::getDirectInReg();
1750   return ABIArgInfo::getDirect();
1751 }
1752 
1753 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1754                                           bool &UsedInAlloca) const {
1755   // Vectorcall x86 works subtly different than in x64, so the format is
1756   // a bit different than the x64 version.  First, all vector types (not HVAs)
1757   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1758   // This differs from the x64 implementation, where the first 6 by INDEX get
1759   // registers.
1760   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1761   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1762   // first take up the remaining YMM/XMM registers. If insufficient registers
1763   // remain but an integer register (ECX/EDX) is available, it will be passed
1764   // in that, else, on the stack.
1765   for (auto &I : FI.arguments()) {
1766     // First pass do all the vector types.
1767     const Type *Base = nullptr;
1768     uint64_t NumElts = 0;
1769     const QualType& Ty = I.type;
1770     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1771         isHomogeneousAggregate(Ty, Base, NumElts)) {
1772       if (State.FreeSSERegs >= NumElts) {
1773         State.FreeSSERegs -= NumElts;
1774         I.info = ABIArgInfo::getDirect();
1775       } else {
1776         I.info = classifyArgumentType(Ty, State);
1777       }
1778       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1779     }
1780   }
1781 
1782   for (auto &I : FI.arguments()) {
1783     // Second pass, do the rest!
1784     const Type *Base = nullptr;
1785     uint64_t NumElts = 0;
1786     const QualType& Ty = I.type;
1787     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1788 
1789     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1790       // Assign true HVAs (non vector/native FP types).
1791       if (State.FreeSSERegs >= NumElts) {
1792         State.FreeSSERegs -= NumElts;
1793         I.info = getDirectX86Hva();
1794       } else {
1795         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1796       }
1797     } else if (!IsHva) {
1798       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1799       I.info = classifyArgumentType(Ty, State);
1800       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1801     }
1802   }
1803 }
1804 
1805 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1806   CCState State(FI.getCallingConvention());
1807   if (IsMCUABI)
1808     State.FreeRegs = 3;
1809   else if (State.CC == llvm::CallingConv::X86_FastCall)
1810     State.FreeRegs = 2;
1811   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1812     State.FreeRegs = 2;
1813     State.FreeSSERegs = 6;
1814   } else if (FI.getHasRegParm())
1815     State.FreeRegs = FI.getRegParm();
1816   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1817     State.FreeRegs = 5;
1818     State.FreeSSERegs = 8;
1819   } else
1820     State.FreeRegs = DefaultNumRegisterParameters;
1821 
1822   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1823     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1824   } else if (FI.getReturnInfo().isIndirect()) {
1825     // The C++ ABI is not aware of register usage, so we have to check if the
1826     // return value was sret and put it in a register ourselves if appropriate.
1827     if (State.FreeRegs) {
1828       --State.FreeRegs;  // The sret parameter consumes a register.
1829       if (!IsMCUABI)
1830         FI.getReturnInfo().setInReg(true);
1831     }
1832   }
1833 
1834   // The chain argument effectively gives us another free register.
1835   if (FI.isChainCall())
1836     ++State.FreeRegs;
1837 
1838   bool UsedInAlloca = false;
1839   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1840     computeVectorCallArgs(FI, State, UsedInAlloca);
1841   } else {
1842     // If not vectorcall, revert to normal behavior.
1843     for (auto &I : FI.arguments()) {
1844       I.info = classifyArgumentType(I.type, State);
1845       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1846     }
1847   }
1848 
1849   // If we needed to use inalloca for any argument, do a second pass and rewrite
1850   // all the memory arguments to use inalloca.
1851   if (UsedInAlloca)
1852     rewriteWithInAlloca(FI);
1853 }
1854 
1855 void
1856 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1857                                    CharUnits &StackOffset, ABIArgInfo &Info,
1858                                    QualType Type) const {
1859   // Arguments are always 4-byte-aligned.
1860   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1861 
1862   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1863   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1864   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1865   StackOffset += getContext().getTypeSizeInChars(Type);
1866 
1867   // Insert padding bytes to respect alignment.
1868   CharUnits FieldEnd = StackOffset;
1869   StackOffset = FieldEnd.alignTo(FieldAlign);
1870   if (StackOffset != FieldEnd) {
1871     CharUnits NumBytes = StackOffset - FieldEnd;
1872     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1873     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1874     FrameFields.push_back(Ty);
1875   }
1876 }
1877 
1878 static bool isArgInAlloca(const ABIArgInfo &Info) {
1879   // Leave ignored and inreg arguments alone.
1880   switch (Info.getKind()) {
1881   case ABIArgInfo::InAlloca:
1882     return true;
1883   case ABIArgInfo::Indirect:
1884     assert(Info.getIndirectByVal());
1885     return true;
1886   case ABIArgInfo::Ignore:
1887     return false;
1888   case ABIArgInfo::Direct:
1889   case ABIArgInfo::Extend:
1890     if (Info.getInReg())
1891       return false;
1892     return true;
1893   case ABIArgInfo::Expand:
1894   case ABIArgInfo::CoerceAndExpand:
1895     // These are aggregate types which are never passed in registers when
1896     // inalloca is involved.
1897     return true;
1898   }
1899   llvm_unreachable("invalid enum");
1900 }
1901 
1902 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1903   assert(IsWin32StructABI && "inalloca only supported on win32");
1904 
1905   // Build a packed struct type for all of the arguments in memory.
1906   SmallVector<llvm::Type *, 6> FrameFields;
1907 
1908   // The stack alignment is always 4.
1909   CharUnits StackAlign = CharUnits::fromQuantity(4);
1910 
1911   CharUnits StackOffset;
1912   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1913 
1914   // Put 'this' into the struct before 'sret', if necessary.
1915   bool IsThisCall =
1916       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1917   ABIArgInfo &Ret = FI.getReturnInfo();
1918   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1919       isArgInAlloca(I->info)) {
1920     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1921     ++I;
1922   }
1923 
1924   // Put the sret parameter into the inalloca struct if it's in memory.
1925   if (Ret.isIndirect() && !Ret.getInReg()) {
1926     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1927     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1928     // On Windows, the hidden sret parameter is always returned in eax.
1929     Ret.setInAllocaSRet(IsWin32StructABI);
1930   }
1931 
1932   // Skip the 'this' parameter in ecx.
1933   if (IsThisCall)
1934     ++I;
1935 
1936   // Put arguments passed in memory into the struct.
1937   for (; I != E; ++I) {
1938     if (isArgInAlloca(I->info))
1939       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1940   }
1941 
1942   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1943                                         /*isPacked=*/true),
1944                   StackAlign);
1945 }
1946 
1947 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1948                                  Address VAListAddr, QualType Ty) const {
1949 
1950   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1951 
1952   // x86-32 changes the alignment of certain arguments on the stack.
1953   //
1954   // Just messing with TypeInfo like this works because we never pass
1955   // anything indirectly.
1956   TypeInfo.second = CharUnits::fromQuantity(
1957                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1958 
1959   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1960                           TypeInfo, CharUnits::fromQuantity(4),
1961                           /*AllowHigherAlign*/ true);
1962 }
1963 
1964 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1965     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1966   assert(Triple.getArch() == llvm::Triple::x86);
1967 
1968   switch (Opts.getStructReturnConvention()) {
1969   case CodeGenOptions::SRCK_Default:
1970     break;
1971   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1972     return false;
1973   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1974     return true;
1975   }
1976 
1977   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1978     return true;
1979 
1980   switch (Triple.getOS()) {
1981   case llvm::Triple::DragonFly:
1982   case llvm::Triple::FreeBSD:
1983   case llvm::Triple::OpenBSD:
1984   case llvm::Triple::Win32:
1985     return true;
1986   default:
1987     return false;
1988   }
1989 }
1990 
1991 void X86_32TargetCodeGenInfo::setTargetAttributes(
1992     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1993   if (GV->isDeclaration())
1994     return;
1995   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1996     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1997       llvm::Function *Fn = cast<llvm::Function>(GV);
1998       Fn->addFnAttr("stackrealign");
1999     }
2000     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2001       llvm::Function *Fn = cast<llvm::Function>(GV);
2002       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2003     }
2004   }
2005 }
2006 
2007 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2008                                                CodeGen::CodeGenFunction &CGF,
2009                                                llvm::Value *Address) const {
2010   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2011 
2012   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2013 
2014   // 0-7 are the eight integer registers;  the order is different
2015   //   on Darwin (for EH), but the range is the same.
2016   // 8 is %eip.
2017   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2018 
2019   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2020     // 12-16 are st(0..4).  Not sure why we stop at 4.
2021     // These have size 16, which is sizeof(long double) on
2022     // platforms with 8-byte alignment for that type.
2023     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2024     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2025 
2026   } else {
2027     // 9 is %eflags, which doesn't get a size on Darwin for some
2028     // reason.
2029     Builder.CreateAlignedStore(
2030         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2031                                CharUnits::One());
2032 
2033     // 11-16 are st(0..5).  Not sure why we stop at 5.
2034     // These have size 12, which is sizeof(long double) on
2035     // platforms with 4-byte alignment for that type.
2036     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2037     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2038   }
2039 
2040   return false;
2041 }
2042 
2043 //===----------------------------------------------------------------------===//
2044 // X86-64 ABI Implementation
2045 //===----------------------------------------------------------------------===//
2046 
2047 
2048 namespace {
2049 /// The AVX ABI level for X86 targets.
2050 enum class X86AVXABILevel {
2051   None,
2052   AVX,
2053   AVX512
2054 };
2055 
2056 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2057 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2058   switch (AVXLevel) {
2059   case X86AVXABILevel::AVX512:
2060     return 512;
2061   case X86AVXABILevel::AVX:
2062     return 256;
2063   case X86AVXABILevel::None:
2064     return 128;
2065   }
2066   llvm_unreachable("Unknown AVXLevel");
2067 }
2068 
2069 /// X86_64ABIInfo - The X86_64 ABI information.
2070 class X86_64ABIInfo : public SwiftABIInfo {
2071   enum Class {
2072     Integer = 0,
2073     SSE,
2074     SSEUp,
2075     X87,
2076     X87Up,
2077     ComplexX87,
2078     NoClass,
2079     Memory
2080   };
2081 
2082   /// merge - Implement the X86_64 ABI merging algorithm.
2083   ///
2084   /// Merge an accumulating classification \arg Accum with a field
2085   /// classification \arg Field.
2086   ///
2087   /// \param Accum - The accumulating classification. This should
2088   /// always be either NoClass or the result of a previous merge
2089   /// call. In addition, this should never be Memory (the caller
2090   /// should just return Memory for the aggregate).
2091   static Class merge(Class Accum, Class Field);
2092 
2093   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2094   ///
2095   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2096   /// final MEMORY or SSE classes when necessary.
2097   ///
2098   /// \param AggregateSize - The size of the current aggregate in
2099   /// the classification process.
2100   ///
2101   /// \param Lo - The classification for the parts of the type
2102   /// residing in the low word of the containing object.
2103   ///
2104   /// \param Hi - The classification for the parts of the type
2105   /// residing in the higher words of the containing object.
2106   ///
2107   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2108 
2109   /// classify - Determine the x86_64 register classes in which the
2110   /// given type T should be passed.
2111   ///
2112   /// \param Lo - The classification for the parts of the type
2113   /// residing in the low word of the containing object.
2114   ///
2115   /// \param Hi - The classification for the parts of the type
2116   /// residing in the high word of the containing object.
2117   ///
2118   /// \param OffsetBase - The bit offset of this type in the
2119   /// containing object.  Some parameters are classified different
2120   /// depending on whether they straddle an eightbyte boundary.
2121   ///
2122   /// \param isNamedArg - Whether the argument in question is a "named"
2123   /// argument, as used in AMD64-ABI 3.5.7.
2124   ///
2125   /// If a word is unused its result will be NoClass; if a type should
2126   /// be passed in Memory then at least the classification of \arg Lo
2127   /// will be Memory.
2128   ///
2129   /// The \arg Lo class will be NoClass iff the argument is ignored.
2130   ///
2131   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2132   /// also be ComplexX87.
2133   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2134                 bool isNamedArg) const;
2135 
2136   llvm::Type *GetByteVectorType(QualType Ty) const;
2137   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2138                                  unsigned IROffset, QualType SourceTy,
2139                                  unsigned SourceOffset) const;
2140   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2141                                      unsigned IROffset, QualType SourceTy,
2142                                      unsigned SourceOffset) const;
2143 
2144   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2145   /// such that the argument will be returned in memory.
2146   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2147 
2148   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2149   /// such that the argument will be passed in memory.
2150   ///
2151   /// \param freeIntRegs - The number of free integer registers remaining
2152   /// available.
2153   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2154 
2155   ABIArgInfo classifyReturnType(QualType RetTy) const;
2156 
2157   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2158                                   unsigned &neededInt, unsigned &neededSSE,
2159                                   bool isNamedArg) const;
2160 
2161   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2162                                        unsigned &NeededSSE) const;
2163 
2164   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2165                                            unsigned &NeededSSE) const;
2166 
2167   bool IsIllegalVectorType(QualType Ty) const;
2168 
2169   /// The 0.98 ABI revision clarified a lot of ambiguities,
2170   /// unfortunately in ways that were not always consistent with
2171   /// certain previous compilers.  In particular, platforms which
2172   /// required strict binary compatibility with older versions of GCC
2173   /// may need to exempt themselves.
2174   bool honorsRevision0_98() const {
2175     return !getTarget().getTriple().isOSDarwin();
2176   }
2177 
2178   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2179   /// classify it as INTEGER (for compatibility with older clang compilers).
2180   bool classifyIntegerMMXAsSSE() const {
2181     // Clang <= 3.8 did not do this.
2182     if (getContext().getLangOpts().getClangABICompat() <=
2183         LangOptions::ClangABI::Ver3_8)
2184       return false;
2185 
2186     const llvm::Triple &Triple = getTarget().getTriple();
2187     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2188       return false;
2189     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2190       return false;
2191     return true;
2192   }
2193 
2194   // GCC classifies vectors of __int128 as memory.
2195   bool passInt128VectorsInMem() const {
2196     // Clang <= 9.0 did not do this.
2197     if (getContext().getLangOpts().getClangABICompat() <=
2198         LangOptions::ClangABI::Ver9)
2199       return false;
2200 
2201     const llvm::Triple &T = getTarget().getTriple();
2202     return T.isOSLinux() || T.isOSNetBSD();
2203   }
2204 
2205   X86AVXABILevel AVXLevel;
2206   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2207   // 64-bit hardware.
2208   bool Has64BitPointers;
2209 
2210 public:
2211   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2212       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2213       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2214   }
2215 
2216   bool isPassedUsingAVXType(QualType type) const {
2217     unsigned neededInt, neededSSE;
2218     // The freeIntRegs argument doesn't matter here.
2219     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2220                                            /*isNamedArg*/true);
2221     if (info.isDirect()) {
2222       llvm::Type *ty = info.getCoerceToType();
2223       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2224         return (vectorTy->getBitWidth() > 128);
2225     }
2226     return false;
2227   }
2228 
2229   void computeInfo(CGFunctionInfo &FI) const override;
2230 
2231   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2232                     QualType Ty) const override;
2233   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2234                       QualType Ty) const override;
2235 
2236   bool has64BitPointers() const {
2237     return Has64BitPointers;
2238   }
2239 
2240   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2241                                     bool asReturnValue) const override {
2242     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2243   }
2244   bool isSwiftErrorInRegister() const override {
2245     return true;
2246   }
2247 };
2248 
2249 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2250 class WinX86_64ABIInfo : public SwiftABIInfo {
2251 public:
2252   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2253       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2254         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2255 
2256   void computeInfo(CGFunctionInfo &FI) const override;
2257 
2258   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2259                     QualType Ty) const override;
2260 
2261   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2262     // FIXME: Assumes vectorcall is in use.
2263     return isX86VectorTypeForVectorCall(getContext(), Ty);
2264   }
2265 
2266   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2267                                          uint64_t NumMembers) const override {
2268     // FIXME: Assumes vectorcall is in use.
2269     return isX86VectorCallAggregateSmallEnough(NumMembers);
2270   }
2271 
2272   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2273                                     bool asReturnValue) const override {
2274     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2275   }
2276 
2277   bool isSwiftErrorInRegister() const override {
2278     return true;
2279   }
2280 
2281 private:
2282   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2283                       bool IsVectorCall, bool IsRegCall) const;
2284   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2285                                       const ABIArgInfo &current) const;
2286   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2287                              bool IsVectorCall, bool IsRegCall) const;
2288 
2289   X86AVXABILevel AVXLevel;
2290 
2291   bool IsMingw64;
2292 };
2293 
2294 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2295 public:
2296   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2297       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2298 
2299   const X86_64ABIInfo &getABIInfo() const {
2300     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2301   }
2302 
2303   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2304   /// the autoreleaseRV/retainRV optimization.
2305   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2306     return true;
2307   }
2308 
2309   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2310     return 7;
2311   }
2312 
2313   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2314                                llvm::Value *Address) const override {
2315     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2316 
2317     // 0-15 are the 16 integer registers.
2318     // 16 is %rip.
2319     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2320     return false;
2321   }
2322 
2323   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2324                                   StringRef Constraint,
2325                                   llvm::Type* Ty) const override {
2326     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2327   }
2328 
2329   bool isNoProtoCallVariadic(const CallArgList &args,
2330                              const FunctionNoProtoType *fnType) const override {
2331     // The default CC on x86-64 sets %al to the number of SSA
2332     // registers used, and GCC sets this when calling an unprototyped
2333     // function, so we override the default behavior.  However, don't do
2334     // that when AVX types are involved: the ABI explicitly states it is
2335     // undefined, and it doesn't work in practice because of how the ABI
2336     // defines varargs anyway.
2337     if (fnType->getCallConv() == CC_C) {
2338       bool HasAVXType = false;
2339       for (CallArgList::const_iterator
2340              it = args.begin(), ie = args.end(); it != ie; ++it) {
2341         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2342           HasAVXType = true;
2343           break;
2344         }
2345       }
2346 
2347       if (!HasAVXType)
2348         return true;
2349     }
2350 
2351     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2352   }
2353 
2354   llvm::Constant *
2355   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2356     unsigned Sig = (0xeb << 0) | // jmp rel8
2357                    (0x06 << 8) | //           .+0x08
2358                    ('v' << 16) |
2359                    ('2' << 24);
2360     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2361   }
2362 
2363   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2364                            CodeGen::CodeGenModule &CGM) const override {
2365     if (GV->isDeclaration())
2366       return;
2367     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2368       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2369         llvm::Function *Fn = cast<llvm::Function>(GV);
2370         Fn->addFnAttr("stackrealign");
2371       }
2372       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2373         llvm::Function *Fn = cast<llvm::Function>(GV);
2374         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2375       }
2376     }
2377   }
2378 };
2379 
2380 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2381   // If the argument does not end in .lib, automatically add the suffix.
2382   // If the argument contains a space, enclose it in quotes.
2383   // This matches the behavior of MSVC.
2384   bool Quote = (Lib.find(" ") != StringRef::npos);
2385   std::string ArgStr = Quote ? "\"" : "";
2386   ArgStr += Lib;
2387   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2388     ArgStr += ".lib";
2389   ArgStr += Quote ? "\"" : "";
2390   return ArgStr;
2391 }
2392 
2393 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2394 public:
2395   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2396         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2397         unsigned NumRegisterParameters)
2398     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2399         Win32StructABI, NumRegisterParameters, false) {}
2400 
2401   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2402                            CodeGen::CodeGenModule &CGM) const override;
2403 
2404   void getDependentLibraryOption(llvm::StringRef Lib,
2405                                  llvm::SmallString<24> &Opt) const override {
2406     Opt = "/DEFAULTLIB:";
2407     Opt += qualifyWindowsLibrary(Lib);
2408   }
2409 
2410   void getDetectMismatchOption(llvm::StringRef Name,
2411                                llvm::StringRef Value,
2412                                llvm::SmallString<32> &Opt) const override {
2413     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2414   }
2415 };
2416 
2417 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2418                                           CodeGen::CodeGenModule &CGM) {
2419   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2420 
2421     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2422       Fn->addFnAttr("stack-probe-size",
2423                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2424     if (CGM.getCodeGenOpts().NoStackArgProbe)
2425       Fn->addFnAttr("no-stack-arg-probe");
2426   }
2427 }
2428 
2429 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2430     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2431   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2432   if (GV->isDeclaration())
2433     return;
2434   addStackProbeTargetAttributes(D, GV, CGM);
2435 }
2436 
2437 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2438 public:
2439   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2440                              X86AVXABILevel AVXLevel)
2441       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {}
2442 
2443   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2444                            CodeGen::CodeGenModule &CGM) const override;
2445 
2446   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2447     return 7;
2448   }
2449 
2450   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2451                                llvm::Value *Address) const override {
2452     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2453 
2454     // 0-15 are the 16 integer registers.
2455     // 16 is %rip.
2456     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2457     return false;
2458   }
2459 
2460   void getDependentLibraryOption(llvm::StringRef Lib,
2461                                  llvm::SmallString<24> &Opt) const override {
2462     Opt = "/DEFAULTLIB:";
2463     Opt += qualifyWindowsLibrary(Lib);
2464   }
2465 
2466   void getDetectMismatchOption(llvm::StringRef Name,
2467                                llvm::StringRef Value,
2468                                llvm::SmallString<32> &Opt) const override {
2469     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2470   }
2471 };
2472 
2473 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2474     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2475   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2476   if (GV->isDeclaration())
2477     return;
2478   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2479     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2480       llvm::Function *Fn = cast<llvm::Function>(GV);
2481       Fn->addFnAttr("stackrealign");
2482     }
2483     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2484       llvm::Function *Fn = cast<llvm::Function>(GV);
2485       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2486     }
2487   }
2488 
2489   addStackProbeTargetAttributes(D, GV, CGM);
2490 }
2491 }
2492 
2493 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2494                               Class &Hi) const {
2495   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2496   //
2497   // (a) If one of the classes is Memory, the whole argument is passed in
2498   //     memory.
2499   //
2500   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2501   //     memory.
2502   //
2503   // (c) If the size of the aggregate exceeds two eightbytes and the first
2504   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2505   //     argument is passed in memory. NOTE: This is necessary to keep the
2506   //     ABI working for processors that don't support the __m256 type.
2507   //
2508   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2509   //
2510   // Some of these are enforced by the merging logic.  Others can arise
2511   // only with unions; for example:
2512   //   union { _Complex double; unsigned; }
2513   //
2514   // Note that clauses (b) and (c) were added in 0.98.
2515   //
2516   if (Hi == Memory)
2517     Lo = Memory;
2518   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2519     Lo = Memory;
2520   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2521     Lo = Memory;
2522   if (Hi == SSEUp && Lo != SSE)
2523     Hi = SSE;
2524 }
2525 
2526 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2527   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2528   // classified recursively so that always two fields are
2529   // considered. The resulting class is calculated according to
2530   // the classes of the fields in the eightbyte:
2531   //
2532   // (a) If both classes are equal, this is the resulting class.
2533   //
2534   // (b) If one of the classes is NO_CLASS, the resulting class is
2535   // the other class.
2536   //
2537   // (c) If one of the classes is MEMORY, the result is the MEMORY
2538   // class.
2539   //
2540   // (d) If one of the classes is INTEGER, the result is the
2541   // INTEGER.
2542   //
2543   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2544   // MEMORY is used as class.
2545   //
2546   // (f) Otherwise class SSE is used.
2547 
2548   // Accum should never be memory (we should have returned) or
2549   // ComplexX87 (because this cannot be passed in a structure).
2550   assert((Accum != Memory && Accum != ComplexX87) &&
2551          "Invalid accumulated classification during merge.");
2552   if (Accum == Field || Field == NoClass)
2553     return Accum;
2554   if (Field == Memory)
2555     return Memory;
2556   if (Accum == NoClass)
2557     return Field;
2558   if (Accum == Integer || Field == Integer)
2559     return Integer;
2560   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2561       Accum == X87 || Accum == X87Up)
2562     return Memory;
2563   return SSE;
2564 }
2565 
2566 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2567                              Class &Lo, Class &Hi, bool isNamedArg) const {
2568   // FIXME: This code can be simplified by introducing a simple value class for
2569   // Class pairs with appropriate constructor methods for the various
2570   // situations.
2571 
2572   // FIXME: Some of the split computations are wrong; unaligned vectors
2573   // shouldn't be passed in registers for example, so there is no chance they
2574   // can straddle an eightbyte. Verify & simplify.
2575 
2576   Lo = Hi = NoClass;
2577 
2578   Class &Current = OffsetBase < 64 ? Lo : Hi;
2579   Current = Memory;
2580 
2581   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2582     BuiltinType::Kind k = BT->getKind();
2583 
2584     if (k == BuiltinType::Void) {
2585       Current = NoClass;
2586     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2587       Lo = Integer;
2588       Hi = Integer;
2589     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2590       Current = Integer;
2591     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2592       Current = SSE;
2593     } else if (k == BuiltinType::LongDouble) {
2594       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2595       if (LDF == &llvm::APFloat::IEEEquad()) {
2596         Lo = SSE;
2597         Hi = SSEUp;
2598       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2599         Lo = X87;
2600         Hi = X87Up;
2601       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2602         Current = SSE;
2603       } else
2604         llvm_unreachable("unexpected long double representation!");
2605     }
2606     // FIXME: _Decimal32 and _Decimal64 are SSE.
2607     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2608     return;
2609   }
2610 
2611   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2612     // Classify the underlying integer type.
2613     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2614     return;
2615   }
2616 
2617   if (Ty->hasPointerRepresentation()) {
2618     Current = Integer;
2619     return;
2620   }
2621 
2622   if (Ty->isMemberPointerType()) {
2623     if (Ty->isMemberFunctionPointerType()) {
2624       if (Has64BitPointers) {
2625         // If Has64BitPointers, this is an {i64, i64}, so classify both
2626         // Lo and Hi now.
2627         Lo = Hi = Integer;
2628       } else {
2629         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2630         // straddles an eightbyte boundary, Hi should be classified as well.
2631         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2632         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2633         if (EB_FuncPtr != EB_ThisAdj) {
2634           Lo = Hi = Integer;
2635         } else {
2636           Current = Integer;
2637         }
2638       }
2639     } else {
2640       Current = Integer;
2641     }
2642     return;
2643   }
2644 
2645   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2646     uint64_t Size = getContext().getTypeSize(VT);
2647     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2648       // gcc passes the following as integer:
2649       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2650       // 2 bytes - <2 x char>, <1 x short>
2651       // 1 byte  - <1 x char>
2652       Current = Integer;
2653 
2654       // If this type crosses an eightbyte boundary, it should be
2655       // split.
2656       uint64_t EB_Lo = (OffsetBase) / 64;
2657       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2658       if (EB_Lo != EB_Hi)
2659         Hi = Lo;
2660     } else if (Size == 64) {
2661       QualType ElementType = VT->getElementType();
2662 
2663       // gcc passes <1 x double> in memory. :(
2664       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2665         return;
2666 
2667       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2668       // pass them as integer.  For platforms where clang is the de facto
2669       // platform compiler, we must continue to use integer.
2670       if (!classifyIntegerMMXAsSSE() &&
2671           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2672            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2673            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2674            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2675         Current = Integer;
2676       else
2677         Current = SSE;
2678 
2679       // If this type crosses an eightbyte boundary, it should be
2680       // split.
2681       if (OffsetBase && OffsetBase != 64)
2682         Hi = Lo;
2683     } else if (Size == 128 ||
2684                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2685       QualType ElementType = VT->getElementType();
2686 
2687       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2688       if (passInt128VectorsInMem() && Size != 128 &&
2689           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2690            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2691         return;
2692 
2693       // Arguments of 256-bits are split into four eightbyte chunks. The
2694       // least significant one belongs to class SSE and all the others to class
2695       // SSEUP. The original Lo and Hi design considers that types can't be
2696       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2697       // This design isn't correct for 256-bits, but since there're no cases
2698       // where the upper parts would need to be inspected, avoid adding
2699       // complexity and just consider Hi to match the 64-256 part.
2700       //
2701       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2702       // registers if they are "named", i.e. not part of the "..." of a
2703       // variadic function.
2704       //
2705       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2706       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2707       Lo = SSE;
2708       Hi = SSEUp;
2709     }
2710     return;
2711   }
2712 
2713   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2714     QualType ET = getContext().getCanonicalType(CT->getElementType());
2715 
2716     uint64_t Size = getContext().getTypeSize(Ty);
2717     if (ET->isIntegralOrEnumerationType()) {
2718       if (Size <= 64)
2719         Current = Integer;
2720       else if (Size <= 128)
2721         Lo = Hi = Integer;
2722     } else if (ET == getContext().FloatTy) {
2723       Current = SSE;
2724     } else if (ET == getContext().DoubleTy) {
2725       Lo = Hi = SSE;
2726     } else if (ET == getContext().LongDoubleTy) {
2727       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2728       if (LDF == &llvm::APFloat::IEEEquad())
2729         Current = Memory;
2730       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2731         Current = ComplexX87;
2732       else if (LDF == &llvm::APFloat::IEEEdouble())
2733         Lo = Hi = SSE;
2734       else
2735         llvm_unreachable("unexpected long double representation!");
2736     }
2737 
2738     // If this complex type crosses an eightbyte boundary then it
2739     // should be split.
2740     uint64_t EB_Real = (OffsetBase) / 64;
2741     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2742     if (Hi == NoClass && EB_Real != EB_Imag)
2743       Hi = Lo;
2744 
2745     return;
2746   }
2747 
2748   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2749     // Arrays are treated like structures.
2750 
2751     uint64_t Size = getContext().getTypeSize(Ty);
2752 
2753     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2754     // than eight eightbytes, ..., it has class MEMORY.
2755     if (Size > 512)
2756       return;
2757 
2758     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2759     // fields, it has class MEMORY.
2760     //
2761     // Only need to check alignment of array base.
2762     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2763       return;
2764 
2765     // Otherwise implement simplified merge. We could be smarter about
2766     // this, but it isn't worth it and would be harder to verify.
2767     Current = NoClass;
2768     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2769     uint64_t ArraySize = AT->getSize().getZExtValue();
2770 
2771     // The only case a 256-bit wide vector could be used is when the array
2772     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2773     // to work for sizes wider than 128, early check and fallback to memory.
