1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/SwiftCallingConv.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IntrinsicsNVPTX.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm> // std::sort
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 // Helper for coercing an aggregate argument or return value into an integer
41 // array of the same size (including padding) and alignment.  This alternate
42 // coercion happens only for the RenderScript ABI and can be removed after
43 // runtimes that rely on it are no longer supported.
44 //
45 // RenderScript assumes that the size of the argument / return value in the IR
46 // is the same as the size of the corresponding qualified type. This helper
47 // coerces the aggregate type into an array of the same size (including
48 // padding).  This coercion is used in lieu of expansion of struct members or
49 // other canonical coercions that return a coerced-type of larger size.
50 //
51 // Ty          - The argument / return value type
52 // Context     - The associated ASTContext
53 // LLVMContext - The associated LLVMContext
54 static ABIArgInfo coerceToIntArray(QualType Ty,
55                                    ASTContext &Context,
56                                    llvm::LLVMContext &LLVMContext) {
57   // Alignment and Size are measured in bits.
58   const uint64_t Size = Context.getTypeSize(Ty);
59   const uint64_t Alignment = Context.getTypeAlign(Ty);
60   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
61   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
62   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
63 }
64 
65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
66                                llvm::Value *Array,
67                                llvm::Value *Value,
68                                unsigned FirstIndex,
69                                unsigned LastIndex) {
70   // Alternatively, we could emit this as a loop in the source.
71   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
72     llvm::Value *Cell =
73         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
74     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
75   }
76 }
77 
78 static bool isAggregateTypeForABI(QualType T) {
79   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
80          T->isMemberFunctionPointerType();
81 }
82 
83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
84                                             bool Realign,
85                                             llvm::Type *Padding) const {
86   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
87                                  Realign, Padding);
88 }
89 
90 ABIArgInfo
91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
92   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
93                                       /*ByVal*/ false, Realign);
94 }
95 
96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
97                              QualType Ty) const {
98   return Address::invalid();
99 }
100 
101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
102   if (Ty->isPromotableIntegerType())
103     return true;
104 
105   if (const auto *EIT = Ty->getAs<ExtIntType>())
106     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
107       return true;
108 
109   return false;
110 }
111 
112 ABIInfo::~ABIInfo() {}
113 
114 /// Does the given lowering require more than the given number of
115 /// registers when expanded?
116 ///
117 /// This is intended to be the basis of a reasonable basic implementation
118 /// of should{Pass,Return}IndirectlyForSwift.
119 ///
120 /// For most targets, a limit of four total registers is reasonable; this
121 /// limits the amount of code required in order to move around the value
122 /// in case it wasn't produced immediately prior to the call by the caller
123 /// (or wasn't produced in exactly the right registers) or isn't used
124 /// immediately within the callee.  But some targets may need to further
125 /// limit the register count due to an inability to support that many
126 /// return registers.
127 static bool occupiesMoreThan(CodeGenTypes &cgt,
128                              ArrayRef<llvm::Type*> scalarTypes,
129                              unsigned maxAllRegisters) {
130   unsigned intCount = 0, fpCount = 0;
131   for (llvm::Type *type : scalarTypes) {
132     if (type->isPointerTy()) {
133       intCount++;
134     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
135       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
136       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
137     } else {
138       assert(type->isVectorTy() || type->isFloatingPointTy());
139       fpCount++;
140     }
141   }
142 
143   return (intCount + fpCount > maxAllRegisters);
144 }
145 
146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
147                                              llvm::Type *eltTy,
148                                              unsigned numElts) const {
149   // The default implementation of this assumes that the target guarantees
150   // 128-bit SIMD support but nothing more.
151   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
152 }
153 
154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
155                                               CGCXXABI &CXXABI) {
156   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
157   if (!RD) {
158     if (!RT->getDecl()->canPassInRegisters())
159       return CGCXXABI::RAA_Indirect;
160     return CGCXXABI::RAA_Default;
161   }
162   return CXXABI.getRecordArgABI(RD);
163 }
164 
165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
166                                               CGCXXABI &CXXABI) {
167   const RecordType *RT = T->getAs<RecordType>();
168   if (!RT)
169     return CGCXXABI::RAA_Default;
170   return getRecordArgABI(RT, CXXABI);
171 }
172 
173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
174                                const ABIInfo &Info) {
175   QualType Ty = FI.getReturnType();
176 
177   if (const auto *RT = Ty->getAs<RecordType>())
178     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
179         !RT->getDecl()->canPassInRegisters()) {
180       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
181       return true;
182     }
183 
184   return CXXABI.classifyReturnType(FI);
185 }
186 
187 /// Pass transparent unions as if they were the type of the first element. Sema
188 /// should ensure that all elements of the union have the same "machine type".
189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
190   if (const RecordType *UT = Ty->getAsUnionType()) {
191     const RecordDecl *UD = UT->getDecl();
192     if (UD->hasAttr<TransparentUnionAttr>()) {
193       assert(!UD->field_empty() && "sema created an empty transparent union");
194       return UD->field_begin()->getType();
195     }
196   }
197   return Ty;
198 }
199 
200 CGCXXABI &ABIInfo::getCXXABI() const {
201   return CGT.getCXXABI();
202 }
203 
204 ASTContext &ABIInfo::getContext() const {
205   return CGT.getContext();
206 }
207 
208 llvm::LLVMContext &ABIInfo::getVMContext() const {
209   return CGT.getLLVMContext();
210 }
211 
212 const llvm::DataLayout &ABIInfo::getDataLayout() const {
213   return CGT.getDataLayout();
214 }
215 
216 const TargetInfo &ABIInfo::getTarget() const {
217   return CGT.getTarget();
218 }
219 
220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
221   return CGT.getCodeGenOpts();
222 }
223 
224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
225 
226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
227   return false;
228 }
229 
230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
231                                                 uint64_t Members) const {
232   return false;
233 }
234 
235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
236   raw_ostream &OS = llvm::errs();
237   OS << "(ABIArgInfo Kind=";
238   switch (TheKind) {
239   case Direct:
240     OS << "Direct Type=";
241     if (llvm::Type *Ty = getCoerceToType())
242       Ty->print(OS);
243     else
244       OS << "null";
245     break;
246   case Extend:
247     OS << "Extend";
248     break;
249   case Ignore:
250     OS << "Ignore";
251     break;
252   case InAlloca:
253     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
254     break;
255   case Indirect:
256     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
257        << " ByVal=" << getIndirectByVal()
258        << " Realign=" << getIndirectRealign();
259     break;
260   case IndirectAliased:
261     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
262        << " AadrSpace=" << getIndirectAddrSpace()
263        << " Realign=" << getIndirectRealign();
264     break;
265   case Expand:
266     OS << "Expand";
267     break;
268   case CoerceAndExpand:
269     OS << "CoerceAndExpand Type=";
270     getCoerceAndExpandType()->print(OS);
271     break;
272   }
273   OS << ")\n";
274 }
275 
276 // Dynamically round a pointer up to a multiple of the given alignment.
277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
278                                                   llvm::Value *Ptr,
279                                                   CharUnits Align) {
280   llvm::Value *PtrAsInt = Ptr;
281   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
282   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
283   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
284         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
285   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
286            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
287   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
288                                         Ptr->getType(),
289                                         Ptr->getName() + ".aligned");
290   return PtrAsInt;
291 }
292 
293 /// Emit va_arg for a platform using the common void* representation,
294 /// where arguments are simply emitted in an array of slots on the stack.
295 ///
296 /// This version implements the core direct-value passing rules.
297 ///
298 /// \param SlotSize - The size and alignment of a stack slot.
299 ///   Each argument will be allocated to a multiple of this number of
300 ///   slots, and all the slots will be aligned to this value.
301 /// \param AllowHigherAlign - The slot alignment is not a cap;
302 ///   an argument type with an alignment greater than the slot size
303 ///   will be emitted on a higher-alignment address, potentially
304 ///   leaving one or more empty slots behind as padding.  If this
305 ///   is false, the returned address might be less-aligned than
306 ///   DirectAlign.
307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
308                                       Address VAListAddr,
309                                       llvm::Type *DirectTy,
310                                       CharUnits DirectSize,
311                                       CharUnits DirectAlign,
312                                       CharUnits SlotSize,
313                                       bool AllowHigherAlign) {
314   // Cast the element type to i8* if necessary.  Some platforms define
315   // va_list as a struct containing an i8* instead of just an i8*.
316   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
317     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
318 
319   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
320 
321   // If the CC aligns values higher than the slot size, do so if needed.
322   Address Addr = Address::invalid();
323   if (AllowHigherAlign && DirectAlign > SlotSize) {
324     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
325                                                  DirectAlign);
326   } else {
327     Addr = Address(Ptr, SlotSize);
328   }
329 
330   // Advance the pointer past the argument, then store that back.
331   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
332   Address NextPtr =
333       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
334   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
335 
336   // If the argument is smaller than a slot, and this is a big-endian
337   // target, the argument will be right-adjusted in its slot.
338   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
339       !DirectTy->isStructTy()) {
340     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
341   }
342 
343   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
344   return Addr;
345 }
346 
347 /// Emit va_arg for a platform using the common void* representation,
348 /// where arguments are simply emitted in an array of slots on the stack.
349 ///
350 /// \param IsIndirect - Values of this type are passed indirectly.
351 /// \param ValueInfo - The size and alignment of this type, generally
352 ///   computed with getContext().getTypeInfoInChars(ValueTy).
353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
354 ///   Each argument will be allocated to a multiple of this number of
355 ///   slots, and all the slots will be aligned to this value.
356 /// \param AllowHigherAlign - The slot alignment is not a cap;
357 ///   an argument type with an alignment greater than the slot size
358 ///   will be emitted on a higher-alignment address, potentially
359 ///   leaving one or more empty slots behind as padding.
360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
361                                 QualType ValueTy, bool IsIndirect,
362                                 std::pair<CharUnits, CharUnits> ValueInfo,
363                                 CharUnits SlotSizeAndAlign,
364                                 bool AllowHigherAlign) {
365   // The size and alignment of the value that was passed directly.
366   CharUnits DirectSize, DirectAlign;
367   if (IsIndirect) {
368     DirectSize = CGF.getPointerSize();
369     DirectAlign = CGF.getPointerAlign();
370   } else {
371     DirectSize = ValueInfo.first;
372     DirectAlign = ValueInfo.second;
373   }
374 
375   // Cast the address we've calculated to the right type.
376   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
377   if (IsIndirect)
378     DirectTy = DirectTy->getPointerTo(0);
379 
380   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
381                                         DirectSize, DirectAlign,
382                                         SlotSizeAndAlign,
383                                         AllowHigherAlign);
384 
385   if (IsIndirect) {
386     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
387   }
388 
389   return Addr;
390 
391 }
392 
393 static Address emitMergePHI(CodeGenFunction &CGF,
394                             Address Addr1, llvm::BasicBlock *Block1,
395                             Address Addr2, llvm::BasicBlock *Block2,
396                             const llvm::Twine &Name = "") {
397   assert(Addr1.getType() == Addr2.getType());
398   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
399   PHI->addIncoming(Addr1.getPointer(), Block1);
400   PHI->addIncoming(Addr2.getPointer(), Block2);
401   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
402   return Address(PHI, Align);
403 }
404 
405 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
406 
407 // If someone can figure out a general rule for this, that would be great.
408 // It's probably just doomed to be platform-dependent, though.
409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
410   // Verified for:
411   //   x86-64     FreeBSD, Linux, Darwin
412   //   x86-32     FreeBSD, Linux, Darwin
413   //   PowerPC    Linux, Darwin
414   //   ARM        Darwin (*not* EABI)
415   //   AArch64    Linux
416   return 32;
417 }
418 
419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
420                                      const FunctionNoProtoType *fnType) const {
421   // The following conventions are known to require this to be false:
422   //   x86_stdcall
423   //   MIPS
424   // For everything else, we just prefer false unless we opt out.
425   return false;
426 }
427 
428 void
429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
430                                              llvm::SmallString<24> &Opt) const {
431   // This assumes the user is passing a library name like "rt" instead of a
432   // filename like "librt.a/so", and that they don't care whether it's static or
433   // dynamic.
434   Opt = "-l";
435   Opt += Lib;
436 }
437 
438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
439   // OpenCL kernels are called via an explicit runtime API with arguments
440   // set with clSetKernelArg(), not as normal sub-functions.
441   // Return SPIR_KERNEL by default as the kernel calling convention to
442   // ensure the fingerprint is fixed such way that each OpenCL argument
443   // gets one matching argument in the produced kernel function argument
444   // list to enable feasible implementation of clSetKernelArg() with
445   // aggregates etc. In case we would use the default C calling conv here,
446   // clSetKernelArg() might break depending on the target-specific
447   // conventions; different targets might split structs passed as values
448   // to multiple function arguments etc.
449   return llvm::CallingConv::SPIR_KERNEL;
450 }
451 
452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
453     llvm::PointerType *T, QualType QT) const {
454   return llvm::ConstantPointerNull::get(T);
455 }
456 
457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
458                                                    const VarDecl *D) const {
459   assert(!CGM.getLangOpts().OpenCL &&
460          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
461          "Address space agnostic languages only");
462   return D ? D->getType().getAddressSpace() : LangAS::Default;
463 }
464 
465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
466     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
467     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
468   // Since target may map different address spaces in AST to the same address
469   // space, an address space conversion may end up as a bitcast.
470   if (auto *C = dyn_cast<llvm::Constant>(Src))
471     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
472   // Try to preserve the source's name to make IR more readable.
473   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
474       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
475 }
476 
477 llvm::Constant *
478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
479                                         LangAS SrcAddr, LangAS DestAddr,
480                                         llvm::Type *DestTy) const {
481   // Since target may map different address spaces in AST to the same address
482   // space, an address space conversion may end up as a bitcast.
483   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
484 }
485 
486 llvm::SyncScope::ID
487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
488                                       SyncScope Scope,
489                                       llvm::AtomicOrdering Ordering,
490                                       llvm::LLVMContext &Ctx) const {
491   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
492 }
493 
494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
495 
496 /// isEmptyField - Return true iff a the field is "empty", that is it
497 /// is an unnamed bit-field or an (array of) empty record(s).
498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
499                          bool AllowArrays) {
500   if (FD->isUnnamedBitfield())
501     return true;
502 
503   QualType FT = FD->getType();
504 
505   // Constant arrays of empty records count as empty, strip them off.
506   // Constant arrays of zero length always count as empty.
507   bool WasArray = false;
508   if (AllowArrays)
509     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
510       if (AT->getSize() == 0)
511         return true;
512       FT = AT->getElementType();
513       // The [[no_unique_address]] special case below does not apply to
514       // arrays of C++ empty records, so we need to remember this fact.
515       WasArray = true;
516     }
517 
518   const RecordType *RT = FT->getAs<RecordType>();
519   if (!RT)
520     return false;
521 
522   // C++ record fields are never empty, at least in the Itanium ABI.
523   //
524   // FIXME: We should use a predicate for whether this behavior is true in the
525   // current ABI.
526   //
527   // The exception to the above rule are fields marked with the
528   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
529   // according to the Itanium ABI.  The exception applies only to records,
530   // not arrays of records, so we must also check whether we stripped off an
531   // array type above.
532   if (isa<CXXRecordDecl>(RT->getDecl()) &&
533       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
534     return false;
535 
536   return isEmptyRecord(Context, FT, AllowArrays);
537 }
538 
539 /// isEmptyRecord - Return true iff a structure contains only empty
540 /// fields. Note that a structure with a flexible array member is not
541 /// considered empty.
542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
543   const RecordType *RT = T->getAs<RecordType>();
544   if (!RT)
545     return false;
546   const RecordDecl *RD = RT->getDecl();
547   if (RD->hasFlexibleArrayMember())
548     return false;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
552     for (const auto &I : CXXRD->bases())
553       if (!isEmptyRecord(Context, I.getType(), true))
554         return false;
555 
556   for (const auto *I : RD->fields())
557     if (!isEmptyField(Context, I, AllowArrays))
558       return false;
559   return true;
560 }
561 
562 /// isSingleElementStruct - Determine if a structure is a "single
563 /// element struct", i.e. it has exactly one non-empty field or
564 /// exactly one field which is itself a single element
565 /// struct. Structures with flexible array members are never
566 /// considered single element structs.
567 ///
568 /// \return The field declaration for the single non-empty field, if
569 /// it exists.
570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
571   const RecordType *RT = T->getAs<RecordType>();
572   if (!RT)
573     return nullptr;
574 
575   const RecordDecl *RD = RT->getDecl();
576   if (RD->hasFlexibleArrayMember())
577     return nullptr;
578 
579   const Type *Found = nullptr;
580 
581   // If this is a C++ record, check the bases first.
582   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
583     for (const auto &I : CXXRD->bases()) {
584       // Ignore empty records.
585       if (isEmptyRecord(Context, I.getType(), true))
586         continue;
587 
588       // If we already found an element then this isn't a single-element struct.
589       if (Found)
590         return nullptr;
591 
592       // If this is non-empty and not a single element struct, the composite
593       // cannot be a single element struct.
594       Found = isSingleElementStruct(I.getType(), Context);
595       if (!Found)
596         return nullptr;
597     }
598   }
599 
600   // Check for single element.
601   for (const auto *FD : RD->fields()) {
602     QualType FT = FD->getType();
603 
604     // Ignore empty fields.
605     if (isEmptyField(Context, FD, true))
606       continue;
607 
608     // If we already found an element then this isn't a single-element
609     // struct.
610     if (Found)
611       return nullptr;
612 
613     // Treat single element arrays as the element.
614     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
615       if (AT->getSize().getZExtValue() != 1)
616         break;
617       FT = AT->getElementType();
618     }
619 
620     if (!isAggregateTypeForABI(FT)) {
621       Found = FT.getTypePtr();
622     } else {
623       Found = isSingleElementStruct(FT, Context);
624       if (!Found)
625         return nullptr;
626     }
627   }
628 
629   // We don't consider a struct a single-element struct if it has
630   // padding beyond the element type.
631   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
632     return nullptr;
633 
634   return Found;
635 }
636 
637 namespace {
638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
639                        const ABIArgInfo &AI) {
640   // This default implementation defers to the llvm backend's va_arg
641   // instruction. It can handle only passing arguments directly
642   // (typically only handled in the backend for primitive types), or
643   // aggregates passed indirectly by pointer (NOTE: if the "byval"
644   // flag has ABI impact in the callee, this implementation cannot
645   // work.)
646 
647   // Only a few cases are covered here at the moment -- those needed
648   // by the default abi.
649   llvm::Value *Val;
650 
651   if (AI.isIndirect()) {
652     assert(!AI.getPaddingType() &&
653            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
654     assert(
655         !AI.getIndirectRealign() &&
656         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
657 
658     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
659     CharUnits TyAlignForABI = TyInfo.second;
660 
661     llvm::Type *BaseTy =
662         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
663     llvm::Value *Addr =
664         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
665     return Address(Addr, TyAlignForABI);
666   } else {
667     assert((AI.isDirect() || AI.isExtend()) &&
668            "Unexpected ArgInfo Kind in generic VAArg emitter!");
669 
670     assert(!AI.getInReg() &&
671            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
672     assert(!AI.getPaddingType() &&
673            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getDirectOffset() &&
675            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getCoerceToType() &&
677            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
678 
679     Address Temp = CGF.CreateMemTemp(Ty, "varet");
680     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
681     CGF.Builder.CreateStore(Val, Temp);
682     return Temp;
683   }
684 }
685 
686 /// DefaultABIInfo - The default implementation for ABI specific
687 /// details. This implementation provides information which results in
688 /// self-consistent and sensible LLVM IR generation, but does not
689 /// conform to any particular ABI.
690 class DefaultABIInfo : public ABIInfo {
691 public:
692   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
693 
694   ABIArgInfo classifyReturnType(QualType RetTy) const;
695   ABIArgInfo classifyArgumentType(QualType RetTy) const;
696 
697   void computeInfo(CGFunctionInfo &FI) const override {
698     if (!getCXXABI().classifyReturnType(FI))
699       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
700     for (auto &I : FI.arguments())
701       I.info = classifyArgumentType(I.type);
702   }
703 
704   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
705                     QualType Ty) const override {
706     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
707   }
708 };
709 
710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
711 public:
712   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
713       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
714 };
715 
716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
717   Ty = useFirstFieldIfTransparentUnion(Ty);
718 
719   if (isAggregateTypeForABI(Ty)) {
720     // Records with non-trivial destructors/copy-constructors should not be
721     // passed by value.
722     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
723       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
724 
725     return getNaturalAlignIndirect(Ty);
726   }
727 
728   // Treat an enum type as its underlying type.
729   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
730     Ty = EnumTy->getDecl()->getIntegerType();
731 
732   ASTContext &Context = getContext();
733   if (const auto *EIT = Ty->getAs<ExtIntType>())
734     if (EIT->getNumBits() >
735         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
736                                 ? Context.Int128Ty
737                                 : Context.LongLongTy))
738       return getNaturalAlignIndirect(Ty);
739 
740   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
741                                             : ABIArgInfo::getDirect());
742 }
743 
744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
745   if (RetTy->isVoidType())
746     return ABIArgInfo::getIgnore();
747 
748   if (isAggregateTypeForABI(RetTy))
749     return getNaturalAlignIndirect(RetTy);
750 
751   // Treat an enum type as its underlying type.
752   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
753     RetTy = EnumTy->getDecl()->getIntegerType();
754 
755   if (const auto *EIT = RetTy->getAs<ExtIntType>())
756     if (EIT->getNumBits() >
757         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
758                                      ? getContext().Int128Ty
759                                      : getContext().LongLongTy))
760       return getNaturalAlignIndirect(RetTy);
761 
762   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
763                                                : ABIArgInfo::getDirect());
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // WebAssembly ABI Implementation
768 //
769 // This is a very simple ABI that relies a lot on DefaultABIInfo.
770 //===----------------------------------------------------------------------===//
771 
772 class WebAssemblyABIInfo final : public SwiftABIInfo {
773 public:
774   enum ABIKind {
775     MVP = 0,
776     ExperimentalMV = 1,
777   };
778 
779 private:
780   DefaultABIInfo defaultInfo;
781   ABIKind Kind;
782 
783 public:
784   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
785       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
786 
787 private:
788   ABIArgInfo classifyReturnType(QualType RetTy) const;
789   ABIArgInfo classifyArgumentType(QualType Ty) const;
790 
791   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
792   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
793   // overload them.
794   void computeInfo(CGFunctionInfo &FI) const override {
795     if (!getCXXABI().classifyReturnType(FI))
796       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
797     for (auto &Arg : FI.arguments())
798       Arg.info = classifyArgumentType(Arg.type);
799   }
800 
801   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
802                     QualType Ty) const override;
803 
804   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
805                                     bool asReturnValue) const override {
806     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
807   }
808 
809   bool isSwiftErrorInRegister() const override {
810     return false;
811   }
812 };
813 
814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
815 public:
816   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
817                                         WebAssemblyABIInfo::ABIKind K)
818       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
819 
820   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
821                            CodeGen::CodeGenModule &CGM) const override {
822     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
823     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
824       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
825         llvm::Function *Fn = cast<llvm::Function>(GV);
826         llvm::AttrBuilder B;
827         B.addAttribute("wasm-import-module", Attr->getImportModule());
828         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
829       }
830       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
831         llvm::Function *Fn = cast<llvm::Function>(GV);
832         llvm::AttrBuilder B;
833         B.addAttribute("wasm-import-name", Attr->getImportName());
834         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
835       }
836       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
837         llvm::Function *Fn = cast<llvm::Function>(GV);
838         llvm::AttrBuilder B;
839         B.addAttribute("wasm-export-name", Attr->getExportName());
840         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
841       }
842     }
843 
844     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
845       llvm::Function *Fn = cast<llvm::Function>(GV);
846       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
847         Fn->addFnAttr("no-prototype");
848     }
849   }
850 };
851 
852 /// Classify argument of given type \p Ty.
853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
854   Ty = useFirstFieldIfTransparentUnion(Ty);
855 
856   if (isAggregateTypeForABI(Ty)) {
857     // Records with non-trivial destructors/copy-constructors should not be
858     // passed by value.
859     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
860       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
861     // Ignore empty structs/unions.
862     if (isEmptyRecord(getContext(), Ty, true))
863       return ABIArgInfo::getIgnore();
864     // Lower single-element structs to just pass a regular value. TODO: We
865     // could do reasonable-size multiple-element structs too, using getExpand(),
866     // though watch out for things like bitfields.
867     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
868       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
869     // For the experimental multivalue ABI, fully expand all other aggregates
870     if (Kind == ABIKind::ExperimentalMV) {
871       const RecordType *RT = Ty->getAs<RecordType>();
872       assert(RT);
873       bool HasBitField = false;
874       for (auto *Field : RT->getDecl()->fields()) {
875         if (Field->isBitField()) {
876           HasBitField = true;
877           break;
878         }
879       }
880       if (!HasBitField)
881         return ABIArgInfo::getExpand();
882     }
883   }
884 
885   // Otherwise just do the default thing.
886   return defaultInfo.classifyArgumentType(Ty);
887 }
888 
889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
890   if (isAggregateTypeForABI(RetTy)) {
891     // Records with non-trivial destructors/copy-constructors should not be
892     // returned by value.
893     if (!getRecordArgABI(RetTy, getCXXABI())) {
894       // Ignore empty structs/unions.
895       if (isEmptyRecord(getContext(), RetTy, true))
896         return ABIArgInfo::getIgnore();
897       // Lower single-element structs to just return a regular value. TODO: We
898       // could do reasonable-size multiple-element structs too, using
899       // ABIArgInfo::getDirect().
900       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
901         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
902       // For the experimental multivalue ABI, return all other aggregates
903       if (Kind == ABIKind::ExperimentalMV)
904         return ABIArgInfo::getDirect();
905     }
906   }
907 
908   // Otherwise just do the default thing.
909   return defaultInfo.classifyReturnType(RetTy);
910 }
911 
912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
913                                       QualType Ty) const {
914   bool IsIndirect = isAggregateTypeForABI(Ty) &&
915                     !isEmptyRecord(getContext(), Ty, true) &&
916                     !isSingleElementStruct(Ty, getContext());
917   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
918                           getContext().getTypeInfoInChars(Ty),
919                           CharUnits::fromQuantity(4),
920                           /*AllowHigherAlign=*/true);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 // le32/PNaCl bitcode ABI Implementation
925 //
926 // This is a simplified version of the x86_32 ABI.  Arguments and return values
927 // are always passed on the stack.
928 //===----------------------------------------------------------------------===//
929 
930 class PNaClABIInfo : public ABIInfo {
931  public:
932   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
933 
934   ABIArgInfo classifyReturnType(QualType RetTy) const;
935   ABIArgInfo classifyArgumentType(QualType RetTy) const;
936 
937   void computeInfo(CGFunctionInfo &FI) const override;
938   Address EmitVAArg(CodeGenFunction &CGF,
939                     Address VAListAddr, QualType Ty) const override;
940 };
941 
942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
943  public:
944    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
945        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
946 };
947 
948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
949   if (!getCXXABI().classifyReturnType(FI))
950     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
951 
952   for (auto &I : FI.arguments())
953     I.info = classifyArgumentType(I.type);
954 }
955 
956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
957                                 QualType Ty) const {
958   // The PNaCL ABI is a bit odd, in that varargs don't use normal
959   // function classification. Structs get passed directly for varargs
960   // functions, through a rewriting transform in
961   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
962   // this target to actually support a va_arg instructions with an
963   // aggregate type, unlike other targets.
964   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
965 }
966 
967 /// Classify argument of given type \p Ty.
968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
969   if (isAggregateTypeForABI(Ty)) {
970     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
971       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
972     return getNaturalAlignIndirect(Ty);
973   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
974     // Treat an enum type as its underlying type.
975     Ty = EnumTy->getDecl()->getIntegerType();
976   } else if (Ty->isFloatingType()) {
977     // Floating-point types don't go inreg.
978     return ABIArgInfo::getDirect();
979   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
980     // Treat extended integers as integers if <=64, otherwise pass indirectly.
981     if (EIT->getNumBits() > 64)
982       return getNaturalAlignIndirect(Ty);
983     return ABIArgInfo::getDirect();
984   }
985 
986   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
987                                             : ABIArgInfo::getDirect());
988 }
989 
990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
991   if (RetTy->isVoidType())
992     return ABIArgInfo::getIgnore();
993 
994   // In the PNaCl ABI we always return records/structures on the stack.
995   if (isAggregateTypeForABI(RetTy))
996     return getNaturalAlignIndirect(RetTy);
997 
998   // Treat extended integers as integers if <=64, otherwise pass indirectly.
999   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1000     if (EIT->getNumBits() > 64)
1001       return getNaturalAlignIndirect(RetTy);
1002     return ABIArgInfo::getDirect();
1003   }
1004 
1005   // Treat an enum type as its underlying type.
1006   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1007     RetTy = EnumTy->getDecl()->getIntegerType();
1008 
1009   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1010                                                : ABIArgInfo::getDirect());
1011 }
1012 
1013 /// IsX86_MMXType - Return true if this is an MMX type.
1014 bool IsX86_MMXType(llvm::Type *IRType) {
1015   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1016   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1017     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1018     IRType->getScalarSizeInBits() != 64;
1019 }
1020 
1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1022                                           StringRef Constraint,
1023                                           llvm::Type* Ty) {
1024   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1025                      .Cases("y", "&y", "^Ym", true)
1026                      .Default(false);
1027   if (IsMMXCons && Ty->isVectorTy()) {
1028     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1029         64) {
1030       // Invalid MMX constraint
1031       return nullptr;
1032     }
1033 
1034     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1035   }
1036 
1037   // No operation needed
1038   return Ty;
1039 }
1040 
1041 /// Returns true if this type can be passed in SSE registers with the
1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1044   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1045     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1046       if (BT->getKind() == BuiltinType::LongDouble) {
1047         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1048             &llvm::APFloat::x87DoubleExtended())
1049           return false;
1050       }
1051       return true;
1052     }
1053   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1054     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1055     // registers specially.
1056     unsigned VecSize = Context.getTypeSize(VT);
1057     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1058       return true;
1059   }
1060   return false;
1061 }
1062 
1063 /// Returns true if this aggregate is small enough to be passed in SSE registers
1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1066   return NumMembers <= 4;
1067 }
1068 
1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1071   auto AI = ABIArgInfo::getDirect(T);
1072   AI.setInReg(true);
1073   AI.setCanBeFlattened(false);
1074   return AI;
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 // X86-32 ABI Implementation
1079 //===----------------------------------------------------------------------===//
1080 
1081 /// Similar to llvm::CCState, but for Clang.
1082 struct CCState {
1083   CCState(CGFunctionInfo &FI)
1084       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1085 
1086   llvm::SmallBitVector IsPreassigned;
1087   unsigned CC = CallingConv::CC_C;
1088   unsigned FreeRegs = 0;
1089   unsigned FreeSSERegs = 0;
1090 };
1091 
1092 enum {
1093   // Vectorcall only allows the first 6 parameters to be passed in registers.
1094   VectorcallMaxParamNumAsReg = 6
1095 };
1096 
1097 /// X86_32ABIInfo - The X86-32 ABI information.
1098 class X86_32ABIInfo : public SwiftABIInfo {
1099   enum Class {
1100     Integer,
1101     Float
1102   };
1103 
1104   static const unsigned MinABIStackAlignInBytes = 4;
1105 
1106   bool IsDarwinVectorABI;
1107   bool IsRetSmallStructInRegABI;
1108   bool IsWin32StructABI;
1109   bool IsSoftFloatABI;
1110   bool IsMCUABI;
1111   unsigned DefaultNumRegisterParameters;
1112 
1113   static bool isRegisterSize(unsigned Size) {
1114     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1115   }
1116 
1117   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1118     // FIXME: Assumes vectorcall is in use.
1119     return isX86VectorTypeForVectorCall(getContext(), Ty);
1120   }
1121 
1122   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1123                                          uint64_t NumMembers) const override {
1124     // FIXME: Assumes vectorcall is in use.
1125     return isX86VectorCallAggregateSmallEnough(NumMembers);
1126   }
1127 
1128   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1129 
1130   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1131   /// such that the argument will be passed in memory.
1132   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1133 
1134   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1135 
1136   /// Return the alignment to use for the given type on the stack.
1137   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1138 
1139   Class classify(QualType Ty) const;
1140   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1141   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1142 
1143   /// Updates the number of available free registers, returns
1144   /// true if any registers were allocated.
1145   bool updateFreeRegs(QualType Ty, CCState &State) const;
1146 
1147   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1148                                 bool &NeedsPadding) const;
1149   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1150 
1151   bool canExpandIndirectArgument(QualType Ty) const;
1152 
1153   /// Rewrite the function info so that all memory arguments use
1154   /// inalloca.
1155   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1156 
1157   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1158                            CharUnits &StackOffset, ABIArgInfo &Info,
1159                            QualType Type) const;
1160   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1161 
1162 public:
1163 
1164   void computeInfo(CGFunctionInfo &FI) const override;
1165   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1166                     QualType Ty) const override;
1167 
1168   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1169                 bool RetSmallStructInRegABI, bool Win32StructABI,
1170                 unsigned NumRegisterParameters, bool SoftFloatABI)
1171     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1172       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1173       IsWin32StructABI(Win32StructABI),
1174       IsSoftFloatABI(SoftFloatABI),
1175       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1176       DefaultNumRegisterParameters(NumRegisterParameters) {}
1177 
1178   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1179                                     bool asReturnValue) const override {
1180     // LLVM's x86-32 lowering currently only assigns up to three
1181     // integer registers and three fp registers.  Oddly, it'll use up to
1182     // four vector registers for vectors, but those can overlap with the
1183     // scalar registers.
1184     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1185   }
1186 
1187   bool isSwiftErrorInRegister() const override {
1188     // x86-32 lowering does not support passing swifterror in a register.
1189     return false;
1190   }
1191 };
1192 
1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1194 public:
1195   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1196                           bool RetSmallStructInRegABI, bool Win32StructABI,
1197                           unsigned NumRegisterParameters, bool SoftFloatABI)
1198       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1199             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1200             NumRegisterParameters, SoftFloatABI)) {}
1201 
1202   static bool isStructReturnInRegABI(
1203       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1204 
1205   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1206                            CodeGen::CodeGenModule &CGM) const override;
1207 
1208   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1209     // Darwin uses different dwarf register numbers for EH.
1210     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1211     return 4;
1212   }
1213 
1214   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1215                                llvm::Value *Address) const override;
1216 
1217   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1218                                   StringRef Constraint,
1219                                   llvm::Type* Ty) const override {
1220     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1221   }
1222 
1223   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1224                                 std::string &Constraints,
1225                                 std::vector<llvm::Type *> &ResultRegTypes,
1226                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1227                                 std::vector<LValue> &ResultRegDests,
1228                                 std::string &AsmString,
1229                                 unsigned NumOutputs) const override;
1230 
1231   llvm::Constant *
1232   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1233     unsigned Sig = (0xeb << 0) |  // jmp rel8
1234                    (0x06 << 8) |  //           .+0x08
1235                    ('v' << 16) |
1236                    ('2' << 24);
1237     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1238   }
1239 
1240   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1241     return "movl\t%ebp, %ebp"
1242            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1243   }
1244 };
1245 
1246 }
1247 
1248 /// Rewrite input constraint references after adding some output constraints.
1249 /// In the case where there is one output and one input and we add one output,
1250 /// we need to replace all operand references greater than or equal to 1:
1251 ///     mov $0, $1
1252 ///     mov eax, $1
1253 /// The result will be:
1254 ///     mov $0, $2
1255 ///     mov eax, $2
1256 static void rewriteInputConstraintReferences(unsigned FirstIn,
1257                                              unsigned NumNewOuts,
1258                                              std::string &AsmString) {
1259   std::string Buf;
1260   llvm::raw_string_ostream OS(Buf);
1261   size_t Pos = 0;
1262   while (Pos < AsmString.size()) {
1263     size_t DollarStart = AsmString.find('$', Pos);
1264     if (DollarStart == std::string::npos)
1265       DollarStart = AsmString.size();
1266     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1267     if (DollarEnd == std::string::npos)
1268       DollarEnd = AsmString.size();
1269     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1270     Pos = DollarEnd;
1271     size_t NumDollars = DollarEnd - DollarStart;
1272     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1273       // We have an operand reference.
1274       size_t DigitStart = Pos;
1275       if (AsmString[DigitStart] == '{') {
1276         OS << '{';
1277         ++DigitStart;
1278       }
1279       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1280       if (DigitEnd == std::string::npos)
1281         DigitEnd = AsmString.size();
1282       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1283       unsigned OperandIndex;
1284       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1285         if (OperandIndex >= FirstIn)
1286           OperandIndex += NumNewOuts;
1287         OS << OperandIndex;
1288       } else {
1289         OS << OperandStr;
1290       }
1291       Pos = DigitEnd;
1292     }
1293   }
1294   AsmString = std::move(OS.str());
1295 }
1296 
1297 /// Add output constraints for EAX:EDX because they are return registers.
1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1299     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1300     std::vector<llvm::Type *> &ResultRegTypes,
1301     std::vector<llvm::Type *> &ResultTruncRegTypes,
1302     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1303     unsigned NumOutputs) const {
1304   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1305 
1306   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1307   // larger.
1308   if (!Constraints.empty())
1309     Constraints += ',';
1310   if (RetWidth <= 32) {
1311     Constraints += "={eax}";
1312     ResultRegTypes.push_back(CGF.Int32Ty);
1313   } else {
1314     // Use the 'A' constraint for EAX:EDX.
1315     Constraints += "=A";
1316     ResultRegTypes.push_back(CGF.Int64Ty);
1317   }
1318 
1319   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1320   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1321   ResultTruncRegTypes.push_back(CoerceTy);
1322 
1323   // Coerce the integer by bitcasting the return slot pointer.
1324   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1325                                                   CoerceTy->getPointerTo()));
1326   ResultRegDests.push_back(ReturnSlot);
1327 
1328   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1329 }
1330 
1331 /// shouldReturnTypeInRegister - Determine if the given type should be
1332 /// returned in a register (for the Darwin and MCU ABI).
1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1334                                                ASTContext &Context) const {
1335   uint64_t Size = Context.getTypeSize(Ty);
1336 
1337   // For i386, type must be register sized.
1338   // For the MCU ABI, it only needs to be <= 8-byte
1339   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1340    return false;
1341 
1342   if (Ty->isVectorType()) {
1343     // 64- and 128- bit vectors inside structures are not returned in
1344     // registers.
1345     if (Size == 64 || Size == 128)
1346       return false;
1347 
1348     return true;
1349   }
1350 
1351   // If this is a builtin, pointer, enum, complex type, member pointer, or
1352   // member function pointer it is ok.
1353   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1354       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1355       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1356     return true;
1357 
1358   // Arrays are treated like records.
1359   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1360     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1361 
1362   // Otherwise, it must be a record type.
1363   const RecordType *RT = Ty->getAs<RecordType>();
1364   if (!RT) return false;
1365 
1366   // FIXME: Traverse bases here too.
1367 
1368   // Structure types are passed in register if all fields would be
1369   // passed in a register.
1370   for (const auto *FD : RT->getDecl()->fields()) {
1371     // Empty fields are ignored.
1372     if (isEmptyField(Context, FD, true))
1373       continue;
1374 
1375     // Check fields recursively.
1376     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1377       return false;
1378   }
1379   return true;
1380 }
1381 
1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1383   // Treat complex types as the element type.
1384   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1385     Ty = CTy->getElementType();
1386 
1387   // Check for a type which we know has a simple scalar argument-passing
1388   // convention without any padding.  (We're specifically looking for 32
1389   // and 64-bit integer and integer-equivalents, float, and double.)
1390   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1391       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1392     return false;
1393 
1394   uint64_t Size = Context.getTypeSize(Ty);
1395   return Size == 32 || Size == 64;
1396 }
1397 
1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1399                           uint64_t &Size) {
1400   for (const auto *FD : RD->fields()) {
1401     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1402     // argument is smaller than 32-bits, expanding the struct will create
1403     // alignment padding.
1404     if (!is32Or64BitBasicType(FD->getType(), Context))
1405       return false;
1406 
1407     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1408     // how to expand them yet, and the predicate for telling if a bitfield still
1409     // counts as "basic" is more complicated than what we were doing previously.
1410     if (FD->isBitField())
1411       return false;
1412 
1413     Size += Context.getTypeSize(FD->getType());
1414   }
1415   return true;
1416 }
1417 
1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1419                                  uint64_t &Size) {
1420   // Don't do this if there are any non-empty bases.
1421   for (const CXXBaseSpecifier &Base : RD->bases()) {
1422     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1423                               Size))
1424       return false;
1425   }
1426   if (!addFieldSizes(Context, RD, Size))
1427     return false;
1428   return true;
1429 }
1430 
1431 /// Test whether an argument type which is to be passed indirectly (on the
1432 /// stack) would have the equivalent layout if it was expanded into separate
1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1434 /// optimizations.
