1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/SwiftCallingConv.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> // std::sort 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 // Helper for coercing an aggregate argument or return value into an integer 41 // array of the same size (including padding) and alignment. This alternate 42 // coercion happens only for the RenderScript ABI and can be removed after 43 // runtimes that rely on it are no longer supported. 44 // 45 // RenderScript assumes that the size of the argument / return value in the IR 46 // is the same as the size of the corresponding qualified type. This helper 47 // coerces the aggregate type into an array of the same size (including 48 // padding). This coercion is used in lieu of expansion of struct members or 49 // other canonical coercions that return a coerced-type of larger size. 50 // 51 // Ty - The argument / return value type 52 // Context - The associated ASTContext 53 // LLVMContext - The associated LLVMContext 54 static ABIArgInfo coerceToIntArray(QualType Ty, 55 ASTContext &Context, 56 llvm::LLVMContext &LLVMContext) { 57 // Alignment and Size are measured in bits. 58 const uint64_t Size = Context.getTypeSize(Ty); 59 const uint64_t Alignment = Context.getTypeAlign(Ty); 60 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 61 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 62 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 63 } 64 65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 66 llvm::Value *Array, 67 llvm::Value *Value, 68 unsigned FirstIndex, 69 unsigned LastIndex) { 70 // Alternatively, we could emit this as a loop in the source. 71 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 72 llvm::Value *Cell = 73 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 74 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 75 } 76 } 77 78 static bool isAggregateTypeForABI(QualType T) { 79 return !CodeGenFunction::hasScalarEvaluationKind(T) || 80 T->isMemberFunctionPointerType(); 81 } 82 83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 84 bool Realign, 85 llvm::Type *Padding) const { 86 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 87 Realign, Padding); 88 } 89 90 ABIArgInfo 91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 92 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 93 /*ByVal*/ false, Realign); 94 } 95 96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 97 QualType Ty) const { 98 return Address::invalid(); 99 } 100 101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 102 if (Ty->isPromotableIntegerType()) 103 return true; 104 105 if (const auto *EIT = Ty->getAs<ExtIntType>()) 106 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 107 return true; 108 109 return false; 110 } 111 112 ABIInfo::~ABIInfo() {} 113 114 /// Does the given lowering require more than the given number of 115 /// registers when expanded? 116 /// 117 /// This is intended to be the basis of a reasonable basic implementation 118 /// of should{Pass,Return}IndirectlyForSwift. 119 /// 120 /// For most targets, a limit of four total registers is reasonable; this 121 /// limits the amount of code required in order to move around the value 122 /// in case it wasn't produced immediately prior to the call by the caller 123 /// (or wasn't produced in exactly the right registers) or isn't used 124 /// immediately within the callee. But some targets may need to further 125 /// limit the register count due to an inability to support that many 126 /// return registers. 127 static bool occupiesMoreThan(CodeGenTypes &cgt, 128 ArrayRef<llvm::Type*> scalarTypes, 129 unsigned maxAllRegisters) { 130 unsigned intCount = 0, fpCount = 0; 131 for (llvm::Type *type : scalarTypes) { 132 if (type->isPointerTy()) { 133 intCount++; 134 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 135 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 136 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 137 } else { 138 assert(type->isVectorTy() || type->isFloatingPointTy()); 139 fpCount++; 140 } 141 } 142 143 return (intCount + fpCount > maxAllRegisters); 144 } 145 146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 147 llvm::Type *eltTy, 148 unsigned numElts) const { 149 // The default implementation of this assumes that the target guarantees 150 // 128-bit SIMD support but nothing more. 151 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 152 } 153 154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 155 CGCXXABI &CXXABI) { 156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 157 if (!RD) { 158 if (!RT->getDecl()->canPassInRegisters()) 159 return CGCXXABI::RAA_Indirect; 160 return CGCXXABI::RAA_Default; 161 } 162 return CXXABI.getRecordArgABI(RD); 163 } 164 165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 166 CGCXXABI &CXXABI) { 167 const RecordType *RT = T->getAs<RecordType>(); 168 if (!RT) 169 return CGCXXABI::RAA_Default; 170 return getRecordArgABI(RT, CXXABI); 171 } 172 173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 174 const ABIInfo &Info) { 175 QualType Ty = FI.getReturnType(); 176 177 if (const auto *RT = Ty->getAs<RecordType>()) 178 if (!isa<CXXRecordDecl>(RT->getDecl()) && 179 !RT->getDecl()->canPassInRegisters()) { 180 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 181 return true; 182 } 183 184 return CXXABI.classifyReturnType(FI); 185 } 186 187 /// Pass transparent unions as if they were the type of the first element. Sema 188 /// should ensure that all elements of the union have the same "machine type". 189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 190 if (const RecordType *UT = Ty->getAsUnionType()) { 191 const RecordDecl *UD = UT->getDecl(); 192 if (UD->hasAttr<TransparentUnionAttr>()) { 193 assert(!UD->field_empty() && "sema created an empty transparent union"); 194 return UD->field_begin()->getType(); 195 } 196 } 197 return Ty; 198 } 199 200 CGCXXABI &ABIInfo::getCXXABI() const { 201 return CGT.getCXXABI(); 202 } 203 204 ASTContext &ABIInfo::getContext() const { 205 return CGT.getContext(); 206 } 207 208 llvm::LLVMContext &ABIInfo::getVMContext() const { 209 return CGT.getLLVMContext(); 210 } 211 212 const llvm::DataLayout &ABIInfo::getDataLayout() const { 213 return CGT.getDataLayout(); 214 } 215 216 const TargetInfo &ABIInfo::getTarget() const { 217 return CGT.getTarget(); 218 } 219 220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 221 return CGT.getCodeGenOpts(); 222 } 223 224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 225 226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 227 return false; 228 } 229 230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 231 uint64_t Members) const { 232 return false; 233 } 234 235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 236 raw_ostream &OS = llvm::errs(); 237 OS << "(ABIArgInfo Kind="; 238 switch (TheKind) { 239 case Direct: 240 OS << "Direct Type="; 241 if (llvm::Type *Ty = getCoerceToType()) 242 Ty->print(OS); 243 else 244 OS << "null"; 245 break; 246 case Extend: 247 OS << "Extend"; 248 break; 249 case Ignore: 250 OS << "Ignore"; 251 break; 252 case InAlloca: 253 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 254 break; 255 case Indirect: 256 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 257 << " ByVal=" << getIndirectByVal() 258 << " Realign=" << getIndirectRealign(); 259 break; 260 case IndirectAliased: 261 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 262 << " AadrSpace=" << getIndirectAddrSpace() 263 << " Realign=" << getIndirectRealign(); 264 break; 265 case Expand: 266 OS << "Expand"; 267 break; 268 case CoerceAndExpand: 269 OS << "CoerceAndExpand Type="; 270 getCoerceAndExpandType()->print(OS); 271 break; 272 } 273 OS << ")\n"; 274 } 275 276 // Dynamically round a pointer up to a multiple of the given alignment. 277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 278 llvm::Value *Ptr, 279 CharUnits Align) { 280 llvm::Value *PtrAsInt = Ptr; 281 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 282 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 283 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 284 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 285 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 287 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 288 Ptr->getType(), 289 Ptr->getName() + ".aligned"); 290 return PtrAsInt; 291 } 292 293 /// Emit va_arg for a platform using the common void* representation, 294 /// where arguments are simply emitted in an array of slots on the stack. 295 /// 296 /// This version implements the core direct-value passing rules. 297 /// 298 /// \param SlotSize - The size and alignment of a stack slot. 299 /// Each argument will be allocated to a multiple of this number of 300 /// slots, and all the slots will be aligned to this value. 301 /// \param AllowHigherAlign - The slot alignment is not a cap; 302 /// an argument type with an alignment greater than the slot size 303 /// will be emitted on a higher-alignment address, potentially 304 /// leaving one or more empty slots behind as padding. If this 305 /// is false, the returned address might be less-aligned than 306 /// DirectAlign. 307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 308 Address VAListAddr, 309 llvm::Type *DirectTy, 310 CharUnits DirectSize, 311 CharUnits DirectAlign, 312 CharUnits SlotSize, 313 bool AllowHigherAlign) { 314 // Cast the element type to i8* if necessary. Some platforms define 315 // va_list as a struct containing an i8* instead of just an i8*. 316 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 317 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 318 319 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 320 321 // If the CC aligns values higher than the slot size, do so if needed. 322 Address Addr = Address::invalid(); 323 if (AllowHigherAlign && DirectAlign > SlotSize) { 324 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 325 DirectAlign); 326 } else { 327 Addr = Address(Ptr, SlotSize); 328 } 329 330 // Advance the pointer past the argument, then store that back. 331 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 332 Address NextPtr = 333 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 334 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 335 336 // If the argument is smaller than a slot, and this is a big-endian 337 // target, the argument will be right-adjusted in its slot. 338 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 339 !DirectTy->isStructTy()) { 340 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 341 } 342 343 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 344 return Addr; 345 } 346 347 /// Emit va_arg for a platform using the common void* representation, 348 /// where arguments are simply emitted in an array of slots on the stack. 349 /// 350 /// \param IsIndirect - Values of this type are passed indirectly. 351 /// \param ValueInfo - The size and alignment of this type, generally 352 /// computed with getContext().getTypeInfoInChars(ValueTy). 353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 354 /// Each argument will be allocated to a multiple of this number of 355 /// slots, and all the slots will be aligned to this value. 356 /// \param AllowHigherAlign - The slot alignment is not a cap; 357 /// an argument type with an alignment greater than the slot size 358 /// will be emitted on a higher-alignment address, potentially 359 /// leaving one or more empty slots behind as padding. 360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 361 QualType ValueTy, bool IsIndirect, 362 std::pair<CharUnits, CharUnits> ValueInfo, 363 CharUnits SlotSizeAndAlign, 364 bool AllowHigherAlign) { 365 // The size and alignment of the value that was passed directly. 366 CharUnits DirectSize, DirectAlign; 367 if (IsIndirect) { 368 DirectSize = CGF.getPointerSize(); 369 DirectAlign = CGF.getPointerAlign(); 370 } else { 371 DirectSize = ValueInfo.first; 372 DirectAlign = ValueInfo.second; 373 } 374 375 // Cast the address we've calculated to the right type. 376 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 377 if (IsIndirect) 378 DirectTy = DirectTy->getPointerTo(0); 379 380 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 381 DirectSize, DirectAlign, 382 SlotSizeAndAlign, 383 AllowHigherAlign); 384 385 if (IsIndirect) { 386 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 387 } 388 389 return Addr; 390 391 } 392 393 static Address emitMergePHI(CodeGenFunction &CGF, 394 Address Addr1, llvm::BasicBlock *Block1, 395 Address Addr2, llvm::BasicBlock *Block2, 396 const llvm::Twine &Name = "") { 397 assert(Addr1.getType() == Addr2.getType()); 398 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 399 PHI->addIncoming(Addr1.getPointer(), Block1); 400 PHI->addIncoming(Addr2.getPointer(), Block2); 401 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 402 return Address(PHI, Align); 403 } 404 405 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 406 407 // If someone can figure out a general rule for this, that would be great. 408 // It's probably just doomed to be platform-dependent, though. 409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 410 // Verified for: 411 // x86-64 FreeBSD, Linux, Darwin 412 // x86-32 FreeBSD, Linux, Darwin 413 // PowerPC Linux, Darwin 414 // ARM Darwin (*not* EABI) 415 // AArch64 Linux 416 return 32; 417 } 418 419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 420 const FunctionNoProtoType *fnType) const { 421 // The following conventions are known to require this to be false: 422 // x86_stdcall 423 // MIPS 424 // For everything else, we just prefer false unless we opt out. 425 return false; 426 } 427 428 void 429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 430 llvm::SmallString<24> &Opt) const { 431 // This assumes the user is passing a library name like "rt" instead of a 432 // filename like "librt.a/so", and that they don't care whether it's static or 433 // dynamic. 434 Opt = "-l"; 435 Opt += Lib; 436 } 437 438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 439 // OpenCL kernels are called via an explicit runtime API with arguments 440 // set with clSetKernelArg(), not as normal sub-functions. 441 // Return SPIR_KERNEL by default as the kernel calling convention to 442 // ensure the fingerprint is fixed such way that each OpenCL argument 443 // gets one matching argument in the produced kernel function argument 444 // list to enable feasible implementation of clSetKernelArg() with 445 // aggregates etc. In case we would use the default C calling conv here, 446 // clSetKernelArg() might break depending on the target-specific 447 // conventions; different targets might split structs passed as values 448 // to multiple function arguments etc. 449 return llvm::CallingConv::SPIR_KERNEL; 450 } 451 452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 453 llvm::PointerType *T, QualType QT) const { 454 return llvm::ConstantPointerNull::get(T); 455 } 456 457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 458 const VarDecl *D) const { 459 assert(!CGM.getLangOpts().OpenCL && 460 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 461 "Address space agnostic languages only"); 462 return D ? D->getType().getAddressSpace() : LangAS::Default; 463 } 464 465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 466 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 467 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 468 // Since target may map different address spaces in AST to the same address 469 // space, an address space conversion may end up as a bitcast. 470 if (auto *C = dyn_cast<llvm::Constant>(Src)) 471 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 472 // Try to preserve the source's name to make IR more readable. 473 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 474 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 475 } 476 477 llvm::Constant * 478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 479 LangAS SrcAddr, LangAS DestAddr, 480 llvm::Type *DestTy) const { 481 // Since target may map different address spaces in AST to the same address 482 // space, an address space conversion may end up as a bitcast. 483 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 484 } 485 486 llvm::SyncScope::ID 487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 488 SyncScope Scope, 489 llvm::AtomicOrdering Ordering, 490 llvm::LLVMContext &Ctx) const { 491 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 492 } 493 494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 495 496 /// isEmptyField - Return true iff a the field is "empty", that is it 497 /// is an unnamed bit-field or an (array of) empty record(s). 498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 499 bool AllowArrays) { 500 if (FD->isUnnamedBitfield()) 501 return true; 502 503 QualType FT = FD->getType(); 504 505 // Constant arrays of empty records count as empty, strip them off. 506 // Constant arrays of zero length always count as empty. 507 bool WasArray = false; 508 if (AllowArrays) 509 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 510 if (AT->getSize() == 0) 511 return true; 512 FT = AT->getElementType(); 513 // The [[no_unique_address]] special case below does not apply to 514 // arrays of C++ empty records, so we need to remember this fact. 515 WasArray = true; 516 } 517 518 const RecordType *RT = FT->getAs<RecordType>(); 519 if (!RT) 520 return false; 521 522 // C++ record fields are never empty, at least in the Itanium ABI. 523 // 524 // FIXME: We should use a predicate for whether this behavior is true in the 525 // current ABI. 526 // 527 // The exception to the above rule are fields marked with the 528 // [[no_unique_address]] attribute (since C++20). Those do count as empty 529 // according to the Itanium ABI. The exception applies only to records, 530 // not arrays of records, so we must also check whether we stripped off an 531 // array type above. 532 if (isa<CXXRecordDecl>(RT->getDecl()) && 533 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 534 return false; 535 536 return isEmptyRecord(Context, FT, AllowArrays); 537 } 538 539 /// isEmptyRecord - Return true iff a structure contains only empty 540 /// fields. Note that a structure with a flexible array member is not 541 /// considered empty. 542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 543 const RecordType *RT = T->getAs<RecordType>(); 544 if (!RT) 545 return false; 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return false; 549 550 // If this is a C++ record, check the bases first. 551 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 552 for (const auto &I : CXXRD->bases()) 553 if (!isEmptyRecord(Context, I.getType(), true)) 554 return false; 555 556 for (const auto *I : RD->fields()) 557 if (!isEmptyField(Context, I, AllowArrays)) 558 return false; 559 return true; 560 } 561 562 /// isSingleElementStruct - Determine if a structure is a "single 563 /// element struct", i.e. it has exactly one non-empty field or 564 /// exactly one field which is itself a single element 565 /// struct. Structures with flexible array members are never 566 /// considered single element structs. 567 /// 568 /// \return The field declaration for the single non-empty field, if 569 /// it exists. 570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 571 const RecordType *RT = T->getAs<RecordType>(); 572 if (!RT) 573 return nullptr; 574 575 const RecordDecl *RD = RT->getDecl(); 576 if (RD->hasFlexibleArrayMember()) 577 return nullptr; 578 579 const Type *Found = nullptr; 580 581 // If this is a C++ record, check the bases first. 582 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 583 for (const auto &I : CXXRD->bases()) { 584 // Ignore empty records. 585 if (isEmptyRecord(Context, I.getType(), true)) 586 continue; 587 588 // If we already found an element then this isn't a single-element struct. 589 if (Found) 590 return nullptr; 591 592 // If this is non-empty and not a single element struct, the composite 593 // cannot be a single element struct. 594 Found = isSingleElementStruct(I.getType(), Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // Check for single element. 601 for (const auto *FD : RD->fields()) { 602 QualType FT = FD->getType(); 603 604 // Ignore empty fields. 605 if (isEmptyField(Context, FD, true)) 606 continue; 607 608 // If we already found an element then this isn't a single-element 609 // struct. 610 if (Found) 611 return nullptr; 612 613 // Treat single element arrays as the element. 614 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 615 if (AT->getSize().getZExtValue() != 1) 616 break; 617 FT = AT->getElementType(); 618 } 619 620 if (!isAggregateTypeForABI(FT)) { 621 Found = FT.getTypePtr(); 622 } else { 623 Found = isSingleElementStruct(FT, Context); 624 if (!Found) 625 return nullptr; 626 } 627 } 628 629 // We don't consider a struct a single-element struct if it has 630 // padding beyond the element type. 631 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 632 return nullptr; 633 634 return Found; 635 } 636 637 namespace { 638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 639 const ABIArgInfo &AI) { 640 // This default implementation defers to the llvm backend's va_arg 641 // instruction. It can handle only passing arguments directly 642 // (typically only handled in the backend for primitive types), or 643 // aggregates passed indirectly by pointer (NOTE: if the "byval" 644 // flag has ABI impact in the callee, this implementation cannot 645 // work.) 646 647 // Only a few cases are covered here at the moment -- those needed 648 // by the default abi. 649 llvm::Value *Val; 650 651 if (AI.isIndirect()) { 652 assert(!AI.getPaddingType() && 653 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 654 assert( 655 !AI.getIndirectRealign() && 656 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 657 658 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 659 CharUnits TyAlignForABI = TyInfo.second; 660 661 llvm::Type *BaseTy = 662 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 663 llvm::Value *Addr = 664 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 665 return Address(Addr, TyAlignForABI); 666 } else { 667 assert((AI.isDirect() || AI.isExtend()) && 668 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 669 670 assert(!AI.getInReg() && 671 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 672 assert(!AI.getPaddingType() && 673 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getDirectOffset() && 675 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getCoerceToType() && 677 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 678 679 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 680 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 681 CGF.Builder.CreateStore(Val, Temp); 682 return Temp; 683 } 684 } 685 686 /// DefaultABIInfo - The default implementation for ABI specific 687 /// details. This implementation provides information which results in 688 /// self-consistent and sensible LLVM IR generation, but does not 689 /// conform to any particular ABI. 690 class DefaultABIInfo : public ABIInfo { 691 public: 692 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 693 694 ABIArgInfo classifyReturnType(QualType RetTy) const; 695 ABIArgInfo classifyArgumentType(QualType RetTy) const; 696 697 void computeInfo(CGFunctionInfo &FI) const override { 698 if (!getCXXABI().classifyReturnType(FI)) 699 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 700 for (auto &I : FI.arguments()) 701 I.info = classifyArgumentType(I.type); 702 } 703 704 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 705 QualType Ty) const override { 706 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 707 } 708 }; 709 710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 711 public: 712 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 713 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 714 }; 715 716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 717 Ty = useFirstFieldIfTransparentUnion(Ty); 718 719 if (isAggregateTypeForABI(Ty)) { 720 // Records with non-trivial destructors/copy-constructors should not be 721 // passed by value. 722 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 723 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 724 725 return getNaturalAlignIndirect(Ty); 726 } 727 728 // Treat an enum type as its underlying type. 729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 730 Ty = EnumTy->getDecl()->getIntegerType(); 731 732 ASTContext &Context = getContext(); 733 if (const auto *EIT = Ty->getAs<ExtIntType>()) 734 if (EIT->getNumBits() > 735 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 736 ? Context.Int128Ty 737 : Context.LongLongTy)) 738 return getNaturalAlignIndirect(Ty); 739 740 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 741 : ABIArgInfo::getDirect()); 742 } 743 744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 745 if (RetTy->isVoidType()) 746 return ABIArgInfo::getIgnore(); 747 748 if (isAggregateTypeForABI(RetTy)) 749 return getNaturalAlignIndirect(RetTy); 750 751 // Treat an enum type as its underlying type. 752 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 753 RetTy = EnumTy->getDecl()->getIntegerType(); 754 755 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 756 if (EIT->getNumBits() > 757 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 758 ? getContext().Int128Ty 759 : getContext().LongLongTy)) 760 return getNaturalAlignIndirect(RetTy); 761 762 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 763 : ABIArgInfo::getDirect()); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // WebAssembly ABI Implementation 768 // 769 // This is a very simple ABI that relies a lot on DefaultABIInfo. 770 //===----------------------------------------------------------------------===// 771 772 class WebAssemblyABIInfo final : public SwiftABIInfo { 773 public: 774 enum ABIKind { 775 MVP = 0, 776 ExperimentalMV = 1, 777 }; 778 779 private: 780 DefaultABIInfo defaultInfo; 781 ABIKind Kind; 782 783 public: 784 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 785 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 786 787 private: 788 ABIArgInfo classifyReturnType(QualType RetTy) const; 789 ABIArgInfo classifyArgumentType(QualType Ty) const; 790 791 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 792 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 793 // overload them. 794 void computeInfo(CGFunctionInfo &FI) const override { 795 if (!getCXXABI().classifyReturnType(FI)) 796 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 797 for (auto &Arg : FI.arguments()) 798 Arg.info = classifyArgumentType(Arg.type); 799 } 800 801 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 802 QualType Ty) const override; 803 804 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 805 bool asReturnValue) const override { 806 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 807 } 808 809 bool isSwiftErrorInRegister() const override { 810 return false; 811 } 812 }; 813 814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 815 public: 816 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 817 WebAssemblyABIInfo::ABIKind K) 818 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 819 820 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 821 CodeGen::CodeGenModule &CGM) const override { 822 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 824 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 825 llvm::Function *Fn = cast<llvm::Function>(GV); 826 llvm::AttrBuilder B; 827 B.addAttribute("wasm-import-module", Attr->getImportModule()); 828 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 829 } 830 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 831 llvm::Function *Fn = cast<llvm::Function>(GV); 832 llvm::AttrBuilder B; 833 B.addAttribute("wasm-import-name", Attr->getImportName()); 834 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 835 } 836 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 837 llvm::Function *Fn = cast<llvm::Function>(GV); 838 llvm::AttrBuilder B; 839 B.addAttribute("wasm-export-name", Attr->getExportName()); 840 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 841 } 842 } 843 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 845 llvm::Function *Fn = cast<llvm::Function>(GV); 846 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 847 Fn->addFnAttr("no-prototype"); 848 } 849 } 850 }; 851 852 /// Classify argument of given type \p Ty. 853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 854 Ty = useFirstFieldIfTransparentUnion(Ty); 855 856 if (isAggregateTypeForABI(Ty)) { 857 // Records with non-trivial destructors/copy-constructors should not be 858 // passed by value. 859 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 860 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 861 // Ignore empty structs/unions. 862 if (isEmptyRecord(getContext(), Ty, true)) 863 return ABIArgInfo::getIgnore(); 864 // Lower single-element structs to just pass a regular value. TODO: We 865 // could do reasonable-size multiple-element structs too, using getExpand(), 866 // though watch out for things like bitfields. 867 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 868 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 869 // For the experimental multivalue ABI, fully expand all other aggregates 870 if (Kind == ABIKind::ExperimentalMV) { 871 const RecordType *RT = Ty->getAs<RecordType>(); 872 assert(RT); 873 bool HasBitField = false; 874 for (auto *Field : RT->getDecl()->fields()) { 875 if (Field->isBitField()) { 876 HasBitField = true; 877 break; 878 } 879 } 880 if (!HasBitField) 881 return ABIArgInfo::getExpand(); 882 } 883 } 884 885 // Otherwise just do the default thing. 886 return defaultInfo.classifyArgumentType(Ty); 887 } 888 889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 890 if (isAggregateTypeForABI(RetTy)) { 891 // Records with non-trivial destructors/copy-constructors should not be 892 // returned by value. 893 if (!getRecordArgABI(RetTy, getCXXABI())) { 894 // Ignore empty structs/unions. 895 if (isEmptyRecord(getContext(), RetTy, true)) 896 return ABIArgInfo::getIgnore(); 897 // Lower single-element structs to just return a regular value. TODO: We 898 // could do reasonable-size multiple-element structs too, using 899 // ABIArgInfo::getDirect(). 900 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 901 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 902 // For the experimental multivalue ABI, return all other aggregates 903 if (Kind == ABIKind::ExperimentalMV) 904 return ABIArgInfo::getDirect(); 905 } 906 } 907 908 // Otherwise just do the default thing. 909 return defaultInfo.classifyReturnType(RetTy); 910 } 911 912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 913 QualType Ty) const { 914 bool IsIndirect = isAggregateTypeForABI(Ty) && 915 !isEmptyRecord(getContext(), Ty, true) && 916 !isSingleElementStruct(Ty, getContext()); 917 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 918 getContext().getTypeInfoInChars(Ty), 919 CharUnits::fromQuantity(4), 920 /*AllowHigherAlign=*/true); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // le32/PNaCl bitcode ABI Implementation 925 // 926 // This is a simplified version of the x86_32 ABI. Arguments and return values 927 // are always passed on the stack. 928 //===----------------------------------------------------------------------===// 929 930 class PNaClABIInfo : public ABIInfo { 931 public: 932 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 933 934 ABIArgInfo classifyReturnType(QualType RetTy) const; 935 ABIArgInfo classifyArgumentType(QualType RetTy) const; 936 937 void computeInfo(CGFunctionInfo &FI) const override; 938 Address EmitVAArg(CodeGenFunction &CGF, 939 Address VAListAddr, QualType Ty) const override; 940 }; 941 942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 943 public: 944 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 945 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 946 }; 947 948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 949 if (!getCXXABI().classifyReturnType(FI)) 950 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 951 952 for (auto &I : FI.arguments()) 953 I.info = classifyArgumentType(I.type); 954 } 955 956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 957 QualType Ty) const { 958 // The PNaCL ABI is a bit odd, in that varargs don't use normal 959 // function classification. Structs get passed directly for varargs 960 // functions, through a rewriting transform in 961 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 962 // this target to actually support a va_arg instructions with an 963 // aggregate type, unlike other targets. 964 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 965 } 966 967 /// Classify argument of given type \p Ty. 968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 969 if (isAggregateTypeForABI(Ty)) { 970 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 971 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 972 return getNaturalAlignIndirect(Ty); 973 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 974 // Treat an enum type as its underlying type. 975 Ty = EnumTy->getDecl()->getIntegerType(); 976 } else if (Ty->isFloatingType()) { 977 // Floating-point types don't go inreg. 978 return ABIArgInfo::getDirect(); 979 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 980 // Treat extended integers as integers if <=64, otherwise pass indirectly. 981 if (EIT->getNumBits() > 64) 982 return getNaturalAlignIndirect(Ty); 983 return ABIArgInfo::getDirect(); 984 } 985 986 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 987 : ABIArgInfo::getDirect()); 988 } 989 990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 991 if (RetTy->isVoidType()) 992 return ABIArgInfo::getIgnore(); 993 994 // In the PNaCl ABI we always return records/structures on the stack. 995 if (isAggregateTypeForABI(RetTy)) 996 return getNaturalAlignIndirect(RetTy); 997 998 // Treat extended integers as integers if <=64, otherwise pass indirectly. 999 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1000 if (EIT->getNumBits() > 64) 1001 return getNaturalAlignIndirect(RetTy); 1002 return ABIArgInfo::getDirect(); 1003 } 1004 1005 // Treat an enum type as its underlying type. 1006 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1007 RetTy = EnumTy->getDecl()->getIntegerType(); 1008 1009 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1010 : ABIArgInfo::getDirect()); 1011 } 1012 1013 /// IsX86_MMXType - Return true if this is an MMX type. 1014 bool IsX86_MMXType(llvm::Type *IRType) { 1015 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1016 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1017 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1018 IRType->getScalarSizeInBits() != 64; 1019 } 1020 1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1022 StringRef Constraint, 1023 llvm::Type* Ty) { 1024 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1025 .Cases("y", "&y", "^Ym", true) 1026 .Default(false); 1027 if (IsMMXCons && Ty->isVectorTy()) { 1028 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1029 64) { 1030 // Invalid MMX constraint 1031 return nullptr; 1032 } 1033 1034 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1035 } 1036 1037 // No operation needed 1038 return Ty; 1039 } 1040 1041 /// Returns true if this type can be passed in SSE registers with the 1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1044 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1045 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1046 if (BT->getKind() == BuiltinType::LongDouble) { 1047 if (&Context.getTargetInfo().getLongDoubleFormat() == 1048 &llvm::APFloat::x87DoubleExtended()) 1049 return false; 1050 } 1051 return true; 1052 } 1053 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1054 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1055 // registers specially. 1056 unsigned VecSize = Context.getTypeSize(VT); 1057 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1058 return true; 1059 } 1060 return false; 1061 } 1062 1063 /// Returns true if this aggregate is small enough to be passed in SSE registers 1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1066 return NumMembers <= 4; 1067 } 1068 1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1071 auto AI = ABIArgInfo::getDirect(T); 1072 AI.setInReg(true); 1073 AI.setCanBeFlattened(false); 1074 return AI; 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // X86-32 ABI Implementation 1079 //===----------------------------------------------------------------------===// 1080 1081 /// Similar to llvm::CCState, but for Clang. 1082 struct CCState { 1083 CCState(CGFunctionInfo &FI) 1084 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1085 1086 llvm::SmallBitVector IsPreassigned; 1087 unsigned CC = CallingConv::CC_C; 1088 unsigned FreeRegs = 0; 1089 unsigned FreeSSERegs = 0; 1090 }; 1091 1092 enum { 1093 // Vectorcall only allows the first 6 parameters to be passed in registers. 1094 VectorcallMaxParamNumAsReg = 6 1095 }; 1096 1097 /// X86_32ABIInfo - The X86-32 ABI information. 1098 class X86_32ABIInfo : public SwiftABIInfo { 1099 enum Class { 1100 Integer, 1101 Float 1102 }; 1103 1104 static const unsigned MinABIStackAlignInBytes = 4; 1105 1106 bool IsDarwinVectorABI; 1107 bool IsRetSmallStructInRegABI; 1108 bool IsWin32StructABI; 1109 bool IsSoftFloatABI; 1110 bool IsMCUABI; 1111 unsigned DefaultNumRegisterParameters; 1112 1113 static bool isRegisterSize(unsigned Size) { 1114 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1115 } 1116 1117 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1118 // FIXME: Assumes vectorcall is in use. 1119 return isX86VectorTypeForVectorCall(getContext(), Ty); 1120 } 1121 1122 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1123 uint64_t NumMembers) const override { 1124 // FIXME: Assumes vectorcall is in use. 1125 return isX86VectorCallAggregateSmallEnough(NumMembers); 1126 } 1127 1128 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1129 1130 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1131 /// such that the argument will be passed in memory. 1132 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1133 1134 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1135 1136 /// Return the alignment to use for the given type on the stack. 1137 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1138 1139 Class classify(QualType Ty) const; 1140 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1141 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1142 1143 /// Updates the number of available free registers, returns 1144 /// true if any registers were allocated. 1145 bool updateFreeRegs(QualType Ty, CCState &State) const; 1146 1147 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1148 bool &NeedsPadding) const; 1149 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1150 1151 bool canExpandIndirectArgument(QualType Ty) const; 1152 1153 /// Rewrite the function info so that all memory arguments use 1154 /// inalloca. 1155 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1156 1157 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1158 CharUnits &StackOffset, ABIArgInfo &Info, 1159 QualType Type) const; 1160 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1161 1162 public: 1163 1164 void computeInfo(CGFunctionInfo &FI) const override; 1165 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1166 QualType Ty) const override; 1167 1168 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1169 bool RetSmallStructInRegABI, bool Win32StructABI, 1170 unsigned NumRegisterParameters, bool SoftFloatABI) 1171 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1172 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1173 IsWin32StructABI(Win32StructABI), 1174 IsSoftFloatABI(SoftFloatABI), 1175 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1176 DefaultNumRegisterParameters(NumRegisterParameters) {} 1177 1178 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1179 bool asReturnValue) const override { 1180 // LLVM's x86-32 lowering currently only assigns up to three 1181 // integer registers and three fp registers. Oddly, it'll use up to 1182 // four vector registers for vectors, but those can overlap with the 1183 // scalar registers. 1184 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1185 } 1186 1187 bool isSwiftErrorInRegister() const override { 1188 // x86-32 lowering does not support passing swifterror in a register. 1189 return false; 1190 } 1191 }; 1192 1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1194 public: 1195 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1196 bool RetSmallStructInRegABI, bool Win32StructABI, 1197 unsigned NumRegisterParameters, bool SoftFloatABI) 1198 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1199 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1200 NumRegisterParameters, SoftFloatABI)) {} 1201 1202 static bool isStructReturnInRegABI( 1203 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1204 1205 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1206 CodeGen::CodeGenModule &CGM) const override; 1207 1208 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1209 // Darwin uses different dwarf register numbers for EH. 1210 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1211 return 4; 1212 } 1213 1214 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1215 llvm::Value *Address) const override; 1216 1217 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1218 StringRef Constraint, 1219 llvm::Type* Ty) const override { 1220 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1221 } 1222 1223 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1224 std::string &Constraints, 1225 std::vector<llvm::Type *> &ResultRegTypes, 1226 std::vector<llvm::Type *> &ResultTruncRegTypes, 1227 std::vector<LValue> &ResultRegDests, 1228 std::string &AsmString, 1229 unsigned NumOutputs) const override; 1230 1231 llvm::Constant * 1232 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1233 unsigned Sig = (0xeb << 0) | // jmp rel8 1234 (0x06 << 8) | // .+0x08 1235 ('v' << 16) | 1236 ('2' << 24); 1237 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1238 } 1239 1240 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1241 return "movl\t%ebp, %ebp" 1242 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1243 } 1244 }; 1245 1246 } 1247 1248 /// Rewrite input constraint references after adding some output constraints. 1249 /// In the case where there is one output and one input and we add one output, 1250 /// we need to replace all operand references greater than or equal to 1: 1251 /// mov $0, $1 1252 /// mov eax, $1 1253 /// The result will be: 1254 /// mov $0, $2 1255 /// mov eax, $2 1256 static void rewriteInputConstraintReferences(unsigned FirstIn, 1257 unsigned NumNewOuts, 1258 std::string &AsmString) { 1259 std::string Buf; 1260 llvm::raw_string_ostream OS(Buf); 1261 size_t Pos = 0; 1262 while (Pos < AsmString.size()) { 1263 size_t DollarStart = AsmString.find('$', Pos); 1264 if (DollarStart == std::string::npos) 1265 DollarStart = AsmString.size(); 1266 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1267 if (DollarEnd == std::string::npos) 1268 DollarEnd = AsmString.size(); 1269 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1270 Pos = DollarEnd; 1271 size_t NumDollars = DollarEnd - DollarStart; 1272 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1273 // We have an operand reference. 1274 size_t DigitStart = Pos; 1275 if (AsmString[DigitStart] == '{') { 1276 OS << '{'; 1277 ++DigitStart; 1278 } 1279 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1280 if (DigitEnd == std::string::npos) 1281 DigitEnd = AsmString.size(); 1282 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1283 unsigned OperandIndex; 1284 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1285 if (OperandIndex >= FirstIn) 1286 OperandIndex += NumNewOuts; 1287 OS << OperandIndex; 1288 } else { 1289 OS << OperandStr; 1290 } 1291 Pos = DigitEnd; 1292 } 1293 } 1294 AsmString = std::move(OS.str()); 1295 } 1296 1297 /// Add output constraints for EAX:EDX because they are return registers. 1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1299 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1300 std::vector<llvm::Type *> &ResultRegTypes, 1301 std::vector<llvm::Type *> &ResultTruncRegTypes, 1302 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1303 unsigned NumOutputs) const { 1304 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1305 1306 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1307 // larger. 1308 if (!Constraints.empty()) 1309 Constraints += ','; 1310 if (RetWidth <= 32) { 1311 Constraints += "={eax}"; 1312 ResultRegTypes.push_back(CGF.Int32Ty); 1313 } else { 1314 // Use the 'A' constraint for EAX:EDX. 1315 Constraints += "=A"; 1316 ResultRegTypes.push_back(CGF.Int64Ty); 1317 } 1318 1319 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1320 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1321 ResultTruncRegTypes.push_back(CoerceTy); 1322 1323 // Coerce the integer by bitcasting the return slot pointer. 1324 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1325 CoerceTy->getPointerTo())); 1326 ResultRegDests.push_back(ReturnSlot); 1327 1328 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1329 } 1330 1331 /// shouldReturnTypeInRegister - Determine if the given type should be 1332 /// returned in a register (for the Darwin and MCU ABI). 1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1334 ASTContext &Context) const { 1335 uint64_t Size = Context.getTypeSize(Ty); 1336 1337 // For i386, type must be register sized. 1338 // For the MCU ABI, it only needs to be <= 8-byte 1339 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1340 return false; 1341 1342 if (Ty->isVectorType()) { 1343 // 64- and 128- bit vectors inside structures are not returned in 1344 // registers. 1345 if (Size == 64 || Size == 128) 1346 return false; 1347 1348 return true; 1349 } 1350 1351 // If this is a builtin, pointer, enum, complex type, member pointer, or 1352 // member function pointer it is ok. 1353 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1354 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1355 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1356 return true; 1357 1358 // Arrays are treated like records. 1359 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1360 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1361 1362 // Otherwise, it must be a record type. 1363 const RecordType *RT = Ty->getAs<RecordType>(); 1364 if (!RT) return false; 1365 1366 // FIXME: Traverse bases here too. 1367 1368 // Structure types are passed in register if all fields would be 1369 // passed in a register. 1370 for (const auto *FD : RT->getDecl()->fields()) { 1371 // Empty fields are ignored. 1372 if (isEmptyField(Context, FD, true)) 1373 continue; 1374 1375 // Check fields recursively. 1376 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1377 return false; 1378 } 1379 return true; 1380 } 1381 1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1383 // Treat complex types as the element type. 1384 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1385 Ty = CTy->getElementType(); 1386 1387 // Check for a type which we know has a simple scalar argument-passing 1388 // convention without any padding. (We're specifically looking for 32 1389 // and 64-bit integer and integer-equivalents, float, and double.) 1390 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1391 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1392 return false; 1393 1394 uint64_t Size = Context.getTypeSize(Ty); 1395 return Size == 32 || Size == 64; 1396 } 1397 1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1399 uint64_t &Size) { 1400 for (const auto *FD : RD->fields()) { 1401 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1402 // argument is smaller than 32-bits, expanding the struct will create 1403 // alignment padding. 1404 if (!is32Or64BitBasicType(FD->getType(), Context)) 1405 return false; 1406 1407 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1408 // how to expand them yet, and the predicate for telling if a bitfield still 1409 // counts as "basic" is more complicated than what we were doing previously. 1410 if (FD->isBitField()) 1411 return false; 1412 1413 Size += Context.getTypeSize(FD->getType()); 1414 } 1415 return true; 1416 } 1417 1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1419 uint64_t &Size) { 1420 // Don't do this if there are any non-empty bases. 1421 for (const CXXBaseSpecifier &Base : RD->bases()) { 1422 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1423 Size)) 1424 return false; 1425 } 1426 if (!addFieldSizes(Context, RD, Size)) 1427 return false; 1428 return true; 1429 } 1430 1431 /// Test whether an argument type which is to be passed indirectly (on the 1432 /// stack) would have the equivalent layout if it was expanded into separate 1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1434 /// optimizations. 1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1436 // We can only expand structure types. 