2774     //
2775     if (Size > 128 &&
2776         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2777       return;
2778 
2779     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2780       Class FieldLo, FieldHi;
2781       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2782       Lo = merge(Lo, FieldLo);
2783       Hi = merge(Hi, FieldHi);
2784       if (Lo == Memory || Hi == Memory)
2785         break;
2786     }
2787 
2788     postMerge(Size, Lo, Hi);
2789     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2790     return;
2791   }
2792 
2793   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2794     uint64_t Size = getContext().getTypeSize(Ty);
2795 
2796     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2797     // than eight eightbytes, ..., it has class MEMORY.
2798     if (Size > 512)
2799       return;
2800 
2801     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2802     // copy constructor or a non-trivial destructor, it is passed by invisible
2803     // reference.
2804     if (getRecordArgABI(RT, getCXXABI()))
2805       return;
2806 
2807     const RecordDecl *RD = RT->getDecl();
2808 
2809     // Assume variable sized types are passed in memory.
2810     if (RD->hasFlexibleArrayMember())
2811       return;
2812 
2813     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2814 
2815     // Reset Lo class, this will be recomputed.
2816     Current = NoClass;
2817 
2818     // If this is a C++ record, classify the bases first.
2819     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2820       for (const auto &I : CXXRD->bases()) {
2821         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2822                "Unexpected base class!");
2823         const auto *Base =
2824             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2825 
2826         // Classify this field.
2827         //
2828         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2829         // single eightbyte, each is classified separately. Each eightbyte gets
2830         // initialized to class NO_CLASS.
2831         Class FieldLo, FieldHi;
2832         uint64_t Offset =
2833           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2834         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2835         Lo = merge(Lo, FieldLo);
2836         Hi = merge(Hi, FieldHi);
2837         if (Lo == Memory || Hi == Memory) {
2838           postMerge(Size, Lo, Hi);
2839           return;
2840         }
2841       }
2842     }
2843 
2844     // Classify the fields one at a time, merging the results.
2845     unsigned idx = 0;
2846     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2847            i != e; ++i, ++idx) {
2848       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2849       bool BitField = i->isBitField();
2850 
2851       // Ignore padding bit-fields.
2852       if (BitField && i->isUnnamedBitfield())
2853         continue;
2854 
2855       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2856       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2857       //
2858       // The only case a 256-bit wide vector could be used is when the struct
2859       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2860       // to work for sizes wider than 128, early check and fallback to memory.
2861       //
2862       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2863                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2864         Lo = Memory;
2865         postMerge(Size, Lo, Hi);
2866         return;
2867       }
2868       // Note, skip this test for bit-fields, see below.
2869       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2870         Lo = Memory;
2871         postMerge(Size, Lo, Hi);
2872         return;
2873       }
2874 
2875       // Classify this field.
2876       //
2877       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2878       // exceeds a single eightbyte, each is classified
2879       // separately. Each eightbyte gets initialized to class
2880       // NO_CLASS.
2881       Class FieldLo, FieldHi;
2882 
2883       // Bit-fields require special handling, they do not force the
2884       // structure to be passed in memory even if unaligned, and
2885       // therefore they can straddle an eightbyte.
2886       if (BitField) {
2887         assert(!i->isUnnamedBitfield());
2888         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2889         uint64_t Size = i->getBitWidthValue(getContext());
2890 
2891         uint64_t EB_Lo = Offset / 64;
2892         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2893 
2894         if (EB_Lo) {
2895           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2896           FieldLo = NoClass;
2897           FieldHi = Integer;
2898         } else {
2899           FieldLo = Integer;
2900           FieldHi = EB_Hi ? Integer : NoClass;
2901         }
2902       } else
2903         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2904       Lo = merge(Lo, FieldLo);
2905       Hi = merge(Hi, FieldHi);
2906       if (Lo == Memory || Hi == Memory)
2907         break;
2908     }
2909 
2910     postMerge(Size, Lo, Hi);
2911   }
2912 }
2913 
2914 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2915   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2916   // place naturally.
2917   if (!isAggregateTypeForABI(Ty)) {
2918     // Treat an enum type as its underlying type.
2919     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2920       Ty = EnumTy->getDecl()->getIntegerType();
2921 
2922     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2923                                           : ABIArgInfo::getDirect());
2924   }
2925 
2926   return getNaturalAlignIndirect(Ty);
2927 }
2928 
2929 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2930   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2931     uint64_t Size = getContext().getTypeSize(VecTy);
2932     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2933     if (Size <= 64 || Size > LargestVector)
2934       return true;
2935     QualType EltTy = VecTy->getElementType();
2936     if (passInt128VectorsInMem() &&
2937         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2938          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2939       return true;
2940   }
2941 
2942   return false;
2943 }
2944 
2945 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2946                                             unsigned freeIntRegs) const {
2947   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2948   // place naturally.
2949   //
2950   // This assumption is optimistic, as there could be free registers available
2951   // when we need to pass this argument in memory, and LLVM could try to pass
2952   // the argument in the free register. This does not seem to happen currently,
2953   // but this code would be much safer if we could mark the argument with
2954   // 'onstack'. See PR12193.
2955   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2956     // Treat an enum type as its underlying type.
2957     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2958       Ty = EnumTy->getDecl()->getIntegerType();
2959 
2960     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2961                                           : ABIArgInfo::getDirect());
2962   }
2963 
2964   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2965     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2966 
2967   // Compute the byval alignment. We specify the alignment of the byval in all
2968   // cases so that the mid-level optimizer knows the alignment of the byval.
2969   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2970 
2971   // Attempt to avoid passing indirect results using byval when possible. This
2972   // is important for good codegen.
2973   //
2974   // We do this by coercing the value into a scalar type which the backend can
2975   // handle naturally (i.e., without using byval).
2976   //
2977   // For simplicity, we currently only do this when we have exhausted all of the
2978   // free integer registers. Doing this when there are free integer registers
2979   // would require more care, as we would have to ensure that the coerced value
2980   // did not claim the unused register. That would require either reording the
2981   // arguments to the function (so that any subsequent inreg values came first),
2982   // or only doing this optimization when there were no following arguments that
2983   // might be inreg.
2984   //
2985   // We currently expect it to be rare (particularly in well written code) for
2986   // arguments to be passed on the stack when there are still free integer
2987   // registers available (this would typically imply large structs being passed
2988   // by value), so this seems like a fair tradeoff for now.
2989   //
2990   // We can revisit this if the backend grows support for 'onstack' parameter
2991   // attributes. See PR12193.
2992   if (freeIntRegs == 0) {
2993     uint64_t Size = getContext().getTypeSize(Ty);
2994 
2995     // If this type fits in an eightbyte, coerce it into the matching integral
2996     // type, which will end up on the stack (with alignment 8).
2997     if (Align == 8 && Size <= 64)
2998       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2999                                                           Size));
3000   }
3001 
3002   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3003 }
3004 
3005 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3006 /// register. Pick an LLVM IR type that will be passed as a vector register.
3007 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3008   // Wrapper structs/arrays that only contain vectors are passed just like
3009   // vectors; strip them off if present.
3010   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3011     Ty = QualType(InnerTy, 0);
3012 
3013   llvm::Type *IRType = CGT.ConvertType(Ty);
3014   if (isa<llvm::VectorType>(IRType)) {
3015     // Don't pass vXi128 vectors in their native type, the backend can't
3016     // legalize them.
3017     if (passInt128VectorsInMem() &&
3018         IRType->getVectorElementType()->isIntegerTy(128)) {
3019       // Use a vXi64 vector.
3020       uint64_t Size = getContext().getTypeSize(Ty);
3021       return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3022                                    Size / 64);
3023     }
3024 
3025     return IRType;
3026   }
3027 
3028   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3029     return IRType;
3030 
3031   // We couldn't find the preferred IR vector type for 'Ty'.
3032   uint64_t Size = getContext().getTypeSize(Ty);
3033   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3034 
3035 
3036   // Return a LLVM IR vector type based on the size of 'Ty'.
3037   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3038                                Size / 64);
3039 }
3040 
3041 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3042 /// is known to either be off the end of the specified type or being in
3043 /// alignment padding.  The user type specified is known to be at most 128 bits
3044 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3045 /// classification that put one of the two halves in the INTEGER class.
3046 ///
3047 /// It is conservatively correct to return false.
3048 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3049                                   unsigned EndBit, ASTContext &Context) {
3050   // If the bytes being queried are off the end of the type, there is no user
3051   // data hiding here.  This handles analysis of builtins, vectors and other
3052   // types that don't contain interesting padding.
3053   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3054   if (TySize <= StartBit)
3055     return true;
3056 
3057   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3058     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3059     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3060 
3061     // Check each element to see if the element overlaps with the queried range.
3062     for (unsigned i = 0; i != NumElts; ++i) {
3063       // If the element is after the span we care about, then we're done..
3064       unsigned EltOffset = i*EltSize;
3065       if (EltOffset >= EndBit) break;
3066 
3067       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3068       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3069                                  EndBit-EltOffset, Context))
3070         return false;
3071     }
3072     // If it overlaps no elements, then it is safe to process as padding.
3073     return true;
3074   }
3075 
3076   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3077     const RecordDecl *RD = RT->getDecl();
3078     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3079 
3080     // If this is a C++ record, check the bases first.
3081     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3082       for (const auto &I : CXXRD->bases()) {
3083         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3084                "Unexpected base class!");
3085         const auto *Base =
3086             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3087 
3088         // If the base is after the span we care about, ignore it.
3089         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3090         if (BaseOffset >= EndBit) continue;
3091 
3092         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3093         if (!BitsContainNoUserData(I.getType(), BaseStart,
3094                                    EndBit-BaseOffset, Context))
3095           return false;
3096       }
3097     }
3098 
3099     // Verify that no field has data that overlaps the region of interest.  Yes
3100     // this could be sped up a lot by being smarter about queried fields,
3101     // however we're only looking at structs up to 16 bytes, so we don't care
3102     // much.
3103     unsigned idx = 0;
3104     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3105          i != e; ++i, ++idx) {
3106       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3107 
3108       // If we found a field after the region we care about, then we're done.
3109       if (FieldOffset >= EndBit) break;
3110 
3111       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3112       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3113                                  Context))
3114         return false;
3115     }
3116 
3117     // If nothing in this record overlapped the area of interest, then we're
3118     // clean.
3119     return true;
3120   }
3121 
3122   return false;
3123 }
3124 
3125 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3126 /// float member at the specified offset.  For example, {int,{float}} has a
3127 /// float at offset 4.  It is conservatively correct for this routine to return
3128 /// false.
3129 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3130                                   const llvm::DataLayout &TD) {
3131   // Base case if we find a float.
3132   if (IROffset == 0 && IRType->isFloatTy())
3133     return true;
3134 
3135   // If this is a struct, recurse into the field at the specified offset.
3136   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3137     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3138     unsigned Elt = SL->getElementContainingOffset(IROffset);
3139     IROffset -= SL->getElementOffset(Elt);
3140     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3141   }
3142 
3143   // If this is an array, recurse into the field at the specified offset.
3144   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3145     llvm::Type *EltTy = ATy->getElementType();
3146     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3147     IROffset -= IROffset/EltSize*EltSize;
3148     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3149   }
3150 
3151   return false;
3152 }
3153 
3154 
3155 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3156 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3157 llvm::Type *X86_64ABIInfo::
3158 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3159                    QualType SourceTy, unsigned SourceOffset) const {
3160   // The only three choices we have are either double, <2 x float>, or float. We
3161   // pass as float if the last 4 bytes is just padding.  This happens for
3162   // structs that contain 3 floats.
3163   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3164                             SourceOffset*8+64, getContext()))
3165     return llvm::Type::getFloatTy(getVMContext());
3166 
3167   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3168   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3169   // case.
3170   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3171       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3172     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3173 
3174   return llvm::Type::getDoubleTy(getVMContext());
3175 }
3176 
3177 
3178 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3179 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3180 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3181 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3182 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3183 /// etc).
3184 ///
3185 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3186 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3187 /// the 8-byte value references.  PrefType may be null.
3188 ///
3189 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3190 /// an offset into this that we're processing (which is always either 0 or 8).
3191 ///
3192 llvm::Type *X86_64ABIInfo::
3193 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3194                        QualType SourceTy, unsigned SourceOffset) const {
3195   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3196   // returning an 8-byte unit starting with it.  See if we can safely use it.
3197   if (IROffset == 0) {
3198     // Pointers and int64's always fill the 8-byte unit.
3199     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3200         IRType->isIntegerTy(64))
3201       return IRType;
3202 
3203     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3204     // goodness in the source type is just tail padding.  This is allowed to
3205     // kick in for struct {double,int} on the int, but not on
3206     // struct{double,int,int} because we wouldn't return the second int.  We
3207     // have to do this analysis on the source type because we can't depend on
3208     // unions being lowered a specific way etc.
3209     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3210         IRType->isIntegerTy(32) ||
3211         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3212       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3213           cast<llvm::IntegerType>(IRType)->getBitWidth();
3214 
3215       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3216                                 SourceOffset*8+64, getContext()))
3217         return IRType;
3218     }
3219   }
3220 
3221   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3222     // If this is a struct, recurse into the field at the specified offset.
3223     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3224     if (IROffset < SL->getSizeInBytes()) {
3225       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3226       IROffset -= SL->getElementOffset(FieldIdx);
3227 
3228       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3229                                     SourceTy, SourceOffset);
3230     }
3231   }
3232 
3233   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3234     llvm::Type *EltTy = ATy->getElementType();
3235     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3236     unsigned EltOffset = IROffset/EltSize*EltSize;
3237     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3238                                   SourceOffset);
3239   }
3240 
3241   // Okay, we don't have any better idea of what to pass, so we pass this in an
3242   // integer register that isn't too big to fit the rest of the struct.
3243   unsigned TySizeInBytes =
3244     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3245 
3246   assert(TySizeInBytes != SourceOffset && "Empty field?");
3247 
3248   // It is always safe to classify this as an integer type up to i64 that
3249   // isn't larger than the structure.
3250   return llvm::IntegerType::get(getVMContext(),
3251                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3252 }
3253 
3254 
3255 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3256 /// be used as elements of a two register pair to pass or return, return a
3257 /// first class aggregate to represent them.  For example, if the low part of
3258 /// a by-value argument should be passed as i32* and the high part as float,
3259 /// return {i32*, float}.
3260 static llvm::Type *
3261 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3262                            const llvm::DataLayout &TD) {
3263   // In order to correctly satisfy the ABI, we need to the high part to start
3264   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3265   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3266   // the second element at offset 8.  Check for this:
3267   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3268   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3269   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3270   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3271 
3272   // To handle this, we have to increase the size of the low part so that the
3273   // second element will start at an 8 byte offset.  We can't increase the size
3274   // of the second element because it might make us access off the end of the
3275   // struct.
3276   if (HiStart != 8) {
3277     // There are usually two sorts of types the ABI generation code can produce
3278     // for the low part of a pair that aren't 8 bytes in size: float or
3279     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3280     // NaCl).
3281     // Promote these to a larger type.
3282     if (Lo->isFloatTy())
3283       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3284     else {
3285       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3286              && "Invalid/unknown lo type");
3287       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3288     }
3289   }
3290 
3291   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3292 
3293   // Verify that the second element is at an 8-byte offset.
3294   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3295          "Invalid x86-64 argument pair!");
3296   return Result;
3297 }
3298 
3299 ABIArgInfo X86_64ABIInfo::
3300 classifyReturnType(QualType RetTy) const {
3301   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3302   // classification algorithm.
3303   X86_64ABIInfo::Class Lo, Hi;
3304   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3305 
3306   // Check some invariants.
3307   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3308   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3309 
3310   llvm::Type *ResType = nullptr;
3311   switch (Lo) {
3312   case NoClass:
3313     if (Hi == NoClass)
3314       return ABIArgInfo::getIgnore();
3315     // If the low part is just padding, it takes no register, leave ResType
3316     // null.
3317     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3318            "Unknown missing lo part");
3319     break;
3320 
3321   case SSEUp:
3322   case X87Up:
3323     llvm_unreachable("Invalid classification for lo word.");
3324 
3325     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3326     // hidden argument.
3327   case Memory:
3328     return getIndirectReturnResult(RetTy);
3329 
3330     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3331     // available register of the sequence %rax, %rdx is used.
3332   case Integer:
3333     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3334 
3335     // If we have a sign or zero extended integer, make sure to return Extend
3336     // so that the parameter gets the right LLVM IR attributes.
3337     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3338       // Treat an enum type as its underlying type.
3339       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3340         RetTy = EnumTy->getDecl()->getIntegerType();
3341 
3342       if (RetTy->isIntegralOrEnumerationType() &&
3343           RetTy->isPromotableIntegerType())
3344         return ABIArgInfo::getExtend(RetTy);
3345     }
3346     break;
3347 
3348     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3349     // available SSE register of the sequence %xmm0, %xmm1 is used.
3350   case SSE:
3351     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3352     break;
3353 
3354     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3355     // returned on the X87 stack in %st0 as 80-bit x87 number.
3356   case X87:
3357     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3358     break;
3359 
3360     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3361     // part of the value is returned in %st0 and the imaginary part in
3362     // %st1.
3363   case ComplexX87:
3364     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3365     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3366                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3367     break;
3368   }
3369 
3370   llvm::Type *HighPart = nullptr;
3371   switch (Hi) {
3372     // Memory was handled previously and X87 should
3373     // never occur as a hi class.
3374   case Memory:
3375   case X87:
3376     llvm_unreachable("Invalid classification for hi word.");
3377 
3378   case ComplexX87: // Previously handled.
3379   case NoClass:
3380     break;
3381 
3382   case Integer:
3383     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3384     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3385       return ABIArgInfo::getDirect(HighPart, 8);
3386     break;
3387   case SSE:
3388     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3389     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3390       return ABIArgInfo::getDirect(HighPart, 8);
3391     break;
3392 
3393     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3394     // is passed in the next available eightbyte chunk if the last used
3395     // vector register.
3396     //
3397     // SSEUP should always be preceded by SSE, just widen.
3398   case SSEUp:
3399     assert(Lo == SSE && "Unexpected SSEUp classification.");
3400     ResType = GetByteVectorType(RetTy);
3401     break;
3402 
3403     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3404     // returned together with the previous X87 value in %st0.
3405   case X87Up:
3406     // If X87Up is preceded by X87, we don't need to do
3407     // anything. However, in some cases with unions it may not be
3408     // preceded by X87. In such situations we follow gcc and pass the
3409     // extra bits in an SSE reg.
3410     if (Lo != X87) {
3411       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3412       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3413         return ABIArgInfo::getDirect(HighPart, 8);
3414     }
3415     break;
3416   }
3417 
3418   // If a high part was specified, merge it together with the low part.  It is
3419   // known to pass in the high eightbyte of the result.  We do this by forming a
3420   // first class struct aggregate with the high and low part: {low, high}
3421   if (HighPart)
3422     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3423 
3424   return ABIArgInfo::getDirect(ResType);
3425 }
3426 
3427 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3428   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3429   bool isNamedArg)
3430   const
3431 {
3432   Ty = useFirstFieldIfTransparentUnion(Ty);
3433 
3434   X86_64ABIInfo::Class Lo, Hi;
3435   classify(Ty, 0, Lo, Hi, isNamedArg);
3436 
3437   // Check some invariants.
3438   // FIXME: Enforce these by construction.
3439   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3440   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3441 
3442   neededInt = 0;
3443   neededSSE = 0;
3444   llvm::Type *ResType = nullptr;
3445   switch (Lo) {
3446   case NoClass:
3447     if (Hi == NoClass)
3448       return ABIArgInfo::getIgnore();
3449     // If the low part is just padding, it takes no register, leave ResType
3450     // null.
3451     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3452            "Unknown missing lo part");
3453     break;
3454 
3455     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3456     // on the stack.
3457   case Memory:
3458 
3459     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3460     // COMPLEX_X87, it is passed in memory.
3461   case X87:
3462   case ComplexX87:
3463     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3464       ++neededInt;
3465     return getIndirectResult(Ty, freeIntRegs);
3466 
3467   case SSEUp:
3468   case X87Up:
3469     llvm_unreachable("Invalid classification for lo word.");
3470 
3471     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3472     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3473     // and %r9 is used.
3474   case Integer:
3475     ++neededInt;
3476 
3477     // Pick an 8-byte type based on the preferred type.
3478     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3479 
3480     // If we have a sign or zero extended integer, make sure to return Extend
3481     // so that the parameter gets the right LLVM IR attributes.
3482     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3483       // Treat an enum type as its underlying type.
3484       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3485         Ty = EnumTy->getDecl()->getIntegerType();
3486 
3487       if (Ty->isIntegralOrEnumerationType() &&
3488           Ty->isPromotableIntegerType())
3489         return ABIArgInfo::getExtend(Ty);
3490     }
3491 
3492     break;
3493 
3494     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3495     // available SSE register is used, the registers are taken in the
3496     // order from %xmm0 to %xmm7.
3497   case SSE: {
3498     llvm::Type *IRType = CGT.ConvertType(Ty);
3499     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3500     ++neededSSE;
3501     break;
3502   }
3503   }
3504 
3505   llvm::Type *HighPart = nullptr;
3506   switch (Hi) {
3507     // Memory was handled previously, ComplexX87 and X87 should
3508     // never occur as hi classes, and X87Up must be preceded by X87,
3509     // which is passed in memory.
3510   case Memory:
3511   case X87:
3512   case ComplexX87:
3513     llvm_unreachable("Invalid classification for hi word.");
3514 
3515   case NoClass: break;
3516 
3517   case Integer:
3518     ++neededInt;
3519     // Pick an 8-byte type based on the preferred type.
3520     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3521 
3522     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3523       return ABIArgInfo::getDirect(HighPart, 8);
3524     break;
3525 
3526     // X87Up generally doesn't occur here (long double is passed in
3527     // memory), except in situations involving unions.
3528   case X87Up:
3529   case SSE:
3530     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3531 
3532     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3533       return ABIArgInfo::getDirect(HighPart, 8);
3534 
3535     ++neededSSE;
3536     break;
3537 
3538     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3539     // eightbyte is passed in the upper half of the last used SSE
3540     // register.  This only happens when 128-bit vectors are passed.
3541   case SSEUp:
3542     assert(Lo == SSE && "Unexpected SSEUp classification");
3543     ResType = GetByteVectorType(Ty);
3544     break;
3545   }
3546 
3547   // If a high part was specified, merge it together with the low part.  It is
3548   // known to pass in the high eightbyte of the result.  We do this by forming a
3549   // first class struct aggregate with the high and low part: {low, high}
3550   if (HighPart)
3551     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3552 
3553   return ABIArgInfo::getDirect(ResType);
3554 }
3555 
3556 ABIArgInfo
3557 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3558                                              unsigned &NeededSSE) const {
3559   auto RT = Ty->getAs<RecordType>();
3560   assert(RT && "classifyRegCallStructType only valid with struct types");
3561 
3562   if (RT->getDecl()->hasFlexibleArrayMember())
3563     return getIndirectReturnResult(Ty);
3564 
3565   // Sum up bases
3566   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3567     if (CXXRD->isDynamicClass()) {
3568       NeededInt = NeededSSE = 0;
3569       return getIndirectReturnResult(Ty);
3570     }
3571 
3572     for (const auto &I : CXXRD->bases())
3573       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3574               .isIndirect()) {
3575         NeededInt = NeededSSE = 0;
3576         return getIndirectReturnResult(Ty);
3577       }
3578   }
3579 
3580   // Sum up members
3581   for (const auto *FD : RT->getDecl()->fields()) {
3582     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3583       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3584               .isIndirect()) {
3585         NeededInt = NeededSSE = 0;
3586         return getIndirectReturnResult(Ty);
3587       }
3588     } else {
3589       unsigned LocalNeededInt, LocalNeededSSE;
3590       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3591                                LocalNeededSSE, true)
3592               .isIndirect()) {
3593         NeededInt = NeededSSE = 0;
3594         return getIndirectReturnResult(Ty);
3595       }
3596       NeededInt += LocalNeededInt;
3597       NeededSSE += LocalNeededSSE;
3598     }
3599   }
3600 
3601   return ABIArgInfo::getDirect();
3602 }
3603 
3604 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3605                                                     unsigned &NeededInt,
3606                                                     unsigned &NeededSSE) const {
3607 
3608   NeededInt = 0;
3609   NeededSSE = 0;
3610 
3611   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3612 }
3613 
3614 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3615 
3616   const unsigned CallingConv = FI.getCallingConvention();
3617   // It is possible to force Win64 calling convention on any x86_64 target by
3618   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3619   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3620   if (CallingConv == llvm::CallingConv::Win64) {
3621     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3622     Win64ABIInfo.computeInfo(FI);
3623     return;
3624   }
3625 
3626   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3627 
3628   // Keep track of the number of assigned registers.
3629   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3630   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3631   unsigned NeededInt, NeededSSE;
3632 
3633   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3634     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3635         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3636       FI.getReturnInfo() =
3637           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3638       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3639         FreeIntRegs -= NeededInt;
3640         FreeSSERegs -= NeededSSE;
3641       } else {
3642         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3643       }
3644     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3645       // Complex Long Double Type is passed in Memory when Regcall
3646       // calling convention is used.
3647       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3648       if (getContext().getCanonicalType(CT->getElementType()) ==
3649           getContext().LongDoubleTy)
3650         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3651     } else
3652       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3653   }
3654 
3655   // If the return value is indirect, then the hidden argument is consuming one
3656   // integer register.
3657   if (FI.getReturnInfo().isIndirect())
3658     --FreeIntRegs;
3659 
3660   // The chain argument effectively gives us another free register.
3661   if (FI.isChainCall())
3662     ++FreeIntRegs;
3663 
3664   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3665   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3666   // get assigned (in left-to-right order) for passing as follows...
3667   unsigned ArgNo = 0;
3668   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3669        it != ie; ++it, ++ArgNo) {
3670     bool IsNamedArg = ArgNo < NumRequiredArgs;
3671 
3672     if (IsRegCall && it->type->isStructureOrClassType())
3673       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3674     else
3675       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3676                                       NeededSSE, IsNamedArg);
3677 
3678     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3679     // eightbyte of an argument, the whole argument is passed on the
3680     // stack. If registers have already been assigned for some
3681     // eightbytes of such an argument, the assignments get reverted.
3682     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3683       FreeIntRegs -= NeededInt;
3684       FreeSSERegs -= NeededSSE;
3685     } else {
3686       it->info = getIndirectResult(it->type, FreeIntRegs);
3687     }
3688   }
3689 }
3690 
3691 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3692                                          Address VAListAddr, QualType Ty) {
3693   Address overflow_arg_area_p =
3694       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3695   llvm::Value *overflow_arg_area =
3696     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3697 
3698   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3699   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3700   // It isn't stated explicitly in the standard, but in practice we use
3701   // alignment greater than 16 where necessary.
3702   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3703   if (Align > CharUnits::fromQuantity(8)) {
3704     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3705                                                       Align);
3706   }
3707 
3708   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3709   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3710   llvm::Value *Res =
3711     CGF.Builder.CreateBitCast(overflow_arg_area,
3712                               llvm::PointerType::getUnqual(LTy));
3713 
3714   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3715   // l->overflow_arg_area + sizeof(type).
3716   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3717   // an 8 byte boundary.
3718 
3719   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3720   llvm::Value *Offset =
3721       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3722   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3723                                             "overflow_arg_area.next");
3724   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3725 
3726   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3727   return Address(Res, Align);
3728 }
3729 
3730 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3731                                  QualType Ty) const {
3732   // Assume that va_list type is correct; should be pointer to LLVM type:
3733   // struct {
3734   //   i32 gp_offset;
3735   //   i32 fp_offset;
3736   //   i8* overflow_arg_area;
3737   //   i8* reg_save_area;
3738   // };
3739   unsigned neededInt, neededSSE;
3740 
3741   Ty = getContext().getCanonicalType(Ty);
3742   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3743                                        /*isNamedArg*/false);
3744 
3745   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3746   // in the registers. If not go to step 7.
3747   if (!neededInt && !neededSSE)
3748     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3749 
3750   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3751   // general purpose registers needed to pass type and num_fp to hold
3752   // the number of floating point registers needed.
3753 
3754   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3755   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3756   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3757   //
3758   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3759   // register save space).
3760 
3761   llvm::Value *InRegs = nullptr;
3762   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3763   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3764   if (neededInt) {
3765     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3766     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3767     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3768     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3769   }
3770 
3771   if (neededSSE) {
3772     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3773     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3774     llvm::Value *FitsInFP =
3775       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3776     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3777     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3778   }
3779 
3780   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3781   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3782   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3783   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3784 
3785   // Emit code to load the value if it was passed in registers.
3786 
3787   CGF.EmitBlock(InRegBlock);
3788 
3789   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3790   // an offset of l->gp_offset and/or l->fp_offset. This may require
3791   // copying to a temporary location in case the parameter is passed
3792   // in different register classes or requires an alignment greater
3793   // than 8 for general purpose registers and 16 for XMM registers.
3794   //
3795   // FIXME: This really results in shameful code when we end up needing to
3796   // collect arguments from different places; often what should result in a
3797   // simple assembling of a structure from scattered addresses has many more
3798   // loads than necessary. Can we clean this up?
3799   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3800   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3801       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3802 
3803   Address RegAddr = Address::invalid();
3804   if (neededInt && neededSSE) {
3805     // FIXME: Cleanup.
3806     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3807     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3808     Address Tmp = CGF.CreateMemTemp(Ty);
3809     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3810     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3811     llvm::Type *TyLo = ST->getElementType(0);
3812     llvm::Type *TyHi = ST->getElementType(1);
3813     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3814            "Unexpected ABI info for mixed regs");
3815     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3816     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3817     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3818     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3819     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3820     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3821 
3822     // Copy the first element.
3823     // FIXME: Our choice of alignment here and below is probably pessimistic.
3824     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3825         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3826         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3827     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3828 
3829     // Copy the second element.
3830     V = CGF.Builder.CreateAlignedLoad(
3831         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3832         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3833     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3834 
3835     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3836   } else if (neededInt) {
3837     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3838                       CharUnits::fromQuantity(8));
3839     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3840 
3841     // Copy to a temporary if necessary to ensure the appropriate alignment.
3842     std::pair<CharUnits, CharUnits> SizeAlign =
3843         getContext().getTypeInfoInChars(Ty);
3844     uint64_t TySize = SizeAlign.first.getQuantity();
3845     CharUnits TyAlign = SizeAlign.second;
3846 
3847     // Copy into a temporary if the type is more aligned than the
3848     // register save area.