1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1436   // We can only expand structure types.
1437   const RecordType *RT = Ty->getAs<RecordType>();
1438   if (!RT)
1439     return false;
1440   const RecordDecl *RD = RT->getDecl();
1441   uint64_t Size = 0;
1442   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1443     if (!IsWin32StructABI) {
1444       // On non-Windows, we have to conservatively match our old bitcode
1445       // prototypes in order to be ABI-compatible at the bitcode level.
1446       if (!CXXRD->isCLike())
1447         return false;
1448     } else {
1449       // Don't do this for dynamic classes.
1450       if (CXXRD->isDynamicClass())
1451         return false;
1452     }
1453     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1454       return false;
1455   } else {
1456     if (!addFieldSizes(getContext(), RD, Size))
1457       return false;
1458   }
1459 
1460   // We can do this if there was no alignment padding.
1461   return Size == getContext().getTypeSize(Ty);
1462 }
1463 
1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1465   // If the return value is indirect, then the hidden argument is consuming one
1466   // integer register.
1467   if (State.FreeRegs) {
1468     --State.FreeRegs;
1469     if (!IsMCUABI)
1470       return getNaturalAlignIndirectInReg(RetTy);
1471   }
1472   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1473 }
1474 
1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1476                                              CCState &State) const {
1477   if (RetTy->isVoidType())
1478     return ABIArgInfo::getIgnore();
1479 
1480   const Type *Base = nullptr;
1481   uint64_t NumElts = 0;
1482   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1483        State.CC == llvm::CallingConv::X86_RegCall) &&
1484       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1485     // The LLVM struct type for such an aggregate should lower properly.
1486     return ABIArgInfo::getDirect();
1487   }
1488 
1489   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1490     // On Darwin, some vectors are returned in registers.
1491     if (IsDarwinVectorABI) {
1492       uint64_t Size = getContext().getTypeSize(RetTy);
1493 
1494       // 128-bit vectors are a special case; they are returned in
1495       // registers and we need to make sure to pick a type the LLVM
1496       // backend will like.
1497       if (Size == 128)
1498         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1499             llvm::Type::getInt64Ty(getVMContext()), 2));
1500 
1501       // Always return in register if it fits in a general purpose
1502       // register, or if it is 64 bits and has a single element.
1503       if ((Size == 8 || Size == 16 || Size == 32) ||
1504           (Size == 64 && VT->getNumElements() == 1))
1505         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1506                                                             Size));
1507 
1508       return getIndirectReturnResult(RetTy, State);
1509     }
1510 
1511     return ABIArgInfo::getDirect();
1512   }
1513 
1514   if (isAggregateTypeForABI(RetTy)) {
1515     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1516       // Structures with flexible arrays are always indirect.
1517       if (RT->getDecl()->hasFlexibleArrayMember())
1518         return getIndirectReturnResult(RetTy, State);
1519     }
1520 
1521     // If specified, structs and unions are always indirect.
1522     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1523       return getIndirectReturnResult(RetTy, State);
1524 
1525     // Ignore empty structs/unions.
1526     if (isEmptyRecord(getContext(), RetTy, true))
1527       return ABIArgInfo::getIgnore();
1528 
1529     // Small structures which are register sized are generally returned
1530     // in a register.
1531     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1532       uint64_t Size = getContext().getTypeSize(RetTy);
1533 
1534       // As a special-case, if the struct is a "single-element" struct, and
1535       // the field is of type "float" or "double", return it in a
1536       // floating-point register. (MSVC does not apply this special case.)
1537       // We apply a similar transformation for pointer types to improve the
1538       // quality of the generated IR.
1539       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1540         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1541             || SeltTy->hasPointerRepresentation())
1542           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1543 
1544       // FIXME: We should be able to narrow this integer in cases with dead
1545       // padding.
1546       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1547     }
1548 
1549     return getIndirectReturnResult(RetTy, State);
1550   }
1551 
1552   // Treat an enum type as its underlying type.
1553   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1554     RetTy = EnumTy->getDecl()->getIntegerType();
1555 
1556   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1557     if (EIT->getNumBits() > 64)
1558       return getIndirectReturnResult(RetTy, State);
1559 
1560   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1561                                                : ABIArgInfo::getDirect());
1562 }
1563 
1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1565   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1566 }
1567 
1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1569   const RecordType *RT = Ty->getAs<RecordType>();
1570   if (!RT)
1571     return 0;
1572   const RecordDecl *RD = RT->getDecl();
1573 
1574   // If this is a C++ record, check the bases first.
1575   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1576     for (const auto &I : CXXRD->bases())
1577       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1578         return false;
1579 
1580   for (const auto *i : RD->fields()) {
1581     QualType FT = i->getType();
1582 
1583     if (isSIMDVectorType(Context, FT))
1584       return true;
1585 
1586     if (isRecordWithSIMDVectorType(Context, FT))
1587       return true;
1588   }
1589 
1590   return false;
1591 }
1592 
1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1594                                                  unsigned Align) const {
1595   // Otherwise, if the alignment is less than or equal to the minimum ABI
1596   // alignment, just use the default; the backend will handle this.
1597   if (Align <= MinABIStackAlignInBytes)
1598     return 0; // Use default alignment.
1599 
1600   // On non-Darwin, the stack type alignment is always 4.
1601   if (!IsDarwinVectorABI) {
1602     // Set explicit alignment, since we may need to realign the top.
1603     return MinABIStackAlignInBytes;
1604   }
1605 
1606   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1607   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1608                       isRecordWithSIMDVectorType(getContext(), Ty)))
1609     return 16;
1610 
1611   return MinABIStackAlignInBytes;
1612 }
1613 
1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1615                                             CCState &State) const {
1616   if (!ByVal) {
1617     if (State.FreeRegs) {
1618       --State.FreeRegs; // Non-byval indirects just use one pointer.
1619       if (!IsMCUABI)
1620         return getNaturalAlignIndirectInReg(Ty);
1621     }
1622     return getNaturalAlignIndirect(Ty, false);
1623   }
1624 
1625   // Compute the byval alignment.
1626   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1627   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1628   if (StackAlign == 0)
1629     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1630 
1631   // If the stack alignment is less than the type alignment, realign the
1632   // argument.
1633   bool Realign = TypeAlign > StackAlign;
1634   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1635                                  /*ByVal=*/true, Realign);
1636 }
1637 
1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1639   const Type *T = isSingleElementStruct(Ty, getContext());
1640   if (!T)
1641     T = Ty.getTypePtr();
1642 
1643   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1644     BuiltinType::Kind K = BT->getKind();
1645     if (K == BuiltinType::Float || K == BuiltinType::Double)
1646       return Float;
1647   }
1648   return Integer;
1649 }
1650 
1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1652   if (!IsSoftFloatABI) {
1653     Class C = classify(Ty);
1654     if (C == Float)
1655       return false;
1656   }
1657 
1658   unsigned Size = getContext().getTypeSize(Ty);
1659   unsigned SizeInRegs = (Size + 31) / 32;
1660 
1661   if (SizeInRegs == 0)
1662     return false;
1663 
1664   if (!IsMCUABI) {
1665     if (SizeInRegs > State.FreeRegs) {
1666       State.FreeRegs = 0;
1667       return false;
1668     }
1669   } else {
1670     // The MCU psABI allows passing parameters in-reg even if there are
1671     // earlier parameters that are passed on the stack. Also,
1672     // it does not allow passing >8-byte structs in-register,
1673     // even if there are 3 free registers available.
1674     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1675       return false;
1676   }
1677 
1678   State.FreeRegs -= SizeInRegs;
1679   return true;
1680 }
1681 
1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1683                                              bool &InReg,
1684                                              bool &NeedsPadding) const {
1685   // On Windows, aggregates other than HFAs are never passed in registers, and
1686   // they do not consume register slots. Homogenous floating-point aggregates
1687   // (HFAs) have already been dealt with at this point.
1688   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1689     return false;
1690 
1691   NeedsPadding = false;
1692   InReg = !IsMCUABI;
1693 
1694   if (!updateFreeRegs(Ty, State))
1695     return false;
1696 
1697   if (IsMCUABI)
1698     return true;
1699 
1700   if (State.CC == llvm::CallingConv::X86_FastCall ||
1701       State.CC == llvm::CallingConv::X86_VectorCall ||
1702       State.CC == llvm::CallingConv::X86_RegCall) {
1703     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1704       NeedsPadding = true;
1705 
1706     return false;
1707   }
1708 
1709   return true;
1710 }
1711 
1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1713   if (!updateFreeRegs(Ty, State))
1714     return false;
1715 
1716   if (IsMCUABI)
1717     return false;
1718 
1719   if (State.CC == llvm::CallingConv::X86_FastCall ||
1720       State.CC == llvm::CallingConv::X86_VectorCall ||
1721       State.CC == llvm::CallingConv::X86_RegCall) {
1722     if (getContext().getTypeSize(Ty) > 32)
1723       return false;
1724 
1725     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1726         Ty->isReferenceType());
1727   }
1728 
1729   return true;
1730 }
1731 
1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1733   // Vectorcall x86 works subtly different than in x64, so the format is
1734   // a bit different than the x64 version.  First, all vector types (not HVAs)
1735   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1736   // This differs from the x64 implementation, where the first 6 by INDEX get
1737   // registers.
1738   // In the second pass over the arguments, HVAs are passed in the remaining
1739   // vector registers if possible, or indirectly by address. The address will be
1740   // passed in ECX/EDX if available. Any other arguments are passed according to
1741   // the usual fastcall rules.
1742   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1743   for (int I = 0, E = Args.size(); I < E; ++I) {
1744     const Type *Base = nullptr;
1745     uint64_t NumElts = 0;
1746     const QualType &Ty = Args[I].type;
1747     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1748         isHomogeneousAggregate(Ty, Base, NumElts)) {
1749       if (State.FreeSSERegs >= NumElts) {
1750         State.FreeSSERegs -= NumElts;
1751         Args[I].info = ABIArgInfo::getDirectInReg();
1752         State.IsPreassigned.set(I);
1753       }
1754     }
1755   }
1756 }
1757 
1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1759                                                CCState &State) const {
1760   // FIXME: Set alignment on indirect arguments.
1761   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1762   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1763   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1764 
1765   Ty = useFirstFieldIfTransparentUnion(Ty);
1766   TypeInfo TI = getContext().getTypeInfo(Ty);
1767 
1768   // Check with the C++ ABI first.
1769   const RecordType *RT = Ty->getAs<RecordType>();
1770   if (RT) {
1771     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1772     if (RAA == CGCXXABI::RAA_Indirect) {
1773       return getIndirectResult(Ty, false, State);
1774     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1775       // The field index doesn't matter, we'll fix it up later.
1776       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1777     }
1778   }
1779 
1780   // Regcall uses the concept of a homogenous vector aggregate, similar
1781   // to other targets.
1782   const Type *Base = nullptr;
1783   uint64_t NumElts = 0;
1784   if ((IsRegCall || IsVectorCall) &&
1785       isHomogeneousAggregate(Ty, Base, NumElts)) {
1786     if (State.FreeSSERegs >= NumElts) {
1787       State.FreeSSERegs -= NumElts;
1788 
1789       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1790       // does.
1791       if (IsVectorCall)
1792         return getDirectX86Hva();
1793 
1794       if (Ty->isBuiltinType() || Ty->isVectorType())
1795         return ABIArgInfo::getDirect();
1796       return ABIArgInfo::getExpand();
1797     }
1798     return getIndirectResult(Ty, /*ByVal=*/false, State);
1799   }
1800 
1801   if (isAggregateTypeForABI(Ty)) {
1802     // Structures with flexible arrays are always indirect.
1803     // FIXME: This should not be byval!
1804     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1805       return getIndirectResult(Ty, true, State);
1806 
1807     // Ignore empty structs/unions on non-Windows.
1808     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1809       return ABIArgInfo::getIgnore();
1810 
1811     llvm::LLVMContext &LLVMContext = getVMContext();
1812     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1813     bool NeedsPadding = false;
1814     bool InReg;
1815     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1816       unsigned SizeInRegs = (TI.Width + 31) / 32;
1817       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1818       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1819       if (InReg)
1820         return ABIArgInfo::getDirectInReg(Result);
1821       else
1822         return ABIArgInfo::getDirect(Result);
1823     }
1824     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1825 
1826     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1827     // added in MSVC 2015.
1828     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1829       return getIndirectResult(Ty, /*ByVal=*/false, State);
1830 
1831     // Expand small (<= 128-bit) record types when we know that the stack layout
1832     // of those arguments will match the struct. This is important because the
1833     // LLVM backend isn't smart enough to remove byval, which inhibits many
1834     // optimizations.
1835     // Don't do this for the MCU if there are still free integer registers
1836     // (see X86_64 ABI for full explanation).
1837     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1838         canExpandIndirectArgument(Ty))
1839       return ABIArgInfo::getExpandWithPadding(
1840           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1841 
1842     return getIndirectResult(Ty, true, State);
1843   }
1844 
1845   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1846     // On Windows, vectors are passed directly if registers are available, or
1847     // indirectly if not. This avoids the need to align argument memory. Pass
1848     // user-defined vector types larger than 512 bits indirectly for simplicity.
1849     if (IsWin32StructABI) {
1850       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1851         --State.FreeSSERegs;
1852         return ABIArgInfo::getDirectInReg();
1853       }
1854       return getIndirectResult(Ty, /*ByVal=*/false, State);
1855     }
1856 
1857     // On Darwin, some vectors are passed in memory, we handle this by passing
1858     // it as an i8/i16/i32/i64.
1859     if (IsDarwinVectorABI) {
1860       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1861           (TI.Width == 64 && VT->getNumElements() == 1))
1862         return ABIArgInfo::getDirect(
1863             llvm::IntegerType::get(getVMContext(), TI.Width));
1864     }
1865 
1866     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1867       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1868 
1869     return ABIArgInfo::getDirect();
1870   }
1871 
1872 
1873   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1874     Ty = EnumTy->getDecl()->getIntegerType();
1875 
1876   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1877 
1878   if (isPromotableIntegerTypeForABI(Ty)) {
1879     if (InReg)
1880       return ABIArgInfo::getExtendInReg(Ty);
1881     return ABIArgInfo::getExtend(Ty);
1882   }
1883 
1884   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1885     if (EIT->getNumBits() <= 64) {
1886       if (InReg)
1887         return ABIArgInfo::getDirectInReg();
1888       return ABIArgInfo::getDirect();
1889     }
1890     return getIndirectResult(Ty, /*ByVal=*/false, State);
1891   }
1892 
1893   if (InReg)
1894     return ABIArgInfo::getDirectInReg();
1895   return ABIArgInfo::getDirect();
1896 }
1897 
1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1899   CCState State(FI);
1900   if (IsMCUABI)
1901     State.FreeRegs = 3;
1902   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1903     State.FreeRegs = 2;
1904     State.FreeSSERegs = 3;
1905   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1906     State.FreeRegs = 2;
1907     State.FreeSSERegs = 6;
1908   } else if (FI.getHasRegParm())
1909     State.FreeRegs = FI.getRegParm();
1910   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1911     State.FreeRegs = 5;
1912     State.FreeSSERegs = 8;
1913   } else if (IsWin32StructABI) {
1914     // Since MSVC 2015, the first three SSE vectors have been passed in
1915     // registers. The rest are passed indirectly.
1916     State.FreeRegs = DefaultNumRegisterParameters;
1917     State.FreeSSERegs = 3;
1918   } else
1919     State.FreeRegs = DefaultNumRegisterParameters;
1920 
1921   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1922     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1923   } else if (FI.getReturnInfo().isIndirect()) {
1924     // The C++ ABI is not aware of register usage, so we have to check if the
1925     // return value was sret and put it in a register ourselves if appropriate.
1926     if (State.FreeRegs) {
1927       --State.FreeRegs;  // The sret parameter consumes a register.
1928       if (!IsMCUABI)
1929         FI.getReturnInfo().setInReg(true);
1930     }
1931   }
1932 
1933   // The chain argument effectively gives us another free register.
1934   if (FI.isChainCall())
1935     ++State.FreeRegs;
1936 
1937   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1938   // arguments to XMM registers as available.
1939   if (State.CC == llvm::CallingConv::X86_VectorCall)
1940     runVectorCallFirstPass(FI, State);
1941 
1942   bool UsedInAlloca = false;
1943   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1944   for (int I = 0, E = Args.size(); I < E; ++I) {
1945     // Skip arguments that have already been assigned.
1946     if (State.IsPreassigned.test(I))
1947       continue;
1948 
1949     Args[I].info = classifyArgumentType(Args[I].type, State);
1950     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1951   }
1952 
1953   // If we needed to use inalloca for any argument, do a second pass and rewrite
1954   // all the memory arguments to use inalloca.
1955   if (UsedInAlloca)
1956     rewriteWithInAlloca(FI);
1957 }
1958 
1959 void
1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1961                                    CharUnits &StackOffset, ABIArgInfo &Info,
1962                                    QualType Type) const {
1963   // Arguments are always 4-byte-aligned.
1964   CharUnits WordSize = CharUnits::fromQuantity(4);
1965   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1966 
1967   // sret pointers and indirect things will require an extra pointer
1968   // indirection, unless they are byval. Most things are byval, and will not
1969   // require this indirection.
1970   bool IsIndirect = false;
1971   if (Info.isIndirect() && !Info.getIndirectByVal())
1972     IsIndirect = true;
1973   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1974   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1975   if (IsIndirect)
1976     LLTy = LLTy->getPointerTo(0);
1977   FrameFields.push_back(LLTy);
1978   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1979 
1980   // Insert padding bytes to respect alignment.
1981   CharUnits FieldEnd = StackOffset;
1982   StackOffset = FieldEnd.alignTo(WordSize);
1983   if (StackOffset != FieldEnd) {
1984     CharUnits NumBytes = StackOffset - FieldEnd;
1985     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1986     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1987     FrameFields.push_back(Ty);
1988   }
1989 }
1990 
1991 static bool isArgInAlloca(const ABIArgInfo &Info) {
1992   // Leave ignored and inreg arguments alone.
1993   switch (Info.getKind()) {
1994   case ABIArgInfo::InAlloca:
1995     return true;
1996   case ABIArgInfo::Ignore:
1997   case ABIArgInfo::IndirectAliased:
1998     return false;
1999   case ABIArgInfo::Indirect:
2000   case ABIArgInfo::Direct:
2001   case ABIArgInfo::Extend:
2002     return !Info.getInReg();
2003   case ABIArgInfo::Expand:
2004   case ABIArgInfo::CoerceAndExpand:
2005     // These are aggregate types which are never passed in registers when
2006     // inalloca is involved.
2007     return true;
2008   }
2009   llvm_unreachable("invalid enum");
2010 }
2011 
2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2013   assert(IsWin32StructABI && "inalloca only supported on win32");
2014 
2015   // Build a packed struct type for all of the arguments in memory.
2016   SmallVector<llvm::Type *, 6> FrameFields;
2017 
2018   // The stack alignment is always 4.
2019   CharUnits StackAlign = CharUnits::fromQuantity(4);
2020 
2021   CharUnits StackOffset;
2022   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2023 
2024   // Put 'this' into the struct before 'sret', if necessary.
2025   bool IsThisCall =
2026       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2027   ABIArgInfo &Ret = FI.getReturnInfo();
2028   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2029       isArgInAlloca(I->info)) {
2030     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2031     ++I;
2032   }
2033 
2034   // Put the sret parameter into the inalloca struct if it's in memory.
2035   if (Ret.isIndirect() && !Ret.getInReg()) {
2036     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2037     // On Windows, the hidden sret parameter is always returned in eax.
2038     Ret.setInAllocaSRet(IsWin32StructABI);
2039   }
2040 
2041   // Skip the 'this' parameter in ecx.
2042   if (IsThisCall)
2043     ++I;
2044 
2045   // Put arguments passed in memory into the struct.
2046   for (; I != E; ++I) {
2047     if (isArgInAlloca(I->info))
2048       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2049   }
2050 
2051   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2052                                         /*isPacked=*/true),
2053                   StackAlign);
2054 }
2055 
2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2057                                  Address VAListAddr, QualType Ty) const {
2058 
2059   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2060 
2061   // x86-32 changes the alignment of certain arguments on the stack.
2062   //
2063   // Just messing with TypeInfo like this works because we never pass
2064   // anything indirectly.
2065   TypeInfo.second = CharUnits::fromQuantity(
2066                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
2067 
2068   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2069                           TypeInfo, CharUnits::fromQuantity(4),
2070                           /*AllowHigherAlign*/ true);
2071 }
2072 
2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2074     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2075   assert(Triple.getArch() == llvm::Triple::x86);
2076 
2077   switch (Opts.getStructReturnConvention()) {
2078   case CodeGenOptions::SRCK_Default:
2079     break;
2080   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2081     return false;
2082   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2083     return true;
2084   }
2085 
2086   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2087     return true;
2088 
2089   switch (Triple.getOS()) {
2090   case llvm::Triple::DragonFly:
2091   case llvm::Triple::FreeBSD:
2092   case llvm::Triple::OpenBSD:
2093   case llvm::Triple::Win32:
2094     return true;
2095   default:
2096     return false;
2097   }
2098 }
2099 
2100 void X86_32TargetCodeGenInfo::setTargetAttributes(
2101     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2102   if (GV->isDeclaration())
2103     return;
2104   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2105     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2106       llvm::Function *Fn = cast<llvm::Function>(GV);
2107       Fn->addFnAttr("stackrealign");
2108     }
2109     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2110       llvm::Function *Fn = cast<llvm::Function>(GV);
2111       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2112     }
2113   }
2114 }
2115 
2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2117                                                CodeGen::CodeGenFunction &CGF,
2118                                                llvm::Value *Address) const {
2119   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2120 
2121   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2122 
2123   // 0-7 are the eight integer registers;  the order is different
2124   //   on Darwin (for EH), but the range is the same.
2125   // 8 is %eip.
2126   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2127 
2128   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2129     // 12-16 are st(0..4).  Not sure why we stop at 4.
2130     // These have size 16, which is sizeof(long double) on
2131     // platforms with 8-byte alignment for that type.
2132     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2133     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2134 
2135   } else {
2136     // 9 is %eflags, which doesn't get a size on Darwin for some
2137     // reason.
2138     Builder.CreateAlignedStore(
2139         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2140                                CharUnits::One());
2141 
2142     // 11-16 are st(0..5).  Not sure why we stop at 5.
2143     // These have size 12, which is sizeof(long double) on
2144     // platforms with 4-byte alignment for that type.
2145     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2146     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2147   }
2148 
2149   return false;
2150 }
2151 
2152 //===----------------------------------------------------------------------===//
2153 // X86-64 ABI Implementation
2154 //===----------------------------------------------------------------------===//
2155 
2156 
2157 namespace {
2158 /// The AVX ABI level for X86 targets.
2159 enum class X86AVXABILevel {
2160   None,
2161   AVX,
2162   AVX512
2163 };
2164 
2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2167   switch (AVXLevel) {
2168   case X86AVXABILevel::AVX512:
2169     return 512;
2170   case X86AVXABILevel::AVX:
2171     return 256;
2172   case X86AVXABILevel::None:
2173     return 128;
2174   }
2175   llvm_unreachable("Unknown AVXLevel");
2176 }
2177 
2178 /// X86_64ABIInfo - The X86_64 ABI information.
2179 class X86_64ABIInfo : public SwiftABIInfo {
2180   enum Class {
2181     Integer = 0,
2182     SSE,
2183     SSEUp,
2184     X87,
2185     X87Up,
2186     ComplexX87,
2187     NoClass,
2188     Memory
2189   };
2190 
2191   /// merge - Implement the X86_64 ABI merging algorithm.
2192   ///
2193   /// Merge an accumulating classification \arg Accum with a field
2194   /// classification \arg Field.
2195   ///
2196   /// \param Accum - The accumulating classification. This should
2197   /// always be either NoClass or the result of a previous merge
2198   /// call. In addition, this should never be Memory (the caller
2199   /// should just return Memory for the aggregate).
2200   static Class merge(Class Accum, Class Field);
2201 
2202   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2203   ///
2204   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2205   /// final MEMORY or SSE classes when necessary.
2206   ///
2207   /// \param AggregateSize - The size of the current aggregate in
2208   /// the classification process.
2209   ///
2210   /// \param Lo - The classification for the parts of the type
2211   /// residing in the low word of the containing object.
2212   ///
2213   /// \param Hi - The classification for the parts of the type
2214   /// residing in the higher words of the containing object.
2215   ///
2216   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2217 
2218   /// classify - Determine the x86_64 register classes in which the
2219   /// given type T should be passed.
2220   ///
2221   /// \param Lo - The classification for the parts of the type
2222   /// residing in the low word of the containing object.
2223   ///
2224   /// \param Hi - The classification for the parts of the type
2225   /// residing in the high word of the containing object.
2226   ///
2227   /// \param OffsetBase - The bit offset of this type in the
2228   /// containing object.  Some parameters are classified different
2229   /// depending on whether they straddle an eightbyte boundary.
2230   ///
2231   /// \param isNamedArg - Whether the argument in question is a "named"
2232   /// argument, as used in AMD64-ABI 3.5.7.
2233   ///
2234   /// If a word is unused its result will be NoClass; if a type should
2235   /// be passed in Memory then at least the classification of \arg Lo
2236   /// will be Memory.
2237   ///
2238   /// The \arg Lo class will be NoClass iff the argument is ignored.
2239   ///
2240   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2241   /// also be ComplexX87.
2242   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2243                 bool isNamedArg) const;
2244 
2245   llvm::Type *GetByteVectorType(QualType Ty) const;
2246   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2247                                  unsigned IROffset, QualType SourceTy,
2248                                  unsigned SourceOffset) const;
2249   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2250                                      unsigned IROffset, QualType SourceTy,
2251                                      unsigned SourceOffset) const;
2252 
2253   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2254   /// such that the argument will be returned in memory.
2255   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2256 
2257   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2258   /// such that the argument will be passed in memory.
2259   ///
2260   /// \param freeIntRegs - The number of free integer registers remaining
2261   /// available.
2262   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2263 
2264   ABIArgInfo classifyReturnType(QualType RetTy) const;
2265 
2266   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2267                                   unsigned &neededInt, unsigned &neededSSE,
2268                                   bool isNamedArg) const;
2269 
2270   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2271                                        unsigned &NeededSSE) const;
2272 
2273   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2274                                            unsigned &NeededSSE) const;
2275 
2276   bool IsIllegalVectorType(QualType Ty) const;
2277 
2278   /// The 0.98 ABI revision clarified a lot of ambiguities,
2279   /// unfortunately in ways that were not always consistent with
2280   /// certain previous compilers.  In particular, platforms which
2281   /// required strict binary compatibility with older versions of GCC
2282   /// may need to exempt themselves.
2283   bool honorsRevision0_98() const {
2284     return !getTarget().getTriple().isOSDarwin();
2285   }
2286 
2287   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2288   /// classify it as INTEGER (for compatibility with older clang compilers).
2289   bool classifyIntegerMMXAsSSE() const {
2290     // Clang <= 3.8 did not do this.
2291     if (getContext().getLangOpts().getClangABICompat() <=
2292         LangOptions::ClangABI::Ver3_8)
2293       return false;
2294 
2295     const llvm::Triple &Triple = getTarget().getTriple();
2296     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2297       return false;
2298     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2299       return false;
2300     return true;
2301   }
2302 
2303   // GCC classifies vectors of __int128 as memory.
2304   bool passInt128VectorsInMem() const {
2305     // Clang <= 9.0 did not do this.
2306     if (getContext().getLangOpts().getClangABICompat() <=
2307         LangOptions::ClangABI::Ver9)
2308       return false;
2309 
2310     const llvm::Triple &T = getTarget().getTriple();
2311     return T.isOSLinux() || T.isOSNetBSD();
2312   }
2313 
2314   X86AVXABILevel AVXLevel;
2315   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2316   // 64-bit hardware.
2317   bool Has64BitPointers;
2318 
2319 public:
2320   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2321       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2322       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2323   }
2324 
2325   bool isPassedUsingAVXType(QualType type) const {
2326     unsigned neededInt, neededSSE;
2327     // The freeIntRegs argument doesn't matter here.
2328     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2329                                            /*isNamedArg*/true);
2330     if (info.isDirect()) {
2331       llvm::Type *ty = info.getCoerceToType();
2332       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2333         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2334     }
2335     return false;
2336   }
2337 
2338   void computeInfo(CGFunctionInfo &FI) const override;
2339 
2340   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2341                     QualType Ty) const override;
2342   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2343                       QualType Ty) const override;
2344 
2345   bool has64BitPointers() const {
2346     return Has64BitPointers;
2347   }
2348 
2349   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2350                                     bool asReturnValue) const override {
2351     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2352   }
2353   bool isSwiftErrorInRegister() const override {
2354     return true;
2355   }
2356 };
2357 
2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2359 class WinX86_64ABIInfo : public SwiftABIInfo {
2360 public:
2361   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2362       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2363         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2364 
2365   void computeInfo(CGFunctionInfo &FI) const override;
2366 
2367   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2368                     QualType Ty) const override;
2369 
2370   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2371     // FIXME: Assumes vectorcall is in use.
2372     return isX86VectorTypeForVectorCall(getContext(), Ty);
2373   }
2374 
2375   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2376                                          uint64_t NumMembers) const override {
2377     // FIXME: Assumes vectorcall is in use.
2378     return isX86VectorCallAggregateSmallEnough(NumMembers);
2379   }
2380 
2381   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2382                                     bool asReturnValue) const override {
2383     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2384   }
2385 
2386   bool isSwiftErrorInRegister() const override {
2387     return true;
2388   }
2389 
2390 private:
2391   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2392                       bool IsVectorCall, bool IsRegCall) const;
2393   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2394                                       const ABIArgInfo &current) const;
2395   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2396                              bool IsVectorCall, bool IsRegCall) const;
2397 
2398   X86AVXABILevel AVXLevel;
2399 
2400   bool IsMingw64;
2401 };
2402 
2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2404 public:
2405   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2406       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2407 
2408   const X86_64ABIInfo &getABIInfo() const {
2409     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2410   }
2411 
2412   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2413   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2414   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2415 
2416   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2417     return 7;
2418   }
2419 
2420   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2421                                llvm::Value *Address) const override {
2422     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2423 
2424     // 0-15 are the 16 integer registers.
2425     // 16 is %rip.
2426     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2427     return false;
2428   }
2429 
2430   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2431                                   StringRef Constraint,
2432                                   llvm::Type* Ty) const override {
2433     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2434   }
2435 
2436   bool isNoProtoCallVariadic(const CallArgList &args,
2437                              const FunctionNoProtoType *fnType) const override {
2438     // The default CC on x86-64 sets %al to the number of SSA
2439     // registers used, and GCC sets this when calling an unprototyped
2440     // function, so we override the default behavior.  However, don't do
2441     // that when AVX types are involved: the ABI explicitly states it is
2442     // undefined, and it doesn't work in practice because of how the ABI
2443     // defines varargs anyway.
2444     if (fnType->getCallConv() == CC_C) {
2445       bool HasAVXType = false;
2446       for (CallArgList::const_iterator
2447              it = args.begin(), ie = args.end(); it != ie; ++it) {
2448         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2449           HasAVXType = true;
2450           break;
2451         }
2452       }
2453 
2454       if (!HasAVXType)
2455         return true;
2456     }
2457 
2458     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2459   }
2460 
2461   llvm::Constant *
2462   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2463     unsigned Sig = (0xeb << 0) | // jmp rel8
2464                    (0x06 << 8) | //           .+0x08
2465                    ('v' << 16) |
2466                    ('2' << 24);
2467     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2468   }
2469 
2470   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2471                            CodeGen::CodeGenModule &CGM) const override {
2472     if (GV->isDeclaration())
2473       return;
2474     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2475       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2476         llvm::Function *Fn = cast<llvm::Function>(GV);
2477         Fn->addFnAttr("stackrealign");
2478       }
2479       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2480         llvm::Function *Fn = cast<llvm::Function>(GV);
2481         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2482       }
2483     }
2484   }
2485 
2486   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2487                             const FunctionDecl *Caller,
2488                             const FunctionDecl *Callee,
2489                             const CallArgList &Args) const override;
2490 };
2491 
2492 static void initFeatureMaps(const ASTContext &Ctx,
2493                             llvm::StringMap<bool> &CallerMap,
2494                             const FunctionDecl *Caller,
2495                             llvm::StringMap<bool> &CalleeMap,
2496                             const FunctionDecl *Callee) {
2497   if (CalleeMap.empty() && CallerMap.empty()) {
2498     // The caller is potentially nullptr in the case where the call isn't in a
2499     // function.  In this case, the getFunctionFeatureMap ensures we just get
2500     // the TU level setting (since it cannot be modified by 'target'..
2501     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2502     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2503   }
2504 }
2505 
2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2507                                  SourceLocation CallLoc,
2508                                  const llvm::StringMap<bool> &CallerMap,
2509                                  const llvm::StringMap<bool> &CalleeMap,
2510                                  QualType Ty, StringRef Feature,
2511                                  bool IsArgument) {
2512   bool CallerHasFeat = CallerMap.lookup(Feature);
2513   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2514   if (!CallerHasFeat && !CalleeHasFeat)
2515     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2516            << IsArgument << Ty << Feature;
2517 
2518   // Mixing calling conventions here is very clearly an error.
2519   if (!CallerHasFeat || !CalleeHasFeat)
2520     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2521            << IsArgument << Ty << Feature;
2522 
2523   // Else, both caller and callee have the required feature, so there is no need
2524   // to diagnose.
2525   return false;
2526 }
2527 
2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2529                           SourceLocation CallLoc,
2530                           const llvm::StringMap<bool> &CallerMap,
2531                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2532                           bool IsArgument) {
2533   uint64_t Size = Ctx.getTypeSize(Ty);
2534   if (Size > 256)
2535     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2536                                 "avx512f", IsArgument);
2537 
2538   if (Size > 128)
2539     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2540                                 IsArgument);
2541 
2542   return false;
2543 }
2544 
2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2546     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2547     const FunctionDecl *Callee, const CallArgList &Args) const {
2548   llvm::StringMap<bool> CallerMap;
2549   llvm::StringMap<bool> CalleeMap;
2550   unsigned ArgIndex = 0;
2551 
2552   // We need to loop through the actual call arguments rather than the the
2553   // function's parameters, in case this variadic.
2554   for (const CallArg &Arg : Args) {
2555     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2556     // additionally changes how vectors >256 in size are passed. Like GCC, we
2557     // warn when a function is called with an argument where this will change.
2558     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2559     // the caller and callee features are mismatched.
2560     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2561     // change its ABI with attribute-target after this call.
2562     if (Arg.getType()->isVectorType() &&
2563         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2564       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2565       QualType Ty = Arg.getType();
2566       // The CallArg seems to have desugared the type already, so for clearer
2567       // diagnostics, replace it with the type in the FunctionDecl if possible.
2568       if (ArgIndex < Callee->getNumParams())
2569         Ty = Callee->getParamDecl(ArgIndex)->getType();
2570 
2571       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2572                         CalleeMap, Ty, /*IsArgument*/ true))
2573         return;
2574     }
2575     ++ArgIndex;
2576   }
2577 
2578   // Check return always, as we don't have a good way of knowing in codegen
2579   // whether this value is used, tail-called, etc.
2580   if (Callee->getReturnType()->isVectorType() &&
2581       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2582     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2583     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2584                   CalleeMap, Callee->getReturnType(),
2585                   /*IsArgument*/ false);
2586   }
2587 }
2588 
2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2590   // If the argument does not end in .lib, automatically add the suffix.
2591   // If the argument contains a space, enclose it in quotes.
2592   // This matches the behavior of MSVC.
2593   bool Quote = (Lib.find(" ") != StringRef::npos);
2594   std::string ArgStr = Quote ? "\"" : "";
2595   ArgStr += Lib;
2596   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2597     ArgStr += ".lib";
2598   ArgStr += Quote ? "\"" : "";
2599   return ArgStr;
2600 }
2601 
2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2603 public:
2604   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2605         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2606         unsigned NumRegisterParameters)
2607     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2608         Win32StructABI, NumRegisterParameters, false) {}
2609 
2610   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2611                            CodeGen::CodeGenModule &CGM) const override;
2612 
2613   void getDependentLibraryOption(llvm::StringRef Lib,
2614                                  llvm::SmallString<24> &Opt) const override {
2615     Opt = "/DEFAULTLIB:";
2616     Opt += qualifyWindowsLibrary(Lib);
2617   }
2618 
2619   void getDetectMismatchOption(llvm::StringRef Name,
2620                                llvm::StringRef Value,
2621                                llvm::SmallString<32> &Opt) const override {
2622     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2623   }
2624 };
2625 
2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2627                                           CodeGen::CodeGenModule &CGM) {
2628   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2629 
2630     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2631       Fn->addFnAttr("stack-probe-size",
2632                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2633     if (CGM.getCodeGenOpts().NoStackArgProbe)
2634       Fn->addFnAttr("no-stack-arg-probe");
2635   }
2636 }
2637 
2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2639     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2640   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2641   if (GV->isDeclaration())
2642     return;
2643   addStackProbeTargetAttributes(D, GV, CGM);
2644 }
2645 
2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2647 public:
2648   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2649                              X86AVXABILevel AVXLevel)
2650       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2651 
2652   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2653                            CodeGen::CodeGenModule &CGM) const override;
2654 
2655   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2656     return 7;
2657   }
2658 
2659   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2660                                llvm::Value *Address) const override {
2661     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2662 
2663     // 0-15 are the 16 integer registers.
2664     // 16 is %rip.
2665     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2666     return false;
2667   }
2668 
2669   void getDependentLibraryOption(llvm::StringRef Lib,
2670                                  llvm::SmallString<24> &Opt) const override {
2671     Opt = "/DEFAULTLIB:";
2672     Opt += qualifyWindowsLibrary(Lib);
2673   }
2674 
2675   void getDetectMismatchOption(llvm::StringRef Name,
2676                                llvm::StringRef Value,
2677                                llvm::SmallString<32> &Opt) const override {
2678     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2679   }
2680 };
2681 
2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2683     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2684   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2685   if (GV->isDeclaration())
2686     return;
2687   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2688     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2689       llvm::Function *Fn = cast<llvm::Function>(GV);
2690       Fn->addFnAttr("stackrealign");
2691     }
2692     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2693       llvm::Function *Fn = cast<llvm::Function>(GV);
2694       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2695     }
2696   }
2697 
2698   addStackProbeTargetAttributes(D, GV, CGM);
2699 }
2700 }
2701 
2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2703                               Class &Hi) const {
2704   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2705   //
2706   // (a) If one of the classes is Memory, the whole argument is passed in
2707   //     memory.
2708   //
2709   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2710   //     memory.
2711   //
2712   // (c) If the size of the aggregate exceeds two eightbytes and the first
2713   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2714   //     argument is passed in memory. NOTE: This is necessary to keep the
2715   //     ABI working for processors that don't support the __m256 type.
2716   //
2717   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2718   //
2719   // Some of these are enforced by the merging logic.  Others can arise
2720   // only with unions; for example:
2721   //   union { _Complex double; unsigned; }
2722   //
2723   // Note that clauses (b) and (c) were added in 0.98.
2724   //
2725   if (Hi == Memory)
2726     Lo = Memory;
2727   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2728     Lo = Memory;
2729   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2730     Lo = Memory;
2731   if (Hi == SSEUp && Lo != SSE)
2732     Hi = SSE;
2733 }
2734 
2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2736   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2737   // classified recursively so that always two fields are
2738   // considered. The resulting class is calculated according to
2739   // the classes of the fields in the eightbyte:
2740   //
2741   // (a) If both classes are equal, this is the resulting class.
2742   //
2743   // (b) If one of the classes is NO_CLASS, the resulting class is
2744   // the other class.
2745   //
2746   // (c) If one of the classes is MEMORY, the result is the MEMORY
2747   // class.
2748   //
2749   // (d) If one of the classes is INTEGER, the result is the
2750   // INTEGER.
2751   //
2752   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2753   // MEMORY is used as class.
2754   //
2755   // (f) Otherwise class SSE is used.
2756 
2757   // Accum should never be memory (we should have returned) or
2758   // ComplexX87 (because this cannot be passed in a structure).
2759   assert((Accum != Memory && Accum != ComplexX87) &&
2760          "Invalid accumulated classification during merge.");
2761   if (Accum == Field || Field == NoClass)
2762     return Accum;
2763   if (Field == Memory)
2764     return Memory;
2765   if (Accum == NoClass)
2766     return Field;
2767   if (Accum == Integer || Field == Integer)
2768     return Integer;
2769   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2770       Accum == X87 || Accum == X87Up)
2771     return Memory;
2772   return SSE;
2773 }
2774 
2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2776                              Class &Lo, Class &Hi, bool isNamedArg) const {
2777   // FIXME: This code can be simplified by introducing a simple value class for
2778   // Class pairs with appropriate constructor methods for the various
2779   // situations.
