1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
43   }
44 }
45 
46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
51 ABIArgInfo
52 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
53                                  llvm::Type *Padding) const {
54   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
55                                  ByRef, Realign, Padding);
56 }
57 
58 ABIArgInfo
59 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
60   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
61                                       /*ByRef*/ false, Realign);
62 }
63 
64 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
65                              QualType Ty) const {
66   return Address::invalid();
67 }
68 
69 ABIInfo::~ABIInfo() {}
70 
71 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
72                                               CGCXXABI &CXXABI) {
73   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
74   if (!RD)
75     return CGCXXABI::RAA_Default;
76   return CXXABI.getRecordArgABI(RD);
77 }
78 
79 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
80                                               CGCXXABI &CXXABI) {
81   const RecordType *RT = T->getAs<RecordType>();
82   if (!RT)
83     return CGCXXABI::RAA_Default;
84   return getRecordArgABI(RT, CXXABI);
85 }
86 
87 /// Pass transparent unions as if they were the type of the first element. Sema
88 /// should ensure that all elements of the union have the same "machine type".
89 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
90   if (const RecordType *UT = Ty->getAsUnionType()) {
91     const RecordDecl *UD = UT->getDecl();
92     if (UD->hasAttr<TransparentUnionAttr>()) {
93       assert(!UD->field_empty() && "sema created an empty transparent union");
94       return UD->field_begin()->getType();
95     }
96   }
97   return Ty;
98 }
99 
100 CGCXXABI &ABIInfo::getCXXABI() const {
101   return CGT.getCXXABI();
102 }
103 
104 ASTContext &ABIInfo::getContext() const {
105   return CGT.getContext();
106 }
107 
108 llvm::LLVMContext &ABIInfo::getVMContext() const {
109   return CGT.getLLVMContext();
110 }
111 
112 const llvm::DataLayout &ABIInfo::getDataLayout() const {
113   return CGT.getDataLayout();
114 }
115 
116 const TargetInfo &ABIInfo::getTarget() const {
117   return CGT.getTarget();
118 }
119 
120 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
121   return false;
122 }
123 
124 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
125                                                 uint64_t Members) const {
126   return false;
127 }
128 
129 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
130   return false;
131 }
132 
133 void ABIArgInfo::dump() const {
134   raw_ostream &OS = llvm::errs();
135   OS << "(ABIArgInfo Kind=";
136   switch (TheKind) {
137   case Direct:
138     OS << "Direct Type=";
139     if (llvm::Type *Ty = getCoerceToType())
140       Ty->print(OS);
141     else
142       OS << "null";
143     break;
144   case Extend:
145     OS << "Extend";
146     break;
147   case Ignore:
148     OS << "Ignore";
149     break;
150   case InAlloca:
151     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
152     break;
153   case Indirect:
154     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
155        << " ByVal=" << getIndirectByVal()
156        << " Realign=" << getIndirectRealign();
157     break;
158   case Expand:
159     OS << "Expand";
160     break;
161   }
162   OS << ")\n";
163 }
164 
165 /// Emit va_arg for a platform using the common void* representation,
166 /// where arguments are simply emitted in an array of slots on the stack.
167 ///
168 /// This version implements the core direct-value passing rules.
169 ///
170 /// \param SlotSize - The size and alignment of a stack slot.
171 ///   Each argument will be allocated to a multiple of this number of
172 ///   slots, and all the slots will be aligned to this value.
173 /// \param AllowHigherAlign - The slot alignment is not a cap;
174 ///   an argument type with an alignment greater than the slot size
175 ///   will be emitted on a higher-alignment address, potentially
176 ///   leaving one or more empty slots behind as padding.  If this
177 ///   is false, the returned address might be less-aligned than
178 ///   DirectAlign.
179 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
180                                       Address VAListAddr,
181                                       llvm::Type *DirectTy,
182                                       CharUnits DirectSize,
183                                       CharUnits DirectAlign,
184                                       CharUnits SlotSize,
185                                       bool AllowHigherAlign) {
186   // Cast the element type to i8* if necessary.  Some platforms define
187   // va_list as a struct containing an i8* instead of just an i8*.
188   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
189     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
190 
191   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
192 
193   // If the CC aligns values higher than the slot size, do so if needed.
194   Address Addr = Address::invalid();
195   if (AllowHigherAlign && DirectAlign > SlotSize) {
196     llvm::Value *PtrAsInt = Ptr;
197     PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
198     PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
199           llvm::ConstantInt::get(CGF.IntPtrTy, DirectAlign.getQuantity() - 1));
200     PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
201              llvm::ConstantInt::get(CGF.IntPtrTy, -DirectAlign.getQuantity()));
202     Addr = Address(CGF.Builder.CreateIntToPtr(PtrAsInt, Ptr->getType(),
203                                               "argp.cur.aligned"),
204                    DirectAlign);
205   } else {
206     Addr = Address(Ptr, SlotSize);
207   }
208 
209   // Advance the pointer past the argument, then store that back.
210   CharUnits FullDirectSize = DirectSize.RoundUpToAlignment(SlotSize);
211   llvm::Value *NextPtr =
212     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
213                                            "argp.next");
214   CGF.Builder.CreateStore(NextPtr, VAListAddr);
215 
216   // If the argument is smaller than a slot, and this is a big-endian
217   // target, the argument will be right-adjusted in its slot.
218   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
219     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
220   }
221 
222   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
223   return Addr;
224 }
225 
226 /// Emit va_arg for a platform using the common void* representation,
227 /// where arguments are simply emitted in an array of slots on the stack.
228 ///
229 /// \param IsIndirect - Values of this type are passed indirectly.
230 /// \param ValueInfo - The size and alignment of this type, generally
231 ///   computed with getContext().getTypeInfoInChars(ValueTy).
232 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
233 ///   Each argument will be allocated to a multiple of this number of
234 ///   slots, and all the slots will be aligned to this value.
235 /// \param AllowHigherAlign - The slot alignment is not a cap;
236 ///   an argument type with an alignment greater than the slot size
237 ///   will be emitted on a higher-alignment address, potentially
238 ///   leaving one or more empty slots behind as padding.
239 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
240                                 QualType ValueTy, bool IsIndirect,
241                                 std::pair<CharUnits, CharUnits> ValueInfo,
242                                 CharUnits SlotSizeAndAlign,
243                                 bool AllowHigherAlign) {
244   // The size and alignment of the value that was passed directly.
245   CharUnits DirectSize, DirectAlign;
246   if (IsIndirect) {
247     DirectSize = CGF.getPointerSize();
248     DirectAlign = CGF.getPointerAlign();
249   } else {
250     DirectSize = ValueInfo.first;
251     DirectAlign = ValueInfo.second;
252   }
253 
254   // Cast the address we've calculated to the right type.
255   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
256   if (IsIndirect)
257     DirectTy = DirectTy->getPointerTo(0);
258 
259   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
260                                         DirectSize, DirectAlign,
261                                         SlotSizeAndAlign,
262                                         AllowHigherAlign);
263 
264   if (IsIndirect) {
265     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
266   }
267 
268   return Addr;
269 
270 }
271 
272 static Address emitMergePHI(CodeGenFunction &CGF,
273                             Address Addr1, llvm::BasicBlock *Block1,
274                             Address Addr2, llvm::BasicBlock *Block2,
275                             const llvm::Twine &Name = "") {
276   assert(Addr1.getType() == Addr2.getType());
277   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
278   PHI->addIncoming(Addr1.getPointer(), Block1);
279   PHI->addIncoming(Addr2.getPointer(), Block2);
280   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
281   return Address(PHI, Align);
282 }
283 
284 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
285 
286 // If someone can figure out a general rule for this, that would be great.
287 // It's probably just doomed to be platform-dependent, though.
288 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
289   // Verified for:
290   //   x86-64     FreeBSD, Linux, Darwin
291   //   x86-32     FreeBSD, Linux, Darwin
292   //   PowerPC    Linux, Darwin
293   //   ARM        Darwin (*not* EABI)
294   //   AArch64    Linux
295   return 32;
296 }
297 
298 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
299                                      const FunctionNoProtoType *fnType) const {
300   // The following conventions are known to require this to be false:
301   //   x86_stdcall
302   //   MIPS
303   // For everything else, we just prefer false unless we opt out.
304   return false;
305 }
306 
307 void
308 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
309                                              llvm::SmallString<24> &Opt) const {
310   // This assumes the user is passing a library name like "rt" instead of a
311   // filename like "librt.a/so", and that they don't care whether it's static or
312   // dynamic.
313   Opt = "-l";
314   Opt += Lib;
315 }
316 
317 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
318 
319 /// isEmptyField - Return true iff a the field is "empty", that is it
320 /// is an unnamed bit-field or an (array of) empty record(s).
321 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
322                          bool AllowArrays) {
323   if (FD->isUnnamedBitfield())
324     return true;
325 
326   QualType FT = FD->getType();
327 
328   // Constant arrays of empty records count as empty, strip them off.
329   // Constant arrays of zero length always count as empty.
330   if (AllowArrays)
331     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
332       if (AT->getSize() == 0)
333         return true;
334       FT = AT->getElementType();
335     }
336 
337   const RecordType *RT = FT->getAs<RecordType>();
338   if (!RT)
339     return false;
340 
341   // C++ record fields are never empty, at least in the Itanium ABI.
342   //
343   // FIXME: We should use a predicate for whether this behavior is true in the
344   // current ABI.
345   if (isa<CXXRecordDecl>(RT->getDecl()))
346     return false;
347 
348   return isEmptyRecord(Context, FT, AllowArrays);
349 }
350 
351 /// isEmptyRecord - Return true iff a structure contains only empty
352 /// fields. Note that a structure with a flexible array member is not
353 /// considered empty.
354 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
355   const RecordType *RT = T->getAs<RecordType>();
356   if (!RT)
357     return 0;
358   const RecordDecl *RD = RT->getDecl();
359   if (RD->hasFlexibleArrayMember())
360     return false;
361 
362   // If this is a C++ record, check the bases first.
363   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
364     for (const auto &I : CXXRD->bases())
365       if (!isEmptyRecord(Context, I.getType(), true))
366         return false;
367 
368   for (const auto *I : RD->fields())
369     if (!isEmptyField(Context, I, AllowArrays))
370       return false;
371   return true;
372 }
373 
374 /// isSingleElementStruct - Determine if a structure is a "single
375 /// element struct", i.e. it has exactly one non-empty field or
376 /// exactly one field which is itself a single element
377 /// struct. Structures with flexible array members are never
378 /// considered single element structs.
379 ///
380 /// \return The field declaration for the single non-empty field, if
381 /// it exists.
382 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
383   const RecordType *RT = T->getAs<RecordType>();
384   if (!RT)
385     return nullptr;
386 
387   const RecordDecl *RD = RT->getDecl();
388   if (RD->hasFlexibleArrayMember())
389     return nullptr;
390 
391   const Type *Found = nullptr;
392 
393   // If this is a C++ record, check the bases first.
394   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
395     for (const auto &I : CXXRD->bases()) {
396       // Ignore empty records.
397       if (isEmptyRecord(Context, I.getType(), true))
398         continue;
399 
400       // If we already found an element then this isn't a single-element struct.
401       if (Found)
402         return nullptr;
403 
404       // If this is non-empty and not a single element struct, the composite
405       // cannot be a single element struct.
406       Found = isSingleElementStruct(I.getType(), Context);
407       if (!Found)
408         return nullptr;
409     }
410   }
411 
412   // Check for single element.
413   for (const auto *FD : RD->fields()) {
414     QualType FT = FD->getType();
415 
416     // Ignore empty fields.
417     if (isEmptyField(Context, FD, true))
418       continue;
419 
420     // If we already found an element then this isn't a single-element
421     // struct.
422     if (Found)
423       return nullptr;
424 
425     // Treat single element arrays as the element.
426     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
427       if (AT->getSize().getZExtValue() != 1)
428         break;
429       FT = AT->getElementType();
430     }
431 
432     if (!isAggregateTypeForABI(FT)) {
433       Found = FT.getTypePtr();
434     } else {
435       Found = isSingleElementStruct(FT, Context);
436       if (!Found)
437         return nullptr;
438     }
439   }
440 
441   // We don't consider a struct a single-element struct if it has
442   // padding beyond the element type.
443   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
444     return nullptr;
445 
446   return Found;
447 }
448 
449 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
450   // Treat complex types as the element type.
451   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
452     Ty = CTy->getElementType();
453 
454   // Check for a type which we know has a simple scalar argument-passing
455   // convention without any padding.  (We're specifically looking for 32
456   // and 64-bit integer and integer-equivalents, float, and double.)
457   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
458       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
459     return false;
460 
461   uint64_t Size = Context.getTypeSize(Ty);
462   return Size == 32 || Size == 64;
463 }
464 
465 /// canExpandIndirectArgument - Test whether an argument type which is to be
466 /// passed indirectly (on the stack) would have the equivalent layout if it was
467 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
468 /// inhibiting optimizations.
469 ///
470 // FIXME: This predicate is missing many cases, currently it just follows
471 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
472 // should probably make this smarter, or better yet make the LLVM backend
473 // capable of handling it.
474 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
475   // We can only expand structure types.
476   const RecordType *RT = Ty->getAs<RecordType>();
477   if (!RT)
478     return false;
479 
480   // We can only expand (C) structures.
481   //
482   // FIXME: This needs to be generalized to handle classes as well.
483   const RecordDecl *RD = RT->getDecl();
484   if (!RD->isStruct())
485     return false;
486 
487   // We try to expand CLike CXXRecordDecl.
488   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
489     if (!CXXRD->isCLike())
490       return false;
491   }
492 
493   uint64_t Size = 0;
494 
495   for (const auto *FD : RD->fields()) {
496     if (!is32Or64BitBasicType(FD->getType(), Context))
497       return false;
498 
499     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
500     // how to expand them yet, and the predicate for telling if a bitfield still
501     // counts as "basic" is more complicated than what we were doing previously.
502     if (FD->isBitField())
503       return false;
504 
505     Size += Context.getTypeSize(FD->getType());
506   }
507 
508   // Make sure there are not any holes in the struct.
509   if (Size != Context.getTypeSize(Ty))
510     return false;
511 
512   return true;
513 }
514 
515 namespace {
516 /// DefaultABIInfo - The default implementation for ABI specific
517 /// details. This implementation provides information which results in
518 /// self-consistent and sensible LLVM IR generation, but does not
519 /// conform to any particular ABI.
520 class DefaultABIInfo : public ABIInfo {
521 public:
522   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
523 
524   ABIArgInfo classifyReturnType(QualType RetTy) const;
525   ABIArgInfo classifyArgumentType(QualType RetTy) const;
526 
527   void computeInfo(CGFunctionInfo &FI) const override {
528     if (!getCXXABI().classifyReturnType(FI))
529       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
530     for (auto &I : FI.arguments())
531       I.info = classifyArgumentType(I.type);
532   }
533 
534   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
535                     QualType Ty) const override;
536 };
537 
538 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
539 public:
540   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
541     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
542 };
543 
544 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
545                                   QualType Ty) const {
546   return Address::invalid();
547 }
548 
549 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
550   Ty = useFirstFieldIfTransparentUnion(Ty);
551 
552   if (isAggregateTypeForABI(Ty)) {
553     // Records with non-trivial destructors/copy-constructors should not be
554     // passed by value.
555     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
556       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
557 
558     return getNaturalAlignIndirect(Ty);
559   }
560 
561   // Treat an enum type as its underlying type.
562   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
563     Ty = EnumTy->getDecl()->getIntegerType();
564 
565   return (Ty->isPromotableIntegerType() ?
566           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
567 }
568 
569 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
570   if (RetTy->isVoidType())
571     return ABIArgInfo::getIgnore();
572 
573   if (isAggregateTypeForABI(RetTy))
574     return getNaturalAlignIndirect(RetTy);
575 
576   // Treat an enum type as its underlying type.
577   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
578     RetTy = EnumTy->getDecl()->getIntegerType();
579 
580   return (RetTy->isPromotableIntegerType() ?
581           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
582 }
583 
584 //===----------------------------------------------------------------------===//
585 // WebAssembly ABI Implementation
586 //
587 // This is a very simple ABI that relies a lot on DefaultABIInfo.
588 //===----------------------------------------------------------------------===//
589 
590 class WebAssemblyABIInfo final : public DefaultABIInfo {
591 public:
592   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
593       : DefaultABIInfo(CGT) {}
594 
595 private:
596   ABIArgInfo classifyReturnType(QualType RetTy) const;
597   ABIArgInfo classifyArgumentType(QualType Ty) const;
598 
599   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
600   // non-virtual, but computeInfo is virtual, so we overload that.
601   void computeInfo(CGFunctionInfo &FI) const override {
602     if (!getCXXABI().classifyReturnType(FI))
603       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
604     for (auto &Arg : FI.arguments())
605       Arg.info = classifyArgumentType(Arg.type);
606   }
607 };
608 
609 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
610 public:
611   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
612       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
613 };
614 
615 /// \brief Classify argument of given type \p Ty.
616 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
617   Ty = useFirstFieldIfTransparentUnion(Ty);
618 
619   if (isAggregateTypeForABI(Ty)) {
620     // Records with non-trivial destructors/copy-constructors should not be
621     // passed by value.
622     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
623       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
624     // Ignore empty structs/unions.
625     if (isEmptyRecord(getContext(), Ty, true))
626       return ABIArgInfo::getIgnore();
627     // Lower single-element structs to just pass a regular value. TODO: We
628     // could do reasonable-size multiple-element structs too, using getExpand(),
629     // though watch out for things like bitfields.
630     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
631       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
632   }
633 
634   // Otherwise just do the default thing.
635   return DefaultABIInfo::classifyArgumentType(Ty);
636 }
637 
638 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
639   if (isAggregateTypeForABI(RetTy)) {
640     // Records with non-trivial destructors/copy-constructors should not be
641     // returned by value.
642     if (!getRecordArgABI(RetTy, getCXXABI())) {
643       // Ignore empty structs/unions.
644       if (isEmptyRecord(getContext(), RetTy, true))
645         return ABIArgInfo::getIgnore();
646       // Lower single-element structs to just return a regular value. TODO: We
647       // could do reasonable-size multiple-element structs too, using
648       // ABIArgInfo::getDirect().
649       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
650         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
651     }
652   }
653 
654   // Otherwise just do the default thing.
655   return DefaultABIInfo::classifyReturnType(RetTy);
656 }
657 
658 //===----------------------------------------------------------------------===//
659 // le32/PNaCl bitcode ABI Implementation
660 //
661 // This is a simplified version of the x86_32 ABI.  Arguments and return values
662 // are always passed on the stack.
663 //===----------------------------------------------------------------------===//
664 
665 class PNaClABIInfo : public ABIInfo {
666  public:
667   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
668 
669   ABIArgInfo classifyReturnType(QualType RetTy) const;
670   ABIArgInfo classifyArgumentType(QualType RetTy) const;
671 
672   void computeInfo(CGFunctionInfo &FI) const override;
673   Address EmitVAArg(CodeGenFunction &CGF,
674                     Address VAListAddr, QualType Ty) const override;
675 };
676 
677 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
678  public:
679   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
680     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
681 };
682 
683 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
684   if (!getCXXABI().classifyReturnType(FI))
685     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
686 
687   for (auto &I : FI.arguments())
688     I.info = classifyArgumentType(I.type);
689 }
690 
691 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
692                                 QualType Ty) const {
693   return Address::invalid();
694 }
695 
696 /// \brief Classify argument of given type \p Ty.
697 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
698   if (isAggregateTypeForABI(Ty)) {
699     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
700       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
701     return getNaturalAlignIndirect(Ty);
702   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
703     // Treat an enum type as its underlying type.
704     Ty = EnumTy->getDecl()->getIntegerType();
705   } else if (Ty->isFloatingType()) {
706     // Floating-point types don't go inreg.
707     return ABIArgInfo::getDirect();
708   }
709 
710   return (Ty->isPromotableIntegerType() ?
711           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
712 }
713 
714 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
715   if (RetTy->isVoidType())
716     return ABIArgInfo::getIgnore();
717 
718   // In the PNaCl ABI we always return records/structures on the stack.
719   if (isAggregateTypeForABI(RetTy))
720     return getNaturalAlignIndirect(RetTy);
721 
722   // Treat an enum type as its underlying type.
723   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
724     RetTy = EnumTy->getDecl()->getIntegerType();
725 
726   return (RetTy->isPromotableIntegerType() ?
727           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
728 }
729 
730 /// IsX86_MMXType - Return true if this is an MMX type.
731 bool IsX86_MMXType(llvm::Type *IRType) {
732   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
733   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
734     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
735     IRType->getScalarSizeInBits() != 64;
736 }
737 
738 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
739                                           StringRef Constraint,
740                                           llvm::Type* Ty) {
741   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
742     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
743       // Invalid MMX constraint
744       return nullptr;
745     }
746 
747     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
748   }
749 
750   // No operation needed
751   return Ty;
752 }
753 
754 /// Returns true if this type can be passed in SSE registers with the
755 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
756 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
757   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
758     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
759       return true;
760   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
761     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
762     // registers specially.
763     unsigned VecSize = Context.getTypeSize(VT);
764     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
765       return true;
766   }
767   return false;
768 }
769 
770 /// Returns true if this aggregate is small enough to be passed in SSE registers
771 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
772 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
773   return NumMembers <= 4;
774 }
775 
776 //===----------------------------------------------------------------------===//
777 // X86-32 ABI Implementation
778 //===----------------------------------------------------------------------===//
779 
780 /// \brief Similar to llvm::CCState, but for Clang.
781 struct CCState {
782   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
783 
784   unsigned CC;
785   unsigned FreeRegs;
786   unsigned FreeSSERegs;
787 };
788 
789 /// X86_32ABIInfo - The X86-32 ABI information.
790 class X86_32ABIInfo : public ABIInfo {
791   enum Class {
792     Integer,
793     Float
794   };
795 
796   static const unsigned MinABIStackAlignInBytes = 4;
797 
798   bool IsDarwinVectorABI;
799   bool IsSmallStructInRegABI;
800   bool IsWin32StructABI;
801   unsigned DefaultNumRegisterParameters;
802 
803   static bool isRegisterSize(unsigned Size) {
804     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
805   }
806 
807   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
808     // FIXME: Assumes vectorcall is in use.
809     return isX86VectorTypeForVectorCall(getContext(), Ty);
810   }
811 
812   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
813                                          uint64_t NumMembers) const override {
814     // FIXME: Assumes vectorcall is in use.
815     return isX86VectorCallAggregateSmallEnough(NumMembers);
816   }
817 
818   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
819 
820   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
821   /// such that the argument will be passed in memory.
822   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
823 
824   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
825 
826   /// \brief Return the alignment to use for the given type on the stack.
827   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
828 
829   Class classify(QualType Ty) const;
830   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
831   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
832   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
833 
834   /// \brief Rewrite the function info so that all memory arguments use
835   /// inalloca.
836   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
837 
838   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
839                            CharUnits &StackOffset, ABIArgInfo &Info,
840                            QualType Type) const;
841 
842 public:
843 
844   void computeInfo(CGFunctionInfo &FI) const override;
845   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
846                     QualType Ty) const override;
847 
848   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
849                 unsigned r)
850     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
851       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
852 };
853 
854 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
855 public:
856   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
857       bool d, bool p, bool w, unsigned r)
858     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
859 
860   static bool isStructReturnInRegABI(
861       const llvm::Triple &Triple, const CodeGenOptions &Opts);
862 
863   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
864                            CodeGen::CodeGenModule &CGM) const override;
865 
866   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
867     // Darwin uses different dwarf register numbers for EH.
868     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
869     return 4;
870   }
871 
872   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
873                                llvm::Value *Address) const override;
874 
875   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
876                                   StringRef Constraint,
877                                   llvm::Type* Ty) const override {
878     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
879   }
880 
881   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
882                                 std::string &Constraints,
883                                 std::vector<llvm::Type *> &ResultRegTypes,
884                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
885                                 std::vector<LValue> &ResultRegDests,
886                                 std::string &AsmString,
887                                 unsigned NumOutputs) const override;
888 
889   llvm::Constant *
890   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
891     unsigned Sig = (0xeb << 0) |  // jmp rel8
892                    (0x06 << 8) |  //           .+0x08
893                    ('F' << 16) |
894                    ('T' << 24);
895     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
896   }
897 };
898 
899 }
900 
901 /// Rewrite input constraint references after adding some output constraints.
902 /// In the case where there is one output and one input and we add one output,
903 /// we need to replace all operand references greater than or equal to 1:
904 ///     mov $0, $1
905 ///     mov eax, $1
906 /// The result will be:
907 ///     mov $0, $2
908 ///     mov eax, $2
909 static void rewriteInputConstraintReferences(unsigned FirstIn,
910                                              unsigned NumNewOuts,
911                                              std::string &AsmString) {
912   std::string Buf;
913   llvm::raw_string_ostream OS(Buf);
914   size_t Pos = 0;
915   while (Pos < AsmString.size()) {
916     size_t DollarStart = AsmString.find('$', Pos);
917     if (DollarStart == std::string::npos)
918       DollarStart = AsmString.size();
919     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
920     if (DollarEnd == std::string::npos)
921       DollarEnd = AsmString.size();
922     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
923     Pos = DollarEnd;
924     size_t NumDollars = DollarEnd - DollarStart;
925     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
926       // We have an operand reference.
927       size_t DigitStart = Pos;
928       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
929       if (DigitEnd == std::string::npos)
930         DigitEnd = AsmString.size();
931       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
932       unsigned OperandIndex;
933       if (!OperandStr.getAsInteger(10, OperandIndex)) {
934         if (OperandIndex >= FirstIn)
935           OperandIndex += NumNewOuts;
936         OS << OperandIndex;
937       } else {
938         OS << OperandStr;
939       }
940       Pos = DigitEnd;
941     }
942   }
943   AsmString = std::move(OS.str());
944 }
945 
946 /// Add output constraints for EAX:EDX because they are return registers.
947 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
948     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
949     std::vector<llvm::Type *> &ResultRegTypes,
950     std::vector<llvm::Type *> &ResultTruncRegTypes,
951     std::vector<LValue> &ResultRegDests, std::string &AsmString,
952     unsigned NumOutputs) const {
953   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
954 
955   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
956   // larger.
957   if (!Constraints.empty())
958     Constraints += ',';
959   if (RetWidth <= 32) {
960     Constraints += "={eax}";
961     ResultRegTypes.push_back(CGF.Int32Ty);
962   } else {
963     // Use the 'A' constraint for EAX:EDX.
964     Constraints += "=A";
965     ResultRegTypes.push_back(CGF.Int64Ty);
966   }
967 
968   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
969   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
970   ResultTruncRegTypes.push_back(CoerceTy);
971 
972   // Coerce the integer by bitcasting the return slot pointer.
973   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
974                                                   CoerceTy->getPointerTo()));
975   ResultRegDests.push_back(ReturnSlot);
976 
977   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
978 }
979 
980 /// shouldReturnTypeInRegister - Determine if the given type should be
981 /// passed in a register (for the Darwin ABI).