3849     if (TyAlign.getQuantity() > 8) {
3850       Address Tmp = CGF.CreateMemTemp(Ty);
3851       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3852       RegAddr = Tmp;
3853     }
3854 
3855   } else if (neededSSE == 1) {
3856     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3857                       CharUnits::fromQuantity(16));
3858     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3859   } else {
3860     assert(neededSSE == 2 && "Invalid number of needed registers!");
3861     // SSE registers are spaced 16 bytes apart in the register save
3862     // area, we need to collect the two eightbytes together.
3863     // The ABI isn't explicit about this, but it seems reasonable
3864     // to assume that the slots are 16-byte aligned, since the stack is
3865     // naturally 16-byte aligned and the prologue is expected to store
3866     // all the SSE registers to the RSA.
3867     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3868                                 CharUnits::fromQuantity(16));
3869     Address RegAddrHi =
3870       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3871                                              CharUnits::fromQuantity(16));
3872     llvm::Type *ST = AI.canHaveCoerceToType()
3873                          ? AI.getCoerceToType()
3874                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3875     llvm::Value *V;
3876     Address Tmp = CGF.CreateMemTemp(Ty);
3877     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3878     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3879         RegAddrLo, ST->getStructElementType(0)));
3880     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3881     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3882         RegAddrHi, ST->getStructElementType(1)));
3883     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3884 
3885     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3886   }
3887 
3888   // AMD64-ABI 3.5.7p5: Step 5. Set:
3889   // l->gp_offset = l->gp_offset + num_gp * 8
3890   // l->fp_offset = l->fp_offset + num_fp * 16.
3891   if (neededInt) {
3892     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3893     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3894                             gp_offset_p);
3895   }
3896   if (neededSSE) {
3897     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3898     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3899                             fp_offset_p);
3900   }
3901   CGF.EmitBranch(ContBlock);
3902 
3903   // Emit code to load the value if it was passed in memory.
3904 
3905   CGF.EmitBlock(InMemBlock);
3906   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3907 
3908   // Return the appropriate result.
3909 
3910   CGF.EmitBlock(ContBlock);
3911   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3912                                  "vaarg.addr");
3913   return ResAddr;
3914 }
3915 
3916 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3917                                    QualType Ty) const {
3918   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3919                           CGF.getContext().getTypeInfoInChars(Ty),
3920                           CharUnits::fromQuantity(8),
3921                           /*allowHigherAlign*/ false);
3922 }
3923 
3924 ABIArgInfo
3925 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3926                                     const ABIArgInfo &current) const {
3927   // Assumes vectorCall calling convention.
3928   const Type *Base = nullptr;
3929   uint64_t NumElts = 0;
3930 
3931   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3932       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3933     FreeSSERegs -= NumElts;
3934     return getDirectX86Hva();
3935   }
3936   return current;
3937 }
3938 
3939 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3940                                       bool IsReturnType, bool IsVectorCall,
3941                                       bool IsRegCall) const {
3942 
3943   if (Ty->isVoidType())
3944     return ABIArgInfo::getIgnore();
3945 
3946   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3947     Ty = EnumTy->getDecl()->getIntegerType();
3948 
3949   TypeInfo Info = getContext().getTypeInfo(Ty);
3950   uint64_t Width = Info.Width;
3951   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3952 
3953   const RecordType *RT = Ty->getAs<RecordType>();
3954   if (RT) {
3955     if (!IsReturnType) {
3956       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3957         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3958     }
3959 
3960     if (RT->getDecl()->hasFlexibleArrayMember())
3961       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3962 
3963   }
3964 
3965   const Type *Base = nullptr;
3966   uint64_t NumElts = 0;
3967   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3968   // other targets.
3969   if ((IsVectorCall || IsRegCall) &&
3970       isHomogeneousAggregate(Ty, Base, NumElts)) {
3971     if (IsRegCall) {
3972       if (FreeSSERegs >= NumElts) {
3973         FreeSSERegs -= NumElts;
3974         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3975           return ABIArgInfo::getDirect();
3976         return ABIArgInfo::getExpand();
3977       }
3978       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3979     } else if (IsVectorCall) {
3980       if (FreeSSERegs >= NumElts &&
3981           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3982         FreeSSERegs -= NumElts;
3983         return ABIArgInfo::getDirect();
3984       } else if (IsReturnType) {
3985         return ABIArgInfo::getExpand();
3986       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3987         // HVAs are delayed and reclassified in the 2nd step.
3988         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3989       }
3990     }
3991   }
3992 
3993   if (Ty->isMemberPointerType()) {
3994     // If the member pointer is represented by an LLVM int or ptr, pass it
3995     // directly.
3996     llvm::Type *LLTy = CGT.ConvertType(Ty);
3997     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3998       return ABIArgInfo::getDirect();
3999   }
4000 
4001   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4002     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4003     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4004     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4005       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4006 
4007     // Otherwise, coerce it to a small integer.
4008     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4009   }
4010 
4011   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4012     switch (BT->getKind()) {
4013     case BuiltinType::Bool:
4014       // Bool type is always extended to the ABI, other builtin types are not
4015       // extended.
4016       return ABIArgInfo::getExtend(Ty);
4017 
4018     case BuiltinType::LongDouble:
4019       // Mingw64 GCC uses the old 80 bit extended precision floating point
4020       // unit. It passes them indirectly through memory.
4021       if (IsMingw64) {
4022         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4023         if (LDF == &llvm::APFloat::x87DoubleExtended())
4024           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4025       }
4026       break;
4027 
4028     case BuiltinType::Int128:
4029     case BuiltinType::UInt128:
4030       // If it's a parameter type, the normal ABI rule is that arguments larger
4031       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4032       // even though it isn't particularly efficient.
4033       if (!IsReturnType)
4034         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4035 
4036       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4037       // Clang matches them for compatibility.
4038       return ABIArgInfo::getDirect(
4039           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
4040 
4041     default:
4042       break;
4043     }
4044   }
4045 
4046   return ABIArgInfo::getDirect();
4047 }
4048 
4049 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4050                                              unsigned FreeSSERegs,
4051                                              bool IsVectorCall,
4052                                              bool IsRegCall) const {
4053   unsigned Count = 0;
4054   for (auto &I : FI.arguments()) {
4055     // Vectorcall in x64 only permits the first 6 arguments to be passed
4056     // as XMM/YMM registers.
4057     if (Count < VectorcallMaxParamNumAsReg)
4058       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4059     else {
4060       // Since these cannot be passed in registers, pretend no registers
4061       // are left.
4062       unsigned ZeroSSERegsAvail = 0;
4063       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4064                         IsVectorCall, IsRegCall);
4065     }
4066     ++Count;
4067   }
4068 
4069   for (auto &I : FI.arguments()) {
4070     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4071   }
4072 }
4073 
4074 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4075   const unsigned CC = FI.getCallingConvention();
4076   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4077   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4078 
4079   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4080   // classification rules.
4081   if (CC == llvm::CallingConv::X86_64_SysV) {
4082     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4083     SysVABIInfo.computeInfo(FI);
4084     return;
4085   }
4086 
4087   unsigned FreeSSERegs = 0;
4088   if (IsVectorCall) {
4089     // We can use up to 4 SSE return registers with vectorcall.
4090     FreeSSERegs = 4;
4091   } else if (IsRegCall) {
4092     // RegCall gives us 16 SSE registers.
4093     FreeSSERegs = 16;
4094   }
4095 
4096   if (!getCXXABI().classifyReturnType(FI))
4097     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4098                                   IsVectorCall, IsRegCall);
4099 
4100   if (IsVectorCall) {
4101     // We can use up to 6 SSE register parameters with vectorcall.
4102     FreeSSERegs = 6;
4103   } else if (IsRegCall) {
4104     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4105     FreeSSERegs = 16;
4106   }
4107 
4108   if (IsVectorCall) {
4109     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4110   } else {
4111     for (auto &I : FI.arguments())
4112       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4113   }
4114 
4115 }
4116 
4117 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4118                                     QualType Ty) const {
4119 
4120   bool IsIndirect = false;
4121 
4122   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4123   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4124   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4125     uint64_t Width = getContext().getTypeSize(Ty);
4126     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4127   }
4128 
4129   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4130                           CGF.getContext().getTypeInfoInChars(Ty),
4131                           CharUnits::fromQuantity(8),
4132                           /*allowHigherAlign*/ false);
4133 }
4134 
4135 // PowerPC-32
4136 namespace {
4137 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4138 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4139   bool IsSoftFloatABI;
4140 
4141   CharUnits getParamTypeAlignment(QualType Ty) const;
4142 
4143 public:
4144   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4145       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4146 
4147   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4148                     QualType Ty) const override;
4149 };
4150 
4151 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4152 public:
4153   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4154       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4155 
4156   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4157     // This is recovered from gcc output.
4158     return 1; // r1 is the dedicated stack pointer
4159   }
4160 
4161   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4162                                llvm::Value *Address) const override;
4163 };
4164 }
4165 
4166 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4167   // Complex types are passed just like their elements
4168   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4169     Ty = CTy->getElementType();
4170 
4171   if (Ty->isVectorType())
4172     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4173                                                                        : 4);
4174 
4175   // For single-element float/vector structs, we consider the whole type
4176   // to have the same alignment requirements as its single element.
4177   const Type *AlignTy = nullptr;
4178   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4179     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4180     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4181         (BT && BT->isFloatingPoint()))
4182       AlignTy = EltType;
4183   }
4184 
4185   if (AlignTy)
4186     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4187   return CharUnits::fromQuantity(4);
4188 }
4189 
4190 // TODO: this implementation is now likely redundant with
4191 // DefaultABIInfo::EmitVAArg.
4192 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4193                                       QualType Ty) const {
4194   if (getTarget().getTriple().isOSDarwin()) {
4195     auto TI = getContext().getTypeInfoInChars(Ty);
4196     TI.second = getParamTypeAlignment(Ty);
4197 
4198     CharUnits SlotSize = CharUnits::fromQuantity(4);
4199     return emitVoidPtrVAArg(CGF, VAList, Ty,
4200                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4201                             /*AllowHigherAlign=*/true);
4202   }
4203 
4204   const unsigned OverflowLimit = 8;
4205   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4206     // TODO: Implement this. For now ignore.
4207     (void)CTy;
4208     return Address::invalid(); // FIXME?
4209   }
4210 
4211   // struct __va_list_tag {
4212   //   unsigned char gpr;
4213   //   unsigned char fpr;
4214   //   unsigned short reserved;
4215   //   void *overflow_arg_area;
4216   //   void *reg_save_area;
4217   // };
4218 
4219   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4220   bool isInt =
4221       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4222   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4223 
4224   // All aggregates are passed indirectly?  That doesn't seem consistent
4225   // with the argument-lowering code.
4226   bool isIndirect = Ty->isAggregateType();
4227 
4228   CGBuilderTy &Builder = CGF.Builder;
4229 
4230   // The calling convention either uses 1-2 GPRs or 1 FPR.
4231   Address NumRegsAddr = Address::invalid();
4232   if (isInt || IsSoftFloatABI) {
4233     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4234   } else {
4235     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4236   }
4237 
4238   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4239 
4240   // "Align" the register count when TY is i64.
4241   if (isI64 || (isF64 && IsSoftFloatABI)) {
4242     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4243     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4244   }
4245 
4246   llvm::Value *CC =
4247       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4248 
4249   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4250   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4251   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4252 
4253   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4254 
4255   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4256   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4257 
4258   // Case 1: consume registers.
4259   Address RegAddr = Address::invalid();
4260   {
4261     CGF.EmitBlock(UsingRegs);
4262 
4263     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4264     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4265                       CharUnits::fromQuantity(8));
4266     assert(RegAddr.getElementType() == CGF.Int8Ty);
4267 
4268     // Floating-point registers start after the general-purpose registers.
4269     if (!(isInt || IsSoftFloatABI)) {
4270       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4271                                                    CharUnits::fromQuantity(32));
4272     }
4273 
4274     // Get the address of the saved value by scaling the number of
4275     // registers we've used by the number of
4276     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4277     llvm::Value *RegOffset =
4278       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4279     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4280                                             RegAddr.getPointer(), RegOffset),
4281                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4282     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4283 
4284     // Increase the used-register count.
4285     NumRegs =
4286       Builder.CreateAdd(NumRegs,
4287                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4288     Builder.CreateStore(NumRegs, NumRegsAddr);
4289 
4290     CGF.EmitBranch(Cont);
4291   }
4292 
4293   // Case 2: consume space in the overflow area.
4294   Address MemAddr = Address::invalid();
4295   {
4296     CGF.EmitBlock(UsingOverflow);
4297 
4298     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4299 
4300     // Everything in the overflow area is rounded up to a size of at least 4.
4301     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4302 
4303     CharUnits Size;
4304     if (!isIndirect) {
4305       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4306       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4307     } else {
4308       Size = CGF.getPointerSize();
4309     }
4310 
4311     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4312     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4313                          OverflowAreaAlign);
4314     // Round up address of argument to alignment
4315     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4316     if (Align > OverflowAreaAlign) {
4317       llvm::Value *Ptr = OverflowArea.getPointer();
4318       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4319                                                            Align);
4320     }
4321 
4322     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4323 
4324     // Increase the overflow area.
4325     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4326     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4327     CGF.EmitBranch(Cont);
4328   }
4329 
4330   CGF.EmitBlock(Cont);
4331 
4332   // Merge the cases with a phi.
4333   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4334                                 "vaarg.addr");
4335 
4336   // Load the pointer if the argument was passed indirectly.
4337   if (isIndirect) {
4338     Result = Address(Builder.CreateLoad(Result, "aggr"),
4339                      getContext().getTypeAlignInChars(Ty));
4340   }
4341 
4342   return Result;
4343 }
4344 
4345 bool
4346 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4347                                                 llvm::Value *Address) const {
4348   // This is calculated from the LLVM and GCC tables and verified
4349   // against gcc output.  AFAIK all ABIs use the same encoding.
4350 
4351   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4352 
4353   llvm::IntegerType *i8 = CGF.Int8Ty;
4354   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4355   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4356   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4357 
4358   // 0-31: r0-31, the 4-byte general-purpose registers
4359   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4360 
4361   // 32-63: fp0-31, the 8-byte floating-point registers
4362   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4363 
4364   // 64-76 are various 4-byte special-purpose registers:
4365   // 64: mq
4366   // 65: lr
4367   // 66: ctr
4368   // 67: ap
4369   // 68-75 cr0-7
4370   // 76: xer
4371   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4372 
4373   // 77-108: v0-31, the 16-byte vector registers
4374   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4375 
4376   // 109: vrsave
4377   // 110: vscr
4378   // 111: spe_acc
4379   // 112: spefscr
4380   // 113: sfp
4381   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4382 
4383   return false;
4384 }
4385 
4386 // PowerPC-64
4387 
4388 namespace {
4389 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4390 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4391 public:
4392   enum ABIKind {
4393     ELFv1 = 0,
4394     ELFv2
4395   };
4396 
4397 private:
4398   static const unsigned GPRBits = 64;
4399   ABIKind Kind;
4400   bool HasQPX;
4401   bool IsSoftFloatABI;
4402 
4403   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4404   // will be passed in a QPX register.
4405   bool IsQPXVectorTy(const Type *Ty) const {
4406     if (!HasQPX)
4407       return false;
4408 
4409     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4410       unsigned NumElements = VT->getNumElements();
4411       if (NumElements == 1)
4412         return false;
4413 
4414       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4415         if (getContext().getTypeSize(Ty) <= 256)
4416           return true;
4417       } else if (VT->getElementType()->
4418                    isSpecificBuiltinType(BuiltinType::Float)) {
4419         if (getContext().getTypeSize(Ty) <= 128)
4420           return true;
4421       }
4422     }
4423 
4424     return false;
4425   }
4426 
4427   bool IsQPXVectorTy(QualType Ty) const {
4428     return IsQPXVectorTy(Ty.getTypePtr());
4429   }
4430 
4431 public:
4432   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4433                      bool SoftFloatABI)
4434       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4435         IsSoftFloatABI(SoftFloatABI) {}
4436 
4437   bool isPromotableTypeForABI(QualType Ty) const;
4438   CharUnits getParamTypeAlignment(QualType Ty) const;
4439 
4440   ABIArgInfo classifyReturnType(QualType RetTy) const;
4441   ABIArgInfo classifyArgumentType(QualType Ty) const;
4442 
4443   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4444   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4445                                          uint64_t Members) const override;
4446 
4447   // TODO: We can add more logic to computeInfo to improve performance.
4448   // Example: For aggregate arguments that fit in a register, we could
4449   // use getDirectInReg (as is done below for structs containing a single
4450   // floating-point value) to avoid pushing them to memory on function
4451   // entry.  This would require changing the logic in PPCISelLowering
4452   // when lowering the parameters in the caller and args in the callee.
4453   void computeInfo(CGFunctionInfo &FI) const override {
4454     if (!getCXXABI().classifyReturnType(FI))
4455       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4456     for (auto &I : FI.arguments()) {
4457       // We rely on the default argument classification for the most part.
4458       // One exception:  An aggregate containing a single floating-point
4459       // or vector item must be passed in a register if one is available.
4460       const Type *T = isSingleElementStruct(I.type, getContext());
4461       if (T) {
4462         const BuiltinType *BT = T->getAs<BuiltinType>();
4463         if (IsQPXVectorTy(T) ||
4464             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4465             (BT && BT->isFloatingPoint())) {
4466           QualType QT(T, 0);
4467           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4468           continue;
4469         }
4470       }
4471       I.info = classifyArgumentType(I.type);
4472     }
4473   }
4474 
4475   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4476                     QualType Ty) const override;
4477 
4478   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4479                                     bool asReturnValue) const override {
4480     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4481   }
4482 
4483   bool isSwiftErrorInRegister() const override {
4484     return false;
4485   }
4486 };
4487 
4488 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4489 
4490 public:
4491   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4492                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4493                                bool SoftFloatABI)
4494       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4495                                                  SoftFloatABI)) {}
4496 
4497   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4498     // This is recovered from gcc output.
4499     return 1; // r1 is the dedicated stack pointer
4500   }
4501 
4502   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4503                                llvm::Value *Address) const override;
4504 };
4505 
4506 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4507 public:
4508   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4509 
4510   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4511     // This is recovered from gcc output.
4512     return 1; // r1 is the dedicated stack pointer
4513   }
4514 
4515   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4516                                llvm::Value *Address) const override;
4517 };
4518 
4519 }
4520 
4521 // Return true if the ABI requires Ty to be passed sign- or zero-
4522 // extended to 64 bits.
4523 bool
4524 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4525   // Treat an enum type as its underlying type.
4526   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4527     Ty = EnumTy->getDecl()->getIntegerType();
4528 
4529   // Promotable integer types are required to be promoted by the ABI.
4530   if (Ty->isPromotableIntegerType())
4531     return true;
4532 
4533   // In addition to the usual promotable integer types, we also need to
4534   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4535   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4536     switch (BT->getKind()) {
4537     case BuiltinType::Int:
4538     case BuiltinType::UInt:
4539       return true;
4540     default:
4541       break;
4542     }
4543 
4544   return false;
4545 }
4546 
4547 /// isAlignedParamType - Determine whether a type requires 16-byte or
4548 /// higher alignment in the parameter area.  Always returns at least 8.
4549 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4550   // Complex types are passed just like their elements.
4551   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4552     Ty = CTy->getElementType();
4553 
4554   // Only vector types of size 16 bytes need alignment (larger types are
4555   // passed via reference, smaller types are not aligned).
4556   if (IsQPXVectorTy(Ty)) {
4557     if (getContext().getTypeSize(Ty) > 128)
4558       return CharUnits::fromQuantity(32);
4559 
4560     return CharUnits::fromQuantity(16);
4561   } else if (Ty->isVectorType()) {
4562     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4563   }
4564 
4565   // For single-element float/vector structs, we consider the whole type
4566   // to have the same alignment requirements as its single element.
4567   const Type *AlignAsType = nullptr;
4568   const Type *EltType = isSingleElementStruct(Ty, getContext());
4569   if (EltType) {
4570     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4571     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4572          getContext().getTypeSize(EltType) == 128) ||
4573         (BT && BT->isFloatingPoint()))
4574       AlignAsType = EltType;
4575   }
4576 
4577   // Likewise for ELFv2 homogeneous aggregates.
4578   const Type *Base = nullptr;
4579   uint64_t Members = 0;
4580   if (!AlignAsType && Kind == ELFv2 &&
4581       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4582     AlignAsType = Base;
4583 
4584   // With special case aggregates, only vector base types need alignment.
4585   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4586     if (getContext().getTypeSize(AlignAsType) > 128)
4587       return CharUnits::fromQuantity(32);
4588 
4589     return CharUnits::fromQuantity(16);
4590   } else if (AlignAsType) {
4591     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4592   }
4593 
4594   // Otherwise, we only need alignment for any aggregate type that
4595   // has an alignment requirement of >= 16 bytes.
4596   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4597     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4598       return CharUnits::fromQuantity(32);
4599     return CharUnits::fromQuantity(16);
4600   }
4601 
4602   return CharUnits::fromQuantity(8);
4603 }
4604 
4605 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4606 /// aggregate.  Base is set to the base element type, and Members is set
4607 /// to the number of base elements.
4608 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4609                                      uint64_t &Members) const {
4610   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4611     uint64_t NElements = AT->getSize().getZExtValue();
4612     if (NElements == 0)
4613       return false;
4614     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4615       return false;
4616     Members *= NElements;
4617   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4618     const RecordDecl *RD = RT->getDecl();
4619     if (RD->hasFlexibleArrayMember())
4620       return false;
4621 
4622     Members = 0;
4623 
4624     // If this is a C++ record, check the bases first.
4625     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4626       for (const auto &I : CXXRD->bases()) {
4627         // Ignore empty records.
4628         if (isEmptyRecord(getContext(), I.getType(), true))
4629           continue;
4630 
4631         uint64_t FldMembers;
4632         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4633           return false;
4634 
4635         Members += FldMembers;
4636       }
4637     }
4638 
4639     for (const auto *FD : RD->fields()) {
4640       // Ignore (non-zero arrays of) empty records.
4641       QualType FT = FD->getType();
4642       while (const ConstantArrayType *AT =
4643              getContext().getAsConstantArrayType(FT)) {
4644         if (AT->getSize().getZExtValue() == 0)
4645           return false;
4646         FT = AT->getElementType();
4647       }
4648       if (isEmptyRecord(getContext(), FT, true))
4649         continue;
4650 
4651       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4652       if (getContext().getLangOpts().CPlusPlus &&
4653           FD->isZeroLengthBitField(getContext()))
4654         continue;
4655 
4656       uint64_t FldMembers;
4657       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4658         return false;
4659 
4660       Members = (RD->isUnion() ?
4661                  std::max(Members, FldMembers) : Members + FldMembers);
4662     }
4663 
4664     if (!Base)
4665       return false;
4666 
4667     // Ensure there is no padding.
4668     if (getContext().getTypeSize(Base) * Members !=
4669         getContext().getTypeSize(Ty))
4670       return false;
4671   } else {
4672     Members = 1;
4673     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4674       Members = 2;
4675       Ty = CT->getElementType();
4676     }
4677 
4678     // Most ABIs only support float, double, and some vector type widths.
4679     if (!isHomogeneousAggregateBaseType(Ty))
4680       return false;
4681 
4682     // The base type must be the same for all members.  Types that
4683     // agree in both total size and mode (float vs. vector) are
4684     // treated as being equivalent here.
4685     const Type *TyPtr = Ty.getTypePtr();
4686     if (!Base) {
4687       Base = TyPtr;
4688       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4689       // so make sure to widen it explicitly.
4690       if (const VectorType *VT = Base->getAs<VectorType>()) {
4691         QualType EltTy = VT->getElementType();
4692         unsigned NumElements =
4693             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4694         Base = getContext()
4695                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4696                    .getTypePtr();
4697       }
4698     }
4699 
4700     if (Base->isVectorType() != TyPtr->isVectorType() ||
4701         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4702       return false;
4703   }
4704   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4705 }
4706 
4707 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4708   // Homogeneous aggregates for ELFv2 must have base types of float,
4709   // double, long double, or 128-bit vectors.
4710   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4711     if (BT->getKind() == BuiltinType::Float ||
4712         BT->getKind() == BuiltinType::Double ||
4713         BT->getKind() == BuiltinType::LongDouble ||
4714         (getContext().getTargetInfo().hasFloat128Type() &&
4715           (BT->getKind() == BuiltinType::Float128))) {
4716       if (IsSoftFloatABI)
4717         return false;
4718       return true;
4719     }
4720   }
4721   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4722     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4723       return true;
4724   }
4725   return false;
4726 }
4727 
4728 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4729     const Type *Base, uint64_t Members) const {
4730   // Vector and fp128 types require one register, other floating point types
4731   // require one or two registers depending on their size.
4732   uint32_t NumRegs =
4733       ((getContext().getTargetInfo().hasFloat128Type() &&
4734           Base->isFloat128Type()) ||
4735         Base->isVectorType()) ? 1
4736                               : (getContext().getTypeSize(Base) + 63) / 64;
4737 
4738   // Homogeneous Aggregates may occupy at most 8 registers.
4739   return Members * NumRegs <= 8;
4740 }
4741 
4742 ABIArgInfo
4743 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4744   Ty = useFirstFieldIfTransparentUnion(Ty);
4745 
4746   if (Ty->isAnyComplexType())
4747     return ABIArgInfo::getDirect();
4748 
4749   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4750   // or via reference (larger than 16 bytes).
4751   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4752     uint64_t Size = getContext().getTypeSize(Ty);
4753     if (Size > 128)
4754       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4755     else if (Size < 128) {
4756       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4757       return ABIArgInfo::getDirect(CoerceTy);
4758     }
4759   }
4760 
4761   if (isAggregateTypeForABI(Ty)) {
4762     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4763       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4764 
4765     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4766     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4767 
4768     // ELFv2 homogeneous aggregates are passed as array types.
4769     const Type *Base = nullptr;
4770     uint64_t Members = 0;
4771     if (Kind == ELFv2 &&
4772         isHomogeneousAggregate(Ty, Base, Members)) {
4773       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4774       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4775       return ABIArgInfo::getDirect(CoerceTy);
4776     }
4777 
4778     // If an aggregate may end up fully in registers, we do not
4779     // use the ByVal method, but pass the aggregate as array.
4780     // This is usually beneficial since we avoid forcing the
4781     // back-end to store the argument to memory.
4782     uint64_t Bits = getContext().getTypeSize(Ty);
4783     if (Bits > 0 && Bits <= 8 * GPRBits) {
4784       llvm::Type *CoerceTy;
4785 
4786       // Types up to 8 bytes are passed as integer type (which will be
4787       // properly aligned in the argument save area doubleword).
4788       if (Bits <= GPRBits)
4789         CoerceTy =
4790             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4791       // Larger types are passed as arrays, with the base type selected
4792       // according to the required alignment in the save area.
4793       else {
4794         uint64_t RegBits = ABIAlign * 8;
4795         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4796         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4797         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4798       }
4799 
4800       return ABIArgInfo::getDirect(CoerceTy);
4801     }
4802 
4803     // All other aggregates are passed ByVal.
4804     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4805                                    /*ByVal=*/true,
4806                                    /*Realign=*/TyAlign > ABIAlign);
4807   }
4808 
4809   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4810                                      : ABIArgInfo::getDirect());
4811 }
4812 
4813 ABIArgInfo
4814 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4815   if (RetTy->isVoidType())
4816     return ABIArgInfo::getIgnore();
4817 
4818   if (RetTy->isAnyComplexType())
4819     return ABIArgInfo::getDirect();
4820 
4821   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4822   // or via reference (larger than 16 bytes).
4823   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4824     uint64_t Size = getContext().getTypeSize(RetTy);
4825     if (Size > 128)
4826       return getNaturalAlignIndirect(RetTy);
4827     else if (Size < 128) {
4828       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4829       return ABIArgInfo::getDirect(CoerceTy);
4830     }
4831   }
4832 
4833   if (isAggregateTypeForABI(RetTy)) {
4834     // ELFv2 homogeneous aggregates are returned as array types.
4835     const Type *Base = nullptr;
4836     uint64_t Members = 0;
4837     if (Kind == ELFv2 &&
4838         isHomogeneousAggregate(RetTy, Base, Members)) {
4839       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4840       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4841       return ABIArgInfo::getDirect(CoerceTy);
4842     }
4843 
4844     // ELFv2 small aggregates are returned in up to two registers.
4845     uint64_t Bits = getContext().getTypeSize(RetTy);
4846     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4847       if (Bits == 0)
4848         return ABIArgInfo::getIgnore();
4849 
4850       llvm::Type *CoerceTy;
4851       if (Bits > GPRBits) {
4852         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4853         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4854       } else
4855         CoerceTy =
4856             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4857       return ABIArgInfo::getDirect(CoerceTy);
4858     }
4859 
4860     // All other aggregates are returned indirectly.
4861     return getNaturalAlignIndirect(RetTy);
4862   }
4863 
4864   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4865                                         : ABIArgInfo::getDirect());
4866 }
4867 
4868 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4869 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4870                                       QualType Ty) const {
4871   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4872   TypeInfo.second = getParamTypeAlignment(Ty);
4873 
4874   CharUnits SlotSize = CharUnits::fromQuantity(8);
4875 
4876   // If we have a complex type and the base type is smaller than 8 bytes,
4877   // the ABI calls for the real and imaginary parts to be right-adjusted
4878   // in separate doublewords.  However, Clang expects us to produce a
4879   // pointer to a structure with the two parts packed tightly.  So generate
4880   // loads of the real and imaginary parts relative to the va_list pointer,
4881   // and store them to a temporary structure.
4882   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4883     CharUnits EltSize = TypeInfo.first / 2;
4884     if (EltSize < SlotSize) {
4885       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4886                                             SlotSize * 2, SlotSize,
4887                                             SlotSize, /*AllowHigher*/ true);
4888 
4889       Address RealAddr = Addr;
4890       Address ImagAddr = RealAddr;
4891       if (CGF.CGM.getDataLayout().isBigEndian()) {
4892         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4893                                                           SlotSize - EltSize);
4894         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4895                                                       2 * SlotSize - EltSize);
4896       } else {
4897         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4898       }
4899 
4900       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4901       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4902       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4903       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4904       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4905 
4906       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4907       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4908                              /*init*/ true);
4909       return Temp;
4910     }
4911   }
4912 
4913   // Otherwise, just use the general rule.
