1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IntrinsicsNVPTX.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> // std::sort 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 // Helper for coercing an aggregate argument or return value into an integer 40 // array of the same size (including padding) and alignment. This alternate 41 // coercion happens only for the RenderScript ABI and can be removed after 42 // runtimes that rely on it are no longer supported. 43 // 44 // RenderScript assumes that the size of the argument / return value in the IR 45 // is the same as the size of the corresponding qualified type. This helper 46 // coerces the aggregate type into an array of the same size (including 47 // padding). This coercion is used in lieu of expansion of struct members or 48 // other canonical coercions that return a coerced-type of larger size. 49 // 50 // Ty - The argument / return value type 51 // Context - The associated ASTContext 52 // LLVMContext - The associated LLVMContext 53 static ABIArgInfo coerceToIntArray(QualType Ty, 54 ASTContext &Context, 55 llvm::LLVMContext &LLVMContext) { 56 // Alignment and Size are measured in bits. 57 const uint64_t Size = Context.getTypeSize(Ty); 58 const uint64_t Alignment = Context.getTypeAlign(Ty); 59 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 60 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 61 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 62 } 63 64 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 65 llvm::Value *Array, 66 llvm::Value *Value, 67 unsigned FirstIndex, 68 unsigned LastIndex) { 69 // Alternatively, we could emit this as a loop in the source. 70 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 71 llvm::Value *Cell = 72 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 73 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 74 } 75 } 76 77 static bool isAggregateTypeForABI(QualType T) { 78 return !CodeGenFunction::hasScalarEvaluationKind(T) || 79 T->isMemberFunctionPointerType(); 80 } 81 82 ABIArgInfo 83 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 84 llvm::Type *Padding) const { 85 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 86 ByRef, Realign, Padding); 87 } 88 89 ABIArgInfo 90 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 91 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 92 /*ByRef*/ false, Realign); 93 } 94 95 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 96 QualType Ty) const { 97 return Address::invalid(); 98 } 99 100 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 101 if (Ty->isPromotableIntegerType()) 102 return true; 103 104 if (const auto *EIT = Ty->getAs<ExtIntType>()) 105 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 106 return true; 107 108 return false; 109 } 110 111 ABIInfo::~ABIInfo() {} 112 113 /// Does the given lowering require more than the given number of 114 /// registers when expanded? 115 /// 116 /// This is intended to be the basis of a reasonable basic implementation 117 /// of should{Pass,Return}IndirectlyForSwift. 118 /// 119 /// For most targets, a limit of four total registers is reasonable; this 120 /// limits the amount of code required in order to move around the value 121 /// in case it wasn't produced immediately prior to the call by the caller 122 /// (or wasn't produced in exactly the right registers) or isn't used 123 /// immediately within the callee. But some targets may need to further 124 /// limit the register count due to an inability to support that many 125 /// return registers. 126 static bool occupiesMoreThan(CodeGenTypes &cgt, 127 ArrayRef<llvm::Type*> scalarTypes, 128 unsigned maxAllRegisters) { 129 unsigned intCount = 0, fpCount = 0; 130 for (llvm::Type *type : scalarTypes) { 131 if (type->isPointerTy()) { 132 intCount++; 133 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 134 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 135 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 136 } else { 137 assert(type->isVectorTy() || type->isFloatingPointTy()); 138 fpCount++; 139 } 140 } 141 142 return (intCount + fpCount > maxAllRegisters); 143 } 144 145 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 146 llvm::Type *eltTy, 147 unsigned numElts) const { 148 // The default implementation of this assumes that the target guarantees 149 // 128-bit SIMD support but nothing more. 150 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 151 } 152 153 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 154 CGCXXABI &CXXABI) { 155 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 156 if (!RD) { 157 if (!RT->getDecl()->canPassInRegisters()) 158 return CGCXXABI::RAA_Indirect; 159 return CGCXXABI::RAA_Default; 160 } 161 return CXXABI.getRecordArgABI(RD); 162 } 163 164 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 165 CGCXXABI &CXXABI) { 166 const RecordType *RT = T->getAs<RecordType>(); 167 if (!RT) 168 return CGCXXABI::RAA_Default; 169 return getRecordArgABI(RT, CXXABI); 170 } 171 172 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 173 const ABIInfo &Info) { 174 QualType Ty = FI.getReturnType(); 175 176 if (const auto *RT = Ty->getAs<RecordType>()) 177 if (!isa<CXXRecordDecl>(RT->getDecl()) && 178 !RT->getDecl()->canPassInRegisters()) { 179 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 180 return true; 181 } 182 183 return CXXABI.classifyReturnType(FI); 184 } 185 186 /// Pass transparent unions as if they were the type of the first element. Sema 187 /// should ensure that all elements of the union have the same "machine type". 188 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 189 if (const RecordType *UT = Ty->getAsUnionType()) { 190 const RecordDecl *UD = UT->getDecl(); 191 if (UD->hasAttr<TransparentUnionAttr>()) { 192 assert(!UD->field_empty() && "sema created an empty transparent union"); 193 return UD->field_begin()->getType(); 194 } 195 } 196 return Ty; 197 } 198 199 CGCXXABI &ABIInfo::getCXXABI() const { 200 return CGT.getCXXABI(); 201 } 202 203 ASTContext &ABIInfo::getContext() const { 204 return CGT.getContext(); 205 } 206 207 llvm::LLVMContext &ABIInfo::getVMContext() const { 208 return CGT.getLLVMContext(); 209 } 210 211 const llvm::DataLayout &ABIInfo::getDataLayout() const { 212 return CGT.getDataLayout(); 213 } 214 215 const TargetInfo &ABIInfo::getTarget() const { 216 return CGT.getTarget(); 217 } 218 219 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 220 return CGT.getCodeGenOpts(); 221 } 222 223 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 224 225 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 226 return false; 227 } 228 229 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 230 uint64_t Members) const { 231 return false; 232 } 233 234 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 235 raw_ostream &OS = llvm::errs(); 236 OS << "(ABIArgInfo Kind="; 237 switch (TheKind) { 238 case Direct: 239 OS << "Direct Type="; 240 if (llvm::Type *Ty = getCoerceToType()) 241 Ty->print(OS); 242 else 243 OS << "null"; 244 break; 245 case Extend: 246 OS << "Extend"; 247 break; 248 case Ignore: 249 OS << "Ignore"; 250 break; 251 case InAlloca: 252 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 253 break; 254 case Indirect: 255 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 256 << " ByVal=" << getIndirectByVal() 257 << " Realign=" << getIndirectRealign(); 258 break; 259 case Expand: 260 OS << "Expand"; 261 break; 262 case CoerceAndExpand: 263 OS << "CoerceAndExpand Type="; 264 getCoerceAndExpandType()->print(OS); 265 break; 266 } 267 OS << ")\n"; 268 } 269 270 // Dynamically round a pointer up to a multiple of the given alignment. 271 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 272 llvm::Value *Ptr, 273 CharUnits Align) { 274 llvm::Value *PtrAsInt = Ptr; 275 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 276 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 277 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 278 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 279 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 280 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 281 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 282 Ptr->getType(), 283 Ptr->getName() + ".aligned"); 284 return PtrAsInt; 285 } 286 287 /// Emit va_arg for a platform using the common void* representation, 288 /// where arguments are simply emitted in an array of slots on the stack. 289 /// 290 /// This version implements the core direct-value passing rules. 291 /// 292 /// \param SlotSize - The size and alignment of a stack slot. 293 /// Each argument will be allocated to a multiple of this number of 294 /// slots, and all the slots will be aligned to this value. 295 /// \param AllowHigherAlign - The slot alignment is not a cap; 296 /// an argument type with an alignment greater than the slot size 297 /// will be emitted on a higher-alignment address, potentially 298 /// leaving one or more empty slots behind as padding. If this 299 /// is false, the returned address might be less-aligned than 300 /// DirectAlign. 301 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 302 Address VAListAddr, 303 llvm::Type *DirectTy, 304 CharUnits DirectSize, 305 CharUnits DirectAlign, 306 CharUnits SlotSize, 307 bool AllowHigherAlign) { 308 // Cast the element type to i8* if necessary. Some platforms define 309 // va_list as a struct containing an i8* instead of just an i8*. 310 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 311 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 312 313 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 314 315 // If the CC aligns values higher than the slot size, do so if needed. 316 Address Addr = Address::invalid(); 317 if (AllowHigherAlign && DirectAlign > SlotSize) { 318 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 319 DirectAlign); 320 } else { 321 Addr = Address(Ptr, SlotSize); 322 } 323 324 // Advance the pointer past the argument, then store that back. 325 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 326 Address NextPtr = 327 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 328 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 329 330 // If the argument is smaller than a slot, and this is a big-endian 331 // target, the argument will be right-adjusted in its slot. 332 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 333 !DirectTy->isStructTy()) { 334 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 335 } 336 337 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 338 return Addr; 339 } 340 341 /// Emit va_arg for a platform using the common void* representation, 342 /// where arguments are simply emitted in an array of slots on the stack. 343 /// 344 /// \param IsIndirect - Values of this type are passed indirectly. 345 /// \param ValueInfo - The size and alignment of this type, generally 346 /// computed with getContext().getTypeInfoInChars(ValueTy). 347 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 348 /// Each argument will be allocated to a multiple of this number of 349 /// slots, and all the slots will be aligned to this value. 350 /// \param AllowHigherAlign - The slot alignment is not a cap; 351 /// an argument type with an alignment greater than the slot size 352 /// will be emitted on a higher-alignment address, potentially 353 /// leaving one or more empty slots behind as padding. 354 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 355 QualType ValueTy, bool IsIndirect, 356 std::pair<CharUnits, CharUnits> ValueInfo, 357 CharUnits SlotSizeAndAlign, 358 bool AllowHigherAlign) { 359 // The size and alignment of the value that was passed directly. 360 CharUnits DirectSize, DirectAlign; 361 if (IsIndirect) { 362 DirectSize = CGF.getPointerSize(); 363 DirectAlign = CGF.getPointerAlign(); 364 } else { 365 DirectSize = ValueInfo.first; 366 DirectAlign = ValueInfo.second; 367 } 368 369 // Cast the address we've calculated to the right type. 370 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 371 if (IsIndirect) 372 DirectTy = DirectTy->getPointerTo(0); 373 374 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 375 DirectSize, DirectAlign, 376 SlotSizeAndAlign, 377 AllowHigherAlign); 378 379 if (IsIndirect) { 380 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 381 } 382 383 return Addr; 384 385 } 386 387 static Address emitMergePHI(CodeGenFunction &CGF, 388 Address Addr1, llvm::BasicBlock *Block1, 389 Address Addr2, llvm::BasicBlock *Block2, 390 const llvm::Twine &Name = "") { 391 assert(Addr1.getType() == Addr2.getType()); 392 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 393 PHI->addIncoming(Addr1.getPointer(), Block1); 394 PHI->addIncoming(Addr2.getPointer(), Block2); 395 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 396 return Address(PHI, Align); 397 } 398 399 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 400 401 // If someone can figure out a general rule for this, that would be great. 402 // It's probably just doomed to be platform-dependent, though. 403 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 404 // Verified for: 405 // x86-64 FreeBSD, Linux, Darwin 406 // x86-32 FreeBSD, Linux, Darwin 407 // PowerPC Linux, Darwin 408 // ARM Darwin (*not* EABI) 409 // AArch64 Linux 410 return 32; 411 } 412 413 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 414 const FunctionNoProtoType *fnType) const { 415 // The following conventions are known to require this to be false: 416 // x86_stdcall 417 // MIPS 418 // For everything else, we just prefer false unless we opt out. 419 return false; 420 } 421 422 void 423 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 424 llvm::SmallString<24> &Opt) const { 425 // This assumes the user is passing a library name like "rt" instead of a 426 // filename like "librt.a/so", and that they don't care whether it's static or 427 // dynamic. 428 Opt = "-l"; 429 Opt += Lib; 430 } 431 432 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 433 // OpenCL kernels are called via an explicit runtime API with arguments 434 // set with clSetKernelArg(), not as normal sub-functions. 435 // Return SPIR_KERNEL by default as the kernel calling convention to 436 // ensure the fingerprint is fixed such way that each OpenCL argument 437 // gets one matching argument in the produced kernel function argument 438 // list to enable feasible implementation of clSetKernelArg() with 439 // aggregates etc. In case we would use the default C calling conv here, 440 // clSetKernelArg() might break depending on the target-specific 441 // conventions; different targets might split structs passed as values 442 // to multiple function arguments etc. 443 return llvm::CallingConv::SPIR_KERNEL; 444 } 445 446 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 447 llvm::PointerType *T, QualType QT) const { 448 return llvm::ConstantPointerNull::get(T); 449 } 450 451 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 452 const VarDecl *D) const { 453 assert(!CGM.getLangOpts().OpenCL && 454 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 455 "Address space agnostic languages only"); 456 return D ? D->getType().getAddressSpace() : LangAS::Default; 457 } 458 459 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 460 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 461 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 462 // Since target may map different address spaces in AST to the same address 463 // space, an address space conversion may end up as a bitcast. 464 if (auto *C = dyn_cast<llvm::Constant>(Src)) 465 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 466 // Try to preserve the source's name to make IR more readable. 467 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 468 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 469 } 470 471 llvm::Constant * 472 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 473 LangAS SrcAddr, LangAS DestAddr, 474 llvm::Type *DestTy) const { 475 // Since target may map different address spaces in AST to the same address 476 // space, an address space conversion may end up as a bitcast. 477 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 478 } 479 480 llvm::SyncScope::ID 481 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 482 SyncScope Scope, 483 llvm::AtomicOrdering Ordering, 484 llvm::LLVMContext &Ctx) const { 485 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 486 } 487 488 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 489 490 /// isEmptyField - Return true iff a the field is "empty", that is it 491 /// is an unnamed bit-field or an (array of) empty record(s). 492 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 493 bool AllowArrays) { 494 if (FD->isUnnamedBitfield()) 495 return true; 496 497 QualType FT = FD->getType(); 498 499 // Constant arrays of empty records count as empty, strip them off. 500 // Constant arrays of zero length always count as empty. 501 if (AllowArrays) 502 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 503 if (AT->getSize() == 0) 504 return true; 505 FT = AT->getElementType(); 506 } 507 508 const RecordType *RT = FT->getAs<RecordType>(); 509 if (!RT) 510 return false; 511 512 // C++ record fields are never empty, at least in the Itanium ABI. 513 // 514 // FIXME: We should use a predicate for whether this behavior is true in the 515 // current ABI. 516 if (isa<CXXRecordDecl>(RT->getDecl())) 517 return false; 518 519 return isEmptyRecord(Context, FT, AllowArrays); 520 } 521 522 /// isEmptyRecord - Return true iff a structure contains only empty 523 /// fields. Note that a structure with a flexible array member is not 524 /// considered empty. 525 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 526 const RecordType *RT = T->getAs<RecordType>(); 527 if (!RT) 528 return false; 529 const RecordDecl *RD = RT->getDecl(); 530 if (RD->hasFlexibleArrayMember()) 531 return false; 532 533 // If this is a C++ record, check the bases first. 534 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 535 for (const auto &I : CXXRD->bases()) 536 if (!isEmptyRecord(Context, I.getType(), true)) 537 return false; 538 539 for (const auto *I : RD->fields()) 540 if (!isEmptyField(Context, I, AllowArrays)) 541 return false; 542 return true; 543 } 544 545 /// isSingleElementStruct - Determine if a structure is a "single 546 /// element struct", i.e. it has exactly one non-empty field or 547 /// exactly one field which is itself a single element 548 /// struct. Structures with flexible array members are never 549 /// considered single element structs. 550 /// 551 /// \return The field declaration for the single non-empty field, if 552 /// it exists. 553 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 554 const RecordType *RT = T->getAs<RecordType>(); 555 if (!RT) 556 return nullptr; 557 558 const RecordDecl *RD = RT->getDecl(); 559 if (RD->hasFlexibleArrayMember()) 560 return nullptr; 561 562 const Type *Found = nullptr; 563 564 // If this is a C++ record, check the bases first. 565 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 566 for (const auto &I : CXXRD->bases()) { 567 // Ignore empty records. 568 if (isEmptyRecord(Context, I.getType(), true)) 569 continue; 570 571 // If we already found an element then this isn't a single-element struct. 572 if (Found) 573 return nullptr; 574 575 // If this is non-empty and not a single element struct, the composite 576 // cannot be a single element struct. 577 Found = isSingleElementStruct(I.getType(), Context); 578 if (!Found) 579 return nullptr; 580 } 581 } 582 583 // Check for single element. 584 for (const auto *FD : RD->fields()) { 585 QualType FT = FD->getType(); 586 587 // Ignore empty fields. 588 if (isEmptyField(Context, FD, true)) 589 continue; 590 591 // If we already found an element then this isn't a single-element 592 // struct. 593 if (Found) 594 return nullptr; 595 596 // Treat single element arrays as the element. 597 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 598 if (AT->getSize().getZExtValue() != 1) 599 break; 600 FT = AT->getElementType(); 601 } 602 603 if (!isAggregateTypeForABI(FT)) { 604 Found = FT.getTypePtr(); 605 } else { 606 Found = isSingleElementStruct(FT, Context); 607 if (!Found) 608 return nullptr; 609 } 610 } 611 612 // We don't consider a struct a single-element struct if it has 613 // padding beyond the element type. 614 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 615 return nullptr; 616 617 return Found; 618 } 619 620 namespace { 621 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 622 const ABIArgInfo &AI) { 623 // This default implementation defers to the llvm backend's va_arg 624 // instruction. It can handle only passing arguments directly 625 // (typically only handled in the backend for primitive types), or 626 // aggregates passed indirectly by pointer (NOTE: if the "byval" 627 // flag has ABI impact in the callee, this implementation cannot 628 // work.) 629 630 // Only a few cases are covered here at the moment -- those needed 631 // by the default abi. 632 llvm::Value *Val; 633 634 if (AI.isIndirect()) { 635 assert(!AI.getPaddingType() && 636 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 637 assert( 638 !AI.getIndirectRealign() && 639 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 640 641 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 642 CharUnits TyAlignForABI = TyInfo.second; 643 644 llvm::Type *BaseTy = 645 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 646 llvm::Value *Addr = 647 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 648 return Address(Addr, TyAlignForABI); 649 } else { 650 assert((AI.isDirect() || AI.isExtend()) && 651 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 652 653 assert(!AI.getInReg() && 654 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 655 assert(!AI.getPaddingType() && 656 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 657 assert(!AI.getDirectOffset() && 658 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 659 assert(!AI.getCoerceToType() && 660 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 661 662 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 663 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 664 CGF.Builder.CreateStore(Val, Temp); 665 return Temp; 666 } 667 } 668 669 /// DefaultABIInfo - The default implementation for ABI specific 670 /// details. This implementation provides information which results in 671 /// self-consistent and sensible LLVM IR generation, but does not 672 /// conform to any particular ABI. 673 class DefaultABIInfo : public ABIInfo { 674 public: 675 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 676 677 ABIArgInfo classifyReturnType(QualType RetTy) const; 678 ABIArgInfo classifyArgumentType(QualType RetTy) const; 679 680 void computeInfo(CGFunctionInfo &FI) const override { 681 if (!getCXXABI().classifyReturnType(FI)) 682 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 683 for (auto &I : FI.arguments()) 684 I.info = classifyArgumentType(I.type); 685 } 686 687 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 688 QualType Ty) const override { 689 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 690 } 691 }; 692 693 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 694 public: 695 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 696 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 697 }; 698 699 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 700 Ty = useFirstFieldIfTransparentUnion(Ty); 701 702 if (isAggregateTypeForABI(Ty)) { 703 // Records with non-trivial destructors/copy-constructors should not be 704 // passed by value. 705 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 706 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 707 708 return getNaturalAlignIndirect(Ty); 709 } 710 711 // Treat an enum type as its underlying type. 712 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 713 Ty = EnumTy->getDecl()->getIntegerType(); 714 715 ASTContext &Context = getContext(); 716 if (const auto *EIT = Ty->getAs<ExtIntType>()) 717 if (EIT->getNumBits() > 718 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 719 ? Context.Int128Ty 720 : Context.LongLongTy)) 721 return getNaturalAlignIndirect(Ty); 722 723 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 724 : ABIArgInfo::getDirect()); 725 } 726 727 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 728 if (RetTy->isVoidType()) 729 return ABIArgInfo::getIgnore(); 730 731 if (isAggregateTypeForABI(RetTy)) 732 return getNaturalAlignIndirect(RetTy); 733 734 // Treat an enum type as its underlying type. 735 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 736 RetTy = EnumTy->getDecl()->getIntegerType(); 737 738 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 739 if (EIT->getNumBits() > 740 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 741 ? getContext().Int128Ty 742 : getContext().LongLongTy)) 743 return getNaturalAlignIndirect(RetTy); 744 745 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 746 : ABIArgInfo::getDirect()); 747 } 748 749 //===----------------------------------------------------------------------===// 750 // WebAssembly ABI Implementation 751 // 752 // This is a very simple ABI that relies a lot on DefaultABIInfo. 