982 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
983                                                ASTContext &Context) const {
984   uint64_t Size = Context.getTypeSize(Ty);
985 
986   // Type must be register sized.
987   if (!isRegisterSize(Size))
988     return false;
989 
990   if (Ty->isVectorType()) {
991     // 64- and 128- bit vectors inside structures are not returned in
992     // registers.
993     if (Size == 64 || Size == 128)
994       return false;
995 
996     return true;
997   }
998 
999   // If this is a builtin, pointer, enum, complex type, member pointer, or
1000   // member function pointer it is ok.
1001   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1002       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1003       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1004     return true;
1005 
1006   // Arrays are treated like records.
1007   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1008     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1009 
1010   // Otherwise, it must be a record type.
1011   const RecordType *RT = Ty->getAs<RecordType>();
1012   if (!RT) return false;
1013 
1014   // FIXME: Traverse bases here too.
1015 
1016   // Structure types are passed in register if all fields would be
1017   // passed in a register.
1018   for (const auto *FD : RT->getDecl()->fields()) {
1019     // Empty fields are ignored.
1020     if (isEmptyField(Context, FD, true))
1021       continue;
1022 
1023     // Check fields recursively.
1024     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1025       return false;
1026   }
1027   return true;
1028 }
1029 
1030 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1031   // If the return value is indirect, then the hidden argument is consuming one
1032   // integer register.
1033   if (State.FreeRegs) {
1034     --State.FreeRegs;
1035     return getNaturalAlignIndirectInReg(RetTy);
1036   }
1037   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1038 }
1039 
1040 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1041                                              CCState &State) const {
1042   if (RetTy->isVoidType())
1043     return ABIArgInfo::getIgnore();
1044 
1045   const Type *Base = nullptr;
1046   uint64_t NumElts = 0;
1047   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1048       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1049     // The LLVM struct type for such an aggregate should lower properly.
1050     return ABIArgInfo::getDirect();
1051   }
1052 
1053   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1054     // On Darwin, some vectors are returned in registers.
1055     if (IsDarwinVectorABI) {
1056       uint64_t Size = getContext().getTypeSize(RetTy);
1057 
1058       // 128-bit vectors are a special case; they are returned in
1059       // registers and we need to make sure to pick a type the LLVM
1060       // backend will like.
1061       if (Size == 128)
1062         return ABIArgInfo::getDirect(llvm::VectorType::get(
1063                   llvm::Type::getInt64Ty(getVMContext()), 2));
1064 
1065       // Always return in register if it fits in a general purpose
1066       // register, or if it is 64 bits and has a single element.
1067       if ((Size == 8 || Size == 16 || Size == 32) ||
1068           (Size == 64 && VT->getNumElements() == 1))
1069         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1070                                                             Size));
1071 
1072       return getIndirectReturnResult(RetTy, State);
1073     }
1074 
1075     return ABIArgInfo::getDirect();
1076   }
1077 
1078   if (isAggregateTypeForABI(RetTy)) {
1079     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1080       // Structures with flexible arrays are always indirect.
1081       if (RT->getDecl()->hasFlexibleArrayMember())
1082         return getIndirectReturnResult(RetTy, State);
1083     }
1084 
1085     // If specified, structs and unions are always indirect.
1086     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
1087       return getIndirectReturnResult(RetTy, State);
1088 
1089     // Small structures which are register sized are generally returned
1090     // in a register.
1091     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1092       uint64_t Size = getContext().getTypeSize(RetTy);
1093 
1094       // As a special-case, if the struct is a "single-element" struct, and
1095       // the field is of type "float" or "double", return it in a
1096       // floating-point register. (MSVC does not apply this special case.)
1097       // We apply a similar transformation for pointer types to improve the
1098       // quality of the generated IR.
1099       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1100         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1101             || SeltTy->hasPointerRepresentation())
1102           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1103 
1104       // FIXME: We should be able to narrow this integer in cases with dead
1105       // padding.
1106       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1107     }
1108 
1109     return getIndirectReturnResult(RetTy, State);
1110   }
1111 
1112   // Treat an enum type as its underlying type.
1113   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1114     RetTy = EnumTy->getDecl()->getIntegerType();
1115 
1116   return (RetTy->isPromotableIntegerType() ?
1117           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1118 }
1119 
1120 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1121   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1122 }
1123 
1124 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1125   const RecordType *RT = Ty->getAs<RecordType>();
1126   if (!RT)
1127     return 0;
1128   const RecordDecl *RD = RT->getDecl();
1129 
1130   // If this is a C++ record, check the bases first.
1131   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1132     for (const auto &I : CXXRD->bases())
1133       if (!isRecordWithSSEVectorType(Context, I.getType()))
1134         return false;
1135 
1136   for (const auto *i : RD->fields()) {
1137     QualType FT = i->getType();
1138 
1139     if (isSSEVectorType(Context, FT))
1140       return true;
1141 
1142     if (isRecordWithSSEVectorType(Context, FT))
1143       return true;
1144   }
1145 
1146   return false;
1147 }
1148 
1149 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1150                                                  unsigned Align) const {
1151   // Otherwise, if the alignment is less than or equal to the minimum ABI
1152   // alignment, just use the default; the backend will handle this.
1153   if (Align <= MinABIStackAlignInBytes)
1154     return 0; // Use default alignment.
1155 
1156   // On non-Darwin, the stack type alignment is always 4.
1157   if (!IsDarwinVectorABI) {
1158     // Set explicit alignment, since we may need to realign the top.
1159     return MinABIStackAlignInBytes;
1160   }
1161 
1162   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1163   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1164                       isRecordWithSSEVectorType(getContext(), Ty)))
1165     return 16;
1166 
1167   return MinABIStackAlignInBytes;
1168 }
1169 
1170 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1171                                             CCState &State) const {
1172   if (!ByVal) {
1173     if (State.FreeRegs) {
1174       --State.FreeRegs; // Non-byval indirects just use one pointer.
1175       return getNaturalAlignIndirectInReg(Ty);
1176     }
1177     return getNaturalAlignIndirect(Ty, false);
1178   }
1179 
1180   // Compute the byval alignment.
1181   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1182   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1183   if (StackAlign == 0)
1184     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1185 
1186   // If the stack alignment is less than the type alignment, realign the
1187   // argument.
1188   bool Realign = TypeAlign > StackAlign;
1189   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1190                                  /*ByVal=*/true, Realign);
1191 }
1192 
1193 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1194   const Type *T = isSingleElementStruct(Ty, getContext());
1195   if (!T)
1196     T = Ty.getTypePtr();
1197 
1198   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1199     BuiltinType::Kind K = BT->getKind();
1200     if (K == BuiltinType::Float || K == BuiltinType::Double)
1201       return Float;
1202   }
1203   return Integer;
1204 }
1205 
1206 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
1207                                    bool &NeedsPadding) const {
1208   NeedsPadding = false;
1209   Class C = classify(Ty);
1210   if (C == Float)
1211     return false;
1212 
1213   unsigned Size = getContext().getTypeSize(Ty);
1214   unsigned SizeInRegs = (Size + 31) / 32;
1215 
1216   if (SizeInRegs == 0)
1217     return false;
1218 
1219   if (SizeInRegs > State.FreeRegs) {
1220     State.FreeRegs = 0;
1221     return false;
1222   }
1223 
1224   State.FreeRegs -= SizeInRegs;
1225 
1226   if (State.CC == llvm::CallingConv::X86_FastCall ||
1227       State.CC == llvm::CallingConv::X86_VectorCall) {
1228     if (Size > 32)
1229       return false;
1230 
1231     if (Ty->isIntegralOrEnumerationType())
1232       return true;
1233 
1234     if (Ty->isPointerType())
1235       return true;
1236 
1237     if (Ty->isReferenceType())
1238       return true;
1239 
1240     if (State.FreeRegs)
1241       NeedsPadding = true;
1242 
1243     return false;
1244   }
1245 
1246   return true;
1247 }
1248 
1249 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1250                                                CCState &State) const {
1251   // FIXME: Set alignment on indirect arguments.
1252 
1253   Ty = useFirstFieldIfTransparentUnion(Ty);
1254 
1255   // Check with the C++ ABI first.
1256   const RecordType *RT = Ty->getAs<RecordType>();
1257   if (RT) {
1258     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1259     if (RAA == CGCXXABI::RAA_Indirect) {
1260       return getIndirectResult(Ty, false, State);
1261     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1262       // The field index doesn't matter, we'll fix it up later.
1263       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1264     }
1265   }
1266 
1267   // vectorcall adds the concept of a homogenous vector aggregate, similar
1268   // to other targets.
1269   const Type *Base = nullptr;
1270   uint64_t NumElts = 0;
1271   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1272       isHomogeneousAggregate(Ty, Base, NumElts)) {
1273     if (State.FreeSSERegs >= NumElts) {
1274       State.FreeSSERegs -= NumElts;
1275       if (Ty->isBuiltinType() || Ty->isVectorType())
1276         return ABIArgInfo::getDirect();
1277       return ABIArgInfo::getExpand();
1278     }
1279     return getIndirectResult(Ty, /*ByVal=*/false, State);
1280   }
1281 
1282   if (isAggregateTypeForABI(Ty)) {
1283     if (RT) {
1284       // Structs are always byval on win32, regardless of what they contain.
1285       if (IsWin32StructABI)
1286         return getIndirectResult(Ty, true, State);
1287 
1288       // Structures with flexible arrays are always indirect.
1289       if (RT->getDecl()->hasFlexibleArrayMember())
1290         return getIndirectResult(Ty, true, State);
1291     }
1292 
1293     // Ignore empty structs/unions.
1294     if (isEmptyRecord(getContext(), Ty, true))
1295       return ABIArgInfo::getIgnore();
1296 
1297     llvm::LLVMContext &LLVMContext = getVMContext();
1298     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1299     bool NeedsPadding;
1300     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1301       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1302       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1303       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1304       return ABIArgInfo::getDirectInReg(Result);
1305     }
1306     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1307 
1308     // Expand small (<= 128-bit) record types when we know that the stack layout
1309     // of those arguments will match the struct. This is important because the
1310     // LLVM backend isn't smart enough to remove byval, which inhibits many
1311     // optimizations.
1312     if (getContext().getTypeSize(Ty) <= 4*32 &&
1313         canExpandIndirectArgument(Ty, getContext()))
1314       return ABIArgInfo::getExpandWithPadding(
1315           State.CC == llvm::CallingConv::X86_FastCall ||
1316               State.CC == llvm::CallingConv::X86_VectorCall,
1317           PaddingType);
1318 
1319     return getIndirectResult(Ty, true, State);
1320   }
1321 
1322   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1323     // On Darwin, some vectors are passed in memory, we handle this by passing
1324     // it as an i8/i16/i32/i64.
1325     if (IsDarwinVectorABI) {
1326       uint64_t Size = getContext().getTypeSize(Ty);
1327       if ((Size == 8 || Size == 16 || Size == 32) ||
1328           (Size == 64 && VT->getNumElements() == 1))
1329         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1330                                                             Size));
1331     }
1332 
1333     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1334       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1335 
1336     return ABIArgInfo::getDirect();
1337   }
1338 
1339 
1340   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1341     Ty = EnumTy->getDecl()->getIntegerType();
1342 
1343   bool NeedsPadding;
1344   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1345 
1346   if (Ty->isPromotableIntegerType()) {
1347     if (InReg)
1348       return ABIArgInfo::getExtendInReg();
1349     return ABIArgInfo::getExtend();
1350   }
1351   if (InReg)
1352     return ABIArgInfo::getDirectInReg();
1353   return ABIArgInfo::getDirect();
1354 }
1355 
1356 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1357   CCState State(FI.getCallingConvention());
1358   if (State.CC == llvm::CallingConv::X86_FastCall)
1359     State.FreeRegs = 2;
1360   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1361     State.FreeRegs = 2;
1362     State.FreeSSERegs = 6;
1363   } else if (FI.getHasRegParm())
1364     State.FreeRegs = FI.getRegParm();
1365   else
1366     State.FreeRegs = DefaultNumRegisterParameters;
1367 
1368   if (!getCXXABI().classifyReturnType(FI)) {
1369     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1370   } else if (FI.getReturnInfo().isIndirect()) {
1371     // The C++ ABI is not aware of register usage, so we have to check if the
1372     // return value was sret and put it in a register ourselves if appropriate.
1373     if (State.FreeRegs) {
1374       --State.FreeRegs;  // The sret parameter consumes a register.
1375       FI.getReturnInfo().setInReg(true);
1376     }
1377   }
1378 
1379   // The chain argument effectively gives us another free register.
1380   if (FI.isChainCall())
1381     ++State.FreeRegs;
1382 
1383   bool UsedInAlloca = false;
1384   for (auto &I : FI.arguments()) {
1385     I.info = classifyArgumentType(I.type, State);
1386     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1387   }
1388 
1389   // If we needed to use inalloca for any argument, do a second pass and rewrite
1390   // all the memory arguments to use inalloca.
1391   if (UsedInAlloca)
1392     rewriteWithInAlloca(FI);
1393 }
1394 
1395 void
1396 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1397                                    CharUnits &StackOffset, ABIArgInfo &Info,
1398                                    QualType Type) const {
1399   // Arguments are always 4-byte-aligned.
1400   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1401 
1402   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1403   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1404   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1405   StackOffset += getContext().getTypeSizeInChars(Type);
1406 
1407   // Insert padding bytes to respect alignment.
1408   CharUnits FieldEnd = StackOffset;
1409   StackOffset = FieldEnd.RoundUpToAlignment(FieldAlign);
1410   if (StackOffset != FieldEnd) {
1411     CharUnits NumBytes = StackOffset - FieldEnd;
1412     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1413     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1414     FrameFields.push_back(Ty);
1415   }
1416 }
1417 
1418 static bool isArgInAlloca(const ABIArgInfo &Info) {
1419   // Leave ignored and inreg arguments alone.
1420   switch (Info.getKind()) {
1421   case ABIArgInfo::InAlloca:
1422     return true;
1423   case ABIArgInfo::Indirect:
1424     assert(Info.getIndirectByVal());
1425     return true;
1426   case ABIArgInfo::Ignore:
1427     return false;
1428   case ABIArgInfo::Direct:
1429   case ABIArgInfo::Extend:
1430   case ABIArgInfo::Expand:
1431     if (Info.getInReg())
1432       return false;
1433     return true;
1434   }
1435   llvm_unreachable("invalid enum");
1436 }
1437 
1438 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1439   assert(IsWin32StructABI && "inalloca only supported on win32");
1440 
1441   // Build a packed struct type for all of the arguments in memory.
1442   SmallVector<llvm::Type *, 6> FrameFields;
1443 
1444   // The stack alignment is always 4.
1445   CharUnits StackAlign = CharUnits::fromQuantity(4);
1446 
1447   CharUnits StackOffset;
1448   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1449 
1450   // Put 'this' into the struct before 'sret', if necessary.
1451   bool IsThisCall =
1452       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1453   ABIArgInfo &Ret = FI.getReturnInfo();
1454   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1455       isArgInAlloca(I->info)) {
1456     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1457     ++I;
1458   }
1459 
1460   // Put the sret parameter into the inalloca struct if it's in memory.
1461   if (Ret.isIndirect() && !Ret.getInReg()) {
1462     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1463     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1464     // On Windows, the hidden sret parameter is always returned in eax.
1465     Ret.setInAllocaSRet(IsWin32StructABI);
1466   }
1467 
1468   // Skip the 'this' parameter in ecx.
1469   if (IsThisCall)
1470     ++I;
1471 
1472   // Put arguments passed in memory into the struct.
1473   for (; I != E; ++I) {
1474     if (isArgInAlloca(I->info))
1475       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1476   }
1477 
1478   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1479                                         /*isPacked=*/true),
1480                   StackAlign);
1481 }
1482 
1483 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1484                                  Address VAListAddr, QualType Ty) const {
1485 
1486   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1487 
1488   // x86-32 changes the alignment of certain arguments on the stack.
1489   //
1490   // Just messing with TypeInfo like this works because we never pass
1491   // anything indirectly.
1492   TypeInfo.second = CharUnits::fromQuantity(
1493                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1494 
1495   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1496                           TypeInfo, CharUnits::fromQuantity(4),
1497                           /*AllowHigherAlign*/ true);
1498 }
1499 
1500 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1501     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1502   assert(Triple.getArch() == llvm::Triple::x86);
1503 
1504   switch (Opts.getStructReturnConvention()) {
1505   case CodeGenOptions::SRCK_Default:
1506     break;
1507   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1508     return false;
1509   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1510     return true;
1511   }
1512 
1513   if (Triple.isOSDarwin())
1514     return true;
1515 
1516   switch (Triple.getOS()) {
1517   case llvm::Triple::DragonFly:
1518   case llvm::Triple::FreeBSD:
1519   case llvm::Triple::OpenBSD:
1520   case llvm::Triple::Bitrig:
1521   case llvm::Triple::Win32:
1522     return true;
1523   default:
1524     return false;
1525   }
1526 }
1527 
1528 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1529                                                   llvm::GlobalValue *GV,
1530                                             CodeGen::CodeGenModule &CGM) const {
1531   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1532     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1533       // Get the LLVM function.
1534       llvm::Function *Fn = cast<llvm::Function>(GV);
1535 
1536       // Now add the 'alignstack' attribute with a value of 16.
1537       llvm::AttrBuilder B;
1538       B.addStackAlignmentAttr(16);
1539       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1540                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1541                                               llvm::AttributeSet::FunctionIndex,
1542                                               B));
1543     }
1544   }
1545 }
1546 
1547 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1548                                                CodeGen::CodeGenFunction &CGF,
1549                                                llvm::Value *Address) const {
1550   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1551 
1552   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1553 
1554   // 0-7 are the eight integer registers;  the order is different
1555   //   on Darwin (for EH), but the range is the same.
1556   // 8 is %eip.
1557   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1558 
1559   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1560     // 12-16 are st(0..4).  Not sure why we stop at 4.
1561     // These have size 16, which is sizeof(long double) on
1562     // platforms with 8-byte alignment for that type.
1563     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1564     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1565 
1566   } else {
1567     // 9 is %eflags, which doesn't get a size on Darwin for some
1568     // reason.
1569     Builder.CreateAlignedStore(
1570         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1571                                CharUnits::One());
1572 
1573     // 11-16 are st(0..5).  Not sure why we stop at 5.
1574     // These have size 12, which is sizeof(long double) on
1575     // platforms with 4-byte alignment for that type.
1576     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1577     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1578   }
1579 
1580   return false;
1581 }
1582 
1583 //===----------------------------------------------------------------------===//
1584 // X86-64 ABI Implementation
1585 //===----------------------------------------------------------------------===//
1586 
1587 
1588 namespace {
1589 /// The AVX ABI level for X86 targets.
1590 enum class X86AVXABILevel {
1591   None,
1592   AVX,
1593   AVX512
1594 };
1595 
1596 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1597 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1598   switch (AVXLevel) {
1599   case X86AVXABILevel::AVX512:
1600     return 512;
1601   case X86AVXABILevel::AVX:
1602     return 256;
1603   case X86AVXABILevel::None:
1604     return 128;
1605   }
1606   llvm_unreachable("Unknown AVXLevel");
1607 }
1608 
1609 /// X86_64ABIInfo - The X86_64 ABI information.
1610 class X86_64ABIInfo : public ABIInfo {
1611   enum Class {
1612     Integer = 0,
1613     SSE,
1614     SSEUp,
1615     X87,
1616     X87Up,
1617     ComplexX87,
1618     NoClass,
1619     Memory
1620   };
1621 
1622   /// merge - Implement the X86_64 ABI merging algorithm.
1623   ///
1624   /// Merge an accumulating classification \arg Accum with a field
1625   /// classification \arg Field.
1626   ///
1627   /// \param Accum - The accumulating classification. This should
1628   /// always be either NoClass or the result of a previous merge
1629   /// call. In addition, this should never be Memory (the caller
1630   /// should just return Memory for the aggregate).
1631   static Class merge(Class Accum, Class Field);
1632 
1633   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1634   ///
1635   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1636   /// final MEMORY or SSE classes when necessary.
1637   ///
1638   /// \param AggregateSize - The size of the current aggregate in
1639   /// the classification process.
1640   ///
1641   /// \param Lo - The classification for the parts of the type
1642   /// residing in the low word of the containing object.
1643   ///
1644   /// \param Hi - The classification for the parts of the type
1645   /// residing in the higher words of the containing object.
1646   ///
1647   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1648 
1649   /// classify - Determine the x86_64 register classes in which the
1650   /// given type T should be passed.
1651   ///
1652   /// \param Lo - The classification for the parts of the type
1653   /// residing in the low word of the containing object.
1654   ///
1655   /// \param Hi - The classification for the parts of the type
1656   /// residing in the high word of the containing object.
1657   ///
1658   /// \param OffsetBase - The bit offset of this type in the
1659   /// containing object.  Some parameters are classified different
1660   /// depending on whether they straddle an eightbyte boundary.
1661   ///
1662   /// \param isNamedArg - Whether the argument in question is a "named"
1663   /// argument, as used in AMD64-ABI 3.5.7.
1664   ///
1665   /// If a word is unused its result will be NoClass; if a type should
1666   /// be passed in Memory then at least the classification of \arg Lo
1667   /// will be Memory.
1668   ///
1669   /// The \arg Lo class will be NoClass iff the argument is ignored.
1670   ///
1671   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1672   /// also be ComplexX87.
1673   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1674                 bool isNamedArg) const;
1675 
1676   llvm::Type *GetByteVectorType(QualType Ty) const;
1677   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1678                                  unsigned IROffset, QualType SourceTy,
1679                                  unsigned SourceOffset) const;
1680   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1681                                      unsigned IROffset, QualType SourceTy,
1682                                      unsigned SourceOffset) const;
1683 
1684   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1685   /// such that the argument will be returned in memory.
1686   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1687 
1688   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1689   /// such that the argument will be passed in memory.
1690   ///
1691   /// \param freeIntRegs - The number of free integer registers remaining
1692   /// available.
1693   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1694 
1695   ABIArgInfo classifyReturnType(QualType RetTy) const;
1696 
1697   ABIArgInfo classifyArgumentType(QualType Ty,
1698                                   unsigned freeIntRegs,
1699                                   unsigned &neededInt,
1700                                   unsigned &neededSSE,
1701                                   bool isNamedArg) const;
1702 
1703   bool IsIllegalVectorType(QualType Ty) const;
1704 
1705   /// The 0.98 ABI revision clarified a lot of ambiguities,
1706   /// unfortunately in ways that were not always consistent with
1707   /// certain previous compilers.  In particular, platforms which
1708   /// required strict binary compatibility with older versions of GCC
1709   /// may need to exempt themselves.
1710   bool honorsRevision0_98() const {
1711     return !getTarget().getTriple().isOSDarwin();
1712   }
1713 
1714   X86AVXABILevel AVXLevel;
1715   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1716   // 64-bit hardware.
1717   bool Has64BitPointers;
1718 
1719 public:
1720   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1721       ABIInfo(CGT), AVXLevel(AVXLevel),
1722       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1723   }
1724 
1725   bool isPassedUsingAVXType(QualType type) const {
1726     unsigned neededInt, neededSSE;
1727     // The freeIntRegs argument doesn't matter here.
1728     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1729                                            /*isNamedArg*/true);
1730     if (info.isDirect()) {
1731       llvm::Type *ty = info.getCoerceToType();
1732       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1733         return (vectorTy->getBitWidth() > 128);
1734     }
1735     return false;
1736   }
1737 
1738   void computeInfo(CGFunctionInfo &FI) const override;
1739 
1740   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1741                     QualType Ty) const override;
1742   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1743                       QualType Ty) const override;
1744 
1745   bool has64BitPointers() const {
1746     return Has64BitPointers;
1747   }
1748 };
1749 
1750 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1751 class WinX86_64ABIInfo : public ABIInfo {
1752 
1753   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1754                       bool IsReturnType) const;
1755 
1756 public:
1757   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1758 
1759   void computeInfo(CGFunctionInfo &FI) const override;
1760 
1761   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1762                     QualType Ty) const override;
1763 
1764   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1765     // FIXME: Assumes vectorcall is in use.
1766     return isX86VectorTypeForVectorCall(getContext(), Ty);
1767   }
1768 
1769   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1770                                          uint64_t NumMembers) const override {
1771     // FIXME: Assumes vectorcall is in use.
1772     return isX86VectorCallAggregateSmallEnough(NumMembers);
1773   }
1774 };
1775 
1776 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1777 public:
1778   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1779       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1780 
1781   const X86_64ABIInfo &getABIInfo() const {
1782     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1783   }
1784 
1785   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1786     return 7;
1787   }
1788 
1789   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1790                                llvm::Value *Address) const override {
1791     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1792 
1793     // 0-15 are the 16 integer registers.
1794     // 16 is %rip.
1795     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1796     return false;
1797   }
1798 
1799   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1800                                   StringRef Constraint,
1801                                   llvm::Type* Ty) const override {
1802     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1803   }
1804 
1805   bool isNoProtoCallVariadic(const CallArgList &args,
1806                              const FunctionNoProtoType *fnType) const override {
1807     // The default CC on x86-64 sets %al to the number of SSA
1808     // registers used, and GCC sets this when calling an unprototyped
1809     // function, so we override the default behavior.  However, don't do
1810     // that when AVX types are involved: the ABI explicitly states it is
1811     // undefined, and it doesn't work in practice because of how the ABI
1812     // defines varargs anyway.
1813     if (fnType->getCallConv() == CC_C) {
1814       bool HasAVXType = false;
1815       for (CallArgList::const_iterator
1816              it = args.begin(), ie = args.end(); it != ie; ++it) {
1817         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1818           HasAVXType = true;
1819           break;
1820         }
1821       }
1822 
1823       if (!HasAVXType)
1824         return true;
1825     }
1826 
1827     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1828   }
1829 
1830   llvm::Constant *
1831   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1832     unsigned Sig;
1833     if (getABIInfo().has64BitPointers())
1834       Sig = (0xeb << 0) |  // jmp rel8
1835             (0x0a << 8) |  //           .+0x0c
1836             ('F' << 16) |
1837             ('T' << 24);
1838     else
1839       Sig = (0xeb << 0) |  // jmp rel8
1840             (0x06 << 8) |  //           .+0x08
1841             ('F' << 16) |
1842             ('T' << 24);
1843     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1844   }
1845 };
1846 
1847 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1848 public:
1849   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1850     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1851 
1852   void getDependentLibraryOption(llvm::StringRef Lib,
1853                                  llvm::SmallString<24> &Opt) const override {
1854     Opt = "\01";
1855     // If the argument contains a space, enclose it in quotes.
1856     if (Lib.find(" ") != StringRef::npos)
1857       Opt += "\"" + Lib.str() + "\"";
1858     else
1859       Opt += Lib;
1860   }
1861 };
1862 
1863 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1864   // If the argument does not end in .lib, automatically add the suffix.