2780 
2781   // FIXME: Some of the split computations are wrong; unaligned vectors
2782   // shouldn't be passed in registers for example, so there is no chance they
2783   // can straddle an eightbyte. Verify & simplify.
2784 
2785   Lo = Hi = NoClass;
2786 
2787   Class &Current = OffsetBase < 64 ? Lo : Hi;
2788   Current = Memory;
2789 
2790   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2791     BuiltinType::Kind k = BT->getKind();
2792 
2793     if (k == BuiltinType::Void) {
2794       Current = NoClass;
2795     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2796       Lo = Integer;
2797       Hi = Integer;
2798     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2799       Current = Integer;
2800     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2801       Current = SSE;
2802     } else if (k == BuiltinType::LongDouble) {
2803       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2804       if (LDF == &llvm::APFloat::IEEEquad()) {
2805         Lo = SSE;
2806         Hi = SSEUp;
2807       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2808         Lo = X87;
2809         Hi = X87Up;
2810       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2811         Current = SSE;
2812       } else
2813         llvm_unreachable("unexpected long double representation!");
2814     }
2815     // FIXME: _Decimal32 and _Decimal64 are SSE.
2816     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2817     return;
2818   }
2819 
2820   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2821     // Classify the underlying integer type.
2822     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2823     return;
2824   }
2825 
2826   if (Ty->hasPointerRepresentation()) {
2827     Current = Integer;
2828     return;
2829   }
2830 
2831   if (Ty->isMemberPointerType()) {
2832     if (Ty->isMemberFunctionPointerType()) {
2833       if (Has64BitPointers) {
2834         // If Has64BitPointers, this is an {i64, i64}, so classify both
2835         // Lo and Hi now.
2836         Lo = Hi = Integer;
2837       } else {
2838         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2839         // straddles an eightbyte boundary, Hi should be classified as well.
2840         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2841         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2842         if (EB_FuncPtr != EB_ThisAdj) {
2843           Lo = Hi = Integer;
2844         } else {
2845           Current = Integer;
2846         }
2847       }
2848     } else {
2849       Current = Integer;
2850     }
2851     return;
2852   }
2853 
2854   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2855     uint64_t Size = getContext().getTypeSize(VT);
2856     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2857       // gcc passes the following as integer:
2858       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2859       // 2 bytes - <2 x char>, <1 x short>
2860       // 1 byte  - <1 x char>
2861       Current = Integer;
2862 
2863       // If this type crosses an eightbyte boundary, it should be
2864       // split.
2865       uint64_t EB_Lo = (OffsetBase) / 64;
2866       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2867       if (EB_Lo != EB_Hi)
2868         Hi = Lo;
2869     } else if (Size == 64) {
2870       QualType ElementType = VT->getElementType();
2871 
2872       // gcc passes <1 x double> in memory. :(
2873       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2874         return;
2875 
2876       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2877       // pass them as integer.  For platforms where clang is the de facto
2878       // platform compiler, we must continue to use integer.
2879       if (!classifyIntegerMMXAsSSE() &&
2880           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2881            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2882            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2883            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2884         Current = Integer;
2885       else
2886         Current = SSE;
2887 
2888       // If this type crosses an eightbyte boundary, it should be
2889       // split.
2890       if (OffsetBase && OffsetBase != 64)
2891         Hi = Lo;
2892     } else if (Size == 128 ||
2893                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2894       QualType ElementType = VT->getElementType();
2895 
2896       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2897       if (passInt128VectorsInMem() && Size != 128 &&
2898           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2899            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2900         return;
2901 
2902       // Arguments of 256-bits are split into four eightbyte chunks. The
2903       // least significant one belongs to class SSE and all the others to class
2904       // SSEUP. The original Lo and Hi design considers that types can't be
2905       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2906       // This design isn't correct for 256-bits, but since there're no cases
2907       // where the upper parts would need to be inspected, avoid adding
2908       // complexity and just consider Hi to match the 64-256 part.
2909       //
2910       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2911       // registers if they are "named", i.e. not part of the "..." of a
2912       // variadic function.
2913       //
2914       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2915       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2916       Lo = SSE;
2917       Hi = SSEUp;
2918     }
2919     return;
2920   }
2921 
2922   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2923     QualType ET = getContext().getCanonicalType(CT->getElementType());
2924 
2925     uint64_t Size = getContext().getTypeSize(Ty);
2926     if (ET->isIntegralOrEnumerationType()) {
2927       if (Size <= 64)
2928         Current = Integer;
2929       else if (Size <= 128)
2930         Lo = Hi = Integer;
2931     } else if (ET == getContext().FloatTy) {
2932       Current = SSE;
2933     } else if (ET == getContext().DoubleTy) {
2934       Lo = Hi = SSE;
2935     } else if (ET == getContext().LongDoubleTy) {
2936       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2937       if (LDF == &llvm::APFloat::IEEEquad())
2938         Current = Memory;
2939       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2940         Current = ComplexX87;
2941       else if (LDF == &llvm::APFloat::IEEEdouble())
2942         Lo = Hi = SSE;
2943       else
2944         llvm_unreachable("unexpected long double representation!");
2945     }
2946 
2947     // If this complex type crosses an eightbyte boundary then it
2948     // should be split.
2949     uint64_t EB_Real = (OffsetBase) / 64;
2950     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2951     if (Hi == NoClass && EB_Real != EB_Imag)
2952       Hi = Lo;
2953 
2954     return;
2955   }
2956 
2957   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2958     if (EITy->getNumBits() <= 64)
2959       Current = Integer;
2960     else if (EITy->getNumBits() <= 128)
2961       Lo = Hi = Integer;
2962     // Larger values need to get passed in memory.
2963     return;
2964   }
2965 
2966   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2967     // Arrays are treated like structures.
2968 
2969     uint64_t Size = getContext().getTypeSize(Ty);
2970 
2971     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2972     // than eight eightbytes, ..., it has class MEMORY.
2973     if (Size > 512)
2974       return;
2975 
2976     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2977     // fields, it has class MEMORY.
2978     //
2979     // Only need to check alignment of array base.
2980     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2981       return;
2982 
2983     // Otherwise implement simplified merge. We could be smarter about
2984     // this, but it isn't worth it and would be harder to verify.
2985     Current = NoClass;
2986     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2987     uint64_t ArraySize = AT->getSize().getZExtValue();
2988 
2989     // The only case a 256-bit wide vector could be used is when the array
2990     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2991     // to work for sizes wider than 128, early check and fallback to memory.
2992     //
2993     if (Size > 128 &&
2994         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2995       return;
2996 
2997     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2998       Class FieldLo, FieldHi;
2999       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3000       Lo = merge(Lo, FieldLo);
3001       Hi = merge(Hi, FieldHi);
3002       if (Lo == Memory || Hi == Memory)
3003         break;
3004     }
3005 
3006     postMerge(Size, Lo, Hi);
3007     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3008     return;
3009   }
3010 
3011   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3012     uint64_t Size = getContext().getTypeSize(Ty);
3013 
3014     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3015     // than eight eightbytes, ..., it has class MEMORY.
3016     if (Size > 512)
3017       return;
3018 
3019     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3020     // copy constructor or a non-trivial destructor, it is passed by invisible
3021     // reference.
3022     if (getRecordArgABI(RT, getCXXABI()))
3023       return;
3024 
3025     const RecordDecl *RD = RT->getDecl();
3026 
3027     // Assume variable sized types are passed in memory.
3028     if (RD->hasFlexibleArrayMember())
3029       return;
3030 
3031     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3032 
3033     // Reset Lo class, this will be recomputed.
3034     Current = NoClass;
3035 
3036     // If this is a C++ record, classify the bases first.
3037     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3038       for (const auto &I : CXXRD->bases()) {
3039         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3040                "Unexpected base class!");
3041         const auto *Base =
3042             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3043 
3044         // Classify this field.
3045         //
3046         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3047         // single eightbyte, each is classified separately. Each eightbyte gets
3048         // initialized to class NO_CLASS.
3049         Class FieldLo, FieldHi;
3050         uint64_t Offset =
3051           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3052         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3053         Lo = merge(Lo, FieldLo);
3054         Hi = merge(Hi, FieldHi);
3055         if (Lo == Memory || Hi == Memory) {
3056           postMerge(Size, Lo, Hi);
3057           return;
3058         }
3059       }
3060     }
3061 
3062     // Classify the fields one at a time, merging the results.
3063     unsigned idx = 0;
3064     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3065            i != e; ++i, ++idx) {
3066       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3067       bool BitField = i->isBitField();
3068 
3069       // Ignore padding bit-fields.
3070       if (BitField && i->isUnnamedBitfield())
3071         continue;
3072 
3073       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3074       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
3075       //
3076       // The only case a 256-bit wide vector could be used is when the struct
3077       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3078       // to work for sizes wider than 128, early check and fallback to memory.
3079       //
3080       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
3081                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3082         Lo = Memory;
3083         postMerge(Size, Lo, Hi);
3084         return;
3085       }
3086       // Note, skip this test for bit-fields, see below.
3087       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3088         Lo = Memory;
3089         postMerge(Size, Lo, Hi);
3090         return;
3091       }
3092 
3093       // Classify this field.
3094       //
3095       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3096       // exceeds a single eightbyte, each is classified
3097       // separately. Each eightbyte gets initialized to class
3098       // NO_CLASS.
3099       Class FieldLo, FieldHi;
3100 
3101       // Bit-fields require special handling, they do not force the
3102       // structure to be passed in memory even if unaligned, and
3103       // therefore they can straddle an eightbyte.
3104       if (BitField) {
3105         assert(!i->isUnnamedBitfield());
3106         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3107         uint64_t Size = i->getBitWidthValue(getContext());
3108 
3109         uint64_t EB_Lo = Offset / 64;
3110         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3111 
3112         if (EB_Lo) {
3113           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3114           FieldLo = NoClass;
3115           FieldHi = Integer;
3116         } else {
3117           FieldLo = Integer;
3118           FieldHi = EB_Hi ? Integer : NoClass;
3119         }
3120       } else
3121         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3122       Lo = merge(Lo, FieldLo);
3123       Hi = merge(Hi, FieldHi);
3124       if (Lo == Memory || Hi == Memory)
3125         break;
3126     }
3127 
3128     postMerge(Size, Lo, Hi);
3129   }
3130 }
3131 
3132 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3133   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3134   // place naturally.
3135   if (!isAggregateTypeForABI(Ty)) {
3136     // Treat an enum type as its underlying type.
3137     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3138       Ty = EnumTy->getDecl()->getIntegerType();
3139 
3140     if (Ty->isExtIntType())
3141       return getNaturalAlignIndirect(Ty);
3142 
3143     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3144                                               : ABIArgInfo::getDirect());
3145   }
3146 
3147   return getNaturalAlignIndirect(Ty);
3148 }
3149 
3150 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3151   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3152     uint64_t Size = getContext().getTypeSize(VecTy);
3153     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3154     if (Size <= 64 || Size > LargestVector)
3155       return true;
3156     QualType EltTy = VecTy->getElementType();
3157     if (passInt128VectorsInMem() &&
3158         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3159          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3160       return true;
3161   }
3162 
3163   return false;
3164 }
3165 
3166 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3167                                             unsigned freeIntRegs) const {
3168   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3169   // place naturally.
3170   //
3171   // This assumption is optimistic, as there could be free registers available
3172   // when we need to pass this argument in memory, and LLVM could try to pass
3173   // the argument in the free register. This does not seem to happen currently,
3174   // but this code would be much safer if we could mark the argument with
3175   // 'onstack'. See PR12193.
3176   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3177       !Ty->isExtIntType()) {
3178     // Treat an enum type as its underlying type.
3179     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3180       Ty = EnumTy->getDecl()->getIntegerType();
3181 
3182     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3183                                               : ABIArgInfo::getDirect());
3184   }
3185 
3186   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3187     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3188 
3189   // Compute the byval alignment. We specify the alignment of the byval in all
3190   // cases so that the mid-level optimizer knows the alignment of the byval.
3191   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3192 
3193   // Attempt to avoid passing indirect results using byval when possible. This
3194   // is important for good codegen.
3195   //
3196   // We do this by coercing the value into a scalar type which the backend can
3197   // handle naturally (i.e., without using byval).
3198   //
3199   // For simplicity, we currently only do this when we have exhausted all of the
3200   // free integer registers. Doing this when there are free integer registers
3201   // would require more care, as we would have to ensure that the coerced value
3202   // did not claim the unused register. That would require either reording the
3203   // arguments to the function (so that any subsequent inreg values came first),
3204   // or only doing this optimization when there were no following arguments that
3205   // might be inreg.
3206   //
3207   // We currently expect it to be rare (particularly in well written code) for
3208   // arguments to be passed on the stack when there are still free integer
3209   // registers available (this would typically imply large structs being passed
3210   // by value), so this seems like a fair tradeoff for now.
3211   //
3212   // We can revisit this if the backend grows support for 'onstack' parameter
3213   // attributes. See PR12193.
3214   if (freeIntRegs == 0) {
3215     uint64_t Size = getContext().getTypeSize(Ty);
3216 
3217     // If this type fits in an eightbyte, coerce it into the matching integral
3218     // type, which will end up on the stack (with alignment 8).
3219     if (Align == 8 && Size <= 64)
3220       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3221                                                           Size));
3222   }
3223 
3224   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3225 }
3226 
3227 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3228 /// register. Pick an LLVM IR type that will be passed as a vector register.
3229 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3230   // Wrapper structs/arrays that only contain vectors are passed just like
3231   // vectors; strip them off if present.
3232   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3233     Ty = QualType(InnerTy, 0);
3234 
3235   llvm::Type *IRType = CGT.ConvertType(Ty);
3236   if (isa<llvm::VectorType>(IRType)) {
3237     // Don't pass vXi128 vectors in their native type, the backend can't
3238     // legalize them.
3239     if (passInt128VectorsInMem() &&
3240         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3241       // Use a vXi64 vector.
3242       uint64_t Size = getContext().getTypeSize(Ty);
3243       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3244                                         Size / 64);
3245     }
3246 
3247     return IRType;
3248   }
3249 
3250   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3251     return IRType;
3252 
3253   // We couldn't find the preferred IR vector type for 'Ty'.
3254   uint64_t Size = getContext().getTypeSize(Ty);
3255   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3256 
3257 
3258   // Return a LLVM IR vector type based on the size of 'Ty'.
3259   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3260                                     Size / 64);
3261 }
3262 
3263 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3264 /// is known to either be off the end of the specified type or being in
3265 /// alignment padding.  The user type specified is known to be at most 128 bits
3266 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3267 /// classification that put one of the two halves in the INTEGER class.
3268 ///
3269 /// It is conservatively correct to return false.
3270 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3271                                   unsigned EndBit, ASTContext &Context) {
3272   // If the bytes being queried are off the end of the type, there is no user
3273   // data hiding here.  This handles analysis of builtins, vectors and other
3274   // types that don't contain interesting padding.
3275   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3276   if (TySize <= StartBit)
3277     return true;
3278 
3279   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3280     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3281     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3282 
3283     // Check each element to see if the element overlaps with the queried range.
3284     for (unsigned i = 0; i != NumElts; ++i) {
3285       // If the element is after the span we care about, then we're done..
3286       unsigned EltOffset = i*EltSize;
3287       if (EltOffset >= EndBit) break;
3288 
3289       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3290       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3291                                  EndBit-EltOffset, Context))
3292         return false;
3293     }
3294     // If it overlaps no elements, then it is safe to process as padding.
3295     return true;
3296   }
3297 
3298   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3299     const RecordDecl *RD = RT->getDecl();
3300     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3301 
3302     // If this is a C++ record, check the bases first.
3303     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3304       for (const auto &I : CXXRD->bases()) {
3305         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3306                "Unexpected base class!");
3307         const auto *Base =
3308             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3309 
3310         // If the base is after the span we care about, ignore it.
3311         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3312         if (BaseOffset >= EndBit) continue;
3313 
3314         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3315         if (!BitsContainNoUserData(I.getType(), BaseStart,
3316                                    EndBit-BaseOffset, Context))
3317           return false;
3318       }
3319     }
3320 
3321     // Verify that no field has data that overlaps the region of interest.  Yes
3322     // this could be sped up a lot by being smarter about queried fields,
3323     // however we're only looking at structs up to 16 bytes, so we don't care
3324     // much.
3325     unsigned idx = 0;
3326     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3327          i != e; ++i, ++idx) {
3328       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3329 
3330       // If we found a field after the region we care about, then we're done.
3331       if (FieldOffset >= EndBit) break;
3332 
3333       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3334       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3335                                  Context))
3336         return false;
3337     }
3338 
3339     // If nothing in this record overlapped the area of interest, then we're
3340     // clean.
3341     return true;
3342   }
3343 
3344   return false;
3345 }
3346 
3347 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3348 /// float member at the specified offset.  For example, {int,{float}} has a
3349 /// float at offset 4.  It is conservatively correct for this routine to return
3350 /// false.
3351 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3352                                   const llvm::DataLayout &TD) {
3353   // Base case if we find a float.
3354   if (IROffset == 0 && IRType->isFloatTy())
3355     return true;
3356 
3357   // If this is a struct, recurse into the field at the specified offset.
3358   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3359     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3360     unsigned Elt = SL->getElementContainingOffset(IROffset);
3361     IROffset -= SL->getElementOffset(Elt);
3362     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3363   }
3364 
3365   // If this is an array, recurse into the field at the specified offset.
3366   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3367     llvm::Type *EltTy = ATy->getElementType();
3368     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3369     IROffset -= IROffset/EltSize*EltSize;
3370     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3371   }
3372 
3373   return false;
3374 }
3375 
3376 
3377 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3378 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3379 llvm::Type *X86_64ABIInfo::
3380 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3381                    QualType SourceTy, unsigned SourceOffset) const {
3382   // The only three choices we have are either double, <2 x float>, or float. We
3383   // pass as float if the last 4 bytes is just padding.  This happens for
3384   // structs that contain 3 floats.
3385   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3386                             SourceOffset*8+64, getContext()))
3387     return llvm::Type::getFloatTy(getVMContext());
3388 
3389   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3390   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3391   // case.
3392   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3393       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3394     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3395                                       2);
3396 
3397   return llvm::Type::getDoubleTy(getVMContext());
3398 }
3399 
3400 
3401 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3402 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3403 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3404 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3405 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3406 /// etc).
3407 ///
3408 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3409 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3410 /// the 8-byte value references.  PrefType may be null.
3411 ///
3412 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3413 /// an offset into this that we're processing (which is always either 0 or 8).
3414 ///
3415 llvm::Type *X86_64ABIInfo::
3416 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3417                        QualType SourceTy, unsigned SourceOffset) const {
3418   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3419   // returning an 8-byte unit starting with it.  See if we can safely use it.
3420   if (IROffset == 0) {
3421     // Pointers and int64's always fill the 8-byte unit.
3422     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3423         IRType->isIntegerTy(64))
3424       return IRType;
3425 
3426     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3427     // goodness in the source type is just tail padding.  This is allowed to
3428     // kick in for struct {double,int} on the int, but not on
3429     // struct{double,int,int} because we wouldn't return the second int.  We
3430     // have to do this analysis on the source type because we can't depend on
3431     // unions being lowered a specific way etc.
3432     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3433         IRType->isIntegerTy(32) ||
3434         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3435       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3436           cast<llvm::IntegerType>(IRType)->getBitWidth();
3437 
3438       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3439                                 SourceOffset*8+64, getContext()))
3440         return IRType;
3441     }
3442   }
3443 
3444   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3445     // If this is a struct, recurse into the field at the specified offset.
3446     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3447     if (IROffset < SL->getSizeInBytes()) {
3448       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3449       IROffset -= SL->getElementOffset(FieldIdx);
3450 
3451       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3452                                     SourceTy, SourceOffset);
3453     }
3454   }
3455 
3456   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3457     llvm::Type *EltTy = ATy->getElementType();
3458     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3459     unsigned EltOffset = IROffset/EltSize*EltSize;
3460     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3461                                   SourceOffset);
3462   }
3463 
3464   // Okay, we don't have any better idea of what to pass, so we pass this in an
3465   // integer register that isn't too big to fit the rest of the struct.
3466   unsigned TySizeInBytes =
3467     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3468 
3469   assert(TySizeInBytes != SourceOffset && "Empty field?");
3470 
3471   // It is always safe to classify this as an integer type up to i64 that
3472   // isn't larger than the structure.
3473   return llvm::IntegerType::get(getVMContext(),
3474                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3475 }
3476 
3477 
3478 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3479 /// be used as elements of a two register pair to pass or return, return a
3480 /// first class aggregate to represent them.  For example, if the low part of
3481 /// a by-value argument should be passed as i32* and the high part as float,
3482 /// return {i32*, float}.
3483 static llvm::Type *
3484 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3485                            const llvm::DataLayout &TD) {
3486   // In order to correctly satisfy the ABI, we need to the high part to start
3487   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3488   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3489   // the second element at offset 8.  Check for this:
3490   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3491   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3492   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3493   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3494 
3495   // To handle this, we have to increase the size of the low part so that the
3496   // second element will start at an 8 byte offset.  We can't increase the size
3497   // of the second element because it might make us access off the end of the
3498   // struct.
3499   if (HiStart != 8) {
3500     // There are usually two sorts of types the ABI generation code can produce
3501     // for the low part of a pair that aren't 8 bytes in size: float or
3502     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3503     // NaCl).
3504     // Promote these to a larger type.
3505     if (Lo->isFloatTy())
3506       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3507     else {
3508       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3509              && "Invalid/unknown lo type");
3510       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3511     }
3512   }
3513 
3514   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3515 
3516   // Verify that the second element is at an 8-byte offset.
3517   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3518          "Invalid x86-64 argument pair!");
3519   return Result;
3520 }
3521 
3522 ABIArgInfo X86_64ABIInfo::
3523 classifyReturnType(QualType RetTy) const {
3524   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3525   // classification algorithm.
3526   X86_64ABIInfo::Class Lo, Hi;
3527   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3528 
3529   // Check some invariants.
3530   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3531   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3532 
3533   llvm::Type *ResType = nullptr;
3534   switch (Lo) {
3535   case NoClass:
3536     if (Hi == NoClass)
3537       return ABIArgInfo::getIgnore();
3538     // If the low part is just padding, it takes no register, leave ResType
3539     // null.
3540     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3541            "Unknown missing lo part");
3542     break;
3543 
3544   case SSEUp:
3545   case X87Up:
3546     llvm_unreachable("Invalid classification for lo word.");
3547 
3548     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3549     // hidden argument.
3550   case Memory:
3551     return getIndirectReturnResult(RetTy);
3552 
3553     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3554     // available register of the sequence %rax, %rdx is used.
3555   case Integer:
3556     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3557 
3558     // If we have a sign or zero extended integer, make sure to return Extend
3559     // so that the parameter gets the right LLVM IR attributes.
3560     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3561       // Treat an enum type as its underlying type.
3562       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3563         RetTy = EnumTy->getDecl()->getIntegerType();
3564 
3565       if (RetTy->isIntegralOrEnumerationType() &&
3566           isPromotableIntegerTypeForABI(RetTy))
3567         return ABIArgInfo::getExtend(RetTy);
3568     }
3569     break;
3570 
3571     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3572     // available SSE register of the sequence %xmm0, %xmm1 is used.
3573   case SSE:
3574     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3575     break;
3576 
3577     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3578     // returned on the X87 stack in %st0 as 80-bit x87 number.
3579   case X87:
3580     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3581     break;
3582 
3583     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3584     // part of the value is returned in %st0 and the imaginary part in
3585     // %st1.
3586   case ComplexX87:
3587     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3588     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3589                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3590     break;
3591   }
3592 
3593   llvm::Type *HighPart = nullptr;
3594   switch (Hi) {
3595     // Memory was handled previously and X87 should
3596     // never occur as a hi class.
3597   case Memory:
3598   case X87:
3599     llvm_unreachable("Invalid classification for hi word.");
3600 
3601   case ComplexX87: // Previously handled.
3602   case NoClass:
3603     break;
3604 
3605   case Integer:
3606     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3607     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3608       return ABIArgInfo::getDirect(HighPart, 8);
3609     break;
3610   case SSE:
3611     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3612     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3613       return ABIArgInfo::getDirect(HighPart, 8);
3614     break;
3615 
3616     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3617     // is passed in the next available eightbyte chunk if the last used
3618     // vector register.
3619     //
3620     // SSEUP should always be preceded by SSE, just widen.
3621   case SSEUp:
3622     assert(Lo == SSE && "Unexpected SSEUp classification.");
3623     ResType = GetByteVectorType(RetTy);
3624     break;
3625 
3626     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3627     // returned together with the previous X87 value in %st0.
3628   case X87Up:
3629     // If X87Up is preceded by X87, we don't need to do
3630     // anything. However, in some cases with unions it may not be
3631     // preceded by X87. In such situations we follow gcc and pass the
3632     // extra bits in an SSE reg.
3633     if (Lo != X87) {
3634       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3635       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3636         return ABIArgInfo::getDirect(HighPart, 8);
3637     }
3638     break;
3639   }
3640 
3641   // If a high part was specified, merge it together with the low part.  It is
3642   // known to pass in the high eightbyte of the result.  We do this by forming a
3643   // first class struct aggregate with the high and low part: {low, high}
3644   if (HighPart)
3645     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3646 
3647   return ABIArgInfo::getDirect(ResType);
3648 }
3649 
3650 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3651   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3652   bool isNamedArg)
3653   const
3654 {
3655   Ty = useFirstFieldIfTransparentUnion(Ty);
3656 
3657   X86_64ABIInfo::Class Lo, Hi;
3658   classify(Ty, 0, Lo, Hi, isNamedArg);
3659 
3660   // Check some invariants.
3661   // FIXME: Enforce these by construction.
3662   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3663   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3664 
3665   neededInt = 0;
3666   neededSSE = 0;
3667   llvm::Type *ResType = nullptr;
3668   switch (Lo) {
3669   case NoClass:
3670     if (Hi == NoClass)
3671       return ABIArgInfo::getIgnore();
3672     // If the low part is just padding, it takes no register, leave ResType
3673     // null.
3674     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3675            "Unknown missing lo part");
3676     break;
3677 
3678     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3679     // on the stack.
3680   case Memory:
3681 
3682     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3683     // COMPLEX_X87, it is passed in memory.
3684   case X87:
3685   case ComplexX87:
3686     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3687       ++neededInt;
3688     return getIndirectResult(Ty, freeIntRegs);
3689 
3690   case SSEUp:
3691   case X87Up:
3692     llvm_unreachable("Invalid classification for lo word.");
3693 
3694     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3695     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3696     // and %r9 is used.
3697   case Integer:
3698     ++neededInt;
3699 
3700     // Pick an 8-byte type based on the preferred type.
3701     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3702 
3703     // If we have a sign or zero extended integer, make sure to return Extend
3704     // so that the parameter gets the right LLVM IR attributes.
3705     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3706       // Treat an enum type as its underlying type.
3707       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3708         Ty = EnumTy->getDecl()->getIntegerType();
3709 
3710       if (Ty->isIntegralOrEnumerationType() &&
3711           isPromotableIntegerTypeForABI(Ty))
3712         return ABIArgInfo::getExtend(Ty);
3713     }
3714 
3715     break;
3716 
3717     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3718     // available SSE register is used, the registers are taken in the
3719     // order from %xmm0 to %xmm7.
3720   case SSE: {
3721     llvm::Type *IRType = CGT.ConvertType(Ty);
3722     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3723     ++neededSSE;
3724     break;
3725   }
3726   }
3727 
3728   llvm::Type *HighPart = nullptr;
3729   switch (Hi) {
3730     // Memory was handled previously, ComplexX87 and X87 should
3731     // never occur as hi classes, and X87Up must be preceded by X87,
3732     // which is passed in memory.
3733   case Memory:
3734   case X87:
3735   case ComplexX87:
3736     llvm_unreachable("Invalid classification for hi word.");
3737 
3738   case NoClass: break;
3739 
3740   case Integer:
3741     ++neededInt;
3742     // Pick an 8-byte type based on the preferred type.
3743     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3744 
3745     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3746       return ABIArgInfo::getDirect(HighPart, 8);
3747     break;
3748 
3749     // X87Up generally doesn't occur here (long double is passed in
3750     // memory), except in situations involving unions.
3751   case X87Up:
3752   case SSE:
3753     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3754 
3755     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3756       return ABIArgInfo::getDirect(HighPart, 8);
3757 
3758     ++neededSSE;
3759     break;
3760 
3761     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3762     // eightbyte is passed in the upper half of the last used SSE
3763     // register.  This only happens when 128-bit vectors are passed.
3764   case SSEUp:
3765     assert(Lo == SSE && "Unexpected SSEUp classification");
3766     ResType = GetByteVectorType(Ty);
3767     break;
3768   }
3769 
3770   // If a high part was specified, merge it together with the low part.  It is
3771   // known to pass in the high eightbyte of the result.  We do this by forming a
3772   // first class struct aggregate with the high and low part: {low, high}
3773   if (HighPart)
3774     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3775 
3776   return ABIArgInfo::getDirect(ResType);
3777 }
3778 
3779 ABIArgInfo
3780 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3781                                              unsigned &NeededSSE) const {
3782   auto RT = Ty->getAs<RecordType>();
3783   assert(RT && "classifyRegCallStructType only valid with struct types");
3784 
3785   if (RT->getDecl()->hasFlexibleArrayMember())
3786     return getIndirectReturnResult(Ty);
3787 
3788   // Sum up bases
3789   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3790     if (CXXRD->isDynamicClass()) {
3791       NeededInt = NeededSSE = 0;
3792       return getIndirectReturnResult(Ty);
3793     }
3794 
3795     for (const auto &I : CXXRD->bases())
3796       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3797               .isIndirect()) {
3798         NeededInt = NeededSSE = 0;
3799         return getIndirectReturnResult(Ty);
3800       }
3801   }
3802 
3803   // Sum up members
3804   for (const auto *FD : RT->getDecl()->fields()) {
3805     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3806       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3807               .isIndirect()) {
3808         NeededInt = NeededSSE = 0;
3809         return getIndirectReturnResult(Ty);
3810       }
3811     } else {
3812       unsigned LocalNeededInt, LocalNeededSSE;
3813       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3814                                LocalNeededSSE, true)
3815               .isIndirect()) {
3816         NeededInt = NeededSSE = 0;
3817         return getIndirectReturnResult(Ty);
3818       }
3819       NeededInt += LocalNeededInt;
3820       NeededSSE += LocalNeededSSE;
3821     }
3822   }
3823 
3824   return ABIArgInfo::getDirect();
3825 }
3826 
3827 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3828                                                     unsigned &NeededInt,
3829                                                     unsigned &NeededSSE) const {
3830 
3831   NeededInt = 0;
3832   NeededSSE = 0;
3833 
3834   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3835 }
3836 
3837 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3838 
3839   const unsigned CallingConv = FI.getCallingConvention();
3840   // It is possible to force Win64 calling convention on any x86_64 target by
3841   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3842   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3843   if (CallingConv == llvm::CallingConv::Win64) {
3844     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3845     Win64ABIInfo.computeInfo(FI);
3846     return;
3847   }
3848 
3849   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3850 
3851   // Keep track of the number of assigned registers.
3852   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3853   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3854   unsigned NeededInt, NeededSSE;
3855 
3856   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3857     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3858         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3859       FI.getReturnInfo() =
3860           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3861       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3862         FreeIntRegs -= NeededInt;
3863         FreeSSERegs -= NeededSSE;
3864       } else {
3865         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3866       }
3867     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3868                getContext().getCanonicalType(FI.getReturnType()
3869                                                  ->getAs<ComplexType>()
3870                                                  ->getElementType()) ==
3871                    getContext().LongDoubleTy)
3872       // Complex Long Double Type is passed in Memory when Regcall
3873       // calling convention is used.
3874       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3875     else
3876       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3877   }
3878 
3879   // If the return value is indirect, then the hidden argument is consuming one
3880   // integer register.
3881   if (FI.getReturnInfo().isIndirect())
3882     --FreeIntRegs;
3883 
3884   // The chain argument effectively gives us another free register.
3885   if (FI.isChainCall())
3886     ++FreeIntRegs;
3887 
3888   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3889   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3890   // get assigned (in left-to-right order) for passing as follows...
3891   unsigned ArgNo = 0;
3892   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3893        it != ie; ++it, ++ArgNo) {
3894     bool IsNamedArg = ArgNo < NumRequiredArgs;
3895 
3896     if (IsRegCall && it->type->isStructureOrClassType())
3897       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3898     else
3899       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3900                                       NeededSSE, IsNamedArg);
3901 
3902     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3903     // eightbyte of an argument, the whole argument is passed on the
3904     // stack. If registers have already been assigned for some
3905     // eightbytes of such an argument, the assignments get reverted.
3906     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3907       FreeIntRegs -= NeededInt;
3908       FreeSSERegs -= NeededSSE;
3909     } else {
3910       it->info = getIndirectResult(it->type, FreeIntRegs);
3911     }
3912   }
3913 }
3914 
3915 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3916                                          Address VAListAddr, QualType Ty) {
3917   Address overflow_arg_area_p =
3918       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3919   llvm::Value *overflow_arg_area =
3920     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3921 
3922   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3923   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3924   // It isn't stated explicitly in the standard, but in practice we use
3925   // alignment greater than 16 where necessary.
3926   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3927   if (Align > CharUnits::fromQuantity(8)) {
3928     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3929                                                       Align);
3930   }
3931 
3932   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3933   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3934   llvm::Value *Res =
3935     CGF.Builder.CreateBitCast(overflow_arg_area,
3936                               llvm::PointerType::getUnqual(LTy));
3937 
3938   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3939   // l->overflow_arg_area + sizeof(type).
3940   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3941   // an 8 byte boundary.
3942 
3943   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3944   llvm::Value *Offset =
3945       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3946   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3947                                             "overflow_arg_area.next");
3948   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3949 
3950   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3951   return Address(Res, Align);
3952 }
3953 
3954 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3955                                  QualType Ty) const {
3956   // Assume that va_list type is correct; should be pointer to LLVM type:
3957   // struct {
3958   //   i32 gp_offset;
3959   //   i32 fp_offset;
3960   //   i8* overflow_arg_area;
3961   //   i8* reg_save_area;
3962   // };
3963   unsigned neededInt, neededSSE;
3964 
3965   Ty = getContext().getCanonicalType(Ty);
3966   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3967                                        /*isNamedArg*/false);
3968 
3969   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3970   // in the registers. If not go to step 7.
3971   if (!neededInt && !neededSSE)
3972     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3973 
3974   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3975   // general purpose registers needed to pass type and num_fp to hold
3976   // the number of floating point registers needed.
3977 
3978   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3979   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3980   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3981   //
3982   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3983   // register save space).
3984 
3985   llvm::Value *InRegs = nullptr;
3986   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3987   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3988   if (neededInt) {
3989     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3990     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3991     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3992     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3993   }
3994 
3995   if (neededSSE) {
3996     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3997     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3998     llvm::Value *FitsInFP =
3999       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4000     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4001     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4002   }
4003 
4004   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4005   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4006   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4007   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4008 
4009   // Emit code to load the value if it was passed in registers.
4010 
4011   CGF.EmitBlock(InRegBlock);
4012 
4013   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4014   // an offset of l->gp_offset and/or l->fp_offset. This may require
4015   // copying to a temporary location in case the parameter is passed
4016   // in different register classes or requires an alignment greater
4017   // than 8 for general purpose registers and 16 for XMM registers.
4018   //
4019   // FIXME: This really results in shameful code when we end up needing to
4020   // collect arguments from different places; often what should result in a
4021   // simple assembling of a structure from scattered addresses has many more
4022   // loads than necessary. Can we clean this up?
4023   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4024   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4025       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4026 
4027   Address RegAddr = Address::invalid();
4028   if (neededInt && neededSSE) {
4029     // FIXME: Cleanup.
4030     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4031     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4032     Address Tmp = CGF.CreateMemTemp(Ty);
4033     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4034     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4035     llvm::Type *TyLo = ST->getElementType(0);
4036     llvm::Type *TyHi = ST->getElementType(1);
4037     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4038            "Unexpected ABI info for mixed regs");
4039     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4040     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4041     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
4042     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
4043     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4044     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4045 
4046     // Copy the first element.
4047     // FIXME: Our choice of alignment here and below is probably pessimistic.
4048     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4049         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4050         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4051     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4052 
4053     // Copy the second element.
4054     V = CGF.Builder.CreateAlignedLoad(
4055         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4056         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4057     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4058 
4059     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4060   } else if (neededInt) {
4061     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
4062                       CharUnits::fromQuantity(8));
4063     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4064 
4065     // Copy to a temporary if necessary to ensure the appropriate alignment.
4066     std::pair<CharUnits, CharUnits> SizeAlign =
4067         getContext().getTypeInfoInChars(Ty);
4068     uint64_t TySize = SizeAlign.first.getQuantity();
4069     CharUnits TyAlign = SizeAlign.second;
4070 
4071     // Copy into a temporary if the type is more aligned than the
4072     // register save area.
4073     if (TyAlign.getQuantity() > 8) {
4074       Address Tmp = CGF.CreateMemTemp(Ty);
4075       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4076       RegAddr = Tmp;
4077     }
4078 
4079   } else if (neededSSE == 1) {
4080     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4081                       CharUnits::fromQuantity(16));
4082     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4083   } else {
4084     assert(neededSSE == 2 && "Invalid number of needed registers!");
4085     // SSE registers are spaced 16 bytes apart in the register save
4086     // area, we need to collect the two eightbytes together.
4087     // The ABI isn't explicit about this, but it seems reasonable
4088     // to assume that the slots are 16-byte aligned, since the stack is
4089     // naturally 16-byte aligned and the prologue is expected to store
4090     // all the SSE registers to the RSA.
4091     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4092                                 CharUnits::fromQuantity(16));
4093     Address RegAddrHi =
4094       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4095                                              CharUnits::fromQuantity(16));
4096     llvm::Type *ST = AI.canHaveCoerceToType()
4097                          ? AI.getCoerceToType()
4098                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4099     llvm::Value *V;
4100     Address Tmp = CGF.CreateMemTemp(Ty);
4101     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4102     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4103         RegAddrLo, ST->getStructElementType(0)));
4104     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4105     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4106         RegAddrHi, ST->getStructElementType(1)));
4107     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4108 
4109     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4110   }
4111 
4112   // AMD64-ABI 3.5.7p5: Step 5. Set:
4113   // l->gp_offset = l->gp_offset + num_gp * 8
4114   // l->fp_offset = l->fp_offset + num_fp * 16.
4115   if (neededInt) {
4116     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4117     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4118                             gp_offset_p);
4119   }
4120   if (neededSSE) {
4121     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4122     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4123                             fp_offset_p);
4124   }
4125   CGF.EmitBranch(ContBlock);
4126 
4127   // Emit code to load the value if it was passed in memory.
4128 
4129   CGF.EmitBlock(InMemBlock);
4130   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4131 
4132   // Return the appropriate result.
4133 
4134   CGF.EmitBlock(ContBlock);
4135   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4136                                  "vaarg.addr");
4137   return ResAddr;
4138 }
4139 
4140 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4141                                    QualType Ty) const {
4142   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4143                           CGF.getContext().getTypeInfoInChars(Ty),
4144                           CharUnits::fromQuantity(8),
4145                           /*allowHigherAlign*/ false);
4146 }
4147 
4148 ABIArgInfo
4149 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
4150                                     const ABIArgInfo &current) const {
4151   // Assumes vectorCall calling convention.
4152   const Type *Base = nullptr;
4153   uint64_t NumElts = 0;
4154 
4155   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4156       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4157     FreeSSERegs -= NumElts;
4158     return getDirectX86Hva();
4159   }
4160   return current;
4161 }
4162 
4163 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4164                                       bool IsReturnType, bool IsVectorCall,
4165                                       bool IsRegCall) const {
4166 
4167   if (Ty->isVoidType())
4168     return ABIArgInfo::getIgnore();
4169 
4170   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4171     Ty = EnumTy->getDecl()->getIntegerType();
4172 
4173   TypeInfo Info = getContext().getTypeInfo(Ty);
4174   uint64_t Width = Info.Width;
4175   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4176 
4177   const RecordType *RT = Ty->getAs<RecordType>();
4178   if (RT) {
4179     if (!IsReturnType) {
4180       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4181         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4182     }
4183 
4184     if (RT->getDecl()->hasFlexibleArrayMember())
4185       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4186 
4187   }
4188 
4189   const Type *Base = nullptr;
4190   uint64_t NumElts = 0;
4191   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4192   // other targets.