753 //===----------------------------------------------------------------------===// 754 755 class WebAssemblyABIInfo final : public SwiftABIInfo { 756 public: 757 enum ABIKind { 758 MVP = 0, 759 ExperimentalMV = 1, 760 }; 761 762 private: 763 DefaultABIInfo defaultInfo; 764 ABIKind Kind; 765 766 public: 767 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 768 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 769 770 private: 771 ABIArgInfo classifyReturnType(QualType RetTy) const; 772 ABIArgInfo classifyArgumentType(QualType Ty) const; 773 774 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 775 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 776 // overload them. 777 void computeInfo(CGFunctionInfo &FI) const override { 778 if (!getCXXABI().classifyReturnType(FI)) 779 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 780 for (auto &Arg : FI.arguments()) 781 Arg.info = classifyArgumentType(Arg.type); 782 } 783 784 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 785 QualType Ty) const override; 786 787 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 788 bool asReturnValue) const override { 789 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 790 } 791 792 bool isSwiftErrorInRegister() const override { 793 return false; 794 } 795 }; 796 797 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 798 public: 799 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 800 WebAssemblyABIInfo::ABIKind K) 801 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 802 803 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 804 CodeGen::CodeGenModule &CGM) const override { 805 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 806 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 807 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 808 llvm::Function *Fn = cast<llvm::Function>(GV); 809 llvm::AttrBuilder B; 810 B.addAttribute("wasm-import-module", Attr->getImportModule()); 811 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 812 } 813 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 814 llvm::Function *Fn = cast<llvm::Function>(GV); 815 llvm::AttrBuilder B; 816 B.addAttribute("wasm-import-name", Attr->getImportName()); 817 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 818 } 819 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 820 llvm::Function *Fn = cast<llvm::Function>(GV); 821 llvm::AttrBuilder B; 822 B.addAttribute("wasm-export-name", Attr->getExportName()); 823 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 824 } 825 } 826 827 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 828 llvm::Function *Fn = cast<llvm::Function>(GV); 829 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 830 Fn->addFnAttr("no-prototype"); 831 } 832 } 833 }; 834 835 /// Classify argument of given type \p Ty. 836 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 837 Ty = useFirstFieldIfTransparentUnion(Ty); 838 839 if (isAggregateTypeForABI(Ty)) { 840 // Records with non-trivial destructors/copy-constructors should not be 841 // passed by value. 842 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 843 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 844 // Ignore empty structs/unions. 845 if (isEmptyRecord(getContext(), Ty, true)) 846 return ABIArgInfo::getIgnore(); 847 // Lower single-element structs to just pass a regular value. TODO: We 848 // could do reasonable-size multiple-element structs too, using getExpand(), 849 // though watch out for things like bitfields. 850 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 851 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 852 // For the experimental multivalue ABI, fully expand all other aggregates 853 if (Kind == ABIKind::ExperimentalMV) { 854 const RecordType *RT = Ty->getAs<RecordType>(); 855 assert(RT); 856 bool HasBitField = false; 857 for (auto *Field : RT->getDecl()->fields()) { 858 if (Field->isBitField()) { 859 HasBitField = true; 860 break; 861 } 862 } 863 if (!HasBitField) 864 return ABIArgInfo::getExpand(); 865 } 866 } 867 868 // Otherwise just do the default thing. 869 return defaultInfo.classifyArgumentType(Ty); 870 } 871 872 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 873 if (isAggregateTypeForABI(RetTy)) { 874 // Records with non-trivial destructors/copy-constructors should not be 875 // returned by value. 876 if (!getRecordArgABI(RetTy, getCXXABI())) { 877 // Ignore empty structs/unions. 878 if (isEmptyRecord(getContext(), RetTy, true)) 879 return ABIArgInfo::getIgnore(); 880 // Lower single-element structs to just return a regular value. TODO: We 881 // could do reasonable-size multiple-element structs too, using 882 // ABIArgInfo::getDirect(). 883 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 884 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 885 // For the experimental multivalue ABI, return all other aggregates 886 if (Kind == ABIKind::ExperimentalMV) 887 return ABIArgInfo::getDirect(); 888 } 889 } 890 891 // Otherwise just do the default thing. 892 return defaultInfo.classifyReturnType(RetTy); 893 } 894 895 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 896 QualType Ty) const { 897 bool IsIndirect = isAggregateTypeForABI(Ty) && 898 !isEmptyRecord(getContext(), Ty, true) && 899 !isSingleElementStruct(Ty, getContext()); 900 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 901 getContext().getTypeInfoInChars(Ty), 902 CharUnits::fromQuantity(4), 903 /*AllowHigherAlign=*/true); 904 } 905 906 //===----------------------------------------------------------------------===// 907 // le32/PNaCl bitcode ABI Implementation 908 // 909 // This is a simplified version of the x86_32 ABI. Arguments and return values 910 // are always passed on the stack. 911 //===----------------------------------------------------------------------===// 912 913 class PNaClABIInfo : public ABIInfo { 914 public: 915 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 916 917 ABIArgInfo classifyReturnType(QualType RetTy) const; 918 ABIArgInfo classifyArgumentType(QualType RetTy) const; 919 920 void computeInfo(CGFunctionInfo &FI) const override; 921 Address EmitVAArg(CodeGenFunction &CGF, 922 Address VAListAddr, QualType Ty) const override; 923 }; 924 925 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 926 public: 927 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 928 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 929 }; 930 931 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 932 if (!getCXXABI().classifyReturnType(FI)) 933 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 934 935 for (auto &I : FI.arguments()) 936 I.info = classifyArgumentType(I.type); 937 } 938 939 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 940 QualType Ty) const { 941 // The PNaCL ABI is a bit odd, in that varargs don't use normal 942 // function classification. Structs get passed directly for varargs 943 // functions, through a rewriting transform in 944 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 945 // this target to actually support a va_arg instructions with an 946 // aggregate type, unlike other targets. 947 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 948 } 949 950 /// Classify argument of given type \p Ty. 951 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 952 if (isAggregateTypeForABI(Ty)) { 953 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 954 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 955 return getNaturalAlignIndirect(Ty); 956 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 957 // Treat an enum type as its underlying type. 958 Ty = EnumTy->getDecl()->getIntegerType(); 959 } else if (Ty->isFloatingType()) { 960 // Floating-point types don't go inreg. 961 return ABIArgInfo::getDirect(); 962 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 963 // Treat extended integers as integers if <=64, otherwise pass indirectly. 964 if (EIT->getNumBits() > 64) 965 return getNaturalAlignIndirect(Ty); 966 return ABIArgInfo::getDirect(); 967 } 968 969 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 970 : ABIArgInfo::getDirect()); 971 } 972 973 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 974 if (RetTy->isVoidType()) 975 return ABIArgInfo::getIgnore(); 976 977 // In the PNaCl ABI we always return records/structures on the stack. 978 if (isAggregateTypeForABI(RetTy)) 979 return getNaturalAlignIndirect(RetTy); 980 981 // Treat extended integers as integers if <=64, otherwise pass indirectly. 982 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(RetTy); 985 return ABIArgInfo::getDirect(); 986 } 987 988 // Treat an enum type as its underlying type. 989 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 990 RetTy = EnumTy->getDecl()->getIntegerType(); 991 992 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 993 : ABIArgInfo::getDirect()); 994 } 995 996 /// IsX86_MMXType - Return true if this is an MMX type. 997 bool IsX86_MMXType(llvm::Type *IRType) { 998 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 999 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1000 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1001 IRType->getScalarSizeInBits() != 64; 1002 } 1003 1004 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1005 StringRef Constraint, 1006 llvm::Type* Ty) { 1007 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1008 .Cases("y", "&y", "^Ym", true) 1009 .Default(false); 1010 if (IsMMXCons && Ty->isVectorTy()) { 1011 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1012 64) { 1013 // Invalid MMX constraint 1014 return nullptr; 1015 } 1016 1017 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1018 } 1019 1020 // No operation needed 1021 return Ty; 1022 } 1023 1024 /// Returns true if this type can be passed in SSE registers with the 1025 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1026 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1027 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1028 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1029 if (BT->getKind() == BuiltinType::LongDouble) { 1030 if (&Context.getTargetInfo().getLongDoubleFormat() == 1031 &llvm::APFloat::x87DoubleExtended()) 1032 return false; 1033 } 1034 return true; 1035 } 1036 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1037 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1038 // registers specially. 1039 unsigned VecSize = Context.getTypeSize(VT); 1040 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1041 return true; 1042 } 1043 return false; 1044 } 1045 1046 /// Returns true if this aggregate is small enough to be passed in SSE registers 1047 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1048 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1049 return NumMembers <= 4; 1050 } 1051 1052 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1053 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1054 auto AI = ABIArgInfo::getDirect(T); 1055 AI.setInReg(true); 1056 AI.setCanBeFlattened(false); 1057 return AI; 1058 } 1059 1060 //===----------------------------------------------------------------------===// 1061 // X86-32 ABI Implementation 1062 //===----------------------------------------------------------------------===// 1063 1064 /// Similar to llvm::CCState, but for Clang. 1065 struct CCState { 1066 CCState(CGFunctionInfo &FI) 1067 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1068 1069 llvm::SmallBitVector IsPreassigned; 1070 unsigned CC = CallingConv::CC_C; 1071 unsigned FreeRegs = 0; 1072 unsigned FreeSSERegs = 0; 1073 }; 1074 1075 enum { 1076 // Vectorcall only allows the first 6 parameters to be passed in registers. 1077 VectorcallMaxParamNumAsReg = 6 1078 }; 1079 1080 /// X86_32ABIInfo - The X86-32 ABI information. 1081 class X86_32ABIInfo : public SwiftABIInfo { 1082 enum Class { 1083 Integer, 1084 Float 1085 }; 1086 1087 static const unsigned MinABIStackAlignInBytes = 4; 1088 1089 bool IsDarwinVectorABI; 1090 bool IsRetSmallStructInRegABI; 1091 bool IsWin32StructABI; 1092 bool IsSoftFloatABI; 1093 bool IsMCUABI; 1094 unsigned DefaultNumRegisterParameters; 1095 1096 static bool isRegisterSize(unsigned Size) { 1097 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1098 } 1099 1100 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1101 // FIXME: Assumes vectorcall is in use. 1102 return isX86VectorTypeForVectorCall(getContext(), Ty); 1103 } 1104 1105 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1106 uint64_t NumMembers) const override { 1107 // FIXME: Assumes vectorcall is in use. 1108 return isX86VectorCallAggregateSmallEnough(NumMembers); 1109 } 1110 1111 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1112 1113 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1114 /// such that the argument will be passed in memory. 1115 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1116 1117 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1118 1119 /// Return the alignment to use for the given type on the stack. 1120 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1121 1122 Class classify(QualType Ty) const; 1123 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1124 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1125 1126 /// Updates the number of available free registers, returns 1127 /// true if any registers were allocated. 1128 bool updateFreeRegs(QualType Ty, CCState &State) const; 1129 1130 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1131 bool &NeedsPadding) const; 1132 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1133 1134 bool canExpandIndirectArgument(QualType Ty) const; 1135 1136 /// Rewrite the function info so that all memory arguments use 1137 /// inalloca. 1138 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1139 1140 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1141 CharUnits &StackOffset, ABIArgInfo &Info, 1142 QualType Type) const; 1143 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1144 1145 public: 1146 1147 void computeInfo(CGFunctionInfo &FI) const override; 1148 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1149 QualType Ty) const override; 1150 1151 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1152 bool RetSmallStructInRegABI, bool Win32StructABI, 1153 unsigned NumRegisterParameters, bool SoftFloatABI) 1154 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1155 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1156 IsWin32StructABI(Win32StructABI), 1157 IsSoftFloatABI(SoftFloatABI), 1158 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1159 DefaultNumRegisterParameters(NumRegisterParameters) {} 1160 1161 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1162 bool asReturnValue) const override { 1163 // LLVM's x86-32 lowering currently only assigns up to three 1164 // integer registers and three fp registers. Oddly, it'll use up to 1165 // four vector registers for vectors, but those can overlap with the 1166 // scalar registers. 1167 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1168 } 1169 1170 bool isSwiftErrorInRegister() const override { 1171 // x86-32 lowering does not support passing swifterror in a register. 1172 return false; 1173 } 1174 }; 1175 1176 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1177 public: 1178 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1179 bool RetSmallStructInRegABI, bool Win32StructABI, 1180 unsigned NumRegisterParameters, bool SoftFloatABI) 1181 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1182 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1183 NumRegisterParameters, SoftFloatABI)) {} 1184 1185 static bool isStructReturnInRegABI( 1186 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1187 1188 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1189 CodeGen::CodeGenModule &CGM) const override; 1190 1191 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1192 // Darwin uses different dwarf register numbers for EH. 1193 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1194 return 4; 1195 } 1196 1197 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1198 llvm::Value *Address) const override; 1199 1200 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1201 StringRef Constraint, 1202 llvm::Type* Ty) const override { 1203 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1204 } 1205 1206 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1207 std::string &Constraints, 1208 std::vector<llvm::Type *> &ResultRegTypes, 1209 std::vector<llvm::Type *> &ResultTruncRegTypes, 1210 std::vector<LValue> &ResultRegDests, 1211 std::string &AsmString, 1212 unsigned NumOutputs) const override; 1213 1214 llvm::Constant * 1215 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1216 unsigned Sig = (0xeb << 0) | // jmp rel8 1217 (0x06 << 8) | // .+0x08 1218 ('v' << 16) | 1219 ('2' << 24); 1220 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1221 } 1222 1223 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1224 return "movl\t%ebp, %ebp" 1225 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1226 } 1227 }; 1228 1229 } 1230 1231 /// Rewrite input constraint references after adding some output constraints. 1232 /// In the case where there is one output and one input and we add one output, 1233 /// we need to replace all operand references greater than or equal to 1: 1234 /// mov $0, $1 1235 /// mov eax, $1 1236 /// The result will be: 1237 /// mov $0, $2 1238 /// mov eax, $2 1239 static void rewriteInputConstraintReferences(unsigned FirstIn, 1240 unsigned NumNewOuts, 1241 std::string &AsmString) { 1242 std::string Buf; 1243 llvm::raw_string_ostream OS(Buf); 1244 size_t Pos = 0; 1245 while (Pos < AsmString.size()) { 1246 size_t DollarStart = AsmString.find('$', Pos); 1247 if (DollarStart == std::string::npos) 1248 DollarStart = AsmString.size(); 1249 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1250 if (DollarEnd == std::string::npos) 1251 DollarEnd = AsmString.size(); 1252 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1253 Pos = DollarEnd; 1254 size_t NumDollars = DollarEnd - DollarStart; 1255 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1256 // We have an operand reference. 1257 size_t DigitStart = Pos; 1258 if (AsmString[DigitStart] == '{') { 1259 OS << '{'; 1260 ++DigitStart; 1261 } 1262 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1263 if (DigitEnd == std::string::npos) 1264 DigitEnd = AsmString.size(); 1265 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1266 unsigned OperandIndex; 1267 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1268 if (OperandIndex >= FirstIn) 1269 OperandIndex += NumNewOuts; 1270 OS << OperandIndex; 1271 } else { 1272 OS << OperandStr; 1273 } 1274 Pos = DigitEnd; 1275 } 1276 } 1277 AsmString = std::move(OS.str()); 1278 } 1279 1280 /// Add output constraints for EAX:EDX because they are return registers. 1281 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1282 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1283 std::vector<llvm::Type *> &ResultRegTypes, 1284 std::vector<llvm::Type *> &ResultTruncRegTypes, 1285 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1286 unsigned NumOutputs) const { 1287 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1288 1289 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1290 // larger. 1291 if (!Constraints.empty()) 1292 Constraints += ','; 1293 if (RetWidth <= 32) { 1294 Constraints += "={eax}"; 1295 ResultRegTypes.push_back(CGF.Int32Ty); 1296 } else { 1297 // Use the 'A' constraint for EAX:EDX. 1298 Constraints += "=A"; 1299 ResultRegTypes.push_back(CGF.Int64Ty); 1300 } 1301 1302 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1303 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1304 ResultTruncRegTypes.push_back(CoerceTy); 1305 1306 // Coerce the integer by bitcasting the return slot pointer. 1307 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1308 CoerceTy->getPointerTo())); 1309 ResultRegDests.push_back(ReturnSlot); 1310 1311 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1312 } 1313 1314 /// shouldReturnTypeInRegister - Determine if the given type should be 1315 /// returned in a register (for the Darwin and MCU ABI). 1316 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1317 ASTContext &Context) const { 1318 uint64_t Size = Context.getTypeSize(Ty); 1319 1320 // For i386, type must be register sized. 1321 // For the MCU ABI, it only needs to be <= 8-byte 1322 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1323 return false; 1324 1325 if (Ty->isVectorType()) { 1326 // 64- and 128- bit vectors inside structures are not returned in 1327 // registers. 1328 if (Size == 64 || Size == 128) 1329 return false; 1330 1331 return true; 1332 } 1333 1334 // If this is a builtin, pointer, enum, complex type, member pointer, or 1335 // member function pointer it is ok. 1336 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1337 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1338 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1339 return true; 1340 1341 // Arrays are treated like records. 1342 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1343 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1344 1345 // Otherwise, it must be a record type. 1346 const RecordType *RT = Ty->getAs<RecordType>(); 1347 if (!RT) return false; 1348 1349 // FIXME: Traverse bases here too. 1350 1351 // Structure types are passed in register if all fields would be 1352 // passed in a register. 1353 for (const auto *FD : RT->getDecl()->fields()) { 1354 // Empty fields are ignored. 1355 if (isEmptyField(Context, FD, true)) 1356 continue; 1357 1358 // Check fields recursively. 1359 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1360 return false; 1361 } 1362 return true; 1363 } 1364 1365 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1366 // Treat complex types as the element type. 1367 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1368 Ty = CTy->getElementType(); 1369 1370 // Check for a type which we know has a simple scalar argument-passing 1371 // convention without any padding. (We're specifically looking for 32 1372 // and 64-bit integer and integer-equivalents, float, and double.) 1373 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1374 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1375 return false; 1376 1377 uint64_t Size = Context.getTypeSize(Ty); 1378 return Size == 32 || Size == 64; 1379 } 1380 1381 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1382 uint64_t &Size) { 1383 for (const auto *FD : RD->fields()) { 1384 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1385 // argument is smaller than 32-bits, expanding the struct will create 1386 // alignment padding. 1387 if (!is32Or64BitBasicType(FD->getType(), Context)) 1388 return false; 1389 1390 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1391 // how to expand them yet, and the predicate for telling if a bitfield still 1392 // counts as "basic" is more complicated than what we were doing previously. 1393 if (FD->isBitField()) 1394 return false; 1395 1396 Size += Context.getTypeSize(FD->getType()); 1397 } 1398 return true; 1399 } 1400 1401 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1402 uint64_t &Size) { 1403 // Don't do this if there are any non-empty bases. 1404 for (const CXXBaseSpecifier &Base : RD->bases()) { 1405 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1406 Size)) 1407 return false; 1408 } 1409 if (!addFieldSizes(Context, RD, Size)) 1410 return false; 1411 return true; 1412 } 1413 1414 /// Test whether an argument type which is to be passed indirectly (on the 1415 /// stack) would have the equivalent layout if it was expanded into separate 1416 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1417 /// optimizations. 1418 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1419 // We can only expand structure types. 1420 const RecordType *RT = Ty->getAs<RecordType>(); 1421 if (!RT) 1422 return false; 1423 const RecordDecl *RD = RT->getDecl(); 1424 uint64_t Size = 0; 1425 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1426 if (!IsWin32StructABI) { 1427 // On non-Windows, we have to conservatively match our old bitcode 1428 // prototypes in order to be ABI-compatible at the bitcode level. 1429 if (!CXXRD->isCLike()) 1430 return false; 1431 } else { 1432 // Don't do this for dynamic classes. 1433 if (CXXRD->isDynamicClass()) 1434 return false; 1435 } 1436 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1437 return false; 1438 } else { 1439 if (!addFieldSizes(getContext(), RD, Size)) 1440 return false; 1441 } 1442 1443 // We can do this if there was no alignment padding. 1444 return Size == getContext().getTypeSize(Ty); 1445 } 1446 1447 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1448 // If the return value is indirect, then the hidden argument is consuming one 1449 // integer register. 1450 if (State.FreeRegs) { 1451 --State.FreeRegs; 1452 if (!IsMCUABI) 1453 return getNaturalAlignIndirectInReg(RetTy); 1454 } 1455 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1456 } 1457 1458 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1459 CCState &State) const { 1460 if (RetTy->isVoidType()) 1461 return ABIArgInfo::getIgnore(); 1462 1463 const Type *Base = nullptr; 1464 uint64_t NumElts = 0; 1465 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1466 State.CC == llvm::CallingConv::X86_RegCall) && 1467 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1468 // The LLVM struct type for such an aggregate should lower properly. 1469 return ABIArgInfo::getDirect(); 1470 } 1471 1472 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1473 // On Darwin, some vectors are returned in registers. 1474 if (IsDarwinVectorABI) { 1475 uint64_t Size = getContext().getTypeSize(RetTy); 1476 1477 // 128-bit vectors are a special case; they are returned in 1478 // registers and we need to make sure to pick a type the LLVM 1479 // backend will like. 1480 if (Size == 128) 1481 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1482 llvm::Type::getInt64Ty(getVMContext()), 2)); 1483 1484 // Always return in register if it fits in a general purpose 1485 // register, or if it is 64 bits and has a single element. 