4914   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4915                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4916 }
4917 
4918 static bool
4919 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4920                               llvm::Value *Address) {
4921   // This is calculated from the LLVM and GCC tables and verified
4922   // against gcc output.  AFAIK all ABIs use the same encoding.
4923 
4924   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4925 
4926   llvm::IntegerType *i8 = CGF.Int8Ty;
4927   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4928   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4929   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4930 
4931   // 0-31: r0-31, the 8-byte general-purpose registers
4932   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4933 
4934   // 32-63: fp0-31, the 8-byte floating-point registers
4935   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4936 
4937   // 64-67 are various 8-byte special-purpose registers:
4938   // 64: mq
4939   // 65: lr
4940   // 66: ctr
4941   // 67: ap
4942   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4943 
4944   // 68-76 are various 4-byte special-purpose registers:
4945   // 68-75 cr0-7
4946   // 76: xer
4947   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4948 
4949   // 77-108: v0-31, the 16-byte vector registers
4950   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4951 
4952   // 109: vrsave
4953   // 110: vscr
4954   // 111: spe_acc
4955   // 112: spefscr
4956   // 113: sfp
4957   // 114: tfhar
4958   // 115: tfiar
4959   // 116: texasr
4960   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4961 
4962   return false;
4963 }
4964 
4965 bool
4966 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4967   CodeGen::CodeGenFunction &CGF,
4968   llvm::Value *Address) const {
4969 
4970   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4971 }
4972 
4973 bool
4974 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4975                                                 llvm::Value *Address) const {
4976 
4977   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4978 }
4979 
4980 //===----------------------------------------------------------------------===//
4981 // AArch64 ABI Implementation
4982 //===----------------------------------------------------------------------===//
4983 
4984 namespace {
4985 
4986 class AArch64ABIInfo : public SwiftABIInfo {
4987 public:
4988   enum ABIKind {
4989     AAPCS = 0,
4990     DarwinPCS,
4991     Win64
4992   };
4993 
4994 private:
4995   ABIKind Kind;
4996 
4997 public:
4998   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4999     : SwiftABIInfo(CGT), Kind(Kind) {}
5000 
5001 private:
5002   ABIKind getABIKind() const { return Kind; }
5003   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5004 
5005   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5006   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5007   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5008   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5009                                          uint64_t Members) const override;
5010 
5011   bool isIllegalVectorType(QualType Ty) const;
5012 
5013   void computeInfo(CGFunctionInfo &FI) const override {
5014     if (!::classifyReturnType(getCXXABI(), FI, *this))
5015       FI.getReturnInfo() =
5016           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5017 
5018     for (auto &it : FI.arguments())
5019       it.info = classifyArgumentType(it.type);
5020   }
5021 
5022   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5023                           CodeGenFunction &CGF) const;
5024 
5025   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5026                          CodeGenFunction &CGF) const;
5027 
5028   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5029                     QualType Ty) const override {
5030     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5031                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5032                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5033   }
5034 
5035   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5036                       QualType Ty) const override;
5037 
5038   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5039                                     bool asReturnValue) const override {
5040     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5041   }
5042   bool isSwiftErrorInRegister() const override {
5043     return true;
5044   }
5045 
5046   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5047                                  unsigned elts) const override;
5048 };
5049 
5050 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5051 public:
5052   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5053       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5054 
5055   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5056     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5057   }
5058 
5059   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5060     return 31;
5061   }
5062 
5063   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5064 
5065   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5066                            CodeGen::CodeGenModule &CGM) const override {
5067     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5068     if (!FD)
5069       return;
5070 
5071     CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress();
5072     CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5073     bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement;
5074     if (const auto *TA = FD->getAttr<TargetAttr>()) {
5075       ParsedTargetAttr Attr = TA->parse();
5076       if (!Attr.BranchProtection.empty()) {
5077         TargetInfo::BranchProtectionInfo BPI;
5078         StringRef Error;
5079         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5080                                                        BPI, Error);
5081         assert(Error.empty());
5082         Scope = BPI.SignReturnAddr;
5083         Key = BPI.SignKey;
5084         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
5085       }
5086     }
5087 
5088     auto *Fn = cast<llvm::Function>(GV);
5089     if (Scope != CodeGenOptions::SignReturnAddressScope::None) {
5090       Fn->addFnAttr("sign-return-address",
5091                     Scope == CodeGenOptions::SignReturnAddressScope::All
5092                         ? "all"
5093                         : "non-leaf");
5094 
5095       Fn->addFnAttr("sign-return-address-key",
5096                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5097                         ? "a_key"
5098                         : "b_key");
5099     }
5100 
5101     if (BranchTargetEnforcement)
5102       Fn->addFnAttr("branch-target-enforcement");
5103   }
5104 };
5105 
5106 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5107 public:
5108   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5109       : AArch64TargetCodeGenInfo(CGT, K) {}
5110 
5111   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5112                            CodeGen::CodeGenModule &CGM) const override;
5113 
5114   void getDependentLibraryOption(llvm::StringRef Lib,
5115                                  llvm::SmallString<24> &Opt) const override {
5116     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5117   }
5118 
5119   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5120                                llvm::SmallString<32> &Opt) const override {
5121     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5122   }
5123 };
5124 
5125 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5126     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5127   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5128   if (GV->isDeclaration())
5129     return;
5130   addStackProbeTargetAttributes(D, GV, CGM);
5131 }
5132 }
5133 
5134 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5135   Ty = useFirstFieldIfTransparentUnion(Ty);
5136 
5137   // Handle illegal vector types here.
5138   if (isIllegalVectorType(Ty)) {
5139     uint64_t Size = getContext().getTypeSize(Ty);
5140     // Android promotes <2 x i8> to i16, not i32
5141     if (isAndroid() && (Size <= 16)) {
5142       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5143       return ABIArgInfo::getDirect(ResType);
5144     }
5145     if (Size <= 32) {
5146       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5147       return ABIArgInfo::getDirect(ResType);
5148     }
5149     if (Size == 64) {
5150       llvm::Type *ResType =
5151           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5152       return ABIArgInfo::getDirect(ResType);
5153     }
5154     if (Size == 128) {
5155       llvm::Type *ResType =
5156           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5157       return ABIArgInfo::getDirect(ResType);
5158     }
5159     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5160   }
5161 
5162   if (!isAggregateTypeForABI(Ty)) {
5163     // Treat an enum type as its underlying type.
5164     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5165       Ty = EnumTy->getDecl()->getIntegerType();
5166 
5167     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5168                 ? ABIArgInfo::getExtend(Ty)
5169                 : ABIArgInfo::getDirect());
5170   }
5171 
5172   // Structures with either a non-trivial destructor or a non-trivial
5173   // copy constructor are always indirect.
5174   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5175     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5176                                      CGCXXABI::RAA_DirectInMemory);
5177   }
5178 
5179   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5180   // elsewhere for GNU compatibility.
5181   uint64_t Size = getContext().getTypeSize(Ty);
5182   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5183   if (IsEmpty || Size == 0) {
5184     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5185       return ABIArgInfo::getIgnore();
5186 
5187     // GNU C mode. The only argument that gets ignored is an empty one with size
5188     // 0.
5189     if (IsEmpty && Size == 0)
5190       return ABIArgInfo::getIgnore();
5191     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5192   }
5193 
5194   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5195   const Type *Base = nullptr;
5196   uint64_t Members = 0;
5197   if (isHomogeneousAggregate(Ty, Base, Members)) {
5198     return ABIArgInfo::getDirect(
5199         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5200   }
5201 
5202   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5203   if (Size <= 128) {
5204     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5205     // same size and alignment.
5206     if (getTarget().isRenderScriptTarget()) {
5207       return coerceToIntArray(Ty, getContext(), getVMContext());
5208     }
5209     unsigned Alignment;
5210     if (Kind == AArch64ABIInfo::AAPCS) {
5211       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5212       Alignment = Alignment < 128 ? 64 : 128;
5213     } else {
5214       Alignment = std::max(getContext().getTypeAlign(Ty),
5215                            (unsigned)getTarget().getPointerWidth(0));
5216     }
5217     Size = llvm::alignTo(Size, Alignment);
5218 
5219     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5220     // For aggregates with 16-byte alignment, we use i128.
5221     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5222     return ABIArgInfo::getDirect(
5223         Size == Alignment ? BaseTy
5224                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5225   }
5226 
5227   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5228 }
5229 
5230 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5231                                               bool IsVariadic) const {
5232   if (RetTy->isVoidType())
5233     return ABIArgInfo::getIgnore();
5234 
5235   // Large vector types should be returned via memory.
5236   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5237     return getNaturalAlignIndirect(RetTy);
5238 
5239   if (!isAggregateTypeForABI(RetTy)) {
5240     // Treat an enum type as its underlying type.
5241     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5242       RetTy = EnumTy->getDecl()->getIntegerType();
5243 
5244     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5245                 ? ABIArgInfo::getExtend(RetTy)
5246                 : ABIArgInfo::getDirect());
5247   }
5248 
5249   uint64_t Size = getContext().getTypeSize(RetTy);
5250   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5251     return ABIArgInfo::getIgnore();
5252 
5253   const Type *Base = nullptr;
5254   uint64_t Members = 0;
5255   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5256       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5257         IsVariadic))
5258     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5259     return ABIArgInfo::getDirect();
5260 
5261   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5262   if (Size <= 128) {
5263     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5264     // same size and alignment.
5265     if (getTarget().isRenderScriptTarget()) {
5266       return coerceToIntArray(RetTy, getContext(), getVMContext());
5267     }
5268     unsigned Alignment = getContext().getTypeAlign(RetTy);
5269     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5270 
5271     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5272     // For aggregates with 16-byte alignment, we use i128.
5273     if (Alignment < 128 && Size == 128) {
5274       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5275       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5276     }
5277     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5278   }
5279 
5280   return getNaturalAlignIndirect(RetTy);
5281 }
5282 
5283 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5284 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5285   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5286     // Check whether VT is legal.
5287     unsigned NumElements = VT->getNumElements();
5288     uint64_t Size = getContext().getTypeSize(VT);
5289     // NumElements should be power of 2.
5290     if (!llvm::isPowerOf2_32(NumElements))
5291       return true;
5292 
5293     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5294     // vectors for some reason.
5295     llvm::Triple Triple = getTarget().getTriple();
5296     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5297         Triple.isOSBinFormatMachO())
5298       return Size <= 32;
5299 
5300     return Size != 64 && (Size != 128 || NumElements == 1);
5301   }
5302   return false;
5303 }
5304 
5305 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5306                                                llvm::Type *eltTy,
5307                                                unsigned elts) const {
5308   if (!llvm::isPowerOf2_32(elts))
5309     return false;
5310   if (totalSize.getQuantity() != 8 &&
5311       (totalSize.getQuantity() != 16 || elts == 1))
5312     return false;
5313   return true;
5314 }
5315 
5316 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5317   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5318   // point type or a short-vector type. This is the same as the 32-bit ABI,
5319   // but with the difference that any floating-point type is allowed,
5320   // including __fp16.
5321   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5322     if (BT->isFloatingPoint())
5323       return true;
5324   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5325     unsigned VecSize = getContext().getTypeSize(VT);
5326     if (VecSize == 64 || VecSize == 128)
5327       return true;
5328   }
5329   return false;
5330 }
5331 
5332 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5333                                                        uint64_t Members) const {
5334   return Members <= 4;
5335 }
5336 
5337 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5338                                             QualType Ty,
5339                                             CodeGenFunction &CGF) const {
5340   ABIArgInfo AI = classifyArgumentType(Ty);
5341   bool IsIndirect = AI.isIndirect();
5342 
5343   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5344   if (IsIndirect)
5345     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5346   else if (AI.getCoerceToType())
5347     BaseTy = AI.getCoerceToType();
5348 
5349   unsigned NumRegs = 1;
5350   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5351     BaseTy = ArrTy->getElementType();
5352     NumRegs = ArrTy->getNumElements();
5353   }
5354   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5355 
5356   // The AArch64 va_list type and handling is specified in the Procedure Call
5357   // Standard, section B.4:
5358   //
5359   // struct {
5360   //   void *__stack;
5361   //   void *__gr_top;
5362   //   void *__vr_top;
5363   //   int __gr_offs;
5364   //   int __vr_offs;
5365   // };
5366 
5367   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5368   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5369   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5370   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5371 
5372   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5373   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5374 
5375   Address reg_offs_p = Address::invalid();
5376   llvm::Value *reg_offs = nullptr;
5377   int reg_top_index;
5378   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5379   if (!IsFPR) {
5380     // 3 is the field number of __gr_offs
5381     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5382     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5383     reg_top_index = 1; // field number for __gr_top
5384     RegSize = llvm::alignTo(RegSize, 8);
5385   } else {
5386     // 4 is the field number of __vr_offs.
5387     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5388     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5389     reg_top_index = 2; // field number for __vr_top
5390     RegSize = 16 * NumRegs;
5391   }
5392 
5393   //=======================================
5394   // Find out where argument was passed
5395   //=======================================
5396 
5397   // If reg_offs >= 0 we're already using the stack for this type of
5398   // argument. We don't want to keep updating reg_offs (in case it overflows,
5399   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5400   // whatever they get).
5401   llvm::Value *UsingStack = nullptr;
5402   UsingStack = CGF.Builder.CreateICmpSGE(
5403       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5404 
5405   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5406 
5407   // Otherwise, at least some kind of argument could go in these registers, the
5408   // question is whether this particular type is too big.
5409   CGF.EmitBlock(MaybeRegBlock);
5410 
5411   // Integer arguments may need to correct register alignment (for example a
5412   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5413   // align __gr_offs to calculate the potential address.
5414   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5415     int Align = TyAlign.getQuantity();
5416 
5417     reg_offs = CGF.Builder.CreateAdd(
5418         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5419         "align_regoffs");
5420     reg_offs = CGF.Builder.CreateAnd(
5421         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5422         "aligned_regoffs");
5423   }
5424 
5425   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5426   // The fact that this is done unconditionally reflects the fact that
5427   // allocating an argument to the stack also uses up all the remaining
5428   // registers of the appropriate kind.
5429   llvm::Value *NewOffset = nullptr;
5430   NewOffset = CGF.Builder.CreateAdd(
5431       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5432   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5433 
5434   // Now we're in a position to decide whether this argument really was in
5435   // registers or not.
5436   llvm::Value *InRegs = nullptr;
5437   InRegs = CGF.Builder.CreateICmpSLE(
5438       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5439 
5440   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5441 
5442   //=======================================
5443   // Argument was in registers
5444   //=======================================
5445 
5446   // Now we emit the code for if the argument was originally passed in
5447   // registers. First start the appropriate block:
5448   CGF.EmitBlock(InRegBlock);
5449 
5450   llvm::Value *reg_top = nullptr;
5451   Address reg_top_p =
5452       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5453   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5454   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5455                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5456   Address RegAddr = Address::invalid();
5457   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5458 
5459   if (IsIndirect) {
5460     // If it's been passed indirectly (actually a struct), whatever we find from
5461     // stored registers or on the stack will actually be a struct **.
5462     MemTy = llvm::PointerType::getUnqual(MemTy);
5463   }
5464 
5465   const Type *Base = nullptr;
5466   uint64_t NumMembers = 0;
5467   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5468   if (IsHFA && NumMembers > 1) {
5469     // Homogeneous aggregates passed in registers will have their elements split
5470     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5471     // qN+1, ...). We reload and store into a temporary local variable
5472     // contiguously.
5473     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5474     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5475     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5476     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5477     Address Tmp = CGF.CreateTempAlloca(HFATy,
5478                                        std::max(TyAlign, BaseTyInfo.second));
5479 
5480     // On big-endian platforms, the value will be right-aligned in its slot.
5481     int Offset = 0;
5482     if (CGF.CGM.getDataLayout().isBigEndian() &&
5483         BaseTyInfo.first.getQuantity() < 16)
5484       Offset = 16 - BaseTyInfo.first.getQuantity();
5485 
5486     for (unsigned i = 0; i < NumMembers; ++i) {
5487       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5488       Address LoadAddr =
5489         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5490       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5491 
5492       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5493 
5494       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5495       CGF.Builder.CreateStore(Elem, StoreAddr);
5496     }
5497 
5498     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5499   } else {
5500     // Otherwise the object is contiguous in memory.
5501 
5502     // It might be right-aligned in its slot.
5503     CharUnits SlotSize = BaseAddr.getAlignment();
5504     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5505         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5506         TySize < SlotSize) {
5507       CharUnits Offset = SlotSize - TySize;
5508       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5509     }
5510 
5511     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5512   }
5513 
5514   CGF.EmitBranch(ContBlock);
5515 
5516   //=======================================
5517   // Argument was on the stack
5518   //=======================================
5519   CGF.EmitBlock(OnStackBlock);
5520 
5521   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5522   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5523 
5524   // Again, stack arguments may need realignment. In this case both integer and
5525   // floating-point ones might be affected.
5526   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5527     int Align = TyAlign.getQuantity();
5528 
5529     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5530 
5531     OnStackPtr = CGF.Builder.CreateAdd(
5532         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5533         "align_stack");
5534     OnStackPtr = CGF.Builder.CreateAnd(
5535         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5536         "align_stack");
5537 
5538     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5539   }
5540   Address OnStackAddr(OnStackPtr,
5541                       std::max(CharUnits::fromQuantity(8), TyAlign));
5542 
5543   // All stack slots are multiples of 8 bytes.
5544   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5545   CharUnits StackSize;
5546   if (IsIndirect)
5547     StackSize = StackSlotSize;
5548   else
5549     StackSize = TySize.alignTo(StackSlotSize);
5550 
5551   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5552   llvm::Value *NewStack =
5553       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5554 
5555   // Write the new value of __stack for the next call to va_arg
5556   CGF.Builder.CreateStore(NewStack, stack_p);
5557 
5558   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5559       TySize < StackSlotSize) {
5560     CharUnits Offset = StackSlotSize - TySize;
5561     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5562   }
5563 
5564   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5565 
5566   CGF.EmitBranch(ContBlock);
5567 
5568   //=======================================
5569   // Tidy up
5570   //=======================================
5571   CGF.EmitBlock(ContBlock);
5572 
5573   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5574                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5575 
5576   if (IsIndirect)
5577     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5578                    TyAlign);
5579 
5580   return ResAddr;
5581 }
5582 
5583 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5584                                         CodeGenFunction &CGF) const {
5585   // The backend's lowering doesn't support va_arg for aggregates or
5586   // illegal vector types.  Lower VAArg here for these cases and use
5587   // the LLVM va_arg instruction for everything else.
5588   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5589     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5590 
5591   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
5592   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
5593 
5594   // Empty records are ignored for parameter passing purposes.
5595   if (isEmptyRecord(getContext(), Ty, true)) {
5596     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5597     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5598     return Addr;
5599   }
5600 
5601   // The size of the actual thing passed, which might end up just
5602   // being a pointer for indirect types.
5603   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5604 
5605   // Arguments bigger than 16 bytes which aren't homogeneous
5606   // aggregates should be passed indirectly.
5607   bool IsIndirect = false;
5608   if (TyInfo.first.getQuantity() > 16) {
5609     const Type *Base = nullptr;
5610     uint64_t Members = 0;
5611     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5612   }
5613 
5614   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5615                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5616 }
5617 
5618 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5619                                     QualType Ty) const {
5620   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5621                           CGF.getContext().getTypeInfoInChars(Ty),
5622                           CharUnits::fromQuantity(8),
5623                           /*allowHigherAlign*/ false);
5624 }
5625 
5626 //===----------------------------------------------------------------------===//
5627 // ARM ABI Implementation
5628 //===----------------------------------------------------------------------===//
5629 
5630 namespace {
5631 
5632 class ARMABIInfo : public SwiftABIInfo {
5633 public:
5634   enum ABIKind {
5635     APCS = 0,
5636     AAPCS = 1,
5637     AAPCS_VFP = 2,
5638     AAPCS16_VFP = 3,
5639   };
5640 
5641 private:
5642   ABIKind Kind;
5643 
5644 public:
5645   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5646       : SwiftABIInfo(CGT), Kind(_Kind) {
5647     setCCs();
5648   }
5649 
5650   bool isEABI() const {
5651     switch (getTarget().getTriple().getEnvironment()) {
5652     case llvm::Triple::Android:
5653     case llvm::Triple::EABI:
5654     case llvm::Triple::EABIHF:
5655     case llvm::Triple::GNUEABI:
5656     case llvm::Triple::GNUEABIHF:
5657     case llvm::Triple::MuslEABI:
5658     case llvm::Triple::MuslEABIHF:
5659       return true;
5660     default:
5661       return false;
5662     }
5663   }
5664 
5665   bool isEABIHF() const {
5666     switch (getTarget().getTriple().getEnvironment()) {
5667     case llvm::Triple::EABIHF:
5668     case llvm::Triple::GNUEABIHF:
5669     case llvm::Triple::MuslEABIHF:
5670       return true;
5671     default:
5672       return false;
5673     }
5674   }
5675 
5676   ABIKind getABIKind() const { return Kind; }
5677 
5678 private:
5679   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5680                                 unsigned functionCallConv) const;
5681   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5682                                   unsigned functionCallConv) const;
5683   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5684                                           uint64_t Members) const;
5685   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5686   bool isIllegalVectorType(QualType Ty) const;
5687   bool containsAnyFP16Vectors(QualType Ty) const;
5688 
5689   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5690   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5691                                          uint64_t Members) const override;
5692 
5693   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5694 
5695   void computeInfo(CGFunctionInfo &FI) const override;
5696 
5697   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5698                     QualType Ty) const override;
5699 
5700   llvm::CallingConv::ID getLLVMDefaultCC() const;
5701   llvm::CallingConv::ID getABIDefaultCC() const;
5702   void setCCs();
5703 
5704   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5705                                     bool asReturnValue) const override {
5706     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5707   }
5708   bool isSwiftErrorInRegister() const override {
5709     return true;
5710   }
5711   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5712                                  unsigned elts) const override;
5713 };
5714 
5715 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5716 public:
5717   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5718     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5719 
5720   const ARMABIInfo &getABIInfo() const {
5721     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5722   }
5723 
5724   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5725     return 13;
5726   }
5727 
5728   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5729     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5730   }
5731 
5732   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5733                                llvm::Value *Address) const override {
5734     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5735 
5736     // 0-15 are the 16 integer registers.
5737     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5738     return false;
5739   }
5740 
5741   unsigned getSizeOfUnwindException() const override {
5742     if (getABIInfo().isEABI()) return 88;
5743     return TargetCodeGenInfo::getSizeOfUnwindException();
5744   }
5745 
5746   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5747                            CodeGen::CodeGenModule &CGM) const override {
5748     if (GV->isDeclaration())
5749       return;
5750     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5751     if (!FD)
5752       return;
5753 
5754     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5755     if (!Attr)
5756       return;
5757 
5758     const char *Kind;
5759     switch (Attr->getInterrupt()) {
5760     case ARMInterruptAttr::Generic: Kind = ""; break;
5761     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5762     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5763     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5764     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5765     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5766     }
5767 
5768     llvm::Function *Fn = cast<llvm::Function>(GV);
5769 
5770     Fn->addFnAttr("interrupt", Kind);
5771 
5772     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5773     if (ABI == ARMABIInfo::APCS)
5774       return;
5775 
5776     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5777     // however this is not necessarily true on taking any interrupt. Instruct
5778     // the backend to perform a realignment as part of the function prologue.
5779     llvm::AttrBuilder B;
5780     B.addStackAlignmentAttr(8);
5781     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5782   }
5783 };
5784 
5785 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5786 public:
5787   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5788       : ARMTargetCodeGenInfo(CGT, K) {}
5789 
5790   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5791                            CodeGen::CodeGenModule &CGM) const override;
5792 
5793   void getDependentLibraryOption(llvm::StringRef Lib,
5794                                  llvm::SmallString<24> &Opt) const override {
5795     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5796   }
5797 
5798   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5799                                llvm::SmallString<32> &Opt) const override {
5800     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5801   }
5802 };
5803 
5804 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5805     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5806   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5807   if (GV->isDeclaration())
5808     return;
5809   addStackProbeTargetAttributes(D, GV, CGM);
5810 }
5811 }
5812 
5813 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5814   if (!::classifyReturnType(getCXXABI(), FI, *this))
5815     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5816                                             FI.getCallingConvention());
5817 
5818   for (auto &I : FI.arguments())
5819     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5820                                   FI.getCallingConvention());
5821 
5822 
5823   // Always honor user-specified calling convention.
5824   if (FI.getCallingConvention() != llvm::CallingConv::C)
5825     return;
5826 
5827   llvm::CallingConv::ID cc = getRuntimeCC();
5828   if (cc != llvm::CallingConv::C)
5829     FI.setEffectiveCallingConvention(cc);
5830 }
5831 
5832 /// Return the default calling convention that LLVM will use.
5833 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5834   // The default calling convention that LLVM will infer.
5835   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5836     return llvm::CallingConv::ARM_AAPCS_VFP;
5837   else if (isEABI())
5838     return llvm::CallingConv::ARM_AAPCS;
5839   else
5840     return llvm::CallingConv::ARM_APCS;
5841 }
5842 
5843 /// Return the calling convention that our ABI would like us to use
5844 /// as the C calling convention.
5845 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5846   switch (getABIKind()) {
5847   case APCS: return llvm::CallingConv::ARM_APCS;
5848   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5849   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5850   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5851   }
5852   llvm_unreachable("bad ABI kind");
5853 }
5854 
5855 void ARMABIInfo::setCCs() {
5856   assert(getRuntimeCC() == llvm::CallingConv::C);
5857 
5858   // Don't muddy up the IR with a ton of explicit annotations if
5859   // they'd just match what LLVM will infer from the triple.
5860   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5861   if (abiCC != getLLVMDefaultCC())
5862     RuntimeCC = abiCC;
5863 }
5864 
5865 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5866   uint64_t Size = getContext().getTypeSize(Ty);
5867   if (Size <= 32) {
5868     llvm::Type *ResType =
5869         llvm::Type::getInt32Ty(getVMContext());
5870     return ABIArgInfo::getDirect(ResType);
5871   }
5872   if (Size == 64 || Size == 128) {
5873     llvm::Type *ResType = llvm::VectorType::get(
5874         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5875     return ABIArgInfo::getDirect(ResType);
5876   }
5877   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5878 }
5879 
5880 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5881                                                     const Type *Base,
5882                                                     uint64_t Members) const {
5883   assert(Base && "Base class should be set for homogeneous aggregate");
5884   // Base can be a floating-point or a vector.
5885   if (const VectorType *VT = Base->getAs<VectorType>()) {
5886     // FP16 vectors should be converted to integer vectors
5887     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
5888       uint64_t Size = getContext().getTypeSize(VT);
5889       llvm::Type *NewVecTy = llvm::VectorType::get(
5890           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5891       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5892       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5893     }
5894   }
5895   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5896 }
5897 
5898 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
5899                                             unsigned functionCallConv) const {
5900   // 6.1.2.1 The following argument types are VFP CPRCs:
5901   //   A single-precision floating-point type (including promoted
5902   //   half-precision types); A double-precision floating-point type;
5903   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5904   //   with a Base Type of a single- or double-precision floating-point type,
5905   //   64-bit containerized vectors or 128-bit containerized vectors with one
5906   //   to four Elements.
5907   // Variadic functions should always marshal to the base standard.
5908   bool IsAAPCS_VFP =
5909       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
5910 
5911   Ty = useFirstFieldIfTransparentUnion(Ty);
5912 
5913   // Handle illegal vector types here.
5914   if (isIllegalVectorType(Ty))
5915     return coerceIllegalVector(Ty);
5916 
5917   // _Float16 and __fp16 get passed as if it were an int or float, but with
5918   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5919   // half type natively, and does not need to interwork with AAPCS code.
5920   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5921       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5922     llvm::Type *ResType = IsAAPCS_VFP ?
5923       llvm::Type::getFloatTy(getVMContext()) :
5924       llvm::Type::getInt32Ty(getVMContext());
5925     return ABIArgInfo::getDirect(ResType);
5926   }
5927 
5928   if (!isAggregateTypeForABI(Ty)) {
5929     // Treat an enum type as its underlying type.
5930     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5931       Ty = EnumTy->getDecl()->getIntegerType();
5932     }
5933 
5934     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5935                                           : ABIArgInfo::getDirect());
5936   }
5937 
5938   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5939     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5940   }
5941 
5942   // Ignore empty records.
5943   if (isEmptyRecord(getContext(), Ty, true))
5944     return ABIArgInfo::getIgnore();
5945 
5946   if (IsAAPCS_VFP) {
5947     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5948     // into VFP registers.
5949     const Type *Base = nullptr;
5950     uint64_t Members = 0;
5951     if (isHomogeneousAggregate(Ty, Base, Members))
5952       return classifyHomogeneousAggregate(Ty, Base, Members);
5953   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5954     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5955     // this convention even for a variadic function: the backend will use GPRs
5956     // if needed.
5957     const Type *Base = nullptr;
5958     uint64_t Members = 0;
5959     if (isHomogeneousAggregate(Ty, Base, Members)) {
5960       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5961       llvm::Type *Ty =
5962         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5963       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5964     }
5965   }
5966 
5967   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5968       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5969     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5970     // bigger than 128-bits, they get placed in space allocated by the caller,
5971     // and a pointer is passed.
5972     return ABIArgInfo::getIndirect(
5973         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5974   }
5975 
5976   // Support byval for ARM.
5977   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5978   // most 8-byte. We realign the indirect argument if type alignment is bigger
5979   // than ABI alignment.
5980   uint64_t ABIAlign = 4;
5981   uint64_t TyAlign;
5982   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5983       getABIKind() == ARMABIInfo::AAPCS) {
5984     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5985     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5986   } else {
5987     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5988   }
5989   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5990     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5991     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5992                                    /*ByVal=*/true,
5993                                    /*Realign=*/TyAlign > ABIAlign);
5994   }
5995 
5996   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5997   // same size and alignment.
5998   if (getTarget().isRenderScriptTarget()) {
5999     return coerceToIntArray(Ty, getContext(), getVMContext());
6000   }
6001 
6002   // Otherwise, pass by coercing to a structure of the appropriate size.
6003   llvm::Type* ElemTy;
6004   unsigned SizeRegs;
6005   // FIXME: Try to match the types of the arguments more accurately where
6006   // we can.