1865   // If the argument contains a space, enclose it in quotes.
1866   // This matches the behavior of MSVC.
1867   bool Quote = (Lib.find(" ") != StringRef::npos);
1868   std::string ArgStr = Quote ? "\"" : "";
1869   ArgStr += Lib;
1870   if (!Lib.endswith_lower(".lib"))
1871     ArgStr += ".lib";
1872   ArgStr += Quote ? "\"" : "";
1873   return ArgStr;
1874 }
1875 
1876 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1877 public:
1878   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1879         bool d, bool p, bool w, unsigned RegParms)
1880     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1881 
1882   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1883                            CodeGen::CodeGenModule &CGM) const override;
1884 
1885   void getDependentLibraryOption(llvm::StringRef Lib,
1886                                  llvm::SmallString<24> &Opt) const override {
1887     Opt = "/DEFAULTLIB:";
1888     Opt += qualifyWindowsLibrary(Lib);
1889   }
1890 
1891   void getDetectMismatchOption(llvm::StringRef Name,
1892                                llvm::StringRef Value,
1893                                llvm::SmallString<32> &Opt) const override {
1894     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1895   }
1896 };
1897 
1898 static void addStackProbeSizeTargetAttribute(const Decl *D,
1899                                              llvm::GlobalValue *GV,
1900                                              CodeGen::CodeGenModule &CGM) {
1901   if (isa<FunctionDecl>(D)) {
1902     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1903       llvm::Function *Fn = cast<llvm::Function>(GV);
1904 
1905       Fn->addFnAttr("stack-probe-size",
1906                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1907     }
1908   }
1909 }
1910 
1911 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1912                                                      llvm::GlobalValue *GV,
1913                                             CodeGen::CodeGenModule &CGM) const {
1914   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1915 
1916   addStackProbeSizeTargetAttribute(D, GV, CGM);
1917 }
1918 
1919 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1920 public:
1921   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1922                              X86AVXABILevel AVXLevel)
1923       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1924 
1925   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1926                            CodeGen::CodeGenModule &CGM) const override;
1927 
1928   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1929     return 7;
1930   }
1931 
1932   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1933                                llvm::Value *Address) const override {
1934     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1935 
1936     // 0-15 are the 16 integer registers.
1937     // 16 is %rip.
1938     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1939     return false;
1940   }
1941 
1942   void getDependentLibraryOption(llvm::StringRef Lib,
1943                                  llvm::SmallString<24> &Opt) const override {
1944     Opt = "/DEFAULTLIB:";
1945     Opt += qualifyWindowsLibrary(Lib);
1946   }
1947 
1948   void getDetectMismatchOption(llvm::StringRef Name,
1949                                llvm::StringRef Value,
1950                                llvm::SmallString<32> &Opt) const override {
1951     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1952   }
1953 };
1954 
1955 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1956                                                      llvm::GlobalValue *GV,
1957                                             CodeGen::CodeGenModule &CGM) const {
1958   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1959 
1960   addStackProbeSizeTargetAttribute(D, GV, CGM);
1961 }
1962 }
1963 
1964 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1965                               Class &Hi) const {
1966   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1967   //
1968   // (a) If one of the classes is Memory, the whole argument is passed in
1969   //     memory.
1970   //
1971   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1972   //     memory.
1973   //
1974   // (c) If the size of the aggregate exceeds two eightbytes and the first
1975   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1976   //     argument is passed in memory. NOTE: This is necessary to keep the
1977   //     ABI working for processors that don't support the __m256 type.
1978   //
1979   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1980   //
1981   // Some of these are enforced by the merging logic.  Others can arise
1982   // only with unions; for example:
1983   //   union { _Complex double; unsigned; }
1984   //
1985   // Note that clauses (b) and (c) were added in 0.98.
1986   //
1987   if (Hi == Memory)
1988     Lo = Memory;
1989   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1990     Lo = Memory;
1991   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1992     Lo = Memory;
1993   if (Hi == SSEUp && Lo != SSE)
1994     Hi = SSE;
1995 }
1996 
1997 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1998   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1999   // classified recursively so that always two fields are
2000   // considered. The resulting class is calculated according to
2001   // the classes of the fields in the eightbyte:
2002   //
2003   // (a) If both classes are equal, this is the resulting class.
2004   //
2005   // (b) If one of the classes is NO_CLASS, the resulting class is
2006   // the other class.
2007   //
2008   // (c) If one of the classes is MEMORY, the result is the MEMORY
2009   // class.
2010   //
2011   // (d) If one of the classes is INTEGER, the result is the
2012   // INTEGER.
2013   //
2014   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2015   // MEMORY is used as class.
2016   //
2017   // (f) Otherwise class SSE is used.
2018 
2019   // Accum should never be memory (we should have returned) or
2020   // ComplexX87 (because this cannot be passed in a structure).
2021   assert((Accum != Memory && Accum != ComplexX87) &&
2022          "Invalid accumulated classification during merge.");
2023   if (Accum == Field || Field == NoClass)
2024     return Accum;
2025   if (Field == Memory)
2026     return Memory;
2027   if (Accum == NoClass)
2028     return Field;
2029   if (Accum == Integer || Field == Integer)
2030     return Integer;
2031   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2032       Accum == X87 || Accum == X87Up)
2033     return Memory;
2034   return SSE;
2035 }
2036 
2037 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2038                              Class &Lo, Class &Hi, bool isNamedArg) const {
2039   // FIXME: This code can be simplified by introducing a simple value class for
2040   // Class pairs with appropriate constructor methods for the various
2041   // situations.
2042 
2043   // FIXME: Some of the split computations are wrong; unaligned vectors
2044   // shouldn't be passed in registers for example, so there is no chance they
2045   // can straddle an eightbyte. Verify & simplify.
2046 
2047   Lo = Hi = NoClass;
2048 
2049   Class &Current = OffsetBase < 64 ? Lo : Hi;
2050   Current = Memory;
2051 
2052   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2053     BuiltinType::Kind k = BT->getKind();
2054 
2055     if (k == BuiltinType::Void) {
2056       Current = NoClass;
2057     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2058       Lo = Integer;
2059       Hi = Integer;
2060     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2061       Current = Integer;
2062     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2063       Current = SSE;
2064     } else if (k == BuiltinType::LongDouble) {
2065       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2066       if (LDF == &llvm::APFloat::IEEEquad) {
2067         Lo = SSE;
2068         Hi = SSEUp;
2069       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2070         Lo = X87;
2071         Hi = X87Up;
2072       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2073         Current = SSE;
2074       } else
2075         llvm_unreachable("unexpected long double representation!");
2076     }
2077     // FIXME: _Decimal32 and _Decimal64 are SSE.
2078     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2079     return;
2080   }
2081 
2082   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2083     // Classify the underlying integer type.
2084     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2085     return;
2086   }
2087 
2088   if (Ty->hasPointerRepresentation()) {
2089     Current = Integer;
2090     return;
2091   }
2092 
2093   if (Ty->isMemberPointerType()) {
2094     if (Ty->isMemberFunctionPointerType()) {
2095       if (Has64BitPointers) {
2096         // If Has64BitPointers, this is an {i64, i64}, so classify both
2097         // Lo and Hi now.
2098         Lo = Hi = Integer;
2099       } else {
2100         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2101         // straddles an eightbyte boundary, Hi should be classified as well.
2102         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2103         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2104         if (EB_FuncPtr != EB_ThisAdj) {
2105           Lo = Hi = Integer;
2106         } else {
2107           Current = Integer;
2108         }
2109       }
2110     } else {
2111       Current = Integer;
2112     }
2113     return;
2114   }
2115 
2116   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2117     uint64_t Size = getContext().getTypeSize(VT);
2118     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2119       // gcc passes the following as integer:
2120       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2121       // 2 bytes - <2 x char>, <1 x short>
2122       // 1 byte  - <1 x char>
2123       Current = Integer;
2124 
2125       // If this type crosses an eightbyte boundary, it should be
2126       // split.
2127       uint64_t EB_Lo = (OffsetBase) / 64;
2128       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2129       if (EB_Lo != EB_Hi)
2130         Hi = Lo;
2131     } else if (Size == 64) {
2132       // gcc passes <1 x double> in memory. :(
2133       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
2134         return;
2135 
2136       // gcc passes <1 x long long> as INTEGER.
2137       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
2138           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2139           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
2140           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
2141         Current = Integer;
2142       else
2143         Current = SSE;
2144 
2145       // If this type crosses an eightbyte boundary, it should be
2146       // split.
2147       if (OffsetBase && OffsetBase != 64)
2148         Hi = Lo;
2149     } else if (Size == 128 ||
2150                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2151       // Arguments of 256-bits are split into four eightbyte chunks. The
2152       // least significant one belongs to class SSE and all the others to class
2153       // SSEUP. The original Lo and Hi design considers that types can't be
2154       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2155       // This design isn't correct for 256-bits, but since there're no cases
2156       // where the upper parts would need to be inspected, avoid adding
2157       // complexity and just consider Hi to match the 64-256 part.
2158       //
2159       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2160       // registers if they are "named", i.e. not part of the "..." of a
2161       // variadic function.
2162       //
2163       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2164       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2165       Lo = SSE;
2166       Hi = SSEUp;
2167     }
2168     return;
2169   }
2170 
2171   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2172     QualType ET = getContext().getCanonicalType(CT->getElementType());
2173 
2174     uint64_t Size = getContext().getTypeSize(Ty);
2175     if (ET->isIntegralOrEnumerationType()) {
2176       if (Size <= 64)
2177         Current = Integer;
2178       else if (Size <= 128)
2179         Lo = Hi = Integer;
2180     } else if (ET == getContext().FloatTy) {
2181       Current = SSE;
2182     } else if (ET == getContext().DoubleTy) {
2183       Lo = Hi = SSE;
2184     } else if (ET == getContext().LongDoubleTy) {
2185       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2186       if (LDF == &llvm::APFloat::IEEEquad)
2187         Current = Memory;
2188       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2189         Current = ComplexX87;
2190       else if (LDF == &llvm::APFloat::IEEEdouble)
2191         Lo = Hi = SSE;
2192       else
2193         llvm_unreachable("unexpected long double representation!");
2194     }
2195 
2196     // If this complex type crosses an eightbyte boundary then it
2197     // should be split.
2198     uint64_t EB_Real = (OffsetBase) / 64;
2199     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2200     if (Hi == NoClass && EB_Real != EB_Imag)
2201       Hi = Lo;
2202 
2203     return;
2204   }
2205 
2206   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2207     // Arrays are treated like structures.
2208 
2209     uint64_t Size = getContext().getTypeSize(Ty);
2210 
2211     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2212     // than four eightbytes, ..., it has class MEMORY.
2213     if (Size > 256)
2214       return;
2215 
2216     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2217     // fields, it has class MEMORY.
2218     //
2219     // Only need to check alignment of array base.
2220     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2221       return;
2222 
2223     // Otherwise implement simplified merge. We could be smarter about
2224     // this, but it isn't worth it and would be harder to verify.
2225     Current = NoClass;
2226     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2227     uint64_t ArraySize = AT->getSize().getZExtValue();
2228 
2229     // The only case a 256-bit wide vector could be used is when the array
2230     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2231     // to work for sizes wider than 128, early check and fallback to memory.
2232     if (Size > 128 && EltSize != 256)
2233       return;
2234 
2235     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2236       Class FieldLo, FieldHi;
2237       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2238       Lo = merge(Lo, FieldLo);
2239       Hi = merge(Hi, FieldHi);
2240       if (Lo == Memory || Hi == Memory)
2241         break;
2242     }
2243 
2244     postMerge(Size, Lo, Hi);
2245     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2246     return;
2247   }
2248 
2249   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2250     uint64_t Size = getContext().getTypeSize(Ty);
2251 
2252     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2253     // than four eightbytes, ..., it has class MEMORY.
2254     if (Size > 256)
2255       return;
2256 
2257     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2258     // copy constructor or a non-trivial destructor, it is passed by invisible
2259     // reference.
2260     if (getRecordArgABI(RT, getCXXABI()))
2261       return;
2262 
2263     const RecordDecl *RD = RT->getDecl();
2264 
2265     // Assume variable sized types are passed in memory.
2266     if (RD->hasFlexibleArrayMember())
2267       return;
2268 
2269     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2270 
2271     // Reset Lo class, this will be recomputed.
2272     Current = NoClass;
2273 
2274     // If this is a C++ record, classify the bases first.
2275     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2276       for (const auto &I : CXXRD->bases()) {
2277         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2278                "Unexpected base class!");
2279         const CXXRecordDecl *Base =
2280           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2281 
2282         // Classify this field.
2283         //
2284         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2285         // single eightbyte, each is classified separately. Each eightbyte gets
2286         // initialized to class NO_CLASS.
2287         Class FieldLo, FieldHi;
2288         uint64_t Offset =
2289           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2290         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2291         Lo = merge(Lo, FieldLo);
2292         Hi = merge(Hi, FieldHi);
2293         if (Lo == Memory || Hi == Memory) {
2294           postMerge(Size, Lo, Hi);
2295           return;
2296         }
2297       }
2298     }
2299 
2300     // Classify the fields one at a time, merging the results.
2301     unsigned idx = 0;
2302     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2303            i != e; ++i, ++idx) {
2304       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2305       bool BitField = i->isBitField();
2306 
2307       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2308       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2309       //
2310       // The only case a 256-bit wide vector could be used is when the struct
2311       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2312       // to work for sizes wider than 128, early check and fallback to memory.
2313       //
2314       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2315         Lo = Memory;
2316         postMerge(Size, Lo, Hi);
2317         return;
2318       }
2319       // Note, skip this test for bit-fields, see below.
2320       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2321         Lo = Memory;
2322         postMerge(Size, Lo, Hi);
2323         return;
2324       }
2325 
2326       // Classify this field.
2327       //
2328       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2329       // exceeds a single eightbyte, each is classified
2330       // separately. Each eightbyte gets initialized to class
2331       // NO_CLASS.
2332       Class FieldLo, FieldHi;
2333 
2334       // Bit-fields require special handling, they do not force the
2335       // structure to be passed in memory even if unaligned, and
2336       // therefore they can straddle an eightbyte.
2337       if (BitField) {
2338         // Ignore padding bit-fields.
2339         if (i->isUnnamedBitfield())
2340           continue;
2341 
2342         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2343         uint64_t Size = i->getBitWidthValue(getContext());
2344 
2345         uint64_t EB_Lo = Offset / 64;
2346         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2347 
2348         if (EB_Lo) {
2349           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2350           FieldLo = NoClass;
2351           FieldHi = Integer;
2352         } else {
2353           FieldLo = Integer;
2354           FieldHi = EB_Hi ? Integer : NoClass;
2355         }
2356       } else
2357         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2358       Lo = merge(Lo, FieldLo);
2359       Hi = merge(Hi, FieldHi);
2360       if (Lo == Memory || Hi == Memory)
2361         break;
2362     }
2363 
2364     postMerge(Size, Lo, Hi);
2365   }
2366 }
2367 
2368 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2369   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2370   // place naturally.
2371   if (!isAggregateTypeForABI(Ty)) {
2372     // Treat an enum type as its underlying type.
2373     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2374       Ty = EnumTy->getDecl()->getIntegerType();
2375 
2376     return (Ty->isPromotableIntegerType() ?
2377             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2378   }
2379 
2380   return getNaturalAlignIndirect(Ty);
2381 }
2382 
2383 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2384   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2385     uint64_t Size = getContext().getTypeSize(VecTy);
2386     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2387     if (Size <= 64 || Size > LargestVector)
2388       return true;
2389   }
2390 
2391   return false;
2392 }
2393 
2394 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2395                                             unsigned freeIntRegs) const {
2396   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2397   // place naturally.
2398   //
2399   // This assumption is optimistic, as there could be free registers available
2400   // when we need to pass this argument in memory, and LLVM could try to pass
2401   // the argument in the free register. This does not seem to happen currently,
2402   // but this code would be much safer if we could mark the argument with
2403   // 'onstack'. See PR12193.
2404   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2405     // Treat an enum type as its underlying type.
2406     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2407       Ty = EnumTy->getDecl()->getIntegerType();
2408 
2409     return (Ty->isPromotableIntegerType() ?
2410             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2411   }
2412 
2413   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2414     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2415 
2416   // Compute the byval alignment. We specify the alignment of the byval in all
2417   // cases so that the mid-level optimizer knows the alignment of the byval.
2418   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2419 
2420   // Attempt to avoid passing indirect results using byval when possible. This
2421   // is important for good codegen.
2422   //
2423   // We do this by coercing the value into a scalar type which the backend can
2424   // handle naturally (i.e., without using byval).
2425   //
2426   // For simplicity, we currently only do this when we have exhausted all of the
2427   // free integer registers. Doing this when there are free integer registers
2428   // would require more care, as we would have to ensure that the coerced value
2429   // did not claim the unused register. That would require either reording the
2430   // arguments to the function (so that any subsequent inreg values came first),
2431   // or only doing this optimization when there were no following arguments that
2432   // might be inreg.
2433   //
2434   // We currently expect it to be rare (particularly in well written code) for
2435   // arguments to be passed on the stack when there are still free integer
2436   // registers available (this would typically imply large structs being passed
2437   // by value), so this seems like a fair tradeoff for now.
2438   //
2439   // We can revisit this if the backend grows support for 'onstack' parameter
2440   // attributes. See PR12193.
2441   if (freeIntRegs == 0) {
2442     uint64_t Size = getContext().getTypeSize(Ty);
2443 
2444     // If this type fits in an eightbyte, coerce it into the matching integral
2445     // type, which will end up on the stack (with alignment 8).
2446     if (Align == 8 && Size <= 64)
2447       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2448                                                           Size));
2449   }
2450 
2451   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2452 }
2453 
2454 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2455 /// register. Pick an LLVM IR type that will be passed as a vector register.
2456 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2457   // Wrapper structs/arrays that only contain vectors are passed just like
2458   // vectors; strip them off if present.
2459   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2460     Ty = QualType(InnerTy, 0);
2461 
2462   llvm::Type *IRType = CGT.ConvertType(Ty);
2463   if (isa<llvm::VectorType>(IRType) ||
2464       IRType->getTypeID() == llvm::Type::FP128TyID)
2465     return IRType;
2466 
2467   // We couldn't find the preferred IR vector type for 'Ty'.
2468   uint64_t Size = getContext().getTypeSize(Ty);
2469   assert((Size == 128 || Size == 256) && "Invalid type found!");
2470 
2471   // Return a LLVM IR vector type based on the size of 'Ty'.
2472   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2473                                Size / 64);
2474 }
2475 
2476 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2477 /// is known to either be off the end of the specified type or being in
2478 /// alignment padding.  The user type specified is known to be at most 128 bits
2479 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2480 /// classification that put one of the two halves in the INTEGER class.
2481 ///
2482 /// It is conservatively correct to return false.
2483 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2484                                   unsigned EndBit, ASTContext &Context) {
2485   // If the bytes being queried are off the end of the type, there is no user
2486   // data hiding here.  This handles analysis of builtins, vectors and other
2487   // types that don't contain interesting padding.
2488   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2489   if (TySize <= StartBit)
2490     return true;
2491 
2492   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2493     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2494     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2495 
2496     // Check each element to see if the element overlaps with the queried range.
2497     for (unsigned i = 0; i != NumElts; ++i) {
2498       // If the element is after the span we care about, then we're done..
2499       unsigned EltOffset = i*EltSize;
2500       if (EltOffset >= EndBit) break;
2501 
2502       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2503       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2504                                  EndBit-EltOffset, Context))
2505         return false;
2506     }
2507     // If it overlaps no elements, then it is safe to process as padding.
2508     return true;
2509   }
2510 
2511   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2512     const RecordDecl *RD = RT->getDecl();
2513     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2514 
2515     // If this is a C++ record, check the bases first.
2516     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2517       for (const auto &I : CXXRD->bases()) {
2518         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2519                "Unexpected base class!");
2520         const CXXRecordDecl *Base =
2521           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2522 
2523         // If the base is after the span we care about, ignore it.
2524         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2525         if (BaseOffset >= EndBit) continue;
2526 
2527         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2528         if (!BitsContainNoUserData(I.getType(), BaseStart,
2529                                    EndBit-BaseOffset, Context))
2530           return false;
2531       }
2532     }
2533 
2534     // Verify that no field has data that overlaps the region of interest.  Yes
2535     // this could be sped up a lot by being smarter about queried fields,
2536     // however we're only looking at structs up to 16 bytes, so we don't care
2537     // much.
2538     unsigned idx = 0;
2539     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2540          i != e; ++i, ++idx) {
2541       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2542 
2543       // If we found a field after the region we care about, then we're done.
2544       if (FieldOffset >= EndBit) break;
2545 
2546       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2547       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2548                                  Context))
2549         return false;
2550     }
2551 
2552     // If nothing in this record overlapped the area of interest, then we're
2553     // clean.
2554     return true;
2555   }
2556 
2557   return false;
2558 }
2559 
2560 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2561 /// float member at the specified offset.  For example, {int,{float}} has a
2562 /// float at offset 4.  It is conservatively correct for this routine to return
2563 /// false.
2564 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2565                                   const llvm::DataLayout &TD) {
2566   // Base case if we find a float.
2567   if (IROffset == 0 && IRType->isFloatTy())
2568     return true;
2569 
2570   // If this is a struct, recurse into the field at the specified offset.
2571   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2572     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2573     unsigned Elt = SL->getElementContainingOffset(IROffset);
2574     IROffset -= SL->getElementOffset(Elt);
2575     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2576   }
2577 
2578   // If this is an array, recurse into the field at the specified offset.
2579   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2580     llvm::Type *EltTy = ATy->getElementType();
2581     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2582     IROffset -= IROffset/EltSize*EltSize;
2583     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2584   }
2585 
2586   return false;
2587 }
2588 
2589 
2590 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2591 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2592 llvm::Type *X86_64ABIInfo::
2593 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2594                    QualType SourceTy, unsigned SourceOffset) const {
2595   // The only three choices we have are either double, <2 x float>, or float. We
2596   // pass as float if the last 4 bytes is just padding.  This happens for
2597   // structs that contain 3 floats.
2598   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2599                             SourceOffset*8+64, getContext()))
2600     return llvm::Type::getFloatTy(getVMContext());
2601 
2602   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2603   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2604   // case.
2605   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2606       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2607     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2608 
2609   return llvm::Type::getDoubleTy(getVMContext());
2610 }
2611 
2612 
2613 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2614 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2615 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2616 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2617 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2618 /// etc).
2619 ///
2620 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2621 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2622 /// the 8-byte value references.  PrefType may be null.
2623 ///
2624 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2625 /// an offset into this that we're processing (which is always either 0 or 8).
2626 ///
2627 llvm::Type *X86_64ABIInfo::
2628 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2629                        QualType SourceTy, unsigned SourceOffset) const {
2630   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2631   // returning an 8-byte unit starting with it.  See if we can safely use it.
2632   if (IROffset == 0) {
2633     // Pointers and int64's always fill the 8-byte unit.
2634     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2635         IRType->isIntegerTy(64))
2636       return IRType;
2637 
2638     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2639     // goodness in the source type is just tail padding.  This is allowed to
2640     // kick in for struct {double,int} on the int, but not on
2641     // struct{double,int,int} because we wouldn't return the second int.  We
2642     // have to do this analysis on the source type because we can't depend on
2643     // unions being lowered a specific way etc.
2644     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2645         IRType->isIntegerTy(32) ||
2646         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2647       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2648           cast<llvm::IntegerType>(IRType)->getBitWidth();
2649 
2650       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2651                                 SourceOffset*8+64, getContext()))
2652         return IRType;
2653     }
2654   }
2655 
2656   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2657     // If this is a struct, recurse into the field at the specified offset.
2658     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2659     if (IROffset < SL->getSizeInBytes()) {
2660       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2661       IROffset -= SL->getElementOffset(FieldIdx);
2662 
2663       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2664                                     SourceTy, SourceOffset);
2665     }
2666   }
2667 
2668   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2669     llvm::Type *EltTy = ATy->getElementType();
2670     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2671     unsigned EltOffset = IROffset/EltSize*EltSize;
2672     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2673                                   SourceOffset);
2674   }
2675 
2676   // Okay, we don't have any better idea of what to pass, so we pass this in an
2677   // integer register that isn't too big to fit the rest of the struct.
2678   unsigned TySizeInBytes =
2679     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2680 
2681   assert(TySizeInBytes != SourceOffset && "Empty field?");
2682 
2683   // It is always safe to classify this as an integer type up to i64 that
2684   // isn't larger than the structure.
2685   return llvm::IntegerType::get(getVMContext(),
2686                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2687 }
2688 
2689 
2690 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2691 /// be used as elements of a two register pair to pass or return, return a
2692 /// first class aggregate to represent them.  For example, if the low part of
2693 /// a by-value argument should be passed as i32* and the high part as float,
2694 /// return {i32*, float}.
2695 static llvm::Type *
2696 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2697                            const llvm::DataLayout &TD) {
2698   // In order to correctly satisfy the ABI, we need to the high part to start
2699   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2700   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2701   // the second element at offset 8.  Check for this:
2702   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2703   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2704   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2705   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2706 
2707   // To handle this, we have to increase the size of the low part so that the
2708   // second element will start at an 8 byte offset.  We can't increase the size
2709   // of the second element because it might make us access off the end of the
2710   // struct.
2711   if (HiStart != 8) {
2712     // There are usually two sorts of types the ABI generation code can produce
2713     // for the low part of a pair that aren't 8 bytes in size: float or
2714     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2715     // NaCl).
2716     // Promote these to a larger type.
2717     if (Lo->isFloatTy())
2718       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2719     else {
2720       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2721              && "Invalid/unknown lo type");
2722       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2723     }
2724   }
2725 
2726   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2727 
2728 
2729   // Verify that the second element is at an 8-byte offset.
2730   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2731          "Invalid x86-64 argument pair!");
2732   return Result;
2733 }
2734 
2735 ABIArgInfo X86_64ABIInfo::
2736 classifyReturnType(QualType RetTy) const {
2737   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2738   // classification algorithm.
2739   X86_64ABIInfo::Class Lo, Hi;
2740   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2741 
2742   // Check some invariants.
2743   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2744   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2745 
2746   llvm::Type *ResType = nullptr;
2747   switch (Lo) {
2748   case NoClass:
2749     if (Hi == NoClass)
2750       return ABIArgInfo::getIgnore();
2751     // If the low part is just padding, it takes no register, leave ResType
2752     // null.
2753     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2754            "Unknown missing lo part");
2755     break;
2756 
2757   case SSEUp:
2758   case X87Up:
2759     llvm_unreachable("Invalid classification for lo word.");
2760 
2761     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2762     // hidden argument.
2763   case Memory:
2764     return getIndirectReturnResult(RetTy);
2765 
2766     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2767     // available register of the sequence %rax, %rdx is used.
2768   case Integer:
2769     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2770 
2771     // If we have a sign or zero extended integer, make sure to return Extend
2772     // so that the parameter gets the right LLVM IR attributes.