1437 const RecordType *RT = Ty->getAs<RecordType>(); 1438 if (!RT) 1439 return false; 1440 const RecordDecl *RD = RT->getDecl(); 1441 uint64_t Size = 0; 1442 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1443 if (!IsWin32StructABI) { 1444 // On non-Windows, we have to conservatively match our old bitcode 1445 // prototypes in order to be ABI-compatible at the bitcode level. 1446 if (!CXXRD->isCLike()) 1447 return false; 1448 } else { 1449 // Don't do this for dynamic classes. 1450 if (CXXRD->isDynamicClass()) 1451 return false; 1452 } 1453 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1454 return false; 1455 } else { 1456 if (!addFieldSizes(getContext(), RD, Size)) 1457 return false; 1458 } 1459 1460 // We can do this if there was no alignment padding. 1461 return Size == getContext().getTypeSize(Ty); 1462 } 1463 1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1465 // If the return value is indirect, then the hidden argument is consuming one 1466 // integer register. 1467 if (State.FreeRegs) { 1468 --State.FreeRegs; 1469 if (!IsMCUABI) 1470 return getNaturalAlignIndirectInReg(RetTy); 1471 } 1472 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1473 } 1474 1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1476 CCState &State) const { 1477 if (RetTy->isVoidType()) 1478 return ABIArgInfo::getIgnore(); 1479 1480 const Type *Base = nullptr; 1481 uint64_t NumElts = 0; 1482 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1483 State.CC == llvm::CallingConv::X86_RegCall) && 1484 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1485 // The LLVM struct type for such an aggregate should lower properly. 1486 return ABIArgInfo::getDirect(); 1487 } 1488 1489 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1490 // On Darwin, some vectors are returned in registers. 1491 if (IsDarwinVectorABI) { 1492 uint64_t Size = getContext().getTypeSize(RetTy); 1493 1494 // 128-bit vectors are a special case; they are returned in 1495 // registers and we need to make sure to pick a type the LLVM 1496 // backend will like. 1497 if (Size == 128) 1498 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1499 llvm::Type::getInt64Ty(getVMContext()), 2)); 1500 1501 // Always return in register if it fits in a general purpose 1502 // register, or if it is 64 bits and has a single element. 1503 if ((Size == 8 || Size == 16 || Size == 32) || 1504 (Size == 64 && VT->getNumElements() == 1)) 1505 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1506 Size)); 1507 1508 return getIndirectReturnResult(RetTy, State); 1509 } 1510 1511 return ABIArgInfo::getDirect(); 1512 } 1513 1514 if (isAggregateTypeForABI(RetTy)) { 1515 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1516 // Structures with flexible arrays are always indirect. 1517 if (RT->getDecl()->hasFlexibleArrayMember()) 1518 return getIndirectReturnResult(RetTy, State); 1519 } 1520 1521 // If specified, structs and unions are always indirect. 1522 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1523 return getIndirectReturnResult(RetTy, State); 1524 1525 // Ignore empty structs/unions. 1526 if (isEmptyRecord(getContext(), RetTy, true)) 1527 return ABIArgInfo::getIgnore(); 1528 1529 // Small structures which are register sized are generally returned 1530 // in a register. 1531 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1532 uint64_t Size = getContext().getTypeSize(RetTy); 1533 1534 // As a special-case, if the struct is a "single-element" struct, and 1535 // the field is of type "float" or "double", return it in a 1536 // floating-point register. (MSVC does not apply this special case.) 1537 // We apply a similar transformation for pointer types to improve the 1538 // quality of the generated IR. 1539 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1540 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1541 || SeltTy->hasPointerRepresentation()) 1542 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1543 1544 // FIXME: We should be able to narrow this integer in cases with dead 1545 // padding. 1546 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1547 } 1548 1549 return getIndirectReturnResult(RetTy, State); 1550 } 1551 1552 // Treat an enum type as its underlying type. 1553 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1554 RetTy = EnumTy->getDecl()->getIntegerType(); 1555 1556 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1557 if (EIT->getNumBits() > 64) 1558 return getIndirectReturnResult(RetTy, State); 1559 1560 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1561 : ABIArgInfo::getDirect()); 1562 } 1563 1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1565 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1566 } 1567 1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1569 const RecordType *RT = Ty->getAs<RecordType>(); 1570 if (!RT) 1571 return 0; 1572 const RecordDecl *RD = RT->getDecl(); 1573 1574 // If this is a C++ record, check the bases first. 1575 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1576 for (const auto &I : CXXRD->bases()) 1577 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1578 return false; 1579 1580 for (const auto *i : RD->fields()) { 1581 QualType FT = i->getType(); 1582 1583 if (isSIMDVectorType(Context, FT)) 1584 return true; 1585 1586 if (isRecordWithSIMDVectorType(Context, FT)) 1587 return true; 1588 } 1589 1590 return false; 1591 } 1592 1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1594 unsigned Align) const { 1595 // Otherwise, if the alignment is less than or equal to the minimum ABI 1596 // alignment, just use the default; the backend will handle this. 1597 if (Align <= MinABIStackAlignInBytes) 1598 return 0; // Use default alignment. 1599 1600 // On non-Darwin, the stack type alignment is always 4. 1601 if (!IsDarwinVectorABI) { 1602 // Set explicit alignment, since we may need to realign the top. 1603 return MinABIStackAlignInBytes; 1604 } 1605 1606 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1607 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1608 isRecordWithSIMDVectorType(getContext(), Ty))) 1609 return 16; 1610 1611 return MinABIStackAlignInBytes; 1612 } 1613 1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1615 CCState &State) const { 1616 if (!ByVal) { 1617 if (State.FreeRegs) { 1618 --State.FreeRegs; // Non-byval indirects just use one pointer. 1619 if (!IsMCUABI) 1620 return getNaturalAlignIndirectInReg(Ty); 1621 } 1622 return getNaturalAlignIndirect(Ty, false); 1623 } 1624 1625 // Compute the byval alignment. 1626 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1627 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1628 if (StackAlign == 0) 1629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1630 1631 // If the stack alignment is less than the type alignment, realign the 1632 // argument. 1633 bool Realign = TypeAlign > StackAlign; 1634 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1635 /*ByVal=*/true, Realign); 1636 } 1637 1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1639 const Type *T = isSingleElementStruct(Ty, getContext()); 1640 if (!T) 1641 T = Ty.getTypePtr(); 1642 1643 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1644 BuiltinType::Kind K = BT->getKind(); 1645 if (K == BuiltinType::Float || K == BuiltinType::Double) 1646 return Float; 1647 } 1648 return Integer; 1649 } 1650 1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1652 if (!IsSoftFloatABI) { 1653 Class C = classify(Ty); 1654 if (C == Float) 1655 return false; 1656 } 1657 1658 unsigned Size = getContext().getTypeSize(Ty); 1659 unsigned SizeInRegs = (Size + 31) / 32; 1660 1661 if (SizeInRegs == 0) 1662 return false; 1663 1664 if (!IsMCUABI) { 1665 if (SizeInRegs > State.FreeRegs) { 1666 State.FreeRegs = 0; 1667 return false; 1668 } 1669 } else { 1670 // The MCU psABI allows passing parameters in-reg even if there are 1671 // earlier parameters that are passed on the stack. Also, 1672 // it does not allow passing >8-byte structs in-register, 1673 // even if there are 3 free registers available. 1674 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1675 return false; 1676 } 1677 1678 State.FreeRegs -= SizeInRegs; 1679 return true; 1680 } 1681 1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1683 bool &InReg, 1684 bool &NeedsPadding) const { 1685 // On Windows, aggregates other than HFAs are never passed in registers, and 1686 // they do not consume register slots. Homogenous floating-point aggregates 1687 // (HFAs) have already been dealt with at this point. 1688 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1689 return false; 1690 1691 NeedsPadding = false; 1692 InReg = !IsMCUABI; 1693 1694 if (!updateFreeRegs(Ty, State)) 1695 return false; 1696 1697 if (IsMCUABI) 1698 return true; 1699 1700 if (State.CC == llvm::CallingConv::X86_FastCall || 1701 State.CC == llvm::CallingConv::X86_VectorCall || 1702 State.CC == llvm::CallingConv::X86_RegCall) { 1703 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1704 NeedsPadding = true; 1705 1706 return false; 1707 } 1708 1709 return true; 1710 } 1711 1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1713 if (!updateFreeRegs(Ty, State)) 1714 return false; 1715 1716 if (IsMCUABI) 1717 return false; 1718 1719 if (State.CC == llvm::CallingConv::X86_FastCall || 1720 State.CC == llvm::CallingConv::X86_VectorCall || 1721 State.CC == llvm::CallingConv::X86_RegCall) { 1722 if (getContext().getTypeSize(Ty) > 32) 1723 return false; 1724 1725 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1726 Ty->isReferenceType()); 1727 } 1728 1729 return true; 1730 } 1731 1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1733 // Vectorcall x86 works subtly different than in x64, so the format is 1734 // a bit different than the x64 version. First, all vector types (not HVAs) 1735 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1736 // This differs from the x64 implementation, where the first 6 by INDEX get 1737 // registers. 1738 // In the second pass over the arguments, HVAs are passed in the remaining 1739 // vector registers if possible, or indirectly by address. The address will be 1740 // passed in ECX/EDX if available. Any other arguments are passed according to 1741 // the usual fastcall rules. 1742 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1743 for (int I = 0, E = Args.size(); I < E; ++I) { 1744 const Type *Base = nullptr; 1745 uint64_t NumElts = 0; 1746 const QualType &Ty = Args[I].type; 1747 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1748 isHomogeneousAggregate(Ty, Base, NumElts)) { 1749 if (State.FreeSSERegs >= NumElts) { 1750 State.FreeSSERegs -= NumElts; 1751 Args[I].info = ABIArgInfo::getDirectInReg(); 1752 State.IsPreassigned.set(I); 1753 } 1754 } 1755 } 1756 } 1757 1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1759 CCState &State) const { 1760 // FIXME: Set alignment on indirect arguments. 1761 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1762 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1763 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1764 1765 Ty = useFirstFieldIfTransparentUnion(Ty); 1766 TypeInfo TI = getContext().getTypeInfo(Ty); 1767 1768 // Check with the C++ ABI first. 1769 const RecordType *RT = Ty->getAs<RecordType>(); 1770 if (RT) { 1771 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1772 if (RAA == CGCXXABI::RAA_Indirect) { 1773 return getIndirectResult(Ty, false, State); 1774 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1775 // The field index doesn't matter, we'll fix it up later. 1776 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1777 } 1778 } 1779 1780 // Regcall uses the concept of a homogenous vector aggregate, similar 1781 // to other targets. 1782 const Type *Base = nullptr; 1783 uint64_t NumElts = 0; 1784 if ((IsRegCall || IsVectorCall) && 1785 isHomogeneousAggregate(Ty, Base, NumElts)) { 1786 if (State.FreeSSERegs >= NumElts) { 1787 State.FreeSSERegs -= NumElts; 1788 1789 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1790 // does. 1791 if (IsVectorCall) 1792 return getDirectX86Hva(); 1793 1794 if (Ty->isBuiltinType() || Ty->isVectorType()) 1795 return ABIArgInfo::getDirect(); 1796 return ABIArgInfo::getExpand(); 1797 } 1798 return getIndirectResult(Ty, /*ByVal=*/false, State); 1799 } 1800 1801 if (isAggregateTypeForABI(Ty)) { 1802 // Structures with flexible arrays are always indirect. 1803 // FIXME: This should not be byval! 1804 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1805 return getIndirectResult(Ty, true, State); 1806 1807 // Ignore empty structs/unions on non-Windows. 1808 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1809 return ABIArgInfo::getIgnore(); 1810 1811 llvm::LLVMContext &LLVMContext = getVMContext(); 1812 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1813 bool NeedsPadding = false; 1814 bool InReg; 1815 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1816 unsigned SizeInRegs = (TI.Width + 31) / 32; 1817 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1818 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1819 if (InReg) 1820 return ABIArgInfo::getDirectInReg(Result); 1821 else 1822 return ABIArgInfo::getDirect(Result); 1823 } 1824 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1825 1826 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1827 // added in MSVC 2015. 1828 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1829 return getIndirectResult(Ty, /*ByVal=*/false, State); 1830 1831 // Expand small (<= 128-bit) record types when we know that the stack layout 1832 // of those arguments will match the struct. This is important because the 1833 // LLVM backend isn't smart enough to remove byval, which inhibits many 1834 // optimizations. 1835 // Don't do this for the MCU if there are still free integer registers 1836 // (see X86_64 ABI for full explanation). 1837 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1838 canExpandIndirectArgument(Ty)) 1839 return ABIArgInfo::getExpandWithPadding( 1840 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1841 1842 return getIndirectResult(Ty, true, State); 1843 } 1844 1845 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1846 // On Windows, vectors are passed directly if registers are available, or 1847 // indirectly if not. This avoids the need to align argument memory. Pass 1848 // user-defined vector types larger than 512 bits indirectly for simplicity. 1849 if (IsWin32StructABI) { 1850 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1851 --State.FreeSSERegs; 1852 return ABIArgInfo::getDirectInReg(); 1853 } 1854 return getIndirectResult(Ty, /*ByVal=*/false, State); 1855 } 1856 1857 // On Darwin, some vectors are passed in memory, we handle this by passing 1858 // it as an i8/i16/i32/i64. 1859 if (IsDarwinVectorABI) { 1860 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1861 (TI.Width == 64 && VT->getNumElements() == 1)) 1862 return ABIArgInfo::getDirect( 1863 llvm::IntegerType::get(getVMContext(), TI.Width)); 1864 } 1865 1866 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1867 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1868 1869 return ABIArgInfo::getDirect(); 1870 } 1871 1872 1873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1874 Ty = EnumTy->getDecl()->getIntegerType(); 1875 1876 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1877 1878 if (isPromotableIntegerTypeForABI(Ty)) { 1879 if (InReg) 1880 return ABIArgInfo::getExtendInReg(Ty); 1881 return ABIArgInfo::getExtend(Ty); 1882 } 1883 1884 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1885 if (EIT->getNumBits() <= 64) { 1886 if (InReg) 1887 return ABIArgInfo::getDirectInReg(); 1888 return ABIArgInfo::getDirect(); 1889 } 1890 return getIndirectResult(Ty, /*ByVal=*/false, State); 1891 } 1892 1893 if (InReg) 1894 return ABIArgInfo::getDirectInReg(); 1895 return ABIArgInfo::getDirect(); 1896 } 1897 1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1899 CCState State(FI); 1900 if (IsMCUABI) 1901 State.FreeRegs = 3; 1902 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1903 State.FreeRegs = 2; 1904 State.FreeSSERegs = 3; 1905 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1906 State.FreeRegs = 2; 1907 State.FreeSSERegs = 6; 1908 } else if (FI.getHasRegParm()) 1909 State.FreeRegs = FI.getRegParm(); 1910 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1911 State.FreeRegs = 5; 1912 State.FreeSSERegs = 8; 1913 } else if (IsWin32StructABI) { 1914 // Since MSVC 2015, the first three SSE vectors have been passed in 1915 // registers. The rest are passed indirectly. 1916 State.FreeRegs = DefaultNumRegisterParameters; 1917 State.FreeSSERegs = 3; 1918 } else 1919 State.FreeRegs = DefaultNumRegisterParameters; 1920 1921 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1922 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1923 } else if (FI.getReturnInfo().isIndirect()) { 1924 // The C++ ABI is not aware of register usage, so we have to check if the 1925 // return value was sret and put it in a register ourselves if appropriate. 1926 if (State.FreeRegs) { 1927 --State.FreeRegs; // The sret parameter consumes a register. 1928 if (!IsMCUABI) 1929 FI.getReturnInfo().setInReg(true); 1930 } 1931 } 1932 1933 // The chain argument effectively gives us another free register. 1934 if (FI.isChainCall()) 1935 ++State.FreeRegs; 1936 1937 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1938 // arguments to XMM registers as available. 1939 if (State.CC == llvm::CallingConv::X86_VectorCall) 1940 runVectorCallFirstPass(FI, State); 1941 1942 bool UsedInAlloca = false; 1943 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1944 for (int I = 0, E = Args.size(); I < E; ++I) { 1945 // Skip arguments that have already been assigned. 1946 if (State.IsPreassigned.test(I)) 1947 continue; 1948 1949 Args[I].info = classifyArgumentType(Args[I].type, State); 1950 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1951 } 1952 1953 // If we needed to use inalloca for any argument, do a second pass and rewrite 1954 // all the memory arguments to use inalloca. 1955 if (UsedInAlloca) 1956 rewriteWithInAlloca(FI); 1957 } 1958 1959 void 1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1961 CharUnits &StackOffset, ABIArgInfo &Info, 1962 QualType Type) const { 1963 // Arguments are always 4-byte-aligned. 1964 CharUnits WordSize = CharUnits::fromQuantity(4); 1965 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1966 1967 // sret pointers and indirect things will require an extra pointer 1968 // indirection, unless they are byval. Most things are byval, and will not 1969 // require this indirection. 1970 bool IsIndirect = false; 1971 if (Info.isIndirect() && !Info.getIndirectByVal()) 1972 IsIndirect = true; 1973 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1974 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1975 if (IsIndirect) 1976 LLTy = LLTy->getPointerTo(0); 1977 FrameFields.push_back(LLTy); 1978 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1979 1980 // Insert padding bytes to respect alignment. 1981 CharUnits FieldEnd = StackOffset; 1982 StackOffset = FieldEnd.alignTo(WordSize); 1983 if (StackOffset != FieldEnd) { 1984 CharUnits NumBytes = StackOffset - FieldEnd; 1985 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1986 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1987 FrameFields.push_back(Ty); 1988 } 1989 } 1990 1991 static bool isArgInAlloca(const ABIArgInfo &Info) { 1992 // Leave ignored and inreg arguments alone. 1993 switch (Info.getKind()) { 1994 case ABIArgInfo::InAlloca: 1995 return true; 1996 case ABIArgInfo::Ignore: 1997 case ABIArgInfo::IndirectAliased: 1998 return false; 1999 case ABIArgInfo::Indirect: 2000 case ABIArgInfo::Direct: 2001 case ABIArgInfo::Extend: 2002 return !Info.getInReg(); 2003 case ABIArgInfo::Expand: 2004 case ABIArgInfo::CoerceAndExpand: 2005 // These are aggregate types which are never passed in registers when 2006 // inalloca is involved. 2007 return true; 2008 } 2009 llvm_unreachable("invalid enum"); 2010 } 2011 2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2013 assert(IsWin32StructABI && "inalloca only supported on win32"); 2014 2015 // Build a packed struct type for all of the arguments in memory. 2016 SmallVector<llvm::Type *, 6> FrameFields; 2017 2018 // The stack alignment is always 4. 2019 CharUnits StackAlign = CharUnits::fromQuantity(4); 2020 2021 CharUnits StackOffset; 2022 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2023 2024 // Put 'this' into the struct before 'sret', if necessary. 2025 bool IsThisCall = 2026 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2027 ABIArgInfo &Ret = FI.getReturnInfo(); 2028 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2029 isArgInAlloca(I->info)) { 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 ++I; 2032 } 2033 2034 // Put the sret parameter into the inalloca struct if it's in memory. 2035 if (Ret.isIndirect() && !Ret.getInReg()) { 2036 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2037 // On Windows, the hidden sret parameter is always returned in eax. 2038 Ret.setInAllocaSRet(IsWin32StructABI); 2039 } 2040 2041 // Skip the 'this' parameter in ecx. 2042 if (IsThisCall) 2043 ++I; 2044 2045 // Put arguments passed in memory into the struct. 2046 for (; I != E; ++I) { 2047 if (isArgInAlloca(I->info)) 2048 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2049 } 2050 2051 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2052 /*isPacked=*/true), 2053 StackAlign); 2054 } 2055 2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2057 Address VAListAddr, QualType Ty) const { 2058 2059 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2060 2061 // x86-32 changes the alignment of certain arguments on the stack. 2062 // 2063 // Just messing with TypeInfo like this works because we never pass 2064 // anything indirectly. 2065 TypeInfo.second = CharUnits::fromQuantity( 2066 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 2067 2068 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2069 TypeInfo, CharUnits::fromQuantity(4), 2070 /*AllowHigherAlign*/ true); 2071 } 2072 2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2074 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2075 assert(Triple.getArch() == llvm::Triple::x86); 2076 2077 switch (Opts.getStructReturnConvention()) { 2078 case CodeGenOptions::SRCK_Default: 2079 break; 2080 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2081 return false; 2082 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2083 return true; 2084 } 2085 2086 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2087 return true; 2088 2089 switch (Triple.getOS()) { 2090 case llvm::Triple::DragonFly: 2091 case llvm::Triple::FreeBSD: 2092 case llvm::Triple::OpenBSD: 2093 case llvm::Triple::Win32: 2094 return true; 2095 default: 2096 return false; 2097 } 2098 } 2099 2100 void X86_32TargetCodeGenInfo::setTargetAttributes( 2101 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2102 if (GV->isDeclaration()) 2103 return; 2104 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2105 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2106 llvm::Function *Fn = cast<llvm::Function>(GV); 2107 Fn->addFnAttr("stackrealign"); 2108 } 2109 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2110 llvm::Function *Fn = cast<llvm::Function>(GV); 2111 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2112 } 2113 } 2114 } 2115 2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2117 CodeGen::CodeGenFunction &CGF, 2118 llvm::Value *Address) const { 2119 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2120 2121 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2122 2123 // 0-7 are the eight integer registers; the order is different 2124 // on Darwin (for EH), but the range is the same. 2125 // 8 is %eip. 2126 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2127 2128 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2129 // 12-16 are st(0..4). Not sure why we stop at 4. 2130 // These have size 16, which is sizeof(long double) on 2131 // platforms with 8-byte alignment for that type. 2132 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2133 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2134 2135 } else { 2136 // 9 is %eflags, which doesn't get a size on Darwin for some 2137 // reason. 2138 Builder.CreateAlignedStore( 2139 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2140 CharUnits::One()); 2141 2142 // 11-16 are st(0..5). Not sure why we stop at 5. 2143 // These have size 12, which is sizeof(long double) on 2144 // platforms with 4-byte alignment for that type. 2145 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2146 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2147 } 2148 2149 return false; 2150 } 2151 2152 //===----------------------------------------------------------------------===// 2153 // X86-64 ABI Implementation 2154 //===----------------------------------------------------------------------===// 2155 2156 2157 namespace { 2158 /// The AVX ABI level for X86 targets. 2159 enum class X86AVXABILevel { 2160 None, 2161 AVX, 2162 AVX512 2163 }; 2164 2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2167 switch (AVXLevel) { 2168 case X86AVXABILevel::AVX512: 2169 return 512; 2170 case X86AVXABILevel::AVX: 2171 return 256; 2172 case X86AVXABILevel::None: 2173 return 128; 2174 } 2175 llvm_unreachable("Unknown AVXLevel"); 2176 } 2177 2178 /// X86_64ABIInfo - The X86_64 ABI information. 2179 class X86_64ABIInfo : public SwiftABIInfo { 2180 enum Class { 2181 Integer = 0, 2182 SSE, 2183 SSEUp, 2184 X87, 2185 X87Up, 2186 ComplexX87, 2187 NoClass, 2188 Memory 2189 }; 2190 2191 /// merge - Implement the X86_64 ABI merging algorithm. 2192 /// 2193 /// Merge an accumulating classification \arg Accum with a field 2194 /// classification \arg Field. 2195 /// 2196 /// \param Accum - The accumulating classification. This should 2197 /// always be either NoClass or the result of a previous merge 2198 /// call. In addition, this should never be Memory (the caller 2199 /// should just return Memory for the aggregate). 2200 static Class merge(Class Accum, Class Field); 2201 2202 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2203 /// 2204 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2205 /// final MEMORY or SSE classes when necessary. 2206 /// 2207 /// \param AggregateSize - The size of the current aggregate in 2208 /// the classification process. 2209 /// 2210 /// \param Lo - The classification for the parts of the type 2211 /// residing in the low word of the containing object. 2212 /// 2213 /// \param Hi - The classification for the parts of the type 2214 /// residing in the higher words of the containing object. 2215 /// 2216 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2217 2218 /// classify - Determine the x86_64 register classes in which the 2219 /// given type T should be passed. 2220 /// 2221 /// \param Lo - The classification for the parts of the type 2222 /// residing in the low word of the containing object. 2223 /// 2224 /// \param Hi - The classification for the parts of the type 2225 /// residing in the high word of the containing object. 2226 /// 2227 /// \param OffsetBase - The bit offset of this type in the 2228 /// containing object. Some parameters are classified different 2229 /// depending on whether they straddle an eightbyte boundary. 2230 /// 2231 /// \param isNamedArg - Whether the argument in question is a "named" 2232 /// argument, as used in AMD64-ABI 3.5.7. 2233 /// 2234 /// If a word is unused its result will be NoClass; if a type should 2235 /// be passed in Memory then at least the classification of \arg Lo 2236 /// will be Memory. 2237 /// 2238 /// The \arg Lo class will be NoClass iff the argument is ignored. 2239 /// 2240 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2241 /// also be ComplexX87. 2242 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2243 bool isNamedArg) const; 2244 2245 llvm::Type *GetByteVectorType(QualType Ty) const; 2246 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2247 unsigned IROffset, QualType SourceTy, 2248 unsigned SourceOffset) const; 2249 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2250 unsigned IROffset, QualType SourceTy, 2251 unsigned SourceOffset) const; 2252 2253 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2254 /// such that the argument will be returned in memory. 2255 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2256 2257 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2258 /// such that the argument will be passed in memory. 2259 /// 2260 /// \param freeIntRegs - The number of free integer registers remaining 2261 /// available. 2262 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2263 2264 ABIArgInfo classifyReturnType(QualType RetTy) const; 2265 2266 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2267 unsigned &neededInt, unsigned &neededSSE, 2268 bool isNamedArg) const; 2269 2270 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2271 unsigned &NeededSSE) const; 2272 2273 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2274 unsigned &NeededSSE) const; 2275 2276 bool IsIllegalVectorType(QualType Ty) const; 2277 2278 /// The 0.98 ABI revision clarified a lot of ambiguities, 2279 /// unfortunately in ways that were not always consistent with 2280 /// certain previous compilers. In particular, platforms which 2281 /// required strict binary compatibility with older versions of GCC 2282 /// may need to exempt themselves. 2283 bool honorsRevision0_98() const { 2284 return !getTarget().getTriple().isOSDarwin(); 2285 } 2286 2287 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2288 /// classify it as INTEGER (for compatibility with older clang compilers). 2289 bool classifyIntegerMMXAsSSE() const { 2290 // Clang <= 3.8 did not do this. 2291 if (getContext().getLangOpts().getClangABICompat() <= 2292 LangOptions::ClangABI::Ver3_8) 2293 return false; 2294 2295 const llvm::Triple &Triple = getTarget().getTriple(); 2296 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2297 return false; 2298 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2299 return false; 2300 return true; 2301 } 2302 2303 // GCC classifies vectors of __int128 as memory. 2304 bool passInt128VectorsInMem() const { 2305 // Clang <= 9.0 did not do this. 2306 if (getContext().getLangOpts().getClangABICompat() <= 2307 LangOptions::ClangABI::Ver9) 2308 return false; 2309 2310 const llvm::Triple &T = getTarget().getTriple(); 2311 return T.isOSLinux() || T.isOSNetBSD(); 2312 } 2313 2314 X86AVXABILevel AVXLevel; 2315 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2316 // 64-bit hardware. 2317 bool Has64BitPointers; 2318 2319 public: 2320 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2321 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2322 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2323 } 2324 2325 bool isPassedUsingAVXType(QualType type) const { 2326 unsigned neededInt, neededSSE; 2327 // The freeIntRegs argument doesn't matter here. 2328 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2329 /*isNamedArg*/true); 2330 if (info.isDirect()) { 2331 llvm::Type *ty = info.getCoerceToType(); 2332 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2333 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2334 } 2335 return false; 2336 } 2337 2338 void computeInfo(CGFunctionInfo &FI) const override; 2339 2340 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2341 QualType Ty) const override; 2342 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2343 QualType Ty) const override; 2344 2345 bool has64BitPointers() const { 2346 return Has64BitPointers; 2347 } 2348 2349 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2350 bool asReturnValue) const override { 2351 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2352 } 2353 bool isSwiftErrorInRegister() const override { 2354 return true; 2355 } 2356 }; 2357 2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2359 class WinX86_64ABIInfo : public SwiftABIInfo { 2360 public: 2361 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2362 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2363 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2364 2365 void computeInfo(CGFunctionInfo &FI) const override; 2366 2367 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2368 QualType Ty) const override; 2369 2370 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2371 // FIXME: Assumes vectorcall is in use. 2372 return isX86VectorTypeForVectorCall(getContext(), Ty); 2373 } 2374 2375 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2376 uint64_t NumMembers) const override { 2377 // FIXME: Assumes vectorcall is in use. 2378 return isX86VectorCallAggregateSmallEnough(NumMembers); 2379 } 2380 2381 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2382 bool asReturnValue) const override { 2383 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2384 } 2385 2386 bool isSwiftErrorInRegister() const override { 2387 return true; 2388 } 2389 2390 private: 2391 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2392 bool IsVectorCall, bool IsRegCall) const; 2393 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2394 const ABIArgInfo ¤t) const; 2395 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2396 bool IsVectorCall, bool IsRegCall) const; 2397 2398 X86AVXABILevel AVXLevel; 2399 2400 bool IsMingw64; 2401 }; 2402 2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2404 public: 2405 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2406 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2407 2408 const X86_64ABIInfo &getABIInfo() const { 2409 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2410 } 2411 2412 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2413 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2414 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2415 2416 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2417 return 7; 2418 } 2419 2420 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2421 llvm::Value *Address) const override { 2422 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2423 2424 // 0-15 are the 16 integer registers. 2425 // 16 is %rip. 2426 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2427 return false; 2428 } 2429 2430 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2431 StringRef Constraint, 2432 llvm::Type* Ty) const override { 2433 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2434 } 2435 2436 bool isNoProtoCallVariadic(const CallArgList &args, 2437 const FunctionNoProtoType *fnType) const override { 2438 // The default CC on x86-64 sets %al to the number of SSA 2439 // registers used, and GCC sets this when calling an unprototyped 2440 // function, so we override the default behavior. However, don't do 2441 // that when AVX types are involved: the ABI explicitly states it is 2442 // undefined, and it doesn't work in practice because of how the ABI 2443 // defines varargs anyway. 2444 if (fnType->getCallConv() == CC_C) { 2445 bool HasAVXType = false; 2446 for (CallArgList::const_iterator 2447 it = args.begin(), ie = args.end(); it != ie; ++it) { 2448 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2449 HasAVXType = true; 2450 break; 2451 } 2452 } 2453 2454 if (!HasAVXType) 2455 return true; 2456 } 2457 2458 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2459 } 2460 2461 llvm::Constant * 2462 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2463 unsigned Sig = (0xeb << 0) | // jmp rel8 2464 (0x06 << 8) | // .+0x08 2465 ('v' << 16) | 2466 ('2' << 24); 2467 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2468 } 2469 2470 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2471 CodeGen::CodeGenModule &CGM) const override { 2472 if (GV->isDeclaration()) 2473 return; 2474 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2475 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2476 llvm::Function *Fn = cast<llvm::Function>(GV); 2477 Fn->addFnAttr("stackrealign"); 2478 } 2479 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2480 llvm::Function *Fn = cast<llvm::Function>(GV); 2481 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2482 } 2483 } 2484 } 2485 2486 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2487 const FunctionDecl *Caller, 2488 const FunctionDecl *Callee, 2489 const CallArgList &Args) const override; 2490 }; 2491 2492 static void initFeatureMaps(const ASTContext &Ctx, 2493 llvm::StringMap<bool> &CallerMap, 2494 const FunctionDecl *Caller, 2495 llvm::StringMap<bool> &CalleeMap, 2496 const FunctionDecl *Callee) { 2497 if (CalleeMap.empty() && CallerMap.empty()) { 2498 // The caller is potentially nullptr in the case where the call isn't in a 2499 // function. In this case, the getFunctionFeatureMap ensures we just get 2500 // the TU level setting (since it cannot be modified by 'target'.. 2501 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2502 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2503 } 2504 } 2505 2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2507 SourceLocation CallLoc, 2508 const llvm::StringMap<bool> &CallerMap, 2509 const llvm::StringMap<bool> &CalleeMap, 2510 QualType Ty, StringRef Feature, 2511 bool IsArgument) { 2512 bool CallerHasFeat = CallerMap.lookup(Feature); 2513 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2514 if (!CallerHasFeat && !CalleeHasFeat) 2515 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2516 << IsArgument << Ty << Feature; 2517 2518 // Mixing calling conventions here is very clearly an error. 2519 if (!CallerHasFeat || !CalleeHasFeat) 2520 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2521 << IsArgument << Ty << Feature; 2522 2523 // Else, both caller and callee have the required feature, so there is no need 2524 // to diagnose. 2525 return false; 2526 } 2527 2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2529 SourceLocation CallLoc, 2530 const llvm::StringMap<bool> &CallerMap, 2531 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2532 bool IsArgument) { 2533 uint64_t Size = Ctx.getTypeSize(Ty); 2534 if (Size > 256) 2535 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2536 "avx512f", IsArgument); 2537 2538 if (Size > 128) 2539 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2540 IsArgument); 2541 2542 return false; 2543 } 2544 2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2546 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2547 const FunctionDecl *Callee, const CallArgList &Args) const { 2548 llvm::StringMap<bool> CallerMap; 2549 llvm::StringMap<bool> CalleeMap; 2550 unsigned ArgIndex = 0; 2551 2552 // We need to loop through the actual call arguments rather than the the 2553 // function's parameters, in case this variadic. 2554 for (const CallArg &Arg : Args) { 2555 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2556 // additionally changes how vectors >256 in size are passed. Like GCC, we 2557 // warn when a function is called with an argument where this will change. 2558 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2559 // the caller and callee features are mismatched. 2560 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2561 // change its ABI with attribute-target after this call. 2562 if (Arg.getType()->isVectorType() && 2563 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2564 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2565 QualType Ty = Arg.getType(); 2566 // The CallArg seems to have desugared the type already, so for clearer 2567 // diagnostics, replace it with the type in the FunctionDecl if possible. 2568 if (ArgIndex < Callee->getNumParams()) 2569 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2570 2571 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2572 CalleeMap, Ty, /*IsArgument*/ true)) 2573 return; 2574 } 2575 ++ArgIndex; 2576 } 2577 2578 // Check return always, as we don't have a good way of knowing in codegen 2579 // whether this value is used, tail-called, etc. 2580 if (Callee->getReturnType()->isVectorType() && 2581 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2582 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2583 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2584 CalleeMap, Callee->getReturnType(), 2585 /*IsArgument*/ false); 2586 } 2587 } 2588 2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2590 // If the argument does not end in .lib, automatically add the suffix. 2591 // If the argument contains a space, enclose it in quotes. 2592 // This matches the behavior of MSVC. 2593 bool Quote = (Lib.find(" ") != StringRef::npos); 2594 std::string ArgStr = Quote ? "\"" : ""; 2595 ArgStr += Lib; 2596 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2597 ArgStr += ".lib"; 2598 ArgStr += Quote ? "\"" : ""; 2599 return ArgStr; 2600 } 2601 2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2603 public: 2604 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2605 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2606 unsigned NumRegisterParameters) 2607 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2608 Win32StructABI, NumRegisterParameters, false) {} 2609 2610 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2611 CodeGen::CodeGenModule &CGM) const override; 2612 2613 void getDependentLibraryOption(llvm::StringRef Lib, 2614 llvm::SmallString<24> &Opt) const override { 2615 Opt = "/DEFAULTLIB:"; 2616 Opt += qualifyWindowsLibrary(Lib); 2617 } 2618 2619 void getDetectMismatchOption(llvm::StringRef Name, 2620 llvm::StringRef Value, 2621 llvm::SmallString<32> &Opt) const override { 2622 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2623 } 2624 }; 2625 2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2627 CodeGen::CodeGenModule &CGM) { 2628 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2629 2630 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2631 Fn->addFnAttr("stack-probe-size", 2632 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2633 if (CGM.getCodeGenOpts().NoStackArgProbe) 2634 Fn->addFnAttr("no-stack-arg-probe"); 2635 } 2636 } 2637 2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2639 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2640 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2641 if (GV->isDeclaration()) 2642 return; 2643 addStackProbeTargetAttributes(D, GV, CGM); 2644 } 2645 2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2647 public: 2648 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2649 X86AVXABILevel AVXLevel) 2650 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2651 2652 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2653 CodeGen::CodeGenModule &CGM) const override; 2654 2655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2656 return 7; 2657 } 2658 2659 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2660 llvm::Value *Address) const override { 2661 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2662 2663 // 0-15 are the 16 integer registers. 2664 // 16 is %rip. 2665 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2666 return false; 2667 } 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2683 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2684 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2685 if (GV->isDeclaration()) 2686 return; 2687 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2688 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2689 llvm::Function *Fn = cast<llvm::Function>(GV); 2690 Fn->addFnAttr("stackrealign"); 2691 } 2692 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2693 llvm::Function *Fn = cast<llvm::Function>(GV); 2694 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2695 } 2696 } 2697 2698 addStackProbeTargetAttributes(D, GV, CGM); 2699 } 2700 } 2701 2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2703 Class &Hi) const { 2704 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2705 // 2706 // (a) If one of the classes is Memory, the whole argument is passed in 2707 // memory. 2708 // 2709 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2710 // memory. 2711 // 2712 // (c) If the size of the aggregate exceeds two eightbytes and the first 2713 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2714 // argument is passed in memory. NOTE: This is necessary to keep the 2715 // ABI working for processors that don't support the __m256 type. 2716 // 2717 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2718 // 2719 // Some of these are enforced by the merging logic. Others can arise 2720 // only with unions; for example: 2721 // union { _Complex double; unsigned; } 2722 // 2723 // Note that clauses (b) and (c) were added in 0.98. 2724 // 2725 if (Hi == Memory) 2726 Lo = Memory; 2727 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2728 Lo = Memory; 2729 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2730 Lo = Memory; 2731 if (Hi == SSEUp && Lo != SSE) 2732 Hi = SSE; 2733 } 2734 2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2736 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2737 // classified recursively so that always two fields are 2738 // considered. The resulting class is calculated according to 2739 // the classes of the fields in the eightbyte: 2740 // 2741 // (a) If both classes are equal, this is the resulting class. 2742 // 2743 // (b) If one of the classes is NO_CLASS, the resulting class is 2744 // the other class. 2745 // 2746 // (c) If one of the classes is MEMORY, the result is the MEMORY 2747 // class. 2748 // 2749 // (d) If one of the classes is INTEGER, the result is the 2750 // INTEGER. 2751 // 2752 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2753 // MEMORY is used as class. 2754 // 2755 // (f) Otherwise class SSE is used. 2756 2757 // Accum should never be memory (we should have returned) or 2758 // ComplexX87 (because this cannot be passed in a structure). 2759 assert((Accum != Memory && Accum != ComplexX87) && 2760 "Invalid accumulated classification during merge."); 2761 if (Accum == Field || Field == NoClass) 2762 return Accum; 2763 if (Field == Memory) 2764 return Memory; 2765 if (Accum == NoClass) 2766 return Field; 2767 if (Accum == Integer || Field == Integer) 2768 return Integer; 2769 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2770 Accum == X87 || Accum == X87Up) 2771 return Memory; 2772 return SSE; 2773 } 2774 2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2776 Class &Lo, Class &Hi, bool isNamedArg) const { 2777 // FIXME: This code can be simplified by introducing a simple value class for 2778 // Class pairs with appropriate constructor methods for the various 2779 // situations. 2780 2781 // FIXME: Some of the split computations are wrong; unaligned vectors 2782 // shouldn't be passed in registers for example, so there is no chance they 2783 // can straddle an eightbyte. Verify & simplify. 2784 2785 Lo = Hi = NoClass; 2786 2787 Class &Current = OffsetBase < 64 ? Lo : Hi; 2788 Current = Memory; 2789 2790 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2791 BuiltinType::Kind k = BT->getKind(); 2792 2793 if (k == BuiltinType::Void) { 2794 Current = NoClass; 2795 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2796 Lo = Integer; 2797 Hi = Integer; 2798 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2799 Current = Integer; 2800 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2801 Current = SSE; 2802 } else if (k == BuiltinType::LongDouble) { 2803 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2804 if (LDF == &llvm::APFloat::IEEEquad()) { 2805 Lo = SSE; 2806 Hi = SSEUp; 2807 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2808 Lo = X87; 2809 Hi = X87Up; 2810 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2811 Current = SSE; 2812 } else 2813 llvm_unreachable("unexpected long double representation!"); 2814 } 2815 // FIXME: _Decimal32 and _Decimal64 are SSE. 2816 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2817 return; 2818 } 2819 2820 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2821 // Classify the underlying integer type. 2822 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2823 return; 2824 } 2825 2826 if (Ty->hasPointerRepresentation()) { 2827 Current = Integer; 2828 return; 2829 } 2830 2831 if (Ty->isMemberPointerType()) { 2832 if (Ty->isMemberFunctionPointerType()) { 2833 if (Has64BitPointers) { 2834 // If Has64BitPointers, this is an {i64, i64}, so classify both 2835 // Lo and Hi now. 2836 Lo = Hi = Integer; 2837 } else { 2838 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2839 // straddles an eightbyte boundary, Hi should be classified as well. 2840 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2841 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2842 if (EB_FuncPtr != EB_ThisAdj) { 2843 Lo = Hi = Integer; 2844 } else { 2845 Current = Integer; 2846 } 2847 } 2848 } else { 2849 Current = Integer; 2850 } 2851 return; 2852 } 2853 2854 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2855 uint64_t Size = getContext().getTypeSize(VT); 2856 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2857 // gcc passes the following as integer: 2858 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2859 // 2 bytes - <2 x char>, <1 x short> 2860 // 1 byte - <1 x char> 2861 Current = Integer; 2862 2863 // If this type crosses an eightbyte boundary, it should be 2864 // split. 