4193   if ((IsVectorCall || IsRegCall) &&
4194       isHomogeneousAggregate(Ty, Base, NumElts)) {
4195     if (IsRegCall) {
4196       if (FreeSSERegs >= NumElts) {
4197         FreeSSERegs -= NumElts;
4198         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4199           return ABIArgInfo::getDirect();
4200         return ABIArgInfo::getExpand();
4201       }
4202       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4203     } else if (IsVectorCall) {
4204       if (FreeSSERegs >= NumElts &&
4205           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4206         FreeSSERegs -= NumElts;
4207         return ABIArgInfo::getDirect();
4208       } else if (IsReturnType) {
4209         return ABIArgInfo::getExpand();
4210       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4211         // HVAs are delayed and reclassified in the 2nd step.
4212         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4213       }
4214     }
4215   }
4216 
4217   if (Ty->isMemberPointerType()) {
4218     // If the member pointer is represented by an LLVM int or ptr, pass it
4219     // directly.
4220     llvm::Type *LLTy = CGT.ConvertType(Ty);
4221     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4222       return ABIArgInfo::getDirect();
4223   }
4224 
4225   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4226     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4227     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4228     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4229       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4230 
4231     // Otherwise, coerce it to a small integer.
4232     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4233   }
4234 
4235   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4236     switch (BT->getKind()) {
4237     case BuiltinType::Bool:
4238       // Bool type is always extended to the ABI, other builtin types are not
4239       // extended.
4240       return ABIArgInfo::getExtend(Ty);
4241 
4242     case BuiltinType::LongDouble:
4243       // Mingw64 GCC uses the old 80 bit extended precision floating point
4244       // unit. It passes them indirectly through memory.
4245       if (IsMingw64) {
4246         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4247         if (LDF == &llvm::APFloat::x87DoubleExtended())
4248           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4249       }
4250       break;
4251 
4252     case BuiltinType::Int128:
4253     case BuiltinType::UInt128:
4254       // If it's a parameter type, the normal ABI rule is that arguments larger
4255       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4256       // even though it isn't particularly efficient.
4257       if (!IsReturnType)
4258         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4259 
4260       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4261       // Clang matches them for compatibility.
4262       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4263           llvm::Type::getInt64Ty(getVMContext()), 2));
4264 
4265     default:
4266       break;
4267     }
4268   }
4269 
4270   if (Ty->isExtIntType()) {
4271     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4272     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4273     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4274     // anyway as long is it fits in them, so we don't have to check the power of
4275     // 2.
4276     if (Width <= 64)
4277       return ABIArgInfo::getDirect();
4278     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4279   }
4280 
4281   return ABIArgInfo::getDirect();
4282 }
4283 
4284 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4285                                              unsigned FreeSSERegs,
4286                                              bool IsVectorCall,
4287                                              bool IsRegCall) const {
4288   unsigned Count = 0;
4289   for (auto &I : FI.arguments()) {
4290     // Vectorcall in x64 only permits the first 6 arguments to be passed
4291     // as XMM/YMM registers.
4292     if (Count < VectorcallMaxParamNumAsReg)
4293       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4294     else {
4295       // Since these cannot be passed in registers, pretend no registers
4296       // are left.
4297       unsigned ZeroSSERegsAvail = 0;
4298       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4299                         IsVectorCall, IsRegCall);
4300     }
4301     ++Count;
4302   }
4303 
4304   for (auto &I : FI.arguments()) {
4305     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4306   }
4307 }
4308 
4309 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4310   const unsigned CC = FI.getCallingConvention();
4311   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4312   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4313 
4314   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4315   // classification rules.
4316   if (CC == llvm::CallingConv::X86_64_SysV) {
4317     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4318     SysVABIInfo.computeInfo(FI);
4319     return;
4320   }
4321 
4322   unsigned FreeSSERegs = 0;
4323   if (IsVectorCall) {
4324     // We can use up to 4 SSE return registers with vectorcall.
4325     FreeSSERegs = 4;
4326   } else if (IsRegCall) {
4327     // RegCall gives us 16 SSE registers.
4328     FreeSSERegs = 16;
4329   }
4330 
4331   if (!getCXXABI().classifyReturnType(FI))
4332     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4333                                   IsVectorCall, IsRegCall);
4334 
4335   if (IsVectorCall) {
4336     // We can use up to 6 SSE register parameters with vectorcall.
4337     FreeSSERegs = 6;
4338   } else if (IsRegCall) {
4339     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4340     FreeSSERegs = 16;
4341   }
4342 
4343   if (IsVectorCall) {
4344     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4345   } else {
4346     for (auto &I : FI.arguments())
4347       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4348   }
4349 
4350 }
4351 
4352 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4353                                     QualType Ty) const {
4354 
4355   bool IsIndirect = false;
4356 
4357   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4358   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4359   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4360     uint64_t Width = getContext().getTypeSize(Ty);
4361     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4362   }
4363 
4364   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4365                           CGF.getContext().getTypeInfoInChars(Ty),
4366                           CharUnits::fromQuantity(8),
4367                           /*allowHigherAlign*/ false);
4368 }
4369 
4370 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4371                                         llvm::Value *Address, bool Is64Bit,
4372                                         bool IsAIX) {
4373   // This is calculated from the LLVM and GCC tables and verified
4374   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4375 
4376   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4377 
4378   llvm::IntegerType *i8 = CGF.Int8Ty;
4379   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4380   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4381   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4382 
4383   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4384   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4385 
4386   // 32-63: fp0-31, the 8-byte floating-point registers
4387   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4388 
4389   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4390   // 64: mq
4391   // 65: lr
4392   // 66: ctr
4393   // 67: ap
4394   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4395 
4396   // 68-76 are various 4-byte special-purpose registers:
4397   // 68-75 cr0-7
4398   // 76: xer
4399   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4400 
4401   // 77-108: v0-31, the 16-byte vector registers
4402   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4403 
4404   // 109: vrsave
4405   // 110: vscr
4406   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4407 
4408   // AIX does not utilize the rest of the registers.
4409   if (IsAIX)
4410     return false;
4411 
4412   // 111: spe_acc
4413   // 112: spefscr
4414   // 113: sfp
4415   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4416 
4417   if (!Is64Bit)
4418     return false;
4419 
4420   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4421   // or above CPU.
4422   // 64-bit only registers:
4423   // 114: tfhar
4424   // 115: tfiar
4425   // 116: texasr
4426   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4427 
4428   return false;
4429 }
4430 
4431 // AIX
4432 namespace {
4433 /// AIXABIInfo - The AIX XCOFF ABI information.
4434 class AIXABIInfo : public ABIInfo {
4435   const bool Is64Bit;
4436   const unsigned PtrByteSize;
4437   CharUnits getParamTypeAlignment(QualType Ty) const;
4438 
4439 public:
4440   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4441       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4442 
4443   bool isPromotableTypeForABI(QualType Ty) const;
4444 
4445   ABIArgInfo classifyReturnType(QualType RetTy) const;
4446   ABIArgInfo classifyArgumentType(QualType Ty) const;
4447 
4448   void computeInfo(CGFunctionInfo &FI) const override {
4449     if (!getCXXABI().classifyReturnType(FI))
4450       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4451 
4452     for (auto &I : FI.arguments())
4453       I.info = classifyArgumentType(I.type);
4454   }
4455 
4456   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4457                     QualType Ty) const override;
4458 };
4459 
4460 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4461   const bool Is64Bit;
4462 
4463 public:
4464   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4465       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4466         Is64Bit(Is64Bit) {}
4467   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4468     return 1; // r1 is the dedicated stack pointer
4469   }
4470 
4471   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4472                                llvm::Value *Address) const override;
4473 };
4474 } // namespace
4475 
4476 // Return true if the ABI requires Ty to be passed sign- or zero-
4477 // extended to 32/64 bits.
4478 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4479   // Treat an enum type as its underlying type.
4480   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4481     Ty = EnumTy->getDecl()->getIntegerType();
4482 
4483   // Promotable integer types are required to be promoted by the ABI.
4484   if (Ty->isPromotableIntegerType())
4485     return true;
4486 
4487   if (!Is64Bit)
4488     return false;
4489 
4490   // For 64 bit mode, in addition to the usual promotable integer types, we also
4491   // need to extend all 32-bit types, since the ABI requires promotion to 64
4492   // bits.
4493   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4494     switch (BT->getKind()) {
4495     case BuiltinType::Int:
4496     case BuiltinType::UInt:
4497       return true;
4498     default:
4499       break;
4500     }
4501 
4502   return false;
4503 }
4504 
4505 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4506   if (RetTy->isAnyComplexType())
4507     llvm::report_fatal_error("complex type is not supported on AIX yet");
4508 
4509   if (RetTy->isVectorType())
4510     llvm::report_fatal_error("vector type is not supported on AIX yet");
4511 
4512   if (RetTy->isVoidType())
4513     return ABIArgInfo::getIgnore();
4514 
4515   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4516   // alignment here.
4517   if (isAggregateTypeForABI(RetTy))
4518     return getNaturalAlignIndirect(RetTy);
4519 
4520   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4521                                         : ABIArgInfo::getDirect());
4522 }
4523 
4524 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4525   Ty = useFirstFieldIfTransparentUnion(Ty);
4526 
4527   if (Ty->isAnyComplexType())
4528     llvm::report_fatal_error("complex type is not supported on AIX yet");
4529 
4530   if (Ty->isVectorType())
4531     llvm::report_fatal_error("vector type is not supported on AIX yet");
4532 
4533   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4534   // alignment here.
4535   if (isAggregateTypeForABI(Ty)) {
4536     // Records with non-trivial destructors/copy-constructors should not be
4537     // passed by value.
4538     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4539       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4540 
4541     CharUnits CCAlign = getParamTypeAlignment(Ty);
4542     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4543 
4544     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4545                                    /*Realign*/ TyAlign > CCAlign);
4546   }
4547 
4548   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4549                                      : ABIArgInfo::getDirect());
4550 }
4551 
4552 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4553   if (Ty->isAnyComplexType())
4554     llvm::report_fatal_error("complex type is not supported on AIX yet");
4555 
4556   if (Ty->isVectorType())
4557     llvm::report_fatal_error("vector type is not supported on AIX yet");
4558 
4559   // If the structure contains a vector type, the alignment is 16.
4560   if (isRecordWithSIMDVectorType(getContext(), Ty))
4561     return CharUnits::fromQuantity(16);
4562 
4563   return CharUnits::fromQuantity(PtrByteSize);
4564 }
4565 
4566 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4567                               QualType Ty) const {
4568   if (Ty->isAnyComplexType())
4569     llvm::report_fatal_error("complex type is not supported on AIX yet");
4570 
4571   if (Ty->isVectorType())
4572     llvm::report_fatal_error("vector type is not supported on AIX yet");
4573 
4574   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4575   TypeInfo.second = getParamTypeAlignment(Ty);
4576 
4577   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4578 
4579   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4580                           SlotSize, /*AllowHigher*/ true);
4581 }
4582 
4583 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4584     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4585   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4586 }
4587 
4588 // PowerPC-32
4589 namespace {
4590 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4591 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4592   bool IsSoftFloatABI;
4593   bool IsRetSmallStructInRegABI;
4594 
4595   CharUnits getParamTypeAlignment(QualType Ty) const;
4596 
4597 public:
4598   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4599                      bool RetSmallStructInRegABI)
4600       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4601         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4602 
4603   ABIArgInfo classifyReturnType(QualType RetTy) const;
4604 
4605   void computeInfo(CGFunctionInfo &FI) const override {
4606     if (!getCXXABI().classifyReturnType(FI))
4607       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4608     for (auto &I : FI.arguments())
4609       I.info = classifyArgumentType(I.type);
4610   }
4611 
4612   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4613                     QualType Ty) const override;
4614 };
4615 
4616 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4617 public:
4618   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4619                          bool RetSmallStructInRegABI)
4620       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4621             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4622 
4623   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4624                                      const CodeGenOptions &Opts);
4625 
4626   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4627     // This is recovered from gcc output.
4628     return 1; // r1 is the dedicated stack pointer
4629   }
4630 
4631   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4632                                llvm::Value *Address) const override;
4633 };
4634 }
4635 
4636 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4637   // Complex types are passed just like their elements.
4638   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4639     Ty = CTy->getElementType();
4640 
4641   if (Ty->isVectorType())
4642     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4643                                                                        : 4);
4644 
4645   // For single-element float/vector structs, we consider the whole type
4646   // to have the same alignment requirements as its single element.
4647   const Type *AlignTy = nullptr;
4648   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4649     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4650     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4651         (BT && BT->isFloatingPoint()))
4652       AlignTy = EltType;
4653   }
4654 
4655   if (AlignTy)
4656     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4657   return CharUnits::fromQuantity(4);
4658 }
4659 
4660 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4661   uint64_t Size;
4662 
4663   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4664   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4665       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4666     // System V ABI (1995), page 3-22, specified:
4667     // > A structure or union whose size is less than or equal to 8 bytes
4668     // > shall be returned in r3 and r4, as if it were first stored in the
4669     // > 8-byte aligned memory area and then the low addressed word were
4670     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4671     // > the last member of the structure or union are not defined.
4672     //
4673     // GCC for big-endian PPC32 inserts the pad before the first member,
4674     // not "beyond the last member" of the struct.  To stay compatible
4675     // with GCC, we coerce the struct to an integer of the same size.
4676     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4677     if (Size == 0)
4678       return ABIArgInfo::getIgnore();
4679     else {
4680       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4681       return ABIArgInfo::getDirect(CoerceTy);
4682     }
4683   }
4684 
4685   return DefaultABIInfo::classifyReturnType(RetTy);
4686 }
4687 
4688 // TODO: this implementation is now likely redundant with
4689 // DefaultABIInfo::EmitVAArg.
4690 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4691                                       QualType Ty) const {
4692   if (getTarget().getTriple().isOSDarwin()) {
4693     auto TI = getContext().getTypeInfoInChars(Ty);
4694     TI.second = getParamTypeAlignment(Ty);
4695 
4696     CharUnits SlotSize = CharUnits::fromQuantity(4);
4697     return emitVoidPtrVAArg(CGF, VAList, Ty,
4698                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4699                             /*AllowHigherAlign=*/true);
4700   }
4701 
4702   const unsigned OverflowLimit = 8;
4703   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4704     // TODO: Implement this. For now ignore.
4705     (void)CTy;
4706     return Address::invalid(); // FIXME?
4707   }
4708 
4709   // struct __va_list_tag {
4710   //   unsigned char gpr;
4711   //   unsigned char fpr;
4712   //   unsigned short reserved;
4713   //   void *overflow_arg_area;
4714   //   void *reg_save_area;
4715   // };
4716 
4717   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4718   bool isInt =
4719       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4720   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4721 
4722   // All aggregates are passed indirectly?  That doesn't seem consistent
4723   // with the argument-lowering code.
4724   bool isIndirect = Ty->isAggregateType();
4725 
4726   CGBuilderTy &Builder = CGF.Builder;
4727 
4728   // The calling convention either uses 1-2 GPRs or 1 FPR.
4729   Address NumRegsAddr = Address::invalid();
4730   if (isInt || IsSoftFloatABI) {
4731     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4732   } else {
4733     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4734   }
4735 
4736   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4737 
4738   // "Align" the register count when TY is i64.
4739   if (isI64 || (isF64 && IsSoftFloatABI)) {
4740     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4741     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4742   }
4743 
4744   llvm::Value *CC =
4745       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4746 
4747   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4748   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4749   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4750 
4751   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4752 
4753   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4754   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4755 
4756   // Case 1: consume registers.
4757   Address RegAddr = Address::invalid();
4758   {
4759     CGF.EmitBlock(UsingRegs);
4760 
4761     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4762     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4763                       CharUnits::fromQuantity(8));
4764     assert(RegAddr.getElementType() == CGF.Int8Ty);
4765 
4766     // Floating-point registers start after the general-purpose registers.
4767     if (!(isInt || IsSoftFloatABI)) {
4768       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4769                                                    CharUnits::fromQuantity(32));
4770     }
4771 
4772     // Get the address of the saved value by scaling the number of
4773     // registers we've used by the number of
4774     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4775     llvm::Value *RegOffset =
4776       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4777     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4778                                             RegAddr.getPointer(), RegOffset),
4779                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4780     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4781 
4782     // Increase the used-register count.
4783     NumRegs =
4784       Builder.CreateAdd(NumRegs,
4785                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4786     Builder.CreateStore(NumRegs, NumRegsAddr);
4787 
4788     CGF.EmitBranch(Cont);
4789   }
4790 
4791   // Case 2: consume space in the overflow area.
4792   Address MemAddr = Address::invalid();
4793   {
4794     CGF.EmitBlock(UsingOverflow);
4795 
4796     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4797 
4798     // Everything in the overflow area is rounded up to a size of at least 4.
4799     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4800 
4801     CharUnits Size;
4802     if (!isIndirect) {
4803       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4804       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4805     } else {
4806       Size = CGF.getPointerSize();
4807     }
4808 
4809     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4810     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4811                          OverflowAreaAlign);
4812     // Round up address of argument to alignment
4813     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4814     if (Align > OverflowAreaAlign) {
4815       llvm::Value *Ptr = OverflowArea.getPointer();
4816       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4817                                                            Align);
4818     }
4819 
4820     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4821 
4822     // Increase the overflow area.
4823     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4824     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4825     CGF.EmitBranch(Cont);
4826   }
4827 
4828   CGF.EmitBlock(Cont);
4829 
4830   // Merge the cases with a phi.
4831   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4832                                 "vaarg.addr");
4833 
4834   // Load the pointer if the argument was passed indirectly.
4835   if (isIndirect) {
4836     Result = Address(Builder.CreateLoad(Result, "aggr"),
4837                      getContext().getTypeAlignInChars(Ty));
4838   }
4839 
4840   return Result;
4841 }
4842 
4843 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4844     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4845   assert(Triple.getArch() == llvm::Triple::ppc);
4846 
4847   switch (Opts.getStructReturnConvention()) {
4848   case CodeGenOptions::SRCK_Default:
4849     break;
4850   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4851     return false;
4852   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4853     return true;
4854   }
4855 
4856   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4857     return true;
4858 
4859   return false;
4860 }
4861 
4862 bool
4863 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4864                                                 llvm::Value *Address) const {
4865   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4866                                      /*IsAIX*/ false);
4867 }
4868 
4869 // PowerPC-64
4870 
4871 namespace {
4872 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4873 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4874 public:
4875   enum ABIKind {
4876     ELFv1 = 0,
4877     ELFv2
4878   };
4879 
4880 private:
4881   static const unsigned GPRBits = 64;
4882   ABIKind Kind;
4883   bool HasQPX;
4884   bool IsSoftFloatABI;
4885 
4886   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4887   // will be passed in a QPX register.
4888   bool IsQPXVectorTy(const Type *Ty) const {
4889     if (!HasQPX)
4890       return false;
4891 
4892     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4893       unsigned NumElements = VT->getNumElements();
4894       if (NumElements == 1)
4895         return false;
4896 
4897       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4898         if (getContext().getTypeSize(Ty) <= 256)
4899           return true;
4900       } else if (VT->getElementType()->
4901                    isSpecificBuiltinType(BuiltinType::Float)) {
4902         if (getContext().getTypeSize(Ty) <= 128)
4903           return true;
4904       }
4905     }
4906 
4907     return false;
4908   }
4909 
4910   bool IsQPXVectorTy(QualType Ty) const {
4911     return IsQPXVectorTy(Ty.getTypePtr());
4912   }
4913 
4914 public:
4915   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4916                      bool SoftFloatABI)
4917       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4918         IsSoftFloatABI(SoftFloatABI) {}
4919 
4920   bool isPromotableTypeForABI(QualType Ty) const;
4921   CharUnits getParamTypeAlignment(QualType Ty) const;
4922 
4923   ABIArgInfo classifyReturnType(QualType RetTy) const;
4924   ABIArgInfo classifyArgumentType(QualType Ty) const;
4925 
4926   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4927   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4928                                          uint64_t Members) const override;
4929 
4930   // TODO: We can add more logic to computeInfo to improve performance.
4931   // Example: For aggregate arguments that fit in a register, we could
4932   // use getDirectInReg (as is done below for structs containing a single
4933   // floating-point value) to avoid pushing them to memory on function
4934   // entry.  This would require changing the logic in PPCISelLowering
4935   // when lowering the parameters in the caller and args in the callee.
4936   void computeInfo(CGFunctionInfo &FI) const override {
4937     if (!getCXXABI().classifyReturnType(FI))
4938       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4939     for (auto &I : FI.arguments()) {
4940       // We rely on the default argument classification for the most part.
4941       // One exception:  An aggregate containing a single floating-point
4942       // or vector item must be passed in a register if one is available.
4943       const Type *T = isSingleElementStruct(I.type, getContext());
4944       if (T) {
4945         const BuiltinType *BT = T->getAs<BuiltinType>();
4946         if (IsQPXVectorTy(T) ||
4947             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4948             (BT && BT->isFloatingPoint())) {
4949           QualType QT(T, 0);
4950           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4951           continue;
4952         }
4953       }
4954       I.info = classifyArgumentType(I.type);
4955     }
4956   }
4957 
4958   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4959                     QualType Ty) const override;
4960 
4961   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4962                                     bool asReturnValue) const override {
4963     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4964   }
4965 
4966   bool isSwiftErrorInRegister() const override {
4967     return false;
4968   }
4969 };
4970 
4971 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4972 
4973 public:
4974   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4975                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4976                                bool SoftFloatABI)
4977       : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>(
4978             CGT, Kind, HasQPX, SoftFloatABI)) {}
4979 
4980   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4981     // This is recovered from gcc output.
4982     return 1; // r1 is the dedicated stack pointer
4983   }
4984 
4985   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4986                                llvm::Value *Address) const override;
4987 };
4988 
4989 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4990 public:
4991   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4992 
4993   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4994     // This is recovered from gcc output.
4995     return 1; // r1 is the dedicated stack pointer
4996   }
4997 
4998   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4999                                llvm::Value *Address) const override;
5000 };
5001 
5002 }
5003 
5004 // Return true if the ABI requires Ty to be passed sign- or zero-
5005 // extended to 64 bits.
5006 bool
5007 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5008   // Treat an enum type as its underlying type.
5009   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5010     Ty = EnumTy->getDecl()->getIntegerType();
5011 
5012   // Promotable integer types are required to be promoted by the ABI.
5013   if (isPromotableIntegerTypeForABI(Ty))
5014     return true;
5015 
5016   // In addition to the usual promotable integer types, we also need to
5017   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5018   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5019     switch (BT->getKind()) {
5020     case BuiltinType::Int:
5021     case BuiltinType::UInt:
5022       return true;
5023     default:
5024       break;
5025     }
5026 
5027   if (const auto *EIT = Ty->getAs<ExtIntType>())
5028     if (EIT->getNumBits() < 64)
5029       return true;
5030 
5031   return false;
5032 }
5033 
5034 /// isAlignedParamType - Determine whether a type requires 16-byte or
5035 /// higher alignment in the parameter area.  Always returns at least 8.
5036 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5037   // Complex types are passed just like their elements.
5038   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5039     Ty = CTy->getElementType();
5040 
5041   // Only vector types of size 16 bytes need alignment (larger types are
5042   // passed via reference, smaller types are not aligned).
5043   if (IsQPXVectorTy(Ty)) {
5044     if (getContext().getTypeSize(Ty) > 128)
5045       return CharUnits::fromQuantity(32);
5046 
5047     return CharUnits::fromQuantity(16);
5048   } else if (Ty->isVectorType()) {
5049     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5050   }
5051 
5052   // For single-element float/vector structs, we consider the whole type
5053   // to have the same alignment requirements as its single element.
5054   const Type *AlignAsType = nullptr;
5055   const Type *EltType = isSingleElementStruct(Ty, getContext());
5056   if (EltType) {
5057     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5058     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
5059          getContext().getTypeSize(EltType) == 128) ||
5060         (BT && BT->isFloatingPoint()))
5061       AlignAsType = EltType;
5062   }
5063 
5064   // Likewise for ELFv2 homogeneous aggregates.
5065   const Type *Base = nullptr;
5066   uint64_t Members = 0;
5067   if (!AlignAsType && Kind == ELFv2 &&
5068       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5069     AlignAsType = Base;
5070 
5071   // With special case aggregates, only vector base types need alignment.
5072   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
5073     if (getContext().getTypeSize(AlignAsType) > 128)
5074       return CharUnits::fromQuantity(32);
5075 
5076     return CharUnits::fromQuantity(16);
5077   } else if (AlignAsType) {
5078     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5079   }
5080 
5081   // Otherwise, we only need alignment for any aggregate type that
5082   // has an alignment requirement of >= 16 bytes.
5083   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5084     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
5085       return CharUnits::fromQuantity(32);
5086     return CharUnits::fromQuantity(16);
5087   }
5088 
5089   return CharUnits::fromQuantity(8);
5090 }
5091 
5092 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5093 /// aggregate.  Base is set to the base element type, and Members is set
5094 /// to the number of base elements.
5095 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5096                                      uint64_t &Members) const {
5097   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5098     uint64_t NElements = AT->getSize().getZExtValue();
5099     if (NElements == 0)
5100       return false;
5101     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5102       return false;
5103     Members *= NElements;
5104   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5105     const RecordDecl *RD = RT->getDecl();
5106     if (RD->hasFlexibleArrayMember())
5107       return false;
5108 
5109     Members = 0;
5110 
5111     // If this is a C++ record, check the bases first.
5112     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5113       for (const auto &I : CXXRD->bases()) {
5114         // Ignore empty records.
5115         if (isEmptyRecord(getContext(), I.getType(), true))
5116           continue;
5117 
5118         uint64_t FldMembers;
5119         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5120           return false;
5121 
5122         Members += FldMembers;
5123       }
5124     }
5125 
5126     for (const auto *FD : RD->fields()) {
5127       // Ignore (non-zero arrays of) empty records.
5128       QualType FT = FD->getType();
5129       while (const ConstantArrayType *AT =
5130              getContext().getAsConstantArrayType(FT)) {
5131         if (AT->getSize().getZExtValue() == 0)
5132           return false;
5133         FT = AT->getElementType();
5134       }
5135       if (isEmptyRecord(getContext(), FT, true))
5136         continue;
5137 
5138       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5139       if (getContext().getLangOpts().CPlusPlus &&
5140           FD->isZeroLengthBitField(getContext()))
5141         continue;
5142 
5143       uint64_t FldMembers;
5144       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5145         return false;
5146 
5147       Members = (RD->isUnion() ?
5148                  std::max(Members, FldMembers) : Members + FldMembers);
5149     }
5150 
5151     if (!Base)
5152       return false;
5153 
5154     // Ensure there is no padding.
5155     if (getContext().getTypeSize(Base) * Members !=
5156         getContext().getTypeSize(Ty))
5157       return false;
5158   } else {
5159     Members = 1;
5160     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5161       Members = 2;
5162       Ty = CT->getElementType();
5163     }
5164 
5165     // Most ABIs only support float, double, and some vector type widths.
5166     if (!isHomogeneousAggregateBaseType(Ty))
5167       return false;
5168 
5169     // The base type must be the same for all members.  Types that
5170     // agree in both total size and mode (float vs. vector) are
5171     // treated as being equivalent here.
5172     const Type *TyPtr = Ty.getTypePtr();
5173     if (!Base) {
5174       Base = TyPtr;
5175       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5176       // so make sure to widen it explicitly.
5177       if (const VectorType *VT = Base->getAs<VectorType>()) {
5178         QualType EltTy = VT->getElementType();
5179         unsigned NumElements =
5180             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5181         Base = getContext()
5182                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5183                    .getTypePtr();
5184       }
5185     }
5186 
5187     if (Base->isVectorType() != TyPtr->isVectorType() ||
5188         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5189       return false;
5190   }
5191   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5192 }
5193 
5194 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5195   // Homogeneous aggregates for ELFv2 must have base types of float,
5196   // double, long double, or 128-bit vectors.
5197   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5198     if (BT->getKind() == BuiltinType::Float ||
5199         BT->getKind() == BuiltinType::Double ||
5200         BT->getKind() == BuiltinType::LongDouble ||
5201         (getContext().getTargetInfo().hasFloat128Type() &&
5202           (BT->getKind() == BuiltinType::Float128))) {
5203       if (IsSoftFloatABI)
5204         return false;
5205       return true;
5206     }
5207   }
5208   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5209     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
5210       return true;
5211   }
5212   return false;
5213 }
5214 
5215 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5216     const Type *Base, uint64_t Members) const {
5217   // Vector and fp128 types require one register, other floating point types
5218   // require one or two registers depending on their size.
5219   uint32_t NumRegs =
5220       ((getContext().getTargetInfo().hasFloat128Type() &&
5221           Base->isFloat128Type()) ||
5222         Base->isVectorType()) ? 1
5223                               : (getContext().getTypeSize(Base) + 63) / 64;
5224 
5225   // Homogeneous Aggregates may occupy at most 8 registers.
5226   return Members * NumRegs <= 8;
5227 }
5228 
5229 ABIArgInfo
5230 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5231   Ty = useFirstFieldIfTransparentUnion(Ty);
5232 
5233   if (Ty->isAnyComplexType())
5234     return ABIArgInfo::getDirect();
5235 
5236   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5237   // or via reference (larger than 16 bytes).
5238   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
5239     uint64_t Size = getContext().getTypeSize(Ty);
5240     if (Size > 128)
5241       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5242     else if (Size < 128) {
5243       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5244       return ABIArgInfo::getDirect(CoerceTy);
5245     }
5246   }
5247 
5248   if (const auto *EIT = Ty->getAs<ExtIntType>())
5249     if (EIT->getNumBits() > 128)
5250       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5251 
5252   if (isAggregateTypeForABI(Ty)) {
5253     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5254       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5255 
5256     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5257     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5258 
5259     // ELFv2 homogeneous aggregates are passed as array types.
5260     const Type *Base = nullptr;
5261     uint64_t Members = 0;
5262     if (Kind == ELFv2 &&
5263         isHomogeneousAggregate(Ty, Base, Members)) {
5264       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5265       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5266       return ABIArgInfo::getDirect(CoerceTy);
5267     }
5268 
5269     // If an aggregate may end up fully in registers, we do not
5270     // use the ByVal method, but pass the aggregate as array.
5271     // This is usually beneficial since we avoid forcing the
5272     // back-end to store the argument to memory.
5273     uint64_t Bits = getContext().getTypeSize(Ty);
5274     if (Bits > 0 && Bits <= 8 * GPRBits) {
5275       llvm::Type *CoerceTy;
5276 
5277       // Types up to 8 bytes are passed as integer type (which will be
5278       // properly aligned in the argument save area doubleword).
5279       if (Bits <= GPRBits)
5280         CoerceTy =
5281             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5282       // Larger types are passed as arrays, with the base type selected
5283       // according to the required alignment in the save area.
5284       else {
5285         uint64_t RegBits = ABIAlign * 8;
5286         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5287         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5288         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5289       }
5290 
5291       return ABIArgInfo::getDirect(CoerceTy);
5292     }
5293 
5294     // All other aggregates are passed ByVal.
5295     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5296                                    /*ByVal=*/true,
5297                                    /*Realign=*/TyAlign > ABIAlign);
5298   }
5299 
5300   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5301                                      : ABIArgInfo::getDirect());
5302 }
5303 
5304 ABIArgInfo
5305 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5306   if (RetTy->isVoidType())
5307     return ABIArgInfo::getIgnore();
5308 
5309   if (RetTy->isAnyComplexType())
5310     return ABIArgInfo::getDirect();
5311 
5312   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5313   // or via reference (larger than 16 bytes).
5314   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
5315     uint64_t Size = getContext().getTypeSize(RetTy);
5316     if (Size > 128)
5317       return getNaturalAlignIndirect(RetTy);
5318     else if (Size < 128) {
5319       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5320       return ABIArgInfo::getDirect(CoerceTy);
5321     }
5322   }
5323 
5324   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5325     if (EIT->getNumBits() > 128)
5326       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5327 
5328   if (isAggregateTypeForABI(RetTy)) {
5329     // ELFv2 homogeneous aggregates are returned as array types.
5330     const Type *Base = nullptr;
5331     uint64_t Members = 0;
5332     if (Kind == ELFv2 &&
5333         isHomogeneousAggregate(RetTy, Base, Members)) {
5334       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5335       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5336       return ABIArgInfo::getDirect(CoerceTy);
5337     }
5338 
5339     // ELFv2 small aggregates are returned in up to two registers.
5340     uint64_t Bits = getContext().getTypeSize(RetTy);
5341     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5342       if (Bits == 0)
5343         return ABIArgInfo::getIgnore();
5344 
5345       llvm::Type *CoerceTy;
5346       if (Bits > GPRBits) {
5347         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5348         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5349       } else
5350         CoerceTy =
5351             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5352       return ABIArgInfo::getDirect(CoerceTy);
5353     }
5354 
5355     // All other aggregates are returned indirectly.
5356     return getNaturalAlignIndirect(RetTy);
5357   }
5358 
5359   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5360                                         : ABIArgInfo::getDirect());
5361 }
5362 
5363 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5364 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5365                                       QualType Ty) const {
5366   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5367   TypeInfo.second = getParamTypeAlignment(Ty);
5368 
5369   CharUnits SlotSize = CharUnits::fromQuantity(8);
5370 
5371   // If we have a complex type and the base type is smaller than 8 bytes,
5372   // the ABI calls for the real and imaginary parts to be right-adjusted
5373   // in separate doublewords.  However, Clang expects us to produce a
5374   // pointer to a structure with the two parts packed tightly.  So generate
5375   // loads of the real and imaginary parts relative to the va_list pointer,
5376   // and store them to a temporary structure.
5377   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5378     CharUnits EltSize = TypeInfo.first / 2;
5379     if (EltSize < SlotSize) {
5380       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5381                                             SlotSize * 2, SlotSize,
5382                                             SlotSize, /*AllowHigher*/ true);
5383 
5384       Address RealAddr = Addr;
5385       Address ImagAddr = RealAddr;
5386       if (CGF.CGM.getDataLayout().isBigEndian()) {
5387         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5388                                                           SlotSize - EltSize);
5389         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5390                                                       2 * SlotSize - EltSize);
5391       } else {
5392         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5393       }
5394 
5395       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5396       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5397       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5398       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5399       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5400 
5401       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5402       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5403                              /*init*/ true);
5404       return Temp;
5405     }
5406   }
5407 
5408   // Otherwise, just use the general rule.
5409   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5410                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5411 }
5412 
5413 bool
5414 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5415   CodeGen::CodeGenFunction &CGF,
5416   llvm::Value *Address) const {
5417   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5418                                      /*IsAIX*/ false);
5419 }
5420 
5421 bool
5422 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5423                                                 llvm::Value *Address) const {
5424   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5425                                      /*IsAIX*/ false);
5426 }
5427 
5428 //===----------------------------------------------------------------------===//
5429 // AArch64 ABI Implementation
5430 //===----------------------------------------------------------------------===//
5431 
5432 namespace {
5433 
5434 class AArch64ABIInfo : public SwiftABIInfo {
5435 public:
5436   enum ABIKind {
5437     AAPCS = 0,
5438     DarwinPCS,
5439     Win64
5440   };
5441 
5442 private:
5443   ABIKind Kind;
5444 
5445 public:
5446   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5447     : SwiftABIInfo(CGT), Kind(Kind) {}
5448 
5449 private:
5450   ABIKind getABIKind() const { return Kind; }
5451   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5452 
5453   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5454   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5455   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5456   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5457   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5458                                          uint64_t Members) const override;
5459 
5460   bool isIllegalVectorType(QualType Ty) const;
5461 
5462   void computeInfo(CGFunctionInfo &FI) const override {
5463     if (!::classifyReturnType(getCXXABI(), FI, *this))
5464       FI.getReturnInfo() =
5465           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5466 
5467     for (auto &it : FI.arguments())
5468       it.info = classifyArgumentType(it.type);
5469   }
5470 
5471   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5472                           CodeGenFunction &CGF) const;
5473 
5474   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5475                          CodeGenFunction &CGF) const;
5476 
5477   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5478                     QualType Ty) const override {
5479     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5480                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5481                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5482   }
5483 
5484   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5485                       QualType Ty) const override;
5486 
5487   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5488                                     bool asReturnValue) const override {
5489     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5490   }
5491   bool isSwiftErrorInRegister() const override {
5492     return true;
5493   }
5494 
5495   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5496                                  unsigned elts) const override;
5497 
5498   bool allowBFloatArgsAndRet() const override {
5499     return getTarget().hasBFloat16Type();
5500   }
5501 };
5502 
5503 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5504 public:
5505   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5506       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5507 
5508   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5509     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5510   }
5511 
5512   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5513     return 31;
5514   }
5515 
5516   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5517 
5518   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5519                            CodeGen::CodeGenModule &CGM) const override {
5520     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5521     if (!FD)
5522       return;
5523 
5524     LangOptions::SignReturnAddressScopeKind Scope =
5525         CGM.getLangOpts().getSignReturnAddressScope();
5526     LangOptions::SignReturnAddressKeyKind Key =
5527         CGM.getLangOpts().getSignReturnAddressKey();
5528     bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement;
5529     if (const auto *TA = FD->getAttr<TargetAttr>()) {
5530       ParsedTargetAttr Attr = TA->parse();
5531       if (!Attr.BranchProtection.empty()) {
5532         TargetInfo::BranchProtectionInfo BPI;
5533         StringRef Error;
5534         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5535                                                        BPI, Error);
5536         assert(Error.empty());
5537         Scope = BPI.SignReturnAddr;
5538         Key = BPI.SignKey;
5539         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
5540       }
5541     }
5542 
5543     auto *Fn = cast<llvm::Function>(GV);
5544     if (Scope != LangOptions::SignReturnAddressScopeKind::None) {
5545       Fn->addFnAttr("sign-return-address",
5546                     Scope == LangOptions::SignReturnAddressScopeKind::All
5547                         ? "all"
5548                         : "non-leaf");
5549 
5550       Fn->addFnAttr("sign-return-address-key",
5551                     Key == LangOptions::SignReturnAddressKeyKind::AKey
5552                         ? "a_key"
5553                         : "b_key");
5554     }
5555 
5556     if (BranchTargetEnforcement)
5557       Fn->addFnAttr("branch-target-enforcement");
5558   }
5559 };
5560 
5561 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5562 public:
5563   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5564       : AArch64TargetCodeGenInfo(CGT, K) {}
5565 
5566   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5567                            CodeGen::CodeGenModule &CGM) const override;
5568 
5569   void getDependentLibraryOption(llvm::StringRef Lib,
5570                                  llvm::SmallString<24> &Opt) const override {
5571     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5572   }
5573 
5574   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5575                                llvm::SmallString<32> &Opt) const override {
5576     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5577   }
5578 };
5579 
5580 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5581     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5582   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5583   if (GV->isDeclaration())
5584     return;
5585   addStackProbeTargetAttributes(D, GV, CGM);
5586 }
5587 }
5588 
5589 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5590   assert(Ty->isVectorType() && "expected vector type!");
5591 
5592   const auto *VT = Ty->castAs<VectorType>();
5593   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5594     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5595     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5596                BuiltinType::UChar &&
5597            "unexpected builtin type for SVE predicate!");
5598     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5599         llvm::Type::getInt1Ty(getVMContext()), 16));
5600   }
5601 
5602   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5603     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5604 
5605     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5606     llvm::ScalableVectorType *ResType = nullptr;
5607     switch (BT->getKind()) {
5608     default:
5609       llvm_unreachable("unexpected builtin type for SVE vector!");
5610     case BuiltinType::SChar:
5611     case BuiltinType::UChar:
5612       ResType = llvm::ScalableVectorType::get(
5613           llvm::Type::getInt8Ty(getVMContext()), 16);
5614       break;
5615     case BuiltinType::Short:
5616     case BuiltinType::UShort:
5617       ResType = llvm::ScalableVectorType::get(
5618           llvm::Type::getInt16Ty(getVMContext()), 8);
5619       break;
5620     case BuiltinType::Int:
5621     case BuiltinType::UInt:
5622       ResType = llvm::ScalableVectorType::get(
5623           llvm::Type::getInt32Ty(getVMContext()), 4);
5624       break;
5625     case BuiltinType::Long:
5626     case BuiltinType::ULong:
5627       ResType = llvm::ScalableVectorType::get(
5628           llvm::Type::getInt64Ty(getVMContext()), 2);
5629       break;
5630     case BuiltinType::Half:
5631       ResType = llvm::ScalableVectorType::get(
5632           llvm::Type::getHalfTy(getVMContext()), 8);
5633       break;
5634     case BuiltinType::Float:
5635       ResType = llvm::ScalableVectorType::get(
5636           llvm::Type::getFloatTy(getVMContext()), 4);
5637       break;
5638     case BuiltinType::Double:
5639       ResType = llvm::ScalableVectorType::get(
5640           llvm::Type::getDoubleTy(getVMContext()), 2);
5641       break;
5642     case BuiltinType::BFloat16:
5643       ResType = llvm::ScalableVectorType::get(
5644           llvm::Type::getBFloatTy(getVMContext()), 8);
5645       break;
5646     }
5647     return ABIArgInfo::getDirect(ResType);
5648   }
5649 
5650   uint64_t Size = getContext().getTypeSize(Ty);
5651   // Android promotes <2 x i8> to i16, not i32
5652   if (isAndroid() && (Size <= 16)) {
5653     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5654     return ABIArgInfo::getDirect(ResType);
5655   }
5656   if (Size <= 32) {
5657     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5658     return ABIArgInfo::getDirect(ResType);
5659   }
5660   if (Size == 64) {
5661     auto *ResType =
5662         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5663     return ABIArgInfo::getDirect(ResType);
5664   }
5665   if (Size == 128) {
5666     auto *ResType =
5667         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5668     return ABIArgInfo::getDirect(ResType);
5669   }
5670   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5671 }
5672 
5673 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5674   Ty = useFirstFieldIfTransparentUnion(Ty);
5675 
5676   // Handle illegal vector types here.