2773     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2774       // Treat an enum type as its underlying type.
2775       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2776         RetTy = EnumTy->getDecl()->getIntegerType();
2777 
2778       if (RetTy->isIntegralOrEnumerationType() &&
2779           RetTy->isPromotableIntegerType())
2780         return ABIArgInfo::getExtend();
2781     }
2782     break;
2783 
2784     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2785     // available SSE register of the sequence %xmm0, %xmm1 is used.
2786   case SSE:
2787     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2788     break;
2789 
2790     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2791     // returned on the X87 stack in %st0 as 80-bit x87 number.
2792   case X87:
2793     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2794     break;
2795 
2796     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2797     // part of the value is returned in %st0 and the imaginary part in
2798     // %st1.
2799   case ComplexX87:
2800     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2801     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2802                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2803                                     nullptr);
2804     break;
2805   }
2806 
2807   llvm::Type *HighPart = nullptr;
2808   switch (Hi) {
2809     // Memory was handled previously and X87 should
2810     // never occur as a hi class.
2811   case Memory:
2812   case X87:
2813     llvm_unreachable("Invalid classification for hi word.");
2814 
2815   case ComplexX87: // Previously handled.
2816   case NoClass:
2817     break;
2818 
2819   case Integer:
2820     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2821     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2822       return ABIArgInfo::getDirect(HighPart, 8);
2823     break;
2824   case SSE:
2825     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2826     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2827       return ABIArgInfo::getDirect(HighPart, 8);
2828     break;
2829 
2830     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2831     // is passed in the next available eightbyte chunk if the last used
2832     // vector register.
2833     //
2834     // SSEUP should always be preceded by SSE, just widen.
2835   case SSEUp:
2836     assert(Lo == SSE && "Unexpected SSEUp classification.");
2837     ResType = GetByteVectorType(RetTy);
2838     break;
2839 
2840     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2841     // returned together with the previous X87 value in %st0.
2842   case X87Up:
2843     // If X87Up is preceded by X87, we don't need to do
2844     // anything. However, in some cases with unions it may not be
2845     // preceded by X87. In such situations we follow gcc and pass the
2846     // extra bits in an SSE reg.
2847     if (Lo != X87) {
2848       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2849       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2850         return ABIArgInfo::getDirect(HighPart, 8);
2851     }
2852     break;
2853   }
2854 
2855   // If a high part was specified, merge it together with the low part.  It is
2856   // known to pass in the high eightbyte of the result.  We do this by forming a
2857   // first class struct aggregate with the high and low part: {low, high}
2858   if (HighPart)
2859     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2860 
2861   return ABIArgInfo::getDirect(ResType);
2862 }
2863 
2864 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2865   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2866   bool isNamedArg)
2867   const
2868 {
2869   Ty = useFirstFieldIfTransparentUnion(Ty);
2870 
2871   X86_64ABIInfo::Class Lo, Hi;
2872   classify(Ty, 0, Lo, Hi, isNamedArg);
2873 
2874   // Check some invariants.
2875   // FIXME: Enforce these by construction.
2876   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2877   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2878 
2879   neededInt = 0;
2880   neededSSE = 0;
2881   llvm::Type *ResType = nullptr;
2882   switch (Lo) {
2883   case NoClass:
2884     if (Hi == NoClass)
2885       return ABIArgInfo::getIgnore();
2886     // If the low part is just padding, it takes no register, leave ResType
2887     // null.
2888     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2889            "Unknown missing lo part");
2890     break;
2891 
2892     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2893     // on the stack.
2894   case Memory:
2895 
2896     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2897     // COMPLEX_X87, it is passed in memory.
2898   case X87:
2899   case ComplexX87:
2900     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2901       ++neededInt;
2902     return getIndirectResult(Ty, freeIntRegs);
2903 
2904   case SSEUp:
2905   case X87Up:
2906     llvm_unreachable("Invalid classification for lo word.");
2907 
2908     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2909     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2910     // and %r9 is used.
2911   case Integer:
2912     ++neededInt;
2913 
2914     // Pick an 8-byte type based on the preferred type.
2915     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2916 
2917     // If we have a sign or zero extended integer, make sure to return Extend
2918     // so that the parameter gets the right LLVM IR attributes.
2919     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2920       // Treat an enum type as its underlying type.
2921       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2922         Ty = EnumTy->getDecl()->getIntegerType();
2923 
2924       if (Ty->isIntegralOrEnumerationType() &&
2925           Ty->isPromotableIntegerType())
2926         return ABIArgInfo::getExtend();
2927     }
2928 
2929     break;
2930 
2931     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2932     // available SSE register is used, the registers are taken in the
2933     // order from %xmm0 to %xmm7.
2934   case SSE: {
2935     llvm::Type *IRType = CGT.ConvertType(Ty);
2936     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2937     ++neededSSE;
2938     break;
2939   }
2940   }
2941 
2942   llvm::Type *HighPart = nullptr;
2943   switch (Hi) {
2944     // Memory was handled previously, ComplexX87 and X87 should
2945     // never occur as hi classes, and X87Up must be preceded by X87,
2946     // which is passed in memory.
2947   case Memory:
2948   case X87:
2949   case ComplexX87:
2950     llvm_unreachable("Invalid classification for hi word.");
2951 
2952   case NoClass: break;
2953 
2954   case Integer:
2955     ++neededInt;
2956     // Pick an 8-byte type based on the preferred type.
2957     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2958 
2959     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2960       return ABIArgInfo::getDirect(HighPart, 8);
2961     break;
2962 
2963     // X87Up generally doesn't occur here (long double is passed in
2964     // memory), except in situations involving unions.
2965   case X87Up:
2966   case SSE:
2967     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2968 
2969     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2970       return ABIArgInfo::getDirect(HighPart, 8);
2971 
2972     ++neededSSE;
2973     break;
2974 
2975     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2976     // eightbyte is passed in the upper half of the last used SSE
2977     // register.  This only happens when 128-bit vectors are passed.
2978   case SSEUp:
2979     assert(Lo == SSE && "Unexpected SSEUp classification");
2980     ResType = GetByteVectorType(Ty);
2981     break;
2982   }
2983 
2984   // If a high part was specified, merge it together with the low part.  It is
2985   // known to pass in the high eightbyte of the result.  We do this by forming a
2986   // first class struct aggregate with the high and low part: {low, high}
2987   if (HighPart)
2988     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2989 
2990   return ABIArgInfo::getDirect(ResType);
2991 }
2992 
2993 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2994 
2995   if (!getCXXABI().classifyReturnType(FI))
2996     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2997 
2998   // Keep track of the number of assigned registers.
2999   unsigned freeIntRegs = 6, freeSSERegs = 8;
3000 
3001   // If the return value is indirect, then the hidden argument is consuming one
3002   // integer register.
3003   if (FI.getReturnInfo().isIndirect())
3004     --freeIntRegs;
3005 
3006   // The chain argument effectively gives us another free register.
3007   if (FI.isChainCall())
3008     ++freeIntRegs;
3009 
3010   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3011   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3012   // get assigned (in left-to-right order) for passing as follows...
3013   unsigned ArgNo = 0;
3014   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3015        it != ie; ++it, ++ArgNo) {
3016     bool IsNamedArg = ArgNo < NumRequiredArgs;
3017 
3018     unsigned neededInt, neededSSE;
3019     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3020                                     neededSSE, IsNamedArg);
3021 
3022     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3023     // eightbyte of an argument, the whole argument is passed on the
3024     // stack. If registers have already been assigned for some
3025     // eightbytes of such an argument, the assignments get reverted.
3026     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3027       freeIntRegs -= neededInt;
3028       freeSSERegs -= neededSSE;
3029     } else {
3030       it->info = getIndirectResult(it->type, freeIntRegs);
3031     }
3032   }
3033 }
3034 
3035 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3036                                          Address VAListAddr, QualType Ty) {
3037   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3038       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3039   llvm::Value *overflow_arg_area =
3040     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3041 
3042   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3043   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3044   // It isn't stated explicitly in the standard, but in practice we use
3045   // alignment greater than 16 where necessary.
3046   uint64_t Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
3047   if (Align > 8) {
3048     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
3049     llvm::Value *Offset =
3050       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
3051     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
3052     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
3053                                                     CGF.Int64Ty);
3054     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
3055     overflow_arg_area =
3056       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
3057                                  overflow_arg_area->getType(),
3058                                  "overflow_arg_area.align");
3059   }
3060 
3061   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3062   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3063   llvm::Value *Res =
3064     CGF.Builder.CreateBitCast(overflow_arg_area,
3065                               llvm::PointerType::getUnqual(LTy));
3066 
3067   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3068   // l->overflow_arg_area + sizeof(type).
3069   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3070   // an 8 byte boundary.
3071 
3072   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3073   llvm::Value *Offset =
3074       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3075   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3076                                             "overflow_arg_area.next");
3077   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3078 
3079   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3080   return Address(Res, CharUnits::fromQuantity(Align));
3081 }
3082 
3083 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3084                                  QualType Ty) const {
3085   // Assume that va_list type is correct; should be pointer to LLVM type:
3086   // struct {
3087   //   i32 gp_offset;
3088   //   i32 fp_offset;
3089   //   i8* overflow_arg_area;
3090   //   i8* reg_save_area;
3091   // };
3092   unsigned neededInt, neededSSE;
3093 
3094   Ty = getContext().getCanonicalType(Ty);
3095   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3096                                        /*isNamedArg*/false);
3097 
3098   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3099   // in the registers. If not go to step 7.
3100   if (!neededInt && !neededSSE)
3101     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3102 
3103   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3104   // general purpose registers needed to pass type and num_fp to hold
3105   // the number of floating point registers needed.
3106 
3107   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3108   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3109   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3110   //
3111   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3112   // register save space).
3113 
3114   llvm::Value *InRegs = nullptr;
3115   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3116   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3117   if (neededInt) {
3118     gp_offset_p =
3119         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3120                                     "gp_offset_p");
3121     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3122     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3123     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3124   }
3125 
3126   if (neededSSE) {
3127     fp_offset_p =
3128         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3129                                     "fp_offset_p");
3130     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3131     llvm::Value *FitsInFP =
3132       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3133     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3134     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3135   }
3136 
3137   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3138   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3139   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3140   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3141 
3142   // Emit code to load the value if it was passed in registers.
3143 
3144   CGF.EmitBlock(InRegBlock);
3145 
3146   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3147   // an offset of l->gp_offset and/or l->fp_offset. This may require
3148   // copying to a temporary location in case the parameter is passed
3149   // in different register classes or requires an alignment greater
3150   // than 8 for general purpose registers and 16 for XMM registers.
3151   //
3152   // FIXME: This really results in shameful code when we end up needing to
3153   // collect arguments from different places; often what should result in a
3154   // simple assembling of a structure from scattered addresses has many more
3155   // loads than necessary. Can we clean this up?
3156   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3157   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3158       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3159                                   "reg_save_area");
3160 
3161   Address RegAddr = Address::invalid();
3162   if (neededInt && neededSSE) {
3163     // FIXME: Cleanup.
3164     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3165     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3166     Address Tmp = CGF.CreateMemTemp(Ty);
3167     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3168     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3169     llvm::Type *TyLo = ST->getElementType(0);
3170     llvm::Type *TyHi = ST->getElementType(1);
3171     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3172            "Unexpected ABI info for mixed regs");
3173     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3174     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3175     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3176     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3177     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3178     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3179 
3180     // Copy the first element.
3181     llvm::Value *V =
3182       CGF.Builder.CreateDefaultAlignedLoad(
3183                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3184     CGF.Builder.CreateStore(V,
3185                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3186 
3187     // Copy the second element.
3188     V = CGF.Builder.CreateDefaultAlignedLoad(
3189                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3190     CharUnits Offset = CharUnits::fromQuantity(
3191                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3192     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3193 
3194     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3195   } else if (neededInt) {
3196     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3197                       CharUnits::fromQuantity(8));
3198     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3199 
3200     // Copy to a temporary if necessary to ensure the appropriate alignment.
3201     std::pair<CharUnits, CharUnits> SizeAlign =
3202         getContext().getTypeInfoInChars(Ty);
3203     uint64_t TySize = SizeAlign.first.getQuantity();
3204     CharUnits TyAlign = SizeAlign.second;
3205 
3206     // Copy into a temporary if the type is more aligned than the
3207     // register save area.
3208     if (TyAlign.getQuantity() > 8) {
3209       Address Tmp = CGF.CreateMemTemp(Ty);
3210       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3211       RegAddr = Tmp;
3212     }
3213 
3214   } else if (neededSSE == 1) {
3215     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3216                       CharUnits::fromQuantity(16));
3217     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3218   } else {
3219     assert(neededSSE == 2 && "Invalid number of needed registers!");
3220     // SSE registers are spaced 16 bytes apart in the register save
3221     // area, we need to collect the two eightbytes together.
3222     // The ABI isn't explicit about this, but it seems reasonable
3223     // to assume that the slots are 16-byte aligned, since the stack is
3224     // naturally 16-byte aligned and the prologue is expected to store
3225     // all the SSE registers to the RSA.
3226     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3227                                 CharUnits::fromQuantity(16));
3228     Address RegAddrHi =
3229       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3230                                              CharUnits::fromQuantity(16));
3231     llvm::Type *DoubleTy = CGF.DoubleTy;
3232     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3233     llvm::Value *V;
3234     Address Tmp = CGF.CreateMemTemp(Ty);
3235     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3236     V = CGF.Builder.CreateLoad(
3237                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3238     CGF.Builder.CreateStore(V,
3239                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3240     V = CGF.Builder.CreateLoad(
3241                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3242     CGF.Builder.CreateStore(V,
3243           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3244 
3245     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3246   }
3247 
3248   // AMD64-ABI 3.5.7p5: Step 5. Set:
3249   // l->gp_offset = l->gp_offset + num_gp * 8
3250   // l->fp_offset = l->fp_offset + num_fp * 16.
3251   if (neededInt) {
3252     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3253     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3254                             gp_offset_p);
3255   }
3256   if (neededSSE) {
3257     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3258     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3259                             fp_offset_p);
3260   }
3261   CGF.EmitBranch(ContBlock);
3262 
3263   // Emit code to load the value if it was passed in memory.
3264 
3265   CGF.EmitBlock(InMemBlock);
3266   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3267 
3268   // Return the appropriate result.
3269 
3270   CGF.EmitBlock(ContBlock);
3271   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3272                                  "vaarg.addr");
3273   return ResAddr;
3274 }
3275 
3276 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3277                                    QualType Ty) const {
3278   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3279                           CGF.getContext().getTypeInfoInChars(Ty),
3280                           CharUnits::fromQuantity(8),
3281                           /*allowHigherAlign*/ false);
3282 }
3283 
3284 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3285                                       bool IsReturnType) const {
3286 
3287   if (Ty->isVoidType())
3288     return ABIArgInfo::getIgnore();
3289 
3290   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3291     Ty = EnumTy->getDecl()->getIntegerType();
3292 
3293   TypeInfo Info = getContext().getTypeInfo(Ty);
3294   uint64_t Width = Info.Width;
3295   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3296 
3297   const RecordType *RT = Ty->getAs<RecordType>();
3298   if (RT) {
3299     if (!IsReturnType) {
3300       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3301         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3302     }
3303 
3304     if (RT->getDecl()->hasFlexibleArrayMember())
3305       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3306 
3307     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3308     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3309       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3310                                                           Width));
3311   }
3312 
3313   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3314   // other targets.
3315   const Type *Base = nullptr;
3316   uint64_t NumElts = 0;
3317   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3318     if (FreeSSERegs >= NumElts) {
3319       FreeSSERegs -= NumElts;
3320       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3321         return ABIArgInfo::getDirect();
3322       return ABIArgInfo::getExpand();
3323     }
3324     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align),
3325                                    /*ByVal=*/false);
3326   }
3327 
3328 
3329   if (Ty->isMemberPointerType()) {
3330     // If the member pointer is represented by an LLVM int or ptr, pass it
3331     // directly.
3332     llvm::Type *LLTy = CGT.ConvertType(Ty);
3333     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3334       return ABIArgInfo::getDirect();
3335   }
3336 
3337   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3338     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3339     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3340     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3341       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3342 
3343     // Otherwise, coerce it to a small integer.
3344     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3345   }
3346 
3347   // Bool type is always extended to the ABI, other builtin types are not
3348   // extended.
3349   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3350   if (BT && BT->getKind() == BuiltinType::Bool)
3351     return ABIArgInfo::getExtend();
3352 
3353   return ABIArgInfo::getDirect();
3354 }
3355 
3356 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3357   bool IsVectorCall =
3358       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3359 
3360   // We can use up to 4 SSE return registers with vectorcall.
3361   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3362   if (!getCXXABI().classifyReturnType(FI))
3363     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3364 
3365   // We can use up to 6 SSE register parameters with vectorcall.
3366   FreeSSERegs = IsVectorCall ? 6 : 0;
3367   for (auto &I : FI.arguments())
3368     I.info = classify(I.type, FreeSSERegs, false);
3369 }
3370 
3371 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3372                                     QualType Ty) const {
3373   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3374                           CGF.getContext().getTypeInfoInChars(Ty),
3375                           CharUnits::fromQuantity(8),
3376                           /*allowHigherAlign*/ false);
3377 }
3378 
3379 // PowerPC-32
3380 namespace {
3381 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3382 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3383 public:
3384   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3385 
3386   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3387                     QualType Ty) const override;
3388 };
3389 
3390 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3391 public:
3392   PPC32TargetCodeGenInfo(CodeGenTypes &CGT)
3393       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3394 
3395   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3396     // This is recovered from gcc output.
3397     return 1; // r1 is the dedicated stack pointer
3398   }
3399 
3400   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3401                                llvm::Value *Address) const override;
3402 };
3403 
3404 }
3405 
3406 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3407                                       QualType Ty) const {
3408   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3409     // TODO: Implement this. For now ignore.
3410     (void)CTy;
3411     return Address::invalid();
3412   }
3413 
3414   // struct __va_list_tag {
3415   //   unsigned char gpr;
3416   //   unsigned char fpr;
3417   //   unsigned short reserved;
3418   //   void *overflow_arg_area;
3419   //   void *reg_save_area;
3420   // };
3421 
3422   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3423   bool isInt =
3424       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3425 
3426   // All aggregates are passed indirectly?  That doesn't seem consistent
3427   // with the argument-lowering code.
3428   bool isIndirect = Ty->isAggregateType();
3429 
3430   CGBuilderTy &Builder = CGF.Builder;
3431 
3432   // The calling convention either uses 1-2 GPRs or 1 FPR.
3433   Address NumRegsAddr = Address::invalid();
3434   if (isInt) {
3435     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3436   } else {
3437     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3438   }
3439 
3440   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3441 
3442   // "Align" the register count when TY is i64.
3443   if (isI64) {
3444     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3445     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3446   }
3447 
3448   llvm::Value *CC =
3449       Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond");
3450 
3451   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3452   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3453   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3454 
3455   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3456 
3457   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3458   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3459 
3460   // Case 1: consume registers.
3461   Address RegAddr = Address::invalid();
3462   {
3463     CGF.EmitBlock(UsingRegs);
3464 
3465     Address RegSaveAreaPtr =
3466       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3467     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3468                       CharUnits::fromQuantity(8));
3469     assert(RegAddr.getElementType() == CGF.Int8Ty);
3470 
3471     // Floating-point registers start after the general-purpose registers.
3472     if (!isInt) {
3473       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3474                                                    CharUnits::fromQuantity(32));
3475     }
3476 
3477     // Get the address of the saved value by scaling the number of
3478     // registers we've used by the number of
3479     CharUnits RegSize = CharUnits::fromQuantity(isInt ? 4 : 8);
3480     llvm::Value *RegOffset =
3481       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3482     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3483                                             RegAddr.getPointer(), RegOffset),
3484                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3485     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3486 
3487     // Increase the used-register count.
3488     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(isI64 ? 2 : 1));
3489     Builder.CreateStore(NumRegs, NumRegsAddr);
3490 
3491     CGF.EmitBranch(Cont);
3492   }
3493 
3494   // Case 2: consume space in the overflow area.
3495   Address MemAddr = Address::invalid();
3496   {
3497     CGF.EmitBlock(UsingOverflow);
3498 
3499     // Everything in the overflow area is rounded up to a size of at least 4.
3500     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3501 
3502     CharUnits Size;
3503     if (!isIndirect) {
3504       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3505       Size = TypeInfo.first.RoundUpToAlignment(OverflowAreaAlign);
3506     } else {
3507       Size = CGF.getPointerSize();
3508     }
3509 
3510     Address OverflowAreaAddr =
3511       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3512     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr),
3513                          OverflowAreaAlign);
3514 
3515     // The current address is the address of the varargs element.
3516     // FIXME: do we not need to round up to alignment?
3517     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3518 
3519     // Increase the overflow area.
3520     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3521     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3522     CGF.EmitBranch(Cont);
3523   }
3524 
3525   CGF.EmitBlock(Cont);
3526 
3527   // Merge the cases with a phi.
3528   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3529                                 "vaarg.addr");
3530 
3531   // Load the pointer if the argument was passed indirectly.
3532   if (isIndirect) {
3533     Result = Address(Builder.CreateLoad(Result, "aggr"),
3534                      getContext().getTypeAlignInChars(Ty));
3535   }
3536 
3537   return Result;
3538 }
3539 
3540 bool
3541 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3542                                                 llvm::Value *Address) const {
3543   // This is calculated from the LLVM and GCC tables and verified
3544   // against gcc output.  AFAIK all ABIs use the same encoding.
3545 
3546   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3547 
3548   llvm::IntegerType *i8 = CGF.Int8Ty;
3549   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3550   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3551   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3552 
3553   // 0-31: r0-31, the 4-byte general-purpose registers
3554   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3555 
3556   // 32-63: fp0-31, the 8-byte floating-point registers
3557   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3558 
3559   // 64-76 are various 4-byte special-purpose registers:
3560   // 64: mq
3561   // 65: lr
3562   // 66: ctr
3563   // 67: ap
3564   // 68-75 cr0-7
3565   // 76: xer
3566   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3567 
3568   // 77-108: v0-31, the 16-byte vector registers
3569   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3570 
3571   // 109: vrsave
3572   // 110: vscr
3573   // 111: spe_acc
3574   // 112: spefscr
3575   // 113: sfp
3576   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3577 
3578   return false;
3579 }
3580 
3581 // PowerPC-64
3582 
3583 namespace {
3584 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3585 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3586 public:
3587   enum ABIKind {
3588     ELFv1 = 0,
3589     ELFv2
3590   };
3591 
3592 private:
3593   static const unsigned GPRBits = 64;
3594   ABIKind Kind;
3595   bool HasQPX;
3596 
3597   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3598   // will be passed in a QPX register.
3599   bool IsQPXVectorTy(const Type *Ty) const {
3600     if (!HasQPX)
3601       return false;
3602 
3603     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3604       unsigned NumElements = VT->getNumElements();
3605       if (NumElements == 1)
3606         return false;
3607 
3608       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3609         if (getContext().getTypeSize(Ty) <= 256)
3610           return true;
3611       } else if (VT->getElementType()->
3612                    isSpecificBuiltinType(BuiltinType::Float)) {
3613         if (getContext().getTypeSize(Ty) <= 128)
3614           return true;
3615       }
3616     }
3617 
3618     return false;
3619   }
3620 
3621   bool IsQPXVectorTy(QualType Ty) const {
3622     return IsQPXVectorTy(Ty.getTypePtr());
3623   }
3624 
3625 public:
3626   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3627     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3628 
3629   bool isPromotableTypeForABI(QualType Ty) const;
3630   CharUnits getParamTypeAlignment(QualType Ty) const;
3631 
3632   ABIArgInfo classifyReturnType(QualType RetTy) const;
3633   ABIArgInfo classifyArgumentType(QualType Ty) const;
3634 
3635   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3636   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3637                                          uint64_t Members) const override;
3638 
3639   // TODO: We can add more logic to computeInfo to improve performance.
3640   // Example: For aggregate arguments that fit in a register, we could
3641   // use getDirectInReg (as is done below for structs containing a single
3642   // floating-point value) to avoid pushing them to memory on function
3643   // entry.  This would require changing the logic in PPCISelLowering
3644   // when lowering the parameters in the caller and args in the callee.
3645   void computeInfo(CGFunctionInfo &FI) const override {
3646     if (!getCXXABI().classifyReturnType(FI))
3647       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3648     for (auto &I : FI.arguments()) {
3649       // We rely on the default argument classification for the most part.
3650       // One exception:  An aggregate containing a single floating-point
3651       // or vector item must be passed in a register if one is available.
3652       const Type *T = isSingleElementStruct(I.type, getContext());
3653       if (T) {
3654         const BuiltinType *BT = T->getAs<BuiltinType>();
3655         if (IsQPXVectorTy(T) ||
3656             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3657             (BT && BT->isFloatingPoint())) {
3658           QualType QT(T, 0);
3659           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3660           continue;
3661         }
3662       }
3663       I.info = classifyArgumentType(I.type);
3664     }
3665   }
3666 
3667   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3668                     QualType Ty) const override;
3669 };
3670 
3671 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3672 
3673 public:
3674   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3675                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3676       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3677 
3678   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3679     // This is recovered from gcc output.
3680     return 1; // r1 is the dedicated stack pointer
3681   }
3682 
3683   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3684                                llvm::Value *Address) const override;
3685 };
3686 
3687 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3688 public:
3689   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3690 
3691   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3692     // This is recovered from gcc output.
3693     return 1; // r1 is the dedicated stack pointer
3694   }
3695 
3696   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3697                                llvm::Value *Address) const override;
3698 };
3699 
3700 }
3701 
3702 // Return true if the ABI requires Ty to be passed sign- or zero-
3703 // extended to 64 bits.
3704 bool
3705 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3706   // Treat an enum type as its underlying type.
3707   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3708     Ty = EnumTy->getDecl()->getIntegerType();
3709 
3710   // Promotable integer types are required to be promoted by the ABI.
3711   if (Ty->isPromotableIntegerType())
3712     return true;
3713 
3714   // In addition to the usual promotable integer types, we also need to
3715   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3716   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3717     switch (BT->getKind()) {
3718     case BuiltinType::Int:
3719     case BuiltinType::UInt:
3720       return true;
3721     default:
3722       break;
3723     }
3724 
3725   return false;
3726 }
3727 
3728 /// isAlignedParamType - Determine whether a type requires 16-byte or
3729 /// higher alignment in the parameter area.  Always returns at least 8.
3730 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3731   // Complex types are passed just like their elements.
3732   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3733     Ty = CTy->getElementType();
3734 
3735   // Only vector types of size 16 bytes need alignment (larger types are
3736   // passed via reference, smaller types are not aligned).