2865 uint64_t EB_Lo = (OffsetBase) / 64; 2866 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2867 if (EB_Lo != EB_Hi) 2868 Hi = Lo; 2869 } else if (Size == 64) { 2870 QualType ElementType = VT->getElementType(); 2871 2872 // gcc passes <1 x double> in memory. :( 2873 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2874 return; 2875 2876 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2877 // pass them as integer. For platforms where clang is the de facto 2878 // platform compiler, we must continue to use integer. 2879 if (!classifyIntegerMMXAsSSE() && 2880 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2881 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2882 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2883 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2884 Current = Integer; 2885 else 2886 Current = SSE; 2887 2888 // If this type crosses an eightbyte boundary, it should be 2889 // split. 2890 if (OffsetBase && OffsetBase != 64) 2891 Hi = Lo; 2892 } else if (Size == 128 || 2893 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2894 QualType ElementType = VT->getElementType(); 2895 2896 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2897 if (passInt128VectorsInMem() && Size != 128 && 2898 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2899 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2900 return; 2901 2902 // Arguments of 256-bits are split into four eightbyte chunks. The 2903 // least significant one belongs to class SSE and all the others to class 2904 // SSEUP. The original Lo and Hi design considers that types can't be 2905 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2906 // This design isn't correct for 256-bits, but since there're no cases 2907 // where the upper parts would need to be inspected, avoid adding 2908 // complexity and just consider Hi to match the 64-256 part. 2909 // 2910 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2911 // registers if they are "named", i.e. not part of the "..." of a 2912 // variadic function. 2913 // 2914 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2915 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2916 Lo = SSE; 2917 Hi = SSEUp; 2918 } 2919 return; 2920 } 2921 2922 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2923 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2924 2925 uint64_t Size = getContext().getTypeSize(Ty); 2926 if (ET->isIntegralOrEnumerationType()) { 2927 if (Size <= 64) 2928 Current = Integer; 2929 else if (Size <= 128) 2930 Lo = Hi = Integer; 2931 } else if (ET == getContext().FloatTy) { 2932 Current = SSE; 2933 } else if (ET == getContext().DoubleTy) { 2934 Lo = Hi = SSE; 2935 } else if (ET == getContext().LongDoubleTy) { 2936 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2937 if (LDF == &llvm::APFloat::IEEEquad()) 2938 Current = Memory; 2939 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2940 Current = ComplexX87; 2941 else if (LDF == &llvm::APFloat::IEEEdouble()) 2942 Lo = Hi = SSE; 2943 else 2944 llvm_unreachable("unexpected long double representation!"); 2945 } 2946 2947 // If this complex type crosses an eightbyte boundary then it 2948 // should be split. 2949 uint64_t EB_Real = (OffsetBase) / 64; 2950 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2951 if (Hi == NoClass && EB_Real != EB_Imag) 2952 Hi = Lo; 2953 2954 return; 2955 } 2956 2957 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2958 if (EITy->getNumBits() <= 64) 2959 Current = Integer; 2960 else if (EITy->getNumBits() <= 128) 2961 Lo = Hi = Integer; 2962 // Larger values need to get passed in memory. 2963 return; 2964 } 2965 2966 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2967 // Arrays are treated like structures. 2968 2969 uint64_t Size = getContext().getTypeSize(Ty); 2970 2971 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2972 // than eight eightbytes, ..., it has class MEMORY. 2973 if (Size > 512) 2974 return; 2975 2976 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2977 // fields, it has class MEMORY. 2978 // 2979 // Only need to check alignment of array base. 2980 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2981 return; 2982 2983 // Otherwise implement simplified merge. We could be smarter about 2984 // this, but it isn't worth it and would be harder to verify. 2985 Current = NoClass; 2986 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2987 uint64_t ArraySize = AT->getSize().getZExtValue(); 2988 2989 // The only case a 256-bit wide vector could be used is when the array 2990 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2991 // to work for sizes wider than 128, early check and fallback to memory. 2992 // 2993 if (Size > 128 && 2994 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2995 return; 2996 2997 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2998 Class FieldLo, FieldHi; 2999 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3000 Lo = merge(Lo, FieldLo); 3001 Hi = merge(Hi, FieldHi); 3002 if (Lo == Memory || Hi == Memory) 3003 break; 3004 } 3005 3006 postMerge(Size, Lo, Hi); 3007 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3008 return; 3009 } 3010 3011 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3012 uint64_t Size = getContext().getTypeSize(Ty); 3013 3014 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3015 // than eight eightbytes, ..., it has class MEMORY. 3016 if (Size > 512) 3017 return; 3018 3019 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3020 // copy constructor or a non-trivial destructor, it is passed by invisible 3021 // reference. 3022 if (getRecordArgABI(RT, getCXXABI())) 3023 return; 3024 3025 const RecordDecl *RD = RT->getDecl(); 3026 3027 // Assume variable sized types are passed in memory. 3028 if (RD->hasFlexibleArrayMember()) 3029 return; 3030 3031 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3032 3033 // Reset Lo class, this will be recomputed. 3034 Current = NoClass; 3035 3036 // If this is a C++ record, classify the bases first. 3037 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3038 for (const auto &I : CXXRD->bases()) { 3039 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3040 "Unexpected base class!"); 3041 const auto *Base = 3042 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3043 3044 // Classify this field. 3045 // 3046 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3047 // single eightbyte, each is classified separately. Each eightbyte gets 3048 // initialized to class NO_CLASS. 3049 Class FieldLo, FieldHi; 3050 uint64_t Offset = 3051 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3052 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3053 Lo = merge(Lo, FieldLo); 3054 Hi = merge(Hi, FieldHi); 3055 if (Lo == Memory || Hi == Memory) { 3056 postMerge(Size, Lo, Hi); 3057 return; 3058 } 3059 } 3060 } 3061 3062 // Classify the fields one at a time, merging the results. 3063 unsigned idx = 0; 3064 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3065 i != e; ++i, ++idx) { 3066 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3067 bool BitField = i->isBitField(); 3068 3069 // Ignore padding bit-fields. 3070 if (BitField && i->isUnnamedBitfield()) 3071 continue; 3072 3073 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3074 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 3075 // 3076 // The only case a 256-bit wide vector could be used is when the struct 3077 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3078 // to work for sizes wider than 128, early check and fallback to memory. 3079 // 3080 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 3081 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3082 Lo = Memory; 3083 postMerge(Size, Lo, Hi); 3084 return; 3085 } 3086 // Note, skip this test for bit-fields, see below. 3087 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3088 Lo = Memory; 3089 postMerge(Size, Lo, Hi); 3090 return; 3091 } 3092 3093 // Classify this field. 3094 // 3095 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3096 // exceeds a single eightbyte, each is classified 3097 // separately. Each eightbyte gets initialized to class 3098 // NO_CLASS. 3099 Class FieldLo, FieldHi; 3100 3101 // Bit-fields require special handling, they do not force the 3102 // structure to be passed in memory even if unaligned, and 3103 // therefore they can straddle an eightbyte. 3104 if (BitField) { 3105 assert(!i->isUnnamedBitfield()); 3106 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3107 uint64_t Size = i->getBitWidthValue(getContext()); 3108 3109 uint64_t EB_Lo = Offset / 64; 3110 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3111 3112 if (EB_Lo) { 3113 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3114 FieldLo = NoClass; 3115 FieldHi = Integer; 3116 } else { 3117 FieldLo = Integer; 3118 FieldHi = EB_Hi ? Integer : NoClass; 3119 } 3120 } else 3121 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3122 Lo = merge(Lo, FieldLo); 3123 Hi = merge(Hi, FieldHi); 3124 if (Lo == Memory || Hi == Memory) 3125 break; 3126 } 3127 3128 postMerge(Size, Lo, Hi); 3129 } 3130 } 3131 3132 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3133 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3134 // place naturally. 3135 if (!isAggregateTypeForABI(Ty)) { 3136 // Treat an enum type as its underlying type. 3137 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3138 Ty = EnumTy->getDecl()->getIntegerType(); 3139 3140 if (Ty->isExtIntType()) 3141 return getNaturalAlignIndirect(Ty); 3142 3143 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3144 : ABIArgInfo::getDirect()); 3145 } 3146 3147 return getNaturalAlignIndirect(Ty); 3148 } 3149 3150 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3151 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3152 uint64_t Size = getContext().getTypeSize(VecTy); 3153 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3154 if (Size <= 64 || Size > LargestVector) 3155 return true; 3156 QualType EltTy = VecTy->getElementType(); 3157 if (passInt128VectorsInMem() && 3158 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3159 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3160 return true; 3161 } 3162 3163 return false; 3164 } 3165 3166 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3167 unsigned freeIntRegs) const { 3168 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3169 // place naturally. 3170 // 3171 // This assumption is optimistic, as there could be free registers available 3172 // when we need to pass this argument in memory, and LLVM could try to pass 3173 // the argument in the free register. This does not seem to happen currently, 3174 // but this code would be much safer if we could mark the argument with 3175 // 'onstack'. See PR12193. 3176 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3177 !Ty->isExtIntType()) { 3178 // Treat an enum type as its underlying type. 3179 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3180 Ty = EnumTy->getDecl()->getIntegerType(); 3181 3182 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3183 : ABIArgInfo::getDirect()); 3184 } 3185 3186 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3187 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3188 3189 // Compute the byval alignment. We specify the alignment of the byval in all 3190 // cases so that the mid-level optimizer knows the alignment of the byval. 3191 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3192 3193 // Attempt to avoid passing indirect results using byval when possible. This 3194 // is important for good codegen. 3195 // 3196 // We do this by coercing the value into a scalar type which the backend can 3197 // handle naturally (i.e., without using byval). 3198 // 3199 // For simplicity, we currently only do this when we have exhausted all of the 3200 // free integer registers. Doing this when there are free integer registers 3201 // would require more care, as we would have to ensure that the coerced value 3202 // did not claim the unused register. That would require either reording the 3203 // arguments to the function (so that any subsequent inreg values came first), 3204 // or only doing this optimization when there were no following arguments that 3205 // might be inreg. 3206 // 3207 // We currently expect it to be rare (particularly in well written code) for 3208 // arguments to be passed on the stack when there are still free integer 3209 // registers available (this would typically imply large structs being passed 3210 // by value), so this seems like a fair tradeoff for now. 3211 // 3212 // We can revisit this if the backend grows support for 'onstack' parameter 3213 // attributes. See PR12193. 3214 if (freeIntRegs == 0) { 3215 uint64_t Size = getContext().getTypeSize(Ty); 3216 3217 // If this type fits in an eightbyte, coerce it into the matching integral 3218 // type, which will end up on the stack (with alignment 8). 3219 if (Align == 8 && Size <= 64) 3220 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3221 Size)); 3222 } 3223 3224 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3225 } 3226 3227 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3228 /// register. Pick an LLVM IR type that will be passed as a vector register. 3229 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3230 // Wrapper structs/arrays that only contain vectors are passed just like 3231 // vectors; strip them off if present. 3232 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3233 Ty = QualType(InnerTy, 0); 3234 3235 llvm::Type *IRType = CGT.ConvertType(Ty); 3236 if (isa<llvm::VectorType>(IRType)) { 3237 // Don't pass vXi128 vectors in their native type, the backend can't 3238 // legalize them. 3239 if (passInt128VectorsInMem() && 3240 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3241 // Use a vXi64 vector. 3242 uint64_t Size = getContext().getTypeSize(Ty); 3243 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3244 Size / 64); 3245 } 3246 3247 return IRType; 3248 } 3249 3250 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3251 return IRType; 3252 3253 // We couldn't find the preferred IR vector type for 'Ty'. 3254 uint64_t Size = getContext().getTypeSize(Ty); 3255 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3256 3257 3258 // Return a LLVM IR vector type based on the size of 'Ty'. 3259 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3260 Size / 64); 3261 } 3262 3263 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3264 /// is known to either be off the end of the specified type or being in 3265 /// alignment padding. The user type specified is known to be at most 128 bits 3266 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3267 /// classification that put one of the two halves in the INTEGER class. 3268 /// 3269 /// It is conservatively correct to return false. 3270 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3271 unsigned EndBit, ASTContext &Context) { 3272 // If the bytes being queried are off the end of the type, there is no user 3273 // data hiding here. This handles analysis of builtins, vectors and other 3274 // types that don't contain interesting padding. 3275 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3276 if (TySize <= StartBit) 3277 return true; 3278 3279 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3280 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3281 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3282 3283 // Check each element to see if the element overlaps with the queried range. 3284 for (unsigned i = 0; i != NumElts; ++i) { 3285 // If the element is after the span we care about, then we're done.. 3286 unsigned EltOffset = i*EltSize; 3287 if (EltOffset >= EndBit) break; 3288 3289 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3290 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3291 EndBit-EltOffset, Context)) 3292 return false; 3293 } 3294 // If it overlaps no elements, then it is safe to process as padding. 3295 return true; 3296 } 3297 3298 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3299 const RecordDecl *RD = RT->getDecl(); 3300 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3301 3302 // If this is a C++ record, check the bases first. 3303 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3304 for (const auto &I : CXXRD->bases()) { 3305 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3306 "Unexpected base class!"); 3307 const auto *Base = 3308 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3309 3310 // If the base is after the span we care about, ignore it. 3311 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3312 if (BaseOffset >= EndBit) continue; 3313 3314 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3315 if (!BitsContainNoUserData(I.getType(), BaseStart, 3316 EndBit-BaseOffset, Context)) 3317 return false; 3318 } 3319 } 3320 3321 // Verify that no field has data that overlaps the region of interest. Yes 3322 // this could be sped up a lot by being smarter about queried fields, 3323 // however we're only looking at structs up to 16 bytes, so we don't care 3324 // much. 3325 unsigned idx = 0; 3326 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3327 i != e; ++i, ++idx) { 3328 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3329 3330 // If we found a field after the region we care about, then we're done. 3331 if (FieldOffset >= EndBit) break; 3332 3333 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3334 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3335 Context)) 3336 return false; 3337 } 3338 3339 // If nothing in this record overlapped the area of interest, then we're 3340 // clean. 3341 return true; 3342 } 3343 3344 return false; 3345 } 3346 3347 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3348 /// float member at the specified offset. For example, {int,{float}} has a 3349 /// float at offset 4. It is conservatively correct for this routine to return 3350 /// false. 3351 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3352 const llvm::DataLayout &TD) { 3353 // Base case if we find a float. 3354 if (IROffset == 0 && IRType->isFloatTy()) 3355 return true; 3356 3357 // If this is a struct, recurse into the field at the specified offset. 3358 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3359 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3360 unsigned Elt = SL->getElementContainingOffset(IROffset); 3361 IROffset -= SL->getElementOffset(Elt); 3362 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3363 } 3364 3365 // If this is an array, recurse into the field at the specified offset. 3366 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3367 llvm::Type *EltTy = ATy->getElementType(); 3368 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3369 IROffset -= IROffset/EltSize*EltSize; 3370 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3371 } 3372 3373 return false; 3374 } 3375 3376 3377 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3378 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3379 llvm::Type *X86_64ABIInfo:: 3380 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3381 QualType SourceTy, unsigned SourceOffset) const { 3382 // The only three choices we have are either double, <2 x float>, or float. We 3383 // pass as float if the last 4 bytes is just padding. This happens for 3384 // structs that contain 3 floats. 3385 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3386 SourceOffset*8+64, getContext())) 3387 return llvm::Type::getFloatTy(getVMContext()); 3388 3389 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3390 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3391 // case. 3392 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3393 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3394 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3395 2); 3396 3397 return llvm::Type::getDoubleTy(getVMContext()); 3398 } 3399 3400 3401 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3402 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3403 /// about the high or low part of an up-to-16-byte struct. This routine picks 3404 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3405 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3406 /// etc). 3407 /// 3408 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3409 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3410 /// the 8-byte value references. PrefType may be null. 3411 /// 3412 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3413 /// an offset into this that we're processing (which is always either 0 or 8). 3414 /// 3415 llvm::Type *X86_64ABIInfo:: 3416 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3417 QualType SourceTy, unsigned SourceOffset) const { 3418 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3419 // returning an 8-byte unit starting with it. See if we can safely use it. 3420 if (IROffset == 0) { 3421 // Pointers and int64's always fill the 8-byte unit. 3422 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3423 IRType->isIntegerTy(64)) 3424 return IRType; 3425 3426 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3427 // goodness in the source type is just tail padding. This is allowed to 3428 // kick in for struct {double,int} on the int, but not on 3429 // struct{double,int,int} because we wouldn't return the second int. We 3430 // have to do this analysis on the source type because we can't depend on 3431 // unions being lowered a specific way etc. 3432 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3433 IRType->isIntegerTy(32) || 3434 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3435 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3436 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3437 3438 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3439 SourceOffset*8+64, getContext())) 3440 return IRType; 3441 } 3442 } 3443 3444 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3445 // If this is a struct, recurse into the field at the specified offset. 3446 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3447 if (IROffset < SL->getSizeInBytes()) { 3448 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3449 IROffset -= SL->getElementOffset(FieldIdx); 3450 3451 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3452 SourceTy, SourceOffset); 3453 } 3454 } 3455 3456 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3457 llvm::Type *EltTy = ATy->getElementType(); 3458 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3459 unsigned EltOffset = IROffset/EltSize*EltSize; 3460 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3461 SourceOffset); 3462 } 3463 3464 // Okay, we don't have any better idea of what to pass, so we pass this in an 3465 // integer register that isn't too big to fit the rest of the struct. 3466 unsigned TySizeInBytes = 3467 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3468 3469 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3470 3471 // It is always safe to classify this as an integer type up to i64 that 3472 // isn't larger than the structure. 3473 return llvm::IntegerType::get(getVMContext(), 3474 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3475 } 3476 3477 3478 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3479 /// be used as elements of a two register pair to pass or return, return a 3480 /// first class aggregate to represent them. For example, if the low part of 3481 /// a by-value argument should be passed as i32* and the high part as float, 3482 /// return {i32*, float}. 3483 static llvm::Type * 3484 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3485 const llvm::DataLayout &TD) { 3486 // In order to correctly satisfy the ABI, we need to the high part to start 3487 // at offset 8. If the high and low parts we inferred are both 4-byte types 3488 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3489 // the second element at offset 8. Check for this: 3490 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3491 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3492 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3493 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3494 3495 // To handle this, we have to increase the size of the low part so that the 3496 // second element will start at an 8 byte offset. We can't increase the size 3497 // of the second element because it might make us access off the end of the 3498 // struct. 3499 if (HiStart != 8) { 3500 // There are usually two sorts of types the ABI generation code can produce 3501 // for the low part of a pair that aren't 8 bytes in size: float or 3502 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3503 // NaCl). 3504 // Promote these to a larger type. 3505 if (Lo->isFloatTy()) 3506 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3507 else { 3508 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3509 && "Invalid/unknown lo type"); 3510 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3511 } 3512 } 3513 3514 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3515 3516 // Verify that the second element is at an 8-byte offset. 3517 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3518 "Invalid x86-64 argument pair!"); 3519 return Result; 3520 } 3521 3522 ABIArgInfo X86_64ABIInfo:: 3523 classifyReturnType(QualType RetTy) const { 3524 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3525 // classification algorithm. 3526 X86_64ABIInfo::Class Lo, Hi; 3527 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3528 3529 // Check some invariants. 3530 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3531 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3532 3533 llvm::Type *ResType = nullptr; 3534 switch (Lo) { 3535 case NoClass: 3536 if (Hi == NoClass) 3537 return ABIArgInfo::getIgnore(); 3538 // If the low part is just padding, it takes no register, leave ResType 3539 // null. 3540 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3541 "Unknown missing lo part"); 3542 break; 3543 3544 case SSEUp: 3545 case X87Up: 3546 llvm_unreachable("Invalid classification for lo word."); 3547 3548 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3549 // hidden argument. 3550 case Memory: 3551 return getIndirectReturnResult(RetTy); 3552 3553 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3554 // available register of the sequence %rax, %rdx is used. 3555 case Integer: 3556 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3557 3558 // If we have a sign or zero extended integer, make sure to return Extend 3559 // so that the parameter gets the right LLVM IR attributes. 3560 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3561 // Treat an enum type as its underlying type. 3562 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3563 RetTy = EnumTy->getDecl()->getIntegerType(); 3564 3565 if (RetTy->isIntegralOrEnumerationType() && 3566 isPromotableIntegerTypeForABI(RetTy)) 3567 return ABIArgInfo::getExtend(RetTy); 3568 } 3569 break; 3570 3571 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3572 // available SSE register of the sequence %xmm0, %xmm1 is used. 3573 case SSE: 3574 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3575 break; 3576 3577 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3578 // returned on the X87 stack in %st0 as 80-bit x87 number. 3579 case X87: 3580 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3581 break; 3582 3583 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3584 // part of the value is returned in %st0 and the imaginary part in 3585 // %st1. 3586 case ComplexX87: 3587 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3588 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3589 llvm::Type::getX86_FP80Ty(getVMContext())); 3590 break; 3591 } 3592 3593 llvm::Type *HighPart = nullptr; 3594 switch (Hi) { 3595 // Memory was handled previously and X87 should 3596 // never occur as a hi class. 3597 case Memory: 3598 case X87: 3599 llvm_unreachable("Invalid classification for hi word."); 3600 3601 case ComplexX87: // Previously handled. 3602 case NoClass: 3603 break; 3604 3605 case Integer: 3606 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3607 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3608 return ABIArgInfo::getDirect(HighPart, 8); 3609 break; 3610 case SSE: 3611 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3612 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3613 return ABIArgInfo::getDirect(HighPart, 8); 3614 break; 3615 3616 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3617 // is passed in the next available eightbyte chunk if the last used 3618 // vector register. 3619 // 3620 // SSEUP should always be preceded by SSE, just widen. 3621 case SSEUp: 3622 assert(Lo == SSE && "Unexpected SSEUp classification."); 3623 ResType = GetByteVectorType(RetTy); 3624 break; 3625 3626 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3627 // returned together with the previous X87 value in %st0. 3628 case X87Up: 3629 // If X87Up is preceded by X87, we don't need to do 3630 // anything. However, in some cases with unions it may not be 3631 // preceded by X87. In such situations we follow gcc and pass the 3632 // extra bits in an SSE reg. 3633 if (Lo != X87) { 3634 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3635 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3636 return ABIArgInfo::getDirect(HighPart, 8); 3637 } 3638 break; 3639 } 3640 3641 // If a high part was specified, merge it together with the low part. It is 3642 // known to pass in the high eightbyte of the result. We do this by forming a 3643 // first class struct aggregate with the high and low part: {low, high} 3644 if (HighPart) 3645 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3646 3647 return ABIArgInfo::getDirect(ResType); 3648 } 3649 3650 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3651 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3652 bool isNamedArg) 3653 const 3654 { 3655 Ty = useFirstFieldIfTransparentUnion(Ty); 3656 3657 X86_64ABIInfo::Class Lo, Hi; 3658 classify(Ty, 0, Lo, Hi, isNamedArg); 3659 3660 // Check some invariants. 3661 // FIXME: Enforce these by construction. 3662 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3663 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3664 3665 neededInt = 0; 3666 neededSSE = 0; 3667 llvm::Type *ResType = nullptr; 3668 switch (Lo) { 3669 case NoClass: 3670 if (Hi == NoClass) 3671 return ABIArgInfo::getIgnore(); 3672 // If the low part is just padding, it takes no register, leave ResType 3673 // null. 3674 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3675 "Unknown missing lo part"); 3676 break; 3677 3678 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3679 // on the stack. 3680 case Memory: 3681 3682 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3683 // COMPLEX_X87, it is passed in memory. 3684 case X87: 3685 case ComplexX87: 3686 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3687 ++neededInt; 3688 return getIndirectResult(Ty, freeIntRegs); 3689 3690 case SSEUp: 3691 case X87Up: 3692 llvm_unreachable("Invalid classification for lo word."); 3693 3694 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3695 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3696 // and %r9 is used. 3697 case Integer: 3698 ++neededInt; 3699 3700 // Pick an 8-byte type based on the preferred type. 3701 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3702 3703 // If we have a sign or zero extended integer, make sure to return Extend 3704 // so that the parameter gets the right LLVM IR attributes. 3705 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3706 // Treat an enum type as its underlying type. 3707 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3708 Ty = EnumTy->getDecl()->getIntegerType(); 3709 3710 if (Ty->isIntegralOrEnumerationType() && 3711 isPromotableIntegerTypeForABI(Ty)) 3712 return ABIArgInfo::getExtend(Ty); 3713 } 3714 3715 break; 3716 3717 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3718 // available SSE register is used, the registers are taken in the 3719 // order from %xmm0 to %xmm7. 3720 case SSE: { 3721 llvm::Type *IRType = CGT.ConvertType(Ty); 3722 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3723 ++neededSSE; 3724 break; 3725 } 3726 } 3727 3728 llvm::Type *HighPart = nullptr; 3729 switch (Hi) { 3730 // Memory was handled previously, ComplexX87 and X87 should 3731 // never occur as hi classes, and X87Up must be preceded by X87, 3732 // which is passed in memory. 3733 case Memory: 3734 case X87: 3735 case ComplexX87: 3736 llvm_unreachable("Invalid classification for hi word."); 3737 3738 case NoClass: break; 3739 3740 case Integer: 3741 ++neededInt; 3742 // Pick an 8-byte type based on the preferred type. 3743 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3744 3745 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3746 return ABIArgInfo::getDirect(HighPart, 8); 3747 break; 3748 3749 // X87Up generally doesn't occur here (long double is passed in 3750 // memory), except in situations involving unions. 3751 case X87Up: 3752 case SSE: 3753 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3754 3755 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3756 return ABIArgInfo::getDirect(HighPart, 8); 3757 3758 ++neededSSE; 3759 break; 3760 3761 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3762 // eightbyte is passed in the upper half of the last used SSE 3763 // register. This only happens when 128-bit vectors are passed. 3764 case SSEUp: 3765 assert(Lo == SSE && "Unexpected SSEUp classification"); 3766 ResType = GetByteVectorType(Ty); 3767 break; 3768 } 3769 3770 // If a high part was specified, merge it together with the low part. It is 3771 // known to pass in the high eightbyte of the result. We do this by forming a 3772 // first class struct aggregate with the high and low part: {low, high} 3773 if (HighPart) 3774 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3775 3776 return ABIArgInfo::getDirect(ResType); 3777 } 3778 3779 ABIArgInfo 3780 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3781 unsigned &NeededSSE) const { 3782 auto RT = Ty->getAs<RecordType>(); 3783 assert(RT && "classifyRegCallStructType only valid with struct types"); 3784 3785 if (RT->getDecl()->hasFlexibleArrayMember()) 3786 return getIndirectReturnResult(Ty); 3787 3788 // Sum up bases 3789 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3790 if (CXXRD->isDynamicClass()) { 3791 NeededInt = NeededSSE = 0; 3792 return getIndirectReturnResult(Ty); 3793 } 3794 3795 for (const auto &I : CXXRD->bases()) 3796 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3797 .isIndirect()) { 3798 NeededInt = NeededSSE = 0; 3799 return getIndirectReturnResult(Ty); 3800 } 3801 } 3802 3803 // Sum up members 3804 for (const auto *FD : RT->getDecl()->fields()) { 3805 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3806 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3807 .isIndirect()) { 3808 NeededInt = NeededSSE = 0; 3809 return getIndirectReturnResult(Ty); 3810 } 3811 } else { 3812 unsigned LocalNeededInt, LocalNeededSSE; 3813 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3814 LocalNeededSSE, true) 3815 .isIndirect()) { 3816 NeededInt = NeededSSE = 0; 3817 return getIndirectReturnResult(Ty); 3818 } 3819 NeededInt += LocalNeededInt; 3820 NeededSSE += LocalNeededSSE; 3821 } 3822 } 3823 3824 return ABIArgInfo::getDirect(); 3825 } 3826 3827 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3828 unsigned &NeededInt, 3829 unsigned &NeededSSE) const { 3830 3831 NeededInt = 0; 3832 NeededSSE = 0; 3833 3834 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3835 } 3836 3837 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3838 3839 const unsigned CallingConv = FI.getCallingConvention(); 3840 // It is possible to force Win64 calling convention on any x86_64 target by 3841 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3842 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3843 if (CallingConv == llvm::CallingConv::Win64) { 3844 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3845 Win64ABIInfo.computeInfo(FI); 3846 return; 3847 } 3848 3849 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3850 3851 // Keep track of the number of assigned registers. 3852 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3853 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3854 unsigned NeededInt, NeededSSE; 3855 3856 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3857 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3858 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3859 FI.getReturnInfo() = 3860 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3861 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3862 FreeIntRegs -= NeededInt; 3863 FreeSSERegs -= NeededSSE; 3864 } else { 3865 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3866 } 3867 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3868 getContext().getCanonicalType(FI.getReturnType() 3869 ->getAs<ComplexType>() 3870 ->getElementType()) == 3871 getContext().LongDoubleTy) 3872 // Complex Long Double Type is passed in Memory when Regcall 3873 // calling convention is used. 3874 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3875 else 3876 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3877 } 3878 3879 // If the return value is indirect, then the hidden argument is consuming one 3880 // integer register. 3881 if (FI.getReturnInfo().isIndirect()) 3882 --FreeIntRegs; 3883 3884 // The chain argument effectively gives us another free register. 3885 if (FI.isChainCall()) 3886 ++FreeIntRegs; 3887 3888 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3889 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3890 // get assigned (in left-to-right order) for passing as follows... 3891 unsigned ArgNo = 0; 3892 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3893 it != ie; ++it, ++ArgNo) { 3894 bool IsNamedArg = ArgNo < NumRequiredArgs; 3895 3896 if (IsRegCall && it->type->isStructureOrClassType()) 3897 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3898 else 3899 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3900 NeededSSE, IsNamedArg); 3901 3902 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3903 // eightbyte of an argument, the whole argument is passed on the 3904 // stack. If registers have already been assigned for some 3905 // eightbytes of such an argument, the assignments get reverted. 3906 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3907 FreeIntRegs -= NeededInt; 3908 FreeSSERegs -= NeededSSE; 3909 } else { 3910 it->info = getIndirectResult(it->type, FreeIntRegs); 3911 } 3912 } 3913 } 3914 3915 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3916 Address VAListAddr, QualType Ty) { 3917 Address overflow_arg_area_p = 3918 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3919 llvm::Value *overflow_arg_area = 3920 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3921 3922 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3923 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3924 // It isn't stated explicitly in the standard, but in practice we use 3925 // alignment greater than 16 where necessary. 3926 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3927 if (Align > CharUnits::fromQuantity(8)) { 3928 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3929 Align); 3930 } 3931 3932 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3933 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3934 llvm::Value *Res = 3935 CGF.Builder.CreateBitCast(overflow_arg_area, 3936 llvm::PointerType::getUnqual(LTy)); 3937 3938 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3939 // l->overflow_arg_area + sizeof(type). 3940 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3941 // an 8 byte boundary. 3942 3943 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3944 llvm::Value *Offset = 3945 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3946 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3947 "overflow_arg_area.next"); 3948 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3949 3950 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3951 return Address(Res, Align); 3952 } 3953 3954 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3955 QualType Ty) const { 3956 // Assume that va_list type is correct; should be pointer to LLVM type: 3957 // struct { 3958 // i32 gp_offset; 3959 // i32 fp_offset; 3960 // i8* overflow_arg_area; 3961 // i8* reg_save_area; 3962 // }; 3963 unsigned neededInt, neededSSE; 3964 3965 Ty = getContext().getCanonicalType(Ty); 3966 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3967 /*isNamedArg*/false); 3968 3969 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3970 // in the registers. If not go to step 7. 3971 if (!neededInt && !neededSSE) 3972 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3973 3974 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3975 // general purpose registers needed to pass type and num_fp to hold 3976 // the number of floating point registers needed. 3977 3978 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3979 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3980 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3981 // 3982 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3983 // register save space). 3984 3985 llvm::Value *InRegs = nullptr; 3986 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3987 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3988 if (neededInt) { 3989 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3990 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3991 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3992 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3993 } 3994 3995 if (neededSSE) { 3996 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3997 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3998 llvm::Value *FitsInFP = 3999 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4000 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4001 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4002 } 4003 4004 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4005 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4006 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4007 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4008 4009 // Emit code to load the value if it was passed in registers. 4010 4011 CGF.EmitBlock(InRegBlock); 4012 4013 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4014 // an offset of l->gp_offset and/or l->fp_offset. This may require 4015 // copying to a temporary location in case the parameter is passed 4016 // in different register classes or requires an alignment greater 4017 // than 8 for general purpose registers and 16 for XMM registers. 4018 // 4019 // FIXME: This really results in shameful code when we end up needing to 4020 // collect arguments from different places; often what should result in a 4021 // simple assembling of a structure from scattered addresses has many more 4022 // loads than necessary. Can we clean this up? 4023 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4024 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4025 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4026 4027 Address RegAddr = Address::invalid(); 4028 if (neededInt && neededSSE) { 4029 // FIXME: Cleanup. 4030 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4031 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4032 Address Tmp = CGF.CreateMemTemp(Ty); 4033 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4034 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4035 llvm::Type *TyLo = ST->getElementType(0); 4036 llvm::Type *TyHi = ST->getElementType(1); 4037 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4038 "Unexpected ABI info for mixed regs"); 4039 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4040 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4041 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4042 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4043 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4044 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4045 4046 // Copy the first element. 4047 // FIXME: Our choice of alignment here and below is probably pessimistic. 4048 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4049 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4050 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4051 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4052 4053 // Copy the second element. 4054 V = CGF.Builder.CreateAlignedLoad( 4055 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4056 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4057 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4058 4059 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4060 } else if (neededInt) { 4061 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4062 CharUnits::fromQuantity(8)); 4063 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4064 4065 // Copy to a temporary if necessary to ensure the appropriate alignment. 4066 std::pair<CharUnits, CharUnits> SizeAlign = 4067 getContext().getTypeInfoInChars(Ty); 4068 uint64_t TySize = SizeAlign.first.getQuantity(); 4069 CharUnits TyAlign = SizeAlign.second; 4070 4071 // Copy into a temporary if the type is more aligned than the 4072 // register save area. 4073 if (TyAlign.getQuantity() > 8) { 4074 Address Tmp = CGF.CreateMemTemp(Ty); 4075 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4076 RegAddr = Tmp; 4077 } 4078 4079 } else if (neededSSE == 1) { 4080 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4081 CharUnits::fromQuantity(16)); 4082 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4083 } else { 4084 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4085 // SSE registers are spaced 16 bytes apart in the register save 4086 // area, we need to collect the two eightbytes together. 4087 // The ABI isn't explicit about this, but it seems reasonable 4088 // to assume that the slots are 16-byte aligned, since the stack is 4089 // naturally 16-byte aligned and the prologue is expected to store 4090 // all the SSE registers to the RSA. 4091 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4092 CharUnits::fromQuantity(16)); 4093 Address RegAddrHi = 4094 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4095 CharUnits::fromQuantity(16)); 4096 llvm::Type *ST = AI.canHaveCoerceToType() 4097 ? AI.getCoerceToType() 4098 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4099 llvm::Value *V; 4100 Address Tmp = CGF.CreateMemTemp(Ty); 4101 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4102 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4103 RegAddrLo, ST->getStructElementType(0))); 4104 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4105 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4106 RegAddrHi, ST->getStructElementType(1))); 4107 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4108 4109 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4110 } 4111 4112 // AMD64-ABI 3.5.7p5: Step 5. Set: 4113 // l->gp_offset = l->gp_offset + num_gp * 8 4114 // l->fp_offset = l->fp_offset + num_fp * 16. 4115 if (neededInt) { 4116 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4117 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4118 gp_offset_p); 4119 } 4120 if (neededSSE) { 4121 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4122 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4123 fp_offset_p); 4124 } 4125 CGF.EmitBranch(ContBlock); 4126 4127 // Emit code to load the value if it was passed in memory. 4128 4129 CGF.EmitBlock(InMemBlock); 4130 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4131 4132 // Return the appropriate result. 4133 4134 CGF.EmitBlock(ContBlock); 4135 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4136 "vaarg.addr"); 4137 return ResAddr; 4138 } 4139 4140 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4141 QualType Ty) const { 4142 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4143 CGF.getContext().getTypeInfoInChars(Ty), 4144 CharUnits::fromQuantity(8), 4145 /*allowHigherAlign*/ false); 4146 } 4147 4148 ABIArgInfo 4149 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4150 const ABIArgInfo ¤t) const { 4151 // Assumes vectorCall calling convention. 4152 const Type *Base = nullptr; 4153 uint64_t NumElts = 0; 4154 4155 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4156 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4157 FreeSSERegs -= NumElts; 4158 return getDirectX86Hva(); 4159 } 4160 return current; 4161 } 4162 4163 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4164 bool IsReturnType, bool IsVectorCall, 4165 bool IsRegCall) const { 4166 4167 if (Ty->isVoidType()) 4168 return ABIArgInfo::getIgnore(); 4169 4170 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4171 Ty = EnumTy->getDecl()->getIntegerType(); 4172 4173 TypeInfo Info = getContext().getTypeInfo(Ty); 4174 uint64_t Width = Info.Width; 4175 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4176 4177 const RecordType *RT = Ty->getAs<RecordType>(); 4178 if (RT) { 4179 if (!IsReturnType) { 4180 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4181 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4182 } 4183 4184 if (RT->getDecl()->hasFlexibleArrayMember()) 4185 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4186 4187 } 4188 4189 const Type *Base = nullptr; 4190 uint64_t NumElts = 0; 4191 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4192 // other targets. 