5677   if (isIllegalVectorType(Ty))
5678     return coerceIllegalVector(Ty);
5679 
5680   if (!isAggregateTypeForABI(Ty)) {
5681     // Treat an enum type as its underlying type.
5682     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5683       Ty = EnumTy->getDecl()->getIntegerType();
5684 
5685     if (const auto *EIT = Ty->getAs<ExtIntType>())
5686       if (EIT->getNumBits() > 128)
5687         return getNaturalAlignIndirect(Ty);
5688 
5689     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5690                 ? ABIArgInfo::getExtend(Ty)
5691                 : ABIArgInfo::getDirect());
5692   }
5693 
5694   // Structures with either a non-trivial destructor or a non-trivial
5695   // copy constructor are always indirect.
5696   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5697     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5698                                      CGCXXABI::RAA_DirectInMemory);
5699   }
5700 
5701   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5702   // elsewhere for GNU compatibility.
5703   uint64_t Size = getContext().getTypeSize(Ty);
5704   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5705   if (IsEmpty || Size == 0) {
5706     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5707       return ABIArgInfo::getIgnore();
5708 
5709     // GNU C mode. The only argument that gets ignored is an empty one with size
5710     // 0.
5711     if (IsEmpty && Size == 0)
5712       return ABIArgInfo::getIgnore();
5713     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5714   }
5715 
5716   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5717   const Type *Base = nullptr;
5718   uint64_t Members = 0;
5719   if (isHomogeneousAggregate(Ty, Base, Members)) {
5720     return ABIArgInfo::getDirect(
5721         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5722   }
5723 
5724   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5725   if (Size <= 128) {
5726     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5727     // same size and alignment.
5728     if (getTarget().isRenderScriptTarget()) {
5729       return coerceToIntArray(Ty, getContext(), getVMContext());
5730     }
5731     unsigned Alignment;
5732     if (Kind == AArch64ABIInfo::AAPCS) {
5733       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5734       Alignment = Alignment < 128 ? 64 : 128;
5735     } else {
5736       Alignment = std::max(getContext().getTypeAlign(Ty),
5737                            (unsigned)getTarget().getPointerWidth(0));
5738     }
5739     Size = llvm::alignTo(Size, Alignment);
5740 
5741     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5742     // For aggregates with 16-byte alignment, we use i128.
5743     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5744     return ABIArgInfo::getDirect(
5745         Size == Alignment ? BaseTy
5746                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5747   }
5748 
5749   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5750 }
5751 
5752 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5753                                               bool IsVariadic) const {
5754   if (RetTy->isVoidType())
5755     return ABIArgInfo::getIgnore();
5756 
5757   if (const auto *VT = RetTy->getAs<VectorType>()) {
5758     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5759         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5760       return coerceIllegalVector(RetTy);
5761   }
5762 
5763   // Large vector types should be returned via memory.
5764   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5765     return getNaturalAlignIndirect(RetTy);
5766 
5767   if (!isAggregateTypeForABI(RetTy)) {
5768     // Treat an enum type as its underlying type.
5769     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5770       RetTy = EnumTy->getDecl()->getIntegerType();
5771 
5772     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5773       if (EIT->getNumBits() > 128)
5774         return getNaturalAlignIndirect(RetTy);
5775 
5776     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5777                 ? ABIArgInfo::getExtend(RetTy)
5778                 : ABIArgInfo::getDirect());
5779   }
5780 
5781   uint64_t Size = getContext().getTypeSize(RetTy);
5782   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5783     return ABIArgInfo::getIgnore();
5784 
5785   const Type *Base = nullptr;
5786   uint64_t Members = 0;
5787   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5788       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5789         IsVariadic))
5790     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5791     return ABIArgInfo::getDirect();
5792 
5793   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5794   if (Size <= 128) {
5795     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5796     // same size and alignment.
5797     if (getTarget().isRenderScriptTarget()) {
5798       return coerceToIntArray(RetTy, getContext(), getVMContext());
5799     }
5800     unsigned Alignment = getContext().getTypeAlign(RetTy);
5801     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5802 
5803     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5804     // For aggregates with 16-byte alignment, we use i128.
5805     if (Alignment < 128 && Size == 128) {
5806       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5807       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5808     }
5809     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5810   }
5811 
5812   return getNaturalAlignIndirect(RetTy);
5813 }
5814 
5815 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5816 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5817   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5818     // Check whether VT is a fixed-length SVE vector. These types are
5819     // represented as scalable vectors in function args/return and must be
5820     // coerced from fixed vectors.
5821     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5822         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5823       return true;
5824 
5825     // Check whether VT is legal.
5826     unsigned NumElements = VT->getNumElements();
5827     uint64_t Size = getContext().getTypeSize(VT);
5828     // NumElements should be power of 2.
5829     if (!llvm::isPowerOf2_32(NumElements))
5830       return true;
5831 
5832     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5833     // vectors for some reason.
5834     llvm::Triple Triple = getTarget().getTriple();
5835     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5836         Triple.isOSBinFormatMachO())
5837       return Size <= 32;
5838 
5839     return Size != 64 && (Size != 128 || NumElements == 1);
5840   }
5841   return false;
5842 }
5843 
5844 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5845                                                llvm::Type *eltTy,
5846                                                unsigned elts) const {
5847   if (!llvm::isPowerOf2_32(elts))
5848     return false;
5849   if (totalSize.getQuantity() != 8 &&
5850       (totalSize.getQuantity() != 16 || elts == 1))
5851     return false;
5852   return true;
5853 }
5854 
5855 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5856   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5857   // point type or a short-vector type. This is the same as the 32-bit ABI,
5858   // but with the difference that any floating-point type is allowed,
5859   // including __fp16.
5860   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5861     if (BT->isFloatingPoint())
5862       return true;
5863   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5864     unsigned VecSize = getContext().getTypeSize(VT);
5865     if (VecSize == 64 || VecSize == 128)
5866       return true;
5867   }
5868   return false;
5869 }
5870 
5871 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5872                                                        uint64_t Members) const {
5873   return Members <= 4;
5874 }
5875 
5876 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5877                                             QualType Ty,
5878                                             CodeGenFunction &CGF) const {
5879   ABIArgInfo AI = classifyArgumentType(Ty);
5880   bool IsIndirect = AI.isIndirect();
5881 
5882   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5883   if (IsIndirect)
5884     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5885   else if (AI.getCoerceToType())
5886     BaseTy = AI.getCoerceToType();
5887 
5888   unsigned NumRegs = 1;
5889   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5890     BaseTy = ArrTy->getElementType();
5891     NumRegs = ArrTy->getNumElements();
5892   }
5893   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5894 
5895   // The AArch64 va_list type and handling is specified in the Procedure Call
5896   // Standard, section B.4:
5897   //
5898   // struct {
5899   //   void *__stack;
5900   //   void *__gr_top;
5901   //   void *__vr_top;
5902   //   int __gr_offs;
5903   //   int __vr_offs;
5904   // };
5905 
5906   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5907   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5908   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5909   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5910 
5911   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5912   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5913 
5914   Address reg_offs_p = Address::invalid();
5915   llvm::Value *reg_offs = nullptr;
5916   int reg_top_index;
5917   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5918   if (!IsFPR) {
5919     // 3 is the field number of __gr_offs
5920     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5921     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5922     reg_top_index = 1; // field number for __gr_top
5923     RegSize = llvm::alignTo(RegSize, 8);
5924   } else {
5925     // 4 is the field number of __vr_offs.
5926     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5927     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5928     reg_top_index = 2; // field number for __vr_top
5929     RegSize = 16 * NumRegs;
5930   }
5931 
5932   //=======================================
5933   // Find out where argument was passed
5934   //=======================================
5935 
5936   // If reg_offs >= 0 we're already using the stack for this type of
5937   // argument. We don't want to keep updating reg_offs (in case it overflows,
5938   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5939   // whatever they get).
5940   llvm::Value *UsingStack = nullptr;
5941   UsingStack = CGF.Builder.CreateICmpSGE(
5942       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5943 
5944   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5945 
5946   // Otherwise, at least some kind of argument could go in these registers, the
5947   // question is whether this particular type is too big.
5948   CGF.EmitBlock(MaybeRegBlock);
5949 
5950   // Integer arguments may need to correct register alignment (for example a
5951   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5952   // align __gr_offs to calculate the potential address.
5953   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5954     int Align = TyAlign.getQuantity();
5955 
5956     reg_offs = CGF.Builder.CreateAdd(
5957         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5958         "align_regoffs");
5959     reg_offs = CGF.Builder.CreateAnd(
5960         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5961         "aligned_regoffs");
5962   }
5963 
5964   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5965   // The fact that this is done unconditionally reflects the fact that
5966   // allocating an argument to the stack also uses up all the remaining
5967   // registers of the appropriate kind.
5968   llvm::Value *NewOffset = nullptr;
5969   NewOffset = CGF.Builder.CreateAdd(
5970       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5971   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5972 
5973   // Now we're in a position to decide whether this argument really was in
5974   // registers or not.
5975   llvm::Value *InRegs = nullptr;
5976   InRegs = CGF.Builder.CreateICmpSLE(
5977       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5978 
5979   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5980 
5981   //=======================================
5982   // Argument was in registers
5983   //=======================================
5984 
5985   // Now we emit the code for if the argument was originally passed in
5986   // registers. First start the appropriate block:
5987   CGF.EmitBlock(InRegBlock);
5988 
5989   llvm::Value *reg_top = nullptr;
5990   Address reg_top_p =
5991       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5992   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5993   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5994                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5995   Address RegAddr = Address::invalid();
5996   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5997 
5998   if (IsIndirect) {
5999     // If it's been passed indirectly (actually a struct), whatever we find from
6000     // stored registers or on the stack will actually be a struct **.
6001     MemTy = llvm::PointerType::getUnqual(MemTy);
6002   }
6003 
6004   const Type *Base = nullptr;
6005   uint64_t NumMembers = 0;
6006   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6007   if (IsHFA && NumMembers > 1) {
6008     // Homogeneous aggregates passed in registers will have their elements split
6009     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6010     // qN+1, ...). We reload and store into a temporary local variable
6011     // contiguously.
6012     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6013     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6014     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6015     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6016     Address Tmp = CGF.CreateTempAlloca(HFATy,
6017                                        std::max(TyAlign, BaseTyInfo.second));
6018 
6019     // On big-endian platforms, the value will be right-aligned in its slot.
6020     int Offset = 0;
6021     if (CGF.CGM.getDataLayout().isBigEndian() &&
6022         BaseTyInfo.first.getQuantity() < 16)
6023       Offset = 16 - BaseTyInfo.first.getQuantity();
6024 
6025     for (unsigned i = 0; i < NumMembers; ++i) {
6026       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6027       Address LoadAddr =
6028         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6029       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6030 
6031       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6032 
6033       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6034       CGF.Builder.CreateStore(Elem, StoreAddr);
6035     }
6036 
6037     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6038   } else {
6039     // Otherwise the object is contiguous in memory.
6040 
6041     // It might be right-aligned in its slot.
6042     CharUnits SlotSize = BaseAddr.getAlignment();
6043     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6044         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6045         TySize < SlotSize) {
6046       CharUnits Offset = SlotSize - TySize;
6047       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6048     }
6049 
6050     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6051   }
6052 
6053   CGF.EmitBranch(ContBlock);
6054 
6055   //=======================================
6056   // Argument was on the stack
6057   //=======================================
6058   CGF.EmitBlock(OnStackBlock);
6059 
6060   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6061   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6062 
6063   // Again, stack arguments may need realignment. In this case both integer and
6064   // floating-point ones might be affected.
6065   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6066     int Align = TyAlign.getQuantity();
6067 
6068     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6069 
6070     OnStackPtr = CGF.Builder.CreateAdd(
6071         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6072         "align_stack");
6073     OnStackPtr = CGF.Builder.CreateAnd(
6074         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6075         "align_stack");
6076 
6077     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6078   }
6079   Address OnStackAddr(OnStackPtr,
6080                       std::max(CharUnits::fromQuantity(8), TyAlign));
6081 
6082   // All stack slots are multiples of 8 bytes.
6083   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6084   CharUnits StackSize;
6085   if (IsIndirect)
6086     StackSize = StackSlotSize;
6087   else
6088     StackSize = TySize.alignTo(StackSlotSize);
6089 
6090   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6091   llvm::Value *NewStack =
6092       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
6093 
6094   // Write the new value of __stack for the next call to va_arg
6095   CGF.Builder.CreateStore(NewStack, stack_p);
6096 
6097   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6098       TySize < StackSlotSize) {
6099     CharUnits Offset = StackSlotSize - TySize;
6100     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6101   }
6102 
6103   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6104 
6105   CGF.EmitBranch(ContBlock);
6106 
6107   //=======================================
6108   // Tidy up
6109   //=======================================
6110   CGF.EmitBlock(ContBlock);
6111 
6112   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6113                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6114 
6115   if (IsIndirect)
6116     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6117                    TyAlign);
6118 
6119   return ResAddr;
6120 }
6121 
6122 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6123                                         CodeGenFunction &CGF) const {
6124   // The backend's lowering doesn't support va_arg for aggregates or
6125   // illegal vector types.  Lower VAArg here for these cases and use
6126   // the LLVM va_arg instruction for everything else.
6127   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6128     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6129 
6130   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6131   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6132 
6133   // Empty records are ignored for parameter passing purposes.
6134   if (isEmptyRecord(getContext(), Ty, true)) {
6135     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6136     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6137     return Addr;
6138   }
6139 
6140   // The size of the actual thing passed, which might end up just
6141   // being a pointer for indirect types.
6142   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6143 
6144   // Arguments bigger than 16 bytes which aren't homogeneous
6145   // aggregates should be passed indirectly.
6146   bool IsIndirect = false;
6147   if (TyInfo.first.getQuantity() > 16) {
6148     const Type *Base = nullptr;
6149     uint64_t Members = 0;
6150     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6151   }
6152 
6153   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6154                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6155 }
6156 
6157 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6158                                     QualType Ty) const {
6159   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6160                           CGF.getContext().getTypeInfoInChars(Ty),
6161                           CharUnits::fromQuantity(8),
6162                           /*allowHigherAlign*/ false);
6163 }
6164 
6165 //===----------------------------------------------------------------------===//
6166 // ARM ABI Implementation
6167 //===----------------------------------------------------------------------===//
6168 
6169 namespace {
6170 
6171 class ARMABIInfo : public SwiftABIInfo {
6172 public:
6173   enum ABIKind {
6174     APCS = 0,
6175     AAPCS = 1,
6176     AAPCS_VFP = 2,
6177     AAPCS16_VFP = 3,
6178   };
6179 
6180 private:
6181   ABIKind Kind;
6182   bool IsFloatABISoftFP;
6183 
6184 public:
6185   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6186       : SwiftABIInfo(CGT), Kind(_Kind) {
6187     setCCs();
6188     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6189         CGT.getCodeGenOpts().FloatABI == ""; // default
6190   }
6191 
6192   bool isEABI() const {
6193     switch (getTarget().getTriple().getEnvironment()) {
6194     case llvm::Triple::Android:
6195     case llvm::Triple::EABI:
6196     case llvm::Triple::EABIHF:
6197     case llvm::Triple::GNUEABI:
6198     case llvm::Triple::GNUEABIHF:
6199     case llvm::Triple::MuslEABI:
6200     case llvm::Triple::MuslEABIHF:
6201       return true;
6202     default:
6203       return false;
6204     }
6205   }
6206 
6207   bool isEABIHF() const {
6208     switch (getTarget().getTriple().getEnvironment()) {
6209     case llvm::Triple::EABIHF:
6210     case llvm::Triple::GNUEABIHF:
6211     case llvm::Triple::MuslEABIHF:
6212       return true;
6213     default:
6214       return false;
6215     }
6216   }
6217 
6218   ABIKind getABIKind() const { return Kind; }
6219 
6220   bool allowBFloatArgsAndRet() const override {
6221     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6222   }
6223 
6224 private:
6225   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6226                                 unsigned functionCallConv) const;
6227   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6228                                   unsigned functionCallConv) const;
6229   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6230                                           uint64_t Members) const;
6231   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6232   bool isIllegalVectorType(QualType Ty) const;
6233   bool containsAnyFP16Vectors(QualType Ty) const;
6234 
6235   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6236   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6237                                          uint64_t Members) const override;
6238 
6239   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6240 
6241   void computeInfo(CGFunctionInfo &FI) const override;
6242 
6243   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6244                     QualType Ty) const override;
6245 
6246   llvm::CallingConv::ID getLLVMDefaultCC() const;
6247   llvm::CallingConv::ID getABIDefaultCC() const;
6248   void setCCs();
6249 
6250   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6251                                     bool asReturnValue) const override {
6252     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6253   }
6254   bool isSwiftErrorInRegister() const override {
6255     return true;
6256   }
6257   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6258                                  unsigned elts) const override;
6259 };
6260 
6261 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6262 public:
6263   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6264       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6265 
6266   const ARMABIInfo &getABIInfo() const {
6267     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6268   }
6269 
6270   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6271     return 13;
6272   }
6273 
6274   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6275     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6276   }
6277 
6278   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6279                                llvm::Value *Address) const override {
6280     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6281 
6282     // 0-15 are the 16 integer registers.
6283     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6284     return false;
6285   }
6286 
6287   unsigned getSizeOfUnwindException() const override {
6288     if (getABIInfo().isEABI()) return 88;
6289     return TargetCodeGenInfo::getSizeOfUnwindException();
6290   }
6291 
6292   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6293                            CodeGen::CodeGenModule &CGM) const override {
6294     if (GV->isDeclaration())
6295       return;
6296     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6297     if (!FD)
6298       return;
6299 
6300     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6301     if (!Attr)
6302       return;
6303 
6304     const char *Kind;
6305     switch (Attr->getInterrupt()) {
6306     case ARMInterruptAttr::Generic: Kind = ""; break;
6307     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6308     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6309     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6310     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6311     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6312     }
6313 
6314     llvm::Function *Fn = cast<llvm::Function>(GV);
6315 
6316     Fn->addFnAttr("interrupt", Kind);
6317 
6318     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6319     if (ABI == ARMABIInfo::APCS)
6320       return;
6321 
6322     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6323     // however this is not necessarily true on taking any interrupt. Instruct
6324     // the backend to perform a realignment as part of the function prologue.
6325     llvm::AttrBuilder B;
6326     B.addStackAlignmentAttr(8);
6327     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6328   }
6329 };
6330 
6331 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6332 public:
6333   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6334       : ARMTargetCodeGenInfo(CGT, K) {}
6335 
6336   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6337                            CodeGen::CodeGenModule &CGM) const override;
6338 
6339   void getDependentLibraryOption(llvm::StringRef Lib,
6340                                  llvm::SmallString<24> &Opt) const override {
6341     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6342   }
6343 
6344   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6345                                llvm::SmallString<32> &Opt) const override {
6346     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6347   }
6348 };
6349 
6350 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6351     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6352   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6353   if (GV->isDeclaration())
6354     return;
6355   addStackProbeTargetAttributes(D, GV, CGM);
6356 }
6357 }
6358 
6359 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6360   if (!::classifyReturnType(getCXXABI(), FI, *this))
6361     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6362                                             FI.getCallingConvention());
6363 
6364   for (auto &I : FI.arguments())
6365     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6366                                   FI.getCallingConvention());
6367 
6368 
6369   // Always honor user-specified calling convention.
6370   if (FI.getCallingConvention() != llvm::CallingConv::C)
6371     return;
6372 
6373   llvm::CallingConv::ID cc = getRuntimeCC();
6374   if (cc != llvm::CallingConv::C)
6375     FI.setEffectiveCallingConvention(cc);
6376 }
6377 
6378 /// Return the default calling convention that LLVM will use.
6379 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6380   // The default calling convention that LLVM will infer.
6381   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6382     return llvm::CallingConv::ARM_AAPCS_VFP;
6383   else if (isEABI())
6384     return llvm::CallingConv::ARM_AAPCS;
6385   else
6386     return llvm::CallingConv::ARM_APCS;
6387 }
6388 
6389 /// Return the calling convention that our ABI would like us to use
6390 /// as the C calling convention.
6391 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6392   switch (getABIKind()) {
6393   case APCS: return llvm::CallingConv::ARM_APCS;
6394   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6395   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6396   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6397   }
6398   llvm_unreachable("bad ABI kind");
6399 }
6400 
6401 void ARMABIInfo::setCCs() {
6402   assert(getRuntimeCC() == llvm::CallingConv::C);
6403 
6404   // Don't muddy up the IR with a ton of explicit annotations if
6405   // they'd just match what LLVM will infer from the triple.
6406   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6407   if (abiCC != getLLVMDefaultCC())
6408     RuntimeCC = abiCC;
6409 }
6410 
6411 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6412   uint64_t Size = getContext().getTypeSize(Ty);
6413   if (Size <= 32) {
6414     llvm::Type *ResType =
6415         llvm::Type::getInt32Ty(getVMContext());
6416     return ABIArgInfo::getDirect(ResType);
6417   }
6418   if (Size == 64 || Size == 128) {
6419     auto *ResType = llvm::FixedVectorType::get(
6420         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6421     return ABIArgInfo::getDirect(ResType);
6422   }
6423   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6424 }
6425 
6426 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6427                                                     const Type *Base,
6428                                                     uint64_t Members) const {
6429   assert(Base && "Base class should be set for homogeneous aggregate");
6430   // Base can be a floating-point or a vector.
6431   if (const VectorType *VT = Base->getAs<VectorType>()) {
6432     // FP16 vectors should be converted to integer vectors
6433     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6434       uint64_t Size = getContext().getTypeSize(VT);
6435       auto *NewVecTy = llvm::FixedVectorType::get(
6436           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6437       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6438       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6439     }
6440   }
6441   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6442 }
6443 
6444 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6445                                             unsigned functionCallConv) const {
6446   // 6.1.2.1 The following argument types are VFP CPRCs:
6447   //   A single-precision floating-point type (including promoted
6448   //   half-precision types); A double-precision floating-point type;
6449   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6450   //   with a Base Type of a single- or double-precision floating-point type,
6451   //   64-bit containerized vectors or 128-bit containerized vectors with one
6452   //   to four Elements.
6453   // Variadic functions should always marshal to the base standard.
6454   bool IsAAPCS_VFP =
6455       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6456 
6457   Ty = useFirstFieldIfTransparentUnion(Ty);
6458 
6459   // Handle illegal vector types here.
6460   if (isIllegalVectorType(Ty))
6461     return coerceIllegalVector(Ty);
6462 
6463   if (!isAggregateTypeForABI(Ty)) {
6464     // Treat an enum type as its underlying type.
6465     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6466       Ty = EnumTy->getDecl()->getIntegerType();
6467     }
6468 
6469     if (const auto *EIT = Ty->getAs<ExtIntType>())
6470       if (EIT->getNumBits() > 64)
6471         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6472 
6473     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6474                                               : ABIArgInfo::getDirect());
6475   }
6476 
6477   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6478     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6479   }
6480 
6481   // Ignore empty records.
6482   if (isEmptyRecord(getContext(), Ty, true))
6483     return ABIArgInfo::getIgnore();
6484 
6485   if (IsAAPCS_VFP) {
6486     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6487     // into VFP registers.
6488     const Type *Base = nullptr;
6489     uint64_t Members = 0;
6490     if (isHomogeneousAggregate(Ty, Base, Members))
6491       return classifyHomogeneousAggregate(Ty, Base, Members);
6492   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6493     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6494     // this convention even for a variadic function: the backend will use GPRs
6495     // if needed.
6496     const Type *Base = nullptr;
6497     uint64_t Members = 0;
6498     if (isHomogeneousAggregate(Ty, Base, Members)) {
6499       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6500       llvm::Type *Ty =
6501         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6502       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6503     }
6504   }
6505 
6506   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6507       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6508     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6509     // bigger than 128-bits, they get placed in space allocated by the caller,
6510     // and a pointer is passed.
6511     return ABIArgInfo::getIndirect(
6512         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6513   }
6514 
6515   // Support byval for ARM.
6516   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6517   // most 8-byte. We realign the indirect argument if type alignment is bigger
6518   // than ABI alignment.
6519   uint64_t ABIAlign = 4;
6520   uint64_t TyAlign;
6521   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6522       getABIKind() == ARMABIInfo::AAPCS) {
6523     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6524     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6525   } else {
6526     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6527   }
6528   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6529     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6530     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6531                                    /*ByVal=*/true,
6532                                    /*Realign=*/TyAlign > ABIAlign);
6533   }
6534 
6535   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6536   // same size and alignment.
6537   if (getTarget().isRenderScriptTarget()) {
6538     return coerceToIntArray(Ty, getContext(), getVMContext());
6539   }
6540 
6541   // Otherwise, pass by coercing to a structure of the appropriate size.
6542   llvm::Type* ElemTy;
6543   unsigned SizeRegs;
6544   // FIXME: Try to match the types of the arguments more accurately where
6545   // we can.
6546   if (TyAlign <= 4) {
6547     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6548     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6549   } else {
6550     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6551     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6552   }
6553 
6554   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6555 }
6556 
6557 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6558                               llvm::LLVMContext &VMContext) {
6559   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6560   // is called integer-like if its size is less than or equal to one word, and
6561   // the offset of each of its addressable sub-fields is zero.
6562 
6563   uint64_t Size = Context.getTypeSize(Ty);
6564 
6565   // Check that the type fits in a word.
6566   if (Size > 32)
6567     return false;
6568 
6569   // FIXME: Handle vector types!
6570   if (Ty->isVectorType())
6571     return false;
6572 
6573   // Float types are never treated as "integer like".
6574   if (Ty->isRealFloatingType())
6575     return false;
6576 
6577   // If this is a builtin or pointer type then it is ok.
6578   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6579     return true;
6580 
6581   // Small complex integer types are "integer like".
6582   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6583     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6584 
6585   // Single element and zero sized arrays should be allowed, by the definition
6586   // above, but they are not.
6587 
6588   // Otherwise, it must be a record type.
6589   const RecordType *RT = Ty->getAs<RecordType>();
6590   if (!RT) return false;
6591 
6592   // Ignore records with flexible arrays.
6593   const RecordDecl *RD = RT->getDecl();
6594   if (RD->hasFlexibleArrayMember())
6595     return false;
6596 
6597   // Check that all sub-fields are at offset 0, and are themselves "integer
6598   // like".
6599   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6600 
6601   bool HadField = false;
6602   unsigned idx = 0;
6603   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6604        i != e; ++i, ++idx) {
6605     const FieldDecl *FD = *i;
6606 
6607     // Bit-fields are not addressable, we only need to verify they are "integer
6608     // like". We still have to disallow a subsequent non-bitfield, for example:
6609     //   struct { int : 0; int x }
6610     // is non-integer like according to gcc.
6611     if (FD->isBitField()) {
6612       if (!RD->isUnion())
6613         HadField = true;
6614 
6615       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6616         return false;
6617 
6618       continue;
6619     }
6620 
6621     // Check if this field is at offset 0.
6622     if (Layout.getFieldOffset(idx) != 0)
6623       return false;
6624 
6625     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6626       return false;
6627 
6628     // Only allow at most one field in a structure. This doesn't match the
6629     // wording above, but follows gcc in situations with a field following an
6630     // empty structure.
6631     if (!RD->isUnion()) {
6632       if (HadField)
6633         return false;
6634 
6635       HadField = true;
6636     }
6637   }
6638 
6639   return true;
6640 }
6641 
6642 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6643                                           unsigned functionCallConv) const {
6644 
6645   // Variadic functions should always marshal to the base standard.
6646   bool IsAAPCS_VFP =
6647       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6648 
6649   if (RetTy->isVoidType())
6650     return ABIArgInfo::getIgnore();
6651 
6652   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6653     // Large vector types should be returned via memory.
6654     if (getContext().getTypeSize(RetTy) > 128)
6655       return getNaturalAlignIndirect(RetTy);
6656     // TODO: FP16/BF16 vectors should be converted to integer vectors
6657     // This check is similar  to isIllegalVectorType - refactor?
6658     if ((!getTarget().hasLegalHalfType() &&
6659         (VT->getElementType()->isFloat16Type() ||
6660          VT->getElementType()->isHalfType())) ||
6661         (IsFloatABISoftFP &&
6662          VT->getElementType()->isBFloat16Type()))
6663       return coerceIllegalVector(RetTy);
6664   }
6665 
6666   if (!isAggregateTypeForABI(RetTy)) {
6667     // Treat an enum type as its underlying type.
6668     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6669       RetTy = EnumTy->getDecl()->getIntegerType();
6670 
6671     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6672       if (EIT->getNumBits() > 64)
6673         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6674 
6675     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6676                                                 : ABIArgInfo::getDirect();
6677   }
6678 
6679   // Are we following APCS?
6680   if (getABIKind() == APCS) {
6681     if (isEmptyRecord(getContext(), RetTy, false))
6682       return ABIArgInfo::getIgnore();
6683 
6684     // Complex types are all returned as packed integers.
6685     //
6686     // FIXME: Consider using 2 x vector types if the back end handles them
6687     // correctly.
6688     if (RetTy->isAnyComplexType())
6689       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6690           getVMContext(), getContext().getTypeSize(RetTy)));
6691 
6692     // Integer like structures are returned in r0.
6693     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6694       // Return in the smallest viable integer type.
6695       uint64_t Size = getContext().getTypeSize(RetTy);
6696       if (Size <= 8)
6697         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6698       if (Size <= 16)
6699         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6700       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6701     }
6702 
6703     // Otherwise return in memory.
6704     return getNaturalAlignIndirect(RetTy);
6705   }
6706 
6707   // Otherwise this is an AAPCS variant.
6708 
6709   if (isEmptyRecord(getContext(), RetTy, true))
6710     return ABIArgInfo::getIgnore();
6711 
6712   // Check for homogeneous aggregates with AAPCS-VFP.
6713   if (IsAAPCS_VFP) {
6714     const Type *Base = nullptr;
6715     uint64_t Members = 0;
6716     if (isHomogeneousAggregate(RetTy, Base, Members))
6717       return classifyHomogeneousAggregate(RetTy, Base, Members);
6718   }
6719 
6720   // Aggregates <= 4 bytes are returned in r0; other aggregates
6721   // are returned indirectly.
6722   uint64_t Size = getContext().getTypeSize(RetTy);
6723   if (Size <= 32) {
6724     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6725     // same size and alignment.
6726     if (getTarget().isRenderScriptTarget()) {
6727       return coerceToIntArray(RetTy, getContext(), getVMContext());
6728     }
6729     if (getDataLayout().isBigEndian())
6730       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6731       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6732 
6733     // Return in the smallest viable integer type.
6734     if (Size <= 8)
6735       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6736     if (Size <= 16)
6737       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6738     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6739   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6740     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6741     llvm::Type *CoerceTy =
6742         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6743     return ABIArgInfo::getDirect(CoerceTy);
6744   }
6745 
6746   return getNaturalAlignIndirect(RetTy);
6747 }
6748 
6749 /// isIllegalVector - check whether Ty is an illegal vector type.
6750 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6751   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6752     // On targets that don't support half, fp16 or bfloat, they are expanded
6753     // into float, and we don't want the ABI to depend on whether or not they
6754     // are supported in hardware. Thus return false to coerce vectors of these
6755     // types into integer vectors.
6756     // We do not depend on hasLegalHalfType for bfloat as it is a
6757     // separate IR type.
6758     if ((!getTarget().hasLegalHalfType() &&
6759         (VT->getElementType()->isFloat16Type() ||
6760          VT->getElementType()->isHalfType())) ||
6761         (IsFloatABISoftFP &&
6762          VT->getElementType()->isBFloat16Type()))
6763       return true;
6764     if (isAndroid()) {
6765       // Android shipped using Clang 3.1, which supported a slightly different
6766       // vector ABI. The primary differences were that 3-element vector types
6767       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6768       // accepts that legacy behavior for Android only.
6769       // Check whether VT is legal.
6770       unsigned NumElements = VT->getNumElements();
6771       // NumElements should be power of 2 or equal to 3.
6772       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6773         return true;
6774     } else {
6775       // Check whether VT is legal.
6776       unsigned NumElements = VT->getNumElements();
6777       uint64_t Size = getContext().getTypeSize(VT);
6778       // NumElements should be power of 2.
6779       if (!llvm::isPowerOf2_32(NumElements))
6780         return true;
6781       // Size should be greater than 32 bits.
6782       return Size <= 32;
6783     }
6784   }
6785   return false;
6786 }
6787 
6788 /// Return true if a type contains any 16-bit floating point vectors
6789 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6790   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6791     uint64_t NElements = AT->getSize().getZExtValue();
6792     if (NElements == 0)
6793       return false;
6794     return containsAnyFP16Vectors(AT->getElementType());
6795   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6796     const RecordDecl *RD = RT->getDecl();
6797 
6798     // If this is a C++ record, check the bases first.
6799     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6800       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6801             return containsAnyFP16Vectors(B.getType());
6802           }))
6803         return true;
6804 
6805     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6806           return FD && containsAnyFP16Vectors(FD->getType());
6807         }))
6808       return true;
6809 
6810     return false;
6811   } else {
6812     if (const VectorType *VT = Ty->getAs<VectorType>())
6813       return (VT->getElementType()->isFloat16Type() ||
6814               VT->getElementType()->isBFloat16Type() ||
6815               VT->getElementType()->isHalfType());
6816     return false;
6817   }
6818 }
6819 
6820 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6821                                            llvm::Type *eltTy,
6822                                            unsigned numElts) const {
6823   if (!llvm::isPowerOf2_32(numElts))
6824     return false;
6825   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6826   if (size > 64)
6827     return false;
6828   if (vectorSize.getQuantity() != 8 &&
6829       (vectorSize.getQuantity() != 16 || numElts == 1))
6830     return false;
6831   return true;
6832 }
6833 
6834 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6835   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6836   // double, or 64-bit or 128-bit vectors.
6837   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6838     if (BT->getKind() == BuiltinType::Float ||
6839         BT->getKind() == BuiltinType::Double ||
6840         BT->getKind() == BuiltinType::LongDouble)
6841       return true;
6842   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6843     unsigned VecSize = getContext().getTypeSize(VT);
6844     if (VecSize == 64 || VecSize == 128)
6845       return true;
6846   }
6847   return false;
6848 }
6849 
6850 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6851                                                    uint64_t Members) const {
6852   return Members <= 4;
6853 }
6854 
6855 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6856                                         bool acceptHalf) const {
6857   // Give precedence to user-specified calling conventions.
6858   if (callConvention != llvm::CallingConv::C)
6859     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6860   else
6861     return (getABIKind() == AAPCS_VFP) ||
6862            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6863 }
6864 
6865 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6866                               QualType Ty) const {
6867   CharUnits SlotSize = CharUnits::fromQuantity(4);
6868 
6869   // Empty records are ignored for parameter passing purposes.
6870   if (isEmptyRecord(getContext(), Ty, true)) {
6871     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6872     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6873     return Addr;
6874   }
6875 
6876   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6877   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6878 
6879   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6880   bool IsIndirect = false;
6881   const Type *Base = nullptr;
6882   uint64_t Members = 0;
6883   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6884     IsIndirect = true;
6885 
6886   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6887   // allocated by the caller.
6888   } else if (TySize > CharUnits::fromQuantity(16) &&
6889              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6890              !isHomogeneousAggregate(Ty, Base, Members)) {
6891     IsIndirect = true;
6892 
6893   // Otherwise, bound the type's ABI alignment.
6894   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6895   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6896   // Our callers should be prepared to handle an under-aligned address.
6897   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6898              getABIKind() == ARMABIInfo::AAPCS) {
6899     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6900     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6901   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6902     // ARMv7k allows type alignment up to 16 bytes.
6903     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6904     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6905   } else {
6906     TyAlignForABI = CharUnits::fromQuantity(4);
6907   }
6908 
6909   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6910   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6911                           SlotSize, /*AllowHigherAlign*/ true);
6912 }
6913 
6914 //===----------------------------------------------------------------------===//
6915 // NVPTX ABI Implementation
6916 //===----------------------------------------------------------------------===//
6917 
6918 namespace {
6919 
6920 class NVPTXTargetCodeGenInfo;
6921 
6922 class NVPTXABIInfo : public ABIInfo {
6923   NVPTXTargetCodeGenInfo &CGInfo;
6924 
6925 public:
6926   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6927       : ABIInfo(CGT), CGInfo(Info) {}
6928 
6929   ABIArgInfo classifyReturnType(QualType RetTy) const;
6930   ABIArgInfo classifyArgumentType(QualType Ty) const;
6931 
6932   void computeInfo(CGFunctionInfo &FI) const override;
6933   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6934                     QualType Ty) const override;
6935   bool isUnsupportedType(QualType T) const;
6936   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6937 };
6938 
6939 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6940 public:
6941   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6942       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6943 
6944   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6945                            CodeGen::CodeGenModule &M) const override;
6946   bool shouldEmitStaticExternCAliases() const override;
6947 
6948   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6949     // On the device side, surface reference is represented as an object handle
6950     // in 64-bit integer.
6951     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6952   }
6953 
6954   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6955     // On the device side, texture reference is represented as an object handle
6956     // in 64-bit integer.
6957     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6958   }
6959 
6960   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6961                                               LValue Src) const override {
6962     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6963     return true;
6964   }
6965 
6966   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6967                                               LValue Src) const override {
6968     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6969     return true;
6970   }
6971 
6972 private:
6973   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6974   // resulting MDNode to the nvvm.annotations MDNode.
6975   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6976                               int Operand);
6977 
6978   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6979                                            LValue Src) {
6980     llvm::Value *Handle = nullptr;
6981     llvm::Constant *C =
6982         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6983     // Lookup `addrspacecast` through the constant pointer if any.
6984     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6985       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6986     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6987       // Load the handle from the specific global variable using
6988       // `nvvm.texsurf.handle.internal` intrinsic.
6989       Handle = CGF.EmitRuntimeCall(
6990           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6991                                {GV->getType()}),
6992           {GV}, "texsurf_handle");
6993     } else
6994       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6995     CGF.EmitStoreOfScalar(Handle, Dst);
6996   }
6997 };
6998 
6999 /// Checks if the type is unsupported directly by the current target.
7000 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7001   ASTContext &Context = getContext();
7002   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7003     return true;
7004   if (!Context.getTargetInfo().hasFloat128Type() &&
7005       (T->isFloat128Type() ||
7006        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7007     return true;
7008   if (const auto *EIT = T->getAs<ExtIntType>())
7009     return EIT->getNumBits() >
7010            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7011   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7012       Context.getTypeSize(T) > 64U)
7013     return true;
7014   if (const auto *AT = T->getAsArrayTypeUnsafe())
7015     return isUnsupportedType(AT->getElementType());
7016   const auto *RT = T->getAs<RecordType>();
7017   if (!RT)
7018     return false;
7019   const RecordDecl *RD = RT->getDecl();
7020 
7021   // If this is a C++ record, check the bases first.
7022   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7023     for (const CXXBaseSpecifier &I : CXXRD->bases())
7024       if (isUnsupportedType(I.getType()))
7025         return true;
7026 
7027   for (const FieldDecl *I : RD->fields())
7028     if (isUnsupportedType(I->getType()))
7029       return true;
7030   return false;
7031 }
7032 
7033 /// Coerce the given type into an array with maximum allowed size of elements.
7034 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7035                                                    unsigned MaxSize) const {
7036   // Alignment and Size are measured in bits.
7037   const uint64_t Size = getContext().getTypeSize(Ty);
7038   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7039   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7040   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7041   const uint64_t NumElements = (Size + Div - 1) / Div;
7042   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7043 }
7044 
7045 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7046   if (RetTy->isVoidType())
7047     return ABIArgInfo::getIgnore();
7048 
7049   if (getContext().getLangOpts().OpenMP &&
7050       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7051     return coerceToIntArrayWithLimit(RetTy, 64);
7052 
7053   // note: this is different from default ABI
7054   if (!RetTy->isScalarType())
7055     return ABIArgInfo::getDirect();
7056 
7057   // Treat an enum type as its underlying type.