3737   if (IsQPXVectorTy(Ty)) {
3738     if (getContext().getTypeSize(Ty) > 128)
3739       return CharUnits::fromQuantity(32);
3740 
3741     return CharUnits::fromQuantity(16);
3742   } else if (Ty->isVectorType()) {
3743     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
3744   }
3745 
3746   // For single-element float/vector structs, we consider the whole type
3747   // to have the same alignment requirements as its single element.
3748   const Type *AlignAsType = nullptr;
3749   const Type *EltType = isSingleElementStruct(Ty, getContext());
3750   if (EltType) {
3751     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3752     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3753          getContext().getTypeSize(EltType) == 128) ||
3754         (BT && BT->isFloatingPoint()))
3755       AlignAsType = EltType;
3756   }
3757 
3758   // Likewise for ELFv2 homogeneous aggregates.
3759   const Type *Base = nullptr;
3760   uint64_t Members = 0;
3761   if (!AlignAsType && Kind == ELFv2 &&
3762       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3763     AlignAsType = Base;
3764 
3765   // With special case aggregates, only vector base types need alignment.
3766   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3767     if (getContext().getTypeSize(AlignAsType) > 128)
3768       return CharUnits::fromQuantity(32);
3769 
3770     return CharUnits::fromQuantity(16);
3771   } else if (AlignAsType) {
3772     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
3773   }
3774 
3775   // Otherwise, we only need alignment for any aggregate type that
3776   // has an alignment requirement of >= 16 bytes.
3777   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3778     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3779       return CharUnits::fromQuantity(32);
3780     return CharUnits::fromQuantity(16);
3781   }
3782 
3783   return CharUnits::fromQuantity(8);
3784 }
3785 
3786 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3787 /// aggregate.  Base is set to the base element type, and Members is set
3788 /// to the number of base elements.
3789 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3790                                      uint64_t &Members) const {
3791   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3792     uint64_t NElements = AT->getSize().getZExtValue();
3793     if (NElements == 0)
3794       return false;
3795     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3796       return false;
3797     Members *= NElements;
3798   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3799     const RecordDecl *RD = RT->getDecl();
3800     if (RD->hasFlexibleArrayMember())
3801       return false;
3802 
3803     Members = 0;
3804 
3805     // If this is a C++ record, check the bases first.
3806     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3807       for (const auto &I : CXXRD->bases()) {
3808         // Ignore empty records.
3809         if (isEmptyRecord(getContext(), I.getType(), true))
3810           continue;
3811 
3812         uint64_t FldMembers;
3813         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3814           return false;
3815 
3816         Members += FldMembers;
3817       }
3818     }
3819 
3820     for (const auto *FD : RD->fields()) {
3821       // Ignore (non-zero arrays of) empty records.
3822       QualType FT = FD->getType();
3823       while (const ConstantArrayType *AT =
3824              getContext().getAsConstantArrayType(FT)) {
3825         if (AT->getSize().getZExtValue() == 0)
3826           return false;
3827         FT = AT->getElementType();
3828       }
3829       if (isEmptyRecord(getContext(), FT, true))
3830         continue;
3831 
3832       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3833       if (getContext().getLangOpts().CPlusPlus &&
3834           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3835         continue;
3836 
3837       uint64_t FldMembers;
3838       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3839         return false;
3840 
3841       Members = (RD->isUnion() ?
3842                  std::max(Members, FldMembers) : Members + FldMembers);
3843     }
3844 
3845     if (!Base)
3846       return false;
3847 
3848     // Ensure there is no padding.
3849     if (getContext().getTypeSize(Base) * Members !=
3850         getContext().getTypeSize(Ty))
3851       return false;
3852   } else {
3853     Members = 1;
3854     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3855       Members = 2;
3856       Ty = CT->getElementType();
3857     }
3858 
3859     // Most ABIs only support float, double, and some vector type widths.
3860     if (!isHomogeneousAggregateBaseType(Ty))
3861       return false;
3862 
3863     // The base type must be the same for all members.  Types that
3864     // agree in both total size and mode (float vs. vector) are
3865     // treated as being equivalent here.
3866     const Type *TyPtr = Ty.getTypePtr();
3867     if (!Base)
3868       Base = TyPtr;
3869 
3870     if (Base->isVectorType() != TyPtr->isVectorType() ||
3871         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3872       return false;
3873   }
3874   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3875 }
3876 
3877 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3878   // Homogeneous aggregates for ELFv2 must have base types of float,
3879   // double, long double, or 128-bit vectors.
3880   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3881     if (BT->getKind() == BuiltinType::Float ||
3882         BT->getKind() == BuiltinType::Double ||
3883         BT->getKind() == BuiltinType::LongDouble)
3884       return true;
3885   }
3886   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3887     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3888       return true;
3889   }
3890   return false;
3891 }
3892 
3893 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3894     const Type *Base, uint64_t Members) const {
3895   // Vector types require one register, floating point types require one
3896   // or two registers depending on their size.
3897   uint32_t NumRegs =
3898       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3899 
3900   // Homogeneous Aggregates may occupy at most 8 registers.
3901   return Members * NumRegs <= 8;
3902 }
3903 
3904 ABIArgInfo
3905 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3906   Ty = useFirstFieldIfTransparentUnion(Ty);
3907 
3908   if (Ty->isAnyComplexType())
3909     return ABIArgInfo::getDirect();
3910 
3911   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3912   // or via reference (larger than 16 bytes).
3913   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3914     uint64_t Size = getContext().getTypeSize(Ty);
3915     if (Size > 128)
3916       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3917     else if (Size < 128) {
3918       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3919       return ABIArgInfo::getDirect(CoerceTy);
3920     }
3921   }
3922 
3923   if (isAggregateTypeForABI(Ty)) {
3924     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3925       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3926 
3927     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
3928     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
3929 
3930     // ELFv2 homogeneous aggregates are passed as array types.
3931     const Type *Base = nullptr;
3932     uint64_t Members = 0;
3933     if (Kind == ELFv2 &&
3934         isHomogeneousAggregate(Ty, Base, Members)) {
3935       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3936       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3937       return ABIArgInfo::getDirect(CoerceTy);
3938     }
3939 
3940     // If an aggregate may end up fully in registers, we do not
3941     // use the ByVal method, but pass the aggregate as array.
3942     // This is usually beneficial since we avoid forcing the
3943     // back-end to store the argument to memory.
3944     uint64_t Bits = getContext().getTypeSize(Ty);
3945     if (Bits > 0 && Bits <= 8 * GPRBits) {
3946       llvm::Type *CoerceTy;
3947 
3948       // Types up to 8 bytes are passed as integer type (which will be
3949       // properly aligned in the argument save area doubleword).
3950       if (Bits <= GPRBits)
3951         CoerceTy = llvm::IntegerType::get(getVMContext(),
3952                                           llvm::RoundUpToAlignment(Bits, 8));
3953       // Larger types are passed as arrays, with the base type selected
3954       // according to the required alignment in the save area.
3955       else {
3956         uint64_t RegBits = ABIAlign * 8;
3957         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3958         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3959         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3960       }
3961 
3962       return ABIArgInfo::getDirect(CoerceTy);
3963     }
3964 
3965     // All other aggregates are passed ByVal.
3966     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
3967                                    /*ByVal=*/true,
3968                                    /*Realign=*/TyAlign > ABIAlign);
3969   }
3970 
3971   return (isPromotableTypeForABI(Ty) ?
3972           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3973 }
3974 
3975 ABIArgInfo
3976 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3977   if (RetTy->isVoidType())
3978     return ABIArgInfo::getIgnore();
3979 
3980   if (RetTy->isAnyComplexType())
3981     return ABIArgInfo::getDirect();
3982 
3983   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3984   // or via reference (larger than 16 bytes).
3985   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
3986     uint64_t Size = getContext().getTypeSize(RetTy);
3987     if (Size > 128)
3988       return getNaturalAlignIndirect(RetTy);
3989     else if (Size < 128) {
3990       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3991       return ABIArgInfo::getDirect(CoerceTy);
3992     }
3993   }
3994 
3995   if (isAggregateTypeForABI(RetTy)) {
3996     // ELFv2 homogeneous aggregates are returned as array types.
3997     const Type *Base = nullptr;
3998     uint64_t Members = 0;
3999     if (Kind == ELFv2 &&
4000         isHomogeneousAggregate(RetTy, Base, Members)) {
4001       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4002       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4003       return ABIArgInfo::getDirect(CoerceTy);
4004     }
4005 
4006     // ELFv2 small aggregates are returned in up to two registers.
4007     uint64_t Bits = getContext().getTypeSize(RetTy);
4008     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4009       if (Bits == 0)
4010         return ABIArgInfo::getIgnore();
4011 
4012       llvm::Type *CoerceTy;
4013       if (Bits > GPRBits) {
4014         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4015         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4016       } else
4017         CoerceTy = llvm::IntegerType::get(getVMContext(),
4018                                           llvm::RoundUpToAlignment(Bits, 8));
4019       return ABIArgInfo::getDirect(CoerceTy);
4020     }
4021 
4022     // All other aggregates are returned indirectly.
4023     return getNaturalAlignIndirect(RetTy);
4024   }
4025 
4026   return (isPromotableTypeForABI(RetTy) ?
4027           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4028 }
4029 
4030 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4031 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4032                                       QualType Ty) const {
4033   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4034   TypeInfo.second = getParamTypeAlignment(Ty);
4035 
4036   CharUnits SlotSize = CharUnits::fromQuantity(8);
4037 
4038   // If we have a complex type and the base type is smaller than 8 bytes,
4039   // the ABI calls for the real and imaginary parts to be right-adjusted
4040   // in separate doublewords.  However, Clang expects us to produce a
4041   // pointer to a structure with the two parts packed tightly.  So generate
4042   // loads of the real and imaginary parts relative to the va_list pointer,
4043   // and store them to a temporary structure.
4044   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4045     CharUnits EltSize = TypeInfo.first / 2;
4046     if (EltSize < SlotSize) {
4047       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4048                                             SlotSize * 2, SlotSize,
4049                                             SlotSize, /*AllowHigher*/ true);
4050 
4051       Address RealAddr = Addr;
4052       Address ImagAddr = RealAddr;
4053       if (CGF.CGM.getDataLayout().isBigEndian()) {
4054         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4055                                                           SlotSize - EltSize);
4056         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4057                                                       2 * SlotSize - EltSize);
4058       } else {
4059         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4060       }
4061 
4062       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4063       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4064       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4065       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4066       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4067 
4068       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4069       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4070                              /*init*/ true);
4071       return Temp;
4072     }
4073   }
4074 
4075   // Otherwise, just use the general rule.
4076   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4077                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4078 }
4079 
4080 static bool
4081 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4082                               llvm::Value *Address) {
4083   // This is calculated from the LLVM and GCC tables and verified
4084   // against gcc output.  AFAIK all ABIs use the same encoding.
4085 
4086   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4087 
4088   llvm::IntegerType *i8 = CGF.Int8Ty;
4089   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4090   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4091   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4092 
4093   // 0-31: r0-31, the 8-byte general-purpose registers
4094   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4095 
4096   // 32-63: fp0-31, the 8-byte floating-point registers
4097   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4098 
4099   // 64-76 are various 4-byte special-purpose registers:
4100   // 64: mq
4101   // 65: lr
4102   // 66: ctr
4103   // 67: ap
4104   // 68-75 cr0-7
4105   // 76: xer
4106   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4107 
4108   // 77-108: v0-31, the 16-byte vector registers
4109   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4110 
4111   // 109: vrsave
4112   // 110: vscr
4113   // 111: spe_acc
4114   // 112: spefscr
4115   // 113: sfp
4116   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4117 
4118   return false;
4119 }
4120 
4121 bool
4122 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4123   CodeGen::CodeGenFunction &CGF,
4124   llvm::Value *Address) const {
4125 
4126   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4127 }
4128 
4129 bool
4130 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4131                                                 llvm::Value *Address) const {
4132 
4133   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4134 }
4135 
4136 //===----------------------------------------------------------------------===//
4137 // AArch64 ABI Implementation
4138 //===----------------------------------------------------------------------===//
4139 
4140 namespace {
4141 
4142 class AArch64ABIInfo : public ABIInfo {
4143 public:
4144   enum ABIKind {
4145     AAPCS = 0,
4146     DarwinPCS
4147   };
4148 
4149 private:
4150   ABIKind Kind;
4151 
4152 public:
4153   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
4154 
4155 private:
4156   ABIKind getABIKind() const { return Kind; }
4157   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4158 
4159   ABIArgInfo classifyReturnType(QualType RetTy) const;
4160   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4161   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4162   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4163                                          uint64_t Members) const override;
4164 
4165   bool isIllegalVectorType(QualType Ty) const;
4166 
4167   void computeInfo(CGFunctionInfo &FI) const override {
4168     if (!getCXXABI().classifyReturnType(FI))
4169       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4170 
4171     for (auto &it : FI.arguments())
4172       it.info = classifyArgumentType(it.type);
4173   }
4174 
4175   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4176                           CodeGenFunction &CGF) const;
4177 
4178   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4179                          CodeGenFunction &CGF) const;
4180 
4181   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4182                     QualType Ty) const override {
4183     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4184                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4185   }
4186 };
4187 
4188 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4189 public:
4190   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4191       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4192 
4193   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4194     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4195   }
4196 
4197   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4198     return 31;
4199   }
4200 
4201   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4202 };
4203 }
4204 
4205 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4206   Ty = useFirstFieldIfTransparentUnion(Ty);
4207 
4208   // Handle illegal vector types here.
4209   if (isIllegalVectorType(Ty)) {
4210     uint64_t Size = getContext().getTypeSize(Ty);
4211     if (Size <= 32) {
4212       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4213       return ABIArgInfo::getDirect(ResType);
4214     }
4215     if (Size == 64) {
4216       llvm::Type *ResType =
4217           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4218       return ABIArgInfo::getDirect(ResType);
4219     }
4220     if (Size == 128) {
4221       llvm::Type *ResType =
4222           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4223       return ABIArgInfo::getDirect(ResType);
4224     }
4225     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4226   }
4227 
4228   if (!isAggregateTypeForABI(Ty)) {
4229     // Treat an enum type as its underlying type.
4230     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4231       Ty = EnumTy->getDecl()->getIntegerType();
4232 
4233     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4234                 ? ABIArgInfo::getExtend()
4235                 : ABIArgInfo::getDirect());
4236   }
4237 
4238   // Structures with either a non-trivial destructor or a non-trivial
4239   // copy constructor are always indirect.
4240   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4241     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4242                                      CGCXXABI::RAA_DirectInMemory);
4243   }
4244 
4245   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4246   // elsewhere for GNU compatibility.
4247   if (isEmptyRecord(getContext(), Ty, true)) {
4248     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4249       return ABIArgInfo::getIgnore();
4250 
4251     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4252   }
4253 
4254   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4255   const Type *Base = nullptr;
4256   uint64_t Members = 0;
4257   if (isHomogeneousAggregate(Ty, Base, Members)) {
4258     return ABIArgInfo::getDirect(
4259         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4260   }
4261 
4262   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4263   uint64_t Size = getContext().getTypeSize(Ty);
4264   if (Size <= 128) {
4265     unsigned Alignment = getContext().getTypeAlign(Ty);
4266     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4267 
4268     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4269     // For aggregates with 16-byte alignment, we use i128.
4270     if (Alignment < 128 && Size == 128) {
4271       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4272       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4273     }
4274     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4275   }
4276 
4277   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4278 }
4279 
4280 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4281   if (RetTy->isVoidType())
4282     return ABIArgInfo::getIgnore();
4283 
4284   // Large vector types should be returned via memory.
4285   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4286     return getNaturalAlignIndirect(RetTy);
4287 
4288   if (!isAggregateTypeForABI(RetTy)) {
4289     // Treat an enum type as its underlying type.
4290     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4291       RetTy = EnumTy->getDecl()->getIntegerType();
4292 
4293     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4294                 ? ABIArgInfo::getExtend()
4295                 : ABIArgInfo::getDirect());
4296   }
4297 
4298   if (isEmptyRecord(getContext(), RetTy, true))
4299     return ABIArgInfo::getIgnore();
4300 
4301   const Type *Base = nullptr;
4302   uint64_t Members = 0;
4303   if (isHomogeneousAggregate(RetTy, Base, Members))
4304     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4305     return ABIArgInfo::getDirect();
4306 
4307   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4308   uint64_t Size = getContext().getTypeSize(RetTy);
4309   if (Size <= 128) {
4310     unsigned Alignment = getContext().getTypeAlign(RetTy);
4311     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4312 
4313     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4314     // For aggregates with 16-byte alignment, we use i128.
4315     if (Alignment < 128 && Size == 128) {
4316       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4317       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4318     }
4319     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4320   }
4321 
4322   return getNaturalAlignIndirect(RetTy);
4323 }
4324 
4325 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4326 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4327   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4328     // Check whether VT is legal.
4329     unsigned NumElements = VT->getNumElements();
4330     uint64_t Size = getContext().getTypeSize(VT);
4331     // NumElements should be power of 2 between 1 and 16.
4332     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4333       return true;
4334     return Size != 64 && (Size != 128 || NumElements == 1);
4335   }
4336   return false;
4337 }
4338 
4339 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4340   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4341   // point type or a short-vector type. This is the same as the 32-bit ABI,
4342   // but with the difference that any floating-point type is allowed,
4343   // including __fp16.
4344   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4345     if (BT->isFloatingPoint())
4346       return true;
4347   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4348     unsigned VecSize = getContext().getTypeSize(VT);
4349     if (VecSize == 64 || VecSize == 128)
4350       return true;
4351   }
4352   return false;
4353 }
4354 
4355 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4356                                                        uint64_t Members) const {
4357   return Members <= 4;
4358 }
4359 
4360 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4361                                             QualType Ty,
4362                                             CodeGenFunction &CGF) const {
4363   ABIArgInfo AI = classifyArgumentType(Ty);
4364   bool IsIndirect = AI.isIndirect();
4365 
4366   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4367   if (IsIndirect)
4368     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4369   else if (AI.getCoerceToType())
4370     BaseTy = AI.getCoerceToType();
4371 
4372   unsigned NumRegs = 1;
4373   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4374     BaseTy = ArrTy->getElementType();
4375     NumRegs = ArrTy->getNumElements();
4376   }
4377   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4378 
4379   // The AArch64 va_list type and handling is specified in the Procedure Call
4380   // Standard, section B.4:
4381   //
4382   // struct {
4383   //   void *__stack;
4384   //   void *__gr_top;
4385   //   void *__vr_top;
4386   //   int __gr_offs;
4387   //   int __vr_offs;
4388   // };
4389 
4390   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4391   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4392   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4393   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4394 
4395   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4396   CharUnits TyAlign = TyInfo.second;
4397 
4398   Address reg_offs_p = Address::invalid();
4399   llvm::Value *reg_offs = nullptr;
4400   int reg_top_index;
4401   CharUnits reg_top_offset;
4402   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4403   if (!IsFPR) {
4404     // 3 is the field number of __gr_offs
4405     reg_offs_p =
4406         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4407                                     "gr_offs_p");
4408     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4409     reg_top_index = 1; // field number for __gr_top
4410     reg_top_offset = CharUnits::fromQuantity(8);
4411     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4412   } else {
4413     // 4 is the field number of __vr_offs.
4414     reg_offs_p =
4415         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4416                                     "vr_offs_p");
4417     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4418     reg_top_index = 2; // field number for __vr_top
4419     reg_top_offset = CharUnits::fromQuantity(16);
4420     RegSize = 16 * NumRegs;
4421   }
4422 
4423   //=======================================
4424   // Find out where argument was passed
4425   //=======================================
4426 
4427   // If reg_offs >= 0 we're already using the stack for this type of
4428   // argument. We don't want to keep updating reg_offs (in case it overflows,
4429   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4430   // whatever they get).
4431   llvm::Value *UsingStack = nullptr;
4432   UsingStack = CGF.Builder.CreateICmpSGE(
4433       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4434 
4435   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4436 
4437   // Otherwise, at least some kind of argument could go in these registers, the
4438   // question is whether this particular type is too big.
4439   CGF.EmitBlock(MaybeRegBlock);
4440 
4441   // Integer arguments may need to correct register alignment (for example a
4442   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4443   // align __gr_offs to calculate the potential address.
4444   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4445     int Align = TyAlign.getQuantity();
4446 
4447     reg_offs = CGF.Builder.CreateAdd(
4448         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4449         "align_regoffs");
4450     reg_offs = CGF.Builder.CreateAnd(
4451         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4452         "aligned_regoffs");
4453   }
4454 
4455   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4456   // The fact that this is done unconditionally reflects the fact that
4457   // allocating an argument to the stack also uses up all the remaining
4458   // registers of the appropriate kind.
4459   llvm::Value *NewOffset = nullptr;
4460   NewOffset = CGF.Builder.CreateAdd(
4461       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4462   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4463 
4464   // Now we're in a position to decide whether this argument really was in
4465   // registers or not.
4466   llvm::Value *InRegs = nullptr;
4467   InRegs = CGF.Builder.CreateICmpSLE(
4468       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4469 
4470   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4471 
4472   //=======================================
4473   // Argument was in registers
4474   //=======================================
4475 
4476   // Now we emit the code for if the argument was originally passed in
4477   // registers. First start the appropriate block:
4478   CGF.EmitBlock(InRegBlock);
4479 
4480   llvm::Value *reg_top = nullptr;
4481   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4482                                                   reg_top_offset, "reg_top_p");
4483   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4484   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4485                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4486   Address RegAddr = Address::invalid();
4487   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4488 
4489   if (IsIndirect) {
4490     // If it's been passed indirectly (actually a struct), whatever we find from
4491     // stored registers or on the stack will actually be a struct **.
4492     MemTy = llvm::PointerType::getUnqual(MemTy);
4493   }
4494 
4495   const Type *Base = nullptr;
4496   uint64_t NumMembers = 0;
4497   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4498   if (IsHFA && NumMembers > 1) {
4499     // Homogeneous aggregates passed in registers will have their elements split
4500     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4501     // qN+1, ...). We reload and store into a temporary local variable
4502     // contiguously.
4503     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4504     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4505     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4506     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4507     Address Tmp = CGF.CreateTempAlloca(HFATy,
4508                                        std::max(TyAlign, BaseTyInfo.second));
4509 
4510     // On big-endian platforms, the value will be right-aligned in its slot.
4511     int Offset = 0;
4512     if (CGF.CGM.getDataLayout().isBigEndian() &&
4513         BaseTyInfo.first.getQuantity() < 16)
4514       Offset = 16 - BaseTyInfo.first.getQuantity();
4515 
4516     for (unsigned i = 0; i < NumMembers; ++i) {
4517       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4518       Address LoadAddr =
4519         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4520       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4521 
4522       Address StoreAddr =
4523         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4524 
4525       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4526       CGF.Builder.CreateStore(Elem, StoreAddr);
4527     }
4528 
4529     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4530   } else {
4531     // Otherwise the object is contiguous in memory.
4532 
4533     // It might be right-aligned in its slot.
4534     CharUnits SlotSize = BaseAddr.getAlignment();
4535     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4536         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4537         TyInfo.first < SlotSize) {
4538       CharUnits Offset = SlotSize - TyInfo.first;
4539       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4540     }
4541 
4542     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4543   }
4544 
4545   CGF.EmitBranch(ContBlock);
4546 
4547   //=======================================
4548   // Argument was on the stack
4549   //=======================================
4550   CGF.EmitBlock(OnStackBlock);
4551 
4552   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4553                                                 CharUnits::Zero(), "stack_p");
4554   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4555 
4556   // Again, stack arguments may need realignment. In this case both integer and
4557   // floating-point ones might be affected.
4558   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4559     int Align = TyAlign.getQuantity();
4560 
4561     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4562 
4563     OnStackPtr = CGF.Builder.CreateAdd(
4564         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4565         "align_stack");
4566     OnStackPtr = CGF.Builder.CreateAnd(
4567         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4568         "align_stack");
4569 
4570     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4571   }
4572   Address OnStackAddr(OnStackPtr,
4573                       std::max(CharUnits::fromQuantity(8), TyAlign));
4574 
4575   // All stack slots are multiples of 8 bytes.
4576   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4577   CharUnits StackSize;
4578   if (IsIndirect)
4579     StackSize = StackSlotSize;
4580   else
4581     StackSize = TyInfo.first.RoundUpToAlignment(StackSlotSize);
4582 
4583   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4584   llvm::Value *NewStack =
4585       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4586 
4587   // Write the new value of __stack for the next call to va_arg
4588   CGF.Builder.CreateStore(NewStack, stack_p);
4589 
4590   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4591       TyInfo.first < StackSlotSize) {
4592     CharUnits Offset = StackSlotSize - TyInfo.first;
4593     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4594   }
4595 
4596   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4597 
4598   CGF.EmitBranch(ContBlock);
4599 
4600   //=======================================
4601   // Tidy up
4602   //=======================================
4603   CGF.EmitBlock(ContBlock);
4604 
4605   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4606                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4607 
4608   if (IsIndirect)
4609     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4610                    TyInfo.second);
4611 
4612   return ResAddr;
4613 }
4614 
4615 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4616                                         CodeGenFunction &CGF) const {
4617   // The backend's lowering doesn't support va_arg for aggregates or
4618   // illegal vector types.  Lower VAArg here for these cases and use
4619   // the LLVM va_arg instruction for everything else.
4620   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4621     return Address::invalid();
4622 
4623   CharUnits SlotSize = CharUnits::fromQuantity(8);
4624 
4625   // Empty records are ignored for parameter passing purposes.
4626   if (isEmptyRecord(getContext(), Ty, true)) {
4627     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4628     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4629     return Addr;
4630   }
4631 
4632   // The size of the actual thing passed, which might end up just
4633   // being a pointer for indirect types.
4634   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4635 
4636   // Arguments bigger than 16 bytes which aren't homogeneous
4637   // aggregates should be passed indirectly.
4638   bool IsIndirect = false;
4639   if (TyInfo.first.getQuantity() > 16) {
4640     const Type *Base = nullptr;
4641     uint64_t Members = 0;
4642     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4643   }
4644 
4645   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4646                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4647 }
4648 
4649 //===----------------------------------------------------------------------===//
4650 // ARM ABI Implementation
4651 //===----------------------------------------------------------------------===//
4652 
4653 namespace {
4654 
4655 class ARMABIInfo : public ABIInfo {
4656 public:
4657   enum ABIKind {
4658     APCS = 0,
4659     AAPCS = 1,
4660     AAPCS_VFP
4661   };
4662 
4663 private:
4664   ABIKind Kind;
4665 
4666 public:
4667   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4668     setCCs();
4669   }
4670 
4671   bool isEABI() const {
4672     switch (getTarget().getTriple().getEnvironment()) {
4673     case llvm::Triple::Android:
4674     case llvm::Triple::EABI:
4675     case llvm::Triple::EABIHF:
4676     case llvm::Triple::GNUEABI:
4677     case llvm::Triple::GNUEABIHF:
4678       return true;
4679     default:
4680       return false;
4681     }
4682   }
4683 
4684   bool isEABIHF() const {
4685     switch (getTarget().getTriple().getEnvironment()) {
4686     case llvm::Triple::EABIHF:
4687     case llvm::Triple::GNUEABIHF:
4688       return true;
4689     default:
4690       return false;
4691     }
4692   }
4693 
4694   ABIKind getABIKind() const { return Kind; }
4695 
4696 private:
4697   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4698   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4699   bool isIllegalVectorType(QualType Ty) const;
4700 
4701   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4702   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4703                                          uint64_t Members) const override;
4704 
4705   void computeInfo(CGFunctionInfo &FI) const override;
4706 
4707   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4708                     QualType Ty) const override;
4709 
4710   llvm::CallingConv::ID getLLVMDefaultCC() const;
4711   llvm::CallingConv::ID getABIDefaultCC() const;
4712   void setCCs();
4713 };
4714 
4715 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4716 public:
4717   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4718     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4719 
4720   const ARMABIInfo &getABIInfo() const {
4721     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4722   }
4723 
4724   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4725     return 13;
4726   }
4727 
4728   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4729     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4730   }
4731 
4732   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4733                                llvm::Value *Address) const override {
4734     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4735 
4736     // 0-15 are the 16 integer registers.