1486 if ((Size == 8 || Size == 16 || Size == 32) || 1487 (Size == 64 && VT->getNumElements() == 1)) 1488 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1489 Size)); 1490 1491 return getIndirectReturnResult(RetTy, State); 1492 } 1493 1494 return ABIArgInfo::getDirect(); 1495 } 1496 1497 if (isAggregateTypeForABI(RetTy)) { 1498 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1499 // Structures with flexible arrays are always indirect. 1500 if (RT->getDecl()->hasFlexibleArrayMember()) 1501 return getIndirectReturnResult(RetTy, State); 1502 } 1503 1504 // If specified, structs and unions are always indirect. 1505 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1506 return getIndirectReturnResult(RetTy, State); 1507 1508 // Ignore empty structs/unions. 1509 if (isEmptyRecord(getContext(), RetTy, true)) 1510 return ABIArgInfo::getIgnore(); 1511 1512 // Small structures which are register sized are generally returned 1513 // in a register. 1514 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1515 uint64_t Size = getContext().getTypeSize(RetTy); 1516 1517 // As a special-case, if the struct is a "single-element" struct, and 1518 // the field is of type "float" or "double", return it in a 1519 // floating-point register. (MSVC does not apply this special case.) 1520 // We apply a similar transformation for pointer types to improve the 1521 // quality of the generated IR. 1522 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1523 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1524 || SeltTy->hasPointerRepresentation()) 1525 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1526 1527 // FIXME: We should be able to narrow this integer in cases with dead 1528 // padding. 1529 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1530 } 1531 1532 return getIndirectReturnResult(RetTy, State); 1533 } 1534 1535 // Treat an enum type as its underlying type. 1536 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1537 RetTy = EnumTy->getDecl()->getIntegerType(); 1538 1539 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1540 if (EIT->getNumBits() > 64) 1541 return getIndirectReturnResult(RetTy, State); 1542 1543 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1544 : ABIArgInfo::getDirect()); 1545 } 1546 1547 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1548 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1549 } 1550 1551 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1552 const RecordType *RT = Ty->getAs<RecordType>(); 1553 if (!RT) 1554 return 0; 1555 const RecordDecl *RD = RT->getDecl(); 1556 1557 // If this is a C++ record, check the bases first. 1558 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1559 for (const auto &I : CXXRD->bases()) 1560 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1561 return false; 1562 1563 for (const auto *i : RD->fields()) { 1564 QualType FT = i->getType(); 1565 1566 if (isSIMDVectorType(Context, FT)) 1567 return true; 1568 1569 if (isRecordWithSIMDVectorType(Context, FT)) 1570 return true; 1571 } 1572 1573 return false; 1574 } 1575 1576 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1577 unsigned Align) const { 1578 // Otherwise, if the alignment is less than or equal to the minimum ABI 1579 // alignment, just use the default; the backend will handle this. 1580 if (Align <= MinABIStackAlignInBytes) 1581 return 0; // Use default alignment. 1582 1583 // On non-Darwin, the stack type alignment is always 4. 1584 if (!IsDarwinVectorABI) { 1585 // Set explicit alignment, since we may need to realign the top. 1586 return MinABIStackAlignInBytes; 1587 } 1588 1589 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1590 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1591 isRecordWithSIMDVectorType(getContext(), Ty))) 1592 return 16; 1593 1594 return MinABIStackAlignInBytes; 1595 } 1596 1597 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1598 CCState &State) const { 1599 if (!ByVal) { 1600 if (State.FreeRegs) { 1601 --State.FreeRegs; // Non-byval indirects just use one pointer. 1602 if (!IsMCUABI) 1603 return getNaturalAlignIndirectInReg(Ty); 1604 } 1605 return getNaturalAlignIndirect(Ty, false); 1606 } 1607 1608 // Compute the byval alignment. 1609 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1610 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1611 if (StackAlign == 0) 1612 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1613 1614 // If the stack alignment is less than the type alignment, realign the 1615 // argument. 1616 bool Realign = TypeAlign > StackAlign; 1617 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1618 /*ByVal=*/true, Realign); 1619 } 1620 1621 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1622 const Type *T = isSingleElementStruct(Ty, getContext()); 1623 if (!T) 1624 T = Ty.getTypePtr(); 1625 1626 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1627 BuiltinType::Kind K = BT->getKind(); 1628 if (K == BuiltinType::Float || K == BuiltinType::Double) 1629 return Float; 1630 } 1631 return Integer; 1632 } 1633 1634 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1635 if (!IsSoftFloatABI) { 1636 Class C = classify(Ty); 1637 if (C == Float) 1638 return false; 1639 } 1640 1641 unsigned Size = getContext().getTypeSize(Ty); 1642 unsigned SizeInRegs = (Size + 31) / 32; 1643 1644 if (SizeInRegs == 0) 1645 return false; 1646 1647 if (!IsMCUABI) { 1648 if (SizeInRegs > State.FreeRegs) { 1649 State.FreeRegs = 0; 1650 return false; 1651 } 1652 } else { 1653 // The MCU psABI allows passing parameters in-reg even if there are 1654 // earlier parameters that are passed on the stack. Also, 1655 // it does not allow passing >8-byte structs in-register, 1656 // even if there are 3 free registers available. 1657 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1658 return false; 1659 } 1660 1661 State.FreeRegs -= SizeInRegs; 1662 return true; 1663 } 1664 1665 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1666 bool &InReg, 1667 bool &NeedsPadding) const { 1668 // On Windows, aggregates other than HFAs are never passed in registers, and 1669 // they do not consume register slots. Homogenous floating-point aggregates 1670 // (HFAs) have already been dealt with at this point. 1671 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1672 return false; 1673 1674 NeedsPadding = false; 1675 InReg = !IsMCUABI; 1676 1677 if (!updateFreeRegs(Ty, State)) 1678 return false; 1679 1680 if (IsMCUABI) 1681 return true; 1682 1683 if (State.CC == llvm::CallingConv::X86_FastCall || 1684 State.CC == llvm::CallingConv::X86_VectorCall || 1685 State.CC == llvm::CallingConv::X86_RegCall) { 1686 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1687 NeedsPadding = true; 1688 1689 return false; 1690 } 1691 1692 return true; 1693 } 1694 1695 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1696 if (!updateFreeRegs(Ty, State)) 1697 return false; 1698 1699 if (IsMCUABI) 1700 return false; 1701 1702 if (State.CC == llvm::CallingConv::X86_FastCall || 1703 State.CC == llvm::CallingConv::X86_VectorCall || 1704 State.CC == llvm::CallingConv::X86_RegCall) { 1705 if (getContext().getTypeSize(Ty) > 32) 1706 return false; 1707 1708 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1709 Ty->isReferenceType()); 1710 } 1711 1712 return true; 1713 } 1714 1715 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1716 // Vectorcall x86 works subtly different than in x64, so the format is 1717 // a bit different than the x64 version. First, all vector types (not HVAs) 1718 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1719 // This differs from the x64 implementation, where the first 6 by INDEX get 1720 // registers. 1721 // In the second pass over the arguments, HVAs are passed in the remaining 1722 // vector registers if possible, or indirectly by address. The address will be 1723 // passed in ECX/EDX if available. Any other arguments are passed according to 1724 // the usual fastcall rules. 1725 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1726 for (int I = 0, E = Args.size(); I < E; ++I) { 1727 const Type *Base = nullptr; 1728 uint64_t NumElts = 0; 1729 const QualType &Ty = Args[I].type; 1730 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1731 isHomogeneousAggregate(Ty, Base, NumElts)) { 1732 if (State.FreeSSERegs >= NumElts) { 1733 State.FreeSSERegs -= NumElts; 1734 Args[I].info = ABIArgInfo::getDirectInReg(); 1735 State.IsPreassigned.set(I); 1736 } 1737 } 1738 } 1739 } 1740 1741 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1742 CCState &State) const { 1743 // FIXME: Set alignment on indirect arguments. 1744 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1745 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1746 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1747 1748 Ty = useFirstFieldIfTransparentUnion(Ty); 1749 TypeInfo TI = getContext().getTypeInfo(Ty); 1750 1751 // Check with the C++ ABI first. 1752 const RecordType *RT = Ty->getAs<RecordType>(); 1753 if (RT) { 1754 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1755 if (RAA == CGCXXABI::RAA_Indirect) { 1756 return getIndirectResult(Ty, false, State); 1757 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1758 // The field index doesn't matter, we'll fix it up later. 1759 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1760 } 1761 } 1762 1763 // Regcall uses the concept of a homogenous vector aggregate, similar 1764 // to other targets. 1765 const Type *Base = nullptr; 1766 uint64_t NumElts = 0; 1767 if ((IsRegCall || IsVectorCall) && 1768 isHomogeneousAggregate(Ty, Base, NumElts)) { 1769 if (State.FreeSSERegs >= NumElts) { 1770 State.FreeSSERegs -= NumElts; 1771 1772 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1773 // does. 1774 if (IsVectorCall) 1775 return getDirectX86Hva(); 1776 1777 if (Ty->isBuiltinType() || Ty->isVectorType()) 1778 return ABIArgInfo::getDirect(); 1779 return ABIArgInfo::getExpand(); 1780 } 1781 return getIndirectResult(Ty, /*ByVal=*/false, State); 1782 } 1783 1784 if (isAggregateTypeForABI(Ty)) { 1785 // Structures with flexible arrays are always indirect. 1786 // FIXME: This should not be byval! 1787 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1788 return getIndirectResult(Ty, true, State); 1789 1790 // Ignore empty structs/unions on non-Windows. 1791 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1792 return ABIArgInfo::getIgnore(); 1793 1794 llvm::LLVMContext &LLVMContext = getVMContext(); 1795 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1796 bool NeedsPadding = false; 1797 bool InReg; 1798 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1799 unsigned SizeInRegs = (TI.Width + 31) / 32; 1800 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1801 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1802 if (InReg) 1803 return ABIArgInfo::getDirectInReg(Result); 1804 else 1805 return ABIArgInfo::getDirect(Result); 1806 } 1807 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1808 1809 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1810 // added in MSVC 2015. 1811 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1812 return getIndirectResult(Ty, /*ByVal=*/false, State); 1813 1814 // Expand small (<= 128-bit) record types when we know that the stack layout 1815 // of those arguments will match the struct. This is important because the 1816 // LLVM backend isn't smart enough to remove byval, which inhibits many 1817 // optimizations. 1818 // Don't do this for the MCU if there are still free integer registers 1819 // (see X86_64 ABI for full explanation). 1820 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1821 canExpandIndirectArgument(Ty)) 1822 return ABIArgInfo::getExpandWithPadding( 1823 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1824 1825 return getIndirectResult(Ty, true, State); 1826 } 1827 1828 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1829 // On Windows, vectors are passed directly if registers are available, or 1830 // indirectly if not. This avoids the need to align argument memory. Pass 1831 // user-defined vector types larger than 512 bits indirectly for simplicity. 1832 if (IsWin32StructABI) { 1833 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1834 --State.FreeSSERegs; 1835 return ABIArgInfo::getDirectInReg(); 1836 } 1837 return getIndirectResult(Ty, /*ByVal=*/false, State); 1838 } 1839 1840 // On Darwin, some vectors are passed in memory, we handle this by passing 1841 // it as an i8/i16/i32/i64. 1842 if (IsDarwinVectorABI) { 1843 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1844 (TI.Width == 64 && VT->getNumElements() == 1)) 1845 return ABIArgInfo::getDirect( 1846 llvm::IntegerType::get(getVMContext(), TI.Width)); 1847 } 1848 1849 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1850 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1851 1852 return ABIArgInfo::getDirect(); 1853 } 1854 1855 1856 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1857 Ty = EnumTy->getDecl()->getIntegerType(); 1858 1859 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1860 1861 if (isPromotableIntegerTypeForABI(Ty)) { 1862 if (InReg) 1863 return ABIArgInfo::getExtendInReg(Ty); 1864 return ABIArgInfo::getExtend(Ty); 1865 } 1866 1867 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1868 if (EIT->getNumBits() <= 64) { 1869 if (InReg) 1870 return ABIArgInfo::getDirectInReg(); 1871 return ABIArgInfo::getDirect(); 1872 } 1873 return getIndirectResult(Ty, /*ByVal=*/false, State); 1874 } 1875 1876 if (InReg) 1877 return ABIArgInfo::getDirectInReg(); 1878 return ABIArgInfo::getDirect(); 1879 } 1880 1881 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1882 CCState State(FI); 1883 if (IsMCUABI) 1884 State.FreeRegs = 3; 1885 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1886 State.FreeRegs = 2; 1887 State.FreeSSERegs = 3; 1888 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1889 State.FreeRegs = 2; 1890 State.FreeSSERegs = 6; 1891 } else if (FI.getHasRegParm()) 1892 State.FreeRegs = FI.getRegParm(); 1893 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1894 State.FreeRegs = 5; 1895 State.FreeSSERegs = 8; 1896 } else if (IsWin32StructABI) { 1897 // Since MSVC 2015, the first three SSE vectors have been passed in 1898 // registers. The rest are passed indirectly. 1899 State.FreeRegs = DefaultNumRegisterParameters; 1900 State.FreeSSERegs = 3; 1901 } else 1902 State.FreeRegs = DefaultNumRegisterParameters; 1903 1904 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1905 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1906 } else if (FI.getReturnInfo().isIndirect()) { 1907 // The C++ ABI is not aware of register usage, so we have to check if the 1908 // return value was sret and put it in a register ourselves if appropriate. 1909 if (State.FreeRegs) { 1910 --State.FreeRegs; // The sret parameter consumes a register. 1911 if (!IsMCUABI) 1912 FI.getReturnInfo().setInReg(true); 1913 } 1914 } 1915 1916 // The chain argument effectively gives us another free register. 1917 if (FI.isChainCall()) 1918 ++State.FreeRegs; 1919 1920 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1921 // arguments to XMM registers as available. 1922 if (State.CC == llvm::CallingConv::X86_VectorCall) 1923 runVectorCallFirstPass(FI, State); 1924 1925 bool UsedInAlloca = false; 1926 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1927 for (int I = 0, E = Args.size(); I < E; ++I) { 1928 // Skip arguments that have already been assigned. 1929 if (State.IsPreassigned.test(I)) 1930 continue; 1931 1932 Args[I].info = classifyArgumentType(Args[I].type, State); 1933 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1934 } 1935 1936 // If we needed to use inalloca for any argument, do a second pass and rewrite 1937 // all the memory arguments to use inalloca. 1938 if (UsedInAlloca) 1939 rewriteWithInAlloca(FI); 1940 } 1941 1942 void 1943 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1944 CharUnits &StackOffset, ABIArgInfo &Info, 1945 QualType Type) const { 1946 // Arguments are always 4-byte-aligned. 1947 CharUnits WordSize = CharUnits::fromQuantity(4); 1948 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1949 1950 // sret pointers and indirect things will require an extra pointer 1951 // indirection, unless they are byval. Most things are byval, and will not 1952 // require this indirection. 1953 bool IsIndirect = false; 1954 if (Info.isIndirect() && !Info.getIndirectByVal()) 1955 IsIndirect = true; 1956 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1957 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1958 if (IsIndirect) 1959 LLTy = LLTy->getPointerTo(0); 1960 FrameFields.push_back(LLTy); 1961 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1962 1963 // Insert padding bytes to respect alignment. 1964 CharUnits FieldEnd = StackOffset; 1965 StackOffset = FieldEnd.alignTo(WordSize); 1966 if (StackOffset != FieldEnd) { 1967 CharUnits NumBytes = StackOffset - FieldEnd; 1968 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1969 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1970 FrameFields.push_back(Ty); 1971 } 1972 } 1973 1974 static bool isArgInAlloca(const ABIArgInfo &Info) { 1975 // Leave ignored and inreg arguments alone. 1976 switch (Info.getKind()) { 1977 case ABIArgInfo::InAlloca: 1978 return true; 1979 case ABIArgInfo::Ignore: 1980 return false; 1981 case ABIArgInfo::Indirect: 1982 case ABIArgInfo::Direct: 1983 case ABIArgInfo::Extend: 1984 return !Info.getInReg(); 1985 case ABIArgInfo::Expand: 1986 case ABIArgInfo::CoerceAndExpand: 1987 // These are aggregate types which are never passed in registers when 1988 // inalloca is involved. 1989 return true; 1990 } 1991 llvm_unreachable("invalid enum"); 1992 } 1993 1994 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1995 assert(IsWin32StructABI && "inalloca only supported on win32"); 1996 1997 // Build a packed struct type for all of the arguments in memory. 1998 SmallVector<llvm::Type *, 6> FrameFields; 1999 2000 // The stack alignment is always 4. 2001 CharUnits StackAlign = CharUnits::fromQuantity(4); 2002 2003 CharUnits StackOffset; 2004 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2005 2006 // Put 'this' into the struct before 'sret', if necessary. 2007 bool IsThisCall = 2008 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2009 ABIArgInfo &Ret = FI.getReturnInfo(); 2010 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2011 isArgInAlloca(I->info)) { 2012 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2013 ++I; 2014 } 2015 2016 // Put the sret parameter into the inalloca struct if it's in memory. 2017 if (Ret.isIndirect() && !Ret.getInReg()) { 2018 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2019 // On Windows, the hidden sret parameter is always returned in eax. 2020 Ret.setInAllocaSRet(IsWin32StructABI); 2021 } 2022 2023 // Skip the 'this' parameter in ecx. 2024 if (IsThisCall) 2025 ++I; 2026 2027 // Put arguments passed in memory into the struct. 2028 for (; I != E; ++I) { 2029 if (isArgInAlloca(I->info)) 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 } 2032 2033 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2034 /*isPacked=*/true), 2035 StackAlign); 2036 } 2037 2038 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2039 Address VAListAddr, QualType Ty) const { 2040 2041 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2042 2043 // x86-32 changes the alignment of certain arguments on the stack. 2044 // 2045 // Just messing with TypeInfo like this works because we never pass 2046 // anything indirectly. 2047 TypeInfo.second = CharUnits::fromQuantity( 2048 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 2049 2050 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2051 TypeInfo, CharUnits::fromQuantity(4), 2052 /*AllowHigherAlign*/ true); 2053 } 2054 2055 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2056 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2057 assert(Triple.getArch() == llvm::Triple::x86); 2058 2059 switch (Opts.getStructReturnConvention()) { 2060 case CodeGenOptions::SRCK_Default: 2061 break; 2062 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2063 return false; 2064 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2065 return true; 2066 } 2067 2068 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2069 return true; 2070 2071 switch (Triple.getOS()) { 2072 case llvm::Triple::DragonFly: 2073 case llvm::Triple::FreeBSD: 2074 case llvm::Triple::OpenBSD: 2075 case llvm::Triple::Win32: 2076 return true; 2077 default: 2078 return false; 2079 } 2080 } 2081 2082 void X86_32TargetCodeGenInfo::setTargetAttributes( 2083 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2084 if (GV->isDeclaration()) 2085 return; 2086 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2087 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2088 llvm::Function *Fn = cast<llvm::Function>(GV); 2089 Fn->addFnAttr("stackrealign"); 2090 } 2091 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2092 llvm::Function *Fn = cast<llvm::Function>(GV); 2093 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2094 } 2095 } 2096 } 2097 2098 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2099 CodeGen::CodeGenFunction &CGF, 2100 llvm::Value *Address) const { 2101 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2102 2103 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2104 2105 // 0-7 are the eight integer registers; the order is different 2106 // on Darwin (for EH), but the range is the same. 2107 // 8 is %eip. 2108 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2109 2110 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2111 // 12-16 are st(0..4). Not sure why we stop at 4. 2112 // These have size 16, which is sizeof(long double) on 2113 // platforms with 8-byte alignment for that type. 2114 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2115 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2116 2117 } else { 2118 // 9 is %eflags, which doesn't get a size on Darwin for some 2119 // reason. 2120 Builder.CreateAlignedStore( 2121 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2122 CharUnits::One()); 2123 2124 // 11-16 are st(0..5). Not sure why we stop at 5. 2125 // These have size 12, which is sizeof(long double) on 2126 // platforms with 4-byte alignment for that type. 2127 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2128 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2129 } 2130 2131 return false; 2132 } 2133 2134 //===----------------------------------------------------------------------===// 2135 // X86-64 ABI Implementation 2136 //===----------------------------------------------------------------------===// 2137 2138 2139 namespace { 2140 /// The AVX ABI level for X86 targets. 2141 enum class X86AVXABILevel { 2142 None, 2143 AVX, 2144 AVX512 2145 }; 2146 2147 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2148 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2149 switch (AVXLevel) { 2150 case X86AVXABILevel::AVX512: 2151 return 512; 2152 case X86AVXABILevel::AVX: 2153 return 256; 2154 case X86AVXABILevel::None: 2155 return 128; 2156 } 2157 llvm_unreachable("Unknown AVXLevel"); 2158 } 2159 2160 /// X86_64ABIInfo - The X86_64 ABI information. 2161 class X86_64ABIInfo : public SwiftABIInfo { 2162 enum Class { 2163 Integer = 0, 2164 SSE, 2165 SSEUp, 2166 X87, 2167 X87Up, 2168 ComplexX87, 2169 NoClass, 2170 Memory 2171 }; 2172 2173 /// merge - Implement the X86_64 ABI merging algorithm. 2174 /// 2175 /// Merge an accumulating classification \arg Accum with a field 2176 /// classification \arg Field. 2177 /// 2178 /// \param Accum - The accumulating classification. This should 2179 /// always be either NoClass or the result of a previous merge 2180 /// call. In addition, this should never be Memory (the caller 2181 /// should just return Memory for the aggregate). 2182 static Class merge(Class Accum, Class Field); 2183 2184 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2185 /// 2186 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2187 /// final MEMORY or SSE classes when necessary. 2188 /// 2189 /// \param AggregateSize - The size of the current aggregate in 2190 /// the classification process. 2191 /// 2192 /// \param Lo - The classification for the parts of the type 2193 /// residing in the low word of the containing object. 2194 /// 2195 /// \param Hi - The classification for the parts of the type 2196 /// residing in the higher words of the containing object. 2197 /// 2198 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2199 2200 /// classify - Determine the x86_64 register classes in which the 2201 /// given type T should be passed. 2202 /// 2203 /// \param Lo - The classification for the parts of the type 2204 /// residing in the low word of the containing object. 2205 /// 2206 /// \param Hi - The classification for the parts of the type 2207 /// residing in the high word of the containing object. 2208 /// 2209 /// \param OffsetBase - The bit offset of this type in the 2210 /// containing object. Some parameters are classified different 2211 /// depending on whether they straddle an eightbyte boundary. 2212 /// 2213 /// \param isNamedArg - Whether the argument in question is a "named" 2214 /// argument, as used in AMD64-ABI 3.5.7. 2215 /// 2216 /// If a word is unused its result will be NoClass; if a type should 2217 /// be passed in Memory then at least the classification of \arg Lo 2218 /// will be Memory. 2219 /// 2220 /// The \arg Lo class will be NoClass iff the argument is ignored. 2221 /// 2222 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2223 /// also be ComplexX87. 