6007   if (TyAlign <= 4) {
6008     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6009     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6010   } else {
6011     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6012     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6013   }
6014 
6015   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6016 }
6017 
6018 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6019                               llvm::LLVMContext &VMContext) {
6020   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6021   // is called integer-like if its size is less than or equal to one word, and
6022   // the offset of each of its addressable sub-fields is zero.
6023 
6024   uint64_t Size = Context.getTypeSize(Ty);
6025 
6026   // Check that the type fits in a word.
6027   if (Size > 32)
6028     return false;
6029 
6030   // FIXME: Handle vector types!
6031   if (Ty->isVectorType())
6032     return false;
6033 
6034   // Float types are never treated as "integer like".
6035   if (Ty->isRealFloatingType())
6036     return false;
6037 
6038   // If this is a builtin or pointer type then it is ok.
6039   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6040     return true;
6041 
6042   // Small complex integer types are "integer like".
6043   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6044     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6045 
6046   // Single element and zero sized arrays should be allowed, by the definition
6047   // above, but they are not.
6048 
6049   // Otherwise, it must be a record type.
6050   const RecordType *RT = Ty->getAs<RecordType>();
6051   if (!RT) return false;
6052 
6053   // Ignore records with flexible arrays.
6054   const RecordDecl *RD = RT->getDecl();
6055   if (RD->hasFlexibleArrayMember())
6056     return false;
6057 
6058   // Check that all sub-fields are at offset 0, and are themselves "integer
6059   // like".
6060   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6061 
6062   bool HadField = false;
6063   unsigned idx = 0;
6064   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6065        i != e; ++i, ++idx) {
6066     const FieldDecl *FD = *i;
6067 
6068     // Bit-fields are not addressable, we only need to verify they are "integer
6069     // like". We still have to disallow a subsequent non-bitfield, for example:
6070     //   struct { int : 0; int x }
6071     // is non-integer like according to gcc.
6072     if (FD->isBitField()) {
6073       if (!RD->isUnion())
6074         HadField = true;
6075 
6076       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6077         return false;
6078 
6079       continue;
6080     }
6081 
6082     // Check if this field is at offset 0.
6083     if (Layout.getFieldOffset(idx) != 0)
6084       return false;
6085 
6086     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6087       return false;
6088 
6089     // Only allow at most one field in a structure. This doesn't match the
6090     // wording above, but follows gcc in situations with a field following an
6091     // empty structure.
6092     if (!RD->isUnion()) {
6093       if (HadField)
6094         return false;
6095 
6096       HadField = true;
6097     }
6098   }
6099 
6100   return true;
6101 }
6102 
6103 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6104                                           unsigned functionCallConv) const {
6105 
6106   // Variadic functions should always marshal to the base standard.
6107   bool IsAAPCS_VFP =
6108       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6109 
6110   if (RetTy->isVoidType())
6111     return ABIArgInfo::getIgnore();
6112 
6113   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6114     // Large vector types should be returned via memory.
6115     if (getContext().getTypeSize(RetTy) > 128)
6116       return getNaturalAlignIndirect(RetTy);
6117     // FP16 vectors should be converted to integer vectors
6118     if (!getTarget().hasLegalHalfType() &&
6119         (VT->getElementType()->isFloat16Type() ||
6120          VT->getElementType()->isHalfType()))
6121       return coerceIllegalVector(RetTy);
6122   }
6123 
6124   // _Float16 and __fp16 get returned as if it were an int or float, but with
6125   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6126   // half type natively, and does not need to interwork with AAPCS code.
6127   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6128       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6129     llvm::Type *ResType = IsAAPCS_VFP ?
6130       llvm::Type::getFloatTy(getVMContext()) :
6131       llvm::Type::getInt32Ty(getVMContext());
6132     return ABIArgInfo::getDirect(ResType);
6133   }
6134 
6135   if (!isAggregateTypeForABI(RetTy)) {
6136     // Treat an enum type as its underlying type.
6137     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6138       RetTy = EnumTy->getDecl()->getIntegerType();
6139 
6140     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6141                                             : ABIArgInfo::getDirect();
6142   }
6143 
6144   // Are we following APCS?
6145   if (getABIKind() == APCS) {
6146     if (isEmptyRecord(getContext(), RetTy, false))
6147       return ABIArgInfo::getIgnore();
6148 
6149     // Complex types are all returned as packed integers.
6150     //
6151     // FIXME: Consider using 2 x vector types if the back end handles them
6152     // correctly.
6153     if (RetTy->isAnyComplexType())
6154       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6155           getVMContext(), getContext().getTypeSize(RetTy)));
6156 
6157     // Integer like structures are returned in r0.
6158     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6159       // Return in the smallest viable integer type.
6160       uint64_t Size = getContext().getTypeSize(RetTy);
6161       if (Size <= 8)
6162         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6163       if (Size <= 16)
6164         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6165       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6166     }
6167 
6168     // Otherwise return in memory.
6169     return getNaturalAlignIndirect(RetTy);
6170   }
6171 
6172   // Otherwise this is an AAPCS variant.
6173 
6174   if (isEmptyRecord(getContext(), RetTy, true))
6175     return ABIArgInfo::getIgnore();
6176 
6177   // Check for homogeneous aggregates with AAPCS-VFP.
6178   if (IsAAPCS_VFP) {
6179     const Type *Base = nullptr;
6180     uint64_t Members = 0;
6181     if (isHomogeneousAggregate(RetTy, Base, Members))
6182       return classifyHomogeneousAggregate(RetTy, Base, Members);
6183   }
6184 
6185   // Aggregates <= 4 bytes are returned in r0; other aggregates
6186   // are returned indirectly.
6187   uint64_t Size = getContext().getTypeSize(RetTy);
6188   if (Size <= 32) {
6189     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6190     // same size and alignment.
6191     if (getTarget().isRenderScriptTarget()) {
6192       return coerceToIntArray(RetTy, getContext(), getVMContext());
6193     }
6194     if (getDataLayout().isBigEndian())
6195       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6196       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6197 
6198     // Return in the smallest viable integer type.
6199     if (Size <= 8)
6200       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6201     if (Size <= 16)
6202       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6203     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6204   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6205     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6206     llvm::Type *CoerceTy =
6207         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6208     return ABIArgInfo::getDirect(CoerceTy);
6209   }
6210 
6211   return getNaturalAlignIndirect(RetTy);
6212 }
6213 
6214 /// isIllegalVector - check whether Ty is an illegal vector type.
6215 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6216   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6217     // On targets that don't support FP16, FP16 is expanded into float, and we
6218     // don't want the ABI to depend on whether or not FP16 is supported in
6219     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6220     if (!getTarget().hasLegalHalfType() &&
6221         (VT->getElementType()->isFloat16Type() ||
6222          VT->getElementType()->isHalfType()))
6223       return true;
6224     if (isAndroid()) {
6225       // Android shipped using Clang 3.1, which supported a slightly different
6226       // vector ABI. The primary differences were that 3-element vector types
6227       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6228       // accepts that legacy behavior for Android only.
6229       // Check whether VT is legal.
6230       unsigned NumElements = VT->getNumElements();
6231       // NumElements should be power of 2 or equal to 3.
6232       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6233         return true;
6234     } else {
6235       // Check whether VT is legal.
6236       unsigned NumElements = VT->getNumElements();
6237       uint64_t Size = getContext().getTypeSize(VT);
6238       // NumElements should be power of 2.
6239       if (!llvm::isPowerOf2_32(NumElements))
6240         return true;
6241       // Size should be greater than 32 bits.
6242       return Size <= 32;
6243     }
6244   }
6245   return false;
6246 }
6247 
6248 /// Return true if a type contains any 16-bit floating point vectors
6249 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6250   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6251     uint64_t NElements = AT->getSize().getZExtValue();
6252     if (NElements == 0)
6253       return false;
6254     return containsAnyFP16Vectors(AT->getElementType());
6255   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6256     const RecordDecl *RD = RT->getDecl();
6257 
6258     // If this is a C++ record, check the bases first.
6259     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6260       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6261             return containsAnyFP16Vectors(B.getType());
6262           }))
6263         return true;
6264 
6265     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6266           return FD && containsAnyFP16Vectors(FD->getType());
6267         }))
6268       return true;
6269 
6270     return false;
6271   } else {
6272     if (const VectorType *VT = Ty->getAs<VectorType>())
6273       return (VT->getElementType()->isFloat16Type() ||
6274               VT->getElementType()->isHalfType());
6275     return false;
6276   }
6277 }
6278 
6279 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6280                                            llvm::Type *eltTy,
6281                                            unsigned numElts) const {
6282   if (!llvm::isPowerOf2_32(numElts))
6283     return false;
6284   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6285   if (size > 64)
6286     return false;
6287   if (vectorSize.getQuantity() != 8 &&
6288       (vectorSize.getQuantity() != 16 || numElts == 1))
6289     return false;
6290   return true;
6291 }
6292 
6293 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6294   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6295   // double, or 64-bit or 128-bit vectors.
6296   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6297     if (BT->getKind() == BuiltinType::Float ||
6298         BT->getKind() == BuiltinType::Double ||
6299         BT->getKind() == BuiltinType::LongDouble)
6300       return true;
6301   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6302     unsigned VecSize = getContext().getTypeSize(VT);
6303     if (VecSize == 64 || VecSize == 128)
6304       return true;
6305   }
6306   return false;
6307 }
6308 
6309 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6310                                                    uint64_t Members) const {
6311   return Members <= 4;
6312 }
6313 
6314 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6315                                         bool acceptHalf) const {
6316   // Give precedence to user-specified calling conventions.
6317   if (callConvention != llvm::CallingConv::C)
6318     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6319   else
6320     return (getABIKind() == AAPCS_VFP) ||
6321            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6322 }
6323 
6324 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6325                               QualType Ty) const {
6326   CharUnits SlotSize = CharUnits::fromQuantity(4);
6327 
6328   // Empty records are ignored for parameter passing purposes.
6329   if (isEmptyRecord(getContext(), Ty, true)) {
6330     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6331     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6332     return Addr;
6333   }
6334 
6335   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6336   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6337 
6338   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6339   bool IsIndirect = false;
6340   const Type *Base = nullptr;
6341   uint64_t Members = 0;
6342   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6343     IsIndirect = true;
6344 
6345   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6346   // allocated by the caller.
6347   } else if (TySize > CharUnits::fromQuantity(16) &&
6348              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6349              !isHomogeneousAggregate(Ty, Base, Members)) {
6350     IsIndirect = true;
6351 
6352   // Otherwise, bound the type's ABI alignment.
6353   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6354   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6355   // Our callers should be prepared to handle an under-aligned address.
6356   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6357              getABIKind() == ARMABIInfo::AAPCS) {
6358     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6359     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6360   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6361     // ARMv7k allows type alignment up to 16 bytes.
6362     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6363     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6364   } else {
6365     TyAlignForABI = CharUnits::fromQuantity(4);
6366   }
6367 
6368   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6369   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6370                           SlotSize, /*AllowHigherAlign*/ true);
6371 }
6372 
6373 //===----------------------------------------------------------------------===//
6374 // NVPTX ABI Implementation
6375 //===----------------------------------------------------------------------===//
6376 
6377 namespace {
6378 
6379 class NVPTXABIInfo : public ABIInfo {
6380 public:
6381   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6382 
6383   ABIArgInfo classifyReturnType(QualType RetTy) const;
6384   ABIArgInfo classifyArgumentType(QualType Ty) const;
6385 
6386   void computeInfo(CGFunctionInfo &FI) const override;
6387   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6388                     QualType Ty) const override;
6389 };
6390 
6391 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6392 public:
6393   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6394     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6395 
6396   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6397                            CodeGen::CodeGenModule &M) const override;
6398   bool shouldEmitStaticExternCAliases() const override;
6399 
6400 private:
6401   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6402   // resulting MDNode to the nvvm.annotations MDNode.
6403   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6404 };
6405 
6406 /// Checks if the type is unsupported directly by the current target.
6407 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6408   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6409     return true;
6410   if (!Context.getTargetInfo().hasFloat128Type() &&
6411       (T->isFloat128Type() ||
6412        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6413     return true;
6414   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6415       Context.getTypeSize(T) > 64)
6416     return true;
6417   if (const auto *AT = T->getAsArrayTypeUnsafe())
6418     return isUnsupportedType(Context, AT->getElementType());
6419   const auto *RT = T->getAs<RecordType>();
6420   if (!RT)
6421     return false;
6422   const RecordDecl *RD = RT->getDecl();
6423 
6424   // If this is a C++ record, check the bases first.
6425   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6426     for (const CXXBaseSpecifier &I : CXXRD->bases())
6427       if (isUnsupportedType(Context, I.getType()))
6428         return true;
6429 
6430   for (const FieldDecl *I : RD->fields())
6431     if (isUnsupportedType(Context, I->getType()))
6432       return true;
6433   return false;
6434 }
6435 
6436 /// Coerce the given type into an array with maximum allowed size of elements.
6437 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6438                                             llvm::LLVMContext &LLVMContext,
6439                                             unsigned MaxSize) {
6440   // Alignment and Size are measured in bits.
6441   const uint64_t Size = Context.getTypeSize(Ty);
6442   const uint64_t Alignment = Context.getTypeAlign(Ty);
6443   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6444   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6445   const uint64_t NumElements = (Size + Div - 1) / Div;
6446   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6447 }
6448 
6449 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6450   if (RetTy->isVoidType())
6451     return ABIArgInfo::getIgnore();
6452 
6453   if (getContext().getLangOpts().OpenMP &&
6454       getContext().getLangOpts().OpenMPIsDevice &&
6455       isUnsupportedType(getContext(), RetTy))
6456     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6457 
6458   // note: this is different from default ABI
6459   if (!RetTy->isScalarType())
6460     return ABIArgInfo::getDirect();
6461 
6462   // Treat an enum type as its underlying type.
6463   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6464     RetTy = EnumTy->getDecl()->getIntegerType();
6465 
6466   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6467                                            : ABIArgInfo::getDirect());
6468 }
6469 
6470 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6471   // Treat an enum type as its underlying type.
6472   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6473     Ty = EnumTy->getDecl()->getIntegerType();
6474 
6475   // Return aggregates type as indirect by value
6476   if (isAggregateTypeForABI(Ty))
6477     return getNaturalAlignIndirect(Ty, /* byval */ true);
6478 
6479   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6480                                         : ABIArgInfo::getDirect());
6481 }
6482 
6483 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6484   if (!getCXXABI().classifyReturnType(FI))
6485     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6486   for (auto &I : FI.arguments())
6487     I.info = classifyArgumentType(I.type);
6488 
6489   // Always honor user-specified calling convention.
6490   if (FI.getCallingConvention() != llvm::CallingConv::C)
6491     return;
6492 
6493   FI.setEffectiveCallingConvention(getRuntimeCC());
6494 }
6495 
6496 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6497                                 QualType Ty) const {
6498   llvm_unreachable("NVPTX does not support varargs");
6499 }
6500 
6501 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6502     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6503   if (GV->isDeclaration())
6504     return;
6505   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6506   if (!FD) return;
6507 
6508   llvm::Function *F = cast<llvm::Function>(GV);
6509 
6510   // Perform special handling in OpenCL mode
6511   if (M.getLangOpts().OpenCL) {
6512     // Use OpenCL function attributes to check for kernel functions
6513     // By default, all functions are device functions
6514     if (FD->hasAttr<OpenCLKernelAttr>()) {
6515       // OpenCL __kernel functions get kernel metadata
6516       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6517       addNVVMMetadata(F, "kernel", 1);
6518       // And kernel functions are not subject to inlining
6519       F->addFnAttr(llvm::Attribute::NoInline);
6520     }
6521   }
6522 
6523   // Perform special handling in CUDA mode.
6524   if (M.getLangOpts().CUDA) {
6525     // CUDA __global__ functions get a kernel metadata entry.  Since
6526     // __global__ functions cannot be called from the device, we do not
6527     // need to set the noinline attribute.
6528     if (FD->hasAttr<CUDAGlobalAttr>()) {
6529       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6530       addNVVMMetadata(F, "kernel", 1);
6531     }
6532     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6533       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6534       llvm::APSInt MaxThreads(32);
6535       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6536       if (MaxThreads > 0)
6537         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6538 
6539       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6540       // not specified in __launch_bounds__ or if the user specified a 0 value,
6541       // we don't have to add a PTX directive.
6542       if (Attr->getMinBlocks()) {
6543         llvm::APSInt MinBlocks(32);
6544         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6545         if (MinBlocks > 0)
6546           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6547           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6548       }
6549     }
6550   }
6551 }
6552 
6553 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6554                                              int Operand) {
6555   llvm::Module *M = F->getParent();
6556   llvm::LLVMContext &Ctx = M->getContext();
6557 
6558   // Get "nvvm.annotations" metadata node
6559   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6560 
6561   llvm::Metadata *MDVals[] = {
6562       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6563       llvm::ConstantAsMetadata::get(
6564           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6565   // Append metadata to nvvm.annotations
6566   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6567 }
6568 
6569 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6570   return false;
6571 }
6572 }
6573 
6574 //===----------------------------------------------------------------------===//
6575 // SystemZ ABI Implementation
6576 //===----------------------------------------------------------------------===//
6577 
6578 namespace {
6579 
6580 class SystemZABIInfo : public SwiftABIInfo {
6581   bool HasVector;
6582 
6583 public:
6584   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6585     : SwiftABIInfo(CGT), HasVector(HV) {}
6586 
6587   bool isPromotableIntegerType(QualType Ty) const;
6588   bool isCompoundType(QualType Ty) const;
6589   bool isVectorArgumentType(QualType Ty) const;
6590   bool isFPArgumentType(QualType Ty) const;
6591   QualType GetSingleElementType(QualType Ty) const;
6592 
6593   ABIArgInfo classifyReturnType(QualType RetTy) const;
6594   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6595 
6596   void computeInfo(CGFunctionInfo &FI) const override {
6597     if (!getCXXABI().classifyReturnType(FI))
6598       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6599     for (auto &I : FI.arguments())
6600       I.info = classifyArgumentType(I.type);
6601   }
6602 
6603   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6604                     QualType Ty) const override;
6605 
6606   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6607                                     bool asReturnValue) const override {
6608     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6609   }
6610   bool isSwiftErrorInRegister() const override {
6611     return false;
6612   }
6613 };
6614 
6615 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6616 public:
6617   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6618     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6619 };
6620 
6621 }
6622 
6623 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6624   // Treat an enum type as its underlying type.
6625   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6626     Ty = EnumTy->getDecl()->getIntegerType();
6627 
6628   // Promotable integer types are required to be promoted by the ABI.
6629   if (Ty->isPromotableIntegerType())
6630     return true;
6631 
6632   // 32-bit values must also be promoted.
6633   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6634     switch (BT->getKind()) {
6635     case BuiltinType::Int:
6636     case BuiltinType::UInt:
6637       return true;
6638     default:
6639       return false;
6640     }
6641   return false;
6642 }
6643 
6644 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6645   return (Ty->isAnyComplexType() ||
6646           Ty->isVectorType() ||
6647           isAggregateTypeForABI(Ty));
6648 }
6649 
6650 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6651   return (HasVector &&
6652           Ty->isVectorType() &&
6653           getContext().getTypeSize(Ty) <= 128);
6654 }
6655 
6656 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6657   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6658     switch (BT->getKind()) {
6659     case BuiltinType::Float:
6660     case BuiltinType::Double:
6661       return true;
6662     default:
6663       return false;
6664     }
6665 
6666   return false;
6667 }
6668 
6669 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6670   if (const RecordType *RT = Ty->getAsStructureType()) {
6671     const RecordDecl *RD = RT->getDecl();
6672     QualType Found;
6673 
6674     // If this is a C++ record, check the bases first.
6675     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6676       for (const auto &I : CXXRD->bases()) {
6677         QualType Base = I.getType();
6678 
6679         // Empty bases don't affect things either way.
6680         if (isEmptyRecord(getContext(), Base, true))
6681           continue;
6682 
6683         if (!Found.isNull())
6684           return Ty;
6685         Found = GetSingleElementType(Base);
6686       }
6687 
6688     // Check the fields.
6689     for (const auto *FD : RD->fields()) {
6690       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6691       // Unlike isSingleElementStruct(), empty structure and array fields
6692       // do count.  So do anonymous bitfields that aren't zero-sized.
6693       if (getContext().getLangOpts().CPlusPlus &&
6694           FD->isZeroLengthBitField(getContext()))
6695         continue;
6696 
6697       // Unlike isSingleElementStruct(), arrays do not count.
6698       // Nested structures still do though.
6699       if (!Found.isNull())
6700         return Ty;
6701       Found = GetSingleElementType(FD->getType());
6702     }
6703 
6704     // Unlike isSingleElementStruct(), trailing padding is allowed.
6705     // An 8-byte aligned struct s { float f; } is passed as a double.
6706     if (!Found.isNull())
6707       return Found;
6708   }
6709 
6710   return Ty;
6711 }
6712 
6713 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6714                                   QualType Ty) const {
6715   // Assume that va_list type is correct; should be pointer to LLVM type:
6716   // struct {
6717   //   i64 __gpr;
6718   //   i64 __fpr;
6719   //   i8 *__overflow_arg_area;
6720   //   i8 *__reg_save_area;
6721   // };
6722 
6723   // Every non-vector argument occupies 8 bytes and is passed by preference
6724   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6725   // always passed on the stack.
6726   Ty = getContext().getCanonicalType(Ty);
6727   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6728   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6729   llvm::Type *DirectTy = ArgTy;
6730   ABIArgInfo AI = classifyArgumentType(Ty);
6731   bool IsIndirect = AI.isIndirect();
6732   bool InFPRs = false;
6733   bool IsVector = false;
6734   CharUnits UnpaddedSize;
6735   CharUnits DirectAlign;
6736   if (IsIndirect) {
6737     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6738     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6739   } else {
6740     if (AI.getCoerceToType())
6741       ArgTy = AI.getCoerceToType();
6742     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6743     IsVector = ArgTy->isVectorTy();
6744     UnpaddedSize = TyInfo.first;
6745     DirectAlign = TyInfo.second;
6746   }
6747   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6748   if (IsVector && UnpaddedSize > PaddedSize)
6749     PaddedSize = CharUnits::fromQuantity(16);
6750   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6751 
6752   CharUnits Padding = (PaddedSize - UnpaddedSize);
6753 
6754   llvm::Type *IndexTy = CGF.Int64Ty;
6755   llvm::Value *PaddedSizeV =
6756     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6757 
6758   if (IsVector) {
6759     // Work out the address of a vector argument on the stack.
6760     // Vector arguments are always passed in the high bits of a
6761     // single (8 byte) or double (16 byte) stack slot.
6762     Address OverflowArgAreaPtr =
6763         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6764     Address OverflowArgArea =
6765       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6766               TyInfo.second);
6767     Address MemAddr =
6768       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6769 
6770     // Update overflow_arg_area_ptr pointer
6771     llvm::Value *NewOverflowArgArea =
6772       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6773                             "overflow_arg_area");
6774     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6775 
6776     return MemAddr;
6777   }
6778 
6779   assert(PaddedSize.getQuantity() == 8);
6780 
6781   unsigned MaxRegs, RegCountField, RegSaveIndex;
6782   CharUnits RegPadding;
6783   if (InFPRs) {
6784     MaxRegs = 4; // Maximum of 4 FPR arguments
6785     RegCountField = 1; // __fpr
6786     RegSaveIndex = 16; // save offset for f0
6787     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6788   } else {
6789     MaxRegs = 5; // Maximum of 5 GPR arguments
6790     RegCountField = 0; // __gpr
6791     RegSaveIndex = 2; // save offset for r2
6792     RegPadding = Padding; // values are passed in the low bits of a GPR
6793   }
6794 
6795   Address RegCountPtr =
6796       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6797   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6798   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6799   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6800                                                  "fits_in_regs");
6801 
6802   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6803   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6804   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6805   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6806 
6807   // Emit code to load the value if it was passed in registers.
6808   CGF.EmitBlock(InRegBlock);
6809 
6810   // Work out the address of an argument register.
6811   llvm::Value *ScaledRegCount =
6812     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6813   llvm::Value *RegBase =
6814     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6815                                       + RegPadding.getQuantity());
6816   llvm::Value *RegOffset =
6817     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6818   Address RegSaveAreaPtr =
6819       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6820   llvm::Value *RegSaveArea =
6821     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6822   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6823                                            "raw_reg_addr"),
6824                      PaddedSize);
6825   Address RegAddr =
6826     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6827 
6828   // Update the register count
6829   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6830   llvm::Value *NewRegCount =
6831     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6832   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6833   CGF.EmitBranch(ContBlock);
6834 
6835   // Emit code to load the value if it was passed in memory.
6836   CGF.EmitBlock(InMemBlock);
6837 
6838   // Work out the address of a stack argument.
6839   Address OverflowArgAreaPtr =
6840       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6841   Address OverflowArgArea =
6842     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6843             PaddedSize);
6844   Address RawMemAddr =
6845     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6846   Address MemAddr =
6847     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6848 
6849   // Update overflow_arg_area_ptr pointer
6850   llvm::Value *NewOverflowArgArea =
6851     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6852                           "overflow_arg_area");
6853   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6854   CGF.EmitBranch(ContBlock);
6855 
6856   // Return the appropriate result.
6857   CGF.EmitBlock(ContBlock);
6858   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6859                                  MemAddr, InMemBlock, "va_arg.addr");
6860 
6861   if (IsIndirect)
6862     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6863                       TyInfo.second);
6864 
6865   return ResAddr;
6866 }
6867 
6868 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6869   if (RetTy->isVoidType())
6870     return ABIArgInfo::getIgnore();
6871   if (isVectorArgumentType(RetTy))
6872     return ABIArgInfo::getDirect();
6873   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6874     return getNaturalAlignIndirect(RetTy);
6875   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6876                                          : ABIArgInfo::getDirect());
6877 }
6878 
6879 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6880   // Handle the generic C++ ABI.
6881   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6882     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6883 
6884   // Integers and enums are extended to full register width.
6885   if (isPromotableIntegerType(Ty))
6886     return ABIArgInfo::getExtend(Ty);
6887 
6888   // Handle vector types and vector-like structure types.  Note that
6889   // as opposed to float-like structure types, we do not allow any
6890   // padding for vector-like structures, so verify the sizes match.
6891   uint64_t Size = getContext().getTypeSize(Ty);
6892   QualType SingleElementTy = GetSingleElementType(Ty);
6893   if (isVectorArgumentType(SingleElementTy) &&
6894       getContext().getTypeSize(SingleElementTy) == Size)
6895     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6896 
6897   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6898   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6899     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6900 
6901   // Handle small structures.
6902   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6903     // Structures with flexible arrays have variable length, so really
6904     // fail the size test above.
6905     const RecordDecl *RD = RT->getDecl();
6906     if (RD->hasFlexibleArrayMember())
6907       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6908 
6909     // The structure is passed as an unextended integer, a float, or a double.
6910     llvm::Type *PassTy;
6911     if (isFPArgumentType(SingleElementTy)) {
6912       assert(Size == 32 || Size == 64);
6913       if (Size == 32)
6914         PassTy = llvm::Type::getFloatTy(getVMContext());
6915       else
6916         PassTy = llvm::Type::getDoubleTy(getVMContext());
6917     } else
6918       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6919     return ABIArgInfo::getDirect(PassTy);
6920   }
6921 
6922   // Non-structure compounds are passed indirectly.
6923   if (isCompoundType(Ty))
6924     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6925 
6926   return ABIArgInfo::getDirect(nullptr);
6927 }
6928 
6929 //===----------------------------------------------------------------------===//
6930 // MSP430 ABI Implementation
6931 //===----------------------------------------------------------------------===//
6932 
6933 namespace {
6934 
6935 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6936 public:
6937   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6938     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6939   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6940                            CodeGen::CodeGenModule &M) const override;
6941 };
6942 
6943 }
6944 
6945 void MSP430TargetCodeGenInfo::setTargetAttributes(
6946     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6947   if (GV->isDeclaration())
6948     return;
6949   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6950     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6951     if (!InterruptAttr)
6952       return;
6953 
6954     // Handle 'interrupt' attribute:
6955     llvm::Function *F = cast<llvm::Function>(GV);
6956 
6957     // Step 1: Set ISR calling convention.
6958     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6959 
6960     // Step 2: Add attributes goodness.
6961     F->addFnAttr(llvm::Attribute::NoInline);
6962     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6963   }
6964 }
6965 
6966 //===----------------------------------------------------------------------===//
6967 // MIPS ABI Implementation.  This works for both little-endian and
6968 // big-endian variants.
6969 //===----------------------------------------------------------------------===//
6970 
6971 namespace {
6972 class MipsABIInfo : public ABIInfo {
6973   bool IsO32;
6974   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6975   void CoerceToIntArgs(uint64_t TySize,
6976                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6977   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6978   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6979   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6980 public:
6981   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6982     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6983     StackAlignInBytes(IsO32 ? 8 : 16) {}
6984 
6985   ABIArgInfo classifyReturnType(QualType RetTy) const;
6986   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6987   void computeInfo(CGFunctionInfo &FI) const override;
6988   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6989                     QualType Ty) const override;
6990   ABIArgInfo extendType(QualType Ty) const;
6991 };
6992 
6993 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6994   unsigned SizeOfUnwindException;
6995 public:
6996   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6997     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6998       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6999 
7000   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7001     return 29;
7002   }
7003 
7004   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7005                            CodeGen::CodeGenModule &CGM) const override {
7006     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7007     if (!FD) return;
7008     llvm::Function *Fn = cast<llvm::Function>(GV);
7009 
7010     if (FD->hasAttr<MipsLongCallAttr>())
7011       Fn->addFnAttr("long-call");
7012     else if (FD->hasAttr<MipsShortCallAttr>())
7013       Fn->addFnAttr("short-call");
7014 
7015     // Other attributes do not have a meaning for declarations.