4193 if ((IsVectorCall || IsRegCall) && 4194 isHomogeneousAggregate(Ty, Base, NumElts)) { 4195 if (IsRegCall) { 4196 if (FreeSSERegs >= NumElts) { 4197 FreeSSERegs -= NumElts; 4198 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4199 return ABIArgInfo::getDirect(); 4200 return ABIArgInfo::getExpand(); 4201 } 4202 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4203 } else if (IsVectorCall) { 4204 if (FreeSSERegs >= NumElts && 4205 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4206 FreeSSERegs -= NumElts; 4207 return ABIArgInfo::getDirect(); 4208 } else if (IsReturnType) { 4209 return ABIArgInfo::getExpand(); 4210 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4211 // HVAs are delayed and reclassified in the 2nd step. 4212 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4213 } 4214 } 4215 } 4216 4217 if (Ty->isMemberPointerType()) { 4218 // If the member pointer is represented by an LLVM int or ptr, pass it 4219 // directly. 4220 llvm::Type *LLTy = CGT.ConvertType(Ty); 4221 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4222 return ABIArgInfo::getDirect(); 4223 } 4224 4225 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4226 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4227 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4228 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4229 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4230 4231 // Otherwise, coerce it to a small integer. 4232 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4233 } 4234 4235 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4236 switch (BT->getKind()) { 4237 case BuiltinType::Bool: 4238 // Bool type is always extended to the ABI, other builtin types are not 4239 // extended. 4240 return ABIArgInfo::getExtend(Ty); 4241 4242 case BuiltinType::LongDouble: 4243 // Mingw64 GCC uses the old 80 bit extended precision floating point 4244 // unit. It passes them indirectly through memory. 4245 if (IsMingw64) { 4246 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4247 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4248 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4249 } 4250 break; 4251 4252 case BuiltinType::Int128: 4253 case BuiltinType::UInt128: 4254 // If it's a parameter type, the normal ABI rule is that arguments larger 4255 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4256 // even though it isn't particularly efficient. 4257 if (!IsReturnType) 4258 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4259 4260 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4261 // Clang matches them for compatibility. 4262 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4263 llvm::Type::getInt64Ty(getVMContext()), 2)); 4264 4265 default: 4266 break; 4267 } 4268 } 4269 4270 if (Ty->isExtIntType()) { 4271 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4272 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4273 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4274 // anyway as long is it fits in them, so we don't have to check the power of 4275 // 2. 4276 if (Width <= 64) 4277 return ABIArgInfo::getDirect(); 4278 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4279 } 4280 4281 return ABIArgInfo::getDirect(); 4282 } 4283 4284 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4285 unsigned FreeSSERegs, 4286 bool IsVectorCall, 4287 bool IsRegCall) const { 4288 unsigned Count = 0; 4289 for (auto &I : FI.arguments()) { 4290 // Vectorcall in x64 only permits the first 6 arguments to be passed 4291 // as XMM/YMM registers. 4292 if (Count < VectorcallMaxParamNumAsReg) 4293 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4294 else { 4295 // Since these cannot be passed in registers, pretend no registers 4296 // are left. 4297 unsigned ZeroSSERegsAvail = 0; 4298 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4299 IsVectorCall, IsRegCall); 4300 } 4301 ++Count; 4302 } 4303 4304 for (auto &I : FI.arguments()) { 4305 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4306 } 4307 } 4308 4309 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4310 const unsigned CC = FI.getCallingConvention(); 4311 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4312 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4313 4314 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4315 // classification rules. 4316 if (CC == llvm::CallingConv::X86_64_SysV) { 4317 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4318 SysVABIInfo.computeInfo(FI); 4319 return; 4320 } 4321 4322 unsigned FreeSSERegs = 0; 4323 if (IsVectorCall) { 4324 // We can use up to 4 SSE return registers with vectorcall. 4325 FreeSSERegs = 4; 4326 } else if (IsRegCall) { 4327 // RegCall gives us 16 SSE registers. 4328 FreeSSERegs = 16; 4329 } 4330 4331 if (!getCXXABI().classifyReturnType(FI)) 4332 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4333 IsVectorCall, IsRegCall); 4334 4335 if (IsVectorCall) { 4336 // We can use up to 6 SSE register parameters with vectorcall. 4337 FreeSSERegs = 6; 4338 } else if (IsRegCall) { 4339 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4340 FreeSSERegs = 16; 4341 } 4342 4343 if (IsVectorCall) { 4344 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4345 } else { 4346 for (auto &I : FI.arguments()) 4347 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4348 } 4349 4350 } 4351 4352 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4353 QualType Ty) const { 4354 4355 bool IsIndirect = false; 4356 4357 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4358 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4359 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4360 uint64_t Width = getContext().getTypeSize(Ty); 4361 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4362 } 4363 4364 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4365 CGF.getContext().getTypeInfoInChars(Ty), 4366 CharUnits::fromQuantity(8), 4367 /*allowHigherAlign*/ false); 4368 } 4369 4370 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4371 llvm::Value *Address, bool Is64Bit, 4372 bool IsAIX) { 4373 // This is calculated from the LLVM and GCC tables and verified 4374 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4375 4376 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4377 4378 llvm::IntegerType *i8 = CGF.Int8Ty; 4379 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4380 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4381 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4382 4383 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4384 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4385 4386 // 32-63: fp0-31, the 8-byte floating-point registers 4387 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4388 4389 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4390 // 64: mq 4391 // 65: lr 4392 // 66: ctr 4393 // 67: ap 4394 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4395 4396 // 68-76 are various 4-byte special-purpose registers: 4397 // 68-75 cr0-7 4398 // 76: xer 4399 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4400 4401 // 77-108: v0-31, the 16-byte vector registers 4402 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4403 4404 // 109: vrsave 4405 // 110: vscr 4406 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4407 4408 // AIX does not utilize the rest of the registers. 4409 if (IsAIX) 4410 return false; 4411 4412 // 111: spe_acc 4413 // 112: spefscr 4414 // 113: sfp 4415 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4416 4417 if (!Is64Bit) 4418 return false; 4419 4420 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4421 // or above CPU. 4422 // 64-bit only registers: 4423 // 114: tfhar 4424 // 115: tfiar 4425 // 116: texasr 4426 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4427 4428 return false; 4429 } 4430 4431 // AIX 4432 namespace { 4433 /// AIXABIInfo - The AIX XCOFF ABI information. 4434 class AIXABIInfo : public ABIInfo { 4435 const bool Is64Bit; 4436 const unsigned PtrByteSize; 4437 CharUnits getParamTypeAlignment(QualType Ty) const; 4438 4439 public: 4440 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4441 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4442 4443 bool isPromotableTypeForABI(QualType Ty) const; 4444 4445 ABIArgInfo classifyReturnType(QualType RetTy) const; 4446 ABIArgInfo classifyArgumentType(QualType Ty) const; 4447 4448 void computeInfo(CGFunctionInfo &FI) const override { 4449 if (!getCXXABI().classifyReturnType(FI)) 4450 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4451 4452 for (auto &I : FI.arguments()) 4453 I.info = classifyArgumentType(I.type); 4454 } 4455 4456 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4457 QualType Ty) const override; 4458 }; 4459 4460 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4461 const bool Is64Bit; 4462 4463 public: 4464 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4465 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4466 Is64Bit(Is64Bit) {} 4467 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4468 return 1; // r1 is the dedicated stack pointer 4469 } 4470 4471 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4472 llvm::Value *Address) const override; 4473 }; 4474 } // namespace 4475 4476 // Return true if the ABI requires Ty to be passed sign- or zero- 4477 // extended to 32/64 bits. 4478 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4479 // Treat an enum type as its underlying type. 4480 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4481 Ty = EnumTy->getDecl()->getIntegerType(); 4482 4483 // Promotable integer types are required to be promoted by the ABI. 4484 if (Ty->isPromotableIntegerType()) 4485 return true; 4486 4487 if (!Is64Bit) 4488 return false; 4489 4490 // For 64 bit mode, in addition to the usual promotable integer types, we also 4491 // need to extend all 32-bit types, since the ABI requires promotion to 64 4492 // bits. 4493 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4494 switch (BT->getKind()) { 4495 case BuiltinType::Int: 4496 case BuiltinType::UInt: 4497 return true; 4498 default: 4499 break; 4500 } 4501 4502 return false; 4503 } 4504 4505 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4506 if (RetTy->isAnyComplexType()) 4507 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4508 4509 if (RetTy->isVectorType()) 4510 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4511 4512 if (RetTy->isVoidType()) 4513 return ABIArgInfo::getIgnore(); 4514 4515 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4516 // alignment here. 4517 if (isAggregateTypeForABI(RetTy)) 4518 return getNaturalAlignIndirect(RetTy); 4519 4520 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4521 : ABIArgInfo::getDirect()); 4522 } 4523 4524 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4525 Ty = useFirstFieldIfTransparentUnion(Ty); 4526 4527 if (Ty->isAnyComplexType()) 4528 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4529 4530 if (Ty->isVectorType()) 4531 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4532 4533 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4534 // alignment here. 4535 if (isAggregateTypeForABI(Ty)) { 4536 // Records with non-trivial destructors/copy-constructors should not be 4537 // passed by value. 4538 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4539 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4540 4541 CharUnits CCAlign = getParamTypeAlignment(Ty); 4542 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4543 4544 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4545 /*Realign*/ TyAlign > CCAlign); 4546 } 4547 4548 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4549 : ABIArgInfo::getDirect()); 4550 } 4551 4552 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4553 if (Ty->isAnyComplexType()) 4554 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4555 4556 if (Ty->isVectorType()) 4557 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4558 4559 // If the structure contains a vector type, the alignment is 16. 4560 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4561 return CharUnits::fromQuantity(16); 4562 4563 return CharUnits::fromQuantity(PtrByteSize); 4564 } 4565 4566 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4567 QualType Ty) const { 4568 if (Ty->isAnyComplexType()) 4569 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4570 4571 if (Ty->isVectorType()) 4572 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4573 4574 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4575 TypeInfo.second = getParamTypeAlignment(Ty); 4576 4577 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4578 4579 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4580 SlotSize, /*AllowHigher*/ true); 4581 } 4582 4583 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4584 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4585 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4586 } 4587 4588 // PowerPC-32 4589 namespace { 4590 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4591 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4592 bool IsSoftFloatABI; 4593 bool IsRetSmallStructInRegABI; 4594 4595 CharUnits getParamTypeAlignment(QualType Ty) const; 4596 4597 public: 4598 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4599 bool RetSmallStructInRegABI) 4600 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4601 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4602 4603 ABIArgInfo classifyReturnType(QualType RetTy) const; 4604 4605 void computeInfo(CGFunctionInfo &FI) const override { 4606 if (!getCXXABI().classifyReturnType(FI)) 4607 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4608 for (auto &I : FI.arguments()) 4609 I.info = classifyArgumentType(I.type); 4610 } 4611 4612 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4613 QualType Ty) const override; 4614 }; 4615 4616 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4617 public: 4618 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4619 bool RetSmallStructInRegABI) 4620 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4621 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4622 4623 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4624 const CodeGenOptions &Opts); 4625 4626 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4627 // This is recovered from gcc output. 4628 return 1; // r1 is the dedicated stack pointer 4629 } 4630 4631 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4632 llvm::Value *Address) const override; 4633 }; 4634 } 4635 4636 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4637 // Complex types are passed just like their elements. 4638 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4639 Ty = CTy->getElementType(); 4640 4641 if (Ty->isVectorType()) 4642 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4643 : 4); 4644 4645 // For single-element float/vector structs, we consider the whole type 4646 // to have the same alignment requirements as its single element. 4647 const Type *AlignTy = nullptr; 4648 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4649 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4650 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4651 (BT && BT->isFloatingPoint())) 4652 AlignTy = EltType; 4653 } 4654 4655 if (AlignTy) 4656 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4657 return CharUnits::fromQuantity(4); 4658 } 4659 4660 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4661 uint64_t Size; 4662 4663 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4664 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4665 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4666 // System V ABI (1995), page 3-22, specified: 4667 // > A structure or union whose size is less than or equal to 8 bytes 4668 // > shall be returned in r3 and r4, as if it were first stored in the 4669 // > 8-byte aligned memory area and then the low addressed word were 4670 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4671 // > the last member of the structure or union are not defined. 4672 // 4673 // GCC for big-endian PPC32 inserts the pad before the first member, 4674 // not "beyond the last member" of the struct. To stay compatible 4675 // with GCC, we coerce the struct to an integer of the same size. 4676 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4677 if (Size == 0) 4678 return ABIArgInfo::getIgnore(); 4679 else { 4680 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4681 return ABIArgInfo::getDirect(CoerceTy); 4682 } 4683 } 4684 4685 return DefaultABIInfo::classifyReturnType(RetTy); 4686 } 4687 4688 // TODO: this implementation is now likely redundant with 4689 // DefaultABIInfo::EmitVAArg. 4690 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4691 QualType Ty) const { 4692 if (getTarget().getTriple().isOSDarwin()) { 4693 auto TI = getContext().getTypeInfoInChars(Ty); 4694 TI.second = getParamTypeAlignment(Ty); 4695 4696 CharUnits SlotSize = CharUnits::fromQuantity(4); 4697 return emitVoidPtrVAArg(CGF, VAList, Ty, 4698 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4699 /*AllowHigherAlign=*/true); 4700 } 4701 4702 const unsigned OverflowLimit = 8; 4703 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4704 // TODO: Implement this. For now ignore. 4705 (void)CTy; 4706 return Address::invalid(); // FIXME? 4707 } 4708 4709 // struct __va_list_tag { 4710 // unsigned char gpr; 4711 // unsigned char fpr; 4712 // unsigned short reserved; 4713 // void *overflow_arg_area; 4714 // void *reg_save_area; 4715 // }; 4716 4717 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4718 bool isInt = 4719 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4720 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4721 4722 // All aggregates are passed indirectly? That doesn't seem consistent 4723 // with the argument-lowering code. 4724 bool isIndirect = Ty->isAggregateType(); 4725 4726 CGBuilderTy &Builder = CGF.Builder; 4727 4728 // The calling convention either uses 1-2 GPRs or 1 FPR. 4729 Address NumRegsAddr = Address::invalid(); 4730 if (isInt || IsSoftFloatABI) { 4731 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4732 } else { 4733 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4734 } 4735 4736 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4737 4738 // "Align" the register count when TY is i64. 4739 if (isI64 || (isF64 && IsSoftFloatABI)) { 4740 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4741 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4742 } 4743 4744 llvm::Value *CC = 4745 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4746 4747 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4748 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4749 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4750 4751 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4752 4753 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4754 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4755 4756 // Case 1: consume registers. 4757 Address RegAddr = Address::invalid(); 4758 { 4759 CGF.EmitBlock(UsingRegs); 4760 4761 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4762 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4763 CharUnits::fromQuantity(8)); 4764 assert(RegAddr.getElementType() == CGF.Int8Ty); 4765 4766 // Floating-point registers start after the general-purpose registers. 4767 if (!(isInt || IsSoftFloatABI)) { 4768 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4769 CharUnits::fromQuantity(32)); 4770 } 4771 4772 // Get the address of the saved value by scaling the number of 4773 // registers we've used by the number of 4774 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4775 llvm::Value *RegOffset = 4776 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4777 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4778 RegAddr.getPointer(), RegOffset), 4779 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4780 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4781 4782 // Increase the used-register count. 4783 NumRegs = 4784 Builder.CreateAdd(NumRegs, 4785 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4786 Builder.CreateStore(NumRegs, NumRegsAddr); 4787 4788 CGF.EmitBranch(Cont); 4789 } 4790 4791 // Case 2: consume space in the overflow area. 4792 Address MemAddr = Address::invalid(); 4793 { 4794 CGF.EmitBlock(UsingOverflow); 4795 4796 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4797 4798 // Everything in the overflow area is rounded up to a size of at least 4. 4799 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4800 4801 CharUnits Size; 4802 if (!isIndirect) { 4803 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4804 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4805 } else { 4806 Size = CGF.getPointerSize(); 4807 } 4808 4809 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4810 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4811 OverflowAreaAlign); 4812 // Round up address of argument to alignment 4813 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4814 if (Align > OverflowAreaAlign) { 4815 llvm::Value *Ptr = OverflowArea.getPointer(); 4816 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4817 Align); 4818 } 4819 4820 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4821 4822 // Increase the overflow area. 4823 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4824 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4825 CGF.EmitBranch(Cont); 4826 } 4827 4828 CGF.EmitBlock(Cont); 4829 4830 // Merge the cases with a phi. 4831 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4832 "vaarg.addr"); 4833 4834 // Load the pointer if the argument was passed indirectly. 4835 if (isIndirect) { 4836 Result = Address(Builder.CreateLoad(Result, "aggr"), 4837 getContext().getTypeAlignInChars(Ty)); 4838 } 4839 4840 return Result; 4841 } 4842 4843 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4844 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4845 assert(Triple.getArch() == llvm::Triple::ppc); 4846 4847 switch (Opts.getStructReturnConvention()) { 4848 case CodeGenOptions::SRCK_Default: 4849 break; 4850 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4851 return false; 4852 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4853 return true; 4854 } 4855 4856 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4857 return true; 4858 4859 return false; 4860 } 4861 4862 bool 4863 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4864 llvm::Value *Address) const { 4865 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4866 /*IsAIX*/ false); 4867 } 4868 4869 // PowerPC-64 4870 4871 namespace { 4872 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4873 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4874 public: 4875 enum ABIKind { 4876 ELFv1 = 0, 4877 ELFv2 4878 }; 4879 4880 private: 4881 static const unsigned GPRBits = 64; 4882 ABIKind Kind; 4883 bool HasQPX; 4884 bool IsSoftFloatABI; 4885 4886 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4887 // will be passed in a QPX register. 4888 bool IsQPXVectorTy(const Type *Ty) const { 4889 if (!HasQPX) 4890 return false; 4891 4892 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4893 unsigned NumElements = VT->getNumElements(); 4894 if (NumElements == 1) 4895 return false; 4896 4897 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4898 if (getContext().getTypeSize(Ty) <= 256) 4899 return true; 4900 } else if (VT->getElementType()-> 4901 isSpecificBuiltinType(BuiltinType::Float)) { 4902 if (getContext().getTypeSize(Ty) <= 128) 4903 return true; 4904 } 4905 } 4906 4907 return false; 4908 } 4909 4910 bool IsQPXVectorTy(QualType Ty) const { 4911 return IsQPXVectorTy(Ty.getTypePtr()); 4912 } 4913 4914 public: 4915 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4916 bool SoftFloatABI) 4917 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4918 IsSoftFloatABI(SoftFloatABI) {} 4919 4920 bool isPromotableTypeForABI(QualType Ty) const; 4921 CharUnits getParamTypeAlignment(QualType Ty) const; 4922 4923 ABIArgInfo classifyReturnType(QualType RetTy) const; 4924 ABIArgInfo classifyArgumentType(QualType Ty) const; 4925 4926 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4927 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4928 uint64_t Members) const override; 4929 4930 // TODO: We can add more logic to computeInfo to improve performance. 4931 // Example: For aggregate arguments that fit in a register, we could 4932 // use getDirectInReg (as is done below for structs containing a single 4933 // floating-point value) to avoid pushing them to memory on function 4934 // entry. This would require changing the logic in PPCISelLowering 4935 // when lowering the parameters in the caller and args in the callee. 4936 void computeInfo(CGFunctionInfo &FI) const override { 4937 if (!getCXXABI().classifyReturnType(FI)) 4938 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4939 for (auto &I : FI.arguments()) { 4940 // We rely on the default argument classification for the most part. 4941 // One exception: An aggregate containing a single floating-point 4942 // or vector item must be passed in a register if one is available. 4943 const Type *T = isSingleElementStruct(I.type, getContext()); 4944 if (T) { 4945 const BuiltinType *BT = T->getAs<BuiltinType>(); 4946 if (IsQPXVectorTy(T) || 4947 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4948 (BT && BT->isFloatingPoint())) { 4949 QualType QT(T, 0); 4950 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4951 continue; 4952 } 4953 } 4954 I.info = classifyArgumentType(I.type); 4955 } 4956 } 4957 4958 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4959 QualType Ty) const override; 4960 4961 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4962 bool asReturnValue) const override { 4963 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4964 } 4965 4966 bool isSwiftErrorInRegister() const override { 4967 return false; 4968 } 4969 }; 4970 4971 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4972 4973 public: 4974 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4975 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4976 bool SoftFloatABI) 4977 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4978 CGT, Kind, HasQPX, SoftFloatABI)) {} 4979 4980 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4981 // This is recovered from gcc output. 4982 return 1; // r1 is the dedicated stack pointer 4983 } 4984 4985 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4986 llvm::Value *Address) const override; 4987 }; 4988 4989 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4990 public: 4991 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4992 4993 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4994 // This is recovered from gcc output. 4995 return 1; // r1 is the dedicated stack pointer 4996 } 4997 4998 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4999 llvm::Value *Address) const override; 5000 }; 5001 5002 } 5003 5004 // Return true if the ABI requires Ty to be passed sign- or zero- 5005 // extended to 64 bits. 5006 bool 5007 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5008 // Treat an enum type as its underlying type. 5009 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5010 Ty = EnumTy->getDecl()->getIntegerType(); 5011 5012 // Promotable integer types are required to be promoted by the ABI. 5013 if (isPromotableIntegerTypeForABI(Ty)) 5014 return true; 5015 5016 // In addition to the usual promotable integer types, we also need to 5017 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5018 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5019 switch (BT->getKind()) { 5020 case BuiltinType::Int: 5021 case BuiltinType::UInt: 5022 return true; 5023 default: 5024 break; 5025 } 5026 5027 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5028 if (EIT->getNumBits() < 64) 5029 return true; 5030 5031 return false; 5032 } 5033 5034 /// isAlignedParamType - Determine whether a type requires 16-byte or 5035 /// higher alignment in the parameter area. Always returns at least 8. 5036 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5037 // Complex types are passed just like their elements. 5038 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5039 Ty = CTy->getElementType(); 5040 5041 // Only vector types of size 16 bytes need alignment (larger types are 5042 // passed via reference, smaller types are not aligned). 5043 if (IsQPXVectorTy(Ty)) { 5044 if (getContext().getTypeSize(Ty) > 128) 5045 return CharUnits::fromQuantity(32); 5046 5047 return CharUnits::fromQuantity(16); 5048 } else if (Ty->isVectorType()) { 5049 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5050 } 5051 5052 // For single-element float/vector structs, we consider the whole type 5053 // to have the same alignment requirements as its single element. 5054 const Type *AlignAsType = nullptr; 5055 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5056 if (EltType) { 5057 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5058 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 5059 getContext().getTypeSize(EltType) == 128) || 5060 (BT && BT->isFloatingPoint())) 5061 AlignAsType = EltType; 5062 } 5063 5064 // Likewise for ELFv2 homogeneous aggregates. 5065 const Type *Base = nullptr; 5066 uint64_t Members = 0; 5067 if (!AlignAsType && Kind == ELFv2 && 5068 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5069 AlignAsType = Base; 5070 5071 // With special case aggregates, only vector base types need alignment. 5072 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 5073 if (getContext().getTypeSize(AlignAsType) > 128) 5074 return CharUnits::fromQuantity(32); 5075 5076 return CharUnits::fromQuantity(16); 5077 } else if (AlignAsType) { 5078 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5079 } 5080 5081 // Otherwise, we only need alignment for any aggregate type that 5082 // has an alignment requirement of >= 16 bytes. 5083 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5084 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 5085 return CharUnits::fromQuantity(32); 5086 return CharUnits::fromQuantity(16); 5087 } 5088 5089 return CharUnits::fromQuantity(8); 5090 } 5091 5092 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5093 /// aggregate. Base is set to the base element type, and Members is set 5094 /// to the number of base elements. 5095 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5096 uint64_t &Members) const { 5097 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5098 uint64_t NElements = AT->getSize().getZExtValue(); 5099 if (NElements == 0) 5100 return false; 5101 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5102 return false; 5103 Members *= NElements; 5104 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5105 const RecordDecl *RD = RT->getDecl(); 5106 if (RD->hasFlexibleArrayMember()) 5107 return false; 5108 5109 Members = 0; 5110 5111 // If this is a C++ record, check the bases first. 5112 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5113 for (const auto &I : CXXRD->bases()) { 5114 // Ignore empty records. 5115 if (isEmptyRecord(getContext(), I.getType(), true)) 5116 continue; 5117 5118 uint64_t FldMembers; 5119 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5120 return false; 5121 5122 Members += FldMembers; 5123 } 5124 } 5125 5126 for (const auto *FD : RD->fields()) { 5127 // Ignore (non-zero arrays of) empty records. 5128 QualType FT = FD->getType(); 5129 while (const ConstantArrayType *AT = 5130 getContext().getAsConstantArrayType(FT)) { 5131 if (AT->getSize().getZExtValue() == 0) 5132 return false; 5133 FT = AT->getElementType(); 5134 } 5135 if (isEmptyRecord(getContext(), FT, true)) 5136 continue; 5137 5138 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5139 if (getContext().getLangOpts().CPlusPlus && 5140 FD->isZeroLengthBitField(getContext())) 5141 continue; 5142 5143 uint64_t FldMembers; 5144 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5145 return false; 5146 5147 Members = (RD->isUnion() ? 5148 std::max(Members, FldMembers) : Members + FldMembers); 5149 } 5150 5151 if (!Base) 5152 return false; 5153 5154 // Ensure there is no padding. 5155 if (getContext().getTypeSize(Base) * Members != 5156 getContext().getTypeSize(Ty)) 5157 return false; 5158 } else { 5159 Members = 1; 5160 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5161 Members = 2; 5162 Ty = CT->getElementType(); 5163 } 5164 5165 // Most ABIs only support float, double, and some vector type widths. 5166 if (!isHomogeneousAggregateBaseType(Ty)) 5167 return false; 5168 5169 // The base type must be the same for all members. Types that 5170 // agree in both total size and mode (float vs. vector) are 5171 // treated as being equivalent here. 5172 const Type *TyPtr = Ty.getTypePtr(); 5173 if (!Base) { 5174 Base = TyPtr; 5175 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5176 // so make sure to widen it explicitly. 5177 if (const VectorType *VT = Base->getAs<VectorType>()) { 5178 QualType EltTy = VT->getElementType(); 5179 unsigned NumElements = 5180 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5181 Base = getContext() 5182 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5183 .getTypePtr(); 5184 } 5185 } 5186 5187 if (Base->isVectorType() != TyPtr->isVectorType() || 5188 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5189 return false; 5190 } 5191 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5192 } 5193 5194 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5195 // Homogeneous aggregates for ELFv2 must have base types of float, 5196 // double, long double, or 128-bit vectors. 5197 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5198 if (BT->getKind() == BuiltinType::Float || 5199 BT->getKind() == BuiltinType::Double || 5200 BT->getKind() == BuiltinType::LongDouble || 5201 (getContext().getTargetInfo().hasFloat128Type() && 5202 (BT->getKind() == BuiltinType::Float128))) { 5203 if (IsSoftFloatABI) 5204 return false; 5205 return true; 5206 } 5207 } 5208 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5209 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 5210 return true; 5211 } 5212 return false; 5213 } 5214 5215 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5216 const Type *Base, uint64_t Members) const { 5217 // Vector and fp128 types require one register, other floating point types 5218 // require one or two registers depending on their size. 5219 uint32_t NumRegs = 5220 ((getContext().getTargetInfo().hasFloat128Type() && 5221 Base->isFloat128Type()) || 5222 Base->isVectorType()) ? 1 5223 : (getContext().getTypeSize(Base) + 63) / 64; 5224 5225 // Homogeneous Aggregates may occupy at most 8 registers. 5226 return Members * NumRegs <= 8; 5227 } 5228 5229 ABIArgInfo 5230 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5231 Ty = useFirstFieldIfTransparentUnion(Ty); 5232 5233 if (Ty->isAnyComplexType()) 5234 return ABIArgInfo::getDirect(); 5235 5236 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5237 // or via reference (larger than 16 bytes). 5238 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 5239 uint64_t Size = getContext().getTypeSize(Ty); 5240 if (Size > 128) 5241 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5242 else if (Size < 128) { 5243 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5244 return ABIArgInfo::getDirect(CoerceTy); 5245 } 5246 } 5247 5248 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5249 if (EIT->getNumBits() > 128) 5250 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5251 5252 if (isAggregateTypeForABI(Ty)) { 5253 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5254 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5255 5256 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5257 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5258 5259 // ELFv2 homogeneous aggregates are passed as array types. 5260 const Type *Base = nullptr; 5261 uint64_t Members = 0; 5262 if (Kind == ELFv2 && 5263 isHomogeneousAggregate(Ty, Base, Members)) { 5264 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5265 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5266 return ABIArgInfo::getDirect(CoerceTy); 5267 } 5268 5269 // If an aggregate may end up fully in registers, we do not 5270 // use the ByVal method, but pass the aggregate as array. 5271 // This is usually beneficial since we avoid forcing the 5272 // back-end to store the argument to memory. 5273 uint64_t Bits = getContext().getTypeSize(Ty); 5274 if (Bits > 0 && Bits <= 8 * GPRBits) { 5275 llvm::Type *CoerceTy; 5276 5277 // Types up to 8 bytes are passed as integer type (which will be 5278 // properly aligned in the argument save area doubleword). 5279 if (Bits <= GPRBits) 5280 CoerceTy = 5281 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5282 // Larger types are passed as arrays, with the base type selected 5283 // according to the required alignment in the save area. 5284 else { 5285 uint64_t RegBits = ABIAlign * 8; 5286 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5287 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5288 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5289 } 5290 5291 return ABIArgInfo::getDirect(CoerceTy); 5292 } 5293 5294 // All other aggregates are passed ByVal. 5295 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5296 /*ByVal=*/true, 5297 /*Realign=*/TyAlign > ABIAlign); 5298 } 5299 5300 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5301 : ABIArgInfo::getDirect()); 5302 } 5303 5304 ABIArgInfo 5305 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5306 if (RetTy->isVoidType()) 5307 return ABIArgInfo::getIgnore(); 5308 5309 if (RetTy->isAnyComplexType()) 5310 return ABIArgInfo::getDirect(); 5311 5312 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5313 // or via reference (larger than 16 bytes). 5314 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5315 uint64_t Size = getContext().getTypeSize(RetTy); 5316 if (Size > 128) 5317 return getNaturalAlignIndirect(RetTy); 5318 else if (Size < 128) { 5319 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5320 return ABIArgInfo::getDirect(CoerceTy); 5321 } 5322 } 5323 5324 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5325 if (EIT->getNumBits() > 128) 5326 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5327 5328 if (isAggregateTypeForABI(RetTy)) { 5329 // ELFv2 homogeneous aggregates are returned as array types. 5330 const Type *Base = nullptr; 5331 uint64_t Members = 0; 5332 if (Kind == ELFv2 && 5333 isHomogeneousAggregate(RetTy, Base, Members)) { 5334 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5335 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5336 return ABIArgInfo::getDirect(CoerceTy); 5337 } 5338 5339 // ELFv2 small aggregates are returned in up to two registers. 5340 uint64_t Bits = getContext().getTypeSize(RetTy); 5341 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5342 if (Bits == 0) 5343 return ABIArgInfo::getIgnore(); 5344 5345 llvm::Type *CoerceTy; 5346 if (Bits > GPRBits) { 5347 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5348 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5349 } else 5350 CoerceTy = 5351 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5352 return ABIArgInfo::getDirect(CoerceTy); 5353 } 5354 5355 // All other aggregates are returned indirectly. 5356 return getNaturalAlignIndirect(RetTy); 5357 } 5358 5359 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5360 : ABIArgInfo::getDirect()); 5361 } 5362 5363 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5364 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5365 QualType Ty) const { 5366 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5367 TypeInfo.second = getParamTypeAlignment(Ty); 5368 5369 CharUnits SlotSize = CharUnits::fromQuantity(8); 5370 5371 // If we have a complex type and the base type is smaller than 8 bytes, 5372 // the ABI calls for the real and imaginary parts to be right-adjusted 5373 // in separate doublewords. However, Clang expects us to produce a 5374 // pointer to a structure with the two parts packed tightly. So generate 5375 // loads of the real and imaginary parts relative to the va_list pointer, 5376 // and store them to a temporary structure. 5377 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5378 CharUnits EltSize = TypeInfo.first / 2; 5379 if (EltSize < SlotSize) { 5380 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5381 SlotSize * 2, SlotSize, 5382 SlotSize, /*AllowHigher*/ true); 5383 5384 Address RealAddr = Addr; 5385 Address ImagAddr = RealAddr; 5386 if (CGF.CGM.getDataLayout().isBigEndian()) { 5387 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5388 SlotSize - EltSize); 5389 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5390 2 * SlotSize - EltSize); 5391 } else { 5392 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5393 } 5394 5395 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5396 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5397 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5398 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5399 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5400 5401 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5402 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5403 /*init*/ true); 5404 return Temp; 5405 } 5406 } 5407 5408 // Otherwise, just use the general rule. 5409 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5410 TypeInfo, SlotSize, /*AllowHigher*/ true); 5411 } 5412 5413 bool 5414 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5415 CodeGen::CodeGenFunction &CGF, 5416 llvm::Value *Address) const { 5417 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5418 /*IsAIX*/ false); 5419 } 5420 5421 bool 5422 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5423 llvm::Value *Address) const { 5424 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5425 /*IsAIX*/ false); 5426 } 5427 5428 //===----------------------------------------------------------------------===// 5429 // AArch64 ABI Implementation 5430 //===----------------------------------------------------------------------===// 5431 5432 namespace { 5433 5434 class AArch64ABIInfo : public SwiftABIInfo { 5435 public: 5436 enum ABIKind { 5437 AAPCS = 0, 5438 DarwinPCS, 5439 Win64 5440 }; 5441 5442 private: 5443 ABIKind Kind; 5444 5445 public: 5446 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5447 : SwiftABIInfo(CGT), Kind(Kind) {} 5448 5449 private: 5450 ABIKind getABIKind() const { return Kind; } 5451 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5452 5453 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5454 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5455 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5456 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5457 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5458 uint64_t Members) const override; 5459 5460 bool isIllegalVectorType(QualType Ty) const; 5461 5462 void computeInfo(CGFunctionInfo &FI) const override { 5463 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5464 FI.getReturnInfo() = 5465 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5466 5467 for (auto &it : FI.arguments()) 5468 it.info = classifyArgumentType(it.type); 5469 } 5470 5471 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5472 CodeGenFunction &CGF) const; 5473 5474 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5475 CodeGenFunction &CGF) const; 5476 5477 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5478 QualType Ty) const override { 5479 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5480 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5481 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5482 } 5483 5484 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5485 QualType Ty) const override; 5486 5487 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5488 bool asReturnValue) const override { 5489 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5490 } 5491 bool isSwiftErrorInRegister() const override { 5492 return true; 5493 } 5494 5495 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5496 unsigned elts) const override; 5497 5498 bool allowBFloatArgsAndRet() const override { 5499 return getTarget().hasBFloat16Type(); 5500 } 5501 }; 5502 5503 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5504 public: 5505 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5506 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5507 5508 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5509 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5510 } 5511 5512 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5513 return 31; 5514 } 5515 5516 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5517 5518 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5519 CodeGen::CodeGenModule &CGM) const override { 5520 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5521 if (!FD) 5522 return; 5523 5524 LangOptions::SignReturnAddressScopeKind Scope = 5525 CGM.getLangOpts().getSignReturnAddressScope(); 5526 LangOptions::SignReturnAddressKeyKind Key = 5527 CGM.getLangOpts().getSignReturnAddressKey(); 5528 bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement; 5529 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5530 ParsedTargetAttr Attr = TA->parse(); 5531 if (!Attr.BranchProtection.empty()) { 5532 TargetInfo::BranchProtectionInfo BPI; 5533 StringRef Error; 5534 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5535 BPI, Error); 5536 assert(Error.empty()); 5537 Scope = BPI.SignReturnAddr; 5538 Key = BPI.SignKey; 5539 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5540 } 5541 } 5542 5543 auto *Fn = cast<llvm::Function>(GV); 5544 if (Scope != LangOptions::SignReturnAddressScopeKind::None) { 5545 Fn->addFnAttr("sign-return-address", 5546 Scope == LangOptions::SignReturnAddressScopeKind::All 5547 ? "all" 5548 : "non-leaf"); 5549 5550 Fn->addFnAttr("sign-return-address-key", 5551 Key == LangOptions::SignReturnAddressKeyKind::AKey 5552 ? "a_key" 5553 : "b_key"); 5554 } 5555 5556 if (BranchTargetEnforcement) 5557 Fn->addFnAttr("branch-target-enforcement"); 5558 } 5559 }; 5560 5561 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5562 public: 5563 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5564 : AArch64TargetCodeGenInfo(CGT, K) {} 5565 5566 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5567 CodeGen::CodeGenModule &CGM) const override; 5568 5569 void getDependentLibraryOption(llvm::StringRef Lib, 5570 llvm::SmallString<24> &Opt) const override { 5571 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5572 } 5573 5574 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5575 llvm::SmallString<32> &Opt) const override { 5576 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5577 } 5578 }; 5579 5580 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5581 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5582 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5583 if (GV->isDeclaration()) 5584 return; 5585 addStackProbeTargetAttributes(D, GV, CGM); 5586 } 5587 } 5588 5589 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5590 assert(Ty->isVectorType() && "expected vector type!"); 5591 5592 const auto *VT = Ty->castAs<VectorType>(); 5593 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5594 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5595 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5596 BuiltinType::UChar && 5597 "unexpected builtin type for SVE predicate!"); 5598 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5599 llvm::Type::getInt1Ty(getVMContext()), 16)); 5600 } 5601 5602 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5603 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5604 5605 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5606 llvm::ScalableVectorType *ResType = nullptr; 5607 switch (BT->getKind()) { 5608 default: 5609 llvm_unreachable("unexpected builtin type for SVE vector!"); 5610 case BuiltinType::SChar: 5611 case BuiltinType::UChar: 5612 ResType = llvm::ScalableVectorType::get( 5613 llvm::Type::getInt8Ty(getVMContext()), 16); 5614 break; 5615 case BuiltinType::Short: 5616 case BuiltinType::UShort: 5617 ResType = llvm::ScalableVectorType::get( 5618 llvm::Type::getInt16Ty(getVMContext()), 8); 5619 break; 5620 case BuiltinType::Int: 5621 case BuiltinType::UInt: 5622 ResType = llvm::ScalableVectorType::get( 5623 llvm::Type::getInt32Ty(getVMContext()), 4); 5624 break; 5625 case BuiltinType::Long: 5626 case BuiltinType::ULong: 5627 ResType = llvm::ScalableVectorType::get( 5628 llvm::Type::getInt64Ty(getVMContext()), 2); 5629 break; 5630 case BuiltinType::Half: 5631 ResType = llvm::ScalableVectorType::get( 5632 llvm::Type::getHalfTy(getVMContext()), 8); 5633 break; 5634 case BuiltinType::Float: 5635 ResType = llvm::ScalableVectorType::get( 5636 llvm::Type::getFloatTy(getVMContext()), 4); 5637 break; 5638 case BuiltinType::Double: 5639 ResType = llvm::ScalableVectorType::get( 5640 llvm::Type::getDoubleTy(getVMContext()), 2); 5641 break; 5642 case BuiltinType::BFloat16: 5643 ResType = llvm::ScalableVectorType::get( 5644 llvm::Type::getBFloatTy(getVMContext()), 8); 5645 break; 5646 } 5647 return ABIArgInfo::getDirect(ResType); 5648 } 5649 5650 uint64_t Size = getContext().getTypeSize(Ty); 5651 // Android promotes <2 x i8> to i16, not i32 5652 if (isAndroid() && (Size <= 16)) { 5653 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5654 return ABIArgInfo::getDirect(ResType); 5655 } 5656 if (Size <= 32) { 5657 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5658 return ABIArgInfo::getDirect(ResType); 5659 } 5660 if (Size == 64) { 5661 auto *ResType = 5662 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5663 return ABIArgInfo::getDirect(ResType); 5664 } 5665 if (Size == 128) { 5666 auto *ResType = 5667 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5668 return ABIArgInfo::getDirect(ResType); 5669 } 5670 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5671 } 5672 5673 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5674 Ty = useFirstFieldIfTransparentUnion(Ty); 5675 5676 // Handle illegal vector types here. 5677 if (isIllegalVectorType(Ty)) 5678 return coerceIllegalVector(Ty); 5679 5680 if (!isAggregateTypeForABI(Ty)) { 5681 // Treat an enum type as its underlying type. 5682 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5683 Ty = EnumTy->getDecl()->getIntegerType(); 5684 5685 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5686 if (EIT->getNumBits() > 128) 5687 return getNaturalAlignIndirect(Ty); 5688 5689 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5690 ? ABIArgInfo::getExtend(Ty) 5691 : ABIArgInfo::getDirect()); 5692 } 5693 5694 // Structures with either a non-trivial destructor or a non-trivial 5695 // copy constructor are always indirect. 