7058   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7059     RetTy = EnumTy->getDecl()->getIntegerType();
7060 
7061   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7062                                                : ABIArgInfo::getDirect());
7063 }
7064 
7065 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7066   // Treat an enum type as its underlying type.
7067   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7068     Ty = EnumTy->getDecl()->getIntegerType();
7069 
7070   // Return aggregates type as indirect by value
7071   if (isAggregateTypeForABI(Ty)) {
7072     // Under CUDA device compilation, tex/surf builtin types are replaced with
7073     // object types and passed directly.
7074     if (getContext().getLangOpts().CUDAIsDevice) {
7075       if (Ty->isCUDADeviceBuiltinSurfaceType())
7076         return ABIArgInfo::getDirect(
7077             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7078       if (Ty->isCUDADeviceBuiltinTextureType())
7079         return ABIArgInfo::getDirect(
7080             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7081     }
7082     return getNaturalAlignIndirect(Ty, /* byval */ true);
7083   }
7084 
7085   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7086     if ((EIT->getNumBits() > 128) ||
7087         (!getContext().getTargetInfo().hasInt128Type() &&
7088          EIT->getNumBits() > 64))
7089       return getNaturalAlignIndirect(Ty, /* byval */ true);
7090   }
7091 
7092   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7093                                             : ABIArgInfo::getDirect());
7094 }
7095 
7096 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7097   if (!getCXXABI().classifyReturnType(FI))
7098     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7099   for (auto &I : FI.arguments())
7100     I.info = classifyArgumentType(I.type);
7101 
7102   // Always honor user-specified calling convention.
7103   if (FI.getCallingConvention() != llvm::CallingConv::C)
7104     return;
7105 
7106   FI.setEffectiveCallingConvention(getRuntimeCC());
7107 }
7108 
7109 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7110                                 QualType Ty) const {
7111   llvm_unreachable("NVPTX does not support varargs");
7112 }
7113 
7114 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7115     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7116   if (GV->isDeclaration())
7117     return;
7118   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7119   if (VD) {
7120     if (M.getLangOpts().CUDA) {
7121       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7122         addNVVMMetadata(GV, "surface", 1);
7123       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7124         addNVVMMetadata(GV, "texture", 1);
7125       return;
7126     }
7127   }
7128 
7129   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7130   if (!FD) return;
7131 
7132   llvm::Function *F = cast<llvm::Function>(GV);
7133 
7134   // Perform special handling in OpenCL mode
7135   if (M.getLangOpts().OpenCL) {
7136     // Use OpenCL function attributes to check for kernel functions
7137     // By default, all functions are device functions
7138     if (FD->hasAttr<OpenCLKernelAttr>()) {
7139       // OpenCL __kernel functions get kernel metadata
7140       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7141       addNVVMMetadata(F, "kernel", 1);
7142       // And kernel functions are not subject to inlining
7143       F->addFnAttr(llvm::Attribute::NoInline);
7144     }
7145   }
7146 
7147   // Perform special handling in CUDA mode.
7148   if (M.getLangOpts().CUDA) {
7149     // CUDA __global__ functions get a kernel metadata entry.  Since
7150     // __global__ functions cannot be called from the device, we do not
7151     // need to set the noinline attribute.
7152     if (FD->hasAttr<CUDAGlobalAttr>()) {
7153       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7154       addNVVMMetadata(F, "kernel", 1);
7155     }
7156     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7157       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7158       llvm::APSInt MaxThreads(32);
7159       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7160       if (MaxThreads > 0)
7161         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7162 
7163       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7164       // not specified in __launch_bounds__ or if the user specified a 0 value,
7165       // we don't have to add a PTX directive.
7166       if (Attr->getMinBlocks()) {
7167         llvm::APSInt MinBlocks(32);
7168         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7169         if (MinBlocks > 0)
7170           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7171           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7172       }
7173     }
7174   }
7175 }
7176 
7177 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7178                                              StringRef Name, int Operand) {
7179   llvm::Module *M = GV->getParent();
7180   llvm::LLVMContext &Ctx = M->getContext();
7181 
7182   // Get "nvvm.annotations" metadata node
7183   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7184 
7185   llvm::Metadata *MDVals[] = {
7186       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7187       llvm::ConstantAsMetadata::get(
7188           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7189   // Append metadata to nvvm.annotations
7190   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7191 }
7192 
7193 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7194   return false;
7195 }
7196 }
7197 
7198 //===----------------------------------------------------------------------===//
7199 // SystemZ ABI Implementation
7200 //===----------------------------------------------------------------------===//
7201 
7202 namespace {
7203 
7204 class SystemZABIInfo : public SwiftABIInfo {
7205   bool HasVector;
7206   bool IsSoftFloatABI;
7207 
7208 public:
7209   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7210     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7211 
7212   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7213   bool isCompoundType(QualType Ty) const;
7214   bool isVectorArgumentType(QualType Ty) const;
7215   bool isFPArgumentType(QualType Ty) const;
7216   QualType GetSingleElementType(QualType Ty) const;
7217 
7218   ABIArgInfo classifyReturnType(QualType RetTy) const;
7219   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7220 
7221   void computeInfo(CGFunctionInfo &FI) const override {
7222     if (!getCXXABI().classifyReturnType(FI))
7223       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7224     for (auto &I : FI.arguments())
7225       I.info = classifyArgumentType(I.type);
7226   }
7227 
7228   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7229                     QualType Ty) const override;
7230 
7231   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7232                                     bool asReturnValue) const override {
7233     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7234   }
7235   bool isSwiftErrorInRegister() const override {
7236     return false;
7237   }
7238 };
7239 
7240 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7241 public:
7242   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7243       : TargetCodeGenInfo(
7244             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7245 };
7246 
7247 }
7248 
7249 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7250   // Treat an enum type as its underlying type.
7251   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7252     Ty = EnumTy->getDecl()->getIntegerType();
7253 
7254   // Promotable integer types are required to be promoted by the ABI.
7255   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7256     return true;
7257 
7258   if (const auto *EIT = Ty->getAs<ExtIntType>())
7259     if (EIT->getNumBits() < 64)
7260       return true;
7261 
7262   // 32-bit values must also be promoted.
7263   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7264     switch (BT->getKind()) {
7265     case BuiltinType::Int:
7266     case BuiltinType::UInt:
7267       return true;
7268     default:
7269       return false;
7270     }
7271   return false;
7272 }
7273 
7274 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7275   return (Ty->isAnyComplexType() ||
7276           Ty->isVectorType() ||
7277           isAggregateTypeForABI(Ty));
7278 }
7279 
7280 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7281   return (HasVector &&
7282           Ty->isVectorType() &&
7283           getContext().getTypeSize(Ty) <= 128);
7284 }
7285 
7286 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7287   if (IsSoftFloatABI)
7288     return false;
7289 
7290   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7291     switch (BT->getKind()) {
7292     case BuiltinType::Float:
7293     case BuiltinType::Double:
7294       return true;
7295     default:
7296       return false;
7297     }
7298 
7299   return false;
7300 }
7301 
7302 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7303   const RecordType *RT = Ty->getAs<RecordType>();
7304 
7305   if (RT && RT->isStructureOrClassType()) {
7306     const RecordDecl *RD = RT->getDecl();
7307     QualType Found;
7308 
7309     // If this is a C++ record, check the bases first.
7310     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7311       for (const auto &I : CXXRD->bases()) {
7312         QualType Base = I.getType();
7313 
7314         // Empty bases don't affect things either way.
7315         if (isEmptyRecord(getContext(), Base, true))
7316           continue;
7317 
7318         if (!Found.isNull())
7319           return Ty;
7320         Found = GetSingleElementType(Base);
7321       }
7322 
7323     // Check the fields.
7324     for (const auto *FD : RD->fields()) {
7325       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7326       // Unlike isSingleElementStruct(), empty structure and array fields
7327       // do count.  So do anonymous bitfields that aren't zero-sized.
7328       if (getContext().getLangOpts().CPlusPlus &&
7329           FD->isZeroLengthBitField(getContext()))
7330         continue;
7331       // Like isSingleElementStruct(), ignore C++20 empty data members.
7332       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7333           isEmptyRecord(getContext(), FD->getType(), true))
7334         continue;
7335 
7336       // Unlike isSingleElementStruct(), arrays do not count.
7337       // Nested structures still do though.
7338       if (!Found.isNull())
7339         return Ty;
7340       Found = GetSingleElementType(FD->getType());
7341     }
7342 
7343     // Unlike isSingleElementStruct(), trailing padding is allowed.
7344     // An 8-byte aligned struct s { float f; } is passed as a double.
7345     if (!Found.isNull())
7346       return Found;
7347   }
7348 
7349   return Ty;
7350 }
7351 
7352 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7353                                   QualType Ty) const {
7354   // Assume that va_list type is correct; should be pointer to LLVM type:
7355   // struct {
7356   //   i64 __gpr;
7357   //   i64 __fpr;
7358   //   i8 *__overflow_arg_area;
7359   //   i8 *__reg_save_area;
7360   // };
7361 
7362   // Every non-vector argument occupies 8 bytes and is passed by preference
7363   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7364   // always passed on the stack.
7365   Ty = getContext().getCanonicalType(Ty);
7366   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7367   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7368   llvm::Type *DirectTy = ArgTy;
7369   ABIArgInfo AI = classifyArgumentType(Ty);
7370   bool IsIndirect = AI.isIndirect();
7371   bool InFPRs = false;
7372   bool IsVector = false;
7373   CharUnits UnpaddedSize;
7374   CharUnits DirectAlign;
7375   if (IsIndirect) {
7376     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7377     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7378   } else {
7379     if (AI.getCoerceToType())
7380       ArgTy = AI.getCoerceToType();
7381     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7382     IsVector = ArgTy->isVectorTy();
7383     UnpaddedSize = TyInfo.first;
7384     DirectAlign = TyInfo.second;
7385   }
7386   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7387   if (IsVector && UnpaddedSize > PaddedSize)
7388     PaddedSize = CharUnits::fromQuantity(16);
7389   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7390 
7391   CharUnits Padding = (PaddedSize - UnpaddedSize);
7392 
7393   llvm::Type *IndexTy = CGF.Int64Ty;
7394   llvm::Value *PaddedSizeV =
7395     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7396 
7397   if (IsVector) {
7398     // Work out the address of a vector argument on the stack.
7399     // Vector arguments are always passed in the high bits of a
7400     // single (8 byte) or double (16 byte) stack slot.
7401     Address OverflowArgAreaPtr =
7402         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7403     Address OverflowArgArea =
7404       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7405               TyInfo.second);
7406     Address MemAddr =
7407       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7408 
7409     // Update overflow_arg_area_ptr pointer
7410     llvm::Value *NewOverflowArgArea =
7411       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7412                             "overflow_arg_area");
7413     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7414 
7415     return MemAddr;
7416   }
7417 
7418   assert(PaddedSize.getQuantity() == 8);
7419 
7420   unsigned MaxRegs, RegCountField, RegSaveIndex;
7421   CharUnits RegPadding;
7422   if (InFPRs) {
7423     MaxRegs = 4; // Maximum of 4 FPR arguments
7424     RegCountField = 1; // __fpr
7425     RegSaveIndex = 16; // save offset for f0
7426     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7427   } else {
7428     MaxRegs = 5; // Maximum of 5 GPR arguments
7429     RegCountField = 0; // __gpr
7430     RegSaveIndex = 2; // save offset for r2
7431     RegPadding = Padding; // values are passed in the low bits of a GPR
7432   }
7433 
7434   Address RegCountPtr =
7435       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7436   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7437   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7438   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7439                                                  "fits_in_regs");
7440 
7441   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7442   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7443   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7444   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7445 
7446   // Emit code to load the value if it was passed in registers.
7447   CGF.EmitBlock(InRegBlock);
7448 
7449   // Work out the address of an argument register.
7450   llvm::Value *ScaledRegCount =
7451     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7452   llvm::Value *RegBase =
7453     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7454                                       + RegPadding.getQuantity());
7455   llvm::Value *RegOffset =
7456     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7457   Address RegSaveAreaPtr =
7458       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7459   llvm::Value *RegSaveArea =
7460     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7461   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7462                                            "raw_reg_addr"),
7463                      PaddedSize);
7464   Address RegAddr =
7465     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7466 
7467   // Update the register count
7468   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7469   llvm::Value *NewRegCount =
7470     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7471   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7472   CGF.EmitBranch(ContBlock);
7473 
7474   // Emit code to load the value if it was passed in memory.
7475   CGF.EmitBlock(InMemBlock);
7476 
7477   // Work out the address of a stack argument.
7478   Address OverflowArgAreaPtr =
7479       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7480   Address OverflowArgArea =
7481     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7482             PaddedSize);
7483   Address RawMemAddr =
7484     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7485   Address MemAddr =
7486     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7487 
7488   // Update overflow_arg_area_ptr pointer
7489   llvm::Value *NewOverflowArgArea =
7490     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7491                           "overflow_arg_area");
7492   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7493   CGF.EmitBranch(ContBlock);
7494 
7495   // Return the appropriate result.
7496   CGF.EmitBlock(ContBlock);
7497   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7498                                  MemAddr, InMemBlock, "va_arg.addr");
7499 
7500   if (IsIndirect)
7501     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7502                       TyInfo.second);
7503 
7504   return ResAddr;
7505 }
7506 
7507 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7508   if (RetTy->isVoidType())
7509     return ABIArgInfo::getIgnore();
7510   if (isVectorArgumentType(RetTy))
7511     return ABIArgInfo::getDirect();
7512   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7513     return getNaturalAlignIndirect(RetTy);
7514   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7515                                                : ABIArgInfo::getDirect());
7516 }
7517 
7518 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7519   // Handle the generic C++ ABI.
7520   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7521     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7522 
7523   // Integers and enums are extended to full register width.
7524   if (isPromotableIntegerTypeForABI(Ty))
7525     return ABIArgInfo::getExtend(Ty);
7526 
7527   // Handle vector types and vector-like structure types.  Note that
7528   // as opposed to float-like structure types, we do not allow any
7529   // padding for vector-like structures, so verify the sizes match.
7530   uint64_t Size = getContext().getTypeSize(Ty);
7531   QualType SingleElementTy = GetSingleElementType(Ty);
7532   if (isVectorArgumentType(SingleElementTy) &&
7533       getContext().getTypeSize(SingleElementTy) == Size)
7534     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7535 
7536   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7537   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7538     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7539 
7540   // Handle small structures.
7541   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7542     // Structures with flexible arrays have variable length, so really
7543     // fail the size test above.
7544     const RecordDecl *RD = RT->getDecl();
7545     if (RD->hasFlexibleArrayMember())
7546       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7547 
7548     // The structure is passed as an unextended integer, a float, or a double.
7549     llvm::Type *PassTy;
7550     if (isFPArgumentType(SingleElementTy)) {
7551       assert(Size == 32 || Size == 64);
7552       if (Size == 32)
7553         PassTy = llvm::Type::getFloatTy(getVMContext());
7554       else
7555         PassTy = llvm::Type::getDoubleTy(getVMContext());
7556     } else
7557       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7558     return ABIArgInfo::getDirect(PassTy);
7559   }
7560 
7561   // Non-structure compounds are passed indirectly.
7562   if (isCompoundType(Ty))
7563     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7564 
7565   return ABIArgInfo::getDirect(nullptr);
7566 }
7567 
7568 //===----------------------------------------------------------------------===//
7569 // MSP430 ABI Implementation
7570 //===----------------------------------------------------------------------===//
7571 
7572 namespace {
7573 
7574 class MSP430ABIInfo : public DefaultABIInfo {
7575   static ABIArgInfo complexArgInfo() {
7576     ABIArgInfo Info = ABIArgInfo::getDirect();
7577     Info.setCanBeFlattened(false);
7578     return Info;
7579   }
7580 
7581 public:
7582   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7583 
7584   ABIArgInfo classifyReturnType(QualType RetTy) const {
7585     if (RetTy->isAnyComplexType())
7586       return complexArgInfo();
7587 
7588     return DefaultABIInfo::classifyReturnType(RetTy);
7589   }
7590 
7591   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7592     if (RetTy->isAnyComplexType())
7593       return complexArgInfo();
7594 
7595     return DefaultABIInfo::classifyArgumentType(RetTy);
7596   }
7597 
7598   // Just copy the original implementations because
7599   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7600   void computeInfo(CGFunctionInfo &FI) const override {
7601     if (!getCXXABI().classifyReturnType(FI))
7602       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7603     for (auto &I : FI.arguments())
7604       I.info = classifyArgumentType(I.type);
7605   }
7606 
7607   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7608                     QualType Ty) const override {
7609     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7610   }
7611 };
7612 
7613 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7614 public:
7615   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7616       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7617   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7618                            CodeGen::CodeGenModule &M) const override;
7619 };
7620 
7621 }
7622 
7623 void MSP430TargetCodeGenInfo::setTargetAttributes(
7624     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7625   if (GV->isDeclaration())
7626     return;
7627   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7628     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7629     if (!InterruptAttr)
7630       return;
7631 
7632     // Handle 'interrupt' attribute:
7633     llvm::Function *F = cast<llvm::Function>(GV);
7634 
7635     // Step 1: Set ISR calling convention.
7636     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7637 
7638     // Step 2: Add attributes goodness.
7639     F->addFnAttr(llvm::Attribute::NoInline);
7640     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7641   }
7642 }
7643 
7644 //===----------------------------------------------------------------------===//
7645 // MIPS ABI Implementation.  This works for both little-endian and
7646 // big-endian variants.
7647 //===----------------------------------------------------------------------===//
7648 
7649 namespace {
7650 class MipsABIInfo : public ABIInfo {
7651   bool IsO32;
7652   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7653   void CoerceToIntArgs(uint64_t TySize,
7654                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7655   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7656   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7657   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7658 public:
7659   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7660     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7661     StackAlignInBytes(IsO32 ? 8 : 16) {}
7662 
7663   ABIArgInfo classifyReturnType(QualType RetTy) const;
7664   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7665   void computeInfo(CGFunctionInfo &FI) const override;
7666   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7667                     QualType Ty) const override;
7668   ABIArgInfo extendType(QualType Ty) const;
7669 };
7670 
7671 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7672   unsigned SizeOfUnwindException;
7673 public:
7674   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7675       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7676         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7677 
7678   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7679     return 29;
7680   }
7681 
7682   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7683                            CodeGen::CodeGenModule &CGM) const override {
7684     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7685     if (!FD) return;
7686     llvm::Function *Fn = cast<llvm::Function>(GV);
7687 
7688     if (FD->hasAttr<MipsLongCallAttr>())
7689       Fn->addFnAttr("long-call");
7690     else if (FD->hasAttr<MipsShortCallAttr>())
7691       Fn->addFnAttr("short-call");
7692 
7693     // Other attributes do not have a meaning for declarations.
7694     if (GV->isDeclaration())
7695       return;
7696 
7697     if (FD->hasAttr<Mips16Attr>()) {
7698       Fn->addFnAttr("mips16");
7699     }
7700     else if (FD->hasAttr<NoMips16Attr>()) {
7701       Fn->addFnAttr("nomips16");
7702     }
7703 
7704     if (FD->hasAttr<MicroMipsAttr>())
7705       Fn->addFnAttr("micromips");
7706     else if (FD->hasAttr<NoMicroMipsAttr>())
7707       Fn->addFnAttr("nomicromips");
7708 
7709     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7710     if (!Attr)
7711       return;
7712 
7713     const char *Kind;
7714     switch (Attr->getInterrupt()) {
7715     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7716     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7717     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7718     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7719     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7720     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7721     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7722     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7723     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7724     }
7725 
7726     Fn->addFnAttr("interrupt", Kind);
7727 
7728   }
7729 
7730   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7731                                llvm::Value *Address) const override;
7732 
7733   unsigned getSizeOfUnwindException() const override {
7734     return SizeOfUnwindException;
7735   }
7736 };
7737 }
7738 
7739 void MipsABIInfo::CoerceToIntArgs(
7740     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7741   llvm::IntegerType *IntTy =
7742     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7743 
7744   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7745   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7746     ArgList.push_back(IntTy);
7747 
7748   // If necessary, add one more integer type to ArgList.
7749   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7750 
7751   if (R)
7752     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7753 }
7754 
7755 // In N32/64, an aligned double precision floating point field is passed in
7756 // a register.
7757 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7758   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7759 
7760   if (IsO32) {
7761     CoerceToIntArgs(TySize, ArgList);
7762     return llvm::StructType::get(getVMContext(), ArgList);
7763   }
7764 
7765   if (Ty->isComplexType())
7766     return CGT.ConvertType(Ty);
7767 
7768   const RecordType *RT = Ty->getAs<RecordType>();
7769 
7770   // Unions/vectors are passed in integer registers.
7771   if (!RT || !RT->isStructureOrClassType()) {
7772     CoerceToIntArgs(TySize, ArgList);
7773     return llvm::StructType::get(getVMContext(), ArgList);
7774   }
7775 
7776   const RecordDecl *RD = RT->getDecl();
7777   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7778   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7779 
7780   uint64_t LastOffset = 0;
7781   unsigned idx = 0;
7782   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7783 
7784   // Iterate over fields in the struct/class and check if there are any aligned
7785   // double fields.
7786   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7787        i != e; ++i, ++idx) {
7788     const QualType Ty = i->getType();
7789     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7790 
7791     if (!BT || BT->getKind() != BuiltinType::Double)
7792       continue;
7793 
7794     uint64_t Offset = Layout.getFieldOffset(idx);
7795     if (Offset % 64) // Ignore doubles that are not aligned.
7796       continue;
7797 
7798     // Add ((Offset - LastOffset) / 64) args of type i64.
7799     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7800       ArgList.push_back(I64);
7801 
7802     // Add double type.
7803     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7804     LastOffset = Offset + 64;
7805   }
7806 
7807   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7808   ArgList.append(IntArgList.begin(), IntArgList.end());
7809 
7810   return llvm::StructType::get(getVMContext(), ArgList);
7811 }
7812 
7813 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7814                                         uint64_t Offset) const {
7815   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7816     return nullptr;
7817 
7818   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7819 }
7820 
7821 ABIArgInfo
7822 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7823   Ty = useFirstFieldIfTransparentUnion(Ty);
7824 
7825   uint64_t OrigOffset = Offset;
7826   uint64_t TySize = getContext().getTypeSize(Ty);
7827   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7828 
7829   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7830                    (uint64_t)StackAlignInBytes);
7831   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7832   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7833 
7834   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7835     // Ignore empty aggregates.
7836     if (TySize == 0)
7837       return ABIArgInfo::getIgnore();
7838 
7839     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7840       Offset = OrigOffset + MinABIStackAlignInBytes;
7841       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7842     }
7843 
7844     // If we have reached here, aggregates are passed directly by coercing to
7845     // another structure type. Padding is inserted if the offset of the
7846     // aggregate is unaligned.
7847     ABIArgInfo ArgInfo =
7848         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7849                               getPaddingType(OrigOffset, CurrOffset));
7850     ArgInfo.setInReg(true);
7851     return ArgInfo;
7852   }
7853 
7854   // Treat an enum type as its underlying type.
7855   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7856     Ty = EnumTy->getDecl()->getIntegerType();
7857 
7858   // Make sure we pass indirectly things that are too large.
7859   if (const auto *EIT = Ty->getAs<ExtIntType>())
7860     if (EIT->getNumBits() > 128 ||
7861         (EIT->getNumBits() > 64 &&
7862          !getContext().getTargetInfo().hasInt128Type()))
7863       return getNaturalAlignIndirect(Ty);
7864 
7865   // All integral types are promoted to the GPR width.
7866   if (Ty->isIntegralOrEnumerationType())
7867     return extendType(Ty);
7868 
7869   return ABIArgInfo::getDirect(
7870       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7871 }
7872 
7873 llvm::Type*
7874 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7875   const RecordType *RT = RetTy->getAs<RecordType>();
7876   SmallVector<llvm::Type*, 8> RTList;
7877 
7878   if (RT && RT->isStructureOrClassType()) {
7879     const RecordDecl *RD = RT->getDecl();
7880     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7881     unsigned FieldCnt = Layout.getFieldCount();
7882 
7883     // N32/64 returns struct/classes in floating point registers if the
7884     // following conditions are met:
7885     // 1. The size of the struct/class is no larger than 128-bit.
7886     // 2. The struct/class has one or two fields all of which are floating
7887     //    point types.
7888     // 3. The offset of the first field is zero (this follows what gcc does).
7889     //
7890     // Any other composite results are returned in integer registers.
7891     //
7892     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7893       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7894       for (; b != e; ++b) {
7895         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7896 
7897         if (!BT || !BT->isFloatingPoint())
7898           break;
7899 
7900         RTList.push_back(CGT.ConvertType(b->getType()));
7901       }
7902 
7903       if (b == e)
7904         return llvm::StructType::get(getVMContext(), RTList,
7905                                      RD->hasAttr<PackedAttr>());
7906 
7907       RTList.clear();
7908     }
7909   }
7910 
7911   CoerceToIntArgs(Size, RTList);
7912   return llvm::StructType::get(getVMContext(), RTList);
7913 }
7914 
7915 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7916   uint64_t Size = getContext().getTypeSize(RetTy);
7917 
7918   if (RetTy->isVoidType())
7919     return ABIArgInfo::getIgnore();
7920 
7921   // O32 doesn't treat zero-sized structs differently from other structs.
7922   // However, N32/N64 ignores zero sized return values.
7923   if (!IsO32 && Size == 0)
7924     return ABIArgInfo::getIgnore();
7925 
7926   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7927     if (Size <= 128) {
7928       if (RetTy->isAnyComplexType())
7929         return ABIArgInfo::getDirect();
7930 
7931       // O32 returns integer vectors in registers and N32/N64 returns all small
7932       // aggregates in registers.
7933       if (!IsO32 ||
7934           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7935         ABIArgInfo ArgInfo =
7936             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7937         ArgInfo.setInReg(true);
7938         return ArgInfo;
7939       }
7940     }
7941 
7942     return getNaturalAlignIndirect(RetTy);
7943   }
7944 
7945   // Treat an enum type as its underlying type.
7946   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7947     RetTy = EnumTy->getDecl()->getIntegerType();
7948 
7949   // Make sure we pass indirectly things that are too large.
7950   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7951     if (EIT->getNumBits() > 128 ||
7952         (EIT->getNumBits() > 64 &&
7953          !getContext().getTargetInfo().hasInt128Type()))
7954       return getNaturalAlignIndirect(RetTy);
7955 
7956   if (isPromotableIntegerTypeForABI(RetTy))
7957     return ABIArgInfo::getExtend(RetTy);
7958 
7959   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7960       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7961     return ABIArgInfo::getSignExtend(RetTy);
7962 
7963   return ABIArgInfo::getDirect();
7964 }
7965 
7966 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7967   ABIArgInfo &RetInfo = FI.getReturnInfo();
7968   if (!getCXXABI().classifyReturnType(FI))
7969     RetInfo = classifyReturnType(FI.getReturnType());
7970 
7971   // Check if a pointer to an aggregate is passed as a hidden argument.
7972   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7973 
7974   for (auto &I : FI.arguments())
7975     I.info = classifyArgumentType(I.type, Offset);
7976 }
7977 
7978 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7979                                QualType OrigTy) const {
7980   QualType Ty = OrigTy;
7981 
7982   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7983   // Pointers are also promoted in the same way but this only matters for N32.
7984   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7985   unsigned PtrWidth = getTarget().getPointerWidth(0);
7986   bool DidPromote = false;
7987   if ((Ty->isIntegerType() &&
7988           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7989       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7990     DidPromote = true;
7991     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7992                                             Ty->isSignedIntegerType());
7993   }
7994 
7995   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7996 
7997   // The alignment of things in the argument area is never larger than
7998   // StackAlignInBytes.
7999   TyInfo.second =
8000     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
8001 
8002   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8003   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8004 
8005   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8006                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8007 
8008 
8009   // If there was a promotion, "unpromote" into a temporary.
8010   // TODO: can we just use a pointer into a subset of the original slot?
8011   if (DidPromote) {
8012     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8013     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8014 
8015     // Truncate down to the right width.
8016     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8017                                                  : CGF.IntPtrTy);
8018     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8019     if (OrigTy->isPointerType())
8020       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8021 
8022     CGF.Builder.CreateStore(V, Temp);
8023     Addr = Temp;
8024   }
8025 
8026   return Addr;
8027 }
8028 
8029 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8030   int TySize = getContext().getTypeSize(Ty);
8031 
8032   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8033   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8034     return ABIArgInfo::getSignExtend(Ty);
8035 
8036   return ABIArgInfo::getExtend(Ty);
8037 }
8038 
8039 bool
8040 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8041                                                llvm::Value *Address) const {
8042   // This information comes from gcc's implementation, which seems to
8043   // as canonical as it gets.
8044 
8045   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8046   // are aliased to pairs of single-precision FP registers.
8047   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8048 
8049   // 0-31 are the general purpose registers, $0 - $31.
8050   // 32-63 are the floating-point registers, $f0 - $f31.
8051   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8052   // 66 is the (notional, I think) register for signal-handler return.
8053   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8054 
8055   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8056   // They are one bit wide and ignored here.
8057 
8058   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8059   // (coprocessor 1 is the FP unit)
8060   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8061   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8062   // 176-181 are the DSP accumulator registers.
8063   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8064   return false;
8065 }
8066 
8067 //===----------------------------------------------------------------------===//
8068 // AVR ABI Implementation.
8069 //===----------------------------------------------------------------------===//
8070 
8071 namespace {
8072 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8073 public:
8074   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8075       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8076 
8077   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8078                            CodeGen::CodeGenModule &CGM) const override {
8079     if (GV->isDeclaration())
8080       return;
8081     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8082     if (!FD) return;
8083     auto *Fn = cast<llvm::Function>(GV);
8084 
8085     if (FD->getAttr<AVRInterruptAttr>())
8086       Fn->addFnAttr("interrupt");
8087 
8088     if (FD->getAttr<AVRSignalAttr>())
8089       Fn->addFnAttr("signal");
8090   }
8091 };
8092 }
8093 
8094 //===----------------------------------------------------------------------===//
8095 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8096 // Currently subclassed only to implement custom OpenCL C function attribute
8097 // handling.
8098 //===----------------------------------------------------------------------===//
8099 
8100 namespace {
8101 
8102 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8103 public:
8104   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8105     : DefaultTargetCodeGenInfo(CGT) {}
8106 
8107   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8108                            CodeGen::CodeGenModule &M) const override;
8109 };
8110 
8111 void TCETargetCodeGenInfo::setTargetAttributes(
8112     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8113   if (GV->isDeclaration())
8114     return;
8115   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8116   if (!FD) return;
8117 
8118   llvm::Function *F = cast<llvm::Function>(GV);
8119 
8120   if (M.getLangOpts().OpenCL) {
8121     if (FD->hasAttr<OpenCLKernelAttr>()) {
8122       // OpenCL C Kernel functions are not subject to inlining
8123       F->addFnAttr(llvm::Attribute::NoInline);
8124       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8125       if (Attr) {
8126         // Convert the reqd_work_group_size() attributes to metadata.
8127         llvm::LLVMContext &Context = F->getContext();
8128         llvm::NamedMDNode *OpenCLMetadata =
8129             M.getModule().getOrInsertNamedMetadata(
8130                 "opencl.kernel_wg_size_info");
8131 
8132         SmallVector<llvm::Metadata *, 5> Operands;
8133         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8134 
8135         Operands.push_back(
8136             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8137                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8138         Operands.push_back(
8139             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8140                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8141         Operands.push_back(
8142             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8143                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8144 
8145         // Add a boolean constant operand for "required" (true) or "hint"
8146         // (false) for implementing the work_group_size_hint attr later.
8147         // Currently always true as the hint is not yet implemented.
8148         Operands.push_back(
8149             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8150         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8151       }
8152     }
8153   }
8154 }
8155 
8156 }
8157 
8158 //===----------------------------------------------------------------------===//
8159 // Hexagon ABI Implementation
8160 //===----------------------------------------------------------------------===//
8161 
8162 namespace {
8163 
8164 class HexagonABIInfo : public DefaultABIInfo {
8165 public:
8166   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8167 
8168 private:
8169   ABIArgInfo classifyReturnType(QualType RetTy) const;
8170   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8171   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8172 
8173   void computeInfo(CGFunctionInfo &FI) const override;
8174 
8175   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8176                     QualType Ty) const override;
8177   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8178                               QualType Ty) const;
8179   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8180                               QualType Ty) const;
8181   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8182                                    QualType Ty) const;
8183 };
8184 
8185 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8186 public:
8187   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8188       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8189 
8190   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8191     return 29;
8192   }
8193 
8194   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8195                            CodeGen::CodeGenModule &GCM) const override {
8196     if (GV->isDeclaration())
8197       return;
8198     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8199     if (!FD)
8200       return;
8201   }
8202 };
8203 
8204 } // namespace
8205 
8206 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8207   unsigned RegsLeft = 6;
8208   if (!getCXXABI().classifyReturnType(FI))
8209     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8210   for (auto &I : FI.arguments())
8211     I.info = classifyArgumentType(I.type, &RegsLeft);
8212 }
8213 
8214 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8215   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8216                        " through registers");
8217 
8218   if (*RegsLeft == 0)
8219     return false;
8220 
8221   if (Size <= 32) {
8222     (*RegsLeft)--;
8223     return true;
8224   }
8225 
8226   if (2 <= (*RegsLeft & (~1U))) {
8227     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8228     return true;
8229   }
8230 
8231   // Next available register was r5 but candidate was greater than 32-bits so it
8232   // has to go on the stack. However we still consume r5
8233   if (*RegsLeft == 1)
8234     *RegsLeft = 0;
8235 
8236   return false;
8237 }
8238 
8239 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8240                                                 unsigned *RegsLeft) const {
8241   if (!isAggregateTypeForABI(Ty)) {
8242     // Treat an enum type as its underlying type.
8243     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8244       Ty = EnumTy->getDecl()->getIntegerType();
8245 
8246     uint64_t Size = getContext().getTypeSize(Ty);
8247     if (Size <= 64)
8248       HexagonAdjustRegsLeft(Size, RegsLeft);
8249 
8250     if (Size > 64 && Ty->isExtIntType())
8251       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8252 
8253     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8254                                              : ABIArgInfo::getDirect();
8255   }
8256 
8257   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8258     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8259 
8260   // Ignore empty records.
8261   if (isEmptyRecord(getContext(), Ty, true))
8262     return ABIArgInfo::getIgnore();
8263 
8264   uint64_t Size = getContext().getTypeSize(Ty);
8265   unsigned Align = getContext().getTypeAlign(Ty);
8266 
8267   if (Size > 64)
8268     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8269 
8270   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8271     Align = Size <= 32 ? 32 : 64;
8272   if (Size <= Align) {
8273     // Pass in the smallest viable integer type.
8274     if (!llvm::isPowerOf2_64(Size))
8275       Size = llvm::NextPowerOf2(Size);
8276     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8277   }
8278   return DefaultABIInfo::classifyArgumentType(Ty);
8279 }
8280 
8281 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8282   if (RetTy->isVoidType())
8283     return ABIArgInfo::getIgnore();
8284 
8285   const TargetInfo &T = CGT.getTarget();
8286   uint64_t Size = getContext().getTypeSize(RetTy);
8287 
8288   if (RetTy->getAs<VectorType>()) {
8289     // HVX vectors are returned in vector registers or register pairs.
8290     if (T.hasFeature("hvx")) {
8291       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8292       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8293       if (Size == VecSize || Size == 2*VecSize)
8294         return ABIArgInfo::getDirectInReg();
8295     }
8296     // Large vector types should be returned via memory.
8297     if (Size > 64)
8298       return getNaturalAlignIndirect(RetTy);
8299   }
8300 
8301   if (!isAggregateTypeForABI(RetTy)) {
8302     // Treat an enum type as its underlying type.
8303     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8304       RetTy = EnumTy->getDecl()->getIntegerType();
8305 
8306     if (Size > 64 && RetTy->isExtIntType())
8307       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8308 
8309     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8310                                                 : ABIArgInfo::getDirect();
8311   }
8312 
8313   if (isEmptyRecord(getContext(), RetTy, true))
8314     return ABIArgInfo::getIgnore();
8315 
8316   // Aggregates <= 8 bytes are returned in registers, other aggregates
8317   // are returned indirectly.
8318   if (Size <= 64) {
8319     // Return in the smallest viable integer type.
8320     if (!llvm::isPowerOf2_64(Size))
8321       Size = llvm::NextPowerOf2(Size);
8322     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8323   }
8324   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8325 }
8326 
8327 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8328                                             Address VAListAddr,
8329                                             QualType Ty) const {
8330   // Load the overflow area pointer.
8331   Address __overflow_area_pointer_p =
8332       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8333   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8334       __overflow_area_pointer_p, "__overflow_area_pointer");
8335 
8336   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8337   if (Align > 4) {
8338     // Alignment should be a power of 2.
8339     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8340 
8341     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8342     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8343 
8344     // Add offset to the current pointer to access the argument.
8345     __overflow_area_pointer =
8346         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8347     llvm::Value *AsInt =
8348         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8349 
8350     // Create a mask which should be "AND"ed
8351     // with (overflow_arg_area + align - 1)
8352     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8353     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8354         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8355         "__overflow_area_pointer.align");
8356   }
8357 
8358   // Get the type of the argument from memory and bitcast
8359   // overflow area pointer to the argument type.
8360   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8361   Address AddrTyped = CGF.Builder.CreateBitCast(
8362       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8363       llvm::PointerType::getUnqual(PTy));
8364 
8365   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8366   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8367 
8368   __overflow_area_pointer = CGF.Builder.CreateGEP(
8369       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8370       "__overflow_area_pointer.next");
8371   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8372 
8373   return AddrTyped;
8374 }
8375 
8376 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8377                                             Address VAListAddr,
8378                                             QualType Ty) const {
8379   // FIXME: Need to handle alignment
8380   llvm::Type *BP = CGF.Int8PtrTy;
8381   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8382   CGBuilderTy &Builder = CGF.Builder;
8383   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8384   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8385   // Handle address alignment for type alignment > 32 bits
8386   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8387   if (TyAlign > 4) {
8388     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8389     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8390     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8391     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8392     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8393   }
8394   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8395   Address AddrTyped = Builder.CreateBitCast(
8396       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8397 
8398   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8399   llvm::Value *NextAddr = Builder.CreateGEP(
8400       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8401   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8402 
8403   return AddrTyped;
8404 }
8405 
8406 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8407                                                  Address VAListAddr,
8408                                                  QualType Ty) const {
8409   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8410 
8411   if (ArgSize > 8)
8412     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8413 
8414   // Here we have check if the argument is in register area or
8415   // in overflow area.
8416   // If the saved register area pointer + argsize rounded up to alignment >
8417   // saved register area end pointer, argument is in overflow area.
8418   unsigned RegsLeft = 6;
8419   Ty = CGF.getContext().getCanonicalType(Ty);
8420   (void)classifyArgumentType(Ty, &RegsLeft);
8421 
8422   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8423   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8424   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8425   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8426 
8427   // Get rounded size of the argument.GCC does not allow vararg of
8428   // size < 4 bytes. We follow the same logic here.
8429   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8430   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8431 
8432   // Argument may be in saved register area
8433   CGF.EmitBlock(MaybeRegBlock);
8434 
8435   // Load the current saved register area pointer.
8436   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8437       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8438   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8439       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8440 
8441   // Load the saved register area end pointer.
8442   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8443       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8444   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8445       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8446 
8447   // If the size of argument is > 4 bytes, check if the stack
8448   // location is aligned to 8 bytes
8449   if (ArgAlign > 4) {
8450 
8451     llvm::Value *__current_saved_reg_area_pointer_int =
8452         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8453                                    CGF.Int32Ty);
8454 
8455     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8456         __current_saved_reg_area_pointer_int,
8457         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8458         "align_current_saved_reg_area_pointer");
8459 
8460     __current_saved_reg_area_pointer_int =
8461         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8462                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8463                               "align_current_saved_reg_area_pointer");
8464 
8465     __current_saved_reg_area_pointer =
8466         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8467                                    __current_saved_reg_area_pointer->getType(),
8468                                    "align_current_saved_reg_area_pointer");
8469   }
8470 
8471   llvm::Value *__new_saved_reg_area_pointer =
8472       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8473                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8474                             "__new_saved_reg_area_pointer");
8475 
8476   llvm::Value *UsingStack = 0;
8477   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8478                                          __saved_reg_area_end_pointer);
8479 
8480   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8481 
8482   // Argument in saved register area
8483   // Implement the block where argument is in register saved area
8484   CGF.EmitBlock(InRegBlock);
8485 
8486   llvm::Type *PTy = CGF.ConvertType(Ty);
8487   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8488       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8489 
8490   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8491                           __current_saved_reg_area_pointer_p);
8492 
8493   CGF.EmitBranch(ContBlock);
8494 
8495   // Argument in overflow area
8496   // Implement the block where the argument is in overflow area.