7016     if (GV->isDeclaration())
7017       return;
7018 
7019     if (FD->hasAttr<Mips16Attr>()) {
7020       Fn->addFnAttr("mips16");
7021     }
7022     else if (FD->hasAttr<NoMips16Attr>()) {
7023       Fn->addFnAttr("nomips16");
7024     }
7025 
7026     if (FD->hasAttr<MicroMipsAttr>())
7027       Fn->addFnAttr("micromips");
7028     else if (FD->hasAttr<NoMicroMipsAttr>())
7029       Fn->addFnAttr("nomicromips");
7030 
7031     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7032     if (!Attr)
7033       return;
7034 
7035     const char *Kind;
7036     switch (Attr->getInterrupt()) {
7037     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7038     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7039     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7040     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7041     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7042     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7043     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7044     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7045     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7046     }
7047 
7048     Fn->addFnAttr("interrupt", Kind);
7049 
7050   }
7051 
7052   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7053                                llvm::Value *Address) const override;
7054 
7055   unsigned getSizeOfUnwindException() const override {
7056     return SizeOfUnwindException;
7057   }
7058 };
7059 }
7060 
7061 void MipsABIInfo::CoerceToIntArgs(
7062     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7063   llvm::IntegerType *IntTy =
7064     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7065 
7066   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7067   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7068     ArgList.push_back(IntTy);
7069 
7070   // If necessary, add one more integer type to ArgList.
7071   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7072 
7073   if (R)
7074     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7075 }
7076 
7077 // In N32/64, an aligned double precision floating point field is passed in
7078 // a register.
7079 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7080   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7081 
7082   if (IsO32) {
7083     CoerceToIntArgs(TySize, ArgList);
7084     return llvm::StructType::get(getVMContext(), ArgList);
7085   }
7086 
7087   if (Ty->isComplexType())
7088     return CGT.ConvertType(Ty);
7089 
7090   const RecordType *RT = Ty->getAs<RecordType>();
7091 
7092   // Unions/vectors are passed in integer registers.
7093   if (!RT || !RT->isStructureOrClassType()) {
7094     CoerceToIntArgs(TySize, ArgList);
7095     return llvm::StructType::get(getVMContext(), ArgList);
7096   }
7097 
7098   const RecordDecl *RD = RT->getDecl();
7099   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7100   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7101 
7102   uint64_t LastOffset = 0;
7103   unsigned idx = 0;
7104   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7105 
7106   // Iterate over fields in the struct/class and check if there are any aligned
7107   // double fields.
7108   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7109        i != e; ++i, ++idx) {
7110     const QualType Ty = i->getType();
7111     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7112 
7113     if (!BT || BT->getKind() != BuiltinType::Double)
7114       continue;
7115 
7116     uint64_t Offset = Layout.getFieldOffset(idx);
7117     if (Offset % 64) // Ignore doubles that are not aligned.
7118       continue;
7119 
7120     // Add ((Offset - LastOffset) / 64) args of type i64.
7121     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7122       ArgList.push_back(I64);
7123 
7124     // Add double type.
7125     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7126     LastOffset = Offset + 64;
7127   }
7128 
7129   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7130   ArgList.append(IntArgList.begin(), IntArgList.end());
7131 
7132   return llvm::StructType::get(getVMContext(), ArgList);
7133 }
7134 
7135 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7136                                         uint64_t Offset) const {
7137   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7138     return nullptr;
7139 
7140   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7141 }
7142 
7143 ABIArgInfo
7144 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7145   Ty = useFirstFieldIfTransparentUnion(Ty);
7146 
7147   uint64_t OrigOffset = Offset;
7148   uint64_t TySize = getContext().getTypeSize(Ty);
7149   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7150 
7151   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7152                    (uint64_t)StackAlignInBytes);
7153   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7154   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7155 
7156   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7157     // Ignore empty aggregates.
7158     if (TySize == 0)
7159       return ABIArgInfo::getIgnore();
7160 
7161     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7162       Offset = OrigOffset + MinABIStackAlignInBytes;
7163       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7164     }
7165 
7166     // If we have reached here, aggregates are passed directly by coercing to
7167     // another structure type. Padding is inserted if the offset of the
7168     // aggregate is unaligned.
7169     ABIArgInfo ArgInfo =
7170         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7171                               getPaddingType(OrigOffset, CurrOffset));
7172     ArgInfo.setInReg(true);
7173     return ArgInfo;
7174   }
7175 
7176   // Treat an enum type as its underlying type.
7177   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7178     Ty = EnumTy->getDecl()->getIntegerType();
7179 
7180   // All integral types are promoted to the GPR width.
7181   if (Ty->isIntegralOrEnumerationType())
7182     return extendType(Ty);
7183 
7184   return ABIArgInfo::getDirect(
7185       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7186 }
7187 
7188 llvm::Type*
7189 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7190   const RecordType *RT = RetTy->getAs<RecordType>();
7191   SmallVector<llvm::Type*, 8> RTList;
7192 
7193   if (RT && RT->isStructureOrClassType()) {
7194     const RecordDecl *RD = RT->getDecl();
7195     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7196     unsigned FieldCnt = Layout.getFieldCount();
7197 
7198     // N32/64 returns struct/classes in floating point registers if the
7199     // following conditions are met:
7200     // 1. The size of the struct/class is no larger than 128-bit.
7201     // 2. The struct/class has one or two fields all of which are floating
7202     //    point types.
7203     // 3. The offset of the first field is zero (this follows what gcc does).
7204     //
7205     // Any other composite results are returned in integer registers.
7206     //
7207     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7208       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7209       for (; b != e; ++b) {
7210         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7211 
7212         if (!BT || !BT->isFloatingPoint())
7213           break;
7214 
7215         RTList.push_back(CGT.ConvertType(b->getType()));
7216       }
7217 
7218       if (b == e)
7219         return llvm::StructType::get(getVMContext(), RTList,
7220                                      RD->hasAttr<PackedAttr>());
7221 
7222       RTList.clear();
7223     }
7224   }
7225 
7226   CoerceToIntArgs(Size, RTList);
7227   return llvm::StructType::get(getVMContext(), RTList);
7228 }
7229 
7230 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7231   uint64_t Size = getContext().getTypeSize(RetTy);
7232 
7233   if (RetTy->isVoidType())
7234     return ABIArgInfo::getIgnore();
7235 
7236   // O32 doesn't treat zero-sized structs differently from other structs.
7237   // However, N32/N64 ignores zero sized return values.
7238   if (!IsO32 && Size == 0)
7239     return ABIArgInfo::getIgnore();
7240 
7241   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7242     if (Size <= 128) {
7243       if (RetTy->isAnyComplexType())
7244         return ABIArgInfo::getDirect();
7245 
7246       // O32 returns integer vectors in registers and N32/N64 returns all small
7247       // aggregates in registers.
7248       if (!IsO32 ||
7249           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7250         ABIArgInfo ArgInfo =
7251             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7252         ArgInfo.setInReg(true);
7253         return ArgInfo;
7254       }
7255     }
7256 
7257     return getNaturalAlignIndirect(RetTy);
7258   }
7259 
7260   // Treat an enum type as its underlying type.
7261   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7262     RetTy = EnumTy->getDecl()->getIntegerType();
7263 
7264   if (RetTy->isPromotableIntegerType())
7265     return ABIArgInfo::getExtend(RetTy);
7266 
7267   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7268       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7269     return ABIArgInfo::getSignExtend(RetTy);
7270 
7271   return ABIArgInfo::getDirect();
7272 }
7273 
7274 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7275   ABIArgInfo &RetInfo = FI.getReturnInfo();
7276   if (!getCXXABI().classifyReturnType(FI))
7277     RetInfo = classifyReturnType(FI.getReturnType());
7278 
7279   // Check if a pointer to an aggregate is passed as a hidden argument.
7280   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7281 
7282   for (auto &I : FI.arguments())
7283     I.info = classifyArgumentType(I.type, Offset);
7284 }
7285 
7286 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7287                                QualType OrigTy) const {
7288   QualType Ty = OrigTy;
7289 
7290   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7291   // Pointers are also promoted in the same way but this only matters for N32.
7292   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7293   unsigned PtrWidth = getTarget().getPointerWidth(0);
7294   bool DidPromote = false;
7295   if ((Ty->isIntegerType() &&
7296           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7297       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7298     DidPromote = true;
7299     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7300                                             Ty->isSignedIntegerType());
7301   }
7302 
7303   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7304 
7305   // The alignment of things in the argument area is never larger than
7306   // StackAlignInBytes.
7307   TyInfo.second =
7308     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7309 
7310   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7311   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7312 
7313   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7314                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7315 
7316 
7317   // If there was a promotion, "unpromote" into a temporary.
7318   // TODO: can we just use a pointer into a subset of the original slot?
7319   if (DidPromote) {
7320     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7321     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7322 
7323     // Truncate down to the right width.
7324     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7325                                                  : CGF.IntPtrTy);
7326     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7327     if (OrigTy->isPointerType())
7328       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7329 
7330     CGF.Builder.CreateStore(V, Temp);
7331     Addr = Temp;
7332   }
7333 
7334   return Addr;
7335 }
7336 
7337 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7338   int TySize = getContext().getTypeSize(Ty);
7339 
7340   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7341   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7342     return ABIArgInfo::getSignExtend(Ty);
7343 
7344   return ABIArgInfo::getExtend(Ty);
7345 }
7346 
7347 bool
7348 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7349                                                llvm::Value *Address) const {
7350   // This information comes from gcc's implementation, which seems to
7351   // as canonical as it gets.
7352 
7353   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7354   // are aliased to pairs of single-precision FP registers.
7355   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7356 
7357   // 0-31 are the general purpose registers, $0 - $31.
7358   // 32-63 are the floating-point registers, $f0 - $f31.
7359   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7360   // 66 is the (notional, I think) register for signal-handler return.
7361   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7362 
7363   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7364   // They are one bit wide and ignored here.
7365 
7366   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7367   // (coprocessor 1 is the FP unit)
7368   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7369   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7370   // 176-181 are the DSP accumulator registers.
7371   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7372   return false;
7373 }
7374 
7375 //===----------------------------------------------------------------------===//
7376 // AVR ABI Implementation.
7377 //===----------------------------------------------------------------------===//
7378 
7379 namespace {
7380 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7381 public:
7382   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7383     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7384 
7385   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7386                            CodeGen::CodeGenModule &CGM) const override {
7387     if (GV->isDeclaration())
7388       return;
7389     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7390     if (!FD) return;
7391     auto *Fn = cast<llvm::Function>(GV);
7392 
7393     if (FD->getAttr<AVRInterruptAttr>())
7394       Fn->addFnAttr("interrupt");
7395 
7396     if (FD->getAttr<AVRSignalAttr>())
7397       Fn->addFnAttr("signal");
7398   }
7399 };
7400 }
7401 
7402 //===----------------------------------------------------------------------===//
7403 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7404 // Currently subclassed only to implement custom OpenCL C function attribute
7405 // handling.
7406 //===----------------------------------------------------------------------===//
7407 
7408 namespace {
7409 
7410 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7411 public:
7412   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7413     : DefaultTargetCodeGenInfo(CGT) {}
7414 
7415   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7416                            CodeGen::CodeGenModule &M) const override;
7417 };
7418 
7419 void TCETargetCodeGenInfo::setTargetAttributes(
7420     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7421   if (GV->isDeclaration())
7422     return;
7423   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7424   if (!FD) return;
7425 
7426   llvm::Function *F = cast<llvm::Function>(GV);
7427 
7428   if (M.getLangOpts().OpenCL) {
7429     if (FD->hasAttr<OpenCLKernelAttr>()) {
7430       // OpenCL C Kernel functions are not subject to inlining
7431       F->addFnAttr(llvm::Attribute::NoInline);
7432       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7433       if (Attr) {
7434         // Convert the reqd_work_group_size() attributes to metadata.
7435         llvm::LLVMContext &Context = F->getContext();
7436         llvm::NamedMDNode *OpenCLMetadata =
7437             M.getModule().getOrInsertNamedMetadata(
7438                 "opencl.kernel_wg_size_info");
7439 
7440         SmallVector<llvm::Metadata *, 5> Operands;
7441         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7442 
7443         Operands.push_back(
7444             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7445                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7446         Operands.push_back(
7447             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7448                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7449         Operands.push_back(
7450             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7451                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7452 
7453         // Add a boolean constant operand for "required" (true) or "hint"
7454         // (false) for implementing the work_group_size_hint attr later.
7455         // Currently always true as the hint is not yet implemented.
7456         Operands.push_back(
7457             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7458         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7459       }
7460     }
7461   }
7462 }
7463 
7464 }
7465 
7466 //===----------------------------------------------------------------------===//
7467 // Hexagon ABI Implementation
7468 //===----------------------------------------------------------------------===//
7469 
7470 namespace {
7471 
7472 class HexagonABIInfo : public ABIInfo {
7473 
7474 
7475 public:
7476   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7477 
7478 private:
7479 
7480   ABIArgInfo classifyReturnType(QualType RetTy) const;
7481   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7482 
7483   void computeInfo(CGFunctionInfo &FI) const override;
7484 
7485   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7486                     QualType Ty) const override;
7487 };
7488 
7489 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7490 public:
7491   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7492     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7493 
7494   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7495     return 29;
7496   }
7497 };
7498 
7499 }
7500 
7501 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7502   if (!getCXXABI().classifyReturnType(FI))
7503     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7504   for (auto &I : FI.arguments())
7505     I.info = classifyArgumentType(I.type);
7506 }
7507 
7508 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7509   if (!isAggregateTypeForABI(Ty)) {
7510     // Treat an enum type as its underlying type.
7511     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7512       Ty = EnumTy->getDecl()->getIntegerType();
7513 
7514     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7515                                           : ABIArgInfo::getDirect());
7516   }
7517 
7518   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7519     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7520 
7521   // Ignore empty records.
7522   if (isEmptyRecord(getContext(), Ty, true))
7523     return ABIArgInfo::getIgnore();
7524 
7525   uint64_t Size = getContext().getTypeSize(Ty);
7526   if (Size > 64)
7527     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7528     // Pass in the smallest viable integer type.
7529   else if (Size > 32)
7530       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7531   else if (Size > 16)
7532       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7533   else if (Size > 8)
7534       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7535   else
7536       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7537 }
7538 
7539 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7540   if (RetTy->isVoidType())
7541     return ABIArgInfo::getIgnore();
7542 
7543   // Large vector types should be returned via memory.
7544   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7545     return getNaturalAlignIndirect(RetTy);
7546 
7547   if (!isAggregateTypeForABI(RetTy)) {
7548     // Treat an enum type as its underlying type.
7549     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7550       RetTy = EnumTy->getDecl()->getIntegerType();
7551 
7552     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7553                                              : ABIArgInfo::getDirect());
7554   }
7555 
7556   if (isEmptyRecord(getContext(), RetTy, true))
7557     return ABIArgInfo::getIgnore();
7558 
7559   // Aggregates <= 8 bytes are returned in r0; other aggregates
7560   // are returned indirectly.
7561   uint64_t Size = getContext().getTypeSize(RetTy);
7562   if (Size <= 64) {
7563     // Return in the smallest viable integer type.
7564     if (Size <= 8)
7565       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7566     if (Size <= 16)
7567       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7568     if (Size <= 32)
7569       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7570     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7571   }
7572 
7573   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7574 }
7575 
7576 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7577                                   QualType Ty) const {
7578   // FIXME: Someone needs to audit that this handle alignment correctly.
7579   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7580                           getContext().getTypeInfoInChars(Ty),
7581                           CharUnits::fromQuantity(4),
7582                           /*AllowHigherAlign*/ true);
7583 }
7584 
7585 //===----------------------------------------------------------------------===//
7586 // Lanai ABI Implementation
7587 //===----------------------------------------------------------------------===//
7588 
7589 namespace {
7590 class LanaiABIInfo : public DefaultABIInfo {
7591 public:
7592   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7593 
7594   bool shouldUseInReg(QualType Ty, CCState &State) const;
7595 
7596   void computeInfo(CGFunctionInfo &FI) const override {
7597     CCState State(FI.getCallingConvention());
7598     // Lanai uses 4 registers to pass arguments unless the function has the
7599     // regparm attribute set.
7600     if (FI.getHasRegParm()) {
7601       State.FreeRegs = FI.getRegParm();
7602     } else {
7603       State.FreeRegs = 4;
7604     }
7605 
7606     if (!getCXXABI().classifyReturnType(FI))
7607       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7608     for (auto &I : FI.arguments())
7609       I.info = classifyArgumentType(I.type, State);
7610   }
7611 
7612   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7613   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7614 };
7615 } // end anonymous namespace
7616 
7617 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7618   unsigned Size = getContext().getTypeSize(Ty);
7619   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7620 
7621   if (SizeInRegs == 0)
7622     return false;
7623 
7624   if (SizeInRegs > State.FreeRegs) {
7625     State.FreeRegs = 0;
7626     return false;
7627   }
7628 
7629   State.FreeRegs -= SizeInRegs;
7630 
7631   return true;
7632 }
7633 
7634 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7635                                            CCState &State) const {
7636   if (!ByVal) {
7637     if (State.FreeRegs) {
7638       --State.FreeRegs; // Non-byval indirects just use one pointer.
7639       return getNaturalAlignIndirectInReg(Ty);
7640     }
7641     return getNaturalAlignIndirect(Ty, false);
7642   }
7643 
7644   // Compute the byval alignment.
7645   const unsigned MinABIStackAlignInBytes = 4;
7646   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7647   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7648                                  /*Realign=*/TypeAlign >
7649                                      MinABIStackAlignInBytes);
7650 }
7651 
7652 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7653                                               CCState &State) const {
7654   // Check with the C++ ABI first.
7655   const RecordType *RT = Ty->getAs<RecordType>();
7656   if (RT) {
7657     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7658     if (RAA == CGCXXABI::RAA_Indirect) {
7659       return getIndirectResult(Ty, /*ByVal=*/false, State);
7660     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7661       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7662     }
7663   }
7664 
7665   if (isAggregateTypeForABI(Ty)) {
7666     // Structures with flexible arrays are always indirect.
7667     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7668       return getIndirectResult(Ty, /*ByVal=*/true, State);
7669 
7670     // Ignore empty structs/unions.
7671     if (isEmptyRecord(getContext(), Ty, true))
7672       return ABIArgInfo::getIgnore();
7673 
7674     llvm::LLVMContext &LLVMContext = getVMContext();
7675     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7676     if (SizeInRegs <= State.FreeRegs) {
7677       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7678       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7679       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7680       State.FreeRegs -= SizeInRegs;
7681       return ABIArgInfo::getDirectInReg(Result);
7682     } else {
7683       State.FreeRegs = 0;
7684     }
7685     return getIndirectResult(Ty, true, State);
7686   }
7687 
7688   // Treat an enum type as its underlying type.
7689   if (const auto *EnumTy = Ty->getAs<EnumType>())
7690     Ty = EnumTy->getDecl()->getIntegerType();
7691 
7692   bool InReg = shouldUseInReg(Ty, State);
7693   if (Ty->isPromotableIntegerType()) {
7694     if (InReg)
7695       return ABIArgInfo::getDirectInReg();
7696     return ABIArgInfo::getExtend(Ty);
7697   }
7698   if (InReg)
7699     return ABIArgInfo::getDirectInReg();
7700   return ABIArgInfo::getDirect();
7701 }
7702 
7703 namespace {
7704 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7705 public:
7706   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7707       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7708 };
7709 }
7710 
7711 //===----------------------------------------------------------------------===//
7712 // AMDGPU ABI Implementation
7713 //===----------------------------------------------------------------------===//
7714 
7715 namespace {
7716 
7717 class AMDGPUABIInfo final : public DefaultABIInfo {
7718 private:
7719   static const unsigned MaxNumRegsForArgsRet = 16;
7720 
7721   unsigned numRegsForType(QualType Ty) const;
7722 
7723   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7724   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7725                                          uint64_t Members) const override;
7726 
7727   // Coerce HIP pointer arguments from generic pointers to global ones.
7728   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
7729                                        unsigned ToAS) const {
7730     // Structure types.
7731     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
7732       SmallVector<llvm::Type *, 8> EltTys;
7733       bool Changed = false;
7734       for (auto T : STy->elements()) {
7735         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
7736         EltTys.push_back(NT);
7737         Changed |= (NT != T);
7738       }
7739       // Skip if there is no change in element types.
7740       if (!Changed)
7741         return STy;
7742       if (STy->hasName())
7743         return llvm::StructType::create(
7744             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
7745       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
7746     }
7747     // Arrary types.
7748     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
7749       auto T = ATy->getElementType();
7750       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
7751       // Skip if there is no change in that element type.
7752       if (NT == T)
7753         return ATy;
7754       return llvm::ArrayType::get(NT, ATy->getNumElements());
7755     }
7756     // Single value types.
7757     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
7758       return llvm::PointerType::get(
7759           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
7760     return Ty;
7761   }
7762 
7763 public:
7764   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7765     DefaultABIInfo(CGT) {}
7766 
7767   ABIArgInfo classifyReturnType(QualType RetTy) const;
7768   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7769   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7770 
7771   void computeInfo(CGFunctionInfo &FI) const override;
7772   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7773                     QualType Ty) const override;
7774 };
7775 
7776 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7777   return true;
7778 }
7779 
7780 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7781   const Type *Base, uint64_t Members) const {
7782   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7783 
7784   // Homogeneous Aggregates may occupy at most 16 registers.
7785   return Members * NumRegs <= MaxNumRegsForArgsRet;
7786 }
7787 
7788 /// Estimate number of registers the type will use when passed in registers.
7789 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7790   unsigned NumRegs = 0;
7791 
7792   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7793     // Compute from the number of elements. The reported size is based on the
7794     // in-memory size, which includes the padding 4th element for 3-vectors.
7795     QualType EltTy = VT->getElementType();
7796     unsigned EltSize = getContext().getTypeSize(EltTy);
7797 
7798     // 16-bit element vectors should be passed as packed.
7799     if (EltSize == 16)
7800       return (VT->getNumElements() + 1) / 2;
7801 
7802     unsigned EltNumRegs = (EltSize + 31) / 32;
7803     return EltNumRegs * VT->getNumElements();
7804   }
7805 
7806   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7807     const RecordDecl *RD = RT->getDecl();
7808     assert(!RD->hasFlexibleArrayMember());
7809 
7810     for (const FieldDecl *Field : RD->fields()) {
7811       QualType FieldTy = Field->getType();
7812       NumRegs += numRegsForType(FieldTy);
7813     }
7814 
7815     return NumRegs;
7816   }
7817 
7818   return (getContext().getTypeSize(Ty) + 31) / 32;
7819 }
7820 
7821 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7822   llvm::CallingConv::ID CC = FI.getCallingConvention();
7823 
7824   if (!getCXXABI().classifyReturnType(FI))
7825     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7826 
7827   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7828   for (auto &Arg : FI.arguments()) {
7829     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7830       Arg.info = classifyKernelArgumentType(Arg.type);
7831     } else {
7832       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7833     }
7834   }
7835 }
7836 
7837 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7838                                  QualType Ty) const {
7839   llvm_unreachable("AMDGPU does not support varargs");
7840 }
7841 
7842 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7843   if (isAggregateTypeForABI(RetTy)) {
7844     // Records with non-trivial destructors/copy-constructors should not be
7845     // returned by value.
7846     if (!getRecordArgABI(RetTy, getCXXABI())) {
7847       // Ignore empty structs/unions.
7848       if (isEmptyRecord(getContext(), RetTy, true))
7849         return ABIArgInfo::getIgnore();
7850 
7851       // Lower single-element structs to just return a regular value.
7852       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7853         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7854 
7855       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7856         const RecordDecl *RD = RT->getDecl();
7857         if (RD->hasFlexibleArrayMember())
7858           return DefaultABIInfo::classifyReturnType(RetTy);
7859       }
7860 
7861       // Pack aggregates <= 4 bytes into single VGPR or pair.
7862       uint64_t Size = getContext().getTypeSize(RetTy);
7863       if (Size <= 16)
7864         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7865 
7866       if (Size <= 32)
7867         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7868 
7869       if (Size <= 64) {
7870         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7871         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7872       }
7873 
7874       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7875         return ABIArgInfo::getDirect();
7876     }
7877   }
7878 
7879   // Otherwise just do the default thing.
7880   return DefaultABIInfo::classifyReturnType(RetTy);
7881 }
7882 
7883 /// For kernels all parameters are really passed in a special buffer. It doesn't
7884 /// make sense to pass anything byval, so everything must be direct.
7885 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7886   Ty = useFirstFieldIfTransparentUnion(Ty);
7887 
7888   // TODO: Can we omit empty structs?
7889 
7890   llvm::Type *LTy = nullptr;
7891   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7892     LTy = CGT.ConvertType(QualType(SeltTy, 0));
7893 
7894   if (getContext().getLangOpts().HIP) {
7895     if (!LTy)
7896       LTy = CGT.ConvertType(Ty);
7897     LTy = coerceKernelArgumentType(
7898         LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
7899         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
7900   }
7901 
7902   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7903   // individual elements, which confuses the Clover OpenCL backend; therefore we
7904   // have to set it to false here. Other args of getDirect() are just defaults.
7905   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
7906 }
7907 
7908 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7909                                                unsigned &NumRegsLeft) const {
7910   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7911 
7912   Ty = useFirstFieldIfTransparentUnion(Ty);
7913 
7914   if (isAggregateTypeForABI(Ty)) {
7915     // Records with non-trivial destructors/copy-constructors should not be
7916     // passed by value.
7917     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7918       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7919 
7920     // Ignore empty structs/unions.
7921     if (isEmptyRecord(getContext(), Ty, true))
7922       return ABIArgInfo::getIgnore();
7923 
7924     // Lower single-element structs to just pass a regular value. TODO: We
7925     // could do reasonable-size multiple-element structs too, using getExpand(),
7926     // though watch out for things like bitfields.
7927     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7928       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7929 
7930     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7931       const RecordDecl *RD = RT->getDecl();
7932       if (RD->hasFlexibleArrayMember())
7933         return DefaultABIInfo::classifyArgumentType(Ty);
7934     }
7935 
7936     // Pack aggregates <= 8 bytes into single VGPR or pair.
7937     uint64_t Size = getContext().getTypeSize(Ty);
7938     if (Size <= 64) {
7939       unsigned NumRegs = (Size + 31) / 32;
7940       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7941 
7942       if (Size <= 16)
7943         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7944 
7945       if (Size <= 32)
7946         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7947 
7948       // XXX: Should this be i64 instead, and should the limit increase?
7949       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7950       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7951     }
7952 
7953     if (NumRegsLeft > 0) {
7954       unsigned NumRegs = numRegsForType(Ty);
7955       if (NumRegsLeft >= NumRegs) {
7956         NumRegsLeft -= NumRegs;
7957         return ABIArgInfo::getDirect();
7958       }
7959     }
7960   }
7961 
7962   // Otherwise just do the default thing.
7963   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7964   if (!ArgInfo.isIndirect()) {
7965     unsigned NumRegs = numRegsForType(Ty);
7966     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7967   }
7968 
7969   return ArgInfo;
7970 }
7971 
7972 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7973 public:
7974   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7975     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7976   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7977                            CodeGen::CodeGenModule &M) const override;
7978   unsigned getOpenCLKernelCallingConv() const override;
7979 
7980   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7981       llvm::PointerType *T, QualType QT) const override;
7982 
7983   LangAS getASTAllocaAddressSpace() const override {
7984     return getLangASFromTargetAS(
7985         getABIInfo().getDataLayout().getAllocaAddrSpace());
7986   }
7987   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7988                                   const VarDecl *D) const override;
7989   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
7990                                          SyncScope Scope,
7991                                          llvm::AtomicOrdering Ordering,
7992                                          llvm::LLVMContext &Ctx) const override;
7993   llvm::Function *
7994   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7995                             llvm::Function *BlockInvokeFunc,
7996                             llvm::Value *BlockLiteral) const override;
7997   bool shouldEmitStaticExternCAliases() const override;
7998   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7999 };
8000 }
8001 
8002 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8003                                               llvm::GlobalValue *GV) {
8004   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8005     return false;
8006 
8007   return D->hasAttr<OpenCLKernelAttr>() ||
8008          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8009          (isa<VarDecl>(D) &&
8010           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8011            D->hasAttr<HIPPinnedShadowAttr>()));
8012 }
8013 
8014 static bool requiresAMDGPUDefaultVisibility(const Decl *D,
8015                                             llvm::GlobalValue *GV) {
8016   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8017     return false;
8018 
8019   return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>();
8020 }
8021 
8022 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8023     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8024   if (requiresAMDGPUDefaultVisibility(D, GV)) {
8025     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
8026     GV->setDSOLocal(false);
8027   } else if (requiresAMDGPUProtectedVisibility(D, GV)) {
8028     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8029     GV->setDSOLocal(true);
8030   }
8031 
8032   if (GV->isDeclaration())
8033     return;
8034   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8035   if (!FD)
8036     return;
8037 
8038   llvm::Function *F = cast<llvm::Function>(GV);
8039 
8040   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8041     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8042 
8043 
8044   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8045                               FD->hasAttr<OpenCLKernelAttr>();
8046   const bool IsHIPKernel = M.getLangOpts().HIP &&
8047                            FD->hasAttr<CUDAGlobalAttr>();
8048   if ((IsOpenCLKernel || IsHIPKernel) &&
8049       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8050     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8051 
8052   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8053   if (ReqdWGS || FlatWGS) {
8054     unsigned Min = 0;
8055     unsigned Max = 0;
8056     if (FlatWGS) {
8057       Min = FlatWGS->getMin()
8058                 ->EvaluateKnownConstInt(M.getContext())
8059                 .getExtValue();
8060       Max = FlatWGS->getMax()
8061                 ->EvaluateKnownConstInt(M.getContext())
8062                 .getExtValue();
8063     }
8064     if (ReqdWGS && Min == 0 && Max == 0)
8065       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8066 
8067     if (Min != 0) {
8068       assert(Min <= Max && "Min must be less than or equal Max");
8069 
8070       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
8071       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8072     } else
8073       assert(Max == 0 && "Max must be zero");
8074   } else if (IsOpenCLKernel || IsHIPKernel) {
8075     // By default, restrict the maximum size to 256.
8076     F->addFnAttr("amdgpu-flat-work-group-size", "1,256");
8077   }
8078 
8079   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
8080     unsigned Min =
8081         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
8082     unsigned Max = Attr->getMax() ? Attr->getMax()
8083                                         ->EvaluateKnownConstInt(M.getContext())
8084                                         .getExtValue()
8085                                   : 0;
8086 
8087     if (Min != 0) {
8088       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
8089 
8090       std::string AttrVal = llvm::utostr(Min);
8091       if (Max != 0)
8092         AttrVal = AttrVal + "," + llvm::utostr(Max);
8093       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
8094     } else
8095       assert(Max == 0 && "Max must be zero");
8096   }
8097 
8098   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
8099     unsigned NumSGPR = Attr->getNumSGPR();
8100 
8101     if (NumSGPR != 0)
8102       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
8103   }
8104 
8105   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
8106     uint32_t NumVGPR = Attr->getNumVGPR();
8107 
8108     if (NumVGPR != 0)
8109       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
8110   }
8111 }
8112 
8113 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8114   return llvm::CallingConv::AMDGPU_KERNEL;
8115 }
8116 
8117 // Currently LLVM assumes null pointers always have value 0,
8118 // which results in incorrectly transformed IR. Therefore, instead of
8119 // emitting null pointers in private and local address spaces, a null
8120 // pointer in generic address space is emitted which is casted to a
8121 // pointer in local or private address space.