2224 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2225 bool isNamedArg) const; 2226 2227 llvm::Type *GetByteVectorType(QualType Ty) const; 2228 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2229 unsigned IROffset, QualType SourceTy, 2230 unsigned SourceOffset) const; 2231 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2232 unsigned IROffset, QualType SourceTy, 2233 unsigned SourceOffset) const; 2234 2235 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2236 /// such that the argument will be returned in memory. 2237 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2238 2239 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2240 /// such that the argument will be passed in memory. 2241 /// 2242 /// \param freeIntRegs - The number of free integer registers remaining 2243 /// available. 2244 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2245 2246 ABIArgInfo classifyReturnType(QualType RetTy) const; 2247 2248 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2249 unsigned &neededInt, unsigned &neededSSE, 2250 bool isNamedArg) const; 2251 2252 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2253 unsigned &NeededSSE) const; 2254 2255 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2256 unsigned &NeededSSE) const; 2257 2258 bool IsIllegalVectorType(QualType Ty) const; 2259 2260 /// The 0.98 ABI revision clarified a lot of ambiguities, 2261 /// unfortunately in ways that were not always consistent with 2262 /// certain previous compilers. In particular, platforms which 2263 /// required strict binary compatibility with older versions of GCC 2264 /// may need to exempt themselves. 2265 bool honorsRevision0_98() const { 2266 return !getTarget().getTriple().isOSDarwin(); 2267 } 2268 2269 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2270 /// classify it as INTEGER (for compatibility with older clang compilers). 2271 bool classifyIntegerMMXAsSSE() const { 2272 // Clang <= 3.8 did not do this. 2273 if (getContext().getLangOpts().getClangABICompat() <= 2274 LangOptions::ClangABI::Ver3_8) 2275 return false; 2276 2277 const llvm::Triple &Triple = getTarget().getTriple(); 2278 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2279 return false; 2280 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2281 return false; 2282 return true; 2283 } 2284 2285 // GCC classifies vectors of __int128 as memory. 2286 bool passInt128VectorsInMem() const { 2287 // Clang <= 9.0 did not do this. 2288 if (getContext().getLangOpts().getClangABICompat() <= 2289 LangOptions::ClangABI::Ver9) 2290 return false; 2291 2292 const llvm::Triple &T = getTarget().getTriple(); 2293 return T.isOSLinux() || T.isOSNetBSD(); 2294 } 2295 2296 X86AVXABILevel AVXLevel; 2297 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2298 // 64-bit hardware. 2299 bool Has64BitPointers; 2300 2301 public: 2302 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2303 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2304 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2305 } 2306 2307 bool isPassedUsingAVXType(QualType type) const { 2308 unsigned neededInt, neededSSE; 2309 // The freeIntRegs argument doesn't matter here. 2310 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2311 /*isNamedArg*/true); 2312 if (info.isDirect()) { 2313 llvm::Type *ty = info.getCoerceToType(); 2314 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2315 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2316 } 2317 return false; 2318 } 2319 2320 void computeInfo(CGFunctionInfo &FI) const override; 2321 2322 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2323 QualType Ty) const override; 2324 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2325 QualType Ty) const override; 2326 2327 bool has64BitPointers() const { 2328 return Has64BitPointers; 2329 } 2330 2331 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2332 bool asReturnValue) const override { 2333 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2334 } 2335 bool isSwiftErrorInRegister() const override { 2336 return true; 2337 } 2338 }; 2339 2340 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2341 class WinX86_64ABIInfo : public SwiftABIInfo { 2342 public: 2343 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2344 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2345 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2346 2347 void computeInfo(CGFunctionInfo &FI) const override; 2348 2349 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2350 QualType Ty) const override; 2351 2352 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2353 // FIXME: Assumes vectorcall is in use. 2354 return isX86VectorTypeForVectorCall(getContext(), Ty); 2355 } 2356 2357 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2358 uint64_t NumMembers) const override { 2359 // FIXME: Assumes vectorcall is in use. 2360 return isX86VectorCallAggregateSmallEnough(NumMembers); 2361 } 2362 2363 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2364 bool asReturnValue) const override { 2365 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2366 } 2367 2368 bool isSwiftErrorInRegister() const override { 2369 return true; 2370 } 2371 2372 private: 2373 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2374 bool IsVectorCall, bool IsRegCall) const; 2375 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2376 const ABIArgInfo ¤t) const; 2377 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2378 bool IsVectorCall, bool IsRegCall) const; 2379 2380 X86AVXABILevel AVXLevel; 2381 2382 bool IsMingw64; 2383 }; 2384 2385 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2386 public: 2387 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2388 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2389 2390 const X86_64ABIInfo &getABIInfo() const { 2391 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2392 } 2393 2394 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2395 /// the autoreleaseRV/retainRV optimization. 2396 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2397 return true; 2398 } 2399 2400 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2401 return 7; 2402 } 2403 2404 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2405 llvm::Value *Address) const override { 2406 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2407 2408 // 0-15 are the 16 integer registers. 2409 // 16 is %rip. 2410 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2411 return false; 2412 } 2413 2414 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2415 StringRef Constraint, 2416 llvm::Type* Ty) const override { 2417 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2418 } 2419 2420 bool isNoProtoCallVariadic(const CallArgList &args, 2421 const FunctionNoProtoType *fnType) const override { 2422 // The default CC on x86-64 sets %al to the number of SSA 2423 // registers used, and GCC sets this when calling an unprototyped 2424 // function, so we override the default behavior. However, don't do 2425 // that when AVX types are involved: the ABI explicitly states it is 2426 // undefined, and it doesn't work in practice because of how the ABI 2427 // defines varargs anyway. 2428 if (fnType->getCallConv() == CC_C) { 2429 bool HasAVXType = false; 2430 for (CallArgList::const_iterator 2431 it = args.begin(), ie = args.end(); it != ie; ++it) { 2432 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2433 HasAVXType = true; 2434 break; 2435 } 2436 } 2437 2438 if (!HasAVXType) 2439 return true; 2440 } 2441 2442 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2443 } 2444 2445 llvm::Constant * 2446 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2447 unsigned Sig = (0xeb << 0) | // jmp rel8 2448 (0x06 << 8) | // .+0x08 2449 ('v' << 16) | 2450 ('2' << 24); 2451 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2452 } 2453 2454 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2455 CodeGen::CodeGenModule &CGM) const override { 2456 if (GV->isDeclaration()) 2457 return; 2458 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2459 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2460 llvm::Function *Fn = cast<llvm::Function>(GV); 2461 Fn->addFnAttr("stackrealign"); 2462 } 2463 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2464 llvm::Function *Fn = cast<llvm::Function>(GV); 2465 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2466 } 2467 } 2468 } 2469 }; 2470 2471 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2472 // If the argument does not end in .lib, automatically add the suffix. 2473 // If the argument contains a space, enclose it in quotes. 2474 // This matches the behavior of MSVC. 2475 bool Quote = (Lib.find(" ") != StringRef::npos); 2476 std::string ArgStr = Quote ? "\"" : ""; 2477 ArgStr += Lib; 2478 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2479 ArgStr += ".lib"; 2480 ArgStr += Quote ? "\"" : ""; 2481 return ArgStr; 2482 } 2483 2484 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2485 public: 2486 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2487 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2488 unsigned NumRegisterParameters) 2489 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2490 Win32StructABI, NumRegisterParameters, false) {} 2491 2492 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2493 CodeGen::CodeGenModule &CGM) const override; 2494 2495 void getDependentLibraryOption(llvm::StringRef Lib, 2496 llvm::SmallString<24> &Opt) const override { 2497 Opt = "/DEFAULTLIB:"; 2498 Opt += qualifyWindowsLibrary(Lib); 2499 } 2500 2501 void getDetectMismatchOption(llvm::StringRef Name, 2502 llvm::StringRef Value, 2503 llvm::SmallString<32> &Opt) const override { 2504 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2505 } 2506 }; 2507 2508 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2509 CodeGen::CodeGenModule &CGM) { 2510 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2511 2512 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2513 Fn->addFnAttr("stack-probe-size", 2514 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2515 if (CGM.getCodeGenOpts().NoStackArgProbe) 2516 Fn->addFnAttr("no-stack-arg-probe"); 2517 } 2518 } 2519 2520 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2521 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2522 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2523 if (GV->isDeclaration()) 2524 return; 2525 addStackProbeTargetAttributes(D, GV, CGM); 2526 } 2527 2528 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2529 public: 2530 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2531 X86AVXABILevel AVXLevel) 2532 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2533 2534 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2535 CodeGen::CodeGenModule &CGM) const override; 2536 2537 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2538 return 7; 2539 } 2540 2541 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2542 llvm::Value *Address) const override { 2543 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2544 2545 // 0-15 are the 16 integer registers. 2546 // 16 is %rip. 2547 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2548 return false; 2549 } 2550 2551 void getDependentLibraryOption(llvm::StringRef Lib, 2552 llvm::SmallString<24> &Opt) const override { 2553 Opt = "/DEFAULTLIB:"; 2554 Opt += qualifyWindowsLibrary(Lib); 2555 } 2556 2557 void getDetectMismatchOption(llvm::StringRef Name, 2558 llvm::StringRef Value, 2559 llvm::SmallString<32> &Opt) const override { 2560 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2561 } 2562 }; 2563 2564 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2565 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2566 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2567 if (GV->isDeclaration()) 2568 return; 2569 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2570 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2571 llvm::Function *Fn = cast<llvm::Function>(GV); 2572 Fn->addFnAttr("stackrealign"); 2573 } 2574 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2575 llvm::Function *Fn = cast<llvm::Function>(GV); 2576 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2577 } 2578 } 2579 2580 addStackProbeTargetAttributes(D, GV, CGM); 2581 } 2582 } 2583 2584 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2585 Class &Hi) const { 2586 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2587 // 2588 // (a) If one of the classes is Memory, the whole argument is passed in 2589 // memory. 2590 // 2591 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2592 // memory. 2593 // 2594 // (c) If the size of the aggregate exceeds two eightbytes and the first 2595 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2596 // argument is passed in memory. NOTE: This is necessary to keep the 2597 // ABI working for processors that don't support the __m256 type. 2598 // 2599 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2600 // 2601 // Some of these are enforced by the merging logic. Others can arise 2602 // only with unions; for example: 2603 // union { _Complex double; unsigned; } 2604 // 2605 // Note that clauses (b) and (c) were added in 0.98. 2606 // 2607 if (Hi == Memory) 2608 Lo = Memory; 2609 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2610 Lo = Memory; 2611 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2612 Lo = Memory; 2613 if (Hi == SSEUp && Lo != SSE) 2614 Hi = SSE; 2615 } 2616 2617 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2618 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2619 // classified recursively so that always two fields are 2620 // considered. The resulting class is calculated according to 2621 // the classes of the fields in the eightbyte: 2622 // 2623 // (a) If both classes are equal, this is the resulting class. 2624 // 2625 // (b) If one of the classes is NO_CLASS, the resulting class is 2626 // the other class. 2627 // 2628 // (c) If one of the classes is MEMORY, the result is the MEMORY 2629 // class. 2630 // 2631 // (d) If one of the classes is INTEGER, the result is the 2632 // INTEGER. 2633 // 2634 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2635 // MEMORY is used as class. 2636 // 2637 // (f) Otherwise class SSE is used. 2638 2639 // Accum should never be memory (we should have returned) or 2640 // ComplexX87 (because this cannot be passed in a structure). 2641 assert((Accum != Memory && Accum != ComplexX87) && 2642 "Invalid accumulated classification during merge."); 2643 if (Accum == Field || Field == NoClass) 2644 return Accum; 2645 if (Field == Memory) 2646 return Memory; 2647 if (Accum == NoClass) 2648 return Field; 2649 if (Accum == Integer || Field == Integer) 2650 return Integer; 2651 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2652 Accum == X87 || Accum == X87Up) 2653 return Memory; 2654 return SSE; 2655 } 2656 2657 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2658 Class &Lo, Class &Hi, bool isNamedArg) const { 2659 // FIXME: This code can be simplified by introducing a simple value class for 2660 // Class pairs with appropriate constructor methods for the various 2661 // situations. 2662 2663 // FIXME: Some of the split computations are wrong; unaligned vectors 2664 // shouldn't be passed in registers for example, so there is no chance they 2665 // can straddle an eightbyte. Verify & simplify. 2666 2667 Lo = Hi = NoClass; 2668 2669 Class &Current = OffsetBase < 64 ? Lo : Hi; 2670 Current = Memory; 2671 2672 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2673 BuiltinType::Kind k = BT->getKind(); 2674 2675 if (k == BuiltinType::Void) { 2676 Current = NoClass; 2677 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2678 Lo = Integer; 2679 Hi = Integer; 2680 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2681 Current = Integer; 2682 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2683 Current = SSE; 2684 } else if (k == BuiltinType::LongDouble) { 2685 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2686 if (LDF == &llvm::APFloat::IEEEquad()) { 2687 Lo = SSE; 2688 Hi = SSEUp; 2689 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2690 Lo = X87; 2691 Hi = X87Up; 2692 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2693 Current = SSE; 2694 } else 2695 llvm_unreachable("unexpected long double representation!"); 2696 } 2697 // FIXME: _Decimal32 and _Decimal64 are SSE. 2698 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2699 return; 2700 } 2701 2702 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2703 // Classify the underlying integer type. 2704 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2705 return; 2706 } 2707 2708 if (Ty->hasPointerRepresentation()) { 2709 Current = Integer; 2710 return; 2711 } 2712 2713 if (Ty->isMemberPointerType()) { 2714 if (Ty->isMemberFunctionPointerType()) { 2715 if (Has64BitPointers) { 2716 // If Has64BitPointers, this is an {i64, i64}, so classify both 2717 // Lo and Hi now. 2718 Lo = Hi = Integer; 2719 } else { 2720 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2721 // straddles an eightbyte boundary, Hi should be classified as well. 2722 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2723 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2724 if (EB_FuncPtr != EB_ThisAdj) { 2725 Lo = Hi = Integer; 2726 } else { 2727 Current = Integer; 2728 } 2729 } 2730 } else { 2731 Current = Integer; 2732 } 2733 return; 2734 } 2735 2736 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2737 uint64_t Size = getContext().getTypeSize(VT); 2738 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2739 // gcc passes the following as integer: 2740 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2741 // 2 bytes - <2 x char>, <1 x short> 2742 // 1 byte - <1 x char> 2743 Current = Integer; 2744 2745 // If this type crosses an eightbyte boundary, it should be 2746 // split. 2747 uint64_t EB_Lo = (OffsetBase) / 64; 2748 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2749 if (EB_Lo != EB_Hi) 2750 Hi = Lo; 2751 } else if (Size == 64) { 2752 QualType ElementType = VT->getElementType(); 2753 2754 // gcc passes <1 x double> in memory. :( 2755 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2756 return; 2757 2758 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2759 // pass them as integer. For platforms where clang is the de facto 2760 // platform compiler, we must continue to use integer. 2761 if (!classifyIntegerMMXAsSSE() && 2762 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2763 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2764 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2765 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2766 Current = Integer; 2767 else 2768 Current = SSE; 2769 2770 // If this type crosses an eightbyte boundary, it should be 2771 // split. 2772 if (OffsetBase && OffsetBase != 64) 2773 Hi = Lo; 2774 } else if (Size == 128 || 2775 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2776 QualType ElementType = VT->getElementType(); 2777 2778 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2779 if (passInt128VectorsInMem() && Size != 128 && 2780 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2781 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2782 return; 2783 2784 // Arguments of 256-bits are split into four eightbyte chunks. The 2785 // least significant one belongs to class SSE and all the others to class 2786 // SSEUP. The original Lo and Hi design considers that types can't be 2787 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2788 // This design isn't correct for 256-bits, but since there're no cases 2789 // where the upper parts would need to be inspected, avoid adding 2790 // complexity and just consider Hi to match the 64-256 part. 2791 // 2792 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2793 // registers if they are "named", i.e. not part of the "..." of a 2794 // variadic function. 2795 // 2796 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2797 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2798 Lo = SSE; 2799 Hi = SSEUp; 2800 } 2801 return; 2802 } 2803 2804 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2805 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2806 2807 uint64_t Size = getContext().getTypeSize(Ty); 2808 if (ET->isIntegralOrEnumerationType()) { 2809 if (Size <= 64) 2810 Current = Integer; 2811 else if (Size <= 128) 2812 Lo = Hi = Integer; 2813 } else if (ET == getContext().FloatTy) { 2814 Current = SSE; 2815 } else if (ET == getContext().DoubleTy) { 2816 Lo = Hi = SSE; 2817 } else if (ET == getContext().LongDoubleTy) { 2818 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2819 if (LDF == &llvm::APFloat::IEEEquad()) 2820 Current = Memory; 2821 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2822 Current = ComplexX87; 2823 else if (LDF == &llvm::APFloat::IEEEdouble()) 2824 Lo = Hi = SSE; 2825 else 2826 llvm_unreachable("unexpected long double representation!"); 2827 } 2828 2829 // If this complex type crosses an eightbyte boundary then it 2830 // should be split. 2831 uint64_t EB_Real = (OffsetBase) / 64; 2832 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2833 if (Hi == NoClass && EB_Real != EB_Imag) 2834 Hi = Lo; 2835 2836 return; 2837 } 2838 2839 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2840 if (EITy->getNumBits() <= 64) 2841 Current = Integer; 2842 else if (EITy->getNumBits() <= 128) 2843 Lo = Hi = Integer; 2844 // Larger values need to get passed in memory. 2845 return; 2846 } 2847 2848 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2849 // Arrays are treated like structures. 2850 2851 uint64_t Size = getContext().getTypeSize(Ty); 2852 2853 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2854 // than eight eightbytes, ..., it has class MEMORY. 2855 if (Size > 512) 2856 return; 2857 2858 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2859 // fields, it has class MEMORY. 2860 // 2861 // Only need to check alignment of array base. 2862 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2863 return; 2864 2865 // Otherwise implement simplified merge. We could be smarter about 2866 // this, but it isn't worth it and would be harder to verify. 2867 Current = NoClass; 2868 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2869 uint64_t ArraySize = AT->getSize().getZExtValue(); 2870 2871 // The only case a 256-bit wide vector could be used is when the array 2872 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2873 // to work for sizes wider than 128, early check and fallback to memory. 2874 // 2875 if (Size > 128 && 2876 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2877 return; 2878 2879 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2880 Class FieldLo, FieldHi; 2881 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2882 Lo = merge(Lo, FieldLo); 2883 Hi = merge(Hi, FieldHi); 2884 if (Lo == Memory || Hi == Memory) 2885 break; 2886 } 2887 2888 postMerge(Size, Lo, Hi); 2889 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2890 return; 2891 } 2892 2893 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2894 uint64_t Size = getContext().getTypeSize(Ty); 2895 2896 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2897 // than eight eightbytes, ..., it has class MEMORY. 2898 if (Size > 512) 2899 return; 2900 2901 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2902 // copy constructor or a non-trivial destructor, it is passed by invisible 2903 // reference. 2904 if (getRecordArgABI(RT, getCXXABI())) 2905 return; 2906 2907 const RecordDecl *RD = RT->getDecl(); 2908 2909 // Assume variable sized types are passed in memory. 2910 if (RD->hasFlexibleArrayMember()) 2911 return; 2912 2913 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2914 2915 // Reset Lo class, this will be recomputed. 2916 Current = NoClass; 2917 2918 // If this is a C++ record, classify the bases first. 2919 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2920 for (const auto &I : CXXRD->bases()) { 2921 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2922 "Unexpected base class!"); 2923 const auto *Base = 2924 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2925 2926 // Classify this field. 2927 // 2928 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2929 // single eightbyte, each is classified separately. Each eightbyte gets 2930 // initialized to class NO_CLASS. 2931 Class FieldLo, FieldHi; 2932 uint64_t Offset = 2933 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2934 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2935 Lo = merge(Lo, FieldLo); 2936 Hi = merge(Hi, FieldHi); 2937 if (Lo == Memory || Hi == Memory) { 2938 postMerge(Size, Lo, Hi); 2939 return; 2940 } 2941 } 2942 } 2943 2944 // Classify the fields one at a time, merging the results. 2945 unsigned idx = 0; 2946 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2947 i != e; ++i, ++idx) { 2948 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2949 bool BitField = i->isBitField(); 2950 2951 // Ignore padding bit-fields. 2952 if (BitField && i->isUnnamedBitfield()) 2953 continue; 2954 2955 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2956 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2957 // 2958 // The only case a 256-bit wide vector could be used is when the struct 2959 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2960 // to work for sizes wider than 128, early check and fallback to memory. 2961 // 2962 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2963 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2964 Lo = Memory; 2965 postMerge(Size, Lo, Hi); 2966 return; 2967 } 2968 // Note, skip this test for bit-fields, see below. 2969 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2970 Lo = Memory; 2971 postMerge(Size, Lo, Hi); 2972 return; 2973 } 2974 2975 // Classify this field. 