4737     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4738     return false;
4739   }
4740 
4741   unsigned getSizeOfUnwindException() const override {
4742     if (getABIInfo().isEABI()) return 88;
4743     return TargetCodeGenInfo::getSizeOfUnwindException();
4744   }
4745 
4746   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4747                            CodeGen::CodeGenModule &CGM) const override {
4748     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4749     if (!FD)
4750       return;
4751 
4752     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4753     if (!Attr)
4754       return;
4755 
4756     const char *Kind;
4757     switch (Attr->getInterrupt()) {
4758     case ARMInterruptAttr::Generic: Kind = ""; break;
4759     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4760     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4761     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4762     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4763     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4764     }
4765 
4766     llvm::Function *Fn = cast<llvm::Function>(GV);
4767 
4768     Fn->addFnAttr("interrupt", Kind);
4769 
4770     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4771       return;
4772 
4773     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4774     // however this is not necessarily true on taking any interrupt. Instruct
4775     // the backend to perform a realignment as part of the function prologue.
4776     llvm::AttrBuilder B;
4777     B.addStackAlignmentAttr(8);
4778     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4779                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4780                                               llvm::AttributeSet::FunctionIndex,
4781                                               B));
4782   }
4783 };
4784 
4785 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4786   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4787                                         CodeGen::CodeGenModule &CGM) const;
4788 
4789 public:
4790   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4791       : ARMTargetCodeGenInfo(CGT, K) {}
4792 
4793   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4794                            CodeGen::CodeGenModule &CGM) const override;
4795 };
4796 
4797 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4798     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4799   if (!isa<FunctionDecl>(D))
4800     return;
4801   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4802     return;
4803 
4804   llvm::Function *F = cast<llvm::Function>(GV);
4805   F->addFnAttr("stack-probe-size",
4806                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4807 }
4808 
4809 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4810     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4811   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4812   addStackProbeSizeTargetAttribute(D, GV, CGM);
4813 }
4814 }
4815 
4816 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4817   if (!getCXXABI().classifyReturnType(FI))
4818     FI.getReturnInfo() =
4819         classifyReturnType(FI.getReturnType(), FI.isVariadic());
4820 
4821   for (auto &I : FI.arguments())
4822     I.info = classifyArgumentType(I.type, FI.isVariadic());
4823 
4824   // Always honor user-specified calling convention.
4825   if (FI.getCallingConvention() != llvm::CallingConv::C)
4826     return;
4827 
4828   llvm::CallingConv::ID cc = getRuntimeCC();
4829   if (cc != llvm::CallingConv::C)
4830     FI.setEffectiveCallingConvention(cc);
4831 }
4832 
4833 /// Return the default calling convention that LLVM will use.
4834 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4835   // The default calling convention that LLVM will infer.
4836   if (isEABIHF())
4837     return llvm::CallingConv::ARM_AAPCS_VFP;
4838   else if (isEABI())
4839     return llvm::CallingConv::ARM_AAPCS;
4840   else
4841     return llvm::CallingConv::ARM_APCS;
4842 }
4843 
4844 /// Return the calling convention that our ABI would like us to use
4845 /// as the C calling convention.
4846 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4847   switch (getABIKind()) {
4848   case APCS: return llvm::CallingConv::ARM_APCS;
4849   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4850   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4851   }
4852   llvm_unreachable("bad ABI kind");
4853 }
4854 
4855 void ARMABIInfo::setCCs() {
4856   assert(getRuntimeCC() == llvm::CallingConv::C);
4857 
4858   // Don't muddy up the IR with a ton of explicit annotations if
4859   // they'd just match what LLVM will infer from the triple.
4860   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4861   if (abiCC != getLLVMDefaultCC())
4862     RuntimeCC = abiCC;
4863 
4864   BuiltinCC = (getABIKind() == APCS ?
4865                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4866 }
4867 
4868 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4869                                             bool isVariadic) const {
4870   // 6.1.2.1 The following argument types are VFP CPRCs:
4871   //   A single-precision floating-point type (including promoted
4872   //   half-precision types); A double-precision floating-point type;
4873   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4874   //   with a Base Type of a single- or double-precision floating-point type,
4875   //   64-bit containerized vectors or 128-bit containerized vectors with one
4876   //   to four Elements.
4877   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4878 
4879   Ty = useFirstFieldIfTransparentUnion(Ty);
4880 
4881   // Handle illegal vector types here.
4882   if (isIllegalVectorType(Ty)) {
4883     uint64_t Size = getContext().getTypeSize(Ty);
4884     if (Size <= 32) {
4885       llvm::Type *ResType =
4886           llvm::Type::getInt32Ty(getVMContext());
4887       return ABIArgInfo::getDirect(ResType);
4888     }
4889     if (Size == 64) {
4890       llvm::Type *ResType = llvm::VectorType::get(
4891           llvm::Type::getInt32Ty(getVMContext()), 2);
4892       return ABIArgInfo::getDirect(ResType);
4893     }
4894     if (Size == 128) {
4895       llvm::Type *ResType = llvm::VectorType::get(
4896           llvm::Type::getInt32Ty(getVMContext()), 4);
4897       return ABIArgInfo::getDirect(ResType);
4898     }
4899     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4900   }
4901 
4902   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
4903   // unspecified. This is not done for OpenCL as it handles the half type
4904   // natively, and does not need to interwork with AAPCS code.
4905   if (Ty->isHalfType() && !getContext().getLangOpts().OpenCL) {
4906     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
4907       llvm::Type::getFloatTy(getVMContext()) :
4908       llvm::Type::getInt32Ty(getVMContext());
4909     return ABIArgInfo::getDirect(ResType);
4910   }
4911 
4912   if (!isAggregateTypeForABI(Ty)) {
4913     // Treat an enum type as its underlying type.
4914     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4915       Ty = EnumTy->getDecl()->getIntegerType();
4916     }
4917 
4918     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4919                                           : ABIArgInfo::getDirect());
4920   }
4921 
4922   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4923     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4924   }
4925 
4926   // Ignore empty records.
4927   if (isEmptyRecord(getContext(), Ty, true))
4928     return ABIArgInfo::getIgnore();
4929 
4930   if (IsEffectivelyAAPCS_VFP) {
4931     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4932     // into VFP registers.
4933     const Type *Base = nullptr;
4934     uint64_t Members = 0;
4935     if (isHomogeneousAggregate(Ty, Base, Members)) {
4936       assert(Base && "Base class should be set for homogeneous aggregate");
4937       // Base can be a floating-point or a vector.
4938       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4939     }
4940   }
4941 
4942   // Support byval for ARM.
4943   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4944   // most 8-byte. We realign the indirect argument if type alignment is bigger
4945   // than ABI alignment.
4946   uint64_t ABIAlign = 4;
4947   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4948   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4949        getABIKind() == ARMABIInfo::AAPCS)
4950     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4951 
4952   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4953     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4954                                    /*ByVal=*/true,
4955                                    /*Realign=*/TyAlign > ABIAlign);
4956   }
4957 
4958   // Otherwise, pass by coercing to a structure of the appropriate size.
4959   llvm::Type* ElemTy;
4960   unsigned SizeRegs;
4961   // FIXME: Try to match the types of the arguments more accurately where
4962   // we can.
4963   if (getContext().getTypeAlign(Ty) <= 32) {
4964     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4965     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4966   } else {
4967     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4968     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4969   }
4970 
4971   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4972 }
4973 
4974 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4975                               llvm::LLVMContext &VMContext) {
4976   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4977   // is called integer-like if its size is less than or equal to one word, and
4978   // the offset of each of its addressable sub-fields is zero.
4979 
4980   uint64_t Size = Context.getTypeSize(Ty);
4981 
4982   // Check that the type fits in a word.
4983   if (Size > 32)
4984     return false;
4985 
4986   // FIXME: Handle vector types!
4987   if (Ty->isVectorType())
4988     return false;
4989 
4990   // Float types are never treated as "integer like".
4991   if (Ty->isRealFloatingType())
4992     return false;
4993 
4994   // If this is a builtin or pointer type then it is ok.
4995   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4996     return true;
4997 
4998   // Small complex integer types are "integer like".
4999   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5000     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5001 
5002   // Single element and zero sized arrays should be allowed, by the definition
5003   // above, but they are not.
5004 
5005   // Otherwise, it must be a record type.
5006   const RecordType *RT = Ty->getAs<RecordType>();
5007   if (!RT) return false;
5008 
5009   // Ignore records with flexible arrays.
5010   const RecordDecl *RD = RT->getDecl();
5011   if (RD->hasFlexibleArrayMember())
5012     return false;
5013 
5014   // Check that all sub-fields are at offset 0, and are themselves "integer
5015   // like".
5016   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5017 
5018   bool HadField = false;
5019   unsigned idx = 0;
5020   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5021        i != e; ++i, ++idx) {
5022     const FieldDecl *FD = *i;
5023 
5024     // Bit-fields are not addressable, we only need to verify they are "integer
5025     // like". We still have to disallow a subsequent non-bitfield, for example:
5026     //   struct { int : 0; int x }
5027     // is non-integer like according to gcc.
5028     if (FD->isBitField()) {
5029       if (!RD->isUnion())
5030         HadField = true;
5031 
5032       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5033         return false;
5034 
5035       continue;
5036     }
5037 
5038     // Check if this field is at offset 0.
5039     if (Layout.getFieldOffset(idx) != 0)
5040       return false;
5041 
5042     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5043       return false;
5044 
5045     // Only allow at most one field in a structure. This doesn't match the
5046     // wording above, but follows gcc in situations with a field following an
5047     // empty structure.
5048     if (!RD->isUnion()) {
5049       if (HadField)
5050         return false;
5051 
5052       HadField = true;
5053     }
5054   }
5055 
5056   return true;
5057 }
5058 
5059 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5060                                           bool isVariadic) const {
5061   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5062 
5063   if (RetTy->isVoidType())
5064     return ABIArgInfo::getIgnore();
5065 
5066   // Large vector types should be returned via memory.
5067   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5068     return getNaturalAlignIndirect(RetTy);
5069   }
5070 
5071   // __fp16 gets returned as if it were an int or float, but with the top 16
5072   // bits unspecified. This is not done for OpenCL as it handles the half type
5073   // natively, and does not need to interwork with AAPCS code.
5074   if (RetTy->isHalfType() && !getContext().getLangOpts().OpenCL) {
5075     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5076       llvm::Type::getFloatTy(getVMContext()) :
5077       llvm::Type::getInt32Ty(getVMContext());
5078     return ABIArgInfo::getDirect(ResType);
5079   }
5080 
5081   if (!isAggregateTypeForABI(RetTy)) {
5082     // Treat an enum type as its underlying type.
5083     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5084       RetTy = EnumTy->getDecl()->getIntegerType();
5085 
5086     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5087                                             : ABIArgInfo::getDirect();
5088   }
5089 
5090   // Are we following APCS?
5091   if (getABIKind() == APCS) {
5092     if (isEmptyRecord(getContext(), RetTy, false))
5093       return ABIArgInfo::getIgnore();
5094 
5095     // Complex types are all returned as packed integers.
5096     //
5097     // FIXME: Consider using 2 x vector types if the back end handles them
5098     // correctly.
5099     if (RetTy->isAnyComplexType())
5100       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5101           getVMContext(), getContext().getTypeSize(RetTy)));
5102 
5103     // Integer like structures are returned in r0.
5104     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5105       // Return in the smallest viable integer type.
5106       uint64_t Size = getContext().getTypeSize(RetTy);
5107       if (Size <= 8)
5108         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5109       if (Size <= 16)
5110         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5111       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5112     }
5113 
5114     // Otherwise return in memory.
5115     return getNaturalAlignIndirect(RetTy);
5116   }
5117 
5118   // Otherwise this is an AAPCS variant.
5119 
5120   if (isEmptyRecord(getContext(), RetTy, true))
5121     return ABIArgInfo::getIgnore();
5122 
5123   // Check for homogeneous aggregates with AAPCS-VFP.
5124   if (IsEffectivelyAAPCS_VFP) {
5125     const Type *Base = nullptr;
5126     uint64_t Members;
5127     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5128       assert(Base && "Base class should be set for homogeneous aggregate");
5129       // Homogeneous Aggregates are returned directly.
5130       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5131     }
5132   }
5133 
5134   // Aggregates <= 4 bytes are returned in r0; other aggregates
5135   // are returned indirectly.
5136   uint64_t Size = getContext().getTypeSize(RetTy);
5137   if (Size <= 32) {
5138     if (getDataLayout().isBigEndian())
5139       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5140       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5141 
5142     // Return in the smallest viable integer type.
5143     if (Size <= 8)
5144       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5145     if (Size <= 16)
5146       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5147     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5148   }
5149 
5150   return getNaturalAlignIndirect(RetTy);
5151 }
5152 
5153 /// isIllegalVector - check whether Ty is an illegal vector type.
5154 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5155   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5156     // Check whether VT is legal.
5157     unsigned NumElements = VT->getNumElements();
5158     uint64_t Size = getContext().getTypeSize(VT);
5159     // NumElements should be power of 2.
5160     if ((NumElements & (NumElements - 1)) != 0)
5161       return true;
5162     // Size should be greater than 32 bits.
5163     return Size <= 32;
5164   }
5165   return false;
5166 }
5167 
5168 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5169   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5170   // double, or 64-bit or 128-bit vectors.
5171   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5172     if (BT->getKind() == BuiltinType::Float ||
5173         BT->getKind() == BuiltinType::Double ||
5174         BT->getKind() == BuiltinType::LongDouble)
5175       return true;
5176   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5177     unsigned VecSize = getContext().getTypeSize(VT);
5178     if (VecSize == 64 || VecSize == 128)
5179       return true;
5180   }
5181   return false;
5182 }
5183 
5184 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5185                                                    uint64_t Members) const {
5186   return Members <= 4;
5187 }
5188 
5189 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5190                               QualType Ty) const {
5191   CharUnits SlotSize = CharUnits::fromQuantity(4);
5192 
5193   // Empty records are ignored for parameter passing purposes.
5194   if (isEmptyRecord(getContext(), Ty, true)) {
5195     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5196     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5197     return Addr;
5198   }
5199 
5200   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5201   CharUnits TyAlignForABI = TyInfo.second;
5202 
5203   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5204   bool IsIndirect = false;
5205   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5206     IsIndirect = true;
5207 
5208   // Otherwise, bound the type's ABI alignment.
5209   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5210   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5211   // Our callers should be prepared to handle an under-aligned address.
5212   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5213              getABIKind() == ARMABIInfo::AAPCS) {
5214     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5215     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5216   } else {
5217     TyAlignForABI = CharUnits::fromQuantity(4);
5218   }
5219   TyInfo.second = TyAlignForABI;
5220 
5221   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5222                           SlotSize, /*AllowHigherAlign*/ true);
5223 }
5224 
5225 //===----------------------------------------------------------------------===//
5226 // NVPTX ABI Implementation
5227 //===----------------------------------------------------------------------===//
5228 
5229 namespace {
5230 
5231 class NVPTXABIInfo : public ABIInfo {
5232 public:
5233   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5234 
5235   ABIArgInfo classifyReturnType(QualType RetTy) const;
5236   ABIArgInfo classifyArgumentType(QualType Ty) const;
5237 
5238   void computeInfo(CGFunctionInfo &FI) const override;
5239   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5240                     QualType Ty) const override;
5241 };
5242 
5243 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5244 public:
5245   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5246     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5247 
5248   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5249                            CodeGen::CodeGenModule &M) const override;
5250 private:
5251   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5252   // resulting MDNode to the nvvm.annotations MDNode.
5253   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5254 };
5255 
5256 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5257   if (RetTy->isVoidType())
5258     return ABIArgInfo::getIgnore();
5259 
5260   // note: this is different from default ABI
5261   if (!RetTy->isScalarType())
5262     return ABIArgInfo::getDirect();
5263 
5264   // Treat an enum type as its underlying type.
5265   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5266     RetTy = EnumTy->getDecl()->getIntegerType();
5267 
5268   return (RetTy->isPromotableIntegerType() ?
5269           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5270 }
5271 
5272 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5273   // Treat an enum type as its underlying type.
5274   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5275     Ty = EnumTy->getDecl()->getIntegerType();
5276 
5277   // Return aggregates type as indirect by value
5278   if (isAggregateTypeForABI(Ty))
5279     return getNaturalAlignIndirect(Ty, /* byval */ true);
5280 
5281   return (Ty->isPromotableIntegerType() ?
5282           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5283 }
5284 
5285 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5286   if (!getCXXABI().classifyReturnType(FI))
5287     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5288   for (auto &I : FI.arguments())
5289     I.info = classifyArgumentType(I.type);
5290 
5291   // Always honor user-specified calling convention.
5292   if (FI.getCallingConvention() != llvm::CallingConv::C)
5293     return;
5294 
5295   FI.setEffectiveCallingConvention(getRuntimeCC());
5296 }
5297 
5298 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5299                                 QualType Ty) const {
5300   llvm_unreachable("NVPTX does not support varargs");
5301 }
5302 
5303 void NVPTXTargetCodeGenInfo::
5304 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5305                     CodeGen::CodeGenModule &M) const{
5306   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5307   if (!FD) return;
5308 
5309   llvm::Function *F = cast<llvm::Function>(GV);
5310 
5311   // Perform special handling in OpenCL mode
5312   if (M.getLangOpts().OpenCL) {
5313     // Use OpenCL function attributes to check for kernel functions
5314     // By default, all functions are device functions
5315     if (FD->hasAttr<OpenCLKernelAttr>()) {
5316       // OpenCL __kernel functions get kernel metadata
5317       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5318       addNVVMMetadata(F, "kernel", 1);
5319       // And kernel functions are not subject to inlining
5320       F->addFnAttr(llvm::Attribute::NoInline);
5321     }
5322   }
5323 
5324   // Perform special handling in CUDA mode.
5325   if (M.getLangOpts().CUDA) {
5326     // CUDA __global__ functions get a kernel metadata entry.  Since
5327     // __global__ functions cannot be called from the device, we do not
5328     // need to set the noinline attribute.
5329     if (FD->hasAttr<CUDAGlobalAttr>()) {
5330       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5331       addNVVMMetadata(F, "kernel", 1);
5332     }
5333     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5334       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5335       llvm::APSInt MaxThreads(32);
5336       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5337       if (MaxThreads > 0)
5338         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5339 
5340       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5341       // not specified in __launch_bounds__ or if the user specified a 0 value,
5342       // we don't have to add a PTX directive.
5343       if (Attr->getMinBlocks()) {
5344         llvm::APSInt MinBlocks(32);
5345         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5346         if (MinBlocks > 0)
5347           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5348           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5349       }
5350     }
5351   }
5352 }
5353 
5354 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5355                                              int Operand) {
5356   llvm::Module *M = F->getParent();
5357   llvm::LLVMContext &Ctx = M->getContext();
5358 
5359   // Get "nvvm.annotations" metadata node
5360   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5361 
5362   llvm::Metadata *MDVals[] = {
5363       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5364       llvm::ConstantAsMetadata::get(
5365           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5366   // Append metadata to nvvm.annotations
5367   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5368 }
5369 }
5370 
5371 //===----------------------------------------------------------------------===//
5372 // SystemZ ABI Implementation
5373 //===----------------------------------------------------------------------===//
5374 
5375 namespace {
5376 
5377 class SystemZABIInfo : public ABIInfo {
5378   bool HasVector;
5379 
5380 public:
5381   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5382     : ABIInfo(CGT), HasVector(HV) {}
5383 
5384   bool isPromotableIntegerType(QualType Ty) const;
5385   bool isCompoundType(QualType Ty) const;
5386   bool isVectorArgumentType(QualType Ty) const;
5387   bool isFPArgumentType(QualType Ty) const;
5388   QualType GetSingleElementType(QualType Ty) const;
5389 
5390   ABIArgInfo classifyReturnType(QualType RetTy) const;
5391   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5392 
5393   void computeInfo(CGFunctionInfo &FI) const override {
5394     if (!getCXXABI().classifyReturnType(FI))
5395       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5396     for (auto &I : FI.arguments())
5397       I.info = classifyArgumentType(I.type);
5398   }
5399 
5400   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5401                     QualType Ty) const override;
5402 };
5403 
5404 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5405 public:
5406   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5407     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5408 };
5409 
5410 }
5411 
5412 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5413   // Treat an enum type as its underlying type.
5414   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5415     Ty = EnumTy->getDecl()->getIntegerType();
5416 
5417   // Promotable integer types are required to be promoted by the ABI.
5418   if (Ty->isPromotableIntegerType())
5419     return true;
5420 
5421   // 32-bit values must also be promoted.
5422   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5423     switch (BT->getKind()) {
5424     case BuiltinType::Int:
5425     case BuiltinType::UInt:
5426       return true;
5427     default:
5428       return false;
5429     }
5430   return false;
5431 }
5432 
5433 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5434   return (Ty->isAnyComplexType() ||
5435           Ty->isVectorType() ||
5436           isAggregateTypeForABI(Ty));
5437 }
5438 
5439 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5440   return (HasVector &&
5441           Ty->isVectorType() &&
5442           getContext().getTypeSize(Ty) <= 128);
5443 }
5444 
5445 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5446   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5447     switch (BT->getKind()) {
5448     case BuiltinType::Float:
5449     case BuiltinType::Double:
5450       return true;
5451     default:
5452       return false;
5453     }
5454 
5455   return false;
5456 }
5457 
5458 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5459   if (const RecordType *RT = Ty->getAsStructureType()) {
5460     const RecordDecl *RD = RT->getDecl();
5461     QualType Found;
5462 
5463     // If this is a C++ record, check the bases first.
5464     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5465       for (const auto &I : CXXRD->bases()) {
5466         QualType Base = I.getType();
5467 
5468         // Empty bases don't affect things either way.
5469         if (isEmptyRecord(getContext(), Base, true))
5470           continue;
5471 
5472         if (!Found.isNull())
5473           return Ty;
5474         Found = GetSingleElementType(Base);
5475       }
5476 
5477     // Check the fields.
5478     for (const auto *FD : RD->fields()) {
5479       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5480       // Unlike isSingleElementStruct(), empty structure and array fields
5481       // do count.  So do anonymous bitfields that aren't zero-sized.
5482       if (getContext().getLangOpts().CPlusPlus &&
5483           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5484         continue;
5485 
5486       // Unlike isSingleElementStruct(), arrays do not count.
5487       // Nested structures still do though.
5488       if (!Found.isNull())
5489         return Ty;
5490       Found = GetSingleElementType(FD->getType());
5491     }
5492 
5493     // Unlike isSingleElementStruct(), trailing padding is allowed.
5494     // An 8-byte aligned struct s { float f; } is passed as a double.
5495     if (!Found.isNull())
5496       return Found;
5497   }
5498 
5499   return Ty;
5500 }
5501 
5502 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5503                                   QualType Ty) const {
5504   // Assume that va_list type is correct; should be pointer to LLVM type:
5505   // struct {
5506   //   i64 __gpr;
5507   //   i64 __fpr;
5508   //   i8 *__overflow_arg_area;
5509   //   i8 *__reg_save_area;
5510   // };
5511 
5512   // Every non-vector argument occupies 8 bytes and is passed by preference
5513   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5514   // always passed on the stack.
5515   Ty = getContext().getCanonicalType(Ty);
5516   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5517   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5518   llvm::Type *DirectTy = ArgTy;
5519   ABIArgInfo AI = classifyArgumentType(Ty);
5520   bool IsIndirect = AI.isIndirect();
5521   bool InFPRs = false;
5522   bool IsVector = false;
5523   CharUnits UnpaddedSize;
5524   CharUnits DirectAlign;
5525   if (IsIndirect) {
5526     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5527     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5528   } else {
5529     if (AI.getCoerceToType())
5530       ArgTy = AI.getCoerceToType();
5531     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5532     IsVector = ArgTy->isVectorTy();
5533     UnpaddedSize = TyInfo.first;
5534     DirectAlign = TyInfo.second;
5535   }
5536   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5537   if (IsVector && UnpaddedSize > PaddedSize)
5538     PaddedSize = CharUnits::fromQuantity(16);
5539   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5540 
5541   CharUnits Padding = (PaddedSize - UnpaddedSize);
5542 
5543   llvm::Type *IndexTy = CGF.Int64Ty;
5544   llvm::Value *PaddedSizeV =
5545     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5546 
5547   if (IsVector) {
5548     // Work out the address of a vector argument on the stack.
5549     // Vector arguments are always passed in the high bits of a
5550     // single (8 byte) or double (16 byte) stack slot.
5551     Address OverflowArgAreaPtr =
5552       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5553                                   "overflow_arg_area_ptr");
5554     Address OverflowArgArea =
5555       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5556               TyInfo.second);
5557     Address MemAddr =
5558       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5559 
5560     // Update overflow_arg_area_ptr pointer
5561     llvm::Value *NewOverflowArgArea =
5562       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5563                             "overflow_arg_area");
5564     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5565 
5566     return MemAddr;
5567   }
5568 
5569   assert(PaddedSize.getQuantity() == 8);
5570 
5571   unsigned MaxRegs, RegCountField, RegSaveIndex;
5572   CharUnits RegPadding;
5573   if (InFPRs) {
5574     MaxRegs = 4; // Maximum of 4 FPR arguments
5575     RegCountField = 1; // __fpr
5576     RegSaveIndex = 16; // save offset for f0
5577     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5578   } else {
5579     MaxRegs = 5; // Maximum of 5 GPR arguments
5580     RegCountField = 0; // __gpr
5581     RegSaveIndex = 2; // save offset for r2
5582     RegPadding = Padding; // values are passed in the low bits of a GPR
5583   }
5584 
5585   Address RegCountPtr = CGF.Builder.CreateStructGEP(
5586       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5587       "reg_count_ptr");
5588   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5589   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5590   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5591                                                  "fits_in_regs");
5592 
5593   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5594   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5595   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5596   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5597 
5598   // Emit code to load the value if it was passed in registers.