8122 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
8123     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
8124     QualType QT) const {
8125   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
8126     return llvm::ConstantPointerNull::get(PT);
8127 
8128   auto &Ctx = CGM.getContext();
8129   auto NPT = llvm::PointerType::get(PT->getElementType(),
8130       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
8131   return llvm::ConstantExpr::getAddrSpaceCast(
8132       llvm::ConstantPointerNull::get(NPT), PT);
8133 }
8134 
8135 LangAS
8136 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
8137                                                   const VarDecl *D) const {
8138   assert(!CGM.getLangOpts().OpenCL &&
8139          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
8140          "Address space agnostic languages only");
8141   LangAS DefaultGlobalAS = getLangASFromTargetAS(
8142       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
8143   if (!D)
8144     return DefaultGlobalAS;
8145 
8146   LangAS AddrSpace = D->getType().getAddressSpace();
8147   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
8148   if (AddrSpace != LangAS::Default)
8149     return AddrSpace;
8150 
8151   if (CGM.isTypeConstant(D->getType(), false)) {
8152     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
8153       return ConstAS.getValue();
8154   }
8155   return DefaultGlobalAS;
8156 }
8157 
8158 llvm::SyncScope::ID
8159 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
8160                                             SyncScope Scope,
8161                                             llvm::AtomicOrdering Ordering,
8162                                             llvm::LLVMContext &Ctx) const {
8163   std::string Name;
8164   switch (Scope) {
8165   case SyncScope::OpenCLWorkGroup:
8166     Name = "workgroup";
8167     break;
8168   case SyncScope::OpenCLDevice:
8169     Name = "agent";
8170     break;
8171   case SyncScope::OpenCLAllSVMDevices:
8172     Name = "";
8173     break;
8174   case SyncScope::OpenCLSubGroup:
8175     Name = "wavefront";
8176   }
8177 
8178   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
8179     if (!Name.empty())
8180       Name = Twine(Twine(Name) + Twine("-")).str();
8181 
8182     Name = Twine(Twine(Name) + Twine("one-as")).str();
8183   }
8184 
8185   return Ctx.getOrInsertSyncScopeID(Name);
8186 }
8187 
8188 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8189   return false;
8190 }
8191 
8192 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8193     const FunctionType *&FT) const {
8194   FT = getABIInfo().getContext().adjustFunctionType(
8195       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8196 }
8197 
8198 //===----------------------------------------------------------------------===//
8199 // SPARC v8 ABI Implementation.
8200 // Based on the SPARC Compliance Definition version 2.4.1.
8201 //
8202 // Ensures that complex values are passed in registers.
8203 //
8204 namespace {
8205 class SparcV8ABIInfo : public DefaultABIInfo {
8206 public:
8207   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8208 
8209 private:
8210   ABIArgInfo classifyReturnType(QualType RetTy) const;
8211   void computeInfo(CGFunctionInfo &FI) const override;
8212 };
8213 } // end anonymous namespace
8214 
8215 
8216 ABIArgInfo
8217 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8218   if (Ty->isAnyComplexType()) {
8219     return ABIArgInfo::getDirect();
8220   }
8221   else {
8222     return DefaultABIInfo::classifyReturnType(Ty);
8223   }
8224 }
8225 
8226 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8227 
8228   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8229   for (auto &Arg : FI.arguments())
8230     Arg.info = classifyArgumentType(Arg.type);
8231 }
8232 
8233 namespace {
8234 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8235 public:
8236   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8237     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8238 };
8239 } // end anonymous namespace
8240 
8241 //===----------------------------------------------------------------------===//
8242 // SPARC v9 ABI Implementation.
8243 // Based on the SPARC Compliance Definition version 2.4.1.
8244 //
8245 // Function arguments a mapped to a nominal "parameter array" and promoted to
8246 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8247 // the array, structs larger than 16 bytes are passed indirectly.
8248 //
8249 // One case requires special care:
8250 //
8251 //   struct mixed {
8252 //     int i;
8253 //     float f;
8254 //   };
8255 //
8256 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8257 // parameter array, but the int is passed in an integer register, and the float
8258 // is passed in a floating point register. This is represented as two arguments
8259 // with the LLVM IR inreg attribute:
8260 //
8261 //   declare void f(i32 inreg %i, float inreg %f)
8262 //
8263 // The code generator will only allocate 4 bytes from the parameter array for
8264 // the inreg arguments. All other arguments are allocated a multiple of 8
8265 // bytes.
8266 //
8267 namespace {
8268 class SparcV9ABIInfo : public ABIInfo {
8269 public:
8270   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8271 
8272 private:
8273   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8274   void computeInfo(CGFunctionInfo &FI) const override;
8275   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8276                     QualType Ty) const override;
8277 
8278   // Coercion type builder for structs passed in registers. The coercion type
8279   // serves two purposes:
8280   //
8281   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8282   //    in registers.
8283   // 2. Expose aligned floating point elements as first-level elements, so the
8284   //    code generator knows to pass them in floating point registers.
8285   //
8286   // We also compute the InReg flag which indicates that the struct contains
8287   // aligned 32-bit floats.
8288   //
8289   struct CoerceBuilder {
8290     llvm::LLVMContext &Context;
8291     const llvm::DataLayout &DL;
8292     SmallVector<llvm::Type*, 8> Elems;
8293     uint64_t Size;
8294     bool InReg;
8295 
8296     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8297       : Context(c), DL(dl), Size(0), InReg(false) {}
8298 
8299     // Pad Elems with integers until Size is ToSize.
8300     void pad(uint64_t ToSize) {
8301       assert(ToSize >= Size && "Cannot remove elements");
8302       if (ToSize == Size)
8303         return;
8304 
8305       // Finish the current 64-bit word.
8306       uint64_t Aligned = llvm::alignTo(Size, 64);
8307       if (Aligned > Size && Aligned <= ToSize) {
8308         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8309         Size = Aligned;
8310       }
8311 
8312       // Add whole 64-bit words.
8313       while (Size + 64 <= ToSize) {
8314         Elems.push_back(llvm::Type::getInt64Ty(Context));
8315         Size += 64;
8316       }
8317 
8318       // Final in-word padding.
8319       if (Size < ToSize) {
8320         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8321         Size = ToSize;
8322       }
8323     }
8324 
8325     // Add a floating point element at Offset.
8326     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8327       // Unaligned floats are treated as integers.
8328       if (Offset % Bits)
8329         return;
8330       // The InReg flag is only required if there are any floats < 64 bits.
8331       if (Bits < 64)
8332         InReg = true;
8333       pad(Offset);
8334       Elems.push_back(Ty);
8335       Size = Offset + Bits;
8336     }
8337 
8338     // Add a struct type to the coercion type, starting at Offset (in bits).
8339     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8340       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8341       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8342         llvm::Type *ElemTy = StrTy->getElementType(i);
8343         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8344         switch (ElemTy->getTypeID()) {
8345         case llvm::Type::StructTyID:
8346           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8347           break;
8348         case llvm::Type::FloatTyID:
8349           addFloat(ElemOffset, ElemTy, 32);
8350           break;
8351         case llvm::Type::DoubleTyID:
8352           addFloat(ElemOffset, ElemTy, 64);
8353           break;
8354         case llvm::Type::FP128TyID:
8355           addFloat(ElemOffset, ElemTy, 128);
8356           break;
8357         case llvm::Type::PointerTyID:
8358           if (ElemOffset % 64 == 0) {
8359             pad(ElemOffset);
8360             Elems.push_back(ElemTy);
8361             Size += 64;
8362           }
8363           break;
8364         default:
8365           break;
8366         }
8367       }
8368     }
8369 
8370     // Check if Ty is a usable substitute for the coercion type.
8371     bool isUsableType(llvm::StructType *Ty) const {
8372       return llvm::makeArrayRef(Elems) == Ty->elements();
8373     }
8374 
8375     // Get the coercion type as a literal struct type.
8376     llvm::Type *getType() const {
8377       if (Elems.size() == 1)
8378         return Elems.front();
8379       else
8380         return llvm::StructType::get(Context, Elems);
8381     }
8382   };
8383 };
8384 } // end anonymous namespace
8385 
8386 ABIArgInfo
8387 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8388   if (Ty->isVoidType())
8389     return ABIArgInfo::getIgnore();
8390 
8391   uint64_t Size = getContext().getTypeSize(Ty);
8392 
8393   // Anything too big to fit in registers is passed with an explicit indirect
8394   // pointer / sret pointer.
8395   if (Size > SizeLimit)
8396     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8397 
8398   // Treat an enum type as its underlying type.
8399   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8400     Ty = EnumTy->getDecl()->getIntegerType();
8401 
8402   // Integer types smaller than a register are extended.
8403   if (Size < 64 && Ty->isIntegerType())
8404     return ABIArgInfo::getExtend(Ty);
8405 
8406   // Other non-aggregates go in registers.
8407   if (!isAggregateTypeForABI(Ty))
8408     return ABIArgInfo::getDirect();
8409 
8410   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8411   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8412   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8413     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8414 
8415   // This is a small aggregate type that should be passed in registers.
8416   // Build a coercion type from the LLVM struct type.
8417   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8418   if (!StrTy)
8419     return ABIArgInfo::getDirect();
8420 
8421   CoerceBuilder CB(getVMContext(), getDataLayout());
8422   CB.addStruct(0, StrTy);
8423   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8424 
8425   // Try to use the original type for coercion.
8426   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8427 
8428   if (CB.InReg)
8429     return ABIArgInfo::getDirectInReg(CoerceTy);
8430   else
8431     return ABIArgInfo::getDirect(CoerceTy);
8432 }
8433 
8434 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8435                                   QualType Ty) const {
8436   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8437   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8438   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8439     AI.setCoerceToType(ArgTy);
8440 
8441   CharUnits SlotSize = CharUnits::fromQuantity(8);
8442 
8443   CGBuilderTy &Builder = CGF.Builder;
8444   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8445   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8446 
8447   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8448 
8449   Address ArgAddr = Address::invalid();
8450   CharUnits Stride;
8451   switch (AI.getKind()) {
8452   case ABIArgInfo::Expand:
8453   case ABIArgInfo::CoerceAndExpand:
8454   case ABIArgInfo::InAlloca:
8455     llvm_unreachable("Unsupported ABI kind for va_arg");
8456 
8457   case ABIArgInfo::Extend: {
8458     Stride = SlotSize;
8459     CharUnits Offset = SlotSize - TypeInfo.first;
8460     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8461     break;
8462   }
8463 
8464   case ABIArgInfo::Direct: {
8465     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8466     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8467     ArgAddr = Addr;
8468     break;
8469   }
8470 
8471   case ABIArgInfo::Indirect:
8472     Stride = SlotSize;
8473     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8474     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8475                       TypeInfo.second);
8476     break;
8477 
8478   case ABIArgInfo::Ignore:
8479     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8480   }
8481 
8482   // Update VAList.
8483   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8484   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8485 
8486   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8487 }
8488 
8489 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8490   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8491   for (auto &I : FI.arguments())
8492     I.info = classifyType(I.type, 16 * 8);
8493 }
8494 
8495 namespace {
8496 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8497 public:
8498   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8499     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8500 
8501   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8502     return 14;
8503   }
8504 
8505   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8506                                llvm::Value *Address) const override;
8507 };
8508 } // end anonymous namespace
8509 
8510 bool
8511 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8512                                                 llvm::Value *Address) const {
8513   // This is calculated from the LLVM and GCC tables and verified
8514   // against gcc output.  AFAIK all ABIs use the same encoding.
8515 
8516   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8517 
8518   llvm::IntegerType *i8 = CGF.Int8Ty;
8519   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8520   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8521 
8522   // 0-31: the 8-byte general-purpose registers
8523   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8524 
8525   // 32-63: f0-31, the 4-byte floating-point registers
8526   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8527 
8528   //   Y   = 64
8529   //   PSR = 65
8530   //   WIM = 66
8531   //   TBR = 67
8532   //   PC  = 68
8533   //   NPC = 69
8534   //   FSR = 70
8535   //   CSR = 71
8536   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8537 
8538   // 72-87: d0-15, the 8-byte floating-point registers
8539   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8540 
8541   return false;
8542 }
8543 
8544 // ARC ABI implementation.
8545 namespace {
8546 
8547 class ARCABIInfo : public DefaultABIInfo {
8548 public:
8549   using DefaultABIInfo::DefaultABIInfo;
8550 
8551 private:
8552   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8553                     QualType Ty) const override;
8554 
8555   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8556     if (!State.FreeRegs)
8557       return;
8558     if (Info.isIndirect() && Info.getInReg())
8559       State.FreeRegs--;
8560     else if (Info.isDirect() && Info.getInReg()) {
8561       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8562       if (sz < State.FreeRegs)
8563         State.FreeRegs -= sz;
8564       else
8565         State.FreeRegs = 0;
8566     }
8567   }
8568 
8569   void computeInfo(CGFunctionInfo &FI) const override {
8570     CCState State(FI.getCallingConvention());
8571     // ARC uses 8 registers to pass arguments.
8572     State.FreeRegs = 8;
8573 
8574     if (!getCXXABI().classifyReturnType(FI))
8575       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8576     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8577     for (auto &I : FI.arguments()) {
8578       I.info = classifyArgumentType(I.type, State.FreeRegs);
8579       updateState(I.info, I.type, State);
8580     }
8581   }
8582 
8583   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8584   ABIArgInfo getIndirectByValue(QualType Ty) const;
8585   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8586   ABIArgInfo classifyReturnType(QualType RetTy) const;
8587 };
8588 
8589 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8590 public:
8591   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8592       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8593 };
8594 
8595 
8596 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8597   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8598                        getNaturalAlignIndirect(Ty, false);
8599 }
8600 
8601 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8602   // Compute the byval alignment.
8603   const unsigned MinABIStackAlignInBytes = 4;
8604   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8605   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8606                                  TypeAlign > MinABIStackAlignInBytes);
8607 }
8608 
8609 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8610                               QualType Ty) const {
8611   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8612                           getContext().getTypeInfoInChars(Ty),
8613                           CharUnits::fromQuantity(4), true);
8614 }
8615 
8616 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8617                                             uint8_t FreeRegs) const {
8618   // Handle the generic C++ ABI.
8619   const RecordType *RT = Ty->getAs<RecordType>();
8620   if (RT) {
8621     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8622     if (RAA == CGCXXABI::RAA_Indirect)
8623       return getIndirectByRef(Ty, FreeRegs > 0);
8624 
8625     if (RAA == CGCXXABI::RAA_DirectInMemory)
8626       return getIndirectByValue(Ty);
8627   }
8628 
8629   // Treat an enum type as its underlying type.
8630   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8631     Ty = EnumTy->getDecl()->getIntegerType();
8632 
8633   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8634 
8635   if (isAggregateTypeForABI(Ty)) {
8636     // Structures with flexible arrays are always indirect.
8637     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8638       return getIndirectByValue(Ty);
8639 
8640     // Ignore empty structs/unions.
8641     if (isEmptyRecord(getContext(), Ty, true))
8642       return ABIArgInfo::getIgnore();
8643 
8644     llvm::LLVMContext &LLVMContext = getVMContext();
8645 
8646     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8647     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8648     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8649 
8650     return FreeRegs >= SizeInRegs ?
8651         ABIArgInfo::getDirectInReg(Result) :
8652         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8653   }
8654 
8655   return Ty->isPromotableIntegerType() ?
8656       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8657                                 ABIArgInfo::getExtend(Ty)) :
8658       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8659                                 ABIArgInfo::getDirect());
8660 }
8661 
8662 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8663   if (RetTy->isAnyComplexType())
8664     return ABIArgInfo::getDirectInReg();
8665 
8666   // Arguments of size > 4 registers are indirect.
8667   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8668   if (RetSize > 4)
8669     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8670 
8671   return DefaultABIInfo::classifyReturnType(RetTy);
8672 }
8673 
8674 } // End anonymous namespace.
8675 
8676 //===----------------------------------------------------------------------===//
8677 // XCore ABI Implementation
8678 //===----------------------------------------------------------------------===//
8679 
8680 namespace {
8681 
8682 /// A SmallStringEnc instance is used to build up the TypeString by passing
8683 /// it by reference between functions that append to it.
8684 typedef llvm::SmallString<128> SmallStringEnc;
8685 
8686 /// TypeStringCache caches the meta encodings of Types.
8687 ///
8688 /// The reason for caching TypeStrings is two fold:
8689 ///   1. To cache a type's encoding for later uses;
8690 ///   2. As a means to break recursive member type inclusion.
8691 ///
8692 /// A cache Entry can have a Status of:
8693 ///   NonRecursive:   The type encoding is not recursive;
8694 ///   Recursive:      The type encoding is recursive;
8695 ///   Incomplete:     An incomplete TypeString;
8696 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8697 ///                   Recursive type encoding.
8698 ///
8699 /// A NonRecursive entry will have all of its sub-members expanded as fully
8700 /// as possible. Whilst it may contain types which are recursive, the type
8701 /// itself is not recursive and thus its encoding may be safely used whenever
8702 /// the type is encountered.
8703 ///
8704 /// A Recursive entry will have all of its sub-members expanded as fully as
8705 /// possible. The type itself is recursive and it may contain other types which
8706 /// are recursive. The Recursive encoding must not be used during the expansion
8707 /// of a recursive type's recursive branch. For simplicity the code uses
8708 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8709 ///
8710 /// An Incomplete entry is always a RecordType and only encodes its
8711 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8712 /// are placed into the cache during type expansion as a means to identify and
8713 /// handle recursive inclusion of types as sub-members. If there is recursion
8714 /// the entry becomes IncompleteUsed.
8715 ///
8716 /// During the expansion of a RecordType's members:
8717 ///
8718 ///   If the cache contains a NonRecursive encoding for the member type, the
8719 ///   cached encoding is used;
8720 ///
8721 ///   If the cache contains a Recursive encoding for the member type, the
8722 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8723 ///
8724 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8725 ///   cache to break potential recursive inclusion of itself as a sub-member;
8726 ///
8727 ///   Once a member RecordType has been expanded, its temporary incomplete
8728 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8729 ///   it is swapped back in;
8730 ///
8731 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8732 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8733 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8734 ///
8735 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8736 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8737 ///   Else the member is part of a recursive type and thus the recursion has
8738 ///   been exited too soon for the encoding to be correct for the member.
8739 ///
8740 class TypeStringCache {
8741   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8742   struct Entry {
8743     std::string Str;     // The encoded TypeString for the type.
8744     enum Status State;   // Information about the encoding in 'Str'.
8745     std::string Swapped; // A temporary place holder for a Recursive encoding
8746                          // during the expansion of RecordType's members.
8747   };
8748   std::map<const IdentifierInfo *, struct Entry> Map;
8749   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8750   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8751 public:
8752   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8753   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8754   bool removeIncomplete(const IdentifierInfo *ID);
8755   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8756                      bool IsRecursive);
8757   StringRef lookupStr(const IdentifierInfo *ID);
8758 };
8759 
8760 /// TypeString encodings for enum & union fields must be order.
8761 /// FieldEncoding is a helper for this ordering process.
8762 class FieldEncoding {
8763   bool HasName;
8764   std::string Enc;
8765 public:
8766   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8767   StringRef str() { return Enc; }
8768   bool operator<(const FieldEncoding &rhs) const {
8769     if (HasName != rhs.HasName) return HasName;
8770     return Enc < rhs.Enc;
8771   }
8772 };
8773 
8774 class XCoreABIInfo : public DefaultABIInfo {
8775 public:
8776   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8777   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8778                     QualType Ty) const override;
8779 };
8780 
8781 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8782   mutable TypeStringCache TSC;
8783 public:
8784   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8785     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8786   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8787                     CodeGen::CodeGenModule &M) const override;
8788 };
8789 
8790 } // End anonymous namespace.
8791 
8792 // TODO: this implementation is likely now redundant with the default
8793 // EmitVAArg.
8794 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8795                                 QualType Ty) const {
8796   CGBuilderTy &Builder = CGF.Builder;
8797 
8798   // Get the VAList.
8799   CharUnits SlotSize = CharUnits::fromQuantity(4);
8800   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8801 
8802   // Handle the argument.
8803   ABIArgInfo AI = classifyArgumentType(Ty);
8804   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8805   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8806   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8807     AI.setCoerceToType(ArgTy);
8808   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8809 
8810   Address Val = Address::invalid();
8811   CharUnits ArgSize = CharUnits::Zero();
8812   switch (AI.getKind()) {
8813   case ABIArgInfo::Expand:
8814   case ABIArgInfo::CoerceAndExpand:
8815   case ABIArgInfo::InAlloca:
8816     llvm_unreachable("Unsupported ABI kind for va_arg");
8817   case ABIArgInfo::Ignore:
8818     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8819     ArgSize = CharUnits::Zero();
8820     break;
8821   case ABIArgInfo::Extend:
8822   case ABIArgInfo::Direct:
8823     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8824     ArgSize = CharUnits::fromQuantity(
8825                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8826     ArgSize = ArgSize.alignTo(SlotSize);
8827     break;
8828   case ABIArgInfo::Indirect:
8829     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8830     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8831     ArgSize = SlotSize;
8832     break;
8833   }
8834 
8835   // Increment the VAList.
8836   if (!ArgSize.isZero()) {
8837     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
8838     Builder.CreateStore(APN.getPointer(), VAListAddr);
8839   }
8840 
8841   return Val;
8842 }
8843 
8844 /// During the expansion of a RecordType, an incomplete TypeString is placed
8845 /// into the cache as a means to identify and break recursion.
8846 /// If there is a Recursive encoding in the cache, it is swapped out and will
8847 /// be reinserted by removeIncomplete().
8848 /// All other types of encoding should have been used rather than arriving here.
8849 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8850                                     std::string StubEnc) {
8851   if (!ID)
8852     return;
8853   Entry &E = Map[ID];
8854   assert( (E.Str.empty() || E.State == Recursive) &&
8855          "Incorrectly use of addIncomplete");
8856   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8857   E.Swapped.swap(E.Str); // swap out the Recursive
8858   E.Str.swap(StubEnc);
8859   E.State = Incomplete;
8860   ++IncompleteCount;
8861 }
8862 
8863 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8864 /// must be removed from the cache.
8865 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8866 /// Returns true if the RecordType was defined recursively.
8867 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8868   if (!ID)
8869     return false;
8870   auto I = Map.find(ID);
8871   assert(I != Map.end() && "Entry not present");
8872   Entry &E = I->second;
8873   assert( (E.State == Incomplete ||
8874            E.State == IncompleteUsed) &&
8875          "Entry must be an incomplete type");
8876   bool IsRecursive = false;
8877   if (E.State == IncompleteUsed) {
8878     // We made use of our Incomplete encoding, thus we are recursive.
8879     IsRecursive = true;
8880     --IncompleteUsedCount;
8881   }
8882   if (E.Swapped.empty())
8883     Map.erase(I);
8884   else {
8885     // Swap the Recursive back.
8886     E.Swapped.swap(E.Str);
8887     E.Swapped.clear();
8888     E.State = Recursive;
8889   }
8890   --IncompleteCount;
8891   return IsRecursive;
8892 }
8893 
8894 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8895 /// Recursive (viz: all sub-members were expanded as fully as possible).
8896 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8897                                     bool IsRecursive) {
8898   if (!ID || IncompleteUsedCount)
8899     return; // No key or it is is an incomplete sub-type so don't add.
8900   Entry &E = Map[ID];
8901   if (IsRecursive && !E.Str.empty()) {
8902     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8903            "This is not the same Recursive entry");
8904     // The parent container was not recursive after all, so we could have used
8905     // this Recursive sub-member entry after all, but we assumed the worse when
8906     // we started viz: IncompleteCount!=0.
8907     return;
8908   }
8909   assert(E.Str.empty() && "Entry already present");
8910   E.Str = Str.str();
8911   E.State = IsRecursive? Recursive : NonRecursive;
8912 }
8913 
8914 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8915 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8916 /// encoding is Recursive, return an empty StringRef.
8917 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8918   if (!ID)
8919     return StringRef();   // We have no key.
8920   auto I = Map.find(ID);
8921   if (I == Map.end())
8922     return StringRef();   // We have no encoding.
8923   Entry &E = I->second;
8924   if (E.State == Recursive && IncompleteCount)
8925     return StringRef();   // We don't use Recursive encodings for member types.
8926 
8927   if (E.State == Incomplete) {
8928     // The incomplete type is being used to break out of recursion.
8929     E.State = IncompleteUsed;
8930     ++IncompleteUsedCount;
8931   }
8932   return E.Str;
8933 }
8934 
8935 /// The XCore ABI includes a type information section that communicates symbol
8936 /// type information to the linker. The linker uses this information to verify
8937 /// safety/correctness of things such as array bound and pointers et al.
8938 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8939 /// This type information (TypeString) is emitted into meta data for all global
8940 /// symbols: definitions, declarations, functions & variables.
8941 ///
8942 /// The TypeString carries type, qualifier, name, size & value details.
8943 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8944 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8945 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8946 ///
8947 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8948                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8949 
8950 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8951 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8952                                           CodeGen::CodeGenModule &CGM) const {
8953   SmallStringEnc Enc;
8954   if (getTypeString(Enc, D, CGM, TSC)) {
8955     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8956     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8957                                 llvm::MDString::get(Ctx, Enc.str())};
8958     llvm::NamedMDNode *MD =
8959       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8960     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8961   }
8962 }
8963 
8964 //===----------------------------------------------------------------------===//
8965 // SPIR ABI Implementation
8966 //===----------------------------------------------------------------------===//
8967 
8968 namespace {
8969 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8970 public:
8971   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8972     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8973   unsigned getOpenCLKernelCallingConv() const override;
8974 };
8975 
8976 } // End anonymous namespace.
8977 
8978 namespace clang {
8979 namespace CodeGen {
8980 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8981   DefaultABIInfo SPIRABI(CGM.getTypes());
8982   SPIRABI.computeInfo(FI);
8983 }
8984 }
8985 }
8986 
8987 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8988   return llvm::CallingConv::SPIR_KERNEL;
8989 }
8990 
8991 static bool appendType(SmallStringEnc &Enc, QualType QType,
8992                        const CodeGen::CodeGenModule &CGM,
8993                        TypeStringCache &TSC);
8994 
8995 /// Helper function for appendRecordType().
8996 /// Builds a SmallVector containing the encoded field types in declaration
8997 /// order.
8998 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8999                              const RecordDecl *RD,
9000                              const CodeGen::CodeGenModule &CGM,
9001                              TypeStringCache &TSC) {
9002   for (const auto *Field : RD->fields()) {
9003     SmallStringEnc Enc;
9004     Enc += "m(";
9005     Enc += Field->getName();
9006     Enc += "){";
9007     if (Field->isBitField()) {
9008       Enc += "b(";
9009       llvm::raw_svector_ostream OS(Enc);
9010       OS << Field->getBitWidthValue(CGM.getContext());
9011       Enc += ':';
9012     }
9013     if (!appendType(Enc, Field->getType(), CGM, TSC))
9014       return false;
9015     if (Field->isBitField())
9016       Enc += ')';
9017     Enc += '}';
9018     FE.emplace_back(!Field->getName().empty(), Enc);
9019   }
9020   return true;
9021 }
9022 
9023 /// Appends structure and union types to Enc and adds encoding to cache.
9024 /// Recursively calls appendType (via extractFieldType) for each field.
9025 /// Union types have their fields ordered according to the ABI.
9026 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
9027                              const CodeGen::CodeGenModule &CGM,
9028                              TypeStringCache &TSC, const IdentifierInfo *ID) {
9029   // Append the cached TypeString if we have one.
9030   StringRef TypeString = TSC.lookupStr(ID);
9031   if (!TypeString.empty()) {
9032     Enc += TypeString;
9033     return true;
9034   }
9035 
9036   // Start to emit an incomplete TypeString.
9037   size_t Start = Enc.size();
9038   Enc += (RT->isUnionType()? 'u' : 's');
9039   Enc += '(';
9040   if (ID)
9041     Enc += ID->getName();
9042   Enc += "){";
9043 
9044   // We collect all encoded fields and order as necessary.
9045   bool IsRecursive = false;
9046   const RecordDecl *RD = RT->getDecl()->getDefinition();
9047   if (RD && !RD->field_empty()) {
9048     // An incomplete TypeString stub is placed in the cache for this RecordType
9049     // so that recursive calls to this RecordType will use it whilst building a
9050     // complete TypeString for this RecordType.
9051     SmallVector<FieldEncoding, 16> FE;
9052     std::string StubEnc(Enc.substr(Start).str());
9053     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
9054     TSC.addIncomplete(ID, std::move(StubEnc));
9055     if (!extractFieldType(FE, RD, CGM, TSC)) {
9056       (void) TSC.removeIncomplete(ID);
9057       return false;
9058     }
9059     IsRecursive = TSC.removeIncomplete(ID);
9060     // The ABI requires unions to be sorted but not structures.
9061     // See FieldEncoding::operator< for sort algorithm.
9062     if (RT->isUnionType())
9063       llvm::sort(FE);
9064     // We can now complete the TypeString.
9065     unsigned E = FE.size();
9066     for (unsigned I = 0; I != E; ++I) {
9067       if (I)
9068         Enc += ',';
9069       Enc += FE[I].str();
9070     }
9071   }
9072   Enc += '}';
9073   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
9074   return true;
9075 }
9076 
9077 /// Appends enum types to Enc and adds the encoding to the cache.
9078 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
9079                            TypeStringCache &TSC,
9080                            const IdentifierInfo *ID) {
9081   // Append the cached TypeString if we have one.
9082   StringRef TypeString = TSC.lookupStr(ID);
9083   if (!TypeString.empty()) {
9084     Enc += TypeString;
9085     return true;
9086   }
9087 
9088   size_t Start = Enc.size();
9089   Enc += "e(";
9090   if (ID)
9091     Enc += ID->getName();
9092   Enc += "){";
9093 
9094   // We collect all encoded enumerations and order them alphanumerically.