5696 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5697 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5698 CGCXXABI::RAA_DirectInMemory); 5699 } 5700 5701 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5702 // elsewhere for GNU compatibility. 5703 uint64_t Size = getContext().getTypeSize(Ty); 5704 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5705 if (IsEmpty || Size == 0) { 5706 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5707 return ABIArgInfo::getIgnore(); 5708 5709 // GNU C mode. The only argument that gets ignored is an empty one with size 5710 // 0. 5711 if (IsEmpty && Size == 0) 5712 return ABIArgInfo::getIgnore(); 5713 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5714 } 5715 5716 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5717 const Type *Base = nullptr; 5718 uint64_t Members = 0; 5719 if (isHomogeneousAggregate(Ty, Base, Members)) { 5720 return ABIArgInfo::getDirect( 5721 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5722 } 5723 5724 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5725 if (Size <= 128) { 5726 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5727 // same size and alignment. 5728 if (getTarget().isRenderScriptTarget()) { 5729 return coerceToIntArray(Ty, getContext(), getVMContext()); 5730 } 5731 unsigned Alignment; 5732 if (Kind == AArch64ABIInfo::AAPCS) { 5733 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5734 Alignment = Alignment < 128 ? 64 : 128; 5735 } else { 5736 Alignment = std::max(getContext().getTypeAlign(Ty), 5737 (unsigned)getTarget().getPointerWidth(0)); 5738 } 5739 Size = llvm::alignTo(Size, Alignment); 5740 5741 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5742 // For aggregates with 16-byte alignment, we use i128. 5743 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5744 return ABIArgInfo::getDirect( 5745 Size == Alignment ? BaseTy 5746 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5747 } 5748 5749 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5750 } 5751 5752 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5753 bool IsVariadic) const { 5754 if (RetTy->isVoidType()) 5755 return ABIArgInfo::getIgnore(); 5756 5757 if (const auto *VT = RetTy->getAs<VectorType>()) { 5758 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5759 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5760 return coerceIllegalVector(RetTy); 5761 } 5762 5763 // Large vector types should be returned via memory. 5764 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5765 return getNaturalAlignIndirect(RetTy); 5766 5767 if (!isAggregateTypeForABI(RetTy)) { 5768 // Treat an enum type as its underlying type. 5769 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5770 RetTy = EnumTy->getDecl()->getIntegerType(); 5771 5772 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5773 if (EIT->getNumBits() > 128) 5774 return getNaturalAlignIndirect(RetTy); 5775 5776 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5777 ? ABIArgInfo::getExtend(RetTy) 5778 : ABIArgInfo::getDirect()); 5779 } 5780 5781 uint64_t Size = getContext().getTypeSize(RetTy); 5782 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5783 return ABIArgInfo::getIgnore(); 5784 5785 const Type *Base = nullptr; 5786 uint64_t Members = 0; 5787 if (isHomogeneousAggregate(RetTy, Base, Members) && 5788 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5789 IsVariadic)) 5790 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5791 return ABIArgInfo::getDirect(); 5792 5793 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5794 if (Size <= 128) { 5795 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5796 // same size and alignment. 5797 if (getTarget().isRenderScriptTarget()) { 5798 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5799 } 5800 unsigned Alignment = getContext().getTypeAlign(RetTy); 5801 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5802 5803 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5804 // For aggregates with 16-byte alignment, we use i128. 5805 if (Alignment < 128 && Size == 128) { 5806 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5807 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5808 } 5809 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5810 } 5811 5812 return getNaturalAlignIndirect(RetTy); 5813 } 5814 5815 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5816 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5817 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5818 // Check whether VT is a fixed-length SVE vector. These types are 5819 // represented as scalable vectors in function args/return and must be 5820 // coerced from fixed vectors. 5821 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5822 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5823 return true; 5824 5825 // Check whether VT is legal. 5826 unsigned NumElements = VT->getNumElements(); 5827 uint64_t Size = getContext().getTypeSize(VT); 5828 // NumElements should be power of 2. 5829 if (!llvm::isPowerOf2_32(NumElements)) 5830 return true; 5831 5832 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5833 // vectors for some reason. 5834 llvm::Triple Triple = getTarget().getTriple(); 5835 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5836 Triple.isOSBinFormatMachO()) 5837 return Size <= 32; 5838 5839 return Size != 64 && (Size != 128 || NumElements == 1); 5840 } 5841 return false; 5842 } 5843 5844 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5845 llvm::Type *eltTy, 5846 unsigned elts) const { 5847 if (!llvm::isPowerOf2_32(elts)) 5848 return false; 5849 if (totalSize.getQuantity() != 8 && 5850 (totalSize.getQuantity() != 16 || elts == 1)) 5851 return false; 5852 return true; 5853 } 5854 5855 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5856 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5857 // point type or a short-vector type. This is the same as the 32-bit ABI, 5858 // but with the difference that any floating-point type is allowed, 5859 // including __fp16. 5860 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5861 if (BT->isFloatingPoint()) 5862 return true; 5863 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5864 unsigned VecSize = getContext().getTypeSize(VT); 5865 if (VecSize == 64 || VecSize == 128) 5866 return true; 5867 } 5868 return false; 5869 } 5870 5871 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5872 uint64_t Members) const { 5873 return Members <= 4; 5874 } 5875 5876 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5877 QualType Ty, 5878 CodeGenFunction &CGF) const { 5879 ABIArgInfo AI = classifyArgumentType(Ty); 5880 bool IsIndirect = AI.isIndirect(); 5881 5882 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5883 if (IsIndirect) 5884 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5885 else if (AI.getCoerceToType()) 5886 BaseTy = AI.getCoerceToType(); 5887 5888 unsigned NumRegs = 1; 5889 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5890 BaseTy = ArrTy->getElementType(); 5891 NumRegs = ArrTy->getNumElements(); 5892 } 5893 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5894 5895 // The AArch64 va_list type and handling is specified in the Procedure Call 5896 // Standard, section B.4: 5897 // 5898 // struct { 5899 // void *__stack; 5900 // void *__gr_top; 5901 // void *__vr_top; 5902 // int __gr_offs; 5903 // int __vr_offs; 5904 // }; 5905 5906 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5907 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5908 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5909 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5910 5911 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5912 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5913 5914 Address reg_offs_p = Address::invalid(); 5915 llvm::Value *reg_offs = nullptr; 5916 int reg_top_index; 5917 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5918 if (!IsFPR) { 5919 // 3 is the field number of __gr_offs 5920 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5921 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5922 reg_top_index = 1; // field number for __gr_top 5923 RegSize = llvm::alignTo(RegSize, 8); 5924 } else { 5925 // 4 is the field number of __vr_offs. 5926 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5927 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5928 reg_top_index = 2; // field number for __vr_top 5929 RegSize = 16 * NumRegs; 5930 } 5931 5932 //======================================= 5933 // Find out where argument was passed 5934 //======================================= 5935 5936 // If reg_offs >= 0 we're already using the stack for this type of 5937 // argument. We don't want to keep updating reg_offs (in case it overflows, 5938 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5939 // whatever they get). 5940 llvm::Value *UsingStack = nullptr; 5941 UsingStack = CGF.Builder.CreateICmpSGE( 5942 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5943 5944 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5945 5946 // Otherwise, at least some kind of argument could go in these registers, the 5947 // question is whether this particular type is too big. 5948 CGF.EmitBlock(MaybeRegBlock); 5949 5950 // Integer arguments may need to correct register alignment (for example a 5951 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5952 // align __gr_offs to calculate the potential address. 5953 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5954 int Align = TyAlign.getQuantity(); 5955 5956 reg_offs = CGF.Builder.CreateAdd( 5957 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5958 "align_regoffs"); 5959 reg_offs = CGF.Builder.CreateAnd( 5960 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5961 "aligned_regoffs"); 5962 } 5963 5964 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5965 // The fact that this is done unconditionally reflects the fact that 5966 // allocating an argument to the stack also uses up all the remaining 5967 // registers of the appropriate kind. 5968 llvm::Value *NewOffset = nullptr; 5969 NewOffset = CGF.Builder.CreateAdd( 5970 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5971 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5972 5973 // Now we're in a position to decide whether this argument really was in 5974 // registers or not. 5975 llvm::Value *InRegs = nullptr; 5976 InRegs = CGF.Builder.CreateICmpSLE( 5977 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5978 5979 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5980 5981 //======================================= 5982 // Argument was in registers 5983 //======================================= 5984 5985 // Now we emit the code for if the argument was originally passed in 5986 // registers. First start the appropriate block: 5987 CGF.EmitBlock(InRegBlock); 5988 5989 llvm::Value *reg_top = nullptr; 5990 Address reg_top_p = 5991 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5992 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5993 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5994 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5995 Address RegAddr = Address::invalid(); 5996 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5997 5998 if (IsIndirect) { 5999 // If it's been passed indirectly (actually a struct), whatever we find from 6000 // stored registers or on the stack will actually be a struct **. 6001 MemTy = llvm::PointerType::getUnqual(MemTy); 6002 } 6003 6004 const Type *Base = nullptr; 6005 uint64_t NumMembers = 0; 6006 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6007 if (IsHFA && NumMembers > 1) { 6008 // Homogeneous aggregates passed in registers will have their elements split 6009 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6010 // qN+1, ...). We reload and store into a temporary local variable 6011 // contiguously. 6012 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6013 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6014 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6015 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6016 Address Tmp = CGF.CreateTempAlloca(HFATy, 6017 std::max(TyAlign, BaseTyInfo.second)); 6018 6019 // On big-endian platforms, the value will be right-aligned in its slot. 6020 int Offset = 0; 6021 if (CGF.CGM.getDataLayout().isBigEndian() && 6022 BaseTyInfo.first.getQuantity() < 16) 6023 Offset = 16 - BaseTyInfo.first.getQuantity(); 6024 6025 for (unsigned i = 0; i < NumMembers; ++i) { 6026 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6027 Address LoadAddr = 6028 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6029 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6030 6031 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6032 6033 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6034 CGF.Builder.CreateStore(Elem, StoreAddr); 6035 } 6036 6037 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6038 } else { 6039 // Otherwise the object is contiguous in memory. 6040 6041 // It might be right-aligned in its slot. 6042 CharUnits SlotSize = BaseAddr.getAlignment(); 6043 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6044 (IsHFA || !isAggregateTypeForABI(Ty)) && 6045 TySize < SlotSize) { 6046 CharUnits Offset = SlotSize - TySize; 6047 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6048 } 6049 6050 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6051 } 6052 6053 CGF.EmitBranch(ContBlock); 6054 6055 //======================================= 6056 // Argument was on the stack 6057 //======================================= 6058 CGF.EmitBlock(OnStackBlock); 6059 6060 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6061 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6062 6063 // Again, stack arguments may need realignment. In this case both integer and 6064 // floating-point ones might be affected. 6065 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6066 int Align = TyAlign.getQuantity(); 6067 6068 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6069 6070 OnStackPtr = CGF.Builder.CreateAdd( 6071 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6072 "align_stack"); 6073 OnStackPtr = CGF.Builder.CreateAnd( 6074 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6075 "align_stack"); 6076 6077 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6078 } 6079 Address OnStackAddr(OnStackPtr, 6080 std::max(CharUnits::fromQuantity(8), TyAlign)); 6081 6082 // All stack slots are multiples of 8 bytes. 6083 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6084 CharUnits StackSize; 6085 if (IsIndirect) 6086 StackSize = StackSlotSize; 6087 else 6088 StackSize = TySize.alignTo(StackSlotSize); 6089 6090 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6091 llvm::Value *NewStack = 6092 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6093 6094 // Write the new value of __stack for the next call to va_arg 6095 CGF.Builder.CreateStore(NewStack, stack_p); 6096 6097 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6098 TySize < StackSlotSize) { 6099 CharUnits Offset = StackSlotSize - TySize; 6100 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6101 } 6102 6103 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6104 6105 CGF.EmitBranch(ContBlock); 6106 6107 //======================================= 6108 // Tidy up 6109 //======================================= 6110 CGF.EmitBlock(ContBlock); 6111 6112 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6113 OnStackAddr, OnStackBlock, "vaargs.addr"); 6114 6115 if (IsIndirect) 6116 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6117 TyAlign); 6118 6119 return ResAddr; 6120 } 6121 6122 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6123 CodeGenFunction &CGF) const { 6124 // The backend's lowering doesn't support va_arg for aggregates or 6125 // illegal vector types. Lower VAArg here for these cases and use 6126 // the LLVM va_arg instruction for everything else. 6127 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6128 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6129 6130 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6131 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6132 6133 // Empty records are ignored for parameter passing purposes. 6134 if (isEmptyRecord(getContext(), Ty, true)) { 6135 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6136 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6137 return Addr; 6138 } 6139 6140 // The size of the actual thing passed, which might end up just 6141 // being a pointer for indirect types. 6142 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6143 6144 // Arguments bigger than 16 bytes which aren't homogeneous 6145 // aggregates should be passed indirectly. 6146 bool IsIndirect = false; 6147 if (TyInfo.first.getQuantity() > 16) { 6148 const Type *Base = nullptr; 6149 uint64_t Members = 0; 6150 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6151 } 6152 6153 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6154 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6155 } 6156 6157 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6158 QualType Ty) const { 6159 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6160 CGF.getContext().getTypeInfoInChars(Ty), 6161 CharUnits::fromQuantity(8), 6162 /*allowHigherAlign*/ false); 6163 } 6164 6165 //===----------------------------------------------------------------------===// 6166 // ARM ABI Implementation 6167 //===----------------------------------------------------------------------===// 6168 6169 namespace { 6170 6171 class ARMABIInfo : public SwiftABIInfo { 6172 public: 6173 enum ABIKind { 6174 APCS = 0, 6175 AAPCS = 1, 6176 AAPCS_VFP = 2, 6177 AAPCS16_VFP = 3, 6178 }; 6179 6180 private: 6181 ABIKind Kind; 6182 bool IsFloatABISoftFP; 6183 6184 public: 6185 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6186 : SwiftABIInfo(CGT), Kind(_Kind) { 6187 setCCs(); 6188 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6189 CGT.getCodeGenOpts().FloatABI == ""; // default 6190 } 6191 6192 bool isEABI() const { 6193 switch (getTarget().getTriple().getEnvironment()) { 6194 case llvm::Triple::Android: 6195 case llvm::Triple::EABI: 6196 case llvm::Triple::EABIHF: 6197 case llvm::Triple::GNUEABI: 6198 case llvm::Triple::GNUEABIHF: 6199 case llvm::Triple::MuslEABI: 6200 case llvm::Triple::MuslEABIHF: 6201 return true; 6202 default: 6203 return false; 6204 } 6205 } 6206 6207 bool isEABIHF() const { 6208 switch (getTarget().getTriple().getEnvironment()) { 6209 case llvm::Triple::EABIHF: 6210 case llvm::Triple::GNUEABIHF: 6211 case llvm::Triple::MuslEABIHF: 6212 return true; 6213 default: 6214 return false; 6215 } 6216 } 6217 6218 ABIKind getABIKind() const { return Kind; } 6219 6220 bool allowBFloatArgsAndRet() const override { 6221 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6222 } 6223 6224 private: 6225 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6226 unsigned functionCallConv) const; 6227 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6228 unsigned functionCallConv) const; 6229 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6230 uint64_t Members) const; 6231 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6232 bool isIllegalVectorType(QualType Ty) const; 6233 bool containsAnyFP16Vectors(QualType Ty) const; 6234 6235 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6236 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6237 uint64_t Members) const override; 6238 6239 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6240 6241 void computeInfo(CGFunctionInfo &FI) const override; 6242 6243 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6244 QualType Ty) const override; 6245 6246 llvm::CallingConv::ID getLLVMDefaultCC() const; 6247 llvm::CallingConv::ID getABIDefaultCC() const; 6248 void setCCs(); 6249 6250 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6251 bool asReturnValue) const override { 6252 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6253 } 6254 bool isSwiftErrorInRegister() const override { 6255 return true; 6256 } 6257 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6258 unsigned elts) const override; 6259 }; 6260 6261 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6262 public: 6263 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6264 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6265 6266 const ARMABIInfo &getABIInfo() const { 6267 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6268 } 6269 6270 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6271 return 13; 6272 } 6273 6274 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6275 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6276 } 6277 6278 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6279 llvm::Value *Address) const override { 6280 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6281 6282 // 0-15 are the 16 integer registers. 6283 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6284 return false; 6285 } 6286 6287 unsigned getSizeOfUnwindException() const override { 6288 if (getABIInfo().isEABI()) return 88; 6289 return TargetCodeGenInfo::getSizeOfUnwindException(); 6290 } 6291 6292 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6293 CodeGen::CodeGenModule &CGM) const override { 6294 if (GV->isDeclaration()) 6295 return; 6296 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6297 if (!FD) 6298 return; 6299 6300 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6301 if (!Attr) 6302 return; 6303 6304 const char *Kind; 6305 switch (Attr->getInterrupt()) { 6306 case ARMInterruptAttr::Generic: Kind = ""; break; 6307 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6308 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6309 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6310 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6311 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6312 } 6313 6314 llvm::Function *Fn = cast<llvm::Function>(GV); 6315 6316 Fn->addFnAttr("interrupt", Kind); 6317 6318 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6319 if (ABI == ARMABIInfo::APCS) 6320 return; 6321 6322 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6323 // however this is not necessarily true on taking any interrupt. Instruct 6324 // the backend to perform a realignment as part of the function prologue. 6325 llvm::AttrBuilder B; 6326 B.addStackAlignmentAttr(8); 6327 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6328 } 6329 }; 6330 6331 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6332 public: 6333 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6334 : ARMTargetCodeGenInfo(CGT, K) {} 6335 6336 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6337 CodeGen::CodeGenModule &CGM) const override; 6338 6339 void getDependentLibraryOption(llvm::StringRef Lib, 6340 llvm::SmallString<24> &Opt) const override { 6341 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6342 } 6343 6344 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6345 llvm::SmallString<32> &Opt) const override { 6346 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6347 } 6348 }; 6349 6350 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6351 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6352 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6353 if (GV->isDeclaration()) 6354 return; 6355 addStackProbeTargetAttributes(D, GV, CGM); 6356 } 6357 } 6358 6359 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6360 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6361 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6362 FI.getCallingConvention()); 6363 6364 for (auto &I : FI.arguments()) 6365 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6366 FI.getCallingConvention()); 6367 6368 6369 // Always honor user-specified calling convention. 6370 if (FI.getCallingConvention() != llvm::CallingConv::C) 6371 return; 6372 6373 llvm::CallingConv::ID cc = getRuntimeCC(); 6374 if (cc != llvm::CallingConv::C) 6375 FI.setEffectiveCallingConvention(cc); 6376 } 6377 6378 /// Return the default calling convention that LLVM will use. 6379 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6380 // The default calling convention that LLVM will infer. 6381 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6382 return llvm::CallingConv::ARM_AAPCS_VFP; 6383 else if (isEABI()) 6384 return llvm::CallingConv::ARM_AAPCS; 6385 else 6386 return llvm::CallingConv::ARM_APCS; 6387 } 6388 6389 /// Return the calling convention that our ABI would like us to use 6390 /// as the C calling convention. 6391 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6392 switch (getABIKind()) { 6393 case APCS: return llvm::CallingConv::ARM_APCS; 6394 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6395 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6396 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6397 } 6398 llvm_unreachable("bad ABI kind"); 6399 } 6400 6401 void ARMABIInfo::setCCs() { 6402 assert(getRuntimeCC() == llvm::CallingConv::C); 6403 6404 // Don't muddy up the IR with a ton of explicit annotations if 6405 // they'd just match what LLVM will infer from the triple. 6406 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6407 if (abiCC != getLLVMDefaultCC()) 6408 RuntimeCC = abiCC; 6409 } 6410 6411 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6412 uint64_t Size = getContext().getTypeSize(Ty); 6413 if (Size <= 32) { 6414 llvm::Type *ResType = 6415 llvm::Type::getInt32Ty(getVMContext()); 6416 return ABIArgInfo::getDirect(ResType); 6417 } 6418 if (Size == 64 || Size == 128) { 6419 auto *ResType = llvm::FixedVectorType::get( 6420 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6421 return ABIArgInfo::getDirect(ResType); 6422 } 6423 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6424 } 6425 6426 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6427 const Type *Base, 6428 uint64_t Members) const { 6429 assert(Base && "Base class should be set for homogeneous aggregate"); 6430 // Base can be a floating-point or a vector. 6431 if (const VectorType *VT = Base->getAs<VectorType>()) { 6432 // FP16 vectors should be converted to integer vectors 6433 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6434 uint64_t Size = getContext().getTypeSize(VT); 6435 auto *NewVecTy = llvm::FixedVectorType::get( 6436 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6437 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6438 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6439 } 6440 } 6441 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6442 } 6443 6444 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6445 unsigned functionCallConv) const { 6446 // 6.1.2.1 The following argument types are VFP CPRCs: 6447 // A single-precision floating-point type (including promoted 6448 // half-precision types); A double-precision floating-point type; 6449 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6450 // with a Base Type of a single- or double-precision floating-point type, 6451 // 64-bit containerized vectors or 128-bit containerized vectors with one 6452 // to four Elements. 6453 // Variadic functions should always marshal to the base standard. 6454 bool IsAAPCS_VFP = 6455 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6456 6457 Ty = useFirstFieldIfTransparentUnion(Ty); 6458 6459 // Handle illegal vector types here. 6460 if (isIllegalVectorType(Ty)) 6461 return coerceIllegalVector(Ty); 6462 6463 if (!isAggregateTypeForABI(Ty)) { 6464 // Treat an enum type as its underlying type. 6465 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6466 Ty = EnumTy->getDecl()->getIntegerType(); 6467 } 6468 6469 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6470 if (EIT->getNumBits() > 64) 6471 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6472 6473 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6474 : ABIArgInfo::getDirect()); 6475 } 6476 6477 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6478 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6479 } 6480 6481 // Ignore empty records. 6482 if (isEmptyRecord(getContext(), Ty, true)) 6483 return ABIArgInfo::getIgnore(); 6484 6485 if (IsAAPCS_VFP) { 6486 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6487 // into VFP registers. 6488 const Type *Base = nullptr; 6489 uint64_t Members = 0; 6490 if (isHomogeneousAggregate(Ty, Base, Members)) 6491 return classifyHomogeneousAggregate(Ty, Base, Members); 6492 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6493 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6494 // this convention even for a variadic function: the backend will use GPRs 6495 // if needed. 6496 const Type *Base = nullptr; 6497 uint64_t Members = 0; 6498 if (isHomogeneousAggregate(Ty, Base, Members)) { 6499 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6500 llvm::Type *Ty = 6501 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6502 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6503 } 6504 } 6505 6506 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6507 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6508 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6509 // bigger than 128-bits, they get placed in space allocated by the caller, 6510 // and a pointer is passed. 6511 return ABIArgInfo::getIndirect( 6512 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6513 } 6514 6515 // Support byval for ARM. 6516 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6517 // most 8-byte. We realign the indirect argument if type alignment is bigger 6518 // than ABI alignment. 6519 uint64_t ABIAlign = 4; 6520 uint64_t TyAlign; 6521 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6522 getABIKind() == ARMABIInfo::AAPCS) { 6523 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6524 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6525 } else { 6526 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6527 } 6528 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6529 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6530 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6531 /*ByVal=*/true, 6532 /*Realign=*/TyAlign > ABIAlign); 6533 } 6534 6535 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6536 // same size and alignment. 6537 if (getTarget().isRenderScriptTarget()) { 6538 return coerceToIntArray(Ty, getContext(), getVMContext()); 6539 } 6540 6541 // Otherwise, pass by coercing to a structure of the appropriate size. 6542 llvm::Type* ElemTy; 6543 unsigned SizeRegs; 6544 // FIXME: Try to match the types of the arguments more accurately where 6545 // we can. 6546 if (TyAlign <= 4) { 6547 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6548 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6549 } else { 6550 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6551 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6552 } 6553 6554 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6555 } 6556 6557 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6558 llvm::LLVMContext &VMContext) { 6559 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6560 // is called integer-like if its size is less than or equal to one word, and 6561 // the offset of each of its addressable sub-fields is zero. 6562 6563 uint64_t Size = Context.getTypeSize(Ty); 6564 6565 // Check that the type fits in a word. 6566 if (Size > 32) 6567 return false; 6568 6569 // FIXME: Handle vector types! 6570 if (Ty->isVectorType()) 6571 return false; 6572 6573 // Float types are never treated as "integer like". 6574 if (Ty->isRealFloatingType()) 6575 return false; 6576 6577 // If this is a builtin or pointer type then it is ok. 6578 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6579 return true; 6580 6581 // Small complex integer types are "integer like". 6582 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6583 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6584 6585 // Single element and zero sized arrays should be allowed, by the definition 6586 // above, but they are not. 6587 6588 // Otherwise, it must be a record type. 6589 const RecordType *RT = Ty->getAs<RecordType>(); 6590 if (!RT) return false; 6591 6592 // Ignore records with flexible arrays. 6593 const RecordDecl *RD = RT->getDecl(); 6594 if (RD->hasFlexibleArrayMember()) 6595 return false; 6596 6597 // Check that all sub-fields are at offset 0, and are themselves "integer 6598 // like". 6599 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6600 6601 bool HadField = false; 6602 unsigned idx = 0; 6603 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6604 i != e; ++i, ++idx) { 6605 const FieldDecl *FD = *i; 6606 6607 // Bit-fields are not addressable, we only need to verify they are "integer 6608 // like". We still have to disallow a subsequent non-bitfield, for example: 6609 // struct { int : 0; int x } 6610 // is non-integer like according to gcc. 6611 if (FD->isBitField()) { 6612 if (!RD->isUnion()) 6613 HadField = true; 6614 6615 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6616 return false; 6617 6618 continue; 6619 } 6620 6621 // Check if this field is at offset 0. 6622 if (Layout.getFieldOffset(idx) != 0) 6623 return false; 6624 6625 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6626 return false; 6627 6628 // Only allow at most one field in a structure. This doesn't match the 6629 // wording above, but follows gcc in situations with a field following an 6630 // empty structure. 6631 if (!RD->isUnion()) { 6632 if (HadField) 6633 return false; 6634 6635 HadField = true; 6636 } 6637 } 6638 6639 return true; 6640 } 6641 6642 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6643 unsigned functionCallConv) const { 6644 6645 // Variadic functions should always marshal to the base standard. 6646 bool IsAAPCS_VFP = 6647 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6648 6649 if (RetTy->isVoidType()) 6650 return ABIArgInfo::getIgnore(); 6651 6652 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6653 // Large vector types should be returned via memory. 6654 if (getContext().getTypeSize(RetTy) > 128) 6655 return getNaturalAlignIndirect(RetTy); 6656 // TODO: FP16/BF16 vectors should be converted to integer vectors 6657 // This check is similar to isIllegalVectorType - refactor? 6658 if ((!getTarget().hasLegalHalfType() && 6659 (VT->getElementType()->isFloat16Type() || 6660 VT->getElementType()->isHalfType())) || 6661 (IsFloatABISoftFP && 6662 VT->getElementType()->isBFloat16Type())) 6663 return coerceIllegalVector(RetTy); 6664 } 6665 6666 if (!isAggregateTypeForABI(RetTy)) { 6667 // Treat an enum type as its underlying type. 6668 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6669 RetTy = EnumTy->getDecl()->getIntegerType(); 6670 6671 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6672 if (EIT->getNumBits() > 64) 6673 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6674 6675 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6676 : ABIArgInfo::getDirect(); 6677 } 6678 6679 // Are we following APCS? 6680 if (getABIKind() == APCS) { 6681 if (isEmptyRecord(getContext(), RetTy, false)) 6682 return ABIArgInfo::getIgnore(); 6683 6684 // Complex types are all returned as packed integers. 6685 // 6686 // FIXME: Consider using 2 x vector types if the back end handles them 6687 // correctly. 6688 if (RetTy->isAnyComplexType()) 6689 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6690 getVMContext(), getContext().getTypeSize(RetTy))); 6691 6692 // Integer like structures are returned in r0. 6693 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6694 // Return in the smallest viable integer type. 6695 uint64_t Size = getContext().getTypeSize(RetTy); 6696 if (Size <= 8) 6697 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6698 if (Size <= 16) 6699 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6700 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6701 } 6702 6703 // Otherwise return in memory. 6704 return getNaturalAlignIndirect(RetTy); 6705 } 6706 6707 // Otherwise this is an AAPCS variant. 6708 6709 if (isEmptyRecord(getContext(), RetTy, true)) 6710 return ABIArgInfo::getIgnore(); 6711 6712 // Check for homogeneous aggregates with AAPCS-VFP. 6713 if (IsAAPCS_VFP) { 6714 const Type *Base = nullptr; 6715 uint64_t Members = 0; 6716 if (isHomogeneousAggregate(RetTy, Base, Members)) 6717 return classifyHomogeneousAggregate(RetTy, Base, Members); 6718 } 6719 6720 // Aggregates <= 4 bytes are returned in r0; other aggregates 6721 // are returned indirectly. 6722 uint64_t Size = getContext().getTypeSize(RetTy); 6723 if (Size <= 32) { 6724 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6725 // same size and alignment. 6726 if (getTarget().isRenderScriptTarget()) { 6727 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6728 } 6729 if (getDataLayout().isBigEndian()) 6730 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6731 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6732 6733 // Return in the smallest viable integer type. 6734 if (Size <= 8) 6735 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6736 if (Size <= 16) 6737 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6738 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6739 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6740 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6741 llvm::Type *CoerceTy = 6742 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6743 return ABIArgInfo::getDirect(CoerceTy); 6744 } 6745 6746 return getNaturalAlignIndirect(RetTy); 6747 } 6748 6749 /// isIllegalVector - check whether Ty is an illegal vector type. 6750 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6751 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6752 // On targets that don't support half, fp16 or bfloat, they are expanded 6753 // into float, and we don't want the ABI to depend on whether or not they 6754 // are supported in hardware. Thus return false to coerce vectors of these 6755 // types into integer vectors. 6756 // We do not depend on hasLegalHalfType for bfloat as it is a 6757 // separate IR type. 6758 if ((!getTarget().hasLegalHalfType() && 6759 (VT->getElementType()->isFloat16Type() || 6760 VT->getElementType()->isHalfType())) || 6761 (IsFloatABISoftFP && 6762 VT->getElementType()->isBFloat16Type())) 6763 return true; 6764 if (isAndroid()) { 6765 // Android shipped using Clang 3.1, which supported a slightly different 6766 // vector ABI. The primary differences were that 3-element vector types 6767 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6768 // accepts that legacy behavior for Android only. 6769 // Check whether VT is legal. 6770 unsigned NumElements = VT->getNumElements(); 6771 // NumElements should be power of 2 or equal to 3. 6772 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6773 return true; 6774 } else { 6775 // Check whether VT is legal. 6776 unsigned NumElements = VT->getNumElements(); 6777 uint64_t Size = getContext().getTypeSize(VT); 6778 // NumElements should be power of 2. 6779 if (!llvm::isPowerOf2_32(NumElements)) 6780 return true; 6781 // Size should be greater than 32 bits. 6782 return Size <= 32; 6783 } 6784 } 6785 return false; 6786 } 6787 6788 /// Return true if a type contains any 16-bit floating point vectors 6789 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6790 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6791 uint64_t NElements = AT->getSize().getZExtValue(); 6792 if (NElements == 0) 6793 return false; 6794 return containsAnyFP16Vectors(AT->getElementType()); 6795 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6796 const RecordDecl *RD = RT->getDecl(); 6797 6798 // If this is a C++ record, check the bases first. 6799 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6800 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6801 return containsAnyFP16Vectors(B.getType()); 6802 })) 6803 return true; 6804 6805 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6806 return FD && containsAnyFP16Vectors(FD->getType()); 6807 })) 6808 return true; 6809 6810 return false; 6811 } else { 6812 if (const VectorType *VT = Ty->getAs<VectorType>()) 6813 return (VT->getElementType()->isFloat16Type() || 6814 VT->getElementType()->isBFloat16Type() || 6815 VT->getElementType()->isHalfType()); 6816 return false; 6817 } 6818 } 6819 6820 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6821 llvm::Type *eltTy, 6822 unsigned numElts) const { 6823 if (!llvm::isPowerOf2_32(numElts)) 6824 return false; 6825 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6826 if (size > 64) 6827 return false; 6828 if (vectorSize.getQuantity() != 8 && 6829 (vectorSize.getQuantity() != 16 || numElts == 1)) 6830 return false; 6831 return true; 6832 } 6833 6834 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6835 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6836 // double, or 64-bit or 128-bit vectors. 6837 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6838 if (BT->getKind() == BuiltinType::Float || 6839 BT->getKind() == BuiltinType::Double || 6840 BT->getKind() == BuiltinType::LongDouble) 6841 return true; 6842 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6843 unsigned VecSize = getContext().getTypeSize(VT); 6844 if (VecSize == 64 || VecSize == 128) 6845 return true; 6846 } 6847 return false; 6848 } 6849 6850 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6851 uint64_t Members) const { 6852 return Members <= 4; 6853 } 6854 6855 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6856 bool acceptHalf) const { 6857 // Give precedence to user-specified calling conventions. 6858 if (callConvention != llvm::CallingConv::C) 6859 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6860 else 6861 return (getABIKind() == AAPCS_VFP) || 6862 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6863 } 6864 6865 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6866 QualType Ty) const { 6867 CharUnits SlotSize = CharUnits::fromQuantity(4); 6868 6869 // Empty records are ignored for parameter passing purposes. 6870 if (isEmptyRecord(getContext(), Ty, true)) { 6871 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6872 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6873 return Addr; 6874 } 6875 6876 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6877 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6878 6879 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6880 bool IsIndirect = false; 6881 const Type *Base = nullptr; 6882 uint64_t Members = 0; 6883 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6884 IsIndirect = true; 6885 6886 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6887 // allocated by the caller. 6888 } else if (TySize > CharUnits::fromQuantity(16) && 6889 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6890 !isHomogeneousAggregate(Ty, Base, Members)) { 6891 IsIndirect = true; 6892 6893 // Otherwise, bound the type's ABI alignment. 6894 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6895 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6896 // Our callers should be prepared to handle an under-aligned address. 6897 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6898 getABIKind() == ARMABIInfo::AAPCS) { 6899 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6900 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6901 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6902 // ARMv7k allows type alignment up to 16 bytes. 6903 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6904 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6905 } else { 6906 TyAlignForABI = CharUnits::fromQuantity(4); 6907 } 6908 6909 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6910 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6911 SlotSize, /*AllowHigherAlign*/ true); 6912 } 6913 6914 //===----------------------------------------------------------------------===// 6915 // NVPTX ABI Implementation 6916 //===----------------------------------------------------------------------===// 6917 6918 namespace { 6919 6920 class NVPTXTargetCodeGenInfo; 6921 6922 class NVPTXABIInfo : public ABIInfo { 6923 NVPTXTargetCodeGenInfo &CGInfo; 6924 6925 public: 6926 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6927 : ABIInfo(CGT), CGInfo(Info) {} 6928 6929 ABIArgInfo classifyReturnType(QualType RetTy) const; 6930 ABIArgInfo classifyArgumentType(QualType Ty) const; 6931 6932 void computeInfo(CGFunctionInfo &FI) const override; 6933 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6934 QualType Ty) const override; 6935 bool isUnsupportedType(QualType T) const; 6936 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6937 }; 6938 6939 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6940 public: 6941 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6942 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6943 6944 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6945 CodeGen::CodeGenModule &M) const override; 6946 bool shouldEmitStaticExternCAliases() const override; 6947 6948 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6949 // On the device side, surface reference is represented as an object handle 6950 // in 64-bit integer. 6951 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6952 } 6953 6954 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6955 // On the device side, texture reference is represented as an object handle 6956 // in 64-bit integer. 6957 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6958 } 6959 6960 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6961 LValue Src) const override { 6962 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6963 return true; 6964 } 6965 6966 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6967 LValue Src) const override { 6968 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6969 return true; 6970 } 6971 6972 private: 6973 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6974 // resulting MDNode to the nvvm.annotations MDNode. 6975 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6976 int Operand); 6977 6978 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6979 LValue Src) { 6980 llvm::Value *Handle = nullptr; 6981 llvm::Constant *C = 6982 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6983 // Lookup `addrspacecast` through the constant pointer if any. 6984 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6985 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6986 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6987 // Load the handle from the specific global variable using 6988 // `nvvm.texsurf.handle.internal` intrinsic. 6989 Handle = CGF.EmitRuntimeCall( 6990 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6991 {GV->getType()}), 6992 {GV}, "texsurf_handle"); 6993 } else 6994 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6995 CGF.EmitStoreOfScalar(Handle, Dst); 6996 } 6997 }; 6998 6999 /// Checks if the type is unsupported directly by the current target. 7000 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7001 ASTContext &Context = getContext(); 7002 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7003 return true; 7004 if (!Context.getTargetInfo().hasFloat128Type() && 7005 (T->isFloat128Type() || 7006 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7007 return true; 7008 if (const auto *EIT = T->getAs<ExtIntType>()) 7009 return EIT->getNumBits() > 7010 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7011 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7012 Context.getTypeSize(T) > 64U) 7013 return true; 7014 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7015 return isUnsupportedType(AT->getElementType()); 7016 const auto *RT = T->getAs<RecordType>(); 7017 if (!RT) 7018 return false; 7019 const RecordDecl *RD = RT->getDecl(); 7020 7021 // If this is a C++ record, check the bases first. 