5599   CGF.EmitBlock(InRegBlock);
5600 
5601   // Work out the address of an argument register.
5602   llvm::Value *ScaledRegCount =
5603     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5604   llvm::Value *RegBase =
5605     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5606                                       + RegPadding.getQuantity());
5607   llvm::Value *RegOffset =
5608     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5609   Address RegSaveAreaPtr =
5610       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5611                                   "reg_save_area_ptr");
5612   llvm::Value *RegSaveArea =
5613     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5614   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5615                                            "raw_reg_addr"),
5616                      PaddedSize);
5617   Address RegAddr =
5618     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5619 
5620   // Update the register count
5621   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5622   llvm::Value *NewRegCount =
5623     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5624   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5625   CGF.EmitBranch(ContBlock);
5626 
5627   // Emit code to load the value if it was passed in memory.
5628   CGF.EmitBlock(InMemBlock);
5629 
5630   // Work out the address of a stack argument.
5631   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5632       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5633   Address OverflowArgArea =
5634     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5635             PaddedSize);
5636   Address RawMemAddr =
5637     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
5638   Address MemAddr =
5639     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
5640 
5641   // Update overflow_arg_area_ptr pointer
5642   llvm::Value *NewOverflowArgArea =
5643     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5644                           "overflow_arg_area");
5645   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5646   CGF.EmitBranch(ContBlock);
5647 
5648   // Return the appropriate result.
5649   CGF.EmitBlock(ContBlock);
5650   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5651                                  MemAddr, InMemBlock, "va_arg.addr");
5652 
5653   if (IsIndirect)
5654     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
5655                       TyInfo.second);
5656 
5657   return ResAddr;
5658 }
5659 
5660 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5661   if (RetTy->isVoidType())
5662     return ABIArgInfo::getIgnore();
5663   if (isVectorArgumentType(RetTy))
5664     return ABIArgInfo::getDirect();
5665   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5666     return getNaturalAlignIndirect(RetTy);
5667   return (isPromotableIntegerType(RetTy) ?
5668           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5669 }
5670 
5671 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5672   // Handle the generic C++ ABI.
5673   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5674     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5675 
5676   // Integers and enums are extended to full register width.
5677   if (isPromotableIntegerType(Ty))
5678     return ABIArgInfo::getExtend();
5679 
5680   // Handle vector types and vector-like structure types.  Note that
5681   // as opposed to float-like structure types, we do not allow any
5682   // padding for vector-like structures, so verify the sizes match.
5683   uint64_t Size = getContext().getTypeSize(Ty);
5684   QualType SingleElementTy = GetSingleElementType(Ty);
5685   if (isVectorArgumentType(SingleElementTy) &&
5686       getContext().getTypeSize(SingleElementTy) == Size)
5687     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5688 
5689   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5690   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5691     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5692 
5693   // Handle small structures.
5694   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5695     // Structures with flexible arrays have variable length, so really
5696     // fail the size test above.
5697     const RecordDecl *RD = RT->getDecl();
5698     if (RD->hasFlexibleArrayMember())
5699       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5700 
5701     // The structure is passed as an unextended integer, a float, or a double.
5702     llvm::Type *PassTy;
5703     if (isFPArgumentType(SingleElementTy)) {
5704       assert(Size == 32 || Size == 64);
5705       if (Size == 32)
5706         PassTy = llvm::Type::getFloatTy(getVMContext());
5707       else
5708         PassTy = llvm::Type::getDoubleTy(getVMContext());
5709     } else
5710       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5711     return ABIArgInfo::getDirect(PassTy);
5712   }
5713 
5714   // Non-structure compounds are passed indirectly.
5715   if (isCompoundType(Ty))
5716     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5717 
5718   return ABIArgInfo::getDirect(nullptr);
5719 }
5720 
5721 //===----------------------------------------------------------------------===//
5722 // MSP430 ABI Implementation
5723 //===----------------------------------------------------------------------===//
5724 
5725 namespace {
5726 
5727 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5728 public:
5729   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5730     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5731   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5732                            CodeGen::CodeGenModule &M) const override;
5733 };
5734 
5735 }
5736 
5737 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5738                                                   llvm::GlobalValue *GV,
5739                                              CodeGen::CodeGenModule &M) const {
5740   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5741     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5742       // Handle 'interrupt' attribute:
5743       llvm::Function *F = cast<llvm::Function>(GV);
5744 
5745       // Step 1: Set ISR calling convention.
5746       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5747 
5748       // Step 2: Add attributes goodness.
5749       F->addFnAttr(llvm::Attribute::NoInline);
5750 
5751       // Step 3: Emit ISR vector alias.
5752       unsigned Num = attr->getNumber() / 2;
5753       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5754                                 "__isr_" + Twine(Num), F);
5755     }
5756   }
5757 }
5758 
5759 //===----------------------------------------------------------------------===//
5760 // MIPS ABI Implementation.  This works for both little-endian and
5761 // big-endian variants.
5762 //===----------------------------------------------------------------------===//
5763 
5764 namespace {
5765 class MipsABIInfo : public ABIInfo {
5766   bool IsO32;
5767   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5768   void CoerceToIntArgs(uint64_t TySize,
5769                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5770   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5771   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5772   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5773 public:
5774   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5775     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5776     StackAlignInBytes(IsO32 ? 8 : 16) {}
5777 
5778   ABIArgInfo classifyReturnType(QualType RetTy) const;
5779   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5780   void computeInfo(CGFunctionInfo &FI) const override;
5781   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5782                     QualType Ty) const override;
5783   bool shouldSignExtUnsignedType(QualType Ty) const override;
5784 };
5785 
5786 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5787   unsigned SizeOfUnwindException;
5788 public:
5789   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5790     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5791       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5792 
5793   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5794     return 29;
5795   }
5796 
5797   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5798                            CodeGen::CodeGenModule &CGM) const override {
5799     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5800     if (!FD) return;
5801     llvm::Function *Fn = cast<llvm::Function>(GV);
5802     if (FD->hasAttr<Mips16Attr>()) {
5803       Fn->addFnAttr("mips16");
5804     }
5805     else if (FD->hasAttr<NoMips16Attr>()) {
5806       Fn->addFnAttr("nomips16");
5807     }
5808   }
5809 
5810   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5811                                llvm::Value *Address) const override;
5812 
5813   unsigned getSizeOfUnwindException() const override {
5814     return SizeOfUnwindException;
5815   }
5816 };
5817 }
5818 
5819 void MipsABIInfo::CoerceToIntArgs(
5820     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
5821   llvm::IntegerType *IntTy =
5822     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5823 
5824   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5825   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5826     ArgList.push_back(IntTy);
5827 
5828   // If necessary, add one more integer type to ArgList.
5829   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5830 
5831   if (R)
5832     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5833 }
5834 
5835 // In N32/64, an aligned double precision floating point field is passed in
5836 // a register.
5837 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5838   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5839 
5840   if (IsO32) {
5841     CoerceToIntArgs(TySize, ArgList);
5842     return llvm::StructType::get(getVMContext(), ArgList);
5843   }
5844 
5845   if (Ty->isComplexType())
5846     return CGT.ConvertType(Ty);
5847 
5848   const RecordType *RT = Ty->getAs<RecordType>();
5849 
5850   // Unions/vectors are passed in integer registers.
5851   if (!RT || !RT->isStructureOrClassType()) {
5852     CoerceToIntArgs(TySize, ArgList);
5853     return llvm::StructType::get(getVMContext(), ArgList);
5854   }
5855 
5856   const RecordDecl *RD = RT->getDecl();
5857   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5858   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5859 
5860   uint64_t LastOffset = 0;
5861   unsigned idx = 0;
5862   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5863 
5864   // Iterate over fields in the struct/class and check if there are any aligned
5865   // double fields.
5866   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5867        i != e; ++i, ++idx) {
5868     const QualType Ty = i->getType();
5869     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5870 
5871     if (!BT || BT->getKind() != BuiltinType::Double)
5872       continue;
5873 
5874     uint64_t Offset = Layout.getFieldOffset(idx);
5875     if (Offset % 64) // Ignore doubles that are not aligned.
5876       continue;
5877 
5878     // Add ((Offset - LastOffset) / 64) args of type i64.
5879     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5880       ArgList.push_back(I64);
5881 
5882     // Add double type.
5883     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5884     LastOffset = Offset + 64;
5885   }
5886 
5887   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5888   ArgList.append(IntArgList.begin(), IntArgList.end());
5889 
5890   return llvm::StructType::get(getVMContext(), ArgList);
5891 }
5892 
5893 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5894                                         uint64_t Offset) const {
5895   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5896     return nullptr;
5897 
5898   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5899 }
5900 
5901 ABIArgInfo
5902 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5903   Ty = useFirstFieldIfTransparentUnion(Ty);
5904 
5905   uint64_t OrigOffset = Offset;
5906   uint64_t TySize = getContext().getTypeSize(Ty);
5907   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5908 
5909   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5910                    (uint64_t)StackAlignInBytes);
5911   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5912   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5913 
5914   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5915     // Ignore empty aggregates.
5916     if (TySize == 0)
5917       return ABIArgInfo::getIgnore();
5918 
5919     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5920       Offset = OrigOffset + MinABIStackAlignInBytes;
5921       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5922     }
5923 
5924     // If we have reached here, aggregates are passed directly by coercing to
5925     // another structure type. Padding is inserted if the offset of the
5926     // aggregate is unaligned.
5927     ABIArgInfo ArgInfo =
5928         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5929                               getPaddingType(OrigOffset, CurrOffset));
5930     ArgInfo.setInReg(true);
5931     return ArgInfo;
5932   }
5933 
5934   // Treat an enum type as its underlying type.
5935   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5936     Ty = EnumTy->getDecl()->getIntegerType();
5937 
5938   // All integral types are promoted to the GPR width.
5939   if (Ty->isIntegralOrEnumerationType())
5940     return ABIArgInfo::getExtend();
5941 
5942   return ABIArgInfo::getDirect(
5943       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5944 }
5945 
5946 llvm::Type*
5947 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5948   const RecordType *RT = RetTy->getAs<RecordType>();
5949   SmallVector<llvm::Type*, 8> RTList;
5950 
5951   if (RT && RT->isStructureOrClassType()) {
5952     const RecordDecl *RD = RT->getDecl();
5953     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5954     unsigned FieldCnt = Layout.getFieldCount();
5955 
5956     // N32/64 returns struct/classes in floating point registers if the
5957     // following conditions are met:
5958     // 1. The size of the struct/class is no larger than 128-bit.
5959     // 2. The struct/class has one or two fields all of which are floating
5960     //    point types.
5961     // 3. The offset of the first field is zero (this follows what gcc does).
5962     //
5963     // Any other composite results are returned in integer registers.
5964     //
5965     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5966       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5967       for (; b != e; ++b) {
5968         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5969 
5970         if (!BT || !BT->isFloatingPoint())
5971           break;
5972 
5973         RTList.push_back(CGT.ConvertType(b->getType()));
5974       }
5975 
5976       if (b == e)
5977         return llvm::StructType::get(getVMContext(), RTList,
5978                                      RD->hasAttr<PackedAttr>());
5979 
5980       RTList.clear();
5981     }
5982   }
5983 
5984   CoerceToIntArgs(Size, RTList);
5985   return llvm::StructType::get(getVMContext(), RTList);
5986 }
5987 
5988 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5989   uint64_t Size = getContext().getTypeSize(RetTy);
5990 
5991   if (RetTy->isVoidType())
5992     return ABIArgInfo::getIgnore();
5993 
5994   // O32 doesn't treat zero-sized structs differently from other structs.
5995   // However, N32/N64 ignores zero sized return values.
5996   if (!IsO32 && Size == 0)
5997     return ABIArgInfo::getIgnore();
5998 
5999   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6000     if (Size <= 128) {
6001       if (RetTy->isAnyComplexType())
6002         return ABIArgInfo::getDirect();
6003 
6004       // O32 returns integer vectors in registers and N32/N64 returns all small
6005       // aggregates in registers.
6006       if (!IsO32 ||
6007           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6008         ABIArgInfo ArgInfo =
6009             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6010         ArgInfo.setInReg(true);
6011         return ArgInfo;
6012       }
6013     }
6014 
6015     return getNaturalAlignIndirect(RetTy);
6016   }
6017 
6018   // Treat an enum type as its underlying type.
6019   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6020     RetTy = EnumTy->getDecl()->getIntegerType();
6021 
6022   return (RetTy->isPromotableIntegerType() ?
6023           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6024 }
6025 
6026 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6027   ABIArgInfo &RetInfo = FI.getReturnInfo();
6028   if (!getCXXABI().classifyReturnType(FI))
6029     RetInfo = classifyReturnType(FI.getReturnType());
6030 
6031   // Check if a pointer to an aggregate is passed as a hidden argument.
6032   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6033 
6034   for (auto &I : FI.arguments())
6035     I.info = classifyArgumentType(I.type, Offset);
6036 }
6037 
6038 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6039                                QualType OrigTy) const {
6040   QualType Ty = OrigTy;
6041 
6042   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6043   // Pointers are also promoted in the same way but this only matters for N32.
6044   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6045   unsigned PtrWidth = getTarget().getPointerWidth(0);
6046   bool DidPromote = false;
6047   if ((Ty->isIntegerType() &&
6048           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6049       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6050     DidPromote = true;
6051     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6052                                             Ty->isSignedIntegerType());
6053   }
6054 
6055   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6056 
6057   // The alignment of things in the argument area is never larger than
6058   // StackAlignInBytes.
6059   TyInfo.second =
6060     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6061 
6062   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6063   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6064 
6065   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6066                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6067 
6068 
6069   // If there was a promotion, "unpromote" into a temporary.
6070   // TODO: can we just use a pointer into a subset of the original slot?
6071   if (DidPromote) {
6072     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6073     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6074 
6075     // Truncate down to the right width.
6076     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6077                                                  : CGF.IntPtrTy);
6078     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6079     if (OrigTy->isPointerType())
6080       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6081 
6082     CGF.Builder.CreateStore(V, Temp);
6083     Addr = Temp;
6084   }
6085 
6086   return Addr;
6087 }
6088 
6089 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6090   int TySize = getContext().getTypeSize(Ty);
6091 
6092   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6093   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6094     return true;
6095 
6096   return false;
6097 }
6098 
6099 bool
6100 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6101                                                llvm::Value *Address) const {
6102   // This information comes from gcc's implementation, which seems to
6103   // as canonical as it gets.
6104 
6105   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6106   // are aliased to pairs of single-precision FP registers.
6107   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6108 
6109   // 0-31 are the general purpose registers, $0 - $31.
6110   // 32-63 are the floating-point registers, $f0 - $f31.
6111   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6112   // 66 is the (notional, I think) register for signal-handler return.
6113   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6114 
6115   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6116   // They are one bit wide and ignored here.
6117 
6118   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6119   // (coprocessor 1 is the FP unit)
6120   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6121   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6122   // 176-181 are the DSP accumulator registers.
6123   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6124   return false;
6125 }
6126 
6127 //===----------------------------------------------------------------------===//
6128 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6129 // Currently subclassed only to implement custom OpenCL C function attribute
6130 // handling.
6131 //===----------------------------------------------------------------------===//
6132 
6133 namespace {
6134 
6135 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6136 public:
6137   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6138     : DefaultTargetCodeGenInfo(CGT) {}
6139 
6140   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6141                            CodeGen::CodeGenModule &M) const override;
6142 };
6143 
6144 void TCETargetCodeGenInfo::setTargetAttributes(
6145     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6146   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6147   if (!FD) return;
6148 
6149   llvm::Function *F = cast<llvm::Function>(GV);
6150 
6151   if (M.getLangOpts().OpenCL) {
6152     if (FD->hasAttr<OpenCLKernelAttr>()) {
6153       // OpenCL C Kernel functions are not subject to inlining
6154       F->addFnAttr(llvm::Attribute::NoInline);
6155       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6156       if (Attr) {
6157         // Convert the reqd_work_group_size() attributes to metadata.
6158         llvm::LLVMContext &Context = F->getContext();
6159         llvm::NamedMDNode *OpenCLMetadata =
6160             M.getModule().getOrInsertNamedMetadata(
6161                 "opencl.kernel_wg_size_info");
6162 
6163         SmallVector<llvm::Metadata *, 5> Operands;
6164         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6165 
6166         Operands.push_back(
6167             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6168                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6169         Operands.push_back(
6170             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6171                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6172         Operands.push_back(
6173             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6174                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6175 
6176         // Add a boolean constant operand for "required" (true) or "hint"
6177         // (false) for implementing the work_group_size_hint attr later.
6178         // Currently always true as the hint is not yet implemented.
6179         Operands.push_back(
6180             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6181         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6182       }
6183     }
6184   }
6185 }
6186 
6187 }
6188 
6189 //===----------------------------------------------------------------------===//
6190 // Hexagon ABI Implementation
6191 //===----------------------------------------------------------------------===//
6192 
6193 namespace {
6194 
6195 class HexagonABIInfo : public ABIInfo {
6196 
6197 
6198 public:
6199   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6200 
6201 private:
6202 
6203   ABIArgInfo classifyReturnType(QualType RetTy) const;
6204   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6205 
6206   void computeInfo(CGFunctionInfo &FI) const override;
6207 
6208   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6209                     QualType Ty) const override;
6210 };
6211 
6212 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6213 public:
6214   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6215     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6216 
6217   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6218     return 29;
6219   }
6220 };
6221 
6222 }
6223 
6224 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6225   if (!getCXXABI().classifyReturnType(FI))
6226     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6227   for (auto &I : FI.arguments())
6228     I.info = classifyArgumentType(I.type);
6229 }
6230 
6231 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6232   if (!isAggregateTypeForABI(Ty)) {
6233     // Treat an enum type as its underlying type.
6234     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6235       Ty = EnumTy->getDecl()->getIntegerType();
6236 
6237     return (Ty->isPromotableIntegerType() ?
6238             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6239   }
6240 
6241   // Ignore empty records.
6242   if (isEmptyRecord(getContext(), Ty, true))
6243     return ABIArgInfo::getIgnore();
6244 
6245   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6246     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6247 
6248   uint64_t Size = getContext().getTypeSize(Ty);
6249   if (Size > 64)
6250     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6251     // Pass in the smallest viable integer type.
6252   else if (Size > 32)
6253       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6254   else if (Size > 16)
6255       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6256   else if (Size > 8)
6257       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6258   else
6259       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6260 }
6261 
6262 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6263   if (RetTy->isVoidType())
6264     return ABIArgInfo::getIgnore();
6265 
6266   // Large vector types should be returned via memory.
6267   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6268     return getNaturalAlignIndirect(RetTy);
6269 
6270   if (!isAggregateTypeForABI(RetTy)) {
6271     // Treat an enum type as its underlying type.
6272     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6273       RetTy = EnumTy->getDecl()->getIntegerType();
6274 
6275     return (RetTy->isPromotableIntegerType() ?
6276             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6277   }
6278 
6279   if (isEmptyRecord(getContext(), RetTy, true))
6280     return ABIArgInfo::getIgnore();
6281 
6282   // Aggregates <= 8 bytes are returned in r0; other aggregates
6283   // are returned indirectly.
6284   uint64_t Size = getContext().getTypeSize(RetTy);
6285   if (Size <= 64) {
6286     // Return in the smallest viable integer type.
6287     if (Size <= 8)
6288       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6289     if (Size <= 16)
6290       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6291     if (Size <= 32)
6292       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6293     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6294   }
6295 
6296   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6297 }
6298 
6299 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6300                                   QualType Ty) const {
6301   // FIXME: Someone needs to audit that this handle alignment correctly.
6302   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6303                           getContext().getTypeInfoInChars(Ty),
6304                           CharUnits::fromQuantity(4),
6305                           /*AllowHigherAlign*/ true);
6306 }
6307 
6308 //===----------------------------------------------------------------------===//
6309 // AMDGPU ABI Implementation
6310 //===----------------------------------------------------------------------===//
6311 
6312 namespace {
6313 
6314 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6315 public:
6316   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6317     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6318   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6319                            CodeGen::CodeGenModule &M) const override;
6320 };
6321 
6322 }
6323 
6324 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6325   const Decl *D,
6326   llvm::GlobalValue *GV,
6327   CodeGen::CodeGenModule &M) const {
6328   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6329   if (!FD)
6330     return;
6331 
6332   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6333     llvm::Function *F = cast<llvm::Function>(GV);
6334     uint32_t NumVGPR = Attr->getNumVGPR();
6335     if (NumVGPR != 0)
6336       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6337   }
6338 
6339   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6340     llvm::Function *F = cast<llvm::Function>(GV);
6341     unsigned NumSGPR = Attr->getNumSGPR();
6342     if (NumSGPR != 0)
6343       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6344   }
6345 }
6346 
6347 
6348 //===----------------------------------------------------------------------===//
6349 // SPARC v9 ABI Implementation.
6350 // Based on the SPARC Compliance Definition version 2.4.1.
6351 //
6352 // Function arguments a mapped to a nominal "parameter array" and promoted to
6353 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6354 // the array, structs larger than 16 bytes are passed indirectly.
6355 //
6356 // One case requires special care:
6357 //
6358 //   struct mixed {
6359 //     int i;
6360 //     float f;
6361 //   };
6362 //
6363 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6364 // parameter array, but the int is passed in an integer register, and the float
6365 // is passed in a floating point register. This is represented as two arguments
6366 // with the LLVM IR inreg attribute:
6367 //
6368 //   declare void f(i32 inreg %i, float inreg %f)
6369 //
6370 // The code generator will only allocate 4 bytes from the parameter array for
6371 // the inreg arguments. All other arguments are allocated a multiple of 8
6372 // bytes.
6373 //
6374 namespace {
6375 class SparcV9ABIInfo : public ABIInfo {
6376 public:
6377   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6378 
6379 private:
6380   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6381   void computeInfo(CGFunctionInfo &FI) const override;
6382   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6383                     QualType Ty) const override;
6384 
6385   // Coercion type builder for structs passed in registers. The coercion type
6386   // serves two purposes:
6387   //
6388   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6389   //    in registers.
6390   // 2. Expose aligned floating point elements as first-level elements, so the
6391   //    code generator knows to pass them in floating point registers.
6392   //
6393   // We also compute the InReg flag which indicates that the struct contains
6394   // aligned 32-bit floats.
6395   //
6396   struct CoerceBuilder {
6397     llvm::LLVMContext &Context;
6398     const llvm::DataLayout &DL;
6399     SmallVector<llvm::Type*, 8> Elems;
6400     uint64_t Size;
6401     bool InReg;
6402 
6403     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6404       : Context(c), DL(dl), Size(0), InReg(false) {}
6405 
6406     // Pad Elems with integers until Size is ToSize.
6407     void pad(uint64_t ToSize) {
6408       assert(ToSize >= Size && "Cannot remove elements");
6409       if (ToSize == Size)
6410         return;
6411 
6412       // Finish the current 64-bit word.
6413       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6414       if (Aligned > Size && Aligned <= ToSize) {
6415         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6416         Size = Aligned;
6417       }
6418 
6419       // Add whole 64-bit words.
6420       while (Size + 64 <= ToSize) {
6421         Elems.push_back(llvm::Type::getInt64Ty(Context));
6422         Size += 64;
6423       }
6424 
6425       // Final in-word padding.
6426       if (Size < ToSize) {
6427         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6428         Size = ToSize;
6429       }
6430     }
6431 
6432     // Add a floating point element at Offset.
6433     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6434       // Unaligned floats are treated as integers.
6435       if (Offset % Bits)
6436         return;
6437       // The InReg flag is only required if there are any floats < 64 bits.
6438       if (Bits < 64)
6439         InReg = true;
6440       pad(Offset);
6441       Elems.push_back(Ty);
6442       Size = Offset + Bits;
6443     }
6444 
6445     // Add a struct type to the coercion type, starting at Offset (in bits).
6446     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6447       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6448       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6449         llvm::Type *ElemTy = StrTy->getElementType(i);
6450         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6451         switch (ElemTy->getTypeID()) {
6452         case llvm::Type::StructTyID:
6453           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6454           break;
6455         case llvm::Type::FloatTyID:
6456           addFloat(ElemOffset, ElemTy, 32);
6457           break;
6458         case llvm::Type::DoubleTyID:
6459           addFloat(ElemOffset, ElemTy, 64);
6460           break;
6461         case llvm::Type::FP128TyID:
6462           addFloat(ElemOffset, ElemTy, 128);
6463           break;
6464         case llvm::Type::PointerTyID:
6465           if (ElemOffset % 64 == 0) {
6466             pad(ElemOffset);
6467             Elems.push_back(ElemTy);
6468             Size += 64;
6469           }
6470           break;
6471         default:
6472           break;
6473         }
6474       }
6475     }
6476 
6477     // Check if Ty is a usable substitute for the coercion type.
6478     bool isUsableType(llvm::StructType *Ty) const {
6479       return llvm::makeArrayRef(Elems) == Ty->elements();
6480     }
6481 
6482     // Get the coercion type as a literal struct type.
6483     llvm::Type *getType() const {
6484       if (Elems.size() == 1)
6485         return Elems.front();
6486       else
6487         return llvm::StructType::get(Context, Elems);
6488     }
6489   };
6490 };
6491 } // end anonymous namespace
6492 
6493 ABIArgInfo
6494 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6495   if (Ty->isVoidType())
6496     return ABIArgInfo::getIgnore();
6497 
6498   uint64_t Size = getContext().getTypeSize(Ty);
6499 
6500   // Anything too big to fit in registers is passed with an explicit indirect
6501   // pointer / sret pointer.
6502   if (Size > SizeLimit)
6503     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6504 
6505   // Treat an enum type as its underlying type.
6506   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6507     Ty = EnumTy->getDecl()->getIntegerType();
6508 
6509   // Integer types smaller than a register are extended.
6510   if (Size < 64 && Ty->isIntegerType())
6511     return ABIArgInfo::getExtend();
6512 
6513   // Other non-aggregates go in registers.
6514   if (!isAggregateTypeForABI(Ty))
6515     return ABIArgInfo::getDirect();
6516 
6517   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6518   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6519   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6520     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6521 
6522   // This is a small aggregate type that should be passed in registers.
6523   // Build a coercion type from the LLVM struct type.
6524   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6525   if (!StrTy)
6526     return ABIArgInfo::getDirect();
6527 
6528   CoerceBuilder CB(getVMContext(), getDataLayout());
6529   CB.addStruct(0, StrTy);
6530   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6531 
6532   // Try to use the original type for coercion.