9095   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
9096     SmallVector<FieldEncoding, 16> FE;
9097     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
9098          ++I) {
9099       SmallStringEnc EnumEnc;
9100       EnumEnc += "m(";
9101       EnumEnc += I->getName();
9102       EnumEnc += "){";
9103       I->getInitVal().toString(EnumEnc);
9104       EnumEnc += '}';
9105       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
9106     }
9107     llvm::sort(FE);
9108     unsigned E = FE.size();
9109     for (unsigned I = 0; I != E; ++I) {
9110       if (I)
9111         Enc += ',';
9112       Enc += FE[I].str();
9113     }
9114   }
9115   Enc += '}';
9116   TSC.addIfComplete(ID, Enc.substr(Start), false);
9117   return true;
9118 }
9119 
9120 /// Appends type's qualifier to Enc.
9121 /// This is done prior to appending the type's encoding.
9122 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
9123   // Qualifiers are emitted in alphabetical order.
9124   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
9125   int Lookup = 0;
9126   if (QT.isConstQualified())
9127     Lookup += 1<<0;
9128   if (QT.isRestrictQualified())
9129     Lookup += 1<<1;
9130   if (QT.isVolatileQualified())
9131     Lookup += 1<<2;
9132   Enc += Table[Lookup];
9133 }
9134 
9135 /// Appends built-in types to Enc.
9136 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
9137   const char *EncType;
9138   switch (BT->getKind()) {
9139     case BuiltinType::Void:
9140       EncType = "0";
9141       break;
9142     case BuiltinType::Bool:
9143       EncType = "b";
9144       break;
9145     case BuiltinType::Char_U:
9146       EncType = "uc";
9147       break;
9148     case BuiltinType::UChar:
9149       EncType = "uc";
9150       break;
9151     case BuiltinType::SChar:
9152       EncType = "sc";
9153       break;
9154     case BuiltinType::UShort:
9155       EncType = "us";
9156       break;
9157     case BuiltinType::Short:
9158       EncType = "ss";
9159       break;
9160     case BuiltinType::UInt:
9161       EncType = "ui";
9162       break;
9163     case BuiltinType::Int:
9164       EncType = "si";
9165       break;
9166     case BuiltinType::ULong:
9167       EncType = "ul";
9168       break;
9169     case BuiltinType::Long:
9170       EncType = "sl";
9171       break;
9172     case BuiltinType::ULongLong:
9173       EncType = "ull";
9174       break;
9175     case BuiltinType::LongLong:
9176       EncType = "sll";
9177       break;
9178     case BuiltinType::Float:
9179       EncType = "ft";
9180       break;
9181     case BuiltinType::Double:
9182       EncType = "d";
9183       break;
9184     case BuiltinType::LongDouble:
9185       EncType = "ld";
9186       break;
9187     default:
9188       return false;
9189   }
9190   Enc += EncType;
9191   return true;
9192 }
9193 
9194 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9195 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9196                               const CodeGen::CodeGenModule &CGM,
9197                               TypeStringCache &TSC) {
9198   Enc += "p(";
9199   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9200     return false;
9201   Enc += ')';
9202   return true;
9203 }
9204 
9205 /// Appends array encoding to Enc before calling appendType for the element.
9206 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9207                             const ArrayType *AT,
9208                             const CodeGen::CodeGenModule &CGM,
9209                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9210   if (AT->getSizeModifier() != ArrayType::Normal)
9211     return false;
9212   Enc += "a(";
9213   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9214     CAT->getSize().toStringUnsigned(Enc);
9215   else
9216     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9217   Enc += ':';
9218   // The Qualifiers should be attached to the type rather than the array.
9219   appendQualifier(Enc, QT);
9220   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9221     return false;
9222   Enc += ')';
9223   return true;
9224 }
9225 
9226 /// Appends a function encoding to Enc, calling appendType for the return type
9227 /// and the arguments.
9228 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9229                              const CodeGen::CodeGenModule &CGM,
9230                              TypeStringCache &TSC) {
9231   Enc += "f{";
9232   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9233     return false;
9234   Enc += "}(";
9235   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9236     // N.B. we are only interested in the adjusted param types.
9237     auto I = FPT->param_type_begin();
9238     auto E = FPT->param_type_end();
9239     if (I != E) {
9240       do {
9241         if (!appendType(Enc, *I, CGM, TSC))
9242           return false;
9243         ++I;
9244         if (I != E)
9245           Enc += ',';
9246       } while (I != E);
9247       if (FPT->isVariadic())
9248         Enc += ",va";
9249     } else {
9250       if (FPT->isVariadic())
9251         Enc += "va";
9252       else
9253         Enc += '0';
9254     }
9255   }
9256   Enc += ')';
9257   return true;
9258 }
9259 
9260 /// Handles the type's qualifier before dispatching a call to handle specific
9261 /// type encodings.
9262 static bool appendType(SmallStringEnc &Enc, QualType QType,
9263                        const CodeGen::CodeGenModule &CGM,
9264                        TypeStringCache &TSC) {
9265 
9266   QualType QT = QType.getCanonicalType();
9267 
9268   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9269     // The Qualifiers should be attached to the type rather than the array.
9270     // Thus we don't call appendQualifier() here.
9271     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9272 
9273   appendQualifier(Enc, QT);
9274 
9275   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9276     return appendBuiltinType(Enc, BT);
9277 
9278   if (const PointerType *PT = QT->getAs<PointerType>())
9279     return appendPointerType(Enc, PT, CGM, TSC);
9280 
9281   if (const EnumType *ET = QT->getAs<EnumType>())
9282     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9283 
9284   if (const RecordType *RT = QT->getAsStructureType())
9285     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9286 
9287   if (const RecordType *RT = QT->getAsUnionType())
9288     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9289 
9290   if (const FunctionType *FT = QT->getAs<FunctionType>())
9291     return appendFunctionType(Enc, FT, CGM, TSC);
9292 
9293   return false;
9294 }
9295 
9296 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9297                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9298   if (!D)
9299     return false;
9300 
9301   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9302     if (FD->getLanguageLinkage() != CLanguageLinkage)
9303       return false;
9304     return appendType(Enc, FD->getType(), CGM, TSC);
9305   }
9306 
9307   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9308     if (VD->getLanguageLinkage() != CLanguageLinkage)
9309       return false;
9310     QualType QT = VD->getType().getCanonicalType();
9311     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9312       // Global ArrayTypes are given a size of '*' if the size is unknown.
9313       // The Qualifiers should be attached to the type rather than the array.
9314       // Thus we don't call appendQualifier() here.
9315       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9316     }
9317     return appendType(Enc, QT, CGM, TSC);
9318   }
9319   return false;
9320 }
9321 
9322 //===----------------------------------------------------------------------===//
9323 // RISCV ABI Implementation
9324 //===----------------------------------------------------------------------===//
9325 
9326 namespace {
9327 class RISCVABIInfo : public DefaultABIInfo {
9328 private:
9329   // Size of the integer ('x') registers in bits.
9330   unsigned XLen;
9331   // Size of the floating point ('f') registers in bits. Note that the target
9332   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
9333   // with soft float ABI has FLen==0).
9334   unsigned FLen;
9335   static const int NumArgGPRs = 8;
9336   static const int NumArgFPRs = 8;
9337   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9338                                       llvm::Type *&Field1Ty,
9339                                       CharUnits &Field1Off,
9340                                       llvm::Type *&Field2Ty,
9341                                       CharUnits &Field2Off) const;
9342 
9343 public:
9344   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
9345       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
9346 
9347   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9348   // non-virtual, but computeInfo is virtual, so we overload it.
9349   void computeInfo(CGFunctionInfo &FI) const override;
9350 
9351   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
9352                                   int &ArgFPRsLeft) const;
9353   ABIArgInfo classifyReturnType(QualType RetTy) const;
9354 
9355   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9356                     QualType Ty) const override;
9357 
9358   ABIArgInfo extendType(QualType Ty) const;
9359 
9360   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9361                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
9362                                 CharUnits &Field2Off, int &NeededArgGPRs,
9363                                 int &NeededArgFPRs) const;
9364   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
9365                                                CharUnits Field1Off,
9366                                                llvm::Type *Field2Ty,
9367                                                CharUnits Field2Off) const;
9368 };
9369 } // end anonymous namespace
9370 
9371 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9372   QualType RetTy = FI.getReturnType();
9373   if (!getCXXABI().classifyReturnType(FI))
9374     FI.getReturnInfo() = classifyReturnType(RetTy);
9375 
9376   // IsRetIndirect is true if classifyArgumentType indicated the value should
9377   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9378   // is passed direct in LLVM IR, relying on the backend lowering code to
9379   // rewrite the argument list and pass indirectly on RV32.
9380   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9381                        getContext().getTypeSize(RetTy) > (2 * XLen);
9382 
9383   // We must track the number of GPRs used in order to conform to the RISC-V
9384   // ABI, as integer scalars passed in registers should have signext/zeroext
9385   // when promoted, but are anyext if passed on the stack. As GPR usage is
9386   // different for variadic arguments, we must also track whether we are
9387   // examining a vararg or not.
9388   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9389   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
9390   int NumFixedArgs = FI.getNumRequiredArgs();
9391 
9392   int ArgNum = 0;
9393   for (auto &ArgInfo : FI.arguments()) {
9394     bool IsFixed = ArgNum < NumFixedArgs;
9395     ArgInfo.info =
9396         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
9397     ArgNum++;
9398   }
9399 }
9400 
9401 // Returns true if the struct is a potential candidate for the floating point
9402 // calling convention. If this function returns true, the caller is
9403 // responsible for checking that if there is only a single field then that
9404 // field is a float.
9405 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9406                                                   llvm::Type *&Field1Ty,
9407                                                   CharUnits &Field1Off,
9408                                                   llvm::Type *&Field2Ty,
9409                                                   CharUnits &Field2Off) const {
9410   bool IsInt = Ty->isIntegralOrEnumerationType();
9411   bool IsFloat = Ty->isRealFloatingType();
9412 
9413   if (IsInt || IsFloat) {
9414     uint64_t Size = getContext().getTypeSize(Ty);
9415     if (IsInt && Size > XLen)
9416       return false;
9417     // Can't be eligible if larger than the FP registers. Half precision isn't
9418     // currently supported on RISC-V and the ABI hasn't been confirmed, so
9419     // default to the integer ABI in that case.
9420     if (IsFloat && (Size > FLen || Size < 32))
9421       return false;
9422     // Can't be eligible if an integer type was already found (int+int pairs
9423     // are not eligible).
9424     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
9425       return false;
9426     if (!Field1Ty) {
9427       Field1Ty = CGT.ConvertType(Ty);
9428       Field1Off = CurOff;
9429       return true;
9430     }
9431     if (!Field2Ty) {
9432       Field2Ty = CGT.ConvertType(Ty);
9433       Field2Off = CurOff;
9434       return true;
9435     }
9436     return false;
9437   }
9438 
9439   if (auto CTy = Ty->getAs<ComplexType>()) {
9440     if (Field1Ty)
9441       return false;
9442     QualType EltTy = CTy->getElementType();
9443     if (getContext().getTypeSize(EltTy) > FLen)
9444       return false;
9445     Field1Ty = CGT.ConvertType(EltTy);
9446     Field1Off = CurOff;
9447     assert(CurOff.isZero() && "Unexpected offset for first field");
9448     Field2Ty = Field1Ty;
9449     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
9450     return true;
9451   }
9452 
9453   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
9454     uint64_t ArraySize = ATy->getSize().getZExtValue();
9455     QualType EltTy = ATy->getElementType();
9456     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
9457     for (uint64_t i = 0; i < ArraySize; ++i) {
9458       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
9459                                                 Field1Off, Field2Ty, Field2Off);
9460       if (!Ret)
9461         return false;
9462       CurOff += EltSize;
9463     }
9464     return true;
9465   }
9466 
9467   if (const auto *RTy = Ty->getAs<RecordType>()) {
9468     // Structures with either a non-trivial destructor or a non-trivial
9469     // copy constructor are not eligible for the FP calling convention.
9470     if (getRecordArgABI(Ty, CGT.getCXXABI()))
9471       return false;
9472     if (isEmptyRecord(getContext(), Ty, true))
9473       return true;
9474     const RecordDecl *RD = RTy->getDecl();
9475     // Unions aren't eligible unless they're empty (which is caught above).
9476     if (RD->isUnion())
9477       return false;
9478     int ZeroWidthBitFieldCount = 0;
9479     for (const FieldDecl *FD : RD->fields()) {
9480       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
9481       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
9482       QualType QTy = FD->getType();
9483       if (FD->isBitField()) {
9484         unsigned BitWidth = FD->getBitWidthValue(getContext());
9485         // Allow a bitfield with a type greater than XLen as long as the
9486         // bitwidth is XLen or less.
9487         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
9488           QTy = getContext().getIntTypeForBitwidth(XLen, false);
9489         if (BitWidth == 0) {
9490           ZeroWidthBitFieldCount++;
9491           continue;
9492         }
9493       }
9494 
9495       bool Ret = detectFPCCEligibleStructHelper(
9496           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
9497           Field1Ty, Field1Off, Field2Ty, Field2Off);
9498       if (!Ret)
9499         return false;
9500 
9501       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
9502       // or int+fp structs, but are ignored for a struct with an fp field and
9503       // any number of zero-width bitfields.
9504       if (Field2Ty && ZeroWidthBitFieldCount > 0)
9505         return false;
9506     }
9507     return Field1Ty != nullptr;
9508   }
9509 
9510   return false;
9511 }
9512 
9513 // Determine if a struct is eligible for passing according to the floating
9514 // point calling convention (i.e., when flattened it contains a single fp
9515 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
9516 // NeededArgGPRs are incremented appropriately.
9517 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9518                                             CharUnits &Field1Off,
9519                                             llvm::Type *&Field2Ty,
9520                                             CharUnits &Field2Off,
9521                                             int &NeededArgGPRs,
9522                                             int &NeededArgFPRs) const {
9523   Field1Ty = nullptr;
9524   Field2Ty = nullptr;
9525   NeededArgGPRs = 0;
9526   NeededArgFPRs = 0;
9527   bool IsCandidate = detectFPCCEligibleStructHelper(
9528       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
9529   // Not really a candidate if we have a single int but no float.
9530   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
9531     return false;
9532   if (!IsCandidate)
9533     return false;
9534   if (Field1Ty && Field1Ty->isFloatingPointTy())
9535     NeededArgFPRs++;
9536   else if (Field1Ty)
9537     NeededArgGPRs++;
9538   if (Field2Ty && Field2Ty->isFloatingPointTy())
9539     NeededArgFPRs++;
9540   else if (Field2Ty)
9541     NeededArgGPRs++;
9542   return IsCandidate;
9543 }
9544 
9545 // Call getCoerceAndExpand for the two-element flattened struct described by
9546 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
9547 // appropriate coerceToType and unpaddedCoerceToType.
9548 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
9549     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
9550     CharUnits Field2Off) const {
9551   SmallVector<llvm::Type *, 3> CoerceElts;
9552   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
9553   if (!Field1Off.isZero())
9554     CoerceElts.push_back(llvm::ArrayType::get(
9555         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
9556 
9557   CoerceElts.push_back(Field1Ty);
9558   UnpaddedCoerceElts.push_back(Field1Ty);
9559 
9560   if (!Field2Ty) {
9561     return ABIArgInfo::getCoerceAndExpand(
9562         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
9563         UnpaddedCoerceElts[0]);
9564   }
9565 
9566   CharUnits Field2Align =
9567       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
9568   CharUnits Field1Size =
9569       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
9570   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
9571 
9572   CharUnits Padding = CharUnits::Zero();
9573   if (Field2Off > Field2OffNoPadNoPack)
9574     Padding = Field2Off - Field2OffNoPadNoPack;
9575   else if (Field2Off != Field2Align && Field2Off > Field1Size)
9576     Padding = Field2Off - Field1Size;
9577 
9578   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
9579 
9580   if (!Padding.isZero())
9581     CoerceElts.push_back(llvm::ArrayType::get(
9582         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
9583 
9584   CoerceElts.push_back(Field2Ty);
9585   UnpaddedCoerceElts.push_back(Field2Ty);
9586 
9587   auto CoerceToType =
9588       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
9589   auto UnpaddedCoerceToType =
9590       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
9591 
9592   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
9593 }
9594 
9595 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9596                                               int &ArgGPRsLeft,
9597                                               int &ArgFPRsLeft) const {
9598   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9599   Ty = useFirstFieldIfTransparentUnion(Ty);
9600 
9601   // Structures with either a non-trivial destructor or a non-trivial
9602   // copy constructor are always passed indirectly.
9603   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9604     if (ArgGPRsLeft)
9605       ArgGPRsLeft -= 1;
9606     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9607                                            CGCXXABI::RAA_DirectInMemory);
9608   }
9609 
9610   // Ignore empty structs/unions.
9611   if (isEmptyRecord(getContext(), Ty, true))
9612     return ABIArgInfo::getIgnore();
9613 
9614   uint64_t Size = getContext().getTypeSize(Ty);
9615 
9616   // Pass floating point values via FPRs if possible.
9617   if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
9618     ArgFPRsLeft--;
9619     return ABIArgInfo::getDirect();
9620   }
9621 
9622   // Complex types for the hard float ABI must be passed direct rather than
9623   // using CoerceAndExpand.
9624   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
9625     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
9626     if (getContext().getTypeSize(EltTy) <= FLen) {
9627       ArgFPRsLeft -= 2;
9628       return ABIArgInfo::getDirect();
9629     }
9630   }
9631 
9632   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
9633     llvm::Type *Field1Ty = nullptr;
9634     llvm::Type *Field2Ty = nullptr;
9635     CharUnits Field1Off = CharUnits::Zero();
9636     CharUnits Field2Off = CharUnits::Zero();
9637     int NeededArgGPRs;
9638     int NeededArgFPRs;
9639     bool IsCandidate =
9640         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
9641                                  NeededArgGPRs, NeededArgFPRs);
9642     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
9643         NeededArgFPRs <= ArgFPRsLeft) {
9644       ArgGPRsLeft -= NeededArgGPRs;
9645       ArgFPRsLeft -= NeededArgFPRs;
9646       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
9647                                                Field2Off);
9648     }
9649   }
9650 
9651   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9652   bool MustUseStack = false;
9653   // Determine the number of GPRs needed to pass the current argument
9654   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9655   // register pairs, so may consume 3 registers.
9656   int NeededArgGPRs = 1;
9657   if (!IsFixed && NeededAlign == 2 * XLen)
9658     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9659   else if (Size > XLen && Size <= 2 * XLen)
9660     NeededArgGPRs = 2;
9661 
9662   if (NeededArgGPRs > ArgGPRsLeft) {
9663     MustUseStack = true;
9664     NeededArgGPRs = ArgGPRsLeft;
9665   }
9666 
9667   ArgGPRsLeft -= NeededArgGPRs;
9668 
9669   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9670     // Treat an enum type as its underlying type.
9671     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9672       Ty = EnumTy->getDecl()->getIntegerType();
9673 
9674     // All integral types are promoted to XLen width, unless passed on the
9675     // stack.
9676     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9677       return extendType(Ty);
9678     }
9679 
9680     return ABIArgInfo::getDirect();
9681   }
9682 
9683   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9684   // so coerce to integers.
9685   if (Size <= 2 * XLen) {
9686     unsigned Alignment = getContext().getTypeAlign(Ty);
9687 
9688     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9689     // required, and a 2-element XLen array if only XLen alignment is required.
9690     if (Size <= XLen) {
9691       return ABIArgInfo::getDirect(
9692           llvm::IntegerType::get(getVMContext(), XLen));
9693     } else if (Alignment == 2 * XLen) {
9694       return ABIArgInfo::getDirect(
9695           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9696     } else {
9697       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9698           llvm::IntegerType::get(getVMContext(), XLen), 2));
9699     }
9700   }
9701   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9702 }
9703 
9704 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9705   if (RetTy->isVoidType())
9706     return ABIArgInfo::getIgnore();
9707 
9708   int ArgGPRsLeft = 2;
9709   int ArgFPRsLeft = FLen ? 2 : 0;
9710 
9711   // The rules for return and argument types are the same, so defer to
9712   // classifyArgumentType.
9713   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
9714                               ArgFPRsLeft);
9715 }
9716 
9717 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9718                                 QualType Ty) const {
9719   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9720 
9721   // Empty records are ignored for parameter passing purposes.
9722   if (isEmptyRecord(getContext(), Ty, true)) {
9723     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9724     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9725     return Addr;
9726   }
9727 
9728   std::pair<CharUnits, CharUnits> SizeAndAlign =
9729       getContext().getTypeInfoInChars(Ty);
9730 
9731   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9732   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9733 
9734   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9735                           SlotSize, /*AllowHigherAlign=*/true);
9736 }
9737 
9738 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9739   int TySize = getContext().getTypeSize(Ty);
9740   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9741   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9742     return ABIArgInfo::getSignExtend(Ty);
9743   return ABIArgInfo::getExtend(Ty);
9744 }
9745 
9746 namespace {
9747 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9748 public:
9749   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
9750                          unsigned FLen)
9751       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
9752 
9753   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9754                            CodeGen::CodeGenModule &CGM) const override {
9755     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9756     if (!FD) return;
9757 
9758     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9759     if (!Attr)
9760       return;
9761 
9762     const char *Kind;
9763     switch (Attr->getInterrupt()) {
9764     case RISCVInterruptAttr::user: Kind = "user"; break;
9765     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9766     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9767     }
9768 
9769     auto *Fn = cast<llvm::Function>(GV);
9770 
9771     Fn->addFnAttr("interrupt", Kind);
9772   }
9773 };
9774 } // namespace
9775 
9776 //===----------------------------------------------------------------------===//
9777 // Driver code
9778 //===----------------------------------------------------------------------===//
9779 
9780 bool CodeGenModule::supportsCOMDAT() const {
9781   return getTriple().supportsCOMDAT();
9782 }
9783 
9784 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9785   if (TheTargetCodeGenInfo)
9786     return *TheTargetCodeGenInfo;
9787 
9788   // Helper to set the unique_ptr while still keeping the return value.
9789   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9790     this->TheTargetCodeGenInfo.reset(P);
9791     return *P;
9792   };
9793 
9794   const llvm::Triple &Triple = getTarget().getTriple();
9795   switch (Triple.getArch()) {
9796   default:
9797     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9798 
9799   case llvm::Triple::le32:
9800     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9801   case llvm::Triple::mips:
9802   case llvm::Triple::mipsel:
9803     if (Triple.getOS() == llvm::Triple::NaCl)
9804       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9805     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9806 
9807   case llvm::Triple::mips64:
9808   case llvm::Triple::mips64el:
9809     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9810 
9811   case llvm::Triple::avr:
9812     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9813 
9814   case llvm::Triple::aarch64:
9815   case llvm::Triple::aarch64_32:
9816   case llvm::Triple::aarch64_be: {
9817     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9818     if (getTarget().getABI() == "darwinpcs")
9819       Kind = AArch64ABIInfo::DarwinPCS;
9820     else if (Triple.isOSWindows())
9821       return SetCGInfo(
9822           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9823 
9824     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9825   }
9826 
9827   case llvm::Triple::wasm32:
9828   case llvm::Triple::wasm64:
9829     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9830 
9831   case llvm::Triple::arm:
9832   case llvm::Triple::armeb:
9833   case llvm::Triple::thumb:
9834   case llvm::Triple::thumbeb: {
9835     if (Triple.getOS() == llvm::Triple::Win32) {
9836       return SetCGInfo(
9837           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9838     }
9839 
9840     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9841     StringRef ABIStr = getTarget().getABI();
9842     if (ABIStr == "apcs-gnu")
9843       Kind = ARMABIInfo::APCS;
9844     else if (ABIStr == "aapcs16")
9845       Kind = ARMABIInfo::AAPCS16_VFP;
9846     else if (CodeGenOpts.FloatABI == "hard" ||
9847              (CodeGenOpts.FloatABI != "soft" &&
9848               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9849                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9850                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9851       Kind = ARMABIInfo::AAPCS_VFP;
9852 
9853     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9854   }
9855 
9856   case llvm::Triple::ppc:
9857     return SetCGInfo(
9858         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" ||
9859                                    getTarget().hasFeature("spe")));
9860   case llvm::Triple::ppc64:
9861     if (Triple.isOSBinFormatELF()) {
9862       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9863       if (getTarget().getABI() == "elfv2")
9864         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9865       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9866       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9867 
9868       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9869                                                         IsSoftFloat));
9870     } else
9871       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9872   case llvm::Triple::ppc64le: {
9873     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9874     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9875     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9876       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9877     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9878     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9879 
9880     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9881                                                       IsSoftFloat));
9882   }
9883 
9884   case llvm::Triple::nvptx:
9885   case llvm::Triple::nvptx64:
9886     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9887 
9888   case llvm::Triple::msp430:
9889     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9890 
9891   case llvm::Triple::riscv32:
9892   case llvm::Triple::riscv64: {
9893     StringRef ABIStr = getTarget().getABI();
9894     unsigned XLen = getTarget().getPointerWidth(0);
9895     unsigned ABIFLen = 0;
9896     if (ABIStr.endswith("f"))
9897       ABIFLen = 32;
9898     else if (ABIStr.endswith("d"))
9899       ABIFLen = 64;
9900     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
9901   }
9902 
9903   case llvm::Triple::systemz: {
9904     bool HasVector = getTarget().getABI() == "vector";
9905     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9906   }
9907 
9908   case llvm::Triple::tce:
9909   case llvm::Triple::tcele:
9910     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9911 
9912   case llvm::Triple::x86: {
9913     bool IsDarwinVectorABI = Triple.isOSDarwin();
9914     bool RetSmallStructInRegABI =
9915         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9916     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9917 
9918     if (Triple.getOS() == llvm::Triple::Win32) {
9919       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9920           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9921           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9922     } else {
9923       return SetCGInfo(new X86_32TargetCodeGenInfo(
9924           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9925           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9926           CodeGenOpts.FloatABI == "soft"));
9927     }
9928   }
9929 
9930   case llvm::Triple::x86_64: {
9931     StringRef ABI = getTarget().getABI();
9932     X86AVXABILevel AVXLevel =
9933         (ABI == "avx512"
9934              ? X86AVXABILevel::AVX512
9935              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9936 
9937     switch (Triple.getOS()) {
9938     case llvm::Triple::Win32:
9939       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9940     default:
9941       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9942     }
9943   }
9944   case llvm::Triple::hexagon:
9945     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9946   case llvm::Triple::lanai:
9947     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9948   case llvm::Triple::r600:
9949     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9950   case llvm::Triple::amdgcn:
9951     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9952   case llvm::Triple::sparc:
9953     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9954   case llvm::Triple::sparcv9:
9955     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9956   case llvm::Triple::xcore:
9957     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9958   case llvm::Triple::arc:
9959     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9960   case llvm::Triple::spir:
9961   case llvm::Triple::spir64:
9962     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9963   }
9964 }
9965 
9966 /// Create an OpenCL kernel for an enqueued block.
9967 ///
9968 /// The kernel has the same function type as the block invoke function. Its
9969 /// name is the name of the block invoke function postfixed with "_kernel".
9970 /// It simply calls the block invoke function then returns.
9971 llvm::Function *
9972 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9973                                              llvm::Function *Invoke,
9974                                              llvm::Value *BlockLiteral) const {
9975   auto *InvokeFT = Invoke->getFunctionType();
9976   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9977   for (auto &P : InvokeFT->params())
9978     ArgTys.push_back(P);
9979   auto &C = CGF.getLLVMContext();
9980   std::string Name = Invoke->getName().str() + "_kernel";
9981   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9982   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9983                                    &CGF.CGM.getModule());
9984   auto IP = CGF.Builder.saveIP();
9985   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9986   auto &Builder = CGF.Builder;
9987   Builder.SetInsertPoint(BB);
9988   llvm::SmallVector<llvm::Value *, 2> Args;
9989   for (auto &A : F->args())
9990     Args.push_back(&A);
9991   Builder.CreateCall(Invoke, Args);
9992   Builder.CreateRetVoid();
9993   Builder.restoreIP(IP);
9994   return F;
9995 }
9996 
9997 /// Create an OpenCL kernel for an enqueued block.
9998 ///
9999 /// The type of the first argument (the block literal) is the struct type
10000 /// of the block literal instead of a pointer type. The first argument
10001 /// (block literal) is passed directly by value to the kernel. The kernel
10002 /// allocates the same type of struct on stack and stores the block literal
10003 /// to it and passes its pointer to the block invoke function. The kernel
10004 /// has "enqueued-block" function attribute and kernel argument metadata.
10005 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
10006     CodeGenFunction &CGF, llvm::Function *Invoke,
10007     llvm::Value *BlockLiteral) const {
10008   auto &Builder = CGF.Builder;
10009   auto &C = CGF.getLLVMContext();
10010 
10011   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
10012   auto *InvokeFT = Invoke->getFunctionType();
10013   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10014   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
10015   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
10016   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
10017   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
10018   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
10019   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
10020 
10021   ArgTys.push_back(BlockTy);
10022   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10023   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
10024   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10025   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10026   AccessQuals.push_back(llvm::MDString::get(C, "none"));
10027   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
10028   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
10029     ArgTys.push_back(InvokeFT->getParamType(I));
10030     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
10031     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
10032     AccessQuals.push_back(llvm::MDString::get(C, "none"));
10033     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
10034     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10035     ArgNames.push_back(
10036         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
10037   }
10038   std::string Name = Invoke->getName().str() + "_kernel";
10039   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10040   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10041                                    &CGF.CGM.getModule());
10042   F->addFnAttr("enqueued-block");
10043   auto IP = CGF.Builder.saveIP();
10044   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10045   Builder.SetInsertPoint(BB);
10046   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
10047   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
10048   BlockPtr->setAlignment(llvm::MaybeAlign(BlockAlign));
10049   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
10050   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
10051   llvm::SmallVector<llvm::Value *, 2> Args;
10052   Args.push_back(Cast);
10053   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
10054     Args.push_back(I);
10055   Builder.CreateCall(Invoke, Args);
10056   Builder.CreateRetVoid();
10057   Builder.restoreIP(IP);
10058 
10059   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
10060   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
10061   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
10062   F->setMetadata("kernel_arg_base_type",
10063                  llvm::MDNode::get(C, ArgBaseTypeNames));
10064   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
10065   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
10066     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
10067 
10068   return F;
10069 }
10070