2976 // 2977 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2978 // exceeds a single eightbyte, each is classified 2979 // separately. Each eightbyte gets initialized to class 2980 // NO_CLASS. 2981 Class FieldLo, FieldHi; 2982 2983 // Bit-fields require special handling, they do not force the 2984 // structure to be passed in memory even if unaligned, and 2985 // therefore they can straddle an eightbyte. 2986 if (BitField) { 2987 assert(!i->isUnnamedBitfield()); 2988 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2989 uint64_t Size = i->getBitWidthValue(getContext()); 2990 2991 uint64_t EB_Lo = Offset / 64; 2992 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2993 2994 if (EB_Lo) { 2995 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2996 FieldLo = NoClass; 2997 FieldHi = Integer; 2998 } else { 2999 FieldLo = Integer; 3000 FieldHi = EB_Hi ? Integer : NoClass; 3001 } 3002 } else 3003 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3004 Lo = merge(Lo, FieldLo); 3005 Hi = merge(Hi, FieldHi); 3006 if (Lo == Memory || Hi == Memory) 3007 break; 3008 } 3009 3010 postMerge(Size, Lo, Hi); 3011 } 3012 } 3013 3014 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3015 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3016 // place naturally. 3017 if (!isAggregateTypeForABI(Ty)) { 3018 // Treat an enum type as its underlying type. 3019 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3020 Ty = EnumTy->getDecl()->getIntegerType(); 3021 3022 if (Ty->isExtIntType()) 3023 return getNaturalAlignIndirect(Ty); 3024 3025 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3026 : ABIArgInfo::getDirect()); 3027 } 3028 3029 return getNaturalAlignIndirect(Ty); 3030 } 3031 3032 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3033 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3034 uint64_t Size = getContext().getTypeSize(VecTy); 3035 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3036 if (Size <= 64 || Size > LargestVector) 3037 return true; 3038 QualType EltTy = VecTy->getElementType(); 3039 if (passInt128VectorsInMem() && 3040 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3041 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3042 return true; 3043 } 3044 3045 return false; 3046 } 3047 3048 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3049 unsigned freeIntRegs) const { 3050 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3051 // place naturally. 3052 // 3053 // This assumption is optimistic, as there could be free registers available 3054 // when we need to pass this argument in memory, and LLVM could try to pass 3055 // the argument in the free register. This does not seem to happen currently, 3056 // but this code would be much safer if we could mark the argument with 3057 // 'onstack'. See PR12193. 3058 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3059 !Ty->isExtIntType()) { 3060 // Treat an enum type as its underlying type. 3061 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3062 Ty = EnumTy->getDecl()->getIntegerType(); 3063 3064 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3065 : ABIArgInfo::getDirect()); 3066 } 3067 3068 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3069 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3070 3071 // Compute the byval alignment. We specify the alignment of the byval in all 3072 // cases so that the mid-level optimizer knows the alignment of the byval. 3073 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3074 3075 // Attempt to avoid passing indirect results using byval when possible. This 3076 // is important for good codegen. 3077 // 3078 // We do this by coercing the value into a scalar type which the backend can 3079 // handle naturally (i.e., without using byval). 3080 // 3081 // For simplicity, we currently only do this when we have exhausted all of the 3082 // free integer registers. Doing this when there are free integer registers 3083 // would require more care, as we would have to ensure that the coerced value 3084 // did not claim the unused register. That would require either reording the 3085 // arguments to the function (so that any subsequent inreg values came first), 3086 // or only doing this optimization when there were no following arguments that 3087 // might be inreg. 3088 // 3089 // We currently expect it to be rare (particularly in well written code) for 3090 // arguments to be passed on the stack when there are still free integer 3091 // registers available (this would typically imply large structs being passed 3092 // by value), so this seems like a fair tradeoff for now. 3093 // 3094 // We can revisit this if the backend grows support for 'onstack' parameter 3095 // attributes. See PR12193. 3096 if (freeIntRegs == 0) { 3097 uint64_t Size = getContext().getTypeSize(Ty); 3098 3099 // If this type fits in an eightbyte, coerce it into the matching integral 3100 // type, which will end up on the stack (with alignment 8). 3101 if (Align == 8 && Size <= 64) 3102 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3103 Size)); 3104 } 3105 3106 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3107 } 3108 3109 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3110 /// register. Pick an LLVM IR type that will be passed as a vector register. 3111 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3112 // Wrapper structs/arrays that only contain vectors are passed just like 3113 // vectors; strip them off if present. 3114 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3115 Ty = QualType(InnerTy, 0); 3116 3117 llvm::Type *IRType = CGT.ConvertType(Ty); 3118 if (isa<llvm::VectorType>(IRType)) { 3119 // Don't pass vXi128 vectors in their native type, the backend can't 3120 // legalize them. 3121 if (passInt128VectorsInMem() && 3122 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3123 // Use a vXi64 vector. 3124 uint64_t Size = getContext().getTypeSize(Ty); 3125 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3126 Size / 64); 3127 } 3128 3129 return IRType; 3130 } 3131 3132 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3133 return IRType; 3134 3135 // We couldn't find the preferred IR vector type for 'Ty'. 3136 uint64_t Size = getContext().getTypeSize(Ty); 3137 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3138 3139 3140 // Return a LLVM IR vector type based on the size of 'Ty'. 3141 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3142 Size / 64); 3143 } 3144 3145 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3146 /// is known to either be off the end of the specified type or being in 3147 /// alignment padding. The user type specified is known to be at most 128 bits 3148 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3149 /// classification that put one of the two halves in the INTEGER class. 3150 /// 3151 /// It is conservatively correct to return false. 3152 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3153 unsigned EndBit, ASTContext &Context) { 3154 // If the bytes being queried are off the end of the type, there is no user 3155 // data hiding here. This handles analysis of builtins, vectors and other 3156 // types that don't contain interesting padding. 3157 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3158 if (TySize <= StartBit) 3159 return true; 3160 3161 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3162 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3163 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3164 3165 // Check each element to see if the element overlaps with the queried range. 3166 for (unsigned i = 0; i != NumElts; ++i) { 3167 // If the element is after the span we care about, then we're done.. 3168 unsigned EltOffset = i*EltSize; 3169 if (EltOffset >= EndBit) break; 3170 3171 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3172 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3173 EndBit-EltOffset, Context)) 3174 return false; 3175 } 3176 // If it overlaps no elements, then it is safe to process as padding. 3177 return true; 3178 } 3179 3180 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3181 const RecordDecl *RD = RT->getDecl(); 3182 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3183 3184 // If this is a C++ record, check the bases first. 3185 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3186 for (const auto &I : CXXRD->bases()) { 3187 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3188 "Unexpected base class!"); 3189 const auto *Base = 3190 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3191 3192 // If the base is after the span we care about, ignore it. 3193 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3194 if (BaseOffset >= EndBit) continue; 3195 3196 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3197 if (!BitsContainNoUserData(I.getType(), BaseStart, 3198 EndBit-BaseOffset, Context)) 3199 return false; 3200 } 3201 } 3202 3203 // Verify that no field has data that overlaps the region of interest. Yes 3204 // this could be sped up a lot by being smarter about queried fields, 3205 // however we're only looking at structs up to 16 bytes, so we don't care 3206 // much. 3207 unsigned idx = 0; 3208 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3209 i != e; ++i, ++idx) { 3210 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3211 3212 // If we found a field after the region we care about, then we're done. 3213 if (FieldOffset >= EndBit) break; 3214 3215 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3216 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3217 Context)) 3218 return false; 3219 } 3220 3221 // If nothing in this record overlapped the area of interest, then we're 3222 // clean. 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3230 /// float member at the specified offset. For example, {int,{float}} has a 3231 /// float at offset 4. It is conservatively correct for this routine to return 3232 /// false. 3233 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3234 const llvm::DataLayout &TD) { 3235 // Base case if we find a float. 3236 if (IROffset == 0 && IRType->isFloatTy()) 3237 return true; 3238 3239 // If this is a struct, recurse into the field at the specified offset. 3240 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3241 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3242 unsigned Elt = SL->getElementContainingOffset(IROffset); 3243 IROffset -= SL->getElementOffset(Elt); 3244 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3245 } 3246 3247 // If this is an array, recurse into the field at the specified offset. 3248 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3249 llvm::Type *EltTy = ATy->getElementType(); 3250 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3251 IROffset -= IROffset/EltSize*EltSize; 3252 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3253 } 3254 3255 return false; 3256 } 3257 3258 3259 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3260 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3261 llvm::Type *X86_64ABIInfo:: 3262 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3263 QualType SourceTy, unsigned SourceOffset) const { 3264 // The only three choices we have are either double, <2 x float>, or float. We 3265 // pass as float if the last 4 bytes is just padding. This happens for 3266 // structs that contain 3 floats. 3267 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3268 SourceOffset*8+64, getContext())) 3269 return llvm::Type::getFloatTy(getVMContext()); 3270 3271 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3272 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3273 // case. 3274 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3275 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3276 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3277 2); 3278 3279 return llvm::Type::getDoubleTy(getVMContext()); 3280 } 3281 3282 3283 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3284 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3285 /// about the high or low part of an up-to-16-byte struct. This routine picks 3286 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3287 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3288 /// etc). 3289 /// 3290 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3291 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3292 /// the 8-byte value references. PrefType may be null. 3293 /// 3294 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3295 /// an offset into this that we're processing (which is always either 0 or 8). 3296 /// 3297 llvm::Type *X86_64ABIInfo:: 3298 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3299 QualType SourceTy, unsigned SourceOffset) const { 3300 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3301 // returning an 8-byte unit starting with it. See if we can safely use it. 3302 if (IROffset == 0) { 3303 // Pointers and int64's always fill the 8-byte unit. 3304 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3305 IRType->isIntegerTy(64)) 3306 return IRType; 3307 3308 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3309 // goodness in the source type is just tail padding. This is allowed to 3310 // kick in for struct {double,int} on the int, but not on 3311 // struct{double,int,int} because we wouldn't return the second int. We 3312 // have to do this analysis on the source type because we can't depend on 3313 // unions being lowered a specific way etc. 3314 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3315 IRType->isIntegerTy(32) || 3316 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3317 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3318 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3319 3320 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3321 SourceOffset*8+64, getContext())) 3322 return IRType; 3323 } 3324 } 3325 3326 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3327 // If this is a struct, recurse into the field at the specified offset. 3328 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3329 if (IROffset < SL->getSizeInBytes()) { 3330 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3331 IROffset -= SL->getElementOffset(FieldIdx); 3332 3333 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3334 SourceTy, SourceOffset); 3335 } 3336 } 3337 3338 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3339 llvm::Type *EltTy = ATy->getElementType(); 3340 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3341 unsigned EltOffset = IROffset/EltSize*EltSize; 3342 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3343 SourceOffset); 3344 } 3345 3346 // Okay, we don't have any better idea of what to pass, so we pass this in an 3347 // integer register that isn't too big to fit the rest of the struct. 3348 unsigned TySizeInBytes = 3349 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3350 3351 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3352 3353 // It is always safe to classify this as an integer type up to i64 that 3354 // isn't larger than the structure. 3355 return llvm::IntegerType::get(getVMContext(), 3356 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3357 } 3358 3359 3360 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3361 /// be used as elements of a two register pair to pass or return, return a 3362 /// first class aggregate to represent them. For example, if the low part of 3363 /// a by-value argument should be passed as i32* and the high part as float, 3364 /// return {i32*, float}. 3365 static llvm::Type * 3366 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3367 const llvm::DataLayout &TD) { 3368 // In order to correctly satisfy the ABI, we need to the high part to start 3369 // at offset 8. If the high and low parts we inferred are both 4-byte types 3370 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3371 // the second element at offset 8. Check for this: 3372 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3373 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3374 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3375 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3376 3377 // To handle this, we have to increase the size of the low part so that the 3378 // second element will start at an 8 byte offset. We can't increase the size 3379 // of the second element because it might make us access off the end of the 3380 // struct. 3381 if (HiStart != 8) { 3382 // There are usually two sorts of types the ABI generation code can produce 3383 // for the low part of a pair that aren't 8 bytes in size: float or 3384 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3385 // NaCl). 3386 // Promote these to a larger type. 3387 if (Lo->isFloatTy()) 3388 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3389 else { 3390 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3391 && "Invalid/unknown lo type"); 3392 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3393 } 3394 } 3395 3396 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3397 3398 // Verify that the second element is at an 8-byte offset. 3399 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3400 "Invalid x86-64 argument pair!"); 3401 return Result; 3402 } 3403 3404 ABIArgInfo X86_64ABIInfo:: 3405 classifyReturnType(QualType RetTy) const { 3406 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3407 // classification algorithm. 3408 X86_64ABIInfo::Class Lo, Hi; 3409 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3410 3411 // Check some invariants. 3412 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3413 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3414 3415 llvm::Type *ResType = nullptr; 3416 switch (Lo) { 3417 case NoClass: 3418 if (Hi == NoClass) 3419 return ABIArgInfo::getIgnore(); 3420 // If the low part is just padding, it takes no register, leave ResType 3421 // null. 3422 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3423 "Unknown missing lo part"); 3424 break; 3425 3426 case SSEUp: 3427 case X87Up: 3428 llvm_unreachable("Invalid classification for lo word."); 3429 3430 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3431 // hidden argument. 3432 case Memory: 3433 return getIndirectReturnResult(RetTy); 3434 3435 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3436 // available register of the sequence %rax, %rdx is used. 3437 case Integer: 3438 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3439 3440 // If we have a sign or zero extended integer, make sure to return Extend 3441 // so that the parameter gets the right LLVM IR attributes. 3442 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3443 // Treat an enum type as its underlying type. 3444 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3445 RetTy = EnumTy->getDecl()->getIntegerType(); 3446 3447 if (RetTy->isIntegralOrEnumerationType() && 3448 isPromotableIntegerTypeForABI(RetTy)) 3449 return ABIArgInfo::getExtend(RetTy); 3450 } 3451 break; 3452 3453 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3454 // available SSE register of the sequence %xmm0, %xmm1 is used. 3455 case SSE: 3456 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3457 break; 3458 3459 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3460 // returned on the X87 stack in %st0 as 80-bit x87 number. 3461 case X87: 3462 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3463 break; 3464 3465 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3466 // part of the value is returned in %st0 and the imaginary part in 3467 // %st1. 3468 case ComplexX87: 3469 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3470 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3471 llvm::Type::getX86_FP80Ty(getVMContext())); 3472 break; 3473 } 3474 3475 llvm::Type *HighPart = nullptr; 3476 switch (Hi) { 3477 // Memory was handled previously and X87 should 3478 // never occur as a hi class. 3479 case Memory: 3480 case X87: 3481 llvm_unreachable("Invalid classification for hi word."); 3482 3483 case ComplexX87: // Previously handled. 3484 case NoClass: 3485 break; 3486 3487 case Integer: 3488 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3489 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3490 return ABIArgInfo::getDirect(HighPart, 8); 3491 break; 3492 case SSE: 3493 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3494 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3495 return ABIArgInfo::getDirect(HighPart, 8); 3496 break; 3497 3498 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3499 // is passed in the next available eightbyte chunk if the last used 3500 // vector register. 3501 // 3502 // SSEUP should always be preceded by SSE, just widen. 3503 case SSEUp: 3504 assert(Lo == SSE && "Unexpected SSEUp classification."); 3505 ResType = GetByteVectorType(RetTy); 3506 break; 3507 3508 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3509 // returned together with the previous X87 value in %st0. 3510 case X87Up: 3511 // If X87Up is preceded by X87, we don't need to do 3512 // anything. However, in some cases with unions it may not be 3513 // preceded by X87. In such situations we follow gcc and pass the 3514 // extra bits in an SSE reg. 3515 if (Lo != X87) { 3516 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3517 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3518 return ABIArgInfo::getDirect(HighPart, 8); 3519 } 3520 break; 3521 } 3522 3523 // If a high part was specified, merge it together with the low part. It is 3524 // known to pass in the high eightbyte of the result. We do this by forming a 3525 // first class struct aggregate with the high and low part: {low, high} 3526 if (HighPart) 3527 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3528 3529 return ABIArgInfo::getDirect(ResType); 3530 } 3531 3532 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3533 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3534 bool isNamedArg) 3535 const 3536 { 3537 Ty = useFirstFieldIfTransparentUnion(Ty); 3538 3539 X86_64ABIInfo::Class Lo, Hi; 3540 classify(Ty, 0, Lo, Hi, isNamedArg); 3541 3542 // Check some invariants. 3543 // FIXME: Enforce these by construction. 3544 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3545 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3546 3547 neededInt = 0; 3548 neededSSE = 0; 3549 llvm::Type *ResType = nullptr; 3550 switch (Lo) { 3551 case NoClass: 3552 if (Hi == NoClass) 3553 return ABIArgInfo::getIgnore(); 3554 // If the low part is just padding, it takes no register, leave ResType 3555 // null. 3556 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3557 "Unknown missing lo part"); 3558 break; 3559 3560 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3561 // on the stack. 3562 case Memory: 3563 3564 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3565 // COMPLEX_X87, it is passed in memory. 3566 case X87: 3567 case ComplexX87: 3568 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3569 ++neededInt; 3570 return getIndirectResult(Ty, freeIntRegs); 3571 3572 case SSEUp: 3573 case X87Up: 3574 llvm_unreachable("Invalid classification for lo word."); 3575 3576 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3577 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3578 // and %r9 is used. 3579 case Integer: 3580 ++neededInt; 3581 3582 // Pick an 8-byte type based on the preferred type. 3583 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3584 3585 // If we have a sign or zero extended integer, make sure to return Extend 3586 // so that the parameter gets the right LLVM IR attributes. 3587 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3588 // Treat an enum type as its underlying type. 3589 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3590 Ty = EnumTy->getDecl()->getIntegerType(); 3591 3592 if (Ty->isIntegralOrEnumerationType() && 3593 isPromotableIntegerTypeForABI(Ty)) 3594 return ABIArgInfo::getExtend(Ty); 3595 } 3596 3597 break; 3598 3599 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3600 // available SSE register is used, the registers are taken in the 3601 // order from %xmm0 to %xmm7. 3602 case SSE: { 3603 llvm::Type *IRType = CGT.ConvertType(Ty); 3604 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3605 ++neededSSE; 3606 break; 3607 } 3608 } 3609 3610 llvm::Type *HighPart = nullptr; 3611 switch (Hi) { 3612 // Memory was handled previously, ComplexX87 and X87 should 3613 // never occur as hi classes, and X87Up must be preceded by X87, 3614 // which is passed in memory. 3615 case Memory: 3616 case X87: 3617 case ComplexX87: 3618 llvm_unreachable("Invalid classification for hi word."); 3619 3620 case NoClass: break; 3621 3622 case Integer: 3623 ++neededInt; 3624 // Pick an 8-byte type based on the preferred type. 3625 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3626 3627 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3628 return ABIArgInfo::getDirect(HighPart, 8); 3629 break; 3630 3631 // X87Up generally doesn't occur here (long double is passed in 3632 // memory), except in situations involving unions. 3633 case X87Up: 3634 case SSE: 3635 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3636 3637 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3638 return ABIArgInfo::getDirect(HighPart, 8); 3639 3640 ++neededSSE; 3641 break; 3642 3643 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3644 // eightbyte is passed in the upper half of the last used SSE 3645 // register. This only happens when 128-bit vectors are passed. 