6533   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6534 
6535   if (CB.InReg)
6536     return ABIArgInfo::getDirectInReg(CoerceTy);
6537   else
6538     return ABIArgInfo::getDirect(CoerceTy);
6539 }
6540 
6541 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6542                                   QualType Ty) const {
6543   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6544   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6545   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6546     AI.setCoerceToType(ArgTy);
6547 
6548   CharUnits SlotSize = CharUnits::fromQuantity(8);
6549 
6550   CGBuilderTy &Builder = CGF.Builder;
6551   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6552   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6553 
6554   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
6555 
6556   Address ArgAddr = Address::invalid();
6557   CharUnits Stride;
6558   switch (AI.getKind()) {
6559   case ABIArgInfo::Expand:
6560   case ABIArgInfo::InAlloca:
6561     llvm_unreachable("Unsupported ABI kind for va_arg");
6562 
6563   case ABIArgInfo::Extend: {
6564     Stride = SlotSize;
6565     CharUnits Offset = SlotSize - TypeInfo.first;
6566     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
6567     break;
6568   }
6569 
6570   case ABIArgInfo::Direct: {
6571     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6572     Stride = CharUnits::fromQuantity(AllocSize).RoundUpToAlignment(SlotSize);
6573     ArgAddr = Addr;
6574     break;
6575   }
6576 
6577   case ABIArgInfo::Indirect:
6578     Stride = SlotSize;
6579     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
6580     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
6581                       TypeInfo.second);
6582     break;
6583 
6584   case ABIArgInfo::Ignore:
6585     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
6586   }
6587 
6588   // Update VAList.
6589   llvm::Value *NextPtr =
6590     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
6591   Builder.CreateStore(NextPtr, VAListAddr);
6592 
6593   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
6594 }
6595 
6596 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6597   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6598   for (auto &I : FI.arguments())
6599     I.info = classifyType(I.type, 16 * 8);
6600 }
6601 
6602 namespace {
6603 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6604 public:
6605   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6606     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6607 
6608   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6609     return 14;
6610   }
6611 
6612   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6613                                llvm::Value *Address) const override;
6614 };
6615 } // end anonymous namespace
6616 
6617 bool
6618 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6619                                                 llvm::Value *Address) const {
6620   // This is calculated from the LLVM and GCC tables and verified
6621   // against gcc output.  AFAIK all ABIs use the same encoding.
6622 
6623   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6624 
6625   llvm::IntegerType *i8 = CGF.Int8Ty;
6626   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6627   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6628 
6629   // 0-31: the 8-byte general-purpose registers
6630   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6631 
6632   // 32-63: f0-31, the 4-byte floating-point registers
6633   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6634 
6635   //   Y   = 64
6636   //   PSR = 65
6637   //   WIM = 66
6638   //   TBR = 67
6639   //   PC  = 68
6640   //   NPC = 69
6641   //   FSR = 70
6642   //   CSR = 71
6643   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6644 
6645   // 72-87: d0-15, the 8-byte floating-point registers
6646   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6647 
6648   return false;
6649 }
6650 
6651 
6652 //===----------------------------------------------------------------------===//
6653 // XCore ABI Implementation
6654 //===----------------------------------------------------------------------===//
6655 
6656 namespace {
6657 
6658 /// A SmallStringEnc instance is used to build up the TypeString by passing
6659 /// it by reference between functions that append to it.
6660 typedef llvm::SmallString<128> SmallStringEnc;
6661 
6662 /// TypeStringCache caches the meta encodings of Types.
6663 ///
6664 /// The reason for caching TypeStrings is two fold:
6665 ///   1. To cache a type's encoding for later uses;
6666 ///   2. As a means to break recursive member type inclusion.
6667 ///
6668 /// A cache Entry can have a Status of:
6669 ///   NonRecursive:   The type encoding is not recursive;
6670 ///   Recursive:      The type encoding is recursive;
6671 ///   Incomplete:     An incomplete TypeString;
6672 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6673 ///                   Recursive type encoding.
6674 ///
6675 /// A NonRecursive entry will have all of its sub-members expanded as fully
6676 /// as possible. Whilst it may contain types which are recursive, the type
6677 /// itself is not recursive and thus its encoding may be safely used whenever
6678 /// the type is encountered.
6679 ///
6680 /// A Recursive entry will have all of its sub-members expanded as fully as
6681 /// possible. The type itself is recursive and it may contain other types which
6682 /// are recursive. The Recursive encoding must not be used during the expansion
6683 /// of a recursive type's recursive branch. For simplicity the code uses
6684 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6685 ///
6686 /// An Incomplete entry is always a RecordType and only encodes its
6687 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6688 /// are placed into the cache during type expansion as a means to identify and
6689 /// handle recursive inclusion of types as sub-members. If there is recursion
6690 /// the entry becomes IncompleteUsed.
6691 ///
6692 /// During the expansion of a RecordType's members:
6693 ///
6694 ///   If the cache contains a NonRecursive encoding for the member type, the
6695 ///   cached encoding is used;
6696 ///
6697 ///   If the cache contains a Recursive encoding for the member type, the
6698 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6699 ///
6700 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6701 ///   cache to break potential recursive inclusion of itself as a sub-member;
6702 ///
6703 ///   Once a member RecordType has been expanded, its temporary incomplete
6704 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6705 ///   it is swapped back in;
6706 ///
6707 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6708 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6709 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6710 ///
6711 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6712 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6713 ///   Else the member is part of a recursive type and thus the recursion has
6714 ///   been exited too soon for the encoding to be correct for the member.
6715 ///
6716 class TypeStringCache {
6717   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6718   struct Entry {
6719     std::string Str;     // The encoded TypeString for the type.
6720     enum Status State;   // Information about the encoding in 'Str'.
6721     std::string Swapped; // A temporary place holder for a Recursive encoding
6722                          // during the expansion of RecordType's members.
6723   };
6724   std::map<const IdentifierInfo *, struct Entry> Map;
6725   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6726   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6727 public:
6728   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
6729   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6730   bool removeIncomplete(const IdentifierInfo *ID);
6731   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6732                      bool IsRecursive);
6733   StringRef lookupStr(const IdentifierInfo *ID);
6734 };
6735 
6736 /// TypeString encodings for enum & union fields must be order.
6737 /// FieldEncoding is a helper for this ordering process.
6738 class FieldEncoding {
6739   bool HasName;
6740   std::string Enc;
6741 public:
6742   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
6743   StringRef str() {return Enc.c_str();}
6744   bool operator<(const FieldEncoding &rhs) const {
6745     if (HasName != rhs.HasName) return HasName;
6746     return Enc < rhs.Enc;
6747   }
6748 };
6749 
6750 class XCoreABIInfo : public DefaultABIInfo {
6751 public:
6752   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6753   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6754                     QualType Ty) const override;
6755 };
6756 
6757 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6758   mutable TypeStringCache TSC;
6759 public:
6760   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6761     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6762   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6763                     CodeGen::CodeGenModule &M) const override;
6764 };
6765 
6766 } // End anonymous namespace.
6767 
6768 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6769                                 QualType Ty) const {
6770   CGBuilderTy &Builder = CGF.Builder;
6771 
6772   // Get the VAList.
6773   CharUnits SlotSize = CharUnits::fromQuantity(4);
6774   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
6775 
6776   // Handle the argument.
6777   ABIArgInfo AI = classifyArgumentType(Ty);
6778   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
6779   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6780   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6781     AI.setCoerceToType(ArgTy);
6782   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6783 
6784   Address Val = Address::invalid();
6785   CharUnits ArgSize = CharUnits::Zero();
6786   switch (AI.getKind()) {
6787   case ABIArgInfo::Expand:
6788   case ABIArgInfo::InAlloca:
6789     llvm_unreachable("Unsupported ABI kind for va_arg");
6790   case ABIArgInfo::Ignore:
6791     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
6792     ArgSize = CharUnits::Zero();
6793     break;
6794   case ABIArgInfo::Extend:
6795   case ABIArgInfo::Direct:
6796     Val = Builder.CreateBitCast(AP, ArgPtrTy);
6797     ArgSize = CharUnits::fromQuantity(
6798                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
6799     ArgSize = ArgSize.RoundUpToAlignment(SlotSize);
6800     break;
6801   case ABIArgInfo::Indirect:
6802     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
6803     Val = Address(Builder.CreateLoad(Val), TypeAlign);
6804     ArgSize = SlotSize;
6805     break;
6806   }
6807 
6808   // Increment the VAList.
6809   if (!ArgSize.isZero()) {
6810     llvm::Value *APN =
6811       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
6812     Builder.CreateStore(APN, VAListAddr);
6813   }
6814 
6815   return Val;
6816 }
6817 
6818 /// During the expansion of a RecordType, an incomplete TypeString is placed
6819 /// into the cache as a means to identify and break recursion.
6820 /// If there is a Recursive encoding in the cache, it is swapped out and will
6821 /// be reinserted by removeIncomplete().
6822 /// All other types of encoding should have been used rather than arriving here.
6823 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6824                                     std::string StubEnc) {
6825   if (!ID)
6826     return;
6827   Entry &E = Map[ID];
6828   assert( (E.Str.empty() || E.State == Recursive) &&
6829          "Incorrectly use of addIncomplete");
6830   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6831   E.Swapped.swap(E.Str); // swap out the Recursive
6832   E.Str.swap(StubEnc);
6833   E.State = Incomplete;
6834   ++IncompleteCount;
6835 }
6836 
6837 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6838 /// must be removed from the cache.
6839 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6840 /// Returns true if the RecordType was defined recursively.
6841 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6842   if (!ID)
6843     return false;
6844   auto I = Map.find(ID);
6845   assert(I != Map.end() && "Entry not present");
6846   Entry &E = I->second;
6847   assert( (E.State == Incomplete ||
6848            E.State == IncompleteUsed) &&
6849          "Entry must be an incomplete type");
6850   bool IsRecursive = false;
6851   if (E.State == IncompleteUsed) {
6852     // We made use of our Incomplete encoding, thus we are recursive.
6853     IsRecursive = true;
6854     --IncompleteUsedCount;
6855   }
6856   if (E.Swapped.empty())
6857     Map.erase(I);
6858   else {
6859     // Swap the Recursive back.
6860     E.Swapped.swap(E.Str);
6861     E.Swapped.clear();
6862     E.State = Recursive;
6863   }
6864   --IncompleteCount;
6865   return IsRecursive;
6866 }
6867 
6868 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6869 /// Recursive (viz: all sub-members were expanded as fully as possible).
6870 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6871                                     bool IsRecursive) {
6872   if (!ID || IncompleteUsedCount)
6873     return; // No key or it is is an incomplete sub-type so don't add.
6874   Entry &E = Map[ID];
6875   if (IsRecursive && !E.Str.empty()) {
6876     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6877            "This is not the same Recursive entry");
6878     // The parent container was not recursive after all, so we could have used
6879     // this Recursive sub-member entry after all, but we assumed the worse when
6880     // we started viz: IncompleteCount!=0.
6881     return;
6882   }
6883   assert(E.Str.empty() && "Entry already present");
6884   E.Str = Str.str();
6885   E.State = IsRecursive? Recursive : NonRecursive;
6886 }
6887 
6888 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6889 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6890 /// encoding is Recursive, return an empty StringRef.
6891 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6892   if (!ID)
6893     return StringRef();   // We have no key.
6894   auto I = Map.find(ID);
6895   if (I == Map.end())
6896     return StringRef();   // We have no encoding.
6897   Entry &E = I->second;
6898   if (E.State == Recursive && IncompleteCount)
6899     return StringRef();   // We don't use Recursive encodings for member types.
6900 
6901   if (E.State == Incomplete) {
6902     // The incomplete type is being used to break out of recursion.
6903     E.State = IncompleteUsed;
6904     ++IncompleteUsedCount;
6905   }
6906   return E.Str.c_str();
6907 }
6908 
6909 /// The XCore ABI includes a type information section that communicates symbol
6910 /// type information to the linker. The linker uses this information to verify
6911 /// safety/correctness of things such as array bound and pointers et al.
6912 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6913 /// This type information (TypeString) is emitted into meta data for all global
6914 /// symbols: definitions, declarations, functions & variables.
6915 ///
6916 /// The TypeString carries type, qualifier, name, size & value details.
6917 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6918 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
6919 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6920 ///
6921 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6922                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6923 
6924 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6925 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6926                                           CodeGen::CodeGenModule &CGM) const {
6927   SmallStringEnc Enc;
6928   if (getTypeString(Enc, D, CGM, TSC)) {
6929     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6930     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6931     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6932     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6933     llvm::NamedMDNode *MD =
6934       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6935     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6936   }
6937 }
6938 
6939 static bool appendType(SmallStringEnc &Enc, QualType QType,
6940                        const CodeGen::CodeGenModule &CGM,
6941                        TypeStringCache &TSC);
6942 
6943 /// Helper function for appendRecordType().
6944 /// Builds a SmallVector containing the encoded field types in declaration
6945 /// order.
6946 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6947                              const RecordDecl *RD,
6948                              const CodeGen::CodeGenModule &CGM,
6949                              TypeStringCache &TSC) {
6950   for (const auto *Field : RD->fields()) {
6951     SmallStringEnc Enc;
6952     Enc += "m(";
6953     Enc += Field->getName();
6954     Enc += "){";
6955     if (Field->isBitField()) {
6956       Enc += "b(";
6957       llvm::raw_svector_ostream OS(Enc);
6958       OS << Field->getBitWidthValue(CGM.getContext());
6959       Enc += ':';
6960     }
6961     if (!appendType(Enc, Field->getType(), CGM, TSC))
6962       return false;
6963     if (Field->isBitField())
6964       Enc += ')';
6965     Enc += '}';
6966     FE.emplace_back(!Field->getName().empty(), Enc);
6967   }
6968   return true;
6969 }
6970 
6971 /// Appends structure and union types to Enc and adds encoding to cache.
6972 /// Recursively calls appendType (via extractFieldType) for each field.
6973 /// Union types have their fields ordered according to the ABI.
6974 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6975                              const CodeGen::CodeGenModule &CGM,
6976                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6977   // Append the cached TypeString if we have one.
6978   StringRef TypeString = TSC.lookupStr(ID);
6979   if (!TypeString.empty()) {
6980     Enc += TypeString;
6981     return true;
6982   }
6983 
6984   // Start to emit an incomplete TypeString.
6985   size_t Start = Enc.size();
6986   Enc += (RT->isUnionType()? 'u' : 's');
6987   Enc += '(';
6988   if (ID)
6989     Enc += ID->getName();
6990   Enc += "){";
6991 
6992   // We collect all encoded fields and order as necessary.
6993   bool IsRecursive = false;
6994   const RecordDecl *RD = RT->getDecl()->getDefinition();
6995   if (RD && !RD->field_empty()) {
6996     // An incomplete TypeString stub is placed in the cache for this RecordType
6997     // so that recursive calls to this RecordType will use it whilst building a
6998     // complete TypeString for this RecordType.
6999     SmallVector<FieldEncoding, 16> FE;
7000     std::string StubEnc(Enc.substr(Start).str());
7001     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7002     TSC.addIncomplete(ID, std::move(StubEnc));
7003     if (!extractFieldType(FE, RD, CGM, TSC)) {
7004       (void) TSC.removeIncomplete(ID);
7005       return false;
7006     }
7007     IsRecursive = TSC.removeIncomplete(ID);
7008     // The ABI requires unions to be sorted but not structures.
7009     // See FieldEncoding::operator< for sort algorithm.
7010     if (RT->isUnionType())
7011       std::sort(FE.begin(), FE.end());
7012     // We can now complete the TypeString.
7013     unsigned E = FE.size();
7014     for (unsigned I = 0; I != E; ++I) {
7015       if (I)
7016         Enc += ',';
7017       Enc += FE[I].str();
7018     }
7019   }
7020   Enc += '}';
7021   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7022   return true;
7023 }
7024 
7025 /// Appends enum types to Enc and adds the encoding to the cache.
7026 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7027                            TypeStringCache &TSC,
7028                            const IdentifierInfo *ID) {
7029   // Append the cached TypeString if we have one.
7030   StringRef TypeString = TSC.lookupStr(ID);
7031   if (!TypeString.empty()) {
7032     Enc += TypeString;
7033     return true;
7034   }
7035 
7036   size_t Start = Enc.size();
7037   Enc += "e(";
7038   if (ID)
7039     Enc += ID->getName();
7040   Enc += "){";
7041 
7042   // We collect all encoded enumerations and order them alphanumerically.
7043   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7044     SmallVector<FieldEncoding, 16> FE;
7045     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7046          ++I) {
7047       SmallStringEnc EnumEnc;
7048       EnumEnc += "m(";
7049       EnumEnc += I->getName();
7050       EnumEnc += "){";
7051       I->getInitVal().toString(EnumEnc);
7052       EnumEnc += '}';
7053       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7054     }
7055     std::sort(FE.begin(), FE.end());
7056     unsigned E = FE.size();
7057     for (unsigned I = 0; I != E; ++I) {
7058       if (I)
7059         Enc += ',';
7060       Enc += FE[I].str();
7061     }
7062   }
7063   Enc += '}';
7064   TSC.addIfComplete(ID, Enc.substr(Start), false);
7065   return true;
7066 }
7067 
7068 /// Appends type's qualifier to Enc.
7069 /// This is done prior to appending the type's encoding.
7070 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7071   // Qualifiers are emitted in alphabetical order.
7072   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7073   int Lookup = 0;
7074   if (QT.isConstQualified())
7075     Lookup += 1<<0;
7076   if (QT.isRestrictQualified())
7077     Lookup += 1<<1;
7078   if (QT.isVolatileQualified())
7079     Lookup += 1<<2;
7080   Enc += Table[Lookup];
7081 }
7082 
7083 /// Appends built-in types to Enc.
7084 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7085   const char *EncType;
7086   switch (BT->getKind()) {
7087     case BuiltinType::Void:
7088       EncType = "0";
7089       break;
7090     case BuiltinType::Bool:
7091       EncType = "b";
7092       break;
7093     case BuiltinType::Char_U:
7094       EncType = "uc";
7095       break;
7096     case BuiltinType::UChar:
7097       EncType = "uc";
7098       break;
7099     case BuiltinType::SChar:
7100       EncType = "sc";
7101       break;
7102     case BuiltinType::UShort:
7103       EncType = "us";
7104       break;
7105     case BuiltinType::Short:
7106       EncType = "ss";
7107       break;
7108     case BuiltinType::UInt:
7109       EncType = "ui";
7110       break;
7111     case BuiltinType::Int:
7112       EncType = "si";
7113       break;
7114     case BuiltinType::ULong:
7115       EncType = "ul";
7116       break;
7117     case BuiltinType::Long:
7118       EncType = "sl";
7119       break;
7120     case BuiltinType::ULongLong:
7121       EncType = "ull";
7122       break;
7123     case BuiltinType::LongLong:
7124       EncType = "sll";
7125       break;
7126     case BuiltinType::Float:
7127       EncType = "ft";
7128       break;
7129     case BuiltinType::Double:
7130       EncType = "d";
7131       break;
7132     case BuiltinType::LongDouble:
7133       EncType = "ld";
7134       break;
7135     default:
7136       return false;
7137   }
7138   Enc += EncType;
7139   return true;
7140 }
7141 
7142 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7143 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7144                               const CodeGen::CodeGenModule &CGM,
7145                               TypeStringCache &TSC) {
7146   Enc += "p(";
7147   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7148     return false;
7149   Enc += ')';
7150   return true;
7151 }
7152 
7153 /// Appends array encoding to Enc before calling appendType for the element.
7154 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7155                             const ArrayType *AT,
7156                             const CodeGen::CodeGenModule &CGM,
7157                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7158   if (AT->getSizeModifier() != ArrayType::Normal)
7159     return false;
7160   Enc += "a(";
7161   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7162     CAT->getSize().toStringUnsigned(Enc);
7163   else
7164     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7165   Enc += ':';
7166   // The Qualifiers should be attached to the type rather than the array.
7167   appendQualifier(Enc, QT);
7168   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7169     return false;
7170   Enc += ')';
7171   return true;
7172 }
7173 
7174 /// Appends a function encoding to Enc, calling appendType for the return type
7175 /// and the arguments.
7176 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7177                              const CodeGen::CodeGenModule &CGM,
7178                              TypeStringCache &TSC) {
7179   Enc += "f{";
7180   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7181     return false;
7182   Enc += "}(";
7183   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7184     // N.B. we are only interested in the adjusted param types.
7185     auto I = FPT->param_type_begin();
7186     auto E = FPT->param_type_end();
7187     if (I != E) {
7188       do {
7189         if (!appendType(Enc, *I, CGM, TSC))
7190           return false;
7191         ++I;
7192         if (I != E)
7193           Enc += ',';
7194       } while (I != E);
7195       if (FPT->isVariadic())
7196         Enc += ",va";
7197     } else {
7198       if (FPT->isVariadic())
7199         Enc += "va";
7200       else
7201         Enc += '0';
7202     }
7203   }
7204   Enc += ')';
7205   return true;
7206 }
7207 
7208 /// Handles the type's qualifier before dispatching a call to handle specific
7209 /// type encodings.
7210 static bool appendType(SmallStringEnc &Enc, QualType QType,
7211                        const CodeGen::CodeGenModule &CGM,
7212                        TypeStringCache &TSC) {
7213 
7214   QualType QT = QType.getCanonicalType();
7215 
7216   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7217     // The Qualifiers should be attached to the type rather than the array.
7218     // Thus we don't call appendQualifier() here.
7219     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7220 
7221   appendQualifier(Enc, QT);
7222 
7223   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7224     return appendBuiltinType(Enc, BT);
7225 
7226   if (const PointerType *PT = QT->getAs<PointerType>())
7227     return appendPointerType(Enc, PT, CGM, TSC);
7228 
7229   if (const EnumType *ET = QT->getAs<EnumType>())
7230     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7231 
7232   if (const RecordType *RT = QT->getAsStructureType())
7233     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7234 
7235   if (const RecordType *RT = QT->getAsUnionType())
7236     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7237 
7238   if (const FunctionType *FT = QT->getAs<FunctionType>())
7239     return appendFunctionType(Enc, FT, CGM, TSC);
7240 
7241   return false;
7242 }
7243 
7244 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7245                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7246   if (!D)
7247     return false;
7248 
7249   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7250     if (FD->getLanguageLinkage() != CLanguageLinkage)
7251       return false;
7252     return appendType(Enc, FD->getType(), CGM, TSC);
7253   }
7254 
7255   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7256     if (VD->getLanguageLinkage() != CLanguageLinkage)
7257       return false;
7258     QualType QT = VD->getType().getCanonicalType();
7259     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7260       // Global ArrayTypes are given a size of '*' if the size is unknown.
7261       // The Qualifiers should be attached to the type rather than the array.
7262       // Thus we don't call appendQualifier() here.
7263       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7264     }
7265     return appendType(Enc, QT, CGM, TSC);
7266   }
7267   return false;
7268 }
7269 
7270 
7271 //===----------------------------------------------------------------------===//
7272 // Driver code
7273 //===----------------------------------------------------------------------===//
7274 
7275 const llvm::Triple &CodeGenModule::getTriple() const {
7276   return getTarget().getTriple();
7277 }
7278 
7279 bool CodeGenModule::supportsCOMDAT() const {
7280   return !getTriple().isOSBinFormatMachO();
7281 }
7282 
7283 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7284   if (TheTargetCodeGenInfo)
7285     return *TheTargetCodeGenInfo;
7286 
7287   const llvm::Triple &Triple = getTarget().getTriple();
7288   switch (Triple.getArch()) {
7289   default:
7290     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7291 
7292   case llvm::Triple::le32:
7293     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7294   case llvm::Triple::mips:
7295   case llvm::Triple::mipsel:
7296     if (Triple.getOS() == llvm::Triple::NaCl)
7297       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7298     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7299 
7300   case llvm::Triple::mips64:
7301   case llvm::Triple::mips64el:
7302     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7303 
7304   case llvm::Triple::aarch64:
7305   case llvm::Triple::aarch64_be: {
7306     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7307     if (getTarget().getABI() == "darwinpcs")
7308       Kind = AArch64ABIInfo::DarwinPCS;
7309 
7310     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7311   }
7312 
7313   case llvm::Triple::wasm32:
7314   case llvm::Triple::wasm64:
7315     return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types));
7316 
7317   case llvm::Triple::arm:
7318   case llvm::Triple::armeb:
7319   case llvm::Triple::thumb:
7320   case llvm::Triple::thumbeb:
7321     {
7322       if (Triple.getOS() == llvm::Triple::Win32) {
7323         TheTargetCodeGenInfo =
7324             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7325         return *TheTargetCodeGenInfo;
7326       }
7327 
7328       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7329       if (getTarget().getABI() == "apcs-gnu")
7330         Kind = ARMABIInfo::APCS;
7331       else if (CodeGenOpts.FloatABI == "hard" ||
7332                (CodeGenOpts.FloatABI != "soft" &&
7333                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7334         Kind = ARMABIInfo::AAPCS_VFP;
7335 
7336       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7337     }
7338 
7339   case llvm::Triple::ppc:
7340     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7341   case llvm::Triple::ppc64:
7342     if (Triple.isOSBinFormatELF()) {
7343       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7344       if (getTarget().getABI() == "elfv2")
7345         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7346       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7347 
7348       return *(TheTargetCodeGenInfo =
7349                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7350     } else
7351       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7352   case llvm::Triple::ppc64le: {
7353     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7354     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7355     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7356       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7357     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7358 
7359     return *(TheTargetCodeGenInfo =
7360              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7361   }
7362 
7363   case llvm::Triple::nvptx:
7364   case llvm::Triple::nvptx64:
7365     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7366 
7367   case llvm::Triple::msp430:
7368     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7369 
7370   case llvm::Triple::systemz: {
7371     bool HasVector = getTarget().getABI() == "vector";
7372     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7373                                                                  HasVector));
7374   }
7375 
7376   case llvm::Triple::tce:
7377     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7378 
7379   case llvm::Triple::x86: {
7380     bool IsDarwinVectorABI = Triple.isOSDarwin();
7381     bool IsSmallStructInRegABI =
7382         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7383     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7384 
7385     if (Triple.getOS() == llvm::Triple::Win32) {
7386       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7387                    Types, IsDarwinVectorABI, IsSmallStructInRegABI,
7388                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7389     } else {
7390       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7391                    Types, IsDarwinVectorABI, IsSmallStructInRegABI,
7392                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7393     }
7394   }
7395 
7396   case llvm::Triple::x86_64: {
7397     StringRef ABI = getTarget().getABI();
7398     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7399                                ABI == "avx" ? X86AVXABILevel::AVX :
7400                                X86AVXABILevel::None);
7401 
7402     switch (Triple.getOS()) {
7403     case llvm::Triple::Win32:
7404       return *(TheTargetCodeGenInfo =
7405                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7406     case llvm::Triple::PS4:
7407       return *(TheTargetCodeGenInfo =
7408                    new PS4TargetCodeGenInfo(Types, AVXLevel));
7409     default:
7410       return *(TheTargetCodeGenInfo =
7411                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
7412     }
7413   }
7414   case llvm::Triple::hexagon:
7415     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7416   case llvm::Triple::r600:
7417     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7418   case llvm::Triple::amdgcn:
7419     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7420   case llvm::Triple::sparcv9:
7421     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7422   case llvm::Triple::xcore:
7423     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7424   }
7425 }
7426