7022 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7023 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7024 if (isUnsupportedType(I.getType())) 7025 return true; 7026 7027 for (const FieldDecl *I : RD->fields()) 7028 if (isUnsupportedType(I->getType())) 7029 return true; 7030 return false; 7031 } 7032 7033 /// Coerce the given type into an array with maximum allowed size of elements. 7034 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7035 unsigned MaxSize) const { 7036 // Alignment and Size are measured in bits. 7037 const uint64_t Size = getContext().getTypeSize(Ty); 7038 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7039 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7040 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7041 const uint64_t NumElements = (Size + Div - 1) / Div; 7042 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7043 } 7044 7045 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7046 if (RetTy->isVoidType()) 7047 return ABIArgInfo::getIgnore(); 7048 7049 if (getContext().getLangOpts().OpenMP && 7050 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7051 return coerceToIntArrayWithLimit(RetTy, 64); 7052 7053 // note: this is different from default ABI 7054 if (!RetTy->isScalarType()) 7055 return ABIArgInfo::getDirect(); 7056 7057 // Treat an enum type as its underlying type. 7058 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7059 RetTy = EnumTy->getDecl()->getIntegerType(); 7060 7061 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7062 : ABIArgInfo::getDirect()); 7063 } 7064 7065 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7066 // Treat an enum type as its underlying type. 7067 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7068 Ty = EnumTy->getDecl()->getIntegerType(); 7069 7070 // Return aggregates type as indirect by value 7071 if (isAggregateTypeForABI(Ty)) { 7072 // Under CUDA device compilation, tex/surf builtin types are replaced with 7073 // object types and passed directly. 7074 if (getContext().getLangOpts().CUDAIsDevice) { 7075 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7076 return ABIArgInfo::getDirect( 7077 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7078 if (Ty->isCUDADeviceBuiltinTextureType()) 7079 return ABIArgInfo::getDirect( 7080 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7081 } 7082 return getNaturalAlignIndirect(Ty, /* byval */ true); 7083 } 7084 7085 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7086 if ((EIT->getNumBits() > 128) || 7087 (!getContext().getTargetInfo().hasInt128Type() && 7088 EIT->getNumBits() > 64)) 7089 return getNaturalAlignIndirect(Ty, /* byval */ true); 7090 } 7091 7092 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7093 : ABIArgInfo::getDirect()); 7094 } 7095 7096 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7097 if (!getCXXABI().classifyReturnType(FI)) 7098 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7099 for (auto &I : FI.arguments()) 7100 I.info = classifyArgumentType(I.type); 7101 7102 // Always honor user-specified calling convention. 7103 if (FI.getCallingConvention() != llvm::CallingConv::C) 7104 return; 7105 7106 FI.setEffectiveCallingConvention(getRuntimeCC()); 7107 } 7108 7109 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7110 QualType Ty) const { 7111 llvm_unreachable("NVPTX does not support varargs"); 7112 } 7113 7114 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7115 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7116 if (GV->isDeclaration()) 7117 return; 7118 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7119 if (VD) { 7120 if (M.getLangOpts().CUDA) { 7121 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7122 addNVVMMetadata(GV, "surface", 1); 7123 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7124 addNVVMMetadata(GV, "texture", 1); 7125 return; 7126 } 7127 } 7128 7129 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7130 if (!FD) return; 7131 7132 llvm::Function *F = cast<llvm::Function>(GV); 7133 7134 // Perform special handling in OpenCL mode 7135 if (M.getLangOpts().OpenCL) { 7136 // Use OpenCL function attributes to check for kernel functions 7137 // By default, all functions are device functions 7138 if (FD->hasAttr<OpenCLKernelAttr>()) { 7139 // OpenCL __kernel functions get kernel metadata 7140 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7141 addNVVMMetadata(F, "kernel", 1); 7142 // And kernel functions are not subject to inlining 7143 F->addFnAttr(llvm::Attribute::NoInline); 7144 } 7145 } 7146 7147 // Perform special handling in CUDA mode. 7148 if (M.getLangOpts().CUDA) { 7149 // CUDA __global__ functions get a kernel metadata entry. Since 7150 // __global__ functions cannot be called from the device, we do not 7151 // need to set the noinline attribute. 7152 if (FD->hasAttr<CUDAGlobalAttr>()) { 7153 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7154 addNVVMMetadata(F, "kernel", 1); 7155 } 7156 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7157 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7158 llvm::APSInt MaxThreads(32); 7159 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7160 if (MaxThreads > 0) 7161 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7162 7163 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7164 // not specified in __launch_bounds__ or if the user specified a 0 value, 7165 // we don't have to add a PTX directive. 7166 if (Attr->getMinBlocks()) { 7167 llvm::APSInt MinBlocks(32); 7168 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7169 if (MinBlocks > 0) 7170 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7171 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7172 } 7173 } 7174 } 7175 } 7176 7177 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7178 StringRef Name, int Operand) { 7179 llvm::Module *M = GV->getParent(); 7180 llvm::LLVMContext &Ctx = M->getContext(); 7181 7182 // Get "nvvm.annotations" metadata node 7183 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7184 7185 llvm::Metadata *MDVals[] = { 7186 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7187 llvm::ConstantAsMetadata::get( 7188 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7189 // Append metadata to nvvm.annotations 7190 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7191 } 7192 7193 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7194 return false; 7195 } 7196 } 7197 7198 //===----------------------------------------------------------------------===// 7199 // SystemZ ABI Implementation 7200 //===----------------------------------------------------------------------===// 7201 7202 namespace { 7203 7204 class SystemZABIInfo : public SwiftABIInfo { 7205 bool HasVector; 7206 bool IsSoftFloatABI; 7207 7208 public: 7209 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7210 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7211 7212 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7213 bool isCompoundType(QualType Ty) const; 7214 bool isVectorArgumentType(QualType Ty) const; 7215 bool isFPArgumentType(QualType Ty) const; 7216 QualType GetSingleElementType(QualType Ty) const; 7217 7218 ABIArgInfo classifyReturnType(QualType RetTy) const; 7219 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7220 7221 void computeInfo(CGFunctionInfo &FI) const override { 7222 if (!getCXXABI().classifyReturnType(FI)) 7223 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7224 for (auto &I : FI.arguments()) 7225 I.info = classifyArgumentType(I.type); 7226 } 7227 7228 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7229 QualType Ty) const override; 7230 7231 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7232 bool asReturnValue) const override { 7233 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7234 } 7235 bool isSwiftErrorInRegister() const override { 7236 return false; 7237 } 7238 }; 7239 7240 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7241 public: 7242 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7243 : TargetCodeGenInfo( 7244 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7245 }; 7246 7247 } 7248 7249 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7250 // Treat an enum type as its underlying type. 7251 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7252 Ty = EnumTy->getDecl()->getIntegerType(); 7253 7254 // Promotable integer types are required to be promoted by the ABI. 7255 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7256 return true; 7257 7258 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7259 if (EIT->getNumBits() < 64) 7260 return true; 7261 7262 // 32-bit values must also be promoted. 7263 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7264 switch (BT->getKind()) { 7265 case BuiltinType::Int: 7266 case BuiltinType::UInt: 7267 return true; 7268 default: 7269 return false; 7270 } 7271 return false; 7272 } 7273 7274 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7275 return (Ty->isAnyComplexType() || 7276 Ty->isVectorType() || 7277 isAggregateTypeForABI(Ty)); 7278 } 7279 7280 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7281 return (HasVector && 7282 Ty->isVectorType() && 7283 getContext().getTypeSize(Ty) <= 128); 7284 } 7285 7286 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7287 if (IsSoftFloatABI) 7288 return false; 7289 7290 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7291 switch (BT->getKind()) { 7292 case BuiltinType::Float: 7293 case BuiltinType::Double: 7294 return true; 7295 default: 7296 return false; 7297 } 7298 7299 return false; 7300 } 7301 7302 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7303 const RecordType *RT = Ty->getAs<RecordType>(); 7304 7305 if (RT && RT->isStructureOrClassType()) { 7306 const RecordDecl *RD = RT->getDecl(); 7307 QualType Found; 7308 7309 // If this is a C++ record, check the bases first. 7310 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7311 for (const auto &I : CXXRD->bases()) { 7312 QualType Base = I.getType(); 7313 7314 // Empty bases don't affect things either way. 7315 if (isEmptyRecord(getContext(), Base, true)) 7316 continue; 7317 7318 if (!Found.isNull()) 7319 return Ty; 7320 Found = GetSingleElementType(Base); 7321 } 7322 7323 // Check the fields. 7324 for (const auto *FD : RD->fields()) { 7325 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7326 // Unlike isSingleElementStruct(), empty structure and array fields 7327 // do count. So do anonymous bitfields that aren't zero-sized. 7328 if (getContext().getLangOpts().CPlusPlus && 7329 FD->isZeroLengthBitField(getContext())) 7330 continue; 7331 // Like isSingleElementStruct(), ignore C++20 empty data members. 7332 if (FD->hasAttr<NoUniqueAddressAttr>() && 7333 isEmptyRecord(getContext(), FD->getType(), true)) 7334 continue; 7335 7336 // Unlike isSingleElementStruct(), arrays do not count. 7337 // Nested structures still do though. 7338 if (!Found.isNull()) 7339 return Ty; 7340 Found = GetSingleElementType(FD->getType()); 7341 } 7342 7343 // Unlike isSingleElementStruct(), trailing padding is allowed. 7344 // An 8-byte aligned struct s { float f; } is passed as a double. 7345 if (!Found.isNull()) 7346 return Found; 7347 } 7348 7349 return Ty; 7350 } 7351 7352 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7353 QualType Ty) const { 7354 // Assume that va_list type is correct; should be pointer to LLVM type: 7355 // struct { 7356 // i64 __gpr; 7357 // i64 __fpr; 7358 // i8 *__overflow_arg_area; 7359 // i8 *__reg_save_area; 7360 // }; 7361 7362 // Every non-vector argument occupies 8 bytes and is passed by preference 7363 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7364 // always passed on the stack. 7365 Ty = getContext().getCanonicalType(Ty); 7366 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7367 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7368 llvm::Type *DirectTy = ArgTy; 7369 ABIArgInfo AI = classifyArgumentType(Ty); 7370 bool IsIndirect = AI.isIndirect(); 7371 bool InFPRs = false; 7372 bool IsVector = false; 7373 CharUnits UnpaddedSize; 7374 CharUnits DirectAlign; 7375 if (IsIndirect) { 7376 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7377 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7378 } else { 7379 if (AI.getCoerceToType()) 7380 ArgTy = AI.getCoerceToType(); 7381 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7382 IsVector = ArgTy->isVectorTy(); 7383 UnpaddedSize = TyInfo.first; 7384 DirectAlign = TyInfo.second; 7385 } 7386 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7387 if (IsVector && UnpaddedSize > PaddedSize) 7388 PaddedSize = CharUnits::fromQuantity(16); 7389 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7390 7391 CharUnits Padding = (PaddedSize - UnpaddedSize); 7392 7393 llvm::Type *IndexTy = CGF.Int64Ty; 7394 llvm::Value *PaddedSizeV = 7395 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7396 7397 if (IsVector) { 7398 // Work out the address of a vector argument on the stack. 7399 // Vector arguments are always passed in the high bits of a 7400 // single (8 byte) or double (16 byte) stack slot. 7401 Address OverflowArgAreaPtr = 7402 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7403 Address OverflowArgArea = 7404 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7405 TyInfo.second); 7406 Address MemAddr = 7407 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7408 7409 // Update overflow_arg_area_ptr pointer 7410 llvm::Value *NewOverflowArgArea = 7411 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7412 "overflow_arg_area"); 7413 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7414 7415 return MemAddr; 7416 } 7417 7418 assert(PaddedSize.getQuantity() == 8); 7419 7420 unsigned MaxRegs, RegCountField, RegSaveIndex; 7421 CharUnits RegPadding; 7422 if (InFPRs) { 7423 MaxRegs = 4; // Maximum of 4 FPR arguments 7424 RegCountField = 1; // __fpr 7425 RegSaveIndex = 16; // save offset for f0 7426 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7427 } else { 7428 MaxRegs = 5; // Maximum of 5 GPR arguments 7429 RegCountField = 0; // __gpr 7430 RegSaveIndex = 2; // save offset for r2 7431 RegPadding = Padding; // values are passed in the low bits of a GPR 7432 } 7433 7434 Address RegCountPtr = 7435 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7436 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7437 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7438 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7439 "fits_in_regs"); 7440 7441 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7442 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7443 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7444 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7445 7446 // Emit code to load the value if it was passed in registers. 7447 CGF.EmitBlock(InRegBlock); 7448 7449 // Work out the address of an argument register. 7450 llvm::Value *ScaledRegCount = 7451 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7452 llvm::Value *RegBase = 7453 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7454 + RegPadding.getQuantity()); 7455 llvm::Value *RegOffset = 7456 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7457 Address RegSaveAreaPtr = 7458 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7459 llvm::Value *RegSaveArea = 7460 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7461 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7462 "raw_reg_addr"), 7463 PaddedSize); 7464 Address RegAddr = 7465 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7466 7467 // Update the register count 7468 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7469 llvm::Value *NewRegCount = 7470 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7471 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7472 CGF.EmitBranch(ContBlock); 7473 7474 // Emit code to load the value if it was passed in memory. 7475 CGF.EmitBlock(InMemBlock); 7476 7477 // Work out the address of a stack argument. 7478 Address OverflowArgAreaPtr = 7479 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7480 Address OverflowArgArea = 7481 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7482 PaddedSize); 7483 Address RawMemAddr = 7484 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7485 Address MemAddr = 7486 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7487 7488 // Update overflow_arg_area_ptr pointer 7489 llvm::Value *NewOverflowArgArea = 7490 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7491 "overflow_arg_area"); 7492 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7493 CGF.EmitBranch(ContBlock); 7494 7495 // Return the appropriate result. 7496 CGF.EmitBlock(ContBlock); 7497 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7498 MemAddr, InMemBlock, "va_arg.addr"); 7499 7500 if (IsIndirect) 7501 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7502 TyInfo.second); 7503 7504 return ResAddr; 7505 } 7506 7507 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7508 if (RetTy->isVoidType()) 7509 return ABIArgInfo::getIgnore(); 7510 if (isVectorArgumentType(RetTy)) 7511 return ABIArgInfo::getDirect(); 7512 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7513 return getNaturalAlignIndirect(RetTy); 7514 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7515 : ABIArgInfo::getDirect()); 7516 } 7517 7518 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7519 // Handle the generic C++ ABI. 7520 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7521 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7522 7523 // Integers and enums are extended to full register width. 7524 if (isPromotableIntegerTypeForABI(Ty)) 7525 return ABIArgInfo::getExtend(Ty); 7526 7527 // Handle vector types and vector-like structure types. Note that 7528 // as opposed to float-like structure types, we do not allow any 7529 // padding for vector-like structures, so verify the sizes match. 7530 uint64_t Size = getContext().getTypeSize(Ty); 7531 QualType SingleElementTy = GetSingleElementType(Ty); 7532 if (isVectorArgumentType(SingleElementTy) && 7533 getContext().getTypeSize(SingleElementTy) == Size) 7534 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7535 7536 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7537 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7538 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7539 7540 // Handle small structures. 7541 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7542 // Structures with flexible arrays have variable length, so really 7543 // fail the size test above. 7544 const RecordDecl *RD = RT->getDecl(); 7545 if (RD->hasFlexibleArrayMember()) 7546 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7547 7548 // The structure is passed as an unextended integer, a float, or a double. 7549 llvm::Type *PassTy; 7550 if (isFPArgumentType(SingleElementTy)) { 7551 assert(Size == 32 || Size == 64); 7552 if (Size == 32) 7553 PassTy = llvm::Type::getFloatTy(getVMContext()); 7554 else 7555 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7556 } else 7557 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7558 return ABIArgInfo::getDirect(PassTy); 7559 } 7560 7561 // Non-structure compounds are passed indirectly. 7562 if (isCompoundType(Ty)) 7563 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7564 7565 return ABIArgInfo::getDirect(nullptr); 7566 } 7567 7568 //===----------------------------------------------------------------------===// 7569 // MSP430 ABI Implementation 7570 //===----------------------------------------------------------------------===// 7571 7572 namespace { 7573 7574 class MSP430ABIInfo : public DefaultABIInfo { 7575 static ABIArgInfo complexArgInfo() { 7576 ABIArgInfo Info = ABIArgInfo::getDirect(); 7577 Info.setCanBeFlattened(false); 7578 return Info; 7579 } 7580 7581 public: 7582 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7583 7584 ABIArgInfo classifyReturnType(QualType RetTy) const { 7585 if (RetTy->isAnyComplexType()) 7586 return complexArgInfo(); 7587 7588 return DefaultABIInfo::classifyReturnType(RetTy); 7589 } 7590 7591 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7592 if (RetTy->isAnyComplexType()) 7593 return complexArgInfo(); 7594 7595 return DefaultABIInfo::classifyArgumentType(RetTy); 7596 } 7597 7598 // Just copy the original implementations because 7599 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7600 void computeInfo(CGFunctionInfo &FI) const override { 7601 if (!getCXXABI().classifyReturnType(FI)) 7602 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7603 for (auto &I : FI.arguments()) 7604 I.info = classifyArgumentType(I.type); 7605 } 7606 7607 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7608 QualType Ty) const override { 7609 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7610 } 7611 }; 7612 7613 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7614 public: 7615 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7616 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7617 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7618 CodeGen::CodeGenModule &M) const override; 7619 }; 7620 7621 } 7622 7623 void MSP430TargetCodeGenInfo::setTargetAttributes( 7624 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7625 if (GV->isDeclaration()) 7626 return; 7627 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7628 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7629 if (!InterruptAttr) 7630 return; 7631 7632 // Handle 'interrupt' attribute: 7633 llvm::Function *F = cast<llvm::Function>(GV); 7634 7635 // Step 1: Set ISR calling convention. 7636 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7637 7638 // Step 2: Add attributes goodness. 7639 F->addFnAttr(llvm::Attribute::NoInline); 7640 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7641 } 7642 } 7643 7644 //===----------------------------------------------------------------------===// 7645 // MIPS ABI Implementation. This works for both little-endian and 7646 // big-endian variants. 7647 //===----------------------------------------------------------------------===// 7648 7649 namespace { 7650 class MipsABIInfo : public ABIInfo { 7651 bool IsO32; 7652 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7653 void CoerceToIntArgs(uint64_t TySize, 7654 SmallVectorImpl<llvm::Type *> &ArgList) const; 7655 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7656 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7657 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7658 public: 7659 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7660 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7661 StackAlignInBytes(IsO32 ? 8 : 16) {} 7662 7663 ABIArgInfo classifyReturnType(QualType RetTy) const; 7664 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7665 void computeInfo(CGFunctionInfo &FI) const override; 7666 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7667 QualType Ty) const override; 7668 ABIArgInfo extendType(QualType Ty) const; 7669 }; 7670 7671 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7672 unsigned SizeOfUnwindException; 7673 public: 7674 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7675 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7676 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7677 7678 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7679 return 29; 7680 } 7681 7682 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7683 CodeGen::CodeGenModule &CGM) const override { 7684 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7685 if (!FD) return; 7686 llvm::Function *Fn = cast<llvm::Function>(GV); 7687 7688 if (FD->hasAttr<MipsLongCallAttr>()) 7689 Fn->addFnAttr("long-call"); 7690 else if (FD->hasAttr<MipsShortCallAttr>()) 7691 Fn->addFnAttr("short-call"); 7692 7693 // Other attributes do not have a meaning for declarations. 7694 if (GV->isDeclaration()) 7695 return; 7696 7697 if (FD->hasAttr<Mips16Attr>()) { 7698 Fn->addFnAttr("mips16"); 7699 } 7700 else if (FD->hasAttr<NoMips16Attr>()) { 7701 Fn->addFnAttr("nomips16"); 7702 } 7703 7704 if (FD->hasAttr<MicroMipsAttr>()) 7705 Fn->addFnAttr("micromips"); 7706 else if (FD->hasAttr<NoMicroMipsAttr>()) 7707 Fn->addFnAttr("nomicromips"); 7708 7709 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7710 if (!Attr) 7711 return; 7712 7713 const char *Kind; 7714 switch (Attr->getInterrupt()) { 7715 case MipsInterruptAttr::eic: Kind = "eic"; break; 7716 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7717 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7718 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7719 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7720 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7721 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7722 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7723 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7724 } 7725 7726 Fn->addFnAttr("interrupt", Kind); 7727 7728 } 7729 7730 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7731 llvm::Value *Address) const override; 7732 7733 unsigned getSizeOfUnwindException() const override { 7734 return SizeOfUnwindException; 7735 } 7736 }; 7737 } 7738 7739 void MipsABIInfo::CoerceToIntArgs( 7740 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7741 llvm::IntegerType *IntTy = 7742 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7743 7744 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7745 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7746 ArgList.push_back(IntTy); 7747 7748 // If necessary, add one more integer type to ArgList. 7749 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7750 7751 if (R) 7752 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7753 } 7754 7755 // In N32/64, an aligned double precision floating point field is passed in 7756 // a register. 7757 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7758 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7759 7760 if (IsO32) { 7761 CoerceToIntArgs(TySize, ArgList); 7762 return llvm::StructType::get(getVMContext(), ArgList); 7763 } 7764 7765 if (Ty->isComplexType()) 7766 return CGT.ConvertType(Ty); 7767 7768 const RecordType *RT = Ty->getAs<RecordType>(); 7769 7770 // Unions/vectors are passed in integer registers. 7771 if (!RT || !RT->isStructureOrClassType()) { 7772 CoerceToIntArgs(TySize, ArgList); 7773 return llvm::StructType::get(getVMContext(), ArgList); 7774 } 7775 7776 const RecordDecl *RD = RT->getDecl(); 7777 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7778 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7779 7780 uint64_t LastOffset = 0; 7781 unsigned idx = 0; 7782 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7783 7784 // Iterate over fields in the struct/class and check if there are any aligned 7785 // double fields. 7786 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7787 i != e; ++i, ++idx) { 7788 const QualType Ty = i->getType(); 7789 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7790 7791 if (!BT || BT->getKind() != BuiltinType::Double) 7792 continue; 7793 7794 uint64_t Offset = Layout.getFieldOffset(idx); 7795 if (Offset % 64) // Ignore doubles that are not aligned. 7796 continue; 7797 7798 // Add ((Offset - LastOffset) / 64) args of type i64. 7799 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7800 ArgList.push_back(I64); 7801 7802 // Add double type. 7803 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7804 LastOffset = Offset + 64; 7805 } 7806 7807 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7808 ArgList.append(IntArgList.begin(), IntArgList.end()); 7809 7810 return llvm::StructType::get(getVMContext(), ArgList); 7811 } 7812 7813 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7814 uint64_t Offset) const { 7815 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7816 return nullptr; 7817 7818 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7819 } 7820 7821 ABIArgInfo 7822 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7823 Ty = useFirstFieldIfTransparentUnion(Ty); 7824 7825 uint64_t OrigOffset = Offset; 7826 uint64_t TySize = getContext().getTypeSize(Ty); 7827 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7828 7829 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7830 (uint64_t)StackAlignInBytes); 7831 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7832 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7833 7834 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7835 // Ignore empty aggregates. 7836 if (TySize == 0) 7837 return ABIArgInfo::getIgnore(); 7838 7839 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7840 Offset = OrigOffset + MinABIStackAlignInBytes; 7841 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7842 } 7843 7844 // If we have reached here, aggregates are passed directly by coercing to 7845 // another structure type. Padding is inserted if the offset of the 7846 // aggregate is unaligned. 7847 ABIArgInfo ArgInfo = 7848 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7849 getPaddingType(OrigOffset, CurrOffset)); 7850 ArgInfo.setInReg(true); 7851 return ArgInfo; 7852 } 7853 7854 // Treat an enum type as its underlying type. 7855 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7856 Ty = EnumTy->getDecl()->getIntegerType(); 7857 7858 // Make sure we pass indirectly things that are too large. 7859 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7860 if (EIT->getNumBits() > 128 || 7861 (EIT->getNumBits() > 64 && 7862 !getContext().getTargetInfo().hasInt128Type())) 7863 return getNaturalAlignIndirect(Ty); 7864 7865 // All integral types are promoted to the GPR width. 7866 if (Ty->isIntegralOrEnumerationType()) 7867 return extendType(Ty); 7868 7869 return ABIArgInfo::getDirect( 7870 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7871 } 7872 7873 llvm::Type* 7874 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7875 const RecordType *RT = RetTy->getAs<RecordType>(); 7876 SmallVector<llvm::Type*, 8> RTList; 7877 7878 if (RT && RT->isStructureOrClassType()) { 7879 const RecordDecl *RD = RT->getDecl(); 7880 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7881 unsigned FieldCnt = Layout.getFieldCount(); 7882 7883 // N32/64 returns struct/classes in floating point registers if the 7884 // following conditions are met: 7885 // 1. The size of the struct/class is no larger than 128-bit. 7886 // 2. The struct/class has one or two fields all of which are floating 7887 // point types. 7888 // 3. The offset of the first field is zero (this follows what gcc does). 7889 // 7890 // Any other composite results are returned in integer registers. 7891 // 7892 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7893 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7894 for (; b != e; ++b) { 7895 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7896 7897 if (!BT || !BT->isFloatingPoint()) 7898 break; 7899 7900 RTList.push_back(CGT.ConvertType(b->getType())); 7901 } 7902 7903 if (b == e) 7904 return llvm::StructType::get(getVMContext(), RTList, 7905 RD->hasAttr<PackedAttr>()); 7906 7907 RTList.clear(); 7908 } 7909 } 7910 7911 CoerceToIntArgs(Size, RTList); 7912 return llvm::StructType::get(getVMContext(), RTList); 7913 } 7914 7915 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7916 uint64_t Size = getContext().getTypeSize(RetTy); 7917 7918 if (RetTy->isVoidType()) 7919 return ABIArgInfo::getIgnore(); 7920 7921 // O32 doesn't treat zero-sized structs differently from other structs. 7922 // However, N32/N64 ignores zero sized return values. 7923 if (!IsO32 && Size == 0) 7924 return ABIArgInfo::getIgnore(); 7925 7926 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7927 if (Size <= 128) { 7928 if (RetTy->isAnyComplexType()) 7929 return ABIArgInfo::getDirect(); 7930 7931 // O32 returns integer vectors in registers and N32/N64 returns all small 7932 // aggregates in registers. 7933 if (!IsO32 || 7934 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7935 ABIArgInfo ArgInfo = 7936 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7937 ArgInfo.setInReg(true); 7938 return ArgInfo; 7939 } 7940 } 7941 7942 return getNaturalAlignIndirect(RetTy); 7943 } 7944 7945 // Treat an enum type as its underlying type. 7946 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7947 RetTy = EnumTy->getDecl()->getIntegerType(); 7948 7949 // Make sure we pass indirectly things that are too large. 7950 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7951 if (EIT->getNumBits() > 128 || 7952 (EIT->getNumBits() > 64 && 7953 !getContext().getTargetInfo().hasInt128Type())) 7954 return getNaturalAlignIndirect(RetTy); 7955 7956 if (isPromotableIntegerTypeForABI(RetTy)) 7957 return ABIArgInfo::getExtend(RetTy); 7958 7959 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7960 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7961 return ABIArgInfo::getSignExtend(RetTy); 7962 7963 return ABIArgInfo::getDirect(); 7964 } 7965 7966 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7967 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7968 if (!getCXXABI().classifyReturnType(FI)) 7969 RetInfo = classifyReturnType(FI.getReturnType()); 7970 7971 // Check if a pointer to an aggregate is passed as a hidden argument. 7972 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7973 7974 for (auto &I : FI.arguments()) 7975 I.info = classifyArgumentType(I.type, Offset); 7976 } 7977 7978 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7979 QualType OrigTy) const { 7980 QualType Ty = OrigTy; 7981 7982 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7983 // Pointers are also promoted in the same way but this only matters for N32. 7984 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7985 unsigned PtrWidth = getTarget().getPointerWidth(0); 7986 bool DidPromote = false; 7987 if ((Ty->isIntegerType() && 7988 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7989 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7990 DidPromote = true; 7991 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7992 Ty->isSignedIntegerType()); 7993 } 7994 7995 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7996 7997 // The alignment of things in the argument area is never larger than 7998 // StackAlignInBytes. 7999 TyInfo.second = 8000 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 8001 8002 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8003 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8004 8005 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8006 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8007 8008 8009 // If there was a promotion, "unpromote" into a temporary. 8010 // TODO: can we just use a pointer into a subset of the original slot? 8011 if (DidPromote) { 8012 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8013 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8014 8015 // Truncate down to the right width. 8016 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8017 : CGF.IntPtrTy); 8018 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8019 if (OrigTy->isPointerType()) 8020 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8021 8022 CGF.Builder.CreateStore(V, Temp); 8023 Addr = Temp; 8024 } 8025 8026 return Addr; 8027 } 8028 8029 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8030 int TySize = getContext().getTypeSize(Ty); 8031 8032 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8033 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8034 return ABIArgInfo::getSignExtend(Ty); 8035 8036 return ABIArgInfo::getExtend(Ty); 8037 } 8038 8039 bool 8040 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8041 llvm::Value *Address) const { 8042 // This information comes from gcc's implementation, which seems to 8043 // as canonical as it gets. 8044 8045 // Everything on MIPS is 4 bytes. Double-precision FP registers 8046 // are aliased to pairs of single-precision FP registers. 8047 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8048 8049 // 0-31 are the general purpose registers, $0 - $31. 8050 // 32-63 are the floating-point registers, $f0 - $f31. 8051 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8052 // 66 is the (notional, I think) register for signal-handler return. 8053 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8054 8055 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8056 // They are one bit wide and ignored here. 8057 8058 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8059 // (coprocessor 1 is the FP unit) 8060 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8061 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8062 // 176-181 are the DSP accumulator registers. 8063 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8064 return false; 8065 } 8066 8067 //===----------------------------------------------------------------------===// 8068 // AVR ABI Implementation. 8069 //===----------------------------------------------------------------------===// 8070 8071 namespace { 8072 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8073 public: 8074 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8075 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8076 8077 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8078 CodeGen::CodeGenModule &CGM) const override { 8079 if (GV->isDeclaration()) 8080 return; 8081 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8082 if (!FD) return; 8083 auto *Fn = cast<llvm::Function>(GV); 8084 8085 if (FD->getAttr<AVRInterruptAttr>()) 8086 Fn->addFnAttr("interrupt"); 8087 8088 if (FD->getAttr<AVRSignalAttr>()) 8089 Fn->addFnAttr("signal"); 8090 } 8091 }; 8092 } 8093 8094 //===----------------------------------------------------------------------===// 8095 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8096 // Currently subclassed only to implement custom OpenCL C function attribute 8097 // handling. 8098 //===----------------------------------------------------------------------===// 8099 8100 namespace { 8101 8102 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8103 public: 8104 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8105 : DefaultTargetCodeGenInfo(CGT) {} 8106 8107 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8108 CodeGen::CodeGenModule &M) const override; 8109 }; 8110 8111 void TCETargetCodeGenInfo::setTargetAttributes( 8112 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8113 if (GV->isDeclaration()) 8114 return; 8115 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8116 if (!FD) return; 8117 8118 llvm::Function *F = cast<llvm::Function>(GV); 8119 8120 if (M.getLangOpts().OpenCL) { 8121 if (FD->hasAttr<OpenCLKernelAttr>()) { 8122 // OpenCL C Kernel functions are not subject to inlining 8123 F->addFnAttr(llvm::Attribute::NoInline); 8124 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8125 if (Attr) { 8126 // Convert the reqd_work_group_size() attributes to metadata. 8127 llvm::LLVMContext &Context = F->getContext(); 8128 llvm::NamedMDNode *OpenCLMetadata = 8129 M.getModule().getOrInsertNamedMetadata( 8130 "opencl.kernel_wg_size_info"); 8131 8132 SmallVector<llvm::Metadata *, 5> Operands; 8133 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8134 8135 Operands.push_back( 8136 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8137 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8138 Operands.push_back( 8139 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8140 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8141 Operands.push_back( 8142 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8143 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8144 8145 // Add a boolean constant operand for "required" (true) or "hint" 8146 // (false) for implementing the work_group_size_hint attr later. 8147 // Currently always true as the hint is not yet implemented. 8148 Operands.push_back( 8149 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8150 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8151 } 8152 } 8153 } 8154 } 8155 8156 } 8157 8158 //===----------------------------------------------------------------------===// 8159 // Hexagon ABI Implementation 8160 //===----------------------------------------------------------------------===// 8161 8162 namespace { 8163 8164 class HexagonABIInfo : public DefaultABIInfo { 8165 public: 8166 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8167 8168 private: 8169 ABIArgInfo classifyReturnType(QualType RetTy) const; 8170 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8171 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8172 8173 void computeInfo(CGFunctionInfo &FI) const override; 8174 8175 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8176 QualType Ty) const override; 8177 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8178 QualType Ty) const; 8179 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8180 QualType Ty) const; 8181 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8182 QualType Ty) const; 8183 }; 8184 8185 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8186 public: 8187 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8188 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8189 8190 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8191 return 29; 8192 } 8193 8194 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8195 CodeGen::CodeGenModule &GCM) const override { 8196 if (GV->isDeclaration()) 8197 return; 8198 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8199 if (!FD) 8200 return; 8201 } 8202 }; 8203 8204 } // namespace 8205 8206 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8207 unsigned RegsLeft = 6; 8208 if (!getCXXABI().classifyReturnType(FI)) 8209 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8210 for (auto &I : FI.arguments()) 8211 I.info = classifyArgumentType(I.type, &RegsLeft); 8212 } 8213 8214 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8215 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8216 " through registers"); 8217 8218 if (*RegsLeft == 0) 8219 return false; 8220 8221 if (Size <= 32) { 8222 (*RegsLeft)--; 8223 return true; 8224 } 8225 8226 if (2 <= (*RegsLeft & (~1U))) { 8227 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8228 return true; 8229 } 8230 8231 // Next available register was r5 but candidate was greater than 32-bits so it 8232 // has to go on the stack. However we still consume r5 8233 if (*RegsLeft == 1) 8234 *RegsLeft = 0; 8235 8236 return false; 8237 } 8238 8239 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8240 unsigned *RegsLeft) const { 8241 if (!isAggregateTypeForABI(Ty)) { 8242 // Treat an enum type as its underlying type. 8243 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8244 Ty = EnumTy->getDecl()->getIntegerType(); 8245 8246 uint64_t Size = getContext().getTypeSize(Ty); 8247 if (Size <= 64) 8248 HexagonAdjustRegsLeft(Size, RegsLeft); 8249 8250 if (Size > 64 && Ty->isExtIntType()) 8251 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8252 8253 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8254 : ABIArgInfo::getDirect(); 8255 } 8256 8257 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8258 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8259 8260 // Ignore empty records. 8261 if (isEmptyRecord(getContext(), Ty, true)) 8262 return ABIArgInfo::getIgnore(); 8263 8264 uint64_t Size = getContext().getTypeSize(Ty); 8265 unsigned Align = getContext().getTypeAlign(Ty); 8266 8267 if (Size > 64) 8268 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8269 8270 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8271 Align = Size <= 32 ? 32 : 64; 8272 if (Size <= Align) { 8273 // Pass in the smallest viable integer type. 8274 if (!llvm::isPowerOf2_64(Size)) 8275 Size = llvm::NextPowerOf2(Size); 8276 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8277 } 8278 return DefaultABIInfo::classifyArgumentType(Ty); 8279 } 8280 8281 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8282 if (RetTy->isVoidType()) 8283 return ABIArgInfo::getIgnore(); 8284 8285 const TargetInfo &T = CGT.getTarget(); 8286 uint64_t Size = getContext().getTypeSize(RetTy); 8287 8288 if (RetTy->getAs<VectorType>()) { 8289 // HVX vectors are returned in vector registers or register pairs. 8290 if (T.hasFeature("hvx")) { 8291 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8292 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8293 if (Size == VecSize || Size == 2*VecSize) 8294 return ABIArgInfo::getDirectInReg(); 8295 } 8296 // Large vector types should be returned via memory. 8297 if (Size > 64) 8298 return getNaturalAlignIndirect(RetTy); 8299 } 8300 8301 if (!isAggregateTypeForABI(RetTy)) { 8302 // Treat an enum type as its underlying type. 8303 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8304 RetTy = EnumTy->getDecl()->getIntegerType(); 8305 8306 if (Size > 64 && RetTy->isExtIntType()) 8307 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8308 8309 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8310 : ABIArgInfo::getDirect(); 8311 } 8312 8313 if (isEmptyRecord(getContext(), RetTy, true)) 8314 return ABIArgInfo::getIgnore(); 8315 8316 // Aggregates <= 8 bytes are returned in registers, other aggregates 8317 // are returned indirectly. 8318 if (Size <= 64) { 8319 // Return in the smallest viable integer type. 8320 if (!llvm::isPowerOf2_64(Size)) 8321 Size = llvm::NextPowerOf2(Size); 8322 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8323 } 8324 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8325 } 8326 8327 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8328 Address VAListAddr, 8329 QualType Ty) const { 8330 // Load the overflow area pointer. 8331 Address __overflow_area_pointer_p = 8332 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8333 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8334 __overflow_area_pointer_p, "__overflow_area_pointer"); 8335 8336 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8337 if (Align > 4) { 8338 // Alignment should be a power of 2. 8339 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8340 8341 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8342 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8343 8344 // Add offset to the current pointer to access the argument. 8345 __overflow_area_pointer = 8346 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8347 llvm::Value *AsInt = 8348 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8349 8350 // Create a mask which should be "AND"ed 8351 // with (overflow_arg_area + align - 1) 8352 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8353 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8354 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8355 "__overflow_area_pointer.align"); 8356 } 8357 8358 // Get the type of the argument from memory and bitcast 8359 // overflow area pointer to the argument type. 8360 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8361 Address AddrTyped = CGF.Builder.CreateBitCast( 8362 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8363 llvm::PointerType::getUnqual(PTy)); 8364 8365 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8366 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8367 8368 __overflow_area_pointer = CGF.Builder.CreateGEP( 8369 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8370 "__overflow_area_pointer.next"); 8371 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8372 8373 return AddrTyped; 8374 } 8375 8376 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8377 Address VAListAddr, 8378 QualType Ty) const { 8379 // FIXME: Need to handle alignment 8380 llvm::Type *BP = CGF.Int8PtrTy; 8381 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8382 CGBuilderTy &Builder = CGF.Builder; 8383 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8384 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8385 // Handle address alignment for type alignment > 32 bits 8386 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8387 if (TyAlign > 4) { 8388 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8389 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8390 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8391 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8392 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8393 } 8394 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8395 Address AddrTyped = Builder.CreateBitCast( 8396 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8397 8398 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8399 llvm::Value *NextAddr = Builder.CreateGEP( 8400 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8401 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8402 8403 return AddrTyped; 8404 } 8405 8406 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8407 Address VAListAddr, 8408 QualType Ty) const { 8409 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8410 8411 if (ArgSize > 8) 8412 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8413 8414 // Here we have check if the argument is in register area or 8415 // in overflow area. 8416 // If the saved register area pointer + argsize rounded up to alignment > 8417 // saved register area end pointer, argument is in overflow area. 8418 unsigned RegsLeft = 6; 8419 Ty = CGF.getContext().getCanonicalType(Ty); 8420 (void)classifyArgumentType(Ty, &RegsLeft); 8421 8422 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8423 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8424 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8425 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8426 8427 // Get rounded size of the argument.GCC does not allow vararg of 8428 // size < 4 bytes. We follow the same logic here. 8429 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8430 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8431 8432 // Argument may be in saved register area 8433 CGF.EmitBlock(MaybeRegBlock); 8434 8435 // Load the current saved register area pointer. 