3646 case SSEUp: 3647 assert(Lo == SSE && "Unexpected SSEUp classification"); 3648 ResType = GetByteVectorType(Ty); 3649 break; 3650 } 3651 3652 // If a high part was specified, merge it together with the low part. It is 3653 // known to pass in the high eightbyte of the result. We do this by forming a 3654 // first class struct aggregate with the high and low part: {low, high} 3655 if (HighPart) 3656 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3657 3658 return ABIArgInfo::getDirect(ResType); 3659 } 3660 3661 ABIArgInfo 3662 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3663 unsigned &NeededSSE) const { 3664 auto RT = Ty->getAs<RecordType>(); 3665 assert(RT && "classifyRegCallStructType only valid with struct types"); 3666 3667 if (RT->getDecl()->hasFlexibleArrayMember()) 3668 return getIndirectReturnResult(Ty); 3669 3670 // Sum up bases 3671 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3672 if (CXXRD->isDynamicClass()) { 3673 NeededInt = NeededSSE = 0; 3674 return getIndirectReturnResult(Ty); 3675 } 3676 3677 for (const auto &I : CXXRD->bases()) 3678 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3679 .isIndirect()) { 3680 NeededInt = NeededSSE = 0; 3681 return getIndirectReturnResult(Ty); 3682 } 3683 } 3684 3685 // Sum up members 3686 for (const auto *FD : RT->getDecl()->fields()) { 3687 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3688 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3689 .isIndirect()) { 3690 NeededInt = NeededSSE = 0; 3691 return getIndirectReturnResult(Ty); 3692 } 3693 } else { 3694 unsigned LocalNeededInt, LocalNeededSSE; 3695 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3696 LocalNeededSSE, true) 3697 .isIndirect()) { 3698 NeededInt = NeededSSE = 0; 3699 return getIndirectReturnResult(Ty); 3700 } 3701 NeededInt += LocalNeededInt; 3702 NeededSSE += LocalNeededSSE; 3703 } 3704 } 3705 3706 return ABIArgInfo::getDirect(); 3707 } 3708 3709 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3710 unsigned &NeededInt, 3711 unsigned &NeededSSE) const { 3712 3713 NeededInt = 0; 3714 NeededSSE = 0; 3715 3716 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3717 } 3718 3719 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3720 3721 const unsigned CallingConv = FI.getCallingConvention(); 3722 // It is possible to force Win64 calling convention on any x86_64 target by 3723 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3724 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3725 if (CallingConv == llvm::CallingConv::Win64) { 3726 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3727 Win64ABIInfo.computeInfo(FI); 3728 return; 3729 } 3730 3731 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3732 3733 // Keep track of the number of assigned registers. 3734 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3735 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3736 unsigned NeededInt, NeededSSE; 3737 3738 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3739 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3740 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3741 FI.getReturnInfo() = 3742 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3743 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3744 FreeIntRegs -= NeededInt; 3745 FreeSSERegs -= NeededSSE; 3746 } else { 3747 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3748 } 3749 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3750 getContext().getCanonicalType(FI.getReturnType() 3751 ->getAs<ComplexType>() 3752 ->getElementType()) == 3753 getContext().LongDoubleTy) 3754 // Complex Long Double Type is passed in Memory when Regcall 3755 // calling convention is used. 3756 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3757 else 3758 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3759 } 3760 3761 // If the return value is indirect, then the hidden argument is consuming one 3762 // integer register. 3763 if (FI.getReturnInfo().isIndirect()) 3764 --FreeIntRegs; 3765 3766 // The chain argument effectively gives us another free register. 3767 if (FI.isChainCall()) 3768 ++FreeIntRegs; 3769 3770 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3771 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3772 // get assigned (in left-to-right order) for passing as follows... 3773 unsigned ArgNo = 0; 3774 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3775 it != ie; ++it, ++ArgNo) { 3776 bool IsNamedArg = ArgNo < NumRequiredArgs; 3777 3778 if (IsRegCall && it->type->isStructureOrClassType()) 3779 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3780 else 3781 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3782 NeededSSE, IsNamedArg); 3783 3784 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3785 // eightbyte of an argument, the whole argument is passed on the 3786 // stack. If registers have already been assigned for some 3787 // eightbytes of such an argument, the assignments get reverted. 3788 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3789 FreeIntRegs -= NeededInt; 3790 FreeSSERegs -= NeededSSE; 3791 } else { 3792 it->info = getIndirectResult(it->type, FreeIntRegs); 3793 } 3794 } 3795 } 3796 3797 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3798 Address VAListAddr, QualType Ty) { 3799 Address overflow_arg_area_p = 3800 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3801 llvm::Value *overflow_arg_area = 3802 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3803 3804 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3805 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3806 // It isn't stated explicitly in the standard, but in practice we use 3807 // alignment greater than 16 where necessary. 3808 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3809 if (Align > CharUnits::fromQuantity(8)) { 3810 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3811 Align); 3812 } 3813 3814 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3815 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3816 llvm::Value *Res = 3817 CGF.Builder.CreateBitCast(overflow_arg_area, 3818 llvm::PointerType::getUnqual(LTy)); 3819 3820 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3821 // l->overflow_arg_area + sizeof(type). 3822 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3823 // an 8 byte boundary. 3824 3825 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3826 llvm::Value *Offset = 3827 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3828 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3829 "overflow_arg_area.next"); 3830 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3831 3832 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3833 return Address(Res, Align); 3834 } 3835 3836 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3837 QualType Ty) const { 3838 // Assume that va_list type is correct; should be pointer to LLVM type: 3839 // struct { 3840 // i32 gp_offset; 3841 // i32 fp_offset; 3842 // i8* overflow_arg_area; 3843 // i8* reg_save_area; 3844 // }; 3845 unsigned neededInt, neededSSE; 3846 3847 Ty = getContext().getCanonicalType(Ty); 3848 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3849 /*isNamedArg*/false); 3850 3851 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3852 // in the registers. If not go to step 7. 3853 if (!neededInt && !neededSSE) 3854 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3855 3856 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3857 // general purpose registers needed to pass type and num_fp to hold 3858 // the number of floating point registers needed. 3859 3860 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3861 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3862 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3863 // 3864 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3865 // register save space). 3866 3867 llvm::Value *InRegs = nullptr; 3868 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3869 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3870 if (neededInt) { 3871 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3872 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3873 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3874 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3875 } 3876 3877 if (neededSSE) { 3878 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3879 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3880 llvm::Value *FitsInFP = 3881 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3882 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3883 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3884 } 3885 3886 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3887 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3888 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3889 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3890 3891 // Emit code to load the value if it was passed in registers. 3892 3893 CGF.EmitBlock(InRegBlock); 3894 3895 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3896 // an offset of l->gp_offset and/or l->fp_offset. This may require 3897 // copying to a temporary location in case the parameter is passed 3898 // in different register classes or requires an alignment greater 3899 // than 8 for general purpose registers and 16 for XMM registers. 3900 // 3901 // FIXME: This really results in shameful code when we end up needing to 3902 // collect arguments from different places; often what should result in a 3903 // simple assembling of a structure from scattered addresses has many more 3904 // loads than necessary. Can we clean this up? 3905 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3906 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3907 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3908 3909 Address RegAddr = Address::invalid(); 3910 if (neededInt && neededSSE) { 3911 // FIXME: Cleanup. 3912 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3913 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3914 Address Tmp = CGF.CreateMemTemp(Ty); 3915 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3916 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3917 llvm::Type *TyLo = ST->getElementType(0); 3918 llvm::Type *TyHi = ST->getElementType(1); 3919 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3920 "Unexpected ABI info for mixed regs"); 3921 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3922 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3923 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3924 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3925 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3926 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3927 3928 // Copy the first element. 3929 // FIXME: Our choice of alignment here and below is probably pessimistic. 3930 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3931 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3932 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3933 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3934 3935 // Copy the second element. 3936 V = CGF.Builder.CreateAlignedLoad( 3937 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3938 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3939 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3940 3941 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3942 } else if (neededInt) { 3943 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3944 CharUnits::fromQuantity(8)); 3945 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3946 3947 // Copy to a temporary if necessary to ensure the appropriate alignment. 3948 std::pair<CharUnits, CharUnits> SizeAlign = 3949 getContext().getTypeInfoInChars(Ty); 3950 uint64_t TySize = SizeAlign.first.getQuantity(); 3951 CharUnits TyAlign = SizeAlign.second; 3952 3953 // Copy into a temporary if the type is more aligned than the 3954 // register save area. 3955 if (TyAlign.getQuantity() > 8) { 3956 Address Tmp = CGF.CreateMemTemp(Ty); 3957 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3958 RegAddr = Tmp; 3959 } 3960 3961 } else if (neededSSE == 1) { 3962 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3963 CharUnits::fromQuantity(16)); 3964 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3965 } else { 3966 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3967 // SSE registers are spaced 16 bytes apart in the register save 3968 // area, we need to collect the two eightbytes together. 3969 // The ABI isn't explicit about this, but it seems reasonable 3970 // to assume that the slots are 16-byte aligned, since the stack is 3971 // naturally 16-byte aligned and the prologue is expected to store 3972 // all the SSE registers to the RSA. 3973 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3974 CharUnits::fromQuantity(16)); 3975 Address RegAddrHi = 3976 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3977 CharUnits::fromQuantity(16)); 3978 llvm::Type *ST = AI.canHaveCoerceToType() 3979 ? AI.getCoerceToType() 3980 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3981 llvm::Value *V; 3982 Address Tmp = CGF.CreateMemTemp(Ty); 3983 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3984 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3985 RegAddrLo, ST->getStructElementType(0))); 3986 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3987 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3988 RegAddrHi, ST->getStructElementType(1))); 3989 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3990 3991 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3992 } 3993 3994 // AMD64-ABI 3.5.7p5: Step 5. Set: 3995 // l->gp_offset = l->gp_offset + num_gp * 8 3996 // l->fp_offset = l->fp_offset + num_fp * 16. 3997 if (neededInt) { 3998 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3999 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4000 gp_offset_p); 4001 } 4002 if (neededSSE) { 4003 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4004 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4005 fp_offset_p); 4006 } 4007 CGF.EmitBranch(ContBlock); 4008 4009 // Emit code to load the value if it was passed in memory. 4010 4011 CGF.EmitBlock(InMemBlock); 4012 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4013 4014 // Return the appropriate result. 4015 4016 CGF.EmitBlock(ContBlock); 4017 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4018 "vaarg.addr"); 4019 return ResAddr; 4020 } 4021 4022 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4023 QualType Ty) const { 4024 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4025 CGF.getContext().getTypeInfoInChars(Ty), 4026 CharUnits::fromQuantity(8), 4027 /*allowHigherAlign*/ false); 4028 } 4029 4030 ABIArgInfo 4031 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4032 const ABIArgInfo ¤t) const { 4033 // Assumes vectorCall calling convention. 4034 const Type *Base = nullptr; 4035 uint64_t NumElts = 0; 4036 4037 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4038 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4039 FreeSSERegs -= NumElts; 4040 return getDirectX86Hva(); 4041 } 4042 return current; 4043 } 4044 4045 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4046 bool IsReturnType, bool IsVectorCall, 4047 bool IsRegCall) const { 4048 4049 if (Ty->isVoidType()) 4050 return ABIArgInfo::getIgnore(); 4051 4052 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4053 Ty = EnumTy->getDecl()->getIntegerType(); 4054 4055 TypeInfo Info = getContext().getTypeInfo(Ty); 4056 uint64_t Width = Info.Width; 4057 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4058 4059 const RecordType *RT = Ty->getAs<RecordType>(); 4060 if (RT) { 4061 if (!IsReturnType) { 4062 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4063 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4064 } 4065 4066 if (RT->getDecl()->hasFlexibleArrayMember()) 4067 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4068 4069 } 4070 4071 const Type *Base = nullptr; 4072 uint64_t NumElts = 0; 4073 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4074 // other targets. 4075 if ((IsVectorCall || IsRegCall) && 4076 isHomogeneousAggregate(Ty, Base, NumElts)) { 4077 if (IsRegCall) { 4078 if (FreeSSERegs >= NumElts) { 4079 FreeSSERegs -= NumElts; 4080 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4081 return ABIArgInfo::getDirect(); 4082 return ABIArgInfo::getExpand(); 4083 } 4084 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4085 } else if (IsVectorCall) { 4086 if (FreeSSERegs >= NumElts && 4087 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4088 FreeSSERegs -= NumElts; 4089 return ABIArgInfo::getDirect(); 4090 } else if (IsReturnType) { 4091 return ABIArgInfo::getExpand(); 4092 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4093 // HVAs are delayed and reclassified in the 2nd step. 4094 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4095 } 4096 } 4097 } 4098 4099 if (Ty->isMemberPointerType()) { 4100 // If the member pointer is represented by an LLVM int or ptr, pass it 4101 // directly. 4102 llvm::Type *LLTy = CGT.ConvertType(Ty); 4103 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4104 return ABIArgInfo::getDirect(); 4105 } 4106 4107 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4108 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4109 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4110 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4111 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4112 4113 // Otherwise, coerce it to a small integer. 4114 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4115 } 4116 4117 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4118 switch (BT->getKind()) { 4119 case BuiltinType::Bool: 4120 // Bool type is always extended to the ABI, other builtin types are not 4121 // extended. 4122 return ABIArgInfo::getExtend(Ty); 4123 4124 case BuiltinType::LongDouble: 4125 // Mingw64 GCC uses the old 80 bit extended precision floating point 4126 // unit. It passes them indirectly through memory. 4127 if (IsMingw64) { 4128 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4129 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4130 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4131 } 4132 break; 4133 4134 case BuiltinType::Int128: 4135 case BuiltinType::UInt128: 4136 // If it's a parameter type, the normal ABI rule is that arguments larger 4137 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4138 // even though it isn't particularly efficient. 4139 if (!IsReturnType) 4140 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4141 4142 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4143 // Clang matches them for compatibility. 4144 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4145 llvm::Type::getInt64Ty(getVMContext()), 2)); 4146 4147 default: 4148 break; 4149 } 4150 } 4151 4152 if (Ty->isExtIntType()) { 4153 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4154 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4155 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4156 // anyway as long is it fits in them, so we don't have to check the power of 4157 // 2. 4158 if (Width <= 64) 4159 return ABIArgInfo::getDirect(); 4160 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4161 } 4162 4163 return ABIArgInfo::getDirect(); 4164 } 4165 4166 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4167 unsigned FreeSSERegs, 4168 bool IsVectorCall, 4169 bool IsRegCall) const { 4170 unsigned Count = 0; 4171 for (auto &I : FI.arguments()) { 4172 // Vectorcall in x64 only permits the first 6 arguments to be passed 4173 // as XMM/YMM registers. 4174 if (Count < VectorcallMaxParamNumAsReg) 4175 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4176 else { 4177 // Since these cannot be passed in registers, pretend no registers 4178 // are left. 4179 unsigned ZeroSSERegsAvail = 0; 4180 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4181 IsVectorCall, IsRegCall); 4182 } 4183 ++Count; 4184 } 4185 4186 for (auto &I : FI.arguments()) { 4187 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4188 } 4189 } 4190 4191 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4192 const unsigned CC = FI.getCallingConvention(); 4193 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4194 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4195 4196 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4197 // classification rules. 4198 if (CC == llvm::CallingConv::X86_64_SysV) { 4199 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4200 SysVABIInfo.computeInfo(FI); 4201 return; 4202 } 4203 4204 unsigned FreeSSERegs = 0; 4205 if (IsVectorCall) { 4206 // We can use up to 4 SSE return registers with vectorcall. 4207 FreeSSERegs = 4; 4208 } else if (IsRegCall) { 4209 // RegCall gives us 16 SSE registers. 4210 FreeSSERegs = 16; 4211 } 4212 4213 if (!getCXXABI().classifyReturnType(FI)) 4214 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4215 IsVectorCall, IsRegCall); 4216 4217 if (IsVectorCall) { 4218 // We can use up to 6 SSE register parameters with vectorcall. 4219 FreeSSERegs = 6; 4220 } else if (IsRegCall) { 4221 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4222 FreeSSERegs = 16; 4223 } 4224 4225 if (IsVectorCall) { 4226 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4227 } else { 4228 for (auto &I : FI.arguments()) 4229 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4230 } 4231 4232 } 4233 4234 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4235 QualType Ty) const { 4236 4237 bool IsIndirect = false; 4238 4239 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4240 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4241 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4242 uint64_t Width = getContext().getTypeSize(Ty); 4243 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4244 } 4245 4246 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4247 CGF.getContext().getTypeInfoInChars(Ty), 4248 CharUnits::fromQuantity(8), 4249 /*allowHigherAlign*/ false); 4250 } 4251 4252 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4253 llvm::Value *Address, bool Is64Bit, 4254 bool IsAIX) { 4255 // This is calculated from the LLVM and GCC tables and verified 4256 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4257 4258 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4259 4260 llvm::IntegerType *i8 = CGF.Int8Ty; 4261 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4262 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4263 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4264 4265 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4266 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4267 4268 // 32-63: fp0-31, the 8-byte floating-point registers 4269 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4270 4271 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4272 // 64: mq 4273 // 65: lr 4274 // 66: ctr 4275 // 67: ap 4276 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4277 4278 // 68-76 are various 4-byte special-purpose registers: 4279 // 68-75 cr0-7 4280 // 76: xer 4281 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4282 4283 // 77-108: v0-31, the 16-byte vector registers 4284 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4285 4286 // 109: vrsave 4287 // 110: vscr 4288 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4289 4290 // AIX does not utilize the rest of the registers. 4291 if (IsAIX) 4292 return false; 4293 4294 // 111: spe_acc 4295 // 112: spefscr 4296 // 113: sfp 4297 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4298 4299 if (!Is64Bit) 4300 return false; 4301 4302 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4303 // or above CPU. 4304 // 64-bit only registers: 4305 // 114: tfhar 4306 // 115: tfiar 4307 // 116: texasr 4308 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4309 4310 return false; 4311 } 4312 4313 // AIX 4314 namespace { 4315 /// AIXABIInfo - The AIX XCOFF ABI information. 4316 class AIXABIInfo : public ABIInfo { 4317 const bool Is64Bit; 4318 const unsigned PtrByteSize; 4319 CharUnits getParamTypeAlignment(QualType Ty) const; 4320 4321 public: 4322 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4323 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4324 4325 bool isPromotableTypeForABI(QualType Ty) const; 4326 4327 ABIArgInfo classifyReturnType(QualType RetTy) const; 4328 ABIArgInfo classifyArgumentType(QualType Ty) const; 4329 4330 void computeInfo(CGFunctionInfo &FI) const override { 4331 if (!getCXXABI().classifyReturnType(FI)) 4332 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4333 4334 for (auto &I : FI.arguments()) 4335 I.info = classifyArgumentType(I.type); 4336 } 4337 4338 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4339 QualType Ty) const override; 4340 }; 4341 4342 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4343 const bool Is64Bit; 4344 4345 public: 4346 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4347 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4348 Is64Bit(Is64Bit) {} 4349 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4350 return 1; // r1 is the dedicated stack pointer 4351 } 4352 4353 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4354 llvm::Value *Address) const override; 4355 }; 4356 } // namespace 4357 4358 // Return true if the ABI requires Ty to be passed sign- or zero- 4359 // extended to 32/64 bits. 4360 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4361 // Treat an enum type as its underlying type. 4362 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4363 Ty = EnumTy->getDecl()->getIntegerType(); 4364 4365 // Promotable integer types are required to be promoted by the ABI. 4366 if (Ty->isPromotableIntegerType()) 4367 return true; 4368 4369 if (!Is64Bit) 4370 return false; 4371 4372 // For 64 bit mode, in addition to the usual promotable integer types, we also 4373 // need to extend all 32-bit types, since the ABI requires promotion to 64 4374 // bits. 4375 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4376 switch (BT->getKind()) { 4377 case BuiltinType::Int: 4378 case BuiltinType::UInt: 4379 return true; 4380 default: 4381 break; 4382 } 4383 4384 return false; 4385 } 4386 4387 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4388 if (RetTy->isAnyComplexType()) 4389 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4390 4391 if (RetTy->isVectorType()) 4392 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4393 4394 if (RetTy->isVoidType()) 4395 return ABIArgInfo::getIgnore(); 4396 4397 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4398 // alignment here. 4399 if (isAggregateTypeForABI(RetTy)) 4400 return getNaturalAlignIndirect(RetTy); 4401 4402 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4403 : ABIArgInfo::getDirect()); 4404 } 4405 4406 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4407 Ty = useFirstFieldIfTransparentUnion(Ty); 4408 4409 if (Ty->isAnyComplexType()) 4410 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4411 4412 if (Ty->isVectorType()) 4413 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4414 4415 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4416 // alignment here. 4417 if (isAggregateTypeForABI(Ty)) { 4418 // Records with non-trivial destructors/copy-constructors should not be 4419 // passed by value. 