8497   CGF.EmitBlock(OnStackBlock);
8498 
8499   // Load the overflow area pointer
8500   Address __overflow_area_pointer_p =
8501       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8502   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8503       __overflow_area_pointer_p, "__overflow_area_pointer");
8504 
8505   // Align the overflow area pointer according to the alignment of the argument
8506   if (ArgAlign > 4) {
8507     llvm::Value *__overflow_area_pointer_int =
8508         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8509 
8510     __overflow_area_pointer_int =
8511         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8512                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8513                               "align_overflow_area_pointer");
8514 
8515     __overflow_area_pointer_int =
8516         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8517                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8518                               "align_overflow_area_pointer");
8519 
8520     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8521         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8522         "align_overflow_area_pointer");
8523   }
8524 
8525   // Get the pointer for next argument in overflow area and store it
8526   // to overflow area pointer.
8527   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8528       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8529       "__overflow_area_pointer.next");
8530 
8531   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8532                           __overflow_area_pointer_p);
8533 
8534   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8535                           __current_saved_reg_area_pointer_p);
8536 
8537   // Bitcast the overflow area pointer to the type of argument.
8538   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8539   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8540       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8541 
8542   CGF.EmitBranch(ContBlock);
8543 
8544   // Get the correct pointer to load the variable argument
8545   // Implement the ContBlock
8546   CGF.EmitBlock(ContBlock);
8547 
8548   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8549   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8550   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8551   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8552 
8553   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8554 }
8555 
8556 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8557                                   QualType Ty) const {
8558 
8559   if (getTarget().getTriple().isMusl())
8560     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8561 
8562   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8563 }
8564 
8565 //===----------------------------------------------------------------------===//
8566 // Lanai ABI Implementation
8567 //===----------------------------------------------------------------------===//
8568 
8569 namespace {
8570 class LanaiABIInfo : public DefaultABIInfo {
8571 public:
8572   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8573 
8574   bool shouldUseInReg(QualType Ty, CCState &State) const;
8575 
8576   void computeInfo(CGFunctionInfo &FI) const override {
8577     CCState State(FI);
8578     // Lanai uses 4 registers to pass arguments unless the function has the
8579     // regparm attribute set.
8580     if (FI.getHasRegParm()) {
8581       State.FreeRegs = FI.getRegParm();
8582     } else {
8583       State.FreeRegs = 4;
8584     }
8585 
8586     if (!getCXXABI().classifyReturnType(FI))
8587       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8588     for (auto &I : FI.arguments())
8589       I.info = classifyArgumentType(I.type, State);
8590   }
8591 
8592   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8593   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8594 };
8595 } // end anonymous namespace
8596 
8597 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8598   unsigned Size = getContext().getTypeSize(Ty);
8599   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8600 
8601   if (SizeInRegs == 0)
8602     return false;
8603 
8604   if (SizeInRegs > State.FreeRegs) {
8605     State.FreeRegs = 0;
8606     return false;
8607   }
8608 
8609   State.FreeRegs -= SizeInRegs;
8610 
8611   return true;
8612 }
8613 
8614 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8615                                            CCState &State) const {
8616   if (!ByVal) {
8617     if (State.FreeRegs) {
8618       --State.FreeRegs; // Non-byval indirects just use one pointer.
8619       return getNaturalAlignIndirectInReg(Ty);
8620     }
8621     return getNaturalAlignIndirect(Ty, false);
8622   }
8623 
8624   // Compute the byval alignment.
8625   const unsigned MinABIStackAlignInBytes = 4;
8626   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8627   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8628                                  /*Realign=*/TypeAlign >
8629                                      MinABIStackAlignInBytes);
8630 }
8631 
8632 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8633                                               CCState &State) const {
8634   // Check with the C++ ABI first.
8635   const RecordType *RT = Ty->getAs<RecordType>();
8636   if (RT) {
8637     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8638     if (RAA == CGCXXABI::RAA_Indirect) {
8639       return getIndirectResult(Ty, /*ByVal=*/false, State);
8640     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8641       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8642     }
8643   }
8644 
8645   if (isAggregateTypeForABI(Ty)) {
8646     // Structures with flexible arrays are always indirect.
8647     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8648       return getIndirectResult(Ty, /*ByVal=*/true, State);
8649 
8650     // Ignore empty structs/unions.
8651     if (isEmptyRecord(getContext(), Ty, true))
8652       return ABIArgInfo::getIgnore();
8653 
8654     llvm::LLVMContext &LLVMContext = getVMContext();
8655     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8656     if (SizeInRegs <= State.FreeRegs) {
8657       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8658       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8659       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8660       State.FreeRegs -= SizeInRegs;
8661       return ABIArgInfo::getDirectInReg(Result);
8662     } else {
8663       State.FreeRegs = 0;
8664     }
8665     return getIndirectResult(Ty, true, State);
8666   }
8667 
8668   // Treat an enum type as its underlying type.
8669   if (const auto *EnumTy = Ty->getAs<EnumType>())
8670     Ty = EnumTy->getDecl()->getIntegerType();
8671 
8672   bool InReg = shouldUseInReg(Ty, State);
8673 
8674   // Don't pass >64 bit integers in registers.
8675   if (const auto *EIT = Ty->getAs<ExtIntType>())
8676     if (EIT->getNumBits() > 64)
8677       return getIndirectResult(Ty, /*ByVal=*/true, State);
8678 
8679   if (isPromotableIntegerTypeForABI(Ty)) {
8680     if (InReg)
8681       return ABIArgInfo::getDirectInReg();
8682     return ABIArgInfo::getExtend(Ty);
8683   }
8684   if (InReg)
8685     return ABIArgInfo::getDirectInReg();
8686   return ABIArgInfo::getDirect();
8687 }
8688 
8689 namespace {
8690 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8691 public:
8692   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8693       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8694 };
8695 }
8696 
8697 //===----------------------------------------------------------------------===//
8698 // AMDGPU ABI Implementation
8699 //===----------------------------------------------------------------------===//
8700 
8701 namespace {
8702 
8703 class AMDGPUABIInfo final : public DefaultABIInfo {
8704 private:
8705   static const unsigned MaxNumRegsForArgsRet = 16;
8706 
8707   unsigned numRegsForType(QualType Ty) const;
8708 
8709   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8710   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8711                                          uint64_t Members) const override;
8712 
8713   // Coerce HIP pointer arguments from generic pointers to global ones.
8714   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8715                                        unsigned ToAS) const {
8716     // Structure types.
8717     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
8718       SmallVector<llvm::Type *, 8> EltTys;
8719       bool Changed = false;
8720       for (auto T : STy->elements()) {
8721         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8722         EltTys.push_back(NT);
8723         Changed |= (NT != T);
8724       }
8725       // Skip if there is no change in element types.
8726       if (!Changed)
8727         return STy;
8728       if (STy->hasName())
8729         return llvm::StructType::create(
8730             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
8731       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
8732     }
8733     // Array types.
8734     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
8735       auto T = ATy->getElementType();
8736       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8737       // Skip if there is no change in that element type.
8738       if (NT == T)
8739         return ATy;
8740       return llvm::ArrayType::get(NT, ATy->getNumElements());
8741     }
8742     // Single value types.
8743     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8744       return llvm::PointerType::get(
8745           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8746     return Ty;
8747   }
8748 
8749 public:
8750   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8751     DefaultABIInfo(CGT) {}
8752 
8753   ABIArgInfo classifyReturnType(QualType RetTy) const;
8754   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8755   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8756 
8757   void computeInfo(CGFunctionInfo &FI) const override;
8758   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8759                     QualType Ty) const override;
8760 };
8761 
8762 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8763   return true;
8764 }
8765 
8766 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8767   const Type *Base, uint64_t Members) const {
8768   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8769 
8770   // Homogeneous Aggregates may occupy at most 16 registers.
8771   return Members * NumRegs <= MaxNumRegsForArgsRet;
8772 }
8773 
8774 /// Estimate number of registers the type will use when passed in registers.
8775 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8776   unsigned NumRegs = 0;
8777 
8778   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8779     // Compute from the number of elements. The reported size is based on the
8780     // in-memory size, which includes the padding 4th element for 3-vectors.
8781     QualType EltTy = VT->getElementType();
8782     unsigned EltSize = getContext().getTypeSize(EltTy);
8783 
8784     // 16-bit element vectors should be passed as packed.
8785     if (EltSize == 16)
8786       return (VT->getNumElements() + 1) / 2;
8787 
8788     unsigned EltNumRegs = (EltSize + 31) / 32;
8789     return EltNumRegs * VT->getNumElements();
8790   }
8791 
8792   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8793     const RecordDecl *RD = RT->getDecl();
8794     assert(!RD->hasFlexibleArrayMember());
8795 
8796     for (const FieldDecl *Field : RD->fields()) {
8797       QualType FieldTy = Field->getType();
8798       NumRegs += numRegsForType(FieldTy);
8799     }
8800 
8801     return NumRegs;
8802   }
8803 
8804   return (getContext().getTypeSize(Ty) + 31) / 32;
8805 }
8806 
8807 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8808   llvm::CallingConv::ID CC = FI.getCallingConvention();
8809 
8810   if (!getCXXABI().classifyReturnType(FI))
8811     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8812 
8813   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8814   for (auto &Arg : FI.arguments()) {
8815     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8816       Arg.info = classifyKernelArgumentType(Arg.type);
8817     } else {
8818       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8819     }
8820   }
8821 }
8822 
8823 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8824                                  QualType Ty) const {
8825   llvm_unreachable("AMDGPU does not support varargs");
8826 }
8827 
8828 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8829   if (isAggregateTypeForABI(RetTy)) {
8830     // Records with non-trivial destructors/copy-constructors should not be
8831     // returned by value.
8832     if (!getRecordArgABI(RetTy, getCXXABI())) {
8833       // Ignore empty structs/unions.
8834       if (isEmptyRecord(getContext(), RetTy, true))
8835         return ABIArgInfo::getIgnore();
8836 
8837       // Lower single-element structs to just return a regular value.
8838       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8839         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8840 
8841       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8842         const RecordDecl *RD = RT->getDecl();
8843         if (RD->hasFlexibleArrayMember())
8844           return DefaultABIInfo::classifyReturnType(RetTy);
8845       }
8846 
8847       // Pack aggregates <= 4 bytes into single VGPR or pair.
8848       uint64_t Size = getContext().getTypeSize(RetTy);
8849       if (Size <= 16)
8850         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8851 
8852       if (Size <= 32)
8853         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8854 
8855       if (Size <= 64) {
8856         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8857         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8858       }
8859 
8860       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8861         return ABIArgInfo::getDirect();
8862     }
8863   }
8864 
8865   // Otherwise just do the default thing.
8866   return DefaultABIInfo::classifyReturnType(RetTy);
8867 }
8868 
8869 /// For kernels all parameters are really passed in a special buffer. It doesn't
8870 /// make sense to pass anything byval, so everything must be direct.
8871 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8872   Ty = useFirstFieldIfTransparentUnion(Ty);
8873 
8874   // TODO: Can we omit empty structs?
8875 
8876   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8877     Ty = QualType(SeltTy, 0);
8878 
8879   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
8880   llvm::Type *LTy = OrigLTy;
8881   if (getContext().getLangOpts().HIP) {
8882     LTy = coerceKernelArgumentType(
8883         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8884         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8885   }
8886 
8887   // FIXME: Should also use this for OpenCL, but it requires addressing the
8888   // problem of kernels being called.
8889   //
8890   // FIXME: This doesn't apply the optimization of coercing pointers in structs
8891   // to global address space when using byref. This would require implementing a
8892   // new kind of coercion of the in-memory type when for indirect arguments.
8893   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
8894       isAggregateTypeForABI(Ty)) {
8895     return ABIArgInfo::getIndirectAliased(
8896         getContext().getTypeAlignInChars(Ty),
8897         getContext().getTargetAddressSpace(LangAS::opencl_constant),
8898         false /*Realign*/, nullptr /*Padding*/);
8899   }
8900 
8901   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8902   // individual elements, which confuses the Clover OpenCL backend; therefore we
8903   // have to set it to false here. Other args of getDirect() are just defaults.
8904   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8905 }
8906 
8907 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8908                                                unsigned &NumRegsLeft) const {
8909   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8910 
8911   Ty = useFirstFieldIfTransparentUnion(Ty);
8912 
8913   if (isAggregateTypeForABI(Ty)) {
8914     // Records with non-trivial destructors/copy-constructors should not be
8915     // passed by value.
8916     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8917       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8918 
8919     // Ignore empty structs/unions.
8920     if (isEmptyRecord(getContext(), Ty, true))
8921       return ABIArgInfo::getIgnore();
8922 
8923     // Lower single-element structs to just pass a regular value. TODO: We
8924     // could do reasonable-size multiple-element structs too, using getExpand(),
8925     // though watch out for things like bitfields.
8926     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8927       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8928 
8929     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8930       const RecordDecl *RD = RT->getDecl();
8931       if (RD->hasFlexibleArrayMember())
8932         return DefaultABIInfo::classifyArgumentType(Ty);
8933     }
8934 
8935     // Pack aggregates <= 8 bytes into single VGPR or pair.
8936     uint64_t Size = getContext().getTypeSize(Ty);
8937     if (Size <= 64) {
8938       unsigned NumRegs = (Size + 31) / 32;
8939       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8940 
8941       if (Size <= 16)
8942         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8943 
8944       if (Size <= 32)
8945         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8946 
8947       // XXX: Should this be i64 instead, and should the limit increase?
8948       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8949       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8950     }
8951 
8952     if (NumRegsLeft > 0) {
8953       unsigned NumRegs = numRegsForType(Ty);
8954       if (NumRegsLeft >= NumRegs) {
8955         NumRegsLeft -= NumRegs;
8956         return ABIArgInfo::getDirect();
8957       }
8958     }
8959   }
8960 
8961   // Otherwise just do the default thing.
8962   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8963   if (!ArgInfo.isIndirect()) {
8964     unsigned NumRegs = numRegsForType(Ty);
8965     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8966   }
8967 
8968   return ArgInfo;
8969 }
8970 
8971 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8972 public:
8973   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8974       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8975   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8976                            CodeGen::CodeGenModule &M) const override;
8977   unsigned getOpenCLKernelCallingConv() const override;
8978 
8979   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8980       llvm::PointerType *T, QualType QT) const override;
8981 
8982   LangAS getASTAllocaAddressSpace() const override {
8983     return getLangASFromTargetAS(
8984         getABIInfo().getDataLayout().getAllocaAddrSpace());
8985   }
8986   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8987                                   const VarDecl *D) const override;
8988   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8989                                          SyncScope Scope,
8990                                          llvm::AtomicOrdering Ordering,
8991                                          llvm::LLVMContext &Ctx) const override;
8992   llvm::Function *
8993   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8994                             llvm::Function *BlockInvokeFunc,
8995                             llvm::Value *BlockLiteral) const override;
8996   bool shouldEmitStaticExternCAliases() const override;
8997   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8998 };
8999 }
9000 
9001 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
9002                                               llvm::GlobalValue *GV) {
9003   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
9004     return false;
9005 
9006   return D->hasAttr<OpenCLKernelAttr>() ||
9007          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9008          (isa<VarDecl>(D) &&
9009           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9010            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9011            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9012 }
9013 
9014 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9015     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9016   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9017     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9018     GV->setDSOLocal(true);
9019   }
9020 
9021   if (GV->isDeclaration())
9022     return;
9023   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9024   if (!FD)
9025     return;
9026 
9027   llvm::Function *F = cast<llvm::Function>(GV);
9028 
9029   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9030     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9031 
9032 
9033   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9034                               FD->hasAttr<OpenCLKernelAttr>();
9035   const bool IsHIPKernel = M.getLangOpts().HIP &&
9036                            FD->hasAttr<CUDAGlobalAttr>();
9037   if ((IsOpenCLKernel || IsHIPKernel) &&
9038       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9039     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9040 
9041   if (IsHIPKernel)
9042     F->addFnAttr("uniform-work-group-size", "true");
9043 
9044 
9045   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9046   if (ReqdWGS || FlatWGS) {
9047     unsigned Min = 0;
9048     unsigned Max = 0;
9049     if (FlatWGS) {
9050       Min = FlatWGS->getMin()
9051                 ->EvaluateKnownConstInt(M.getContext())
9052                 .getExtValue();
9053       Max = FlatWGS->getMax()
9054                 ->EvaluateKnownConstInt(M.getContext())
9055                 .getExtValue();
9056     }
9057     if (ReqdWGS && Min == 0 && Max == 0)
9058       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9059 
9060     if (Min != 0) {
9061       assert(Min <= Max && "Min must be less than or equal Max");
9062 
9063       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9064       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9065     } else
9066       assert(Max == 0 && "Max must be zero");
9067   } else if (IsOpenCLKernel || IsHIPKernel) {
9068     // By default, restrict the maximum size to a value specified by
9069     // --gpu-max-threads-per-block=n or its default value.
9070     std::string AttrVal =
9071         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
9072     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9073   }
9074 
9075   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9076     unsigned Min =
9077         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9078     unsigned Max = Attr->getMax() ? Attr->getMax()
9079                                         ->EvaluateKnownConstInt(M.getContext())
9080                                         .getExtValue()
9081                                   : 0;
9082 
9083     if (Min != 0) {
9084       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9085 
9086       std::string AttrVal = llvm::utostr(Min);
9087       if (Max != 0)
9088         AttrVal = AttrVal + "," + llvm::utostr(Max);
9089       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9090     } else
9091       assert(Max == 0 && "Max must be zero");
9092   }
9093 
9094   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9095     unsigned NumSGPR = Attr->getNumSGPR();
9096 
9097     if (NumSGPR != 0)
9098       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9099   }
9100 
9101   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9102     uint32_t NumVGPR = Attr->getNumVGPR();
9103 
9104     if (NumVGPR != 0)
9105       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9106   }
9107 }
9108 
9109 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9110   return llvm::CallingConv::AMDGPU_KERNEL;
9111 }
9112 
9113 // Currently LLVM assumes null pointers always have value 0,
9114 // which results in incorrectly transformed IR. Therefore, instead of
9115 // emitting null pointers in private and local address spaces, a null
9116 // pointer in generic address space is emitted which is casted to a
9117 // pointer in local or private address space.
9118 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9119     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9120     QualType QT) const {
9121   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9122     return llvm::ConstantPointerNull::get(PT);
9123 
9124   auto &Ctx = CGM.getContext();
9125   auto NPT = llvm::PointerType::get(PT->getElementType(),
9126       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9127   return llvm::ConstantExpr::getAddrSpaceCast(
9128       llvm::ConstantPointerNull::get(NPT), PT);
9129 }
9130 
9131 LangAS
9132 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9133                                                   const VarDecl *D) const {
9134   assert(!CGM.getLangOpts().OpenCL &&
9135          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9136          "Address space agnostic languages only");
9137   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9138       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9139   if (!D)
9140     return DefaultGlobalAS;
9141 
9142   LangAS AddrSpace = D->getType().getAddressSpace();
9143   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9144   if (AddrSpace != LangAS::Default)
9145     return AddrSpace;
9146 
9147   if (CGM.isTypeConstant(D->getType(), false)) {
9148     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9149       return ConstAS.getValue();
9150   }
9151   return DefaultGlobalAS;
9152 }
9153 
9154 llvm::SyncScope::ID
9155 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9156                                             SyncScope Scope,
9157                                             llvm::AtomicOrdering Ordering,
9158                                             llvm::LLVMContext &Ctx) const {
9159   std::string Name;
9160   switch (Scope) {
9161   case SyncScope::OpenCLWorkGroup:
9162     Name = "workgroup";
9163     break;
9164   case SyncScope::OpenCLDevice:
9165     Name = "agent";
9166     break;
9167   case SyncScope::OpenCLAllSVMDevices:
9168     Name = "";
9169     break;
9170   case SyncScope::OpenCLSubGroup:
9171     Name = "wavefront";
9172   }
9173 
9174   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9175     if (!Name.empty())
9176       Name = Twine(Twine(Name) + Twine("-")).str();
9177 
9178     Name = Twine(Twine(Name) + Twine("one-as")).str();
9179   }
9180 
9181   return Ctx.getOrInsertSyncScopeID(Name);
9182 }
9183 
9184 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9185   return false;
9186 }
9187 
9188 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9189     const FunctionType *&FT) const {
9190   FT = getABIInfo().getContext().adjustFunctionType(
9191       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9192 }
9193 
9194 //===----------------------------------------------------------------------===//
9195 // SPARC v8 ABI Implementation.
9196 // Based on the SPARC Compliance Definition version 2.4.1.
9197 //
9198 // Ensures that complex values are passed in registers.
9199 //
9200 namespace {
9201 class SparcV8ABIInfo : public DefaultABIInfo {
9202 public:
9203   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9204 
9205 private:
9206   ABIArgInfo classifyReturnType(QualType RetTy) const;
9207   void computeInfo(CGFunctionInfo &FI) const override;
9208 };
9209 } // end anonymous namespace
9210 
9211 
9212 ABIArgInfo
9213 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9214   if (Ty->isAnyComplexType()) {
9215     return ABIArgInfo::getDirect();
9216   }
9217   else {
9218     return DefaultABIInfo::classifyReturnType(Ty);
9219   }
9220 }
9221 
9222 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9223 
9224   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9225   for (auto &Arg : FI.arguments())
9226     Arg.info = classifyArgumentType(Arg.type);
9227 }
9228 
9229 namespace {
9230 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9231 public:
9232   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9233       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9234 };
9235 } // end anonymous namespace
9236 
9237 //===----------------------------------------------------------------------===//
9238 // SPARC v9 ABI Implementation.
9239 // Based on the SPARC Compliance Definition version 2.4.1.
9240 //
9241 // Function arguments a mapped to a nominal "parameter array" and promoted to
9242 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9243 // the array, structs larger than 16 bytes are passed indirectly.
9244 //
9245 // One case requires special care:
9246 //
9247 //   struct mixed {
9248 //     int i;
9249 //     float f;
9250 //   };
9251 //
9252 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9253 // parameter array, but the int is passed in an integer register, and the float
9254 // is passed in a floating point register. This is represented as two arguments
9255 // with the LLVM IR inreg attribute:
9256 //
9257 //   declare void f(i32 inreg %i, float inreg %f)
9258 //
9259 // The code generator will only allocate 4 bytes from the parameter array for
9260 // the inreg arguments. All other arguments are allocated a multiple of 8
9261 // bytes.
9262 //
9263 namespace {
9264 class SparcV9ABIInfo : public ABIInfo {
9265 public:
9266   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9267 
9268 private:
9269   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9270   void computeInfo(CGFunctionInfo &FI) const override;
9271   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9272                     QualType Ty) const override;
9273 
9274   // Coercion type builder for structs passed in registers. The coercion type
9275   // serves two purposes:
9276   //
9277   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9278   //    in registers.
9279   // 2. Expose aligned floating point elements as first-level elements, so the
9280   //    code generator knows to pass them in floating point registers.
9281   //
9282   // We also compute the InReg flag which indicates that the struct contains
9283   // aligned 32-bit floats.
9284   //
9285   struct CoerceBuilder {
9286     llvm::LLVMContext &Context;
9287     const llvm::DataLayout &DL;
9288     SmallVector<llvm::Type*, 8> Elems;
9289     uint64_t Size;
9290     bool InReg;
9291 
9292     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9293       : Context(c), DL(dl), Size(0), InReg(false) {}
9294 
9295     // Pad Elems with integers until Size is ToSize.
9296     void pad(uint64_t ToSize) {
9297       assert(ToSize >= Size && "Cannot remove elements");
9298       if (ToSize == Size)
9299         return;
9300 
9301       // Finish the current 64-bit word.
9302       uint64_t Aligned = llvm::alignTo(Size, 64);
9303       if (Aligned > Size && Aligned <= ToSize) {
9304         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9305         Size = Aligned;
9306       }
9307 
9308       // Add whole 64-bit words.
9309       while (Size + 64 <= ToSize) {
9310         Elems.push_back(llvm::Type::getInt64Ty(Context));
9311         Size += 64;
9312       }
9313 
9314       // Final in-word padding.
9315       if (Size < ToSize) {
9316         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9317         Size = ToSize;
9318       }
9319     }
9320 
9321     // Add a floating point element at Offset.
9322     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9323       // Unaligned floats are treated as integers.
9324       if (Offset % Bits)
9325         return;
9326       // The InReg flag is only required if there are any floats < 64 bits.
9327       if (Bits < 64)
9328         InReg = true;
9329       pad(Offset);
9330       Elems.push_back(Ty);
9331       Size = Offset + Bits;
9332     }
9333 
9334     // Add a struct type to the coercion type, starting at Offset (in bits).
9335     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9336       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9337       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9338         llvm::Type *ElemTy = StrTy->getElementType(i);
9339         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9340         switch (ElemTy->getTypeID()) {
9341         case llvm::Type::StructTyID:
9342           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9343           break;
9344         case llvm::Type::FloatTyID:
9345           addFloat(ElemOffset, ElemTy, 32);
9346           break;
9347         case llvm::Type::DoubleTyID:
9348           addFloat(ElemOffset, ElemTy, 64);
9349           break;
9350         case llvm::Type::FP128TyID:
9351           addFloat(ElemOffset, ElemTy, 128);
9352           break;
9353         case llvm::Type::PointerTyID:
9354           if (ElemOffset % 64 == 0) {
9355             pad(ElemOffset);
9356             Elems.push_back(ElemTy);
9357             Size += 64;
9358           }
9359           break;
9360         default:
9361           break;
9362         }
9363       }
9364     }
9365 
9366     // Check if Ty is a usable substitute for the coercion type.
9367     bool isUsableType(llvm::StructType *Ty) const {
9368       return llvm::makeArrayRef(Elems) == Ty->elements();
9369     }
9370 
9371     // Get the coercion type as a literal struct type.
9372     llvm::Type *getType() const {
9373       if (Elems.size() == 1)
9374         return Elems.front();
9375       else
9376         return llvm::StructType::get(Context, Elems);
9377     }
9378   };
9379 };
9380 } // end anonymous namespace
9381 
9382 ABIArgInfo
9383 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9384   if (Ty->isVoidType())
9385     return ABIArgInfo::getIgnore();
9386 
9387   uint64_t Size = getContext().getTypeSize(Ty);
9388 
9389   // Anything too big to fit in registers is passed with an explicit indirect
9390   // pointer / sret pointer.
9391   if (Size > SizeLimit)
9392     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9393 
9394   // Treat an enum type as its underlying type.
9395   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9396     Ty = EnumTy->getDecl()->getIntegerType();
9397 
9398   // Integer types smaller than a register are extended.
9399   if (Size < 64 && Ty->isIntegerType())
9400     return ABIArgInfo::getExtend(Ty);
9401 
9402   if (const auto *EIT = Ty->getAs<ExtIntType>())
9403     if (EIT->getNumBits() < 64)
9404       return ABIArgInfo::getExtend(Ty);
9405 
9406   // Other non-aggregates go in registers.
9407   if (!isAggregateTypeForABI(Ty))
9408     return ABIArgInfo::getDirect();
9409 
9410   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9411   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9412   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9413     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9414 
9415   // This is a small aggregate type that should be passed in registers.
9416   // Build a coercion type from the LLVM struct type.
9417   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9418   if (!StrTy)
9419     return ABIArgInfo::getDirect();
9420 
9421   CoerceBuilder CB(getVMContext(), getDataLayout());
9422   CB.addStruct(0, StrTy);
9423   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9424 
9425   // Try to use the original type for coercion.
9426   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9427 
9428   if (CB.InReg)
9429     return ABIArgInfo::getDirectInReg(CoerceTy);
9430   else
9431     return ABIArgInfo::getDirect(CoerceTy);
9432 }
9433 
9434 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9435                                   QualType Ty) const {
9436   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9437   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9438   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9439     AI.setCoerceToType(ArgTy);
9440 
9441   CharUnits SlotSize = CharUnits::fromQuantity(8);
9442 
9443   CGBuilderTy &Builder = CGF.Builder;
9444   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9445   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9446 
9447   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9448 
9449   Address ArgAddr = Address::invalid();
9450   CharUnits Stride;
9451   switch (AI.getKind()) {
9452   case ABIArgInfo::Expand:
9453   case ABIArgInfo::CoerceAndExpand:
9454   case ABIArgInfo::InAlloca:
9455     llvm_unreachable("Unsupported ABI kind for va_arg");
9456 
9457   case ABIArgInfo::Extend: {
9458     Stride = SlotSize;
9459     CharUnits Offset = SlotSize - TypeInfo.first;
9460     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9461     break;
9462   }
9463 
9464   case ABIArgInfo::Direct: {
9465     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9466     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9467     ArgAddr = Addr;
9468     break;
9469   }
9470 
9471   case ABIArgInfo::Indirect:
9472   case ABIArgInfo::IndirectAliased:
9473     Stride = SlotSize;
9474     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9475     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9476                       TypeInfo.second);
9477     break;
9478 
9479   case ABIArgInfo::Ignore:
9480     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
9481   }
9482 
9483   // Update VAList.
9484   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9485   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9486 
9487   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9488 }
9489 
9490 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9491   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9492   for (auto &I : FI.arguments())
9493     I.info = classifyType(I.type, 16 * 8);
9494 }
9495 
9496 namespace {
9497 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9498 public:
9499   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9500       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9501 
9502   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9503     return 14;
9504   }
9505 
9506   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9507                                llvm::Value *Address) const override;
9508 };
9509 } // end anonymous namespace
9510 
9511 bool
9512 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9513                                                 llvm::Value *Address) const {
9514   // This is calculated from the LLVM and GCC tables and verified
9515   // against gcc output.  AFAIK all ABIs use the same encoding.
9516 
9517   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9518 
9519   llvm::IntegerType *i8 = CGF.Int8Ty;
9520   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9521   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9522 
9523   // 0-31: the 8-byte general-purpose registers
9524   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9525 
9526   // 32-63: f0-31, the 4-byte floating-point registers
9527   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9528 
9529   //   Y   = 64
9530   //   PSR = 65
9531   //   WIM = 66
9532   //   TBR = 67
9533   //   PC  = 68
9534   //   NPC = 69
9535   //   FSR = 70
9536   //   CSR = 71
9537   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9538 
9539   // 72-87: d0-15, the 8-byte floating-point registers
9540   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9541 
9542   return false;
9543 }
9544 
9545 // ARC ABI implementation.
9546 namespace {
9547 
9548 class ARCABIInfo : public DefaultABIInfo {
9549 public:
9550   using DefaultABIInfo::DefaultABIInfo;
9551 
9552 private:
9553   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9554                     QualType Ty) const override;
9555 
9556   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9557     if (!State.FreeRegs)
9558       return;
9559     if (Info.isIndirect() && Info.getInReg())
9560       State.FreeRegs--;
9561     else if (Info.isDirect() && Info.getInReg()) {
9562       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9563       if (sz < State.FreeRegs)
9564         State.FreeRegs -= sz;
9565       else
9566         State.FreeRegs = 0;
9567     }
9568   }
9569 
9570   void computeInfo(CGFunctionInfo &FI) const override {
9571     CCState State(FI);
9572     // ARC uses 8 registers to pass arguments.
9573     State.FreeRegs = 8;
9574 
9575     if (!getCXXABI().classifyReturnType(FI))
9576       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9577     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9578     for (auto &I : FI.arguments()) {
9579       I.info = classifyArgumentType(I.type, State.FreeRegs);
9580       updateState(I.info, I.type, State);
9581     }
9582   }
9583 
9584   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9585   ABIArgInfo getIndirectByValue(QualType Ty) const;
9586   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9587   ABIArgInfo classifyReturnType(QualType RetTy) const;
9588 };
9589 
9590 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9591 public:
9592   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9593       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9594 };
9595 
9596 
9597 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9598   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9599                        getNaturalAlignIndirect(Ty, false);
9600 }
9601 
9602 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9603   // Compute the byval alignment.
9604   const unsigned MinABIStackAlignInBytes = 4;
9605   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9606   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9607                                  TypeAlign > MinABIStackAlignInBytes);
9608 }
9609 
9610 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9611                               QualType Ty) const {
9612   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9613                           getContext().getTypeInfoInChars(Ty),
9614                           CharUnits::fromQuantity(4), true);
9615 }
9616 
9617 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9618                                             uint8_t FreeRegs) const {
9619   // Handle the generic C++ ABI.
9620   const RecordType *RT = Ty->getAs<RecordType>();
9621   if (RT) {
9622     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9623     if (RAA == CGCXXABI::RAA_Indirect)
9624       return getIndirectByRef(Ty, FreeRegs > 0);
9625 
9626     if (RAA == CGCXXABI::RAA_DirectInMemory)
9627       return getIndirectByValue(Ty);
9628   }
9629 
9630   // Treat an enum type as its underlying type.
9631   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9632     Ty = EnumTy->getDecl()->getIntegerType();
9633 
9634   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9635 
9636   if (isAggregateTypeForABI(Ty)) {
9637     // Structures with flexible arrays are always indirect.
9638     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9639       return getIndirectByValue(Ty);
9640 
9641     // Ignore empty structs/unions.
9642     if (isEmptyRecord(getContext(), Ty, true))
9643       return ABIArgInfo::getIgnore();
9644 
9645     llvm::LLVMContext &LLVMContext = getVMContext();
9646 
9647     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9648     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9649     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9650 
9651     return FreeRegs >= SizeInRegs ?
9652         ABIArgInfo::getDirectInReg(Result) :
9653         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9654   }
9655 
9656   if (const auto *EIT = Ty->getAs<ExtIntType>())
9657     if (EIT->getNumBits() > 64)
9658       return getIndirectByValue(Ty);
9659 
9660   return isPromotableIntegerTypeForABI(Ty)
9661              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9662                                        : ABIArgInfo::getExtend(Ty))
9663              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9664                                        : ABIArgInfo::getDirect());
9665 }
9666 
9667 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9668   if (RetTy->isAnyComplexType())
9669     return ABIArgInfo::getDirectInReg();
9670 
9671   // Arguments of size > 4 registers are indirect.
9672   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9673   if (RetSize > 4)
9674     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9675 
9676   return DefaultABIInfo::classifyReturnType(RetTy);
9677 }
9678 
9679 } // End anonymous namespace.
9680 
9681 //===----------------------------------------------------------------------===//
9682 // XCore ABI Implementation
9683 //===----------------------------------------------------------------------===//
9684 
9685 namespace {
9686 
9687 /// A SmallStringEnc instance is used to build up the TypeString by passing
9688 /// it by reference between functions that append to it.
9689 typedef llvm::SmallString<128> SmallStringEnc;
9690 
9691 /// TypeStringCache caches the meta encodings of Types.
9692 ///
9693 /// The reason for caching TypeStrings is two fold:
9694 ///   1. To cache a type's encoding for later uses;
9695 ///   2. As a means to break recursive member type inclusion.
9696 ///
9697 /// A cache Entry can have a Status of:
9698 ///   NonRecursive:   The type encoding is not recursive;
9699 ///   Recursive:      The type encoding is recursive;
9700 ///   Incomplete:     An incomplete TypeString;
9701 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9702 ///                   Recursive type encoding.
9703 ///
9704 /// A NonRecursive entry will have all of its sub-members expanded as fully
9705 /// as possible. Whilst it may contain types which are recursive, the type
9706 /// itself is not recursive and thus its encoding may be safely used whenever
9707 /// the type is encountered.
9708 ///
9709 /// A Recursive entry will have all of its sub-members expanded as fully as
9710 /// possible. The type itself is recursive and it may contain other types which
9711 /// are recursive. The Recursive encoding must not be used during the expansion
9712 /// of a recursive type's recursive branch. For simplicity the code uses
9713 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9714 ///
9715 /// An Incomplete entry is always a RecordType and only encodes its
9716 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9717 /// are placed into the cache during type expansion as a means to identify and
9718 /// handle recursive inclusion of types as sub-members. If there is recursion
9719 /// the entry becomes IncompleteUsed.
9720 ///
9721 /// During the expansion of a RecordType's members:
9722 ///
9723 ///   If the cache contains a NonRecursive encoding for the member type, the
9724 ///   cached encoding is used;
9725 ///
9726 ///   If the cache contains a Recursive encoding for the member type, the
9727 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9728 ///
9729 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9730 ///   cache to break potential recursive inclusion of itself as a sub-member;
9731 ///
9732 ///   Once a member RecordType has been expanded, its temporary incomplete
9733 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9734 ///   it is swapped back in;
9735 ///
9736 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9737 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9738 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9739 ///
9740 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9741 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9742 ///   Else the member is part of a recursive type and thus the recursion has
9743 ///   been exited too soon for the encoding to be correct for the member.
9744 ///
9745 class TypeStringCache {
9746   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9747   struct Entry {
9748     std::string Str;     // The encoded TypeString for the type.
9749     enum Status State;   // Information about the encoding in 'Str'.
9750     std::string Swapped; // A temporary place holder for a Recursive encoding
9751                          // during the expansion of RecordType's members.
9752   };
9753   std::map<const IdentifierInfo *, struct Entry> Map;
9754   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9755   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9756 public:
9757   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9758   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9759   bool removeIncomplete(const IdentifierInfo *ID);
9760   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9761                      bool IsRecursive);
9762   StringRef lookupStr(const IdentifierInfo *ID);
9763 };
9764 
9765 /// TypeString encodings for enum & union fields must be order.
9766 /// FieldEncoding is a helper for this ordering process.
9767 class FieldEncoding {
9768   bool HasName;
9769   std::string Enc;
9770 public:
9771   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9772   StringRef str() { return Enc; }
9773   bool operator<(const FieldEncoding &rhs) const {
9774     if (HasName != rhs.HasName) return HasName;
9775     return Enc < rhs.Enc;
9776   }
9777 };
9778 
9779 class XCoreABIInfo : public DefaultABIInfo {
9780 public:
9781   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9782   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9783                     QualType Ty) const override;
9784 };
9785 
9786 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9787   mutable TypeStringCache TSC;
9788   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9789                     const CodeGen::CodeGenModule &M) const;
9790 
9791 public:
9792   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9793       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9794   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9795                           const llvm::MapVector<GlobalDecl, StringRef>
9796                               &MangledDeclNames) const override;
9797 };
9798 
9799 } // End anonymous namespace.
9800 
9801 // TODO: this implementation is likely now redundant with the default
9802 // EmitVAArg.
9803 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9804                                 QualType Ty) const {
9805   CGBuilderTy &Builder = CGF.Builder;
9806 
9807   // Get the VAList.
9808   CharUnits SlotSize = CharUnits::fromQuantity(4);
9809   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9810 
9811   // Handle the argument.
9812   ABIArgInfo AI = classifyArgumentType(Ty);
9813   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9814   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9815   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9816     AI.setCoerceToType(ArgTy);
9817   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9818 
9819   Address Val = Address::invalid();
9820   CharUnits ArgSize = CharUnits::Zero();
9821   switch (AI.getKind()) {
9822   case ABIArgInfo::Expand:
9823   case ABIArgInfo::CoerceAndExpand:
9824   case ABIArgInfo::InAlloca:
9825     llvm_unreachable("Unsupported ABI kind for va_arg");
9826   case ABIArgInfo::Ignore:
9827     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9828     ArgSize = CharUnits::Zero();
9829     break;
9830   case ABIArgInfo::Extend:
9831   case ABIArgInfo::Direct:
9832     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9833     ArgSize = CharUnits::fromQuantity(
9834                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9835     ArgSize = ArgSize.alignTo(SlotSize);
9836     break;
9837   case ABIArgInfo::Indirect:
9838   case ABIArgInfo::IndirectAliased:
9839     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9840     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9841     ArgSize = SlotSize;
9842     break;
9843   }
9844 
9845   // Increment the VAList.
9846   if (!ArgSize.isZero()) {
9847     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9848     Builder.CreateStore(APN.getPointer(), VAListAddr);
9849   }
9850 
9851   return Val;
9852 }
9853 
9854 /// During the expansion of a RecordType, an incomplete TypeString is placed
9855 /// into the cache as a means to identify and break recursion.
9856 /// If there is a Recursive encoding in the cache, it is swapped out and will
9857 /// be reinserted by removeIncomplete().
9858 /// All other types of encoding should have been used rather than arriving here.
9859 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9860                                     std::string StubEnc) {
9861   if (!ID)
9862     return;
9863   Entry &E = Map[ID];
9864   assert( (E.Str.empty() || E.State == Recursive) &&
9865          "Incorrectly use of addIncomplete");
9866   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9867   E.Swapped.swap(E.Str); // swap out the Recursive
9868   E.Str.swap(StubEnc);
9869   E.State = Incomplete;
9870   ++IncompleteCount;
9871 }
9872 
9873 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9874 /// must be removed from the cache.
9875 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9876 /// Returns true if the RecordType was defined recursively.