8436 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8437 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8438 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8439 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8440 8441 // Load the saved register area end pointer. 8442 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8443 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8444 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8445 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8446 8447 // If the size of argument is > 4 bytes, check if the stack 8448 // location is aligned to 8 bytes 8449 if (ArgAlign > 4) { 8450 8451 llvm::Value *__current_saved_reg_area_pointer_int = 8452 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8453 CGF.Int32Ty); 8454 8455 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8456 __current_saved_reg_area_pointer_int, 8457 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8458 "align_current_saved_reg_area_pointer"); 8459 8460 __current_saved_reg_area_pointer_int = 8461 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8462 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8463 "align_current_saved_reg_area_pointer"); 8464 8465 __current_saved_reg_area_pointer = 8466 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8467 __current_saved_reg_area_pointer->getType(), 8468 "align_current_saved_reg_area_pointer"); 8469 } 8470 8471 llvm::Value *__new_saved_reg_area_pointer = 8472 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8473 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8474 "__new_saved_reg_area_pointer"); 8475 8476 llvm::Value *UsingStack = 0; 8477 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8478 __saved_reg_area_end_pointer); 8479 8480 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8481 8482 // Argument in saved register area 8483 // Implement the block where argument is in register saved area 8484 CGF.EmitBlock(InRegBlock); 8485 8486 llvm::Type *PTy = CGF.ConvertType(Ty); 8487 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8488 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8489 8490 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8491 __current_saved_reg_area_pointer_p); 8492 8493 CGF.EmitBranch(ContBlock); 8494 8495 // Argument in overflow area 8496 // Implement the block where the argument is in overflow area. 8497 CGF.EmitBlock(OnStackBlock); 8498 8499 // Load the overflow area pointer 8500 Address __overflow_area_pointer_p = 8501 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8502 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8503 __overflow_area_pointer_p, "__overflow_area_pointer"); 8504 8505 // Align the overflow area pointer according to the alignment of the argument 8506 if (ArgAlign > 4) { 8507 llvm::Value *__overflow_area_pointer_int = 8508 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8509 8510 __overflow_area_pointer_int = 8511 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8512 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8513 "align_overflow_area_pointer"); 8514 8515 __overflow_area_pointer_int = 8516 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8517 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8518 "align_overflow_area_pointer"); 8519 8520 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8521 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8522 "align_overflow_area_pointer"); 8523 } 8524 8525 // Get the pointer for next argument in overflow area and store it 8526 // to overflow area pointer. 8527 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8528 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8529 "__overflow_area_pointer.next"); 8530 8531 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8532 __overflow_area_pointer_p); 8533 8534 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8535 __current_saved_reg_area_pointer_p); 8536 8537 // Bitcast the overflow area pointer to the type of argument. 8538 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8539 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8540 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8541 8542 CGF.EmitBranch(ContBlock); 8543 8544 // Get the correct pointer to load the variable argument 8545 // Implement the ContBlock 8546 CGF.EmitBlock(ContBlock); 8547 8548 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8549 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8550 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8551 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8552 8553 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8554 } 8555 8556 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8557 QualType Ty) const { 8558 8559 if (getTarget().getTriple().isMusl()) 8560 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8561 8562 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8563 } 8564 8565 //===----------------------------------------------------------------------===// 8566 // Lanai ABI Implementation 8567 //===----------------------------------------------------------------------===// 8568 8569 namespace { 8570 class LanaiABIInfo : public DefaultABIInfo { 8571 public: 8572 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8573 8574 bool shouldUseInReg(QualType Ty, CCState &State) const; 8575 8576 void computeInfo(CGFunctionInfo &FI) const override { 8577 CCState State(FI); 8578 // Lanai uses 4 registers to pass arguments unless the function has the 8579 // regparm attribute set. 8580 if (FI.getHasRegParm()) { 8581 State.FreeRegs = FI.getRegParm(); 8582 } else { 8583 State.FreeRegs = 4; 8584 } 8585 8586 if (!getCXXABI().classifyReturnType(FI)) 8587 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8588 for (auto &I : FI.arguments()) 8589 I.info = classifyArgumentType(I.type, State); 8590 } 8591 8592 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8593 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8594 }; 8595 } // end anonymous namespace 8596 8597 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8598 unsigned Size = getContext().getTypeSize(Ty); 8599 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8600 8601 if (SizeInRegs == 0) 8602 return false; 8603 8604 if (SizeInRegs > State.FreeRegs) { 8605 State.FreeRegs = 0; 8606 return false; 8607 } 8608 8609 State.FreeRegs -= SizeInRegs; 8610 8611 return true; 8612 } 8613 8614 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8615 CCState &State) const { 8616 if (!ByVal) { 8617 if (State.FreeRegs) { 8618 --State.FreeRegs; // Non-byval indirects just use one pointer. 8619 return getNaturalAlignIndirectInReg(Ty); 8620 } 8621 return getNaturalAlignIndirect(Ty, false); 8622 } 8623 8624 // Compute the byval alignment. 8625 const unsigned MinABIStackAlignInBytes = 4; 8626 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8627 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8628 /*Realign=*/TypeAlign > 8629 MinABIStackAlignInBytes); 8630 } 8631 8632 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8633 CCState &State) const { 8634 // Check with the C++ ABI first. 8635 const RecordType *RT = Ty->getAs<RecordType>(); 8636 if (RT) { 8637 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8638 if (RAA == CGCXXABI::RAA_Indirect) { 8639 return getIndirectResult(Ty, /*ByVal=*/false, State); 8640 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8641 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8642 } 8643 } 8644 8645 if (isAggregateTypeForABI(Ty)) { 8646 // Structures with flexible arrays are always indirect. 8647 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8648 return getIndirectResult(Ty, /*ByVal=*/true, State); 8649 8650 // Ignore empty structs/unions. 8651 if (isEmptyRecord(getContext(), Ty, true)) 8652 return ABIArgInfo::getIgnore(); 8653 8654 llvm::LLVMContext &LLVMContext = getVMContext(); 8655 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8656 if (SizeInRegs <= State.FreeRegs) { 8657 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8658 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8659 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8660 State.FreeRegs -= SizeInRegs; 8661 return ABIArgInfo::getDirectInReg(Result); 8662 } else { 8663 State.FreeRegs = 0; 8664 } 8665 return getIndirectResult(Ty, true, State); 8666 } 8667 8668 // Treat an enum type as its underlying type. 8669 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8670 Ty = EnumTy->getDecl()->getIntegerType(); 8671 8672 bool InReg = shouldUseInReg(Ty, State); 8673 8674 // Don't pass >64 bit integers in registers. 8675 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8676 if (EIT->getNumBits() > 64) 8677 return getIndirectResult(Ty, /*ByVal=*/true, State); 8678 8679 if (isPromotableIntegerTypeForABI(Ty)) { 8680 if (InReg) 8681 return ABIArgInfo::getDirectInReg(); 8682 return ABIArgInfo::getExtend(Ty); 8683 } 8684 if (InReg) 8685 return ABIArgInfo::getDirectInReg(); 8686 return ABIArgInfo::getDirect(); 8687 } 8688 8689 namespace { 8690 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8691 public: 8692 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8693 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8694 }; 8695 } 8696 8697 //===----------------------------------------------------------------------===// 8698 // AMDGPU ABI Implementation 8699 //===----------------------------------------------------------------------===// 8700 8701 namespace { 8702 8703 class AMDGPUABIInfo final : public DefaultABIInfo { 8704 private: 8705 static const unsigned MaxNumRegsForArgsRet = 16; 8706 8707 unsigned numRegsForType(QualType Ty) const; 8708 8709 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8710 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8711 uint64_t Members) const override; 8712 8713 // Coerce HIP pointer arguments from generic pointers to global ones. 8714 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8715 unsigned ToAS) const { 8716 // Structure types. 8717 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8718 SmallVector<llvm::Type *, 8> EltTys; 8719 bool Changed = false; 8720 for (auto T : STy->elements()) { 8721 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8722 EltTys.push_back(NT); 8723 Changed |= (NT != T); 8724 } 8725 // Skip if there is no change in element types. 8726 if (!Changed) 8727 return STy; 8728 if (STy->hasName()) 8729 return llvm::StructType::create( 8730 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8731 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8732 } 8733 // Array types. 8734 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8735 auto T = ATy->getElementType(); 8736 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8737 // Skip if there is no change in that element type. 8738 if (NT == T) 8739 return ATy; 8740 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8741 } 8742 // Single value types. 8743 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8744 return llvm::PointerType::get( 8745 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8746 return Ty; 8747 } 8748 8749 public: 8750 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8751 DefaultABIInfo(CGT) {} 8752 8753 ABIArgInfo classifyReturnType(QualType RetTy) const; 8754 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8755 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8756 8757 void computeInfo(CGFunctionInfo &FI) const override; 8758 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8759 QualType Ty) const override; 8760 }; 8761 8762 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8763 return true; 8764 } 8765 8766 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8767 const Type *Base, uint64_t Members) const { 8768 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8769 8770 // Homogeneous Aggregates may occupy at most 16 registers. 8771 return Members * NumRegs <= MaxNumRegsForArgsRet; 8772 } 8773 8774 /// Estimate number of registers the type will use when passed in registers. 8775 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8776 unsigned NumRegs = 0; 8777 8778 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8779 // Compute from the number of elements. The reported size is based on the 8780 // in-memory size, which includes the padding 4th element for 3-vectors. 8781 QualType EltTy = VT->getElementType(); 8782 unsigned EltSize = getContext().getTypeSize(EltTy); 8783 8784 // 16-bit element vectors should be passed as packed. 8785 if (EltSize == 16) 8786 return (VT->getNumElements() + 1) / 2; 8787 8788 unsigned EltNumRegs = (EltSize + 31) / 32; 8789 return EltNumRegs * VT->getNumElements(); 8790 } 8791 8792 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8793 const RecordDecl *RD = RT->getDecl(); 8794 assert(!RD->hasFlexibleArrayMember()); 8795 8796 for (const FieldDecl *Field : RD->fields()) { 8797 QualType FieldTy = Field->getType(); 8798 NumRegs += numRegsForType(FieldTy); 8799 } 8800 8801 return NumRegs; 8802 } 8803 8804 return (getContext().getTypeSize(Ty) + 31) / 32; 8805 } 8806 8807 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8808 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8809 8810 if (!getCXXABI().classifyReturnType(FI)) 8811 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8812 8813 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8814 for (auto &Arg : FI.arguments()) { 8815 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8816 Arg.info = classifyKernelArgumentType(Arg.type); 8817 } else { 8818 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8819 } 8820 } 8821 } 8822 8823 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8824 QualType Ty) const { 8825 llvm_unreachable("AMDGPU does not support varargs"); 8826 } 8827 8828 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8829 if (isAggregateTypeForABI(RetTy)) { 8830 // Records with non-trivial destructors/copy-constructors should not be 8831 // returned by value. 8832 if (!getRecordArgABI(RetTy, getCXXABI())) { 8833 // Ignore empty structs/unions. 8834 if (isEmptyRecord(getContext(), RetTy, true)) 8835 return ABIArgInfo::getIgnore(); 8836 8837 // Lower single-element structs to just return a regular value. 8838 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8839 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8840 8841 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8842 const RecordDecl *RD = RT->getDecl(); 8843 if (RD->hasFlexibleArrayMember()) 8844 return DefaultABIInfo::classifyReturnType(RetTy); 8845 } 8846 8847 // Pack aggregates <= 4 bytes into single VGPR or pair. 8848 uint64_t Size = getContext().getTypeSize(RetTy); 8849 if (Size <= 16) 8850 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8851 8852 if (Size <= 32) 8853 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8854 8855 if (Size <= 64) { 8856 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8857 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8858 } 8859 8860 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8861 return ABIArgInfo::getDirect(); 8862 } 8863 } 8864 8865 // Otherwise just do the default thing. 8866 return DefaultABIInfo::classifyReturnType(RetTy); 8867 } 8868 8869 /// For kernels all parameters are really passed in a special buffer. It doesn't 8870 /// make sense to pass anything byval, so everything must be direct. 8871 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8872 Ty = useFirstFieldIfTransparentUnion(Ty); 8873 8874 // TODO: Can we omit empty structs? 8875 8876 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8877 Ty = QualType(SeltTy, 0); 8878 8879 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8880 llvm::Type *LTy = OrigLTy; 8881 if (getContext().getLangOpts().HIP) { 8882 LTy = coerceKernelArgumentType( 8883 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8884 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8885 } 8886 8887 // FIXME: Should also use this for OpenCL, but it requires addressing the 8888 // problem of kernels being called. 8889 // 8890 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8891 // to global address space when using byref. This would require implementing a 8892 // new kind of coercion of the in-memory type when for indirect arguments. 8893 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8894 isAggregateTypeForABI(Ty)) { 8895 return ABIArgInfo::getIndirectAliased( 8896 getContext().getTypeAlignInChars(Ty), 8897 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8898 false /*Realign*/, nullptr /*Padding*/); 8899 } 8900 8901 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8902 // individual elements, which confuses the Clover OpenCL backend; therefore we 8903 // have to set it to false here. Other args of getDirect() are just defaults. 8904 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8905 } 8906 8907 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8908 unsigned &NumRegsLeft) const { 8909 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8910 8911 Ty = useFirstFieldIfTransparentUnion(Ty); 8912 8913 if (isAggregateTypeForABI(Ty)) { 8914 // Records with non-trivial destructors/copy-constructors should not be 8915 // passed by value. 8916 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8917 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8918 8919 // Ignore empty structs/unions. 8920 if (isEmptyRecord(getContext(), Ty, true)) 8921 return ABIArgInfo::getIgnore(); 8922 8923 // Lower single-element structs to just pass a regular value. TODO: We 8924 // could do reasonable-size multiple-element structs too, using getExpand(), 8925 // though watch out for things like bitfields. 8926 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8927 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8928 8929 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8930 const RecordDecl *RD = RT->getDecl(); 8931 if (RD->hasFlexibleArrayMember()) 8932 return DefaultABIInfo::classifyArgumentType(Ty); 8933 } 8934 8935 // Pack aggregates <= 8 bytes into single VGPR or pair. 8936 uint64_t Size = getContext().getTypeSize(Ty); 8937 if (Size <= 64) { 8938 unsigned NumRegs = (Size + 31) / 32; 8939 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8940 8941 if (Size <= 16) 8942 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8943 8944 if (Size <= 32) 8945 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8946 8947 // XXX: Should this be i64 instead, and should the limit increase? 8948 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8949 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8950 } 8951 8952 if (NumRegsLeft > 0) { 8953 unsigned NumRegs = numRegsForType(Ty); 8954 if (NumRegsLeft >= NumRegs) { 8955 NumRegsLeft -= NumRegs; 8956 return ABIArgInfo::getDirect(); 8957 } 8958 } 8959 } 8960 8961 // Otherwise just do the default thing. 8962 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8963 if (!ArgInfo.isIndirect()) { 8964 unsigned NumRegs = numRegsForType(Ty); 8965 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8966 } 8967 8968 return ArgInfo; 8969 } 8970 8971 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8972 public: 8973 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8974 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8975 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8976 CodeGen::CodeGenModule &M) const override; 8977 unsigned getOpenCLKernelCallingConv() const override; 8978 8979 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8980 llvm::PointerType *T, QualType QT) const override; 8981 8982 LangAS getASTAllocaAddressSpace() const override { 8983 return getLangASFromTargetAS( 8984 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8985 } 8986 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8987 const VarDecl *D) const override; 8988 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8989 SyncScope Scope, 8990 llvm::AtomicOrdering Ordering, 8991 llvm::LLVMContext &Ctx) const override; 8992 llvm::Function * 8993 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8994 llvm::Function *BlockInvokeFunc, 8995 llvm::Value *BlockLiteral) const override; 8996 bool shouldEmitStaticExternCAliases() const override; 8997 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8998 }; 8999 } 9000 9001 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9002 llvm::GlobalValue *GV) { 9003 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9004 return false; 9005 9006 return D->hasAttr<OpenCLKernelAttr>() || 9007 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9008 (isa<VarDecl>(D) && 9009 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9010 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9011 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9012 } 9013 9014 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9015 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9016 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9017 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9018 GV->setDSOLocal(true); 9019 } 9020 9021 if (GV->isDeclaration()) 9022 return; 9023 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9024 if (!FD) 9025 return; 9026 9027 llvm::Function *F = cast<llvm::Function>(GV); 9028 9029 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9030 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9031 9032 9033 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9034 FD->hasAttr<OpenCLKernelAttr>(); 9035 const bool IsHIPKernel = M.getLangOpts().HIP && 9036 FD->hasAttr<CUDAGlobalAttr>(); 9037 if ((IsOpenCLKernel || IsHIPKernel) && 9038 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9039 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9040 9041 if (IsHIPKernel) 9042 F->addFnAttr("uniform-work-group-size", "true"); 9043 9044 9045 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9046 if (ReqdWGS || FlatWGS) { 9047 unsigned Min = 0; 9048 unsigned Max = 0; 9049 if (FlatWGS) { 9050 Min = FlatWGS->getMin() 9051 ->EvaluateKnownConstInt(M.getContext()) 9052 .getExtValue(); 9053 Max = FlatWGS->getMax() 9054 ->EvaluateKnownConstInt(M.getContext()) 9055 .getExtValue(); 9056 } 9057 if (ReqdWGS && Min == 0 && Max == 0) 9058 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9059 9060 if (Min != 0) { 9061 assert(Min <= Max && "Min must be less than or equal Max"); 9062 9063 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9064 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9065 } else 9066 assert(Max == 0 && "Max must be zero"); 9067 } else if (IsOpenCLKernel || IsHIPKernel) { 9068 // By default, restrict the maximum size to a value specified by 9069 // --gpu-max-threads-per-block=n or its default value. 9070 std::string AttrVal = 9071 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 9072 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9073 } 9074 9075 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9076 unsigned Min = 9077 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9078 unsigned Max = Attr->getMax() ? Attr->getMax() 9079 ->EvaluateKnownConstInt(M.getContext()) 9080 .getExtValue() 9081 : 0; 9082 9083 if (Min != 0) { 9084 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9085 9086 std::string AttrVal = llvm::utostr(Min); 9087 if (Max != 0) 9088 AttrVal = AttrVal + "," + llvm::utostr(Max); 9089 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9090 } else 9091 assert(Max == 0 && "Max must be zero"); 9092 } 9093 9094 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9095 unsigned NumSGPR = Attr->getNumSGPR(); 9096 9097 if (NumSGPR != 0) 9098 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9099 } 9100 9101 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9102 uint32_t NumVGPR = Attr->getNumVGPR(); 9103 9104 if (NumVGPR != 0) 9105 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9106 } 9107 } 9108 9109 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9110 return llvm::CallingConv::AMDGPU_KERNEL; 9111 } 9112 9113 // Currently LLVM assumes null pointers always have value 0, 9114 // which results in incorrectly transformed IR. Therefore, instead of 9115 // emitting null pointers in private and local address spaces, a null 9116 // pointer in generic address space is emitted which is casted to a 9117 // pointer in local or private address space. 9118 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9119 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9120 QualType QT) const { 9121 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9122 return llvm::ConstantPointerNull::get(PT); 9123 9124 auto &Ctx = CGM.getContext(); 9125 auto NPT = llvm::PointerType::get(PT->getElementType(), 9126 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9127 return llvm::ConstantExpr::getAddrSpaceCast( 9128 llvm::ConstantPointerNull::get(NPT), PT); 9129 } 9130 9131 LangAS 9132 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9133 const VarDecl *D) const { 9134 assert(!CGM.getLangOpts().OpenCL && 9135 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9136 "Address space agnostic languages only"); 9137 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9138 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9139 if (!D) 9140 return DefaultGlobalAS; 9141 9142 LangAS AddrSpace = D->getType().getAddressSpace(); 9143 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9144 if (AddrSpace != LangAS::Default) 9145 return AddrSpace; 9146 9147 if (CGM.isTypeConstant(D->getType(), false)) { 9148 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9149 return ConstAS.getValue(); 9150 } 9151 return DefaultGlobalAS; 9152 } 9153 9154 llvm::SyncScope::ID 9155 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9156 SyncScope Scope, 9157 llvm::AtomicOrdering Ordering, 9158 llvm::LLVMContext &Ctx) const { 9159 std::string Name; 9160 switch (Scope) { 9161 case SyncScope::OpenCLWorkGroup: 9162 Name = "workgroup"; 9163 break; 9164 case SyncScope::OpenCLDevice: 9165 Name = "agent"; 9166 break; 9167 case SyncScope::OpenCLAllSVMDevices: 9168 Name = ""; 9169 break; 9170 case SyncScope::OpenCLSubGroup: 9171 Name = "wavefront"; 9172 } 9173 9174 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9175 if (!Name.empty()) 9176 Name = Twine(Twine(Name) + Twine("-")).str(); 9177 9178 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9179 } 9180 9181 return Ctx.getOrInsertSyncScopeID(Name); 9182 } 9183 9184 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9185 return false; 9186 } 9187 9188 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9189 const FunctionType *&FT) const { 9190 FT = getABIInfo().getContext().adjustFunctionType( 9191 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9192 } 9193 9194 //===----------------------------------------------------------------------===// 9195 // SPARC v8 ABI Implementation. 9196 // Based on the SPARC Compliance Definition version 2.4.1. 9197 // 9198 // Ensures that complex values are passed in registers. 9199 // 9200 namespace { 9201 class SparcV8ABIInfo : public DefaultABIInfo { 9202 public: 9203 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9204 9205 private: 9206 ABIArgInfo classifyReturnType(QualType RetTy) const; 9207 void computeInfo(CGFunctionInfo &FI) const override; 9208 }; 9209 } // end anonymous namespace 9210 9211 9212 ABIArgInfo 9213 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9214 if (Ty->isAnyComplexType()) { 9215 return ABIArgInfo::getDirect(); 9216 } 9217 else { 9218 return DefaultABIInfo::classifyReturnType(Ty); 9219 } 9220 } 9221 9222 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9223 9224 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9225 for (auto &Arg : FI.arguments()) 9226 Arg.info = classifyArgumentType(Arg.type); 9227 } 9228 9229 namespace { 9230 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9231 public: 9232 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9233 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9234 }; 9235 } // end anonymous namespace 9236 9237 //===----------------------------------------------------------------------===// 9238 // SPARC v9 ABI Implementation. 9239 // Based on the SPARC Compliance Definition version 2.4.1. 9240 // 9241 // Function arguments a mapped to a nominal "parameter array" and promoted to 9242 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9243 // the array, structs larger than 16 bytes are passed indirectly. 9244 // 9245 // One case requires special care: 9246 // 9247 // struct mixed { 9248 // int i; 9249 // float f; 9250 // }; 9251 // 9252 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9253 // parameter array, but the int is passed in an integer register, and the float 9254 // is passed in a floating point register. This is represented as two arguments 9255 // with the LLVM IR inreg attribute: 9256 // 9257 // declare void f(i32 inreg %i, float inreg %f) 9258 // 9259 // The code generator will only allocate 4 bytes from the parameter array for 9260 // the inreg arguments. All other arguments are allocated a multiple of 8 9261 // bytes. 9262 // 9263 namespace { 9264 class SparcV9ABIInfo : public ABIInfo { 9265 public: 9266 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9267 9268 private: 9269 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9270 void computeInfo(CGFunctionInfo &FI) const override; 9271 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9272 QualType Ty) const override; 9273 9274 // Coercion type builder for structs passed in registers. The coercion type 9275 // serves two purposes: 9276 // 9277 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9278 // in registers. 9279 // 2. Expose aligned floating point elements as first-level elements, so the 9280 // code generator knows to pass them in floating point registers. 9281 // 9282 // We also compute the InReg flag which indicates that the struct contains 9283 // aligned 32-bit floats. 9284 // 9285 struct CoerceBuilder { 9286 llvm::LLVMContext &Context; 9287 const llvm::DataLayout &DL; 9288 SmallVector<llvm::Type*, 8> Elems; 9289 uint64_t Size; 9290 bool InReg; 9291 9292 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9293 : Context(c), DL(dl), Size(0), InReg(false) {} 9294 9295 // Pad Elems with integers until Size is ToSize. 9296 void pad(uint64_t ToSize) { 9297 assert(ToSize >= Size && "Cannot remove elements"); 9298 if (ToSize == Size) 9299 return; 9300 9301 // Finish the current 64-bit word. 9302 uint64_t Aligned = llvm::alignTo(Size, 64); 9303 if (Aligned > Size && Aligned <= ToSize) { 9304 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9305 Size = Aligned; 9306 } 9307 9308 // Add whole 64-bit words. 9309 while (Size + 64 <= ToSize) { 9310 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9311 Size += 64; 9312 } 9313 9314 // Final in-word padding. 9315 if (Size < ToSize) { 9316 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9317 Size = ToSize; 9318 } 9319 } 9320 9321 // Add a floating point element at Offset. 9322 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9323 // Unaligned floats are treated as integers. 9324 if (Offset % Bits) 9325 return; 9326 // The InReg flag is only required if there are any floats < 64 bits. 9327 if (Bits < 64) 9328 InReg = true; 9329 pad(Offset); 9330 Elems.push_back(Ty); 9331 Size = Offset + Bits; 9332 } 9333 9334 // Add a struct type to the coercion type, starting at Offset (in bits). 9335 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9336 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9337 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9338 llvm::Type *ElemTy = StrTy->getElementType(i); 9339 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9340 switch (ElemTy->getTypeID()) { 9341 case llvm::Type::StructTyID: 9342 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9343 break; 9344 case llvm::Type::FloatTyID: 9345 addFloat(ElemOffset, ElemTy, 32); 9346 break; 9347 case llvm::Type::DoubleTyID: 9348 addFloat(ElemOffset, ElemTy, 64); 9349 break; 9350 case llvm::Type::FP128TyID: 9351 addFloat(ElemOffset, ElemTy, 128); 9352 break; 9353 case llvm::Type::PointerTyID: 9354 if (ElemOffset % 64 == 0) { 9355 pad(ElemOffset); 9356 Elems.push_back(ElemTy); 9357 Size += 64; 9358 } 9359 break; 9360 default: 9361 break; 9362 } 9363 } 9364 } 9365 9366 // Check if Ty is a usable substitute for the coercion type. 9367 bool isUsableType(llvm::StructType *Ty) const { 9368 return llvm::makeArrayRef(Elems) == Ty->elements(); 9369 } 9370 9371 // Get the coercion type as a literal struct type. 9372 llvm::Type *getType() const { 9373 if (Elems.size() == 1) 9374 return Elems.front(); 9375 else 9376 return llvm::StructType::get(Context, Elems); 9377 } 9378 }; 9379 }; 9380 } // end anonymous namespace 9381 9382 ABIArgInfo 9383 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9384 if (Ty->isVoidType()) 9385 return ABIArgInfo::getIgnore(); 9386 9387 uint64_t Size = getContext().getTypeSize(Ty); 9388 9389 // Anything too big to fit in registers is passed with an explicit indirect 9390 // pointer / sret pointer. 9391 if (Size > SizeLimit) 9392 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9393 9394 // Treat an enum type as its underlying type. 9395 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9396 Ty = EnumTy->getDecl()->getIntegerType(); 9397 9398 // Integer types smaller than a register are extended. 9399 if (Size < 64 && Ty->isIntegerType()) 9400 return ABIArgInfo::getExtend(Ty); 9401 9402 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9403 if (EIT->getNumBits() < 64) 9404 return ABIArgInfo::getExtend(Ty); 9405 9406 // Other non-aggregates go in registers. 9407 if (!isAggregateTypeForABI(Ty)) 9408 return ABIArgInfo::getDirect(); 9409 9410 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9411 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9412 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9413 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9414 9415 // This is a small aggregate type that should be passed in registers. 9416 // Build a coercion type from the LLVM struct type. 9417 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9418 if (!StrTy) 9419 return ABIArgInfo::getDirect(); 9420 9421 CoerceBuilder CB(getVMContext(), getDataLayout()); 9422 CB.addStruct(0, StrTy); 9423 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9424 9425 // Try to use the original type for coercion. 9426 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9427 9428 if (CB.InReg) 9429 return ABIArgInfo::getDirectInReg(CoerceTy); 9430 else 9431 return ABIArgInfo::getDirect(CoerceTy); 9432 } 9433 9434 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9435 QualType Ty) const { 9436 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9437 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9438 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9439 AI.setCoerceToType(ArgTy); 9440 9441 CharUnits SlotSize = CharUnits::fromQuantity(8); 9442 9443 CGBuilderTy &Builder = CGF.Builder; 9444 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9445 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9446 9447 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9448 9449 Address ArgAddr = Address::invalid(); 9450 CharUnits Stride; 9451 switch (AI.getKind()) { 9452 case ABIArgInfo::Expand: 9453 case ABIArgInfo::CoerceAndExpand: 9454 case ABIArgInfo::InAlloca: 9455 llvm_unreachable("Unsupported ABI kind for va_arg"); 9456 9457 case ABIArgInfo::Extend: { 9458 Stride = SlotSize; 9459 CharUnits Offset = SlotSize - TypeInfo.first; 9460 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9461 break; 9462 } 9463 9464 case ABIArgInfo::Direct: { 9465 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9466 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9467 ArgAddr = Addr; 9468 break; 9469 } 9470 9471 case ABIArgInfo::Indirect: 9472 case ABIArgInfo::IndirectAliased: 9473 Stride = SlotSize; 9474 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9475 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9476 TypeInfo.second); 9477 break; 9478 9479 case ABIArgInfo::Ignore: 9480 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 9481 } 9482 9483 // Update VAList. 9484 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9485 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9486 9487 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9488 } 9489 9490 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9491 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9492 for (auto &I : FI.arguments()) 9493 I.info = classifyType(I.type, 16 * 8); 9494 } 9495 9496 namespace { 9497 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9498 public: 9499 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9500 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9501 9502 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9503 return 14; 9504 } 9505 9506 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9507 llvm::Value *Address) const override; 9508 }; 9509 } // end anonymous namespace 9510 9511 bool 9512 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9513 llvm::Value *Address) const { 9514 // This is calculated from the LLVM and GCC tables and verified 9515 // against gcc output. AFAIK all ABIs use the same encoding. 9516 9517 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9518 9519 llvm::IntegerType *i8 = CGF.Int8Ty; 9520 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9521 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9522 9523 // 0-31: the 8-byte general-purpose registers 9524 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9525 9526 // 32-63: f0-31, the 4-byte floating-point registers 9527 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9528 9529 // Y = 64 9530 // PSR = 65 9531 // WIM = 66 9532 // TBR = 67 9533 // PC = 68 9534 // NPC = 69 9535 // FSR = 70 9536 // CSR = 71 9537 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9538 9539 // 72-87: d0-15, the 8-byte floating-point registers 9540 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9541 9542 return false; 9543 } 9544 9545 // ARC ABI implementation. 9546 namespace { 9547 9548 class ARCABIInfo : public DefaultABIInfo { 9549 public: 9550 using DefaultABIInfo::DefaultABIInfo; 9551 9552 private: 9553 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9554 QualType Ty) const override; 9555 9556 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9557 if (!State.FreeRegs) 9558 return; 9559 if (Info.isIndirect() && Info.getInReg()) 9560 State.FreeRegs--; 9561 else if (Info.isDirect() && Info.getInReg()) { 9562 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9563 if (sz < State.FreeRegs) 9564 State.FreeRegs -= sz; 9565 else 9566 State.FreeRegs = 0; 9567 } 9568 } 9569 9570 void computeInfo(CGFunctionInfo &FI) const override { 9571 CCState State(FI); 9572 // ARC uses 8 registers to pass arguments. 9573 State.FreeRegs = 8; 9574 9575 if (!getCXXABI().classifyReturnType(FI)) 9576 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9577 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9578 for (auto &I : FI.arguments()) { 9579 I.info = classifyArgumentType(I.type, State.FreeRegs); 9580 updateState(I.info, I.type, State); 9581 } 9582 } 9583 9584 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9585 ABIArgInfo getIndirectByValue(QualType Ty) const; 9586 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9587 ABIArgInfo classifyReturnType(QualType RetTy) const; 9588 }; 9589 9590 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9591 public: 9592 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9593 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9594 }; 9595 9596 9597 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9598 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9599 getNaturalAlignIndirect(Ty, false); 9600 } 9601 9602 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9603 // Compute the byval alignment. 9604 const unsigned MinABIStackAlignInBytes = 4; 9605 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9606 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9607 TypeAlign > MinABIStackAlignInBytes); 9608 } 9609 9610 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9611 QualType Ty) const { 9612 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9613 getContext().getTypeInfoInChars(Ty), 9614 CharUnits::fromQuantity(4), true); 9615 } 9616 9617 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9618 uint8_t FreeRegs) const { 9619 // Handle the generic C++ ABI. 9620 const RecordType *RT = Ty->getAs<RecordType>(); 9621 if (RT) { 9622 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9623 if (RAA == CGCXXABI::RAA_Indirect) 9624 return getIndirectByRef(Ty, FreeRegs > 0); 9625 9626 if (RAA == CGCXXABI::RAA_DirectInMemory) 9627 return getIndirectByValue(Ty); 9628 } 9629 9630 // Treat an enum type as its underlying type. 9631 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9632 Ty = EnumTy->getDecl()->getIntegerType(); 9633 9634 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9635 9636 if (isAggregateTypeForABI(Ty)) { 9637 // Structures with flexible arrays are always indirect. 9638 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9639 return getIndirectByValue(Ty); 9640 9641 // Ignore empty structs/unions. 9642 if (isEmptyRecord(getContext(), Ty, true)) 9643 return ABIArgInfo::getIgnore(); 9644 9645 llvm::LLVMContext &LLVMContext = getVMContext(); 9646 9647 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9648 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9649 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9650 9651 return FreeRegs >= SizeInRegs ? 9652 ABIArgInfo::getDirectInReg(Result) : 9653 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9654 } 9655 9656 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9657 if (EIT->getNumBits() > 64) 9658 return getIndirectByValue(Ty); 9659 9660 return isPromotableIntegerTypeForABI(Ty) 9661 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9662 : ABIArgInfo::getExtend(Ty)) 9663 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9664 : ABIArgInfo::getDirect()); 9665 } 9666 9667 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9668 if (RetTy->isAnyComplexType()) 9669 return ABIArgInfo::getDirectInReg(); 9670 9671 // Arguments of size > 4 registers are indirect. 9672 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9673 if (RetSize > 4) 9674 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9675 9676 return DefaultABIInfo::classifyReturnType(RetTy); 9677 } 9678 9679 } // End anonymous namespace. 9680 9681 //===----------------------------------------------------------------------===// 9682 // XCore ABI Implementation 9683 //===----------------------------------------------------------------------===// 9684 9685 namespace { 9686 9687 /// A SmallStringEnc instance is used to build up the TypeString by passing 9688 /// it by reference between functions that append to it. 9689 typedef llvm::SmallString<128> SmallStringEnc; 9690 9691 /// TypeStringCache caches the meta encodings of Types. 9692 /// 9693 /// The reason for caching TypeStrings is two fold: 9694 /// 1. To cache a type's encoding for later uses; 9695 /// 2. As a means to break recursive member type inclusion. 9696 /// 9697 /// A cache Entry can have a Status of: 9698 /// NonRecursive: The type encoding is not recursive; 9699 /// Recursive: The type encoding is recursive; 9700 /// Incomplete: An incomplete TypeString; 9701 /// IncompleteUsed: An incomplete TypeString that has been used in a 9702 /// Recursive type encoding. 9703 /// 9704 /// A NonRecursive entry will have all of its sub-members expanded as fully 9705 /// as possible. Whilst it may contain types which are recursive, the type 9706 /// itself is not recursive and thus its encoding may be safely used whenever 9707 /// the type is encountered. 9708 /// 9709 /// A Recursive entry will have all of its sub-members expanded as fully as 9710 /// possible. The type itself is recursive and it may contain other types which 9711 /// are recursive. The Recursive encoding must not be used during the expansion 9712 /// of a recursive type's recursive branch. For simplicity the code uses 9713 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9714 /// 9715 /// An Incomplete entry is always a RecordType and only encodes its 9716 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9717 /// are placed into the cache during type expansion as a means to identify and 9718 /// handle recursive inclusion of types as sub-members. If there is recursion 9719 /// the entry becomes IncompleteUsed. 9720 /// 9721 /// During the expansion of a RecordType's members: 9722 /// 9723 /// If the cache contains a NonRecursive encoding for the member type, the 9724 /// cached encoding is used; 9725 /// 9726 /// If the cache contains a Recursive encoding for the member type, the 9727 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9728 /// 9729 /// If the member is a RecordType, an Incomplete encoding is placed into the 9730 /// cache to break potential recursive inclusion of itself as a sub-member; 9731 /// 9732 /// Once a member RecordType has been expanded, its temporary incomplete 9733 /// entry is removed from the cache. If a Recursive encoding was swapped out 9734 /// it is swapped back in; 9735 /// 9736 /// If an incomplete entry is used to expand a sub-member, the incomplete 9737 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9738 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9739 /// 9740 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9741 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9742 /// Else the member is part of a recursive type and thus the recursion has 9743 /// been exited too soon for the encoding to be correct for the member. 9744 /// 9745 class TypeStringCache { 9746 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9747 struct Entry { 9748 std::string Str; // The encoded TypeString for the type. 9749 enum Status State; // Information about the encoding in 'Str'. 9750 std::string Swapped; // A temporary place holder for a Recursive encoding 9751 // during the expansion of RecordType's members. 9752 }; 9753 std::map<const IdentifierInfo *, struct Entry> Map; 9754 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9755 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9756 public: 9757 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9758 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9759 bool removeIncomplete(const IdentifierInfo *ID); 9760 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9761 bool IsRecursive); 9762 StringRef lookupStr(const IdentifierInfo *ID); 9763 }; 9764 9765 /// TypeString encodings for enum & union fields must be order. 9766 /// FieldEncoding is a helper for this ordering process. 9767 class FieldEncoding { 9768 bool HasName; 9769 std::string Enc; 9770 public: 9771 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9772 StringRef str() { return Enc; } 9773 bool operator<(const FieldEncoding &rhs) const { 9774 if (HasName != rhs.HasName) return HasName; 9775 return Enc < rhs.Enc; 9776 } 9777 }; 9778 9779 class XCoreABIInfo : public DefaultABIInfo { 9780 public: 9781 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9782 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9783 QualType Ty) const override; 9784 }; 9785 9786 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9787 mutable TypeStringCache TSC; 9788 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9789 const CodeGen::CodeGenModule &M) const; 9790 9791 public: 9792 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9793 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9794 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9795 const llvm::MapVector<GlobalDecl, StringRef> 9796 &MangledDeclNames) const override; 9797 }; 9798 9799 } // End anonymous namespace. 9800 9801 // TODO: this implementation is likely now redundant with the default 9802 // EmitVAArg. 9803 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9804 QualType Ty) const { 9805 CGBuilderTy &Builder = CGF.Builder; 9806 9807 // Get the VAList. 9808 CharUnits SlotSize = CharUnits::fromQuantity(4); 9809 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9810 9811 // Handle the argument. 9812 ABIArgInfo AI = classifyArgumentType(Ty); 9813 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9814 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9815 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9816 AI.setCoerceToType(ArgTy); 9817 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9818 9819 Address Val = Address::invalid(); 9820 CharUnits ArgSize = CharUnits::Zero(); 9821 switch (AI.getKind()) { 9822 case ABIArgInfo::Expand: 9823 case ABIArgInfo::CoerceAndExpand: 9824 case ABIArgInfo::InAlloca: 9825 llvm_unreachable("Unsupported ABI kind for va_arg"); 9826 case ABIArgInfo::Ignore: 9827 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9828 ArgSize = CharUnits::Zero(); 9829 break; 9830 case ABIArgInfo::Extend: 9831 case ABIArgInfo::Direct: 9832 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9833 ArgSize = CharUnits::fromQuantity( 9834 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9835 ArgSize = ArgSize.alignTo(SlotSize); 9836 break; 9837 case ABIArgInfo::Indirect: 9838 case ABIArgInfo::IndirectAliased: 9839 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9840 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9841 ArgSize = SlotSize; 9842 break; 9843 } 9844 9845 // Increment the VAList. 