4420 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4421 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4422 4423 CharUnits CCAlign = getParamTypeAlignment(Ty); 4424 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4425 4426 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4427 /*Realign*/ TyAlign > CCAlign); 4428 } 4429 4430 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4431 : ABIArgInfo::getDirect()); 4432 } 4433 4434 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4435 if (Ty->isAnyComplexType()) 4436 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4437 4438 if (Ty->isVectorType()) 4439 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4440 4441 // If the structure contains a vector type, the alignment is 16. 4442 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4443 return CharUnits::fromQuantity(16); 4444 4445 return CharUnits::fromQuantity(PtrByteSize); 4446 } 4447 4448 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4449 QualType Ty) const { 4450 if (Ty->isAnyComplexType()) 4451 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4452 4453 if (Ty->isVectorType()) 4454 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4455 4456 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4457 TypeInfo.second = getParamTypeAlignment(Ty); 4458 4459 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4460 4461 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4462 SlotSize, /*AllowHigher*/ true); 4463 } 4464 4465 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4466 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4467 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4468 } 4469 4470 // PowerPC-32 4471 namespace { 4472 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4473 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4474 bool IsSoftFloatABI; 4475 bool IsRetSmallStructInRegABI; 4476 4477 CharUnits getParamTypeAlignment(QualType Ty) const; 4478 4479 public: 4480 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4481 bool RetSmallStructInRegABI) 4482 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4483 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4484 4485 ABIArgInfo classifyReturnType(QualType RetTy) const; 4486 4487 void computeInfo(CGFunctionInfo &FI) const override { 4488 if (!getCXXABI().classifyReturnType(FI)) 4489 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4490 for (auto &I : FI.arguments()) 4491 I.info = classifyArgumentType(I.type); 4492 } 4493 4494 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4495 QualType Ty) const override; 4496 }; 4497 4498 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4499 public: 4500 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4501 bool RetSmallStructInRegABI) 4502 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4503 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4504 4505 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4506 const CodeGenOptions &Opts); 4507 4508 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4509 // This is recovered from gcc output. 4510 return 1; // r1 is the dedicated stack pointer 4511 } 4512 4513 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4514 llvm::Value *Address) const override; 4515 }; 4516 } 4517 4518 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4519 // Complex types are passed just like their elements. 4520 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4521 Ty = CTy->getElementType(); 4522 4523 if (Ty->isVectorType()) 4524 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4525 : 4); 4526 4527 // For single-element float/vector structs, we consider the whole type 4528 // to have the same alignment requirements as its single element. 4529 const Type *AlignTy = nullptr; 4530 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4531 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4532 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4533 (BT && BT->isFloatingPoint())) 4534 AlignTy = EltType; 4535 } 4536 4537 if (AlignTy) 4538 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4539 return CharUnits::fromQuantity(4); 4540 } 4541 4542 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4543 uint64_t Size; 4544 4545 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4546 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4547 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4548 // System V ABI (1995), page 3-22, specified: 4549 // > A structure or union whose size is less than or equal to 8 bytes 4550 // > shall be returned in r3 and r4, as if it were first stored in the 4551 // > 8-byte aligned memory area and then the low addressed word were 4552 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4553 // > the last member of the structure or union are not defined. 4554 // 4555 // GCC for big-endian PPC32 inserts the pad before the first member, 4556 // not "beyond the last member" of the struct. To stay compatible 4557 // with GCC, we coerce the struct to an integer of the same size. 4558 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4559 if (Size == 0) 4560 return ABIArgInfo::getIgnore(); 4561 else { 4562 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4563 return ABIArgInfo::getDirect(CoerceTy); 4564 } 4565 } 4566 4567 return DefaultABIInfo::classifyReturnType(RetTy); 4568 } 4569 4570 // TODO: this implementation is now likely redundant with 4571 // DefaultABIInfo::EmitVAArg. 4572 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4573 QualType Ty) const { 4574 if (getTarget().getTriple().isOSDarwin()) { 4575 auto TI = getContext().getTypeInfoInChars(Ty); 4576 TI.second = getParamTypeAlignment(Ty); 4577 4578 CharUnits SlotSize = CharUnits::fromQuantity(4); 4579 return emitVoidPtrVAArg(CGF, VAList, Ty, 4580 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4581 /*AllowHigherAlign=*/true); 4582 } 4583 4584 const unsigned OverflowLimit = 8; 4585 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4586 // TODO: Implement this. For now ignore. 4587 (void)CTy; 4588 return Address::invalid(); // FIXME? 4589 } 4590 4591 // struct __va_list_tag { 4592 // unsigned char gpr; 4593 // unsigned char fpr; 4594 // unsigned short reserved; 4595 // void *overflow_arg_area; 4596 // void *reg_save_area; 4597 // }; 4598 4599 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4600 bool isInt = 4601 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4602 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4603 4604 // All aggregates are passed indirectly? That doesn't seem consistent 4605 // with the argument-lowering code. 4606 bool isIndirect = Ty->isAggregateType(); 4607 4608 CGBuilderTy &Builder = CGF.Builder; 4609 4610 // The calling convention either uses 1-2 GPRs or 1 FPR. 4611 Address NumRegsAddr = Address::invalid(); 4612 if (isInt || IsSoftFloatABI) { 4613 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4614 } else { 4615 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4616 } 4617 4618 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4619 4620 // "Align" the register count when TY is i64. 4621 if (isI64 || (isF64 && IsSoftFloatABI)) { 4622 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4623 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4624 } 4625 4626 llvm::Value *CC = 4627 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4628 4629 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4630 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4631 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4632 4633 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4634 4635 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4636 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4637 4638 // Case 1: consume registers. 4639 Address RegAddr = Address::invalid(); 4640 { 4641 CGF.EmitBlock(UsingRegs); 4642 4643 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4644 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4645 CharUnits::fromQuantity(8)); 4646 assert(RegAddr.getElementType() == CGF.Int8Ty); 4647 4648 // Floating-point registers start after the general-purpose registers. 4649 if (!(isInt || IsSoftFloatABI)) { 4650 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4651 CharUnits::fromQuantity(32)); 4652 } 4653 4654 // Get the address of the saved value by scaling the number of 4655 // registers we've used by the number of 4656 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4657 llvm::Value *RegOffset = 4658 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4659 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4660 RegAddr.getPointer(), RegOffset), 4661 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4662 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4663 4664 // Increase the used-register count. 4665 NumRegs = 4666 Builder.CreateAdd(NumRegs, 4667 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4668 Builder.CreateStore(NumRegs, NumRegsAddr); 4669 4670 CGF.EmitBranch(Cont); 4671 } 4672 4673 // Case 2: consume space in the overflow area. 4674 Address MemAddr = Address::invalid(); 4675 { 4676 CGF.EmitBlock(UsingOverflow); 4677 4678 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4679 4680 // Everything in the overflow area is rounded up to a size of at least 4. 4681 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4682 4683 CharUnits Size; 4684 if (!isIndirect) { 4685 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4686 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4687 } else { 4688 Size = CGF.getPointerSize(); 4689 } 4690 4691 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4692 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4693 OverflowAreaAlign); 4694 // Round up address of argument to alignment 4695 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4696 if (Align > OverflowAreaAlign) { 4697 llvm::Value *Ptr = OverflowArea.getPointer(); 4698 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4699 Align); 4700 } 4701 4702 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4703 4704 // Increase the overflow area. 4705 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4706 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4707 CGF.EmitBranch(Cont); 4708 } 4709 4710 CGF.EmitBlock(Cont); 4711 4712 // Merge the cases with a phi. 4713 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4714 "vaarg.addr"); 4715 4716 // Load the pointer if the argument was passed indirectly. 4717 if (isIndirect) { 4718 Result = Address(Builder.CreateLoad(Result, "aggr"), 4719 getContext().getTypeAlignInChars(Ty)); 4720 } 4721 4722 return Result; 4723 } 4724 4725 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4726 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4727 assert(Triple.getArch() == llvm::Triple::ppc); 4728 4729 switch (Opts.getStructReturnConvention()) { 4730 case CodeGenOptions::SRCK_Default: 4731 break; 4732 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4733 return false; 4734 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4735 return true; 4736 } 4737 4738 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4739 return true; 4740 4741 return false; 4742 } 4743 4744 bool 4745 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4746 llvm::Value *Address) const { 4747 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4748 /*IsAIX*/ false); 4749 } 4750 4751 // PowerPC-64 4752 4753 namespace { 4754 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4755 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4756 public: 4757 enum ABIKind { 4758 ELFv1 = 0, 4759 ELFv2 4760 }; 4761 4762 private: 4763 static const unsigned GPRBits = 64; 4764 ABIKind Kind; 4765 bool HasQPX; 4766 bool IsSoftFloatABI; 4767 4768 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4769 // will be passed in a QPX register. 4770 bool IsQPXVectorTy(const Type *Ty) const { 4771 if (!HasQPX) 4772 return false; 4773 4774 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4775 unsigned NumElements = VT->getNumElements(); 4776 if (NumElements == 1) 4777 return false; 4778 4779 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4780 if (getContext().getTypeSize(Ty) <= 256) 4781 return true; 4782 } else if (VT->getElementType()-> 4783 isSpecificBuiltinType(BuiltinType::Float)) { 4784 if (getContext().getTypeSize(Ty) <= 128) 4785 return true; 4786 } 4787 } 4788 4789 return false; 4790 } 4791 4792 bool IsQPXVectorTy(QualType Ty) const { 4793 return IsQPXVectorTy(Ty.getTypePtr()); 4794 } 4795 4796 public: 4797 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4798 bool SoftFloatABI) 4799 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4800 IsSoftFloatABI(SoftFloatABI) {} 4801 4802 bool isPromotableTypeForABI(QualType Ty) const; 4803 CharUnits getParamTypeAlignment(QualType Ty) const; 4804 4805 ABIArgInfo classifyReturnType(QualType RetTy) const; 4806 ABIArgInfo classifyArgumentType(QualType Ty) const; 4807 4808 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4809 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4810 uint64_t Members) const override; 4811 4812 // TODO: We can add more logic to computeInfo to improve performance. 4813 // Example: For aggregate arguments that fit in a register, we could 4814 // use getDirectInReg (as is done below for structs containing a single 4815 // floating-point value) to avoid pushing them to memory on function 4816 // entry. This would require changing the logic in PPCISelLowering 4817 // when lowering the parameters in the caller and args in the callee. 4818 void computeInfo(CGFunctionInfo &FI) const override { 4819 if (!getCXXABI().classifyReturnType(FI)) 4820 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4821 for (auto &I : FI.arguments()) { 4822 // We rely on the default argument classification for the most part. 4823 // One exception: An aggregate containing a single floating-point 4824 // or vector item must be passed in a register if one is available. 4825 const Type *T = isSingleElementStruct(I.type, getContext()); 4826 if (T) { 4827 const BuiltinType *BT = T->getAs<BuiltinType>(); 4828 if (IsQPXVectorTy(T) || 4829 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4830 (BT && BT->isFloatingPoint())) { 4831 QualType QT(T, 0); 4832 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4833 continue; 4834 } 4835 } 4836 I.info = classifyArgumentType(I.type); 4837 } 4838 } 4839 4840 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4841 QualType Ty) const override; 4842 4843 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4844 bool asReturnValue) const override { 4845 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4846 } 4847 4848 bool isSwiftErrorInRegister() const override { 4849 return false; 4850 } 4851 }; 4852 4853 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4854 4855 public: 4856 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4857 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4858 bool SoftFloatABI) 4859 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4860 CGT, Kind, HasQPX, SoftFloatABI)) {} 4861 4862 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4863 // This is recovered from gcc output. 4864 return 1; // r1 is the dedicated stack pointer 4865 } 4866 4867 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4868 llvm::Value *Address) const override; 4869 }; 4870 4871 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4872 public: 4873 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4874 4875 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4876 // This is recovered from gcc output. 4877 return 1; // r1 is the dedicated stack pointer 4878 } 4879 4880 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4881 llvm::Value *Address) const override; 4882 }; 4883 4884 } 4885 4886 // Return true if the ABI requires Ty to be passed sign- or zero- 4887 // extended to 64 bits. 4888 bool 4889 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4890 // Treat an enum type as its underlying type. 4891 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4892 Ty = EnumTy->getDecl()->getIntegerType(); 4893 4894 // Promotable integer types are required to be promoted by the ABI. 4895 if (isPromotableIntegerTypeForABI(Ty)) 4896 return true; 4897 4898 // In addition to the usual promotable integer types, we also need to 4899 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4900 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4901 switch (BT->getKind()) { 4902 case BuiltinType::Int: 4903 case BuiltinType::UInt: 4904 return true; 4905 default: 4906 break; 4907 } 4908 4909 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4910 if (EIT->getNumBits() < 64) 4911 return true; 4912 4913 return false; 4914 } 4915 4916 /// isAlignedParamType - Determine whether a type requires 16-byte or 4917 /// higher alignment in the parameter area. Always returns at least 8. 4918 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4919 // Complex types are passed just like their elements. 4920 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4921 Ty = CTy->getElementType(); 4922 4923 // Only vector types of size 16 bytes need alignment (larger types are 4924 // passed via reference, smaller types are not aligned). 4925 if (IsQPXVectorTy(Ty)) { 4926 if (getContext().getTypeSize(Ty) > 128) 4927 return CharUnits::fromQuantity(32); 4928 4929 return CharUnits::fromQuantity(16); 4930 } else if (Ty->isVectorType()) { 4931 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4932 } 4933 4934 // For single-element float/vector structs, we consider the whole type 4935 // to have the same alignment requirements as its single element. 4936 const Type *AlignAsType = nullptr; 4937 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4938 if (EltType) { 4939 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4940 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4941 getContext().getTypeSize(EltType) == 128) || 4942 (BT && BT->isFloatingPoint())) 4943 AlignAsType = EltType; 4944 } 4945 4946 // Likewise for ELFv2 homogeneous aggregates. 4947 const Type *Base = nullptr; 4948 uint64_t Members = 0; 4949 if (!AlignAsType && Kind == ELFv2 && 4950 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4951 AlignAsType = Base; 4952 4953 // With special case aggregates, only vector base types need alignment. 4954 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4955 if (getContext().getTypeSize(AlignAsType) > 128) 4956 return CharUnits::fromQuantity(32); 4957 4958 return CharUnits::fromQuantity(16); 4959 } else if (AlignAsType) { 4960 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4961 } 4962 4963 // Otherwise, we only need alignment for any aggregate type that 4964 // has an alignment requirement of >= 16 bytes. 4965 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4966 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4967 return CharUnits::fromQuantity(32); 4968 return CharUnits::fromQuantity(16); 4969 } 4970 4971 return CharUnits::fromQuantity(8); 4972 } 4973 4974 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4975 /// aggregate. Base is set to the base element type, and Members is set 4976 /// to the number of base elements. 4977 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4978 uint64_t &Members) const { 4979 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4980 uint64_t NElements = AT->getSize().getZExtValue(); 4981 if (NElements == 0) 4982 return false; 4983 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4984 return false; 4985 Members *= NElements; 4986 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4987 const RecordDecl *RD = RT->getDecl(); 4988 if (RD->hasFlexibleArrayMember()) 4989 return false; 4990 4991 Members = 0; 4992 4993 // If this is a C++ record, check the bases first. 4994 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4995 for (const auto &I : CXXRD->bases()) { 4996 // Ignore empty records. 4997 if (isEmptyRecord(getContext(), I.getType(), true)) 4998 continue; 4999 5000 uint64_t FldMembers; 5001 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5002 return false; 5003 5004 Members += FldMembers; 5005 } 5006 } 5007 5008 for (const auto *FD : RD->fields()) { 5009 // Ignore (non-zero arrays of) empty records. 5010 QualType FT = FD->getType(); 5011 while (const ConstantArrayType *AT = 5012 getContext().getAsConstantArrayType(FT)) { 5013 if (AT->getSize().getZExtValue() == 0) 5014 return false; 5015 FT = AT->getElementType(); 5016 } 5017 if (isEmptyRecord(getContext(), FT, true)) 5018 continue; 5019 5020 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5021 if (getContext().getLangOpts().CPlusPlus && 5022 FD->isZeroLengthBitField(getContext())) 5023 continue; 5024 5025 uint64_t FldMembers; 5026 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5027 return false; 5028 5029 Members = (RD->isUnion() ? 5030 std::max(Members, FldMembers) : Members + FldMembers); 5031 } 5032 5033 if (!Base) 5034 return false; 5035 5036 // Ensure there is no padding. 5037 if (getContext().getTypeSize(Base) * Members != 5038 getContext().getTypeSize(Ty)) 5039 return false; 5040 } else { 5041 Members = 1; 5042 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5043 Members = 2; 5044 Ty = CT->getElementType(); 5045 } 5046 5047 // Most ABIs only support float, double, and some vector type widths. 5048 if (!isHomogeneousAggregateBaseType(Ty)) 5049 return false; 5050 5051 // The base type must be the same for all members. Types that 5052 // agree in both total size and mode (float vs. vector) are 5053 // treated as being equivalent here. 5054 const Type *TyPtr = Ty.getTypePtr(); 5055 if (!Base) { 5056 Base = TyPtr; 5057 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5058 // so make sure to widen it explicitly. 5059 if (const VectorType *VT = Base->getAs<VectorType>()) { 5060 QualType EltTy = VT->getElementType(); 5061 unsigned NumElements = 5062 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5063 Base = getContext() 5064 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5065 .getTypePtr(); 5066 } 5067 } 5068 5069 if (Base->isVectorType() != TyPtr->isVectorType() || 5070 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5071 return false; 5072 } 5073 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5074 } 5075 5076 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5077 // Homogeneous aggregates for ELFv2 must have base types of float, 5078 // double, long double, or 128-bit vectors. 5079 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5080 if (BT->getKind() == BuiltinType::Float || 5081 BT->getKind() == BuiltinType::Double || 5082 BT->getKind() == BuiltinType::LongDouble || 5083 (getContext().getTargetInfo().hasFloat128Type() && 5084 (BT->getKind() == BuiltinType::Float128))) { 5085 if (IsSoftFloatABI) 5086 return false; 5087 return true; 5088 } 5089 } 5090 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5091 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 5092 return true; 5093 } 5094 return false; 5095 } 5096 5097 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5098 const Type *Base, uint64_t Members) const { 5099 // Vector and fp128 types require one register, other floating point types 5100 // require one or two registers depending on their size. 5101 uint32_t NumRegs = 5102 ((getContext().getTargetInfo().hasFloat128Type() && 5103 Base->isFloat128Type()) || 5104 Base->isVectorType()) ? 1 5105 : (getContext().getTypeSize(Base) + 63) / 64; 5106 5107 // Homogeneous Aggregates may occupy at most 8 registers. 5108 return Members * NumRegs <= 8; 5109 } 5110 5111 ABIArgInfo 5112 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5113 Ty = useFirstFieldIfTransparentUnion(Ty); 5114 5115 if (Ty->isAnyComplexType()) 5116 return ABIArgInfo::getDirect(); 5117 5118 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5119 // or via reference (larger than 16 bytes). 5120 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 5121 uint64_t Size = getContext().getTypeSize(Ty); 5122 if (Size > 128) 5123 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5124 else if (Size < 128) { 5125 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5126 return ABIArgInfo::getDirect(CoerceTy); 5127 } 5128 } 5129 5130 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5131 if (EIT->getNumBits() > 128) 5132 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5133 5134 if (isAggregateTypeForABI(Ty)) { 5135 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5136 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5137 5138 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5139 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5140 5141 // ELFv2 homogeneous aggregates are passed as array types. 