9877 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9878   if (!ID)
9879     return false;
9880   auto I = Map.find(ID);
9881   assert(I != Map.end() && "Entry not present");
9882   Entry &E = I->second;
9883   assert( (E.State == Incomplete ||
9884            E.State == IncompleteUsed) &&
9885          "Entry must be an incomplete type");
9886   bool IsRecursive = false;
9887   if (E.State == IncompleteUsed) {
9888     // We made use of our Incomplete encoding, thus we are recursive.
9889     IsRecursive = true;
9890     --IncompleteUsedCount;
9891   }
9892   if (E.Swapped.empty())
9893     Map.erase(I);
9894   else {
9895     // Swap the Recursive back.
9896     E.Swapped.swap(E.Str);
9897     E.Swapped.clear();
9898     E.State = Recursive;
9899   }
9900   --IncompleteCount;
9901   return IsRecursive;
9902 }
9903 
9904 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9905 /// Recursive (viz: all sub-members were expanded as fully as possible).
9906 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9907                                     bool IsRecursive) {
9908   if (!ID || IncompleteUsedCount)
9909     return; // No key or it is is an incomplete sub-type so don't add.
9910   Entry &E = Map[ID];
9911   if (IsRecursive && !E.Str.empty()) {
9912     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9913            "This is not the same Recursive entry");
9914     // The parent container was not recursive after all, so we could have used
9915     // this Recursive sub-member entry after all, but we assumed the worse when
9916     // we started viz: IncompleteCount!=0.
9917     return;
9918   }
9919   assert(E.Str.empty() && "Entry already present");
9920   E.Str = Str.str();
9921   E.State = IsRecursive? Recursive : NonRecursive;
9922 }
9923 
9924 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9925 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9926 /// encoding is Recursive, return an empty StringRef.
9927 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9928   if (!ID)
9929     return StringRef();   // We have no key.
9930   auto I = Map.find(ID);
9931   if (I == Map.end())
9932     return StringRef();   // We have no encoding.
9933   Entry &E = I->second;
9934   if (E.State == Recursive && IncompleteCount)
9935     return StringRef();   // We don't use Recursive encodings for member types.
9936 
9937   if (E.State == Incomplete) {
9938     // The incomplete type is being used to break out of recursion.
9939     E.State = IncompleteUsed;
9940     ++IncompleteUsedCount;
9941   }
9942   return E.Str;
9943 }
9944 
9945 /// The XCore ABI includes a type information section that communicates symbol
9946 /// type information to the linker. The linker uses this information to verify
9947 /// safety/correctness of things such as array bound and pointers et al.
9948 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9949 /// This type information (TypeString) is emitted into meta data for all global
9950 /// symbols: definitions, declarations, functions & variables.
9951 ///
9952 /// The TypeString carries type, qualifier, name, size & value details.
9953 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9954 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9955 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9956 ///
9957 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9958                           const CodeGen::CodeGenModule &CGM,
9959                           TypeStringCache &TSC);
9960 
9961 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9962 void XCoreTargetCodeGenInfo::emitTargetMD(
9963     const Decl *D, llvm::GlobalValue *GV,
9964     const CodeGen::CodeGenModule &CGM) const {
9965   SmallStringEnc Enc;
9966   if (getTypeString(Enc, D, CGM, TSC)) {
9967     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9968     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9969                                 llvm::MDString::get(Ctx, Enc.str())};
9970     llvm::NamedMDNode *MD =
9971       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9972     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9973   }
9974 }
9975 
9976 void XCoreTargetCodeGenInfo::emitTargetMetadata(
9977     CodeGen::CodeGenModule &CGM,
9978     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
9979   // Warning, new MangledDeclNames may be appended within this loop.
9980   // We rely on MapVector insertions adding new elements to the end
9981   // of the container.
9982   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
9983     auto Val = *(MangledDeclNames.begin() + I);
9984     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
9985     if (GV) {
9986       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
9987       emitTargetMD(D, GV, CGM);
9988     }
9989   }
9990 }
9991 //===----------------------------------------------------------------------===//
9992 // SPIR ABI Implementation
9993 //===----------------------------------------------------------------------===//
9994 
9995 namespace {
9996 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9997 public:
9998   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9999       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
10000   unsigned getOpenCLKernelCallingConv() const override;
10001 };
10002 
10003 } // End anonymous namespace.
10004 
10005 namespace clang {
10006 namespace CodeGen {
10007 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10008   DefaultABIInfo SPIRABI(CGM.getTypes());
10009   SPIRABI.computeInfo(FI);
10010 }
10011 }
10012 }
10013 
10014 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10015   return llvm::CallingConv::SPIR_KERNEL;
10016 }
10017 
10018 static bool appendType(SmallStringEnc &Enc, QualType QType,
10019                        const CodeGen::CodeGenModule &CGM,
10020                        TypeStringCache &TSC);
10021 
10022 /// Helper function for appendRecordType().
10023 /// Builds a SmallVector containing the encoded field types in declaration
10024 /// order.
10025 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10026                              const RecordDecl *RD,
10027                              const CodeGen::CodeGenModule &CGM,
10028                              TypeStringCache &TSC) {
10029   for (const auto *Field : RD->fields()) {
10030     SmallStringEnc Enc;
10031     Enc += "m(";
10032     Enc += Field->getName();
10033     Enc += "){";
10034     if (Field->isBitField()) {
10035       Enc += "b(";
10036       llvm::raw_svector_ostream OS(Enc);
10037       OS << Field->getBitWidthValue(CGM.getContext());
10038       Enc += ':';
10039     }
10040     if (!appendType(Enc, Field->getType(), CGM, TSC))
10041       return false;
10042     if (Field->isBitField())
10043       Enc += ')';
10044     Enc += '}';
10045     FE.emplace_back(!Field->getName().empty(), Enc);
10046   }
10047   return true;
10048 }
10049 
10050 /// Appends structure and union types to Enc and adds encoding to cache.
10051 /// Recursively calls appendType (via extractFieldType) for each field.
10052 /// Union types have their fields ordered according to the ABI.
10053 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10054                              const CodeGen::CodeGenModule &CGM,
10055                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10056   // Append the cached TypeString if we have one.
10057   StringRef TypeString = TSC.lookupStr(ID);
10058   if (!TypeString.empty()) {
10059     Enc += TypeString;
10060     return true;
10061   }
10062 
10063   // Start to emit an incomplete TypeString.
10064   size_t Start = Enc.size();
10065   Enc += (RT->isUnionType()? 'u' : 's');
10066   Enc += '(';
10067   if (ID)
10068     Enc += ID->getName();
10069   Enc += "){";
10070 
10071   // We collect all encoded fields and order as necessary.
10072   bool IsRecursive = false;
10073   const RecordDecl *RD = RT->getDecl()->getDefinition();
10074   if (RD && !RD->field_empty()) {
10075     // An incomplete TypeString stub is placed in the cache for this RecordType
10076     // so that recursive calls to this RecordType will use it whilst building a
10077     // complete TypeString for this RecordType.
10078     SmallVector<FieldEncoding, 16> FE;
10079     std::string StubEnc(Enc.substr(Start).str());
10080     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10081     TSC.addIncomplete(ID, std::move(StubEnc));
10082     if (!extractFieldType(FE, RD, CGM, TSC)) {
10083       (void) TSC.removeIncomplete(ID);
10084       return false;
10085     }
10086     IsRecursive = TSC.removeIncomplete(ID);
10087     // The ABI requires unions to be sorted but not structures.
10088     // See FieldEncoding::operator< for sort algorithm.
10089     if (RT->isUnionType())
10090       llvm::sort(FE);
10091     // We can now complete the TypeString.
10092     unsigned E = FE.size();
10093     for (unsigned I = 0; I != E; ++I) {
10094       if (I)
10095         Enc += ',';
10096       Enc += FE[I].str();
10097     }
10098   }
10099   Enc += '}';
10100   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10101   return true;
10102 }
10103 
10104 /// Appends enum types to Enc and adds the encoding to the cache.
10105 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10106                            TypeStringCache &TSC,
10107                            const IdentifierInfo *ID) {
10108   // Append the cached TypeString if we have one.
10109   StringRef TypeString = TSC.lookupStr(ID);
10110   if (!TypeString.empty()) {
10111     Enc += TypeString;
10112     return true;
10113   }
10114 
10115   size_t Start = Enc.size();
10116   Enc += "e(";
10117   if (ID)
10118     Enc += ID->getName();
10119   Enc += "){";
10120 
10121   // We collect all encoded enumerations and order them alphanumerically.
10122   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10123     SmallVector<FieldEncoding, 16> FE;
10124     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10125          ++I) {
10126       SmallStringEnc EnumEnc;
10127       EnumEnc += "m(";
10128       EnumEnc += I->getName();
10129       EnumEnc += "){";
10130       I->getInitVal().toString(EnumEnc);
10131       EnumEnc += '}';
10132       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10133     }
10134     llvm::sort(FE);
10135     unsigned E = FE.size();
10136     for (unsigned I = 0; I != E; ++I) {
10137       if (I)
10138         Enc += ',';
10139       Enc += FE[I].str();
10140     }
10141   }
10142   Enc += '}';
10143   TSC.addIfComplete(ID, Enc.substr(Start), false);
10144   return true;
10145 }
10146 
10147 /// Appends type's qualifier to Enc.
10148 /// This is done prior to appending the type's encoding.
10149 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10150   // Qualifiers are emitted in alphabetical order.
10151   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10152   int Lookup = 0;
10153   if (QT.isConstQualified())
10154     Lookup += 1<<0;
10155   if (QT.isRestrictQualified())
10156     Lookup += 1<<1;
10157   if (QT.isVolatileQualified())
10158     Lookup += 1<<2;
10159   Enc += Table[Lookup];
10160 }
10161 
10162 /// Appends built-in types to Enc.
10163 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10164   const char *EncType;
10165   switch (BT->getKind()) {
10166     case BuiltinType::Void:
10167       EncType = "0";
10168       break;
10169     case BuiltinType::Bool:
10170       EncType = "b";
10171       break;
10172     case BuiltinType::Char_U:
10173       EncType = "uc";
10174       break;
10175     case BuiltinType::UChar:
10176       EncType = "uc";
10177       break;
10178     case BuiltinType::SChar:
10179       EncType = "sc";
10180       break;
10181     case BuiltinType::UShort:
10182       EncType = "us";
10183       break;
10184     case BuiltinType::Short:
10185       EncType = "ss";
10186       break;
10187     case BuiltinType::UInt:
10188       EncType = "ui";
10189       break;
10190     case BuiltinType::Int:
10191       EncType = "si";
10192       break;
10193     case BuiltinType::ULong:
10194       EncType = "ul";
10195       break;
10196     case BuiltinType::Long:
10197       EncType = "sl";
10198       break;
10199     case BuiltinType::ULongLong:
10200       EncType = "ull";
10201       break;
10202     case BuiltinType::LongLong:
10203       EncType = "sll";
10204       break;
10205     case BuiltinType::Float:
10206       EncType = "ft";
10207       break;
10208     case BuiltinType::Double:
10209       EncType = "d";
10210       break;
10211     case BuiltinType::LongDouble:
10212       EncType = "ld";
10213       break;
10214     default:
10215       return false;
10216   }
10217   Enc += EncType;
10218   return true;
10219 }
10220 
10221 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10222 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10223                               const CodeGen::CodeGenModule &CGM,
10224                               TypeStringCache &TSC) {
10225   Enc += "p(";
10226   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10227     return false;
10228   Enc += ')';
10229   return true;
10230 }
10231 
10232 /// Appends array encoding to Enc before calling appendType for the element.
10233 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10234                             const ArrayType *AT,
10235                             const CodeGen::CodeGenModule &CGM,
10236                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10237   if (AT->getSizeModifier() != ArrayType::Normal)
10238     return false;
10239   Enc += "a(";
10240   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10241     CAT->getSize().toStringUnsigned(Enc);
10242   else
10243     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10244   Enc += ':';
10245   // The Qualifiers should be attached to the type rather than the array.
10246   appendQualifier(Enc, QT);
10247   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10248     return false;
10249   Enc += ')';
10250   return true;
10251 }
10252 
10253 /// Appends a function encoding to Enc, calling appendType for the return type
10254 /// and the arguments.
10255 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10256                              const CodeGen::CodeGenModule &CGM,
10257                              TypeStringCache &TSC) {
10258   Enc += "f{";
10259   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10260     return false;
10261   Enc += "}(";
10262   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10263     // N.B. we are only interested in the adjusted param types.
10264     auto I = FPT->param_type_begin();
10265     auto E = FPT->param_type_end();
10266     if (I != E) {
10267       do {
10268         if (!appendType(Enc, *I, CGM, TSC))
10269           return false;
10270         ++I;
10271         if (I != E)
10272           Enc += ',';
10273       } while (I != E);
10274       if (FPT->isVariadic())
10275         Enc += ",va";
10276     } else {
10277       if (FPT->isVariadic())
10278         Enc += "va";
10279       else
10280         Enc += '0';
10281     }
10282   }
10283   Enc += ')';
10284   return true;
10285 }
10286 
10287 /// Handles the type's qualifier before dispatching a call to handle specific
10288 /// type encodings.
10289 static bool appendType(SmallStringEnc &Enc, QualType QType,
10290                        const CodeGen::CodeGenModule &CGM,
10291                        TypeStringCache &TSC) {
10292 
10293   QualType QT = QType.getCanonicalType();
10294 
10295   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10296     // The Qualifiers should be attached to the type rather than the array.
10297     // Thus we don't call appendQualifier() here.
10298     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10299 
10300   appendQualifier(Enc, QT);
10301 
10302   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10303     return appendBuiltinType(Enc, BT);
10304 
10305   if (const PointerType *PT = QT->getAs<PointerType>())
10306     return appendPointerType(Enc, PT, CGM, TSC);
10307 
10308   if (const EnumType *ET = QT->getAs<EnumType>())
10309     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10310 
10311   if (const RecordType *RT = QT->getAsStructureType())
10312     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10313 
10314   if (const RecordType *RT = QT->getAsUnionType())
10315     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10316 
10317   if (const FunctionType *FT = QT->getAs<FunctionType>())
10318     return appendFunctionType(Enc, FT, CGM, TSC);
10319 
10320   return false;
10321 }
10322 
10323 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10324                           const CodeGen::CodeGenModule &CGM,
10325                           TypeStringCache &TSC) {
10326   if (!D)
10327     return false;
10328 
10329   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10330     if (FD->getLanguageLinkage() != CLanguageLinkage)
10331       return false;
10332     return appendType(Enc, FD->getType(), CGM, TSC);
10333   }
10334 
10335   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10336     if (VD->getLanguageLinkage() != CLanguageLinkage)
10337       return false;
10338     QualType QT = VD->getType().getCanonicalType();
10339     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10340       // Global ArrayTypes are given a size of '*' if the size is unknown.
10341       // The Qualifiers should be attached to the type rather than the array.
10342       // Thus we don't call appendQualifier() here.
10343       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10344     }
10345     return appendType(Enc, QT, CGM, TSC);
10346   }
10347   return false;
10348 }
10349 
10350 //===----------------------------------------------------------------------===//
10351 // RISCV ABI Implementation
10352 //===----------------------------------------------------------------------===//
10353 
10354 namespace {
10355 class RISCVABIInfo : public DefaultABIInfo {
10356 private:
10357   // Size of the integer ('x') registers in bits.
10358   unsigned XLen;
10359   // Size of the floating point ('f') registers in bits. Note that the target
10360   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10361   // with soft float ABI has FLen==0).
10362   unsigned FLen;
10363   static const int NumArgGPRs = 8;
10364   static const int NumArgFPRs = 8;
10365   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10366                                       llvm::Type *&Field1Ty,
10367                                       CharUnits &Field1Off,
10368                                       llvm::Type *&Field2Ty,
10369                                       CharUnits &Field2Off) const;
10370 
10371 public:
10372   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10373       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10374 
10375   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10376   // non-virtual, but computeInfo is virtual, so we overload it.
10377   void computeInfo(CGFunctionInfo &FI) const override;
10378 
10379   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10380                                   int &ArgFPRsLeft) const;
10381   ABIArgInfo classifyReturnType(QualType RetTy) const;
10382 
10383   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10384                     QualType Ty) const override;
10385 
10386   ABIArgInfo extendType(QualType Ty) const;
10387 
10388   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10389                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10390                                 CharUnits &Field2Off, int &NeededArgGPRs,
10391                                 int &NeededArgFPRs) const;
10392   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10393                                                CharUnits Field1Off,
10394                                                llvm::Type *Field2Ty,
10395                                                CharUnits Field2Off) const;
10396 };
10397 } // end anonymous namespace
10398 
10399 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10400   QualType RetTy = FI.getReturnType();
10401   if (!getCXXABI().classifyReturnType(FI))
10402     FI.getReturnInfo() = classifyReturnType(RetTy);
10403 
10404   // IsRetIndirect is true if classifyArgumentType indicated the value should
10405   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10406   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10407   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10408   // list and pass indirectly on RV32.
10409   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10410   if (!IsRetIndirect && RetTy->isScalarType() &&
10411       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10412     if (RetTy->isComplexType() && FLen) {
10413       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
10414       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10415     } else {
10416       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10417       IsRetIndirect = true;
10418     }
10419   }
10420 
10421   // We must track the number of GPRs used in order to conform to the RISC-V
10422   // ABI, as integer scalars passed in registers should have signext/zeroext
10423   // when promoted, but are anyext if passed on the stack. As GPR usage is
10424   // different for variadic arguments, we must also track whether we are
10425   // examining a vararg or not.
10426   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10427   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10428   int NumFixedArgs = FI.getNumRequiredArgs();
10429 
10430   int ArgNum = 0;
10431   for (auto &ArgInfo : FI.arguments()) {
10432     bool IsFixed = ArgNum < NumFixedArgs;
10433     ArgInfo.info =
10434         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10435     ArgNum++;
10436   }
10437 }
10438 
10439 // Returns true if the struct is a potential candidate for the floating point
10440 // calling convention. If this function returns true, the caller is
10441 // responsible for checking that if there is only a single field then that
10442 // field is a float.
10443 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10444                                                   llvm::Type *&Field1Ty,
10445                                                   CharUnits &Field1Off,
10446                                                   llvm::Type *&Field2Ty,
10447                                                   CharUnits &Field2Off) const {
10448   bool IsInt = Ty->isIntegralOrEnumerationType();
10449   bool IsFloat = Ty->isRealFloatingType();
10450 
10451   if (IsInt || IsFloat) {
10452     uint64_t Size = getContext().getTypeSize(Ty);
10453     if (IsInt && Size > XLen)
10454       return false;
10455     // Can't be eligible if larger than the FP registers. Half precision isn't
10456     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10457     // default to the integer ABI in that case.
10458     if (IsFloat && (Size > FLen || Size < 32))
10459       return false;
10460     // Can't be eligible if an integer type was already found (int+int pairs
10461     // are not eligible).
10462     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10463       return false;
10464     if (!Field1Ty) {
10465       Field1Ty = CGT.ConvertType(Ty);
10466       Field1Off = CurOff;
10467       return true;
10468     }
10469     if (!Field2Ty) {
10470       Field2Ty = CGT.ConvertType(Ty);
10471       Field2Off = CurOff;
10472       return true;
10473     }
10474     return false;
10475   }
10476 
10477   if (auto CTy = Ty->getAs<ComplexType>()) {
10478     if (Field1Ty)
10479       return false;
10480     QualType EltTy = CTy->getElementType();
10481     if (getContext().getTypeSize(EltTy) > FLen)
10482       return false;
10483     Field1Ty = CGT.ConvertType(EltTy);
10484     Field1Off = CurOff;
10485     assert(CurOff.isZero() && "Unexpected offset for first field");
10486     Field2Ty = Field1Ty;
10487     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10488     return true;
10489   }
10490 
10491   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10492     uint64_t ArraySize = ATy->getSize().getZExtValue();
10493     QualType EltTy = ATy->getElementType();
10494     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10495     for (uint64_t i = 0; i < ArraySize; ++i) {
10496       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10497                                                 Field1Off, Field2Ty, Field2Off);
10498       if (!Ret)
10499         return false;
10500       CurOff += EltSize;
10501     }
10502     return true;
10503   }
10504 
10505   if (const auto *RTy = Ty->getAs<RecordType>()) {
10506     // Structures with either a non-trivial destructor or a non-trivial
10507     // copy constructor are not eligible for the FP calling convention.
10508     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10509       return false;
10510     if (isEmptyRecord(getContext(), Ty, true))
10511       return true;
10512     const RecordDecl *RD = RTy->getDecl();
10513     // Unions aren't eligible unless they're empty (which is caught above).
10514     if (RD->isUnion())
10515       return false;
10516     int ZeroWidthBitFieldCount = 0;
10517     for (const FieldDecl *FD : RD->fields()) {
10518       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10519       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10520       QualType QTy = FD->getType();
10521       if (FD->isBitField()) {
10522         unsigned BitWidth = FD->getBitWidthValue(getContext());
10523         // Allow a bitfield with a type greater than XLen as long as the
10524         // bitwidth is XLen or less.
10525         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10526           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10527         if (BitWidth == 0) {
10528           ZeroWidthBitFieldCount++;
10529           continue;
10530         }
10531       }
10532 
10533       bool Ret = detectFPCCEligibleStructHelper(
10534           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10535           Field1Ty, Field1Off, Field2Ty, Field2Off);
10536       if (!Ret)
10537         return false;
10538 
10539       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10540       // or int+fp structs, but are ignored for a struct with an fp field and
10541       // any number of zero-width bitfields.
10542       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10543         return false;
10544     }
10545     return Field1Ty != nullptr;
10546   }
10547 
10548   return false;
10549 }
10550 
10551 // Determine if a struct is eligible for passing according to the floating
10552 // point calling convention (i.e., when flattened it contains a single fp
10553 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10554 // NeededArgGPRs are incremented appropriately.
10555 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10556                                             CharUnits &Field1Off,
10557                                             llvm::Type *&Field2Ty,
10558                                             CharUnits &Field2Off,
10559                                             int &NeededArgGPRs,
10560                                             int &NeededArgFPRs) const {
10561   Field1Ty = nullptr;
10562   Field2Ty = nullptr;
10563   NeededArgGPRs = 0;
10564   NeededArgFPRs = 0;
10565   bool IsCandidate = detectFPCCEligibleStructHelper(
10566       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10567   // Not really a candidate if we have a single int but no float.
10568   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10569     return false;
10570   if (!IsCandidate)
10571     return false;
10572   if (Field1Ty && Field1Ty->isFloatingPointTy())
10573     NeededArgFPRs++;
10574   else if (Field1Ty)
10575     NeededArgGPRs++;
10576   if (Field2Ty && Field2Ty->isFloatingPointTy())
10577     NeededArgFPRs++;
10578   else if (Field2Ty)
10579     NeededArgGPRs++;
10580   return IsCandidate;
10581 }
10582 
10583 // Call getCoerceAndExpand for the two-element flattened struct described by
10584 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10585 // appropriate coerceToType and unpaddedCoerceToType.
10586 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10587     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10588     CharUnits Field2Off) const {
10589   SmallVector<llvm::Type *, 3> CoerceElts;
10590   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10591   if (!Field1Off.isZero())
10592     CoerceElts.push_back(llvm::ArrayType::get(
10593         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10594 
10595   CoerceElts.push_back(Field1Ty);
10596   UnpaddedCoerceElts.push_back(Field1Ty);
10597 
10598   if (!Field2Ty) {
10599     return ABIArgInfo::getCoerceAndExpand(
10600         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10601         UnpaddedCoerceElts[0]);
10602   }
10603 
10604   CharUnits Field2Align =
10605       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10606   CharUnits Field1Size =
10607       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10608   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
10609 
10610   CharUnits Padding = CharUnits::Zero();
10611   if (Field2Off > Field2OffNoPadNoPack)
10612     Padding = Field2Off - Field2OffNoPadNoPack;
10613   else if (Field2Off != Field2Align && Field2Off > Field1Size)
10614     Padding = Field2Off - Field1Size;
10615 
10616   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10617 
10618   if (!Padding.isZero())
10619     CoerceElts.push_back(llvm::ArrayType::get(
10620         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10621 
10622   CoerceElts.push_back(Field2Ty);
10623   UnpaddedCoerceElts.push_back(Field2Ty);
10624 
10625   auto CoerceToType =
10626       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10627   auto UnpaddedCoerceToType =
10628       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10629 
10630   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10631 }
10632 
10633 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10634                                               int &ArgGPRsLeft,
10635                                               int &ArgFPRsLeft) const {
10636   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10637   Ty = useFirstFieldIfTransparentUnion(Ty);
10638 
10639   // Structures with either a non-trivial destructor or a non-trivial
10640   // copy constructor are always passed indirectly.
10641   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10642     if (ArgGPRsLeft)
10643       ArgGPRsLeft -= 1;
10644     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10645                                            CGCXXABI::RAA_DirectInMemory);
10646   }
10647 
10648   // Ignore empty structs/unions.
10649   if (isEmptyRecord(getContext(), Ty, true))
10650     return ABIArgInfo::getIgnore();
10651 
10652   uint64_t Size = getContext().getTypeSize(Ty);
10653 
10654   // Pass floating point values via FPRs if possible.
10655   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10656       FLen >= Size && ArgFPRsLeft) {
10657     ArgFPRsLeft--;
10658     return ABIArgInfo::getDirect();
10659   }
10660 
10661   // Complex types for the hard float ABI must be passed direct rather than
10662   // using CoerceAndExpand.
10663   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10664     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10665     if (getContext().getTypeSize(EltTy) <= FLen) {
10666       ArgFPRsLeft -= 2;
10667       return ABIArgInfo::getDirect();
10668     }
10669   }
10670 
10671   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10672     llvm::Type *Field1Ty = nullptr;
10673     llvm::Type *Field2Ty = nullptr;
10674     CharUnits Field1Off = CharUnits::Zero();
10675     CharUnits Field2Off = CharUnits::Zero();
10676     int NeededArgGPRs;
10677     int NeededArgFPRs;
10678     bool IsCandidate =
10679         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10680                                  NeededArgGPRs, NeededArgFPRs);
10681     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10682         NeededArgFPRs <= ArgFPRsLeft) {
10683       ArgGPRsLeft -= NeededArgGPRs;
10684       ArgFPRsLeft -= NeededArgFPRs;
10685       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10686                                                Field2Off);
10687     }
10688   }
10689 
10690   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10691   bool MustUseStack = false;
10692   // Determine the number of GPRs needed to pass the current argument
10693   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10694   // register pairs, so may consume 3 registers.
10695   int NeededArgGPRs = 1;
10696   if (!IsFixed && NeededAlign == 2 * XLen)
10697     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10698   else if (Size > XLen && Size <= 2 * XLen)
10699     NeededArgGPRs = 2;
10700 
10701   if (NeededArgGPRs > ArgGPRsLeft) {
10702     MustUseStack = true;
10703     NeededArgGPRs = ArgGPRsLeft;
10704   }
10705 
10706   ArgGPRsLeft -= NeededArgGPRs;
10707 
10708   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10709     // Treat an enum type as its underlying type.
10710     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10711       Ty = EnumTy->getDecl()->getIntegerType();
10712 
10713     // All integral types are promoted to XLen width, unless passed on the
10714     // stack.
10715     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10716       return extendType(Ty);
10717     }
10718 
10719     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10720       if (EIT->getNumBits() < XLen && !MustUseStack)
10721         return extendType(Ty);
10722       if (EIT->getNumBits() > 128 ||
10723           (!getContext().getTargetInfo().hasInt128Type() &&
10724            EIT->getNumBits() > 64))
10725         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10726     }
10727 
10728     return ABIArgInfo::getDirect();
10729   }
10730 
10731   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10732   // so coerce to integers.
10733   if (Size <= 2 * XLen) {
10734     unsigned Alignment = getContext().getTypeAlign(Ty);
10735 
10736     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10737     // required, and a 2-element XLen array if only XLen alignment is required.
10738     if (Size <= XLen) {
10739       return ABIArgInfo::getDirect(
10740           llvm::IntegerType::get(getVMContext(), XLen));
10741     } else if (Alignment == 2 * XLen) {
10742       return ABIArgInfo::getDirect(
10743           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10744     } else {
10745       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10746           llvm::IntegerType::get(getVMContext(), XLen), 2));
10747     }
10748   }
10749   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10750 }
10751 
10752 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10753   if (RetTy->isVoidType())
10754     return ABIArgInfo::getIgnore();
10755 
10756   int ArgGPRsLeft = 2;
10757   int ArgFPRsLeft = FLen ? 2 : 0;
10758 
10759   // The rules for return and argument types are the same, so defer to
10760   // classifyArgumentType.
10761   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10762                               ArgFPRsLeft);
10763 }
10764 
10765 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10766                                 QualType Ty) const {
10767   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10768 
10769   // Empty records are ignored for parameter passing purposes.
10770   if (isEmptyRecord(getContext(), Ty, true)) {
10771     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10772     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10773     return Addr;
10774   }
10775 
10776   std::pair<CharUnits, CharUnits> SizeAndAlign =
10777       getContext().getTypeInfoInChars(Ty);
10778 
10779   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10780   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
10781 
10782   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
10783                           SlotSize, /*AllowHigherAlign=*/true);
10784 }
10785 
10786 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10787   int TySize = getContext().getTypeSize(Ty);
10788   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10789   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10790     return ABIArgInfo::getSignExtend(Ty);
10791   return ABIArgInfo::getExtend(Ty);
10792 }
10793 
10794 namespace {
10795 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10796 public:
10797   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10798                          unsigned FLen)
10799       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10800 
10801   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10802                            CodeGen::CodeGenModule &CGM) const override {
10803     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10804     if (!FD) return;
10805 
10806     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10807     if (!Attr)
10808       return;
10809 
10810     const char *Kind;
10811     switch (Attr->getInterrupt()) {
10812     case RISCVInterruptAttr::user: Kind = "user"; break;
10813     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10814     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10815     }
10816 
10817     auto *Fn = cast<llvm::Function>(GV);
10818 
10819     Fn->addFnAttr("interrupt", Kind);
10820   }
10821 };
10822 } // namespace
10823 
10824 //===----------------------------------------------------------------------===//
10825 // VE ABI Implementation.
10826 //
10827 namespace {
10828 class VEABIInfo : public DefaultABIInfo {
10829 public:
10830   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10831 
10832 private:
10833   ABIArgInfo classifyReturnType(QualType RetTy) const;
10834   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10835   void computeInfo(CGFunctionInfo &FI) const override;
10836 };
10837 } // end anonymous namespace
10838 
10839 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10840   if (Ty->isAnyComplexType())
10841     return ABIArgInfo::getDirect();
10842   uint64_t Size = getContext().getTypeSize(Ty);
10843   if (Size < 64 && Ty->isIntegerType())
10844     return ABIArgInfo::getExtend(Ty);
10845   return DefaultABIInfo::classifyReturnType(Ty);
10846 }
10847 
10848 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10849   if (Ty->isAnyComplexType())
10850     return ABIArgInfo::getDirect();
10851   uint64_t Size = getContext().getTypeSize(Ty);
10852   if (Size < 64 && Ty->isIntegerType())
10853     return ABIArgInfo::getExtend(Ty);
10854   return DefaultABIInfo::classifyArgumentType(Ty);
10855 }
10856 
10857 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10858   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10859   for (auto &Arg : FI.arguments())
10860     Arg.info = classifyArgumentType(Arg.type);
10861 }
10862 
10863 namespace {
10864 class VETargetCodeGenInfo : public TargetCodeGenInfo {
10865 public:
10866   VETargetCodeGenInfo(CodeGenTypes &CGT)
10867       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
10868   // VE ABI requires the arguments of variadic and prototype-less functions
10869   // are passed in both registers and memory.
10870   bool isNoProtoCallVariadic(const CallArgList &args,
10871                              const FunctionNoProtoType *fnType) const override {
10872     return true;
10873   }
10874 };
10875 } // end anonymous namespace
10876 
10877 //===----------------------------------------------------------------------===//
10878 // Driver code
10879 //===----------------------------------------------------------------------===//
10880 
10881 bool CodeGenModule::supportsCOMDAT() const {
10882   return getTriple().supportsCOMDAT();
10883 }
10884 
10885 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10886   if (TheTargetCodeGenInfo)
10887     return *TheTargetCodeGenInfo;
10888 
10889   // Helper to set the unique_ptr while still keeping the return value.
10890   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10891     this->TheTargetCodeGenInfo.reset(P);
10892     return *P;
10893   };
10894 
10895   const llvm::Triple &Triple = getTarget().getTriple();
10896   switch (Triple.getArch()) {
10897   default:
10898     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10899 
10900   case llvm::Triple::le32:
10901     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10902   case llvm::Triple::mips:
10903   case llvm::Triple::mipsel:
10904     if (Triple.getOS() == llvm::Triple::NaCl)
10905       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10906     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10907 
10908   case llvm::Triple::mips64:
10909   case llvm::Triple::mips64el:
10910     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10911 
10912   case llvm::Triple::avr:
10913     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10914 
10915   case llvm::Triple::aarch64:
10916   case llvm::Triple::aarch64_32:
10917   case llvm::Triple::aarch64_be: {
10918     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10919     if (getTarget().getABI() == "darwinpcs")
10920       Kind = AArch64ABIInfo::DarwinPCS;
10921     else if (Triple.isOSWindows())
10922       return SetCGInfo(
10923           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10924 
10925     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10926   }
10927 
10928   case llvm::Triple::wasm32:
10929   case llvm::Triple::wasm64: {
10930     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10931     if (getTarget().getABI() == "experimental-mv")
10932       Kind = WebAssemblyABIInfo::ExperimentalMV;
10933     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10934   }
10935 
10936   case llvm::Triple::arm:
10937   case llvm::Triple::armeb:
10938   case llvm::Triple::thumb:
10939   case llvm::Triple::thumbeb: {
10940     if (Triple.getOS() == llvm::Triple::Win32) {
10941       return SetCGInfo(
10942           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10943     }
10944 
10945     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10946     StringRef ABIStr = getTarget().getABI();
10947     if (ABIStr == "apcs-gnu")
10948       Kind = ARMABIInfo::APCS;
10949     else if (ABIStr == "aapcs16")
10950       Kind = ARMABIInfo::AAPCS16_VFP;
10951     else if (CodeGenOpts.FloatABI == "hard" ||
10952              (CodeGenOpts.FloatABI != "soft" &&
10953               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10954                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10955                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10956       Kind = ARMABIInfo::AAPCS_VFP;
10957 
10958     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10959   }
10960 
10961   case llvm::Triple::ppc: {
10962     if (Triple.isOSAIX())
10963       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10964 
10965     bool IsSoftFloat =
10966         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10967     bool RetSmallStructInRegABI =
10968         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10969     return SetCGInfo(
10970         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10971   }
10972   case llvm::Triple::ppc64:
10973     if (Triple.isOSAIX())
10974       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10975 
10976     if (Triple.isOSBinFormatELF()) {
10977       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10978       if (getTarget().getABI() == "elfv2")
10979         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10980       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10981       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10982 
10983       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10984                                                         IsSoftFloat));
10985     }
10986     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10987   case llvm::Triple::ppc64le: {
10988     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10989     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10990     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10991       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10992     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10993     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10994 
10995     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10996                                                       IsSoftFloat));
10997   }
10998 
10999   case llvm::Triple::nvptx:
11000   case llvm::Triple::nvptx64:
11001     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
11002 
11003   case llvm::Triple::msp430:
11004     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
11005 
11006   case llvm::Triple::riscv32:
11007   case llvm::Triple::riscv64: {
11008     StringRef ABIStr = getTarget().getABI();
11009     unsigned XLen = getTarget().getPointerWidth(0);
11010     unsigned ABIFLen = 0;
11011     if (ABIStr.endswith("f"))
11012       ABIFLen = 32;
11013     else if (ABIStr.endswith("d"))
11014       ABIFLen = 64;
11015     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11016   }
11017 
11018   case llvm::Triple::systemz: {
11019     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11020     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11021     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11022   }
11023 
11024   case llvm::Triple::tce:
11025   case llvm::Triple::tcele:
11026     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11027 
11028   case llvm::Triple::x86: {
11029     bool IsDarwinVectorABI = Triple.isOSDarwin();
11030     bool RetSmallStructInRegABI =
11031         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11032     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11033 
11034     if (Triple.getOS() == llvm::Triple::Win32) {
11035       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11036           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11037           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11038     } else {
11039       return SetCGInfo(new X86_32TargetCodeGenInfo(
11040           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11041           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11042           CodeGenOpts.FloatABI == "soft"));
11043     }
11044   }
11045 
11046   case llvm::Triple::x86_64: {
11047     StringRef ABI = getTarget().getABI();
11048     X86AVXABILevel AVXLevel =
11049         (ABI == "avx512"
11050              ? X86AVXABILevel::AVX512
11051              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11052 
11053     switch (Triple.getOS()) {
11054     case llvm::Triple::Win32:
11055       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11056     default:
11057       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11058     }
11059   }
11060   case llvm::Triple::hexagon:
11061     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11062   case llvm::Triple::lanai:
11063     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11064   case llvm::Triple::r600:
11065     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11066   case llvm::Triple::amdgcn:
11067     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11068   case llvm::Triple::sparc:
11069     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11070   case llvm::Triple::sparcv9:
11071     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11072   case llvm::Triple::xcore:
11073     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11074   case llvm::Triple::arc:
11075     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11076   case llvm::Triple::spir:
11077   case llvm::Triple::spir64:
11078     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11079   case llvm::Triple::ve:
11080     return SetCGInfo(new VETargetCodeGenInfo(Types));
11081   }
11082 }
11083 
11084 /// Create an OpenCL kernel for an enqueued block.
11085 ///
11086 /// The kernel has the same function type as the block invoke function. Its
11087 /// name is the name of the block invoke function postfixed with "_kernel".
11088 /// It simply calls the block invoke function then returns.
11089 llvm::Function *
11090 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11091                                              llvm::Function *Invoke,
11092                                              llvm::Value *BlockLiteral) const {
11093   auto *InvokeFT = Invoke->getFunctionType();
11094   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11095   for (auto &P : InvokeFT->params())
11096     ArgTys.push_back(P);
11097   auto &C = CGF.getLLVMContext();
11098   std::string Name = Invoke->getName().str() + "_kernel";
11099   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11100   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11101                                    &CGF.CGM.getModule());
11102   auto IP = CGF.Builder.saveIP();
11103   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11104   auto &Builder = CGF.Builder;
11105   Builder.SetInsertPoint(BB);
11106   llvm::SmallVector<llvm::Value *, 2> Args;
11107   for (auto &A : F->args())
11108     Args.push_back(&A);
11109   Builder.CreateCall(Invoke, Args);
11110   Builder.CreateRetVoid();
11111   Builder.restoreIP(IP);
11112   return F;
11113 }
11114 
11115 /// Create an OpenCL kernel for an enqueued block.
11116 ///
11117 /// The type of the first argument (the block literal) is the struct type
11118 /// of the block literal instead of a pointer type. The first argument
11119 /// (block literal) is passed directly by value to the kernel. The kernel
11120 /// allocates the same type of struct on stack and stores the block literal
11121 /// to it and passes its pointer to the block invoke function. The kernel
11122 /// has "enqueued-block" function attribute and kernel argument metadata.
11123 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11124     CodeGenFunction &CGF, llvm::Function *Invoke,
11125     llvm::Value *BlockLiteral) const {
11126   auto &Builder = CGF.Builder;
11127   auto &C = CGF.getLLVMContext();
11128 
11129   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11130   auto *InvokeFT = Invoke->getFunctionType();
11131   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11132   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11133   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11134   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11135   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11136   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11137   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11138 
11139   ArgTys.push_back(BlockTy);
11140   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11141   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11142   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11143   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11144   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11145   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11146   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11147     ArgTys.push_back(InvokeFT->getParamType(I));
11148     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11149     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11150     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11151     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11152     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11153     ArgNames.push_back(
11154         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11155   }
11156   std::string Name = Invoke->getName().str() + "_kernel";
11157   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11158   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11159                                    &CGF.CGM.getModule());
11160   F->addFnAttr("enqueued-block");
11161   auto IP = CGF.Builder.saveIP();
11162   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11163   Builder.SetInsertPoint(BB);
11164   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11165   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11166   BlockPtr->setAlignment(BlockAlign);
11167   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11168   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11169   llvm::SmallVector<llvm::Value *, 2> Args;
11170   Args.push_back(Cast);
11171   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11172     Args.push_back(I);
11173   Builder.CreateCall(Invoke, Args);
11174   Builder.CreateRetVoid();
11175   Builder.restoreIP(IP);
11176 
11177   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11178   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11179   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11180   F->setMetadata("kernel_arg_base_type",
11181                  llvm::MDNode::get(C, ArgBaseTypeNames));
11182   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11183   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11184     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11185 
11186   return F;
11187 }
11188