9846 if (!ArgSize.isZero()) { 9847 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9848 Builder.CreateStore(APN.getPointer(), VAListAddr); 9849 } 9850 9851 return Val; 9852 } 9853 9854 /// During the expansion of a RecordType, an incomplete TypeString is placed 9855 /// into the cache as a means to identify and break recursion. 9856 /// If there is a Recursive encoding in the cache, it is swapped out and will 9857 /// be reinserted by removeIncomplete(). 9858 /// All other types of encoding should have been used rather than arriving here. 9859 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9860 std::string StubEnc) { 9861 if (!ID) 9862 return; 9863 Entry &E = Map[ID]; 9864 assert( (E.Str.empty() || E.State == Recursive) && 9865 "Incorrectly use of addIncomplete"); 9866 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9867 E.Swapped.swap(E.Str); // swap out the Recursive 9868 E.Str.swap(StubEnc); 9869 E.State = Incomplete; 9870 ++IncompleteCount; 9871 } 9872 9873 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9874 /// must be removed from the cache. 9875 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9876 /// Returns true if the RecordType was defined recursively. 9877 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9878 if (!ID) 9879 return false; 9880 auto I = Map.find(ID); 9881 assert(I != Map.end() && "Entry not present"); 9882 Entry &E = I->second; 9883 assert( (E.State == Incomplete || 9884 E.State == IncompleteUsed) && 9885 "Entry must be an incomplete type"); 9886 bool IsRecursive = false; 9887 if (E.State == IncompleteUsed) { 9888 // We made use of our Incomplete encoding, thus we are recursive. 9889 IsRecursive = true; 9890 --IncompleteUsedCount; 9891 } 9892 if (E.Swapped.empty()) 9893 Map.erase(I); 9894 else { 9895 // Swap the Recursive back. 9896 E.Swapped.swap(E.Str); 9897 E.Swapped.clear(); 9898 E.State = Recursive; 9899 } 9900 --IncompleteCount; 9901 return IsRecursive; 9902 } 9903 9904 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9905 /// Recursive (viz: all sub-members were expanded as fully as possible). 9906 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9907 bool IsRecursive) { 9908 if (!ID || IncompleteUsedCount) 9909 return; // No key or it is is an incomplete sub-type so don't add. 9910 Entry &E = Map[ID]; 9911 if (IsRecursive && !E.Str.empty()) { 9912 assert(E.State==Recursive && E.Str.size() == Str.size() && 9913 "This is not the same Recursive entry"); 9914 // The parent container was not recursive after all, so we could have used 9915 // this Recursive sub-member entry after all, but we assumed the worse when 9916 // we started viz: IncompleteCount!=0. 9917 return; 9918 } 9919 assert(E.Str.empty() && "Entry already present"); 9920 E.Str = Str.str(); 9921 E.State = IsRecursive? Recursive : NonRecursive; 9922 } 9923 9924 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9925 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9926 /// encoding is Recursive, return an empty StringRef. 9927 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9928 if (!ID) 9929 return StringRef(); // We have no key. 9930 auto I = Map.find(ID); 9931 if (I == Map.end()) 9932 return StringRef(); // We have no encoding. 9933 Entry &E = I->second; 9934 if (E.State == Recursive && IncompleteCount) 9935 return StringRef(); // We don't use Recursive encodings for member types. 9936 9937 if (E.State == Incomplete) { 9938 // The incomplete type is being used to break out of recursion. 9939 E.State = IncompleteUsed; 9940 ++IncompleteUsedCount; 9941 } 9942 return E.Str; 9943 } 9944 9945 /// The XCore ABI includes a type information section that communicates symbol 9946 /// type information to the linker. The linker uses this information to verify 9947 /// safety/correctness of things such as array bound and pointers et al. 9948 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9949 /// This type information (TypeString) is emitted into meta data for all global 9950 /// symbols: definitions, declarations, functions & variables. 9951 /// 9952 /// The TypeString carries type, qualifier, name, size & value details. 9953 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9954 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9955 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9956 /// 9957 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9958 const CodeGen::CodeGenModule &CGM, 9959 TypeStringCache &TSC); 9960 9961 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9962 void XCoreTargetCodeGenInfo::emitTargetMD( 9963 const Decl *D, llvm::GlobalValue *GV, 9964 const CodeGen::CodeGenModule &CGM) const { 9965 SmallStringEnc Enc; 9966 if (getTypeString(Enc, D, CGM, TSC)) { 9967 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9968 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9969 llvm::MDString::get(Ctx, Enc.str())}; 9970 llvm::NamedMDNode *MD = 9971 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9972 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9973 } 9974 } 9975 9976 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9977 CodeGen::CodeGenModule &CGM, 9978 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9979 // Warning, new MangledDeclNames may be appended within this loop. 9980 // We rely on MapVector insertions adding new elements to the end 9981 // of the container. 9982 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9983 auto Val = *(MangledDeclNames.begin() + I); 9984 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9985 if (GV) { 9986 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9987 emitTargetMD(D, GV, CGM); 9988 } 9989 } 9990 } 9991 //===----------------------------------------------------------------------===// 9992 // SPIR ABI Implementation 9993 //===----------------------------------------------------------------------===// 9994 9995 namespace { 9996 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9997 public: 9998 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9999 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 10000 unsigned getOpenCLKernelCallingConv() const override; 10001 }; 10002 10003 } // End anonymous namespace. 10004 10005 namespace clang { 10006 namespace CodeGen { 10007 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10008 DefaultABIInfo SPIRABI(CGM.getTypes()); 10009 SPIRABI.computeInfo(FI); 10010 } 10011 } 10012 } 10013 10014 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10015 return llvm::CallingConv::SPIR_KERNEL; 10016 } 10017 10018 static bool appendType(SmallStringEnc &Enc, QualType QType, 10019 const CodeGen::CodeGenModule &CGM, 10020 TypeStringCache &TSC); 10021 10022 /// Helper function for appendRecordType(). 10023 /// Builds a SmallVector containing the encoded field types in declaration 10024 /// order. 10025 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10026 const RecordDecl *RD, 10027 const CodeGen::CodeGenModule &CGM, 10028 TypeStringCache &TSC) { 10029 for (const auto *Field : RD->fields()) { 10030 SmallStringEnc Enc; 10031 Enc += "m("; 10032 Enc += Field->getName(); 10033 Enc += "){"; 10034 if (Field->isBitField()) { 10035 Enc += "b("; 10036 llvm::raw_svector_ostream OS(Enc); 10037 OS << Field->getBitWidthValue(CGM.getContext()); 10038 Enc += ':'; 10039 } 10040 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10041 return false; 10042 if (Field->isBitField()) 10043 Enc += ')'; 10044 Enc += '}'; 10045 FE.emplace_back(!Field->getName().empty(), Enc); 10046 } 10047 return true; 10048 } 10049 10050 /// Appends structure and union types to Enc and adds encoding to cache. 10051 /// Recursively calls appendType (via extractFieldType) for each field. 10052 /// Union types have their fields ordered according to the ABI. 10053 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10054 const CodeGen::CodeGenModule &CGM, 10055 TypeStringCache &TSC, const IdentifierInfo *ID) { 10056 // Append the cached TypeString if we have one. 10057 StringRef TypeString = TSC.lookupStr(ID); 10058 if (!TypeString.empty()) { 10059 Enc += TypeString; 10060 return true; 10061 } 10062 10063 // Start to emit an incomplete TypeString. 10064 size_t Start = Enc.size(); 10065 Enc += (RT->isUnionType()? 'u' : 's'); 10066 Enc += '('; 10067 if (ID) 10068 Enc += ID->getName(); 10069 Enc += "){"; 10070 10071 // We collect all encoded fields and order as necessary. 10072 bool IsRecursive = false; 10073 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10074 if (RD && !RD->field_empty()) { 10075 // An incomplete TypeString stub is placed in the cache for this RecordType 10076 // so that recursive calls to this RecordType will use it whilst building a 10077 // complete TypeString for this RecordType. 10078 SmallVector<FieldEncoding, 16> FE; 10079 std::string StubEnc(Enc.substr(Start).str()); 10080 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10081 TSC.addIncomplete(ID, std::move(StubEnc)); 10082 if (!extractFieldType(FE, RD, CGM, TSC)) { 10083 (void) TSC.removeIncomplete(ID); 10084 return false; 10085 } 10086 IsRecursive = TSC.removeIncomplete(ID); 10087 // The ABI requires unions to be sorted but not structures. 10088 // See FieldEncoding::operator< for sort algorithm. 10089 if (RT->isUnionType()) 10090 llvm::sort(FE); 10091 // We can now complete the TypeString. 10092 unsigned E = FE.size(); 10093 for (unsigned I = 0; I != E; ++I) { 10094 if (I) 10095 Enc += ','; 10096 Enc += FE[I].str(); 10097 } 10098 } 10099 Enc += '}'; 10100 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10101 return true; 10102 } 10103 10104 /// Appends enum types to Enc and adds the encoding to the cache. 10105 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10106 TypeStringCache &TSC, 10107 const IdentifierInfo *ID) { 10108 // Append the cached TypeString if we have one. 10109 StringRef TypeString = TSC.lookupStr(ID); 10110 if (!TypeString.empty()) { 10111 Enc += TypeString; 10112 return true; 10113 } 10114 10115 size_t Start = Enc.size(); 10116 Enc += "e("; 10117 if (ID) 10118 Enc += ID->getName(); 10119 Enc += "){"; 10120 10121 // We collect all encoded enumerations and order them alphanumerically. 10122 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10123 SmallVector<FieldEncoding, 16> FE; 10124 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10125 ++I) { 10126 SmallStringEnc EnumEnc; 10127 EnumEnc += "m("; 10128 EnumEnc += I->getName(); 10129 EnumEnc += "){"; 10130 I->getInitVal().toString(EnumEnc); 10131 EnumEnc += '}'; 10132 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10133 } 10134 llvm::sort(FE); 10135 unsigned E = FE.size(); 10136 for (unsigned I = 0; I != E; ++I) { 10137 if (I) 10138 Enc += ','; 10139 Enc += FE[I].str(); 10140 } 10141 } 10142 Enc += '}'; 10143 TSC.addIfComplete(ID, Enc.substr(Start), false); 10144 return true; 10145 } 10146 10147 /// Appends type's qualifier to Enc. 10148 /// This is done prior to appending the type's encoding. 10149 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10150 // Qualifiers are emitted in alphabetical order. 10151 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10152 int Lookup = 0; 10153 if (QT.isConstQualified()) 10154 Lookup += 1<<0; 10155 if (QT.isRestrictQualified()) 10156 Lookup += 1<<1; 10157 if (QT.isVolatileQualified()) 10158 Lookup += 1<<2; 10159 Enc += Table[Lookup]; 10160 } 10161 10162 /// Appends built-in types to Enc. 10163 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10164 const char *EncType; 10165 switch (BT->getKind()) { 10166 case BuiltinType::Void: 10167 EncType = "0"; 10168 break; 10169 case BuiltinType::Bool: 10170 EncType = "b"; 10171 break; 10172 case BuiltinType::Char_U: 10173 EncType = "uc"; 10174 break; 10175 case BuiltinType::UChar: 10176 EncType = "uc"; 10177 break; 10178 case BuiltinType::SChar: 10179 EncType = "sc"; 10180 break; 10181 case BuiltinType::UShort: 10182 EncType = "us"; 10183 break; 10184 case BuiltinType::Short: 10185 EncType = "ss"; 10186 break; 10187 case BuiltinType::UInt: 10188 EncType = "ui"; 10189 break; 10190 case BuiltinType::Int: 10191 EncType = "si"; 10192 break; 10193 case BuiltinType::ULong: 10194 EncType = "ul"; 10195 break; 10196 case BuiltinType::Long: 10197 EncType = "sl"; 10198 break; 10199 case BuiltinType::ULongLong: 10200 EncType = "ull"; 10201 break; 10202 case BuiltinType::LongLong: 10203 EncType = "sll"; 10204 break; 10205 case BuiltinType::Float: 10206 EncType = "ft"; 10207 break; 10208 case BuiltinType::Double: 10209 EncType = "d"; 10210 break; 10211 case BuiltinType::LongDouble: 10212 EncType = "ld"; 10213 break; 10214 default: 10215 return false; 10216 } 10217 Enc += EncType; 10218 return true; 10219 } 10220 10221 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10222 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10223 const CodeGen::CodeGenModule &CGM, 10224 TypeStringCache &TSC) { 10225 Enc += "p("; 10226 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10227 return false; 10228 Enc += ')'; 10229 return true; 10230 } 10231 10232 /// Appends array encoding to Enc before calling appendType for the element. 10233 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10234 const ArrayType *AT, 10235 const CodeGen::CodeGenModule &CGM, 10236 TypeStringCache &TSC, StringRef NoSizeEnc) { 10237 if (AT->getSizeModifier() != ArrayType::Normal) 10238 return false; 10239 Enc += "a("; 10240 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10241 CAT->getSize().toStringUnsigned(Enc); 10242 else 10243 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10244 Enc += ':'; 10245 // The Qualifiers should be attached to the type rather than the array. 10246 appendQualifier(Enc, QT); 10247 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10248 return false; 10249 Enc += ')'; 10250 return true; 10251 } 10252 10253 /// Appends a function encoding to Enc, calling appendType for the return type 10254 /// and the arguments. 10255 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10256 const CodeGen::CodeGenModule &CGM, 10257 TypeStringCache &TSC) { 10258 Enc += "f{"; 10259 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10260 return false; 10261 Enc += "}("; 10262 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10263 // N.B. we are only interested in the adjusted param types. 10264 auto I = FPT->param_type_begin(); 10265 auto E = FPT->param_type_end(); 10266 if (I != E) { 10267 do { 10268 if (!appendType(Enc, *I, CGM, TSC)) 10269 return false; 10270 ++I; 10271 if (I != E) 10272 Enc += ','; 10273 } while (I != E); 10274 if (FPT->isVariadic()) 10275 Enc += ",va"; 10276 } else { 10277 if (FPT->isVariadic()) 10278 Enc += "va"; 10279 else 10280 Enc += '0'; 10281 } 10282 } 10283 Enc += ')'; 10284 return true; 10285 } 10286 10287 /// Handles the type's qualifier before dispatching a call to handle specific 10288 /// type encodings. 10289 static bool appendType(SmallStringEnc &Enc, QualType QType, 10290 const CodeGen::CodeGenModule &CGM, 10291 TypeStringCache &TSC) { 10292 10293 QualType QT = QType.getCanonicalType(); 10294 10295 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10296 // The Qualifiers should be attached to the type rather than the array. 10297 // Thus we don't call appendQualifier() here. 10298 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10299 10300 appendQualifier(Enc, QT); 10301 10302 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10303 return appendBuiltinType(Enc, BT); 10304 10305 if (const PointerType *PT = QT->getAs<PointerType>()) 10306 return appendPointerType(Enc, PT, CGM, TSC); 10307 10308 if (const EnumType *ET = QT->getAs<EnumType>()) 10309 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10310 10311 if (const RecordType *RT = QT->getAsStructureType()) 10312 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10313 10314 if (const RecordType *RT = QT->getAsUnionType()) 10315 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10316 10317 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10318 return appendFunctionType(Enc, FT, CGM, TSC); 10319 10320 return false; 10321 } 10322 10323 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10324 const CodeGen::CodeGenModule &CGM, 10325 TypeStringCache &TSC) { 10326 if (!D) 10327 return false; 10328 10329 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10330 if (FD->getLanguageLinkage() != CLanguageLinkage) 10331 return false; 10332 return appendType(Enc, FD->getType(), CGM, TSC); 10333 } 10334 10335 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10336 if (VD->getLanguageLinkage() != CLanguageLinkage) 10337 return false; 10338 QualType QT = VD->getType().getCanonicalType(); 10339 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10340 // Global ArrayTypes are given a size of '*' if the size is unknown. 10341 // The Qualifiers should be attached to the type rather than the array. 10342 // Thus we don't call appendQualifier() here. 10343 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10344 } 10345 return appendType(Enc, QT, CGM, TSC); 10346 } 10347 return false; 10348 } 10349 10350 //===----------------------------------------------------------------------===// 10351 // RISCV ABI Implementation 10352 //===----------------------------------------------------------------------===// 10353 10354 namespace { 10355 class RISCVABIInfo : public DefaultABIInfo { 10356 private: 10357 // Size of the integer ('x') registers in bits. 10358 unsigned XLen; 10359 // Size of the floating point ('f') registers in bits. Note that the target 10360 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10361 // with soft float ABI has FLen==0). 10362 unsigned FLen; 10363 static const int NumArgGPRs = 8; 10364 static const int NumArgFPRs = 8; 10365 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10366 llvm::Type *&Field1Ty, 10367 CharUnits &Field1Off, 10368 llvm::Type *&Field2Ty, 10369 CharUnits &Field2Off) const; 10370 10371 public: 10372 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10373 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10374 10375 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10376 // non-virtual, but computeInfo is virtual, so we overload it. 10377 void computeInfo(CGFunctionInfo &FI) const override; 10378 10379 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10380 int &ArgFPRsLeft) const; 10381 ABIArgInfo classifyReturnType(QualType RetTy) const; 10382 10383 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10384 QualType Ty) const override; 10385 10386 ABIArgInfo extendType(QualType Ty) const; 10387 10388 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10389 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10390 CharUnits &Field2Off, int &NeededArgGPRs, 10391 int &NeededArgFPRs) const; 10392 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10393 CharUnits Field1Off, 10394 llvm::Type *Field2Ty, 10395 CharUnits Field2Off) const; 10396 }; 10397 } // end anonymous namespace 10398 10399 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10400 QualType RetTy = FI.getReturnType(); 10401 if (!getCXXABI().classifyReturnType(FI)) 10402 FI.getReturnInfo() = classifyReturnType(RetTy); 10403 10404 // IsRetIndirect is true if classifyArgumentType indicated the value should 10405 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10406 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10407 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10408 // list and pass indirectly on RV32. 10409 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10410 if (!IsRetIndirect && RetTy->isScalarType() && 10411 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10412 if (RetTy->isComplexType() && FLen) { 10413 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 10414 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10415 } else { 10416 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10417 IsRetIndirect = true; 10418 } 10419 } 10420 10421 // We must track the number of GPRs used in order to conform to the RISC-V 10422 // ABI, as integer scalars passed in registers should have signext/zeroext 10423 // when promoted, but are anyext if passed on the stack. As GPR usage is 10424 // different for variadic arguments, we must also track whether we are 10425 // examining a vararg or not. 10426 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10427 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10428 int NumFixedArgs = FI.getNumRequiredArgs(); 10429 10430 int ArgNum = 0; 10431 for (auto &ArgInfo : FI.arguments()) { 10432 bool IsFixed = ArgNum < NumFixedArgs; 10433 ArgInfo.info = 10434 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10435 ArgNum++; 10436 } 10437 } 10438 10439 // Returns true if the struct is a potential candidate for the floating point 10440 // calling convention. If this function returns true, the caller is 10441 // responsible for checking that if there is only a single field then that 10442 // field is a float. 10443 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10444 llvm::Type *&Field1Ty, 10445 CharUnits &Field1Off, 10446 llvm::Type *&Field2Ty, 10447 CharUnits &Field2Off) const { 10448 bool IsInt = Ty->isIntegralOrEnumerationType(); 10449 bool IsFloat = Ty->isRealFloatingType(); 10450 10451 if (IsInt || IsFloat) { 10452 uint64_t Size = getContext().getTypeSize(Ty); 10453 if (IsInt && Size > XLen) 10454 return false; 10455 // Can't be eligible if larger than the FP registers. Half precision isn't 10456 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10457 // default to the integer ABI in that case. 10458 if (IsFloat && (Size > FLen || Size < 32)) 10459 return false; 10460 // Can't be eligible if an integer type was already found (int+int pairs 10461 // are not eligible). 10462 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10463 return false; 10464 if (!Field1Ty) { 10465 Field1Ty = CGT.ConvertType(Ty); 10466 Field1Off = CurOff; 10467 return true; 10468 } 10469 if (!Field2Ty) { 10470 Field2Ty = CGT.ConvertType(Ty); 10471 Field2Off = CurOff; 10472 return true; 10473 } 10474 return false; 10475 } 10476 10477 if (auto CTy = Ty->getAs<ComplexType>()) { 10478 if (Field1Ty) 10479 return false; 10480 QualType EltTy = CTy->getElementType(); 10481 if (getContext().getTypeSize(EltTy) > FLen) 10482 return false; 10483 Field1Ty = CGT.ConvertType(EltTy); 10484 Field1Off = CurOff; 10485 assert(CurOff.isZero() && "Unexpected offset for first field"); 10486 Field2Ty = Field1Ty; 10487 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10488 return true; 10489 } 10490 10491 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10492 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10493 QualType EltTy = ATy->getElementType(); 10494 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10495 for (uint64_t i = 0; i < ArraySize; ++i) { 10496 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10497 Field1Off, Field2Ty, Field2Off); 10498 if (!Ret) 10499 return false; 10500 CurOff += EltSize; 10501 } 10502 return true; 10503 } 10504 10505 if (const auto *RTy = Ty->getAs<RecordType>()) { 10506 // Structures with either a non-trivial destructor or a non-trivial 10507 // copy constructor are not eligible for the FP calling convention. 10508 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10509 return false; 10510 if (isEmptyRecord(getContext(), Ty, true)) 10511 return true; 10512 const RecordDecl *RD = RTy->getDecl(); 10513 // Unions aren't eligible unless they're empty (which is caught above). 10514 if (RD->isUnion()) 10515 return false; 10516 int ZeroWidthBitFieldCount = 0; 10517 for (const FieldDecl *FD : RD->fields()) { 10518 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10519 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10520 QualType QTy = FD->getType(); 10521 if (FD->isBitField()) { 10522 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10523 // Allow a bitfield with a type greater than XLen as long as the 10524 // bitwidth is XLen or less. 10525 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10526 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10527 if (BitWidth == 0) { 10528 ZeroWidthBitFieldCount++; 10529 continue; 10530 } 10531 } 10532 10533 bool Ret = detectFPCCEligibleStructHelper( 10534 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10535 Field1Ty, Field1Off, Field2Ty, Field2Off); 10536 if (!Ret) 10537 return false; 10538 10539 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10540 // or int+fp structs, but are ignored for a struct with an fp field and 10541 // any number of zero-width bitfields. 10542 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10543 return false; 10544 } 10545 return Field1Ty != nullptr; 10546 } 10547 10548 return false; 10549 } 10550 10551 // Determine if a struct is eligible for passing according to the floating 10552 // point calling convention (i.e., when flattened it contains a single fp 10553 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10554 // NeededArgGPRs are incremented appropriately. 10555 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10556 CharUnits &Field1Off, 10557 llvm::Type *&Field2Ty, 10558 CharUnits &Field2Off, 10559 int &NeededArgGPRs, 10560 int &NeededArgFPRs) const { 10561 Field1Ty = nullptr; 10562 Field2Ty = nullptr; 10563 NeededArgGPRs = 0; 10564 NeededArgFPRs = 0; 10565 bool IsCandidate = detectFPCCEligibleStructHelper( 10566 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10567 // Not really a candidate if we have a single int but no float. 10568 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10569 return false; 10570 if (!IsCandidate) 10571 return false; 10572 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10573 NeededArgFPRs++; 10574 else if (Field1Ty) 10575 NeededArgGPRs++; 10576 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10577 NeededArgFPRs++; 10578 else if (Field2Ty) 10579 NeededArgGPRs++; 10580 return IsCandidate; 10581 } 10582 10583 // Call getCoerceAndExpand for the two-element flattened struct described by 10584 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10585 // appropriate coerceToType and unpaddedCoerceToType. 10586 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10587 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10588 CharUnits Field2Off) const { 10589 SmallVector<llvm::Type *, 3> CoerceElts; 10590 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10591 if (!Field1Off.isZero()) 10592 CoerceElts.push_back(llvm::ArrayType::get( 10593 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10594 10595 CoerceElts.push_back(Field1Ty); 10596 UnpaddedCoerceElts.push_back(Field1Ty); 10597 10598 if (!Field2Ty) { 10599 return ABIArgInfo::getCoerceAndExpand( 10600 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10601 UnpaddedCoerceElts[0]); 10602 } 10603 10604 CharUnits Field2Align = 10605 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10606 CharUnits Field1Size = 10607 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10608 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 10609 10610 CharUnits Padding = CharUnits::Zero(); 10611 if (Field2Off > Field2OffNoPadNoPack) 10612 Padding = Field2Off - Field2OffNoPadNoPack; 10613 else if (Field2Off != Field2Align && Field2Off > Field1Size) 10614 Padding = Field2Off - Field1Size; 10615 10616 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10617 10618 if (!Padding.isZero()) 10619 CoerceElts.push_back(llvm::ArrayType::get( 10620 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10621 10622 CoerceElts.push_back(Field2Ty); 10623 UnpaddedCoerceElts.push_back(Field2Ty); 10624 10625 auto CoerceToType = 10626 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10627 auto UnpaddedCoerceToType = 10628 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10629 10630 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10631 } 10632 10633 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10634 int &ArgGPRsLeft, 10635 int &ArgFPRsLeft) const { 10636 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10637 Ty = useFirstFieldIfTransparentUnion(Ty); 10638 10639 // Structures with either a non-trivial destructor or a non-trivial 10640 // copy constructor are always passed indirectly. 10641 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10642 if (ArgGPRsLeft) 10643 ArgGPRsLeft -= 1; 10644 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10645 CGCXXABI::RAA_DirectInMemory); 10646 } 10647 10648 // Ignore empty structs/unions. 10649 if (isEmptyRecord(getContext(), Ty, true)) 10650 return ABIArgInfo::getIgnore(); 10651 10652 uint64_t Size = getContext().getTypeSize(Ty); 10653 10654 // Pass floating point values via FPRs if possible. 10655 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10656 FLen >= Size && ArgFPRsLeft) { 10657 ArgFPRsLeft--; 10658 return ABIArgInfo::getDirect(); 10659 } 10660 10661 // Complex types for the hard float ABI must be passed direct rather than 10662 // using CoerceAndExpand. 10663 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10664 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10665 if (getContext().getTypeSize(EltTy) <= FLen) { 10666 ArgFPRsLeft -= 2; 10667 return ABIArgInfo::getDirect(); 10668 } 10669 } 10670 10671 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10672 llvm::Type *Field1Ty = nullptr; 10673 llvm::Type *Field2Ty = nullptr; 10674 CharUnits Field1Off = CharUnits::Zero(); 10675 CharUnits Field2Off = CharUnits::Zero(); 10676 int NeededArgGPRs; 10677 int NeededArgFPRs; 10678 bool IsCandidate = 10679 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10680 NeededArgGPRs, NeededArgFPRs); 10681 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10682 NeededArgFPRs <= ArgFPRsLeft) { 10683 ArgGPRsLeft -= NeededArgGPRs; 10684 ArgFPRsLeft -= NeededArgFPRs; 10685 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10686 Field2Off); 10687 } 10688 } 10689 10690 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10691 bool MustUseStack = false; 10692 // Determine the number of GPRs needed to pass the current argument 10693 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10694 // register pairs, so may consume 3 registers. 10695 int NeededArgGPRs = 1; 10696 if (!IsFixed && NeededAlign == 2 * XLen) 10697 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10698 else if (Size > XLen && Size <= 2 * XLen) 10699 NeededArgGPRs = 2; 10700 10701 if (NeededArgGPRs > ArgGPRsLeft) { 10702 MustUseStack = true; 10703 NeededArgGPRs = ArgGPRsLeft; 10704 } 10705 10706 ArgGPRsLeft -= NeededArgGPRs; 10707 10708 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10709 // Treat an enum type as its underlying type. 10710 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10711 Ty = EnumTy->getDecl()->getIntegerType(); 10712 10713 // All integral types are promoted to XLen width, unless passed on the 10714 // stack. 10715 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10716 return extendType(Ty); 10717 } 10718 10719 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10720 if (EIT->getNumBits() < XLen && !MustUseStack) 10721 return extendType(Ty); 10722 if (EIT->getNumBits() > 128 || 10723 (!getContext().getTargetInfo().hasInt128Type() && 10724 EIT->getNumBits() > 64)) 10725 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10726 } 10727 10728 return ABIArgInfo::getDirect(); 10729 } 10730 10731 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10732 // so coerce to integers. 10733 if (Size <= 2 * XLen) { 10734 unsigned Alignment = getContext().getTypeAlign(Ty); 10735 10736 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10737 // required, and a 2-element XLen array if only XLen alignment is required. 10738 if (Size <= XLen) { 10739 return ABIArgInfo::getDirect( 10740 llvm::IntegerType::get(getVMContext(), XLen)); 10741 } else if (Alignment == 2 * XLen) { 10742 return ABIArgInfo::getDirect( 10743 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10744 } else { 10745 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10746 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10747 } 10748 } 10749 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10750 } 10751 10752 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10753 if (RetTy->isVoidType()) 10754 return ABIArgInfo::getIgnore(); 10755 10756 int ArgGPRsLeft = 2; 10757 int ArgFPRsLeft = FLen ? 2 : 0; 10758 10759 // The rules for return and argument types are the same, so defer to 10760 // classifyArgumentType. 10761 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10762 ArgFPRsLeft); 10763 } 10764 10765 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10766 QualType Ty) const { 10767 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10768 10769 // Empty records are ignored for parameter passing purposes. 10770 if (isEmptyRecord(getContext(), Ty, true)) { 10771 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10772 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10773 return Addr; 10774 } 10775 10776 std::pair<CharUnits, CharUnits> SizeAndAlign = 10777 getContext().getTypeInfoInChars(Ty); 10778 10779 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10780 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 10781 10782 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 10783 SlotSize, /*AllowHigherAlign=*/true); 10784 } 10785 10786 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10787 int TySize = getContext().getTypeSize(Ty); 10788 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10789 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10790 return ABIArgInfo::getSignExtend(Ty); 10791 return ABIArgInfo::getExtend(Ty); 10792 } 10793 10794 namespace { 10795 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10796 public: 10797 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10798 unsigned FLen) 10799 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10800 10801 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10802 CodeGen::CodeGenModule &CGM) const override { 10803 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10804 if (!FD) return; 10805 10806 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10807 if (!Attr) 10808 return; 10809 10810 const char *Kind; 10811 switch (Attr->getInterrupt()) { 10812 case RISCVInterruptAttr::user: Kind = "user"; break; 10813 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10814 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10815 } 10816 10817 auto *Fn = cast<llvm::Function>(GV); 10818 10819 Fn->addFnAttr("interrupt", Kind); 10820 } 10821 }; 10822 } // namespace 10823 10824 //===----------------------------------------------------------------------===// 10825 // VE ABI Implementation. 10826 // 10827 namespace { 10828 class VEABIInfo : public DefaultABIInfo { 10829 public: 10830 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10831 10832 private: 10833 ABIArgInfo classifyReturnType(QualType RetTy) const; 10834 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10835 void computeInfo(CGFunctionInfo &FI) const override; 10836 }; 10837 } // end anonymous namespace 10838 10839 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10840 if (Ty->isAnyComplexType()) 10841 return ABIArgInfo::getDirect(); 10842 uint64_t Size = getContext().getTypeSize(Ty); 10843 if (Size < 64 && Ty->isIntegerType()) 10844 return ABIArgInfo::getExtend(Ty); 10845 return DefaultABIInfo::classifyReturnType(Ty); 10846 } 10847 10848 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10849 if (Ty->isAnyComplexType()) 10850 return ABIArgInfo::getDirect(); 10851 uint64_t Size = getContext().getTypeSize(Ty); 10852 if (Size < 64 && Ty->isIntegerType()) 10853 return ABIArgInfo::getExtend(Ty); 10854 return DefaultABIInfo::classifyArgumentType(Ty); 10855 } 10856 10857 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10858 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10859 for (auto &Arg : FI.arguments()) 10860 Arg.info = classifyArgumentType(Arg.type); 10861 } 10862 10863 namespace { 10864 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10865 public: 10866 VETargetCodeGenInfo(CodeGenTypes &CGT) 10867 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10868 // VE ABI requires the arguments of variadic and prototype-less functions 10869 // are passed in both registers and memory. 10870 bool isNoProtoCallVariadic(const CallArgList &args, 10871 const FunctionNoProtoType *fnType) const override { 10872 return true; 10873 } 10874 }; 10875 } // end anonymous namespace 10876 10877 //===----------------------------------------------------------------------===// 10878 // Driver code 10879 //===----------------------------------------------------------------------===// 10880 10881 bool CodeGenModule::supportsCOMDAT() const { 10882 return getTriple().supportsCOMDAT(); 10883 } 10884 10885 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10886 if (TheTargetCodeGenInfo) 10887 return *TheTargetCodeGenInfo; 10888 10889 // Helper to set the unique_ptr while still keeping the return value. 10890 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10891 this->TheTargetCodeGenInfo.reset(P); 10892 return *P; 10893 }; 10894 10895 const llvm::Triple &Triple = getTarget().getTriple(); 10896 switch (Triple.getArch()) { 10897 default: 10898 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10899 10900 case llvm::Triple::le32: 10901 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10902 case llvm::Triple::mips: 10903 case llvm::Triple::mipsel: 10904 if (Triple.getOS() == llvm::Triple::NaCl) 10905 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10906 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10907 10908 case llvm::Triple::mips64: 10909 case llvm::Triple::mips64el: 10910 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10911 10912 case llvm::Triple::avr: 10913 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10914 10915 case llvm::Triple::aarch64: 10916 case llvm::Triple::aarch64_32: 10917 case llvm::Triple::aarch64_be: { 10918 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10919 if (getTarget().getABI() == "darwinpcs") 10920 Kind = AArch64ABIInfo::DarwinPCS; 10921 else if (Triple.isOSWindows()) 10922 return SetCGInfo( 10923 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10924 10925 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10926 } 10927 10928 case llvm::Triple::wasm32: 10929 case llvm::Triple::wasm64: { 10930 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10931 if (getTarget().getABI() == "experimental-mv") 10932 Kind = WebAssemblyABIInfo::ExperimentalMV; 10933 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10934 } 10935 10936 case llvm::Triple::arm: 10937 case llvm::Triple::armeb: 10938 case llvm::Triple::thumb: 10939 case llvm::Triple::thumbeb: { 10940 if (Triple.getOS() == llvm::Triple::Win32) { 10941 return SetCGInfo( 10942 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10943 } 10944 10945 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10946 StringRef ABIStr = getTarget().getABI(); 10947 if (ABIStr == "apcs-gnu") 10948 Kind = ARMABIInfo::APCS; 10949 else if (ABIStr == "aapcs16") 10950 Kind = ARMABIInfo::AAPCS16_VFP; 10951 else if (CodeGenOpts.FloatABI == "hard" || 10952 (CodeGenOpts.FloatABI != "soft" && 10953 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10954 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10955 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10956 Kind = ARMABIInfo::AAPCS_VFP; 10957 10958 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10959 } 10960 10961 case llvm::Triple::ppc: { 10962 if (Triple.isOSAIX()) 10963 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10964 10965 bool IsSoftFloat = 10966 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10967 bool RetSmallStructInRegABI = 10968 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10969 return SetCGInfo( 10970 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10971 } 10972 case llvm::Triple::ppc64: 10973 if (Triple.isOSAIX()) 10974 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10975 10976 if (Triple.isOSBinFormatELF()) { 10977 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10978 if (getTarget().getABI() == "elfv2") 10979 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10980 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10981 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10982 10983 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10984 IsSoftFloat)); 10985 } 10986 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10987 case llvm::Triple::ppc64le: { 10988 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10989 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10990 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10991 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10992 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10993 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10994 10995 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10996 IsSoftFloat)); 10997 } 10998 10999 case llvm::Triple::nvptx: 11000 case llvm::Triple::nvptx64: 11001 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11002 11003 case llvm::Triple::msp430: 11004 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11005 11006 case llvm::Triple::riscv32: 11007 case llvm::Triple::riscv64: { 11008 StringRef ABIStr = getTarget().getABI(); 11009 unsigned XLen = getTarget().getPointerWidth(0); 11010 unsigned ABIFLen = 0; 11011 if (ABIStr.endswith("f")) 11012 ABIFLen = 32; 11013 else if (ABIStr.endswith("d")) 11014 ABIFLen = 64; 11015 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11016 } 11017 11018 case llvm::Triple::systemz: { 11019 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11020 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11021 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11022 } 11023 11024 case llvm::Triple::tce: 11025 case llvm::Triple::tcele: 11026 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11027 11028 case llvm::Triple::x86: { 11029 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11030 bool RetSmallStructInRegABI = 11031 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11032 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11033 11034 if (Triple.getOS() == llvm::Triple::Win32) { 11035 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11036 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11037 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11038 } else { 11039 return SetCGInfo(new X86_32TargetCodeGenInfo( 11040 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11041 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11042 CodeGenOpts.FloatABI == "soft")); 11043 } 11044 } 11045 11046 case llvm::Triple::x86_64: { 11047 StringRef ABI = getTarget().getABI(); 11048 X86AVXABILevel AVXLevel = 11049 (ABI == "avx512" 11050 ? X86AVXABILevel::AVX512 11051 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11052 11053 switch (Triple.getOS()) { 11054 case llvm::Triple::Win32: 11055 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11056 default: 11057 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11058 } 11059 } 11060 case llvm::Triple::hexagon: 11061 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11062 case llvm::Triple::lanai: 11063 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11064 case llvm::Triple::r600: 11065 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11066 case llvm::Triple::amdgcn: 11067 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11068 case llvm::Triple::sparc: 11069 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11070 case llvm::Triple::sparcv9: 11071 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11072 case llvm::Triple::xcore: 11073 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11074 case llvm::Triple::arc: 11075 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11076 case llvm::Triple::spir: 11077 case llvm::Triple::spir64: 11078 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11079 case llvm::Triple::ve: 11080 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11081 } 11082 } 11083 11084 /// Create an OpenCL kernel for an enqueued block. 11085 /// 11086 /// The kernel has the same function type as the block invoke function. Its 11087 /// name is the name of the block invoke function postfixed with "_kernel". 11088 /// It simply calls the block invoke function then returns. 11089 llvm::Function * 11090 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11091 llvm::Function *Invoke, 11092 llvm::Value *BlockLiteral) const { 11093 auto *InvokeFT = Invoke->getFunctionType(); 11094 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11095 for (auto &P : InvokeFT->params()) 11096 ArgTys.push_back(P); 11097 auto &C = CGF.getLLVMContext(); 11098 std::string Name = Invoke->getName().str() + "_kernel"; 11099 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11100 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11101 &CGF.CGM.getModule()); 11102 auto IP = CGF.Builder.saveIP(); 11103 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11104 auto &Builder = CGF.Builder; 11105 Builder.SetInsertPoint(BB); 11106 llvm::SmallVector<llvm::Value *, 2> Args; 11107 for (auto &A : F->args()) 11108 Args.push_back(&A); 11109 Builder.CreateCall(Invoke, Args); 11110 Builder.CreateRetVoid(); 11111 Builder.restoreIP(IP); 11112 return F; 11113 } 11114 11115 /// Create an OpenCL kernel for an enqueued block. 11116 /// 11117 /// The type of the first argument (the block literal) is the struct type 11118 /// of the block literal instead of a pointer type. The first argument 11119 /// (block literal) is passed directly by value to the kernel. The kernel 11120 /// allocates the same type of struct on stack and stores the block literal 11121 /// to it and passes its pointer to the block invoke function. The kernel 11122 /// has "enqueued-block" function attribute and kernel argument metadata. 11123 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11124 CodeGenFunction &CGF, llvm::Function *Invoke, 11125 llvm::Value *BlockLiteral) const { 11126 auto &Builder = CGF.Builder; 11127 auto &C = CGF.getLLVMContext(); 11128 11129 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11130 auto *InvokeFT = Invoke->getFunctionType(); 11131 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11132 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11133 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11134 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11135 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11136 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11137 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11138 11139 ArgTys.push_back(BlockTy); 11140 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11141 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11142 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11143 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11144 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11145 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11146 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11147 ArgTys.push_back(InvokeFT->getParamType(I)); 11148 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11149 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11150 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11151 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11152 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11153 ArgNames.push_back( 11154 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11155 } 11156 std::string Name = Invoke->getName().str() + "_kernel"; 11157 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11158 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11159 &CGF.CGM.getModule()); 11160 F->addFnAttr("enqueued-block"); 11161 auto IP = CGF.Builder.saveIP(); 11162 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11163 Builder.SetInsertPoint(BB); 11164 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11165 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11166 BlockPtr->setAlignment(BlockAlign); 11167 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11168 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11169 llvm::SmallVector<llvm::Value *, 2> Args; 11170 Args.push_back(Cast); 11171 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11172 Args.push_back(I); 11173 Builder.CreateCall(Invoke, Args); 11174 Builder.CreateRetVoid(); 11175 Builder.restoreIP(IP); 11176 11177 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11178 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11179 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11180 F->setMetadata("kernel_arg_base_type", 11181 llvm::MDNode::get(C, ArgBaseTypeNames)); 11182 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11183 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11184 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11185 11186 return F; 11187 } 11188