5142 const Type *Base = nullptr; 5143 uint64_t Members = 0; 5144 if (Kind == ELFv2 && 5145 isHomogeneousAggregate(Ty, Base, Members)) { 5146 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5147 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5148 return ABIArgInfo::getDirect(CoerceTy); 5149 } 5150 5151 // If an aggregate may end up fully in registers, we do not 5152 // use the ByVal method, but pass the aggregate as array. 5153 // This is usually beneficial since we avoid forcing the 5154 // back-end to store the argument to memory. 5155 uint64_t Bits = getContext().getTypeSize(Ty); 5156 if (Bits > 0 && Bits <= 8 * GPRBits) { 5157 llvm::Type *CoerceTy; 5158 5159 // Types up to 8 bytes are passed as integer type (which will be 5160 // properly aligned in the argument save area doubleword). 5161 if (Bits <= GPRBits) 5162 CoerceTy = 5163 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5164 // Larger types are passed as arrays, with the base type selected 5165 // according to the required alignment in the save area. 5166 else { 5167 uint64_t RegBits = ABIAlign * 8; 5168 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5169 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5170 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5171 } 5172 5173 return ABIArgInfo::getDirect(CoerceTy); 5174 } 5175 5176 // All other aggregates are passed ByVal. 5177 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5178 /*ByVal=*/true, 5179 /*Realign=*/TyAlign > ABIAlign); 5180 } 5181 5182 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5183 : ABIArgInfo::getDirect()); 5184 } 5185 5186 ABIArgInfo 5187 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5188 if (RetTy->isVoidType()) 5189 return ABIArgInfo::getIgnore(); 5190 5191 if (RetTy->isAnyComplexType()) 5192 return ABIArgInfo::getDirect(); 5193 5194 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5195 // or via reference (larger than 16 bytes). 5196 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5197 uint64_t Size = getContext().getTypeSize(RetTy); 5198 if (Size > 128) 5199 return getNaturalAlignIndirect(RetTy); 5200 else if (Size < 128) { 5201 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5202 return ABIArgInfo::getDirect(CoerceTy); 5203 } 5204 } 5205 5206 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5207 if (EIT->getNumBits() > 128) 5208 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5209 5210 if (isAggregateTypeForABI(RetTy)) { 5211 // ELFv2 homogeneous aggregates are returned as array types. 5212 const Type *Base = nullptr; 5213 uint64_t Members = 0; 5214 if (Kind == ELFv2 && 5215 isHomogeneousAggregate(RetTy, Base, Members)) { 5216 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5217 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5218 return ABIArgInfo::getDirect(CoerceTy); 5219 } 5220 5221 // ELFv2 small aggregates are returned in up to two registers. 5222 uint64_t Bits = getContext().getTypeSize(RetTy); 5223 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5224 if (Bits == 0) 5225 return ABIArgInfo::getIgnore(); 5226 5227 llvm::Type *CoerceTy; 5228 if (Bits > GPRBits) { 5229 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5230 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5231 } else 5232 CoerceTy = 5233 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5234 return ABIArgInfo::getDirect(CoerceTy); 5235 } 5236 5237 // All other aggregates are returned indirectly. 5238 return getNaturalAlignIndirect(RetTy); 5239 } 5240 5241 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5242 : ABIArgInfo::getDirect()); 5243 } 5244 5245 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5246 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5247 QualType Ty) const { 5248 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5249 TypeInfo.second = getParamTypeAlignment(Ty); 5250 5251 CharUnits SlotSize = CharUnits::fromQuantity(8); 5252 5253 // If we have a complex type and the base type is smaller than 8 bytes, 5254 // the ABI calls for the real and imaginary parts to be right-adjusted 5255 // in separate doublewords. However, Clang expects us to produce a 5256 // pointer to a structure with the two parts packed tightly. So generate 5257 // loads of the real and imaginary parts relative to the va_list pointer, 5258 // and store them to a temporary structure. 5259 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5260 CharUnits EltSize = TypeInfo.first / 2; 5261 if (EltSize < SlotSize) { 5262 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5263 SlotSize * 2, SlotSize, 5264 SlotSize, /*AllowHigher*/ true); 5265 5266 Address RealAddr = Addr; 5267 Address ImagAddr = RealAddr; 5268 if (CGF.CGM.getDataLayout().isBigEndian()) { 5269 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5270 SlotSize - EltSize); 5271 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5272 2 * SlotSize - EltSize); 5273 } else { 5274 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5275 } 5276 5277 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5278 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5279 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5280 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5281 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5282 5283 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5284 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5285 /*init*/ true); 5286 return Temp; 5287 } 5288 } 5289 5290 // Otherwise, just use the general rule. 5291 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5292 TypeInfo, SlotSize, /*AllowHigher*/ true); 5293 } 5294 5295 bool 5296 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5297 CodeGen::CodeGenFunction &CGF, 5298 llvm::Value *Address) const { 5299 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5300 /*IsAIX*/ false); 5301 } 5302 5303 bool 5304 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5305 llvm::Value *Address) const { 5306 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5307 /*IsAIX*/ false); 5308 } 5309 5310 //===----------------------------------------------------------------------===// 5311 // AArch64 ABI Implementation 5312 //===----------------------------------------------------------------------===// 5313 5314 namespace { 5315 5316 class AArch64ABIInfo : public SwiftABIInfo { 5317 public: 5318 enum ABIKind { 5319 AAPCS = 0, 5320 DarwinPCS, 5321 Win64 5322 }; 5323 5324 private: 5325 ABIKind Kind; 5326 5327 public: 5328 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5329 : SwiftABIInfo(CGT), Kind(Kind) {} 5330 5331 private: 5332 ABIKind getABIKind() const { return Kind; } 5333 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5334 5335 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5336 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5337 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5338 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5339 uint64_t Members) const override; 5340 5341 bool isIllegalVectorType(QualType Ty) const; 5342 5343 void computeInfo(CGFunctionInfo &FI) const override { 5344 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5345 FI.getReturnInfo() = 5346 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5347 5348 for (auto &it : FI.arguments()) 5349 it.info = classifyArgumentType(it.type); 5350 } 5351 5352 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5353 CodeGenFunction &CGF) const; 5354 5355 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5356 CodeGenFunction &CGF) const; 5357 5358 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5359 QualType Ty) const override { 5360 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5361 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5362 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5363 } 5364 5365 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5366 QualType Ty) const override; 5367 5368 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5369 bool asReturnValue) const override { 5370 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5371 } 5372 bool isSwiftErrorInRegister() const override { 5373 return true; 5374 } 5375 5376 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5377 unsigned elts) const override; 5378 5379 bool allowBFloatArgsAndRet() const override { 5380 return getTarget().hasBFloat16Type(); 5381 } 5382 }; 5383 5384 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5385 public: 5386 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5387 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5388 5389 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5390 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5391 } 5392 5393 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5394 return 31; 5395 } 5396 5397 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5398 5399 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5400 CodeGen::CodeGenModule &CGM) const override { 5401 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5402 if (!FD) 5403 return; 5404 5405 LangOptions::SignReturnAddressScopeKind Scope = 5406 CGM.getLangOpts().getSignReturnAddressScope(); 5407 LangOptions::SignReturnAddressKeyKind Key = 5408 CGM.getLangOpts().getSignReturnAddressKey(); 5409 bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement; 5410 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5411 ParsedTargetAttr Attr = TA->parse(); 5412 if (!Attr.BranchProtection.empty()) { 5413 TargetInfo::BranchProtectionInfo BPI; 5414 StringRef Error; 5415 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5416 BPI, Error); 5417 assert(Error.empty()); 5418 Scope = BPI.SignReturnAddr; 5419 Key = BPI.SignKey; 5420 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5421 } 5422 } 5423 5424 auto *Fn = cast<llvm::Function>(GV); 5425 if (Scope != LangOptions::SignReturnAddressScopeKind::None) { 5426 Fn->addFnAttr("sign-return-address", 5427 Scope == LangOptions::SignReturnAddressScopeKind::All 5428 ? "all" 5429 : "non-leaf"); 5430 5431 Fn->addFnAttr("sign-return-address-key", 5432 Key == LangOptions::SignReturnAddressKeyKind::AKey 5433 ? "a_key" 5434 : "b_key"); 5435 } 5436 5437 if (BranchTargetEnforcement) 5438 Fn->addFnAttr("branch-target-enforcement"); 5439 } 5440 }; 5441 5442 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5443 public: 5444 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5445 : AArch64TargetCodeGenInfo(CGT, K) {} 5446 5447 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5448 CodeGen::CodeGenModule &CGM) const override; 5449 5450 void getDependentLibraryOption(llvm::StringRef Lib, 5451 llvm::SmallString<24> &Opt) const override { 5452 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5453 } 5454 5455 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5456 llvm::SmallString<32> &Opt) const override { 5457 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5458 } 5459 }; 5460 5461 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5462 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5463 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5464 if (GV->isDeclaration()) 5465 return; 5466 addStackProbeTargetAttributes(D, GV, CGM); 5467 } 5468 } 5469 5470 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5471 Ty = useFirstFieldIfTransparentUnion(Ty); 5472 5473 // Handle illegal vector types here. 5474 if (isIllegalVectorType(Ty)) { 5475 uint64_t Size = getContext().getTypeSize(Ty); 5476 // Android promotes <2 x i8> to i16, not i32 5477 if (isAndroid() && (Size <= 16)) { 5478 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5479 return ABIArgInfo::getDirect(ResType); 5480 } 5481 if (Size <= 32) { 5482 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5483 return ABIArgInfo::getDirect(ResType); 5484 } 5485 if (Size == 64) { 5486 auto *ResType = 5487 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5488 return ABIArgInfo::getDirect(ResType); 5489 } 5490 if (Size == 128) { 5491 auto *ResType = 5492 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5493 return ABIArgInfo::getDirect(ResType); 5494 } 5495 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5496 } 5497 5498 if (!isAggregateTypeForABI(Ty)) { 5499 // Treat an enum type as its underlying type. 5500 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5501 Ty = EnumTy->getDecl()->getIntegerType(); 5502 5503 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5504 if (EIT->getNumBits() > 128) 5505 return getNaturalAlignIndirect(Ty); 5506 5507 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5508 ? ABIArgInfo::getExtend(Ty) 5509 : ABIArgInfo::getDirect()); 5510 } 5511 5512 // Structures with either a non-trivial destructor or a non-trivial 5513 // copy constructor are always indirect. 5514 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5515 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5516 CGCXXABI::RAA_DirectInMemory); 5517 } 5518 5519 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5520 // elsewhere for GNU compatibility. 5521 uint64_t Size = getContext().getTypeSize(Ty); 5522 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5523 if (IsEmpty || Size == 0) { 5524 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5525 return ABIArgInfo::getIgnore(); 5526 5527 // GNU C mode. The only argument that gets ignored is an empty one with size 5528 // 0. 5529 if (IsEmpty && Size == 0) 5530 return ABIArgInfo::getIgnore(); 5531 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5532 } 5533 5534 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5535 const Type *Base = nullptr; 5536 uint64_t Members = 0; 5537 if (isHomogeneousAggregate(Ty, Base, Members)) { 5538 return ABIArgInfo::getDirect( 5539 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5540 } 5541 5542 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5543 if (Size <= 128) { 5544 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5545 // same size and alignment. 5546 if (getTarget().isRenderScriptTarget()) { 5547 return coerceToIntArray(Ty, getContext(), getVMContext()); 5548 } 5549 unsigned Alignment; 5550 if (Kind == AArch64ABIInfo::AAPCS) { 5551 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5552 Alignment = Alignment < 128 ? 64 : 128; 5553 } else { 5554 Alignment = std::max(getContext().getTypeAlign(Ty), 5555 (unsigned)getTarget().getPointerWidth(0)); 5556 } 5557 Size = llvm::alignTo(Size, Alignment); 5558 5559 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5560 // For aggregates with 16-byte alignment, we use i128. 5561 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5562 return ABIArgInfo::getDirect( 5563 Size == Alignment ? BaseTy 5564 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5565 } 5566 5567 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5568 } 5569 5570 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5571 bool IsVariadic) const { 5572 if (RetTy->isVoidType()) 5573 return ABIArgInfo::getIgnore(); 5574 5575 // Large vector types should be returned via memory. 5576 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5577 return getNaturalAlignIndirect(RetTy); 5578 5579 if (!isAggregateTypeForABI(RetTy)) { 5580 // Treat an enum type as its underlying type. 5581 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5582 RetTy = EnumTy->getDecl()->getIntegerType(); 5583 5584 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5585 if (EIT->getNumBits() > 128) 5586 return getNaturalAlignIndirect(RetTy); 5587 5588 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5589 ? ABIArgInfo::getExtend(RetTy) 5590 : ABIArgInfo::getDirect()); 5591 } 5592 5593 uint64_t Size = getContext().getTypeSize(RetTy); 5594 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5595 return ABIArgInfo::getIgnore(); 5596 5597 const Type *Base = nullptr; 5598 uint64_t Members = 0; 5599 if (isHomogeneousAggregate(RetTy, Base, Members) && 5600 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5601 IsVariadic)) 5602 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5603 return ABIArgInfo::getDirect(); 5604 5605 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5606 if (Size <= 128) { 5607 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5608 // same size and alignment. 5609 if (getTarget().isRenderScriptTarget()) { 5610 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5611 } 5612 unsigned Alignment = getContext().getTypeAlign(RetTy); 5613 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5614 5615 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5616 // For aggregates with 16-byte alignment, we use i128. 5617 if (Alignment < 128 && Size == 128) { 5618 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5619 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5620 } 5621 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5622 } 5623 5624 return getNaturalAlignIndirect(RetTy); 5625 } 5626 5627 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5628 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5629 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5630 // Check whether VT is legal. 5631 unsigned NumElements = VT->getNumElements(); 5632 uint64_t Size = getContext().getTypeSize(VT); 5633 // NumElements should be power of 2. 5634 if (!llvm::isPowerOf2_32(NumElements)) 5635 return true; 5636 5637 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5638 // vectors for some reason. 5639 llvm::Triple Triple = getTarget().getTriple(); 5640 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5641 Triple.isOSBinFormatMachO()) 5642 return Size <= 32; 5643 5644 return Size != 64 && (Size != 128 || NumElements == 1); 5645 } 5646 return false; 5647 } 5648 5649 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5650 llvm::Type *eltTy, 5651 unsigned elts) const { 5652 if (!llvm::isPowerOf2_32(elts)) 5653 return false; 5654 if (totalSize.getQuantity() != 8 && 5655 (totalSize.getQuantity() != 16 || elts == 1)) 5656 return false; 5657 return true; 5658 } 5659 5660 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5661 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5662 // point type or a short-vector type. This is the same as the 32-bit ABI, 5663 // but with the difference that any floating-point type is allowed, 5664 // including __fp16. 5665 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5666 if (BT->isFloatingPoint()) 5667 return true; 5668 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5669 unsigned VecSize = getContext().getTypeSize(VT); 5670 if (VecSize == 64 || VecSize == 128) 5671 return true; 5672 } 5673 return false; 5674 } 5675 5676 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5677 uint64_t Members) const { 5678 return Members <= 4; 5679 } 5680 5681 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5682 QualType Ty, 5683 CodeGenFunction &CGF) const { 5684 ABIArgInfo AI = classifyArgumentType(Ty); 5685 bool IsIndirect = AI.isIndirect(); 5686 5687 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5688 if (IsIndirect) 5689 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5690 else if (AI.getCoerceToType()) 5691 BaseTy = AI.getCoerceToType(); 5692 5693 unsigned NumRegs = 1; 5694 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5695 BaseTy = ArrTy->getElementType(); 5696 NumRegs = ArrTy->getNumElements(); 5697 } 5698 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5699 5700 // The AArch64 va_list type and handling is specified in the Procedure Call 5701 // Standard, section B.4: 5702 // 5703 // struct { 5704 // void *__stack; 5705 // void *__gr_top; 5706 // void *__vr_top; 5707 // int __gr_offs; 5708 // int __vr_offs; 5709 // }; 5710 5711 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5712 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5713 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5714 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5715 5716 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5717 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5718 5719 Address reg_offs_p = Address::invalid(); 5720 llvm::Value *reg_offs = nullptr; 5721 int reg_top_index; 5722 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5723 if (!IsFPR) { 5724 // 3 is the field number of __gr_offs 5725 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5726 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5727 reg_top_index = 1; // field number for __gr_top 5728 RegSize = llvm::alignTo(RegSize, 8); 5729 } else { 5730 // 4 is the field number of __vr_offs. 5731 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5732 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5733 reg_top_index = 2; // field number for __vr_top 5734 RegSize = 16 * NumRegs; 5735 } 5736 5737 //======================================= 5738 // Find out where argument was passed 5739 //======================================= 5740 5741 // If reg_offs >= 0 we're already using the stack for this type of 5742 // argument. We don't want to keep updating reg_offs (in case it overflows, 5743 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5744 // whatever they get). 5745 llvm::Value *UsingStack = nullptr; 5746 UsingStack = CGF.Builder.CreateICmpSGE( 5747 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5748 5749 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5750 5751 // Otherwise, at least some kind of argument could go in these registers, the 5752 // question is whether this particular type is too big. 5753 CGF.EmitBlock(MaybeRegBlock); 5754 5755 // Integer arguments may need to correct register alignment (for example a 5756 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5757 // align __gr_offs to calculate the potential address. 5758 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5759 int Align = TyAlign.getQuantity(); 5760 5761 reg_offs = CGF.Builder.CreateAdd( 5762 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5763 "align_regoffs"); 5764 reg_offs = CGF.Builder.CreateAnd( 5765 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5766 "aligned_regoffs"); 5767 } 5768 5769 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5770 // The fact that this is done unconditionally reflects the fact that 5771 // allocating an argument to the stack also uses up all the remaining 5772 // registers of the appropriate kind. 5773 llvm::Value *NewOffset = nullptr; 5774 NewOffset = CGF.Builder.CreateAdd( 5775 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5776 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5777 5778 // Now we're in a position to decide whether this argument really was in 5779 // registers or not. 5780 llvm::Value *InRegs = nullptr; 5781 InRegs = CGF.Builder.CreateICmpSLE( 5782 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5783 5784 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5785 5786 //======================================= 5787 // Argument was in registers 5788 //======================================= 5789 5790 // Now we emit the code for if the argument was originally passed in 5791 // registers. First start the appropriate block: 5792 CGF.EmitBlock(InRegBlock); 5793 5794 llvm::Value *reg_top = nullptr; 5795 Address reg_top_p = 5796 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5797 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5798 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5799 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5800 Address RegAddr = Address::invalid(); 5801 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5802 5803 if (IsIndirect) { 5804 // If it's been passed indirectly (actually a struct), whatever we find from 5805 // stored registers or on the stack will actually be a struct **. 5806 MemTy = llvm::PointerType::getUnqual(MemTy); 5807 } 5808 5809 const Type *Base = nullptr; 5810 uint64_t NumMembers = 0; 5811 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5812 if (IsHFA && NumMembers > 1) { 5813 // Homogeneous aggregates passed in registers will have their elements split 5814 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5815 // qN+1, ...). We reload and store into a temporary local variable 5816 // contiguously. 5817 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5818 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5819 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5820 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5821 Address Tmp = CGF.CreateTempAlloca(HFATy, 5822 std::max(TyAlign, BaseTyInfo.second)); 5823 5824 // On big-endian platforms, the value will be right-aligned in its slot. 5825 int Offset = 0; 5826 if (CGF.CGM.getDataLayout().isBigEndian() && 5827 BaseTyInfo.first.getQuantity() < 16) 5828 Offset = 16 - BaseTyInfo.first.getQuantity(); 5829 5830 for (unsigned i = 0; i < NumMembers; ++i) { 5831 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5832 Address LoadAddr = 5833 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5834 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5835 5836 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5837 5838 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5839 CGF.Builder.CreateStore(Elem, StoreAddr); 5840 } 5841 5842 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5843 } else { 5844 // Otherwise the object is contiguous in memory. 5845 5846 // It might be right-aligned in its slot. 5847 CharUnits SlotSize = BaseAddr.getAlignment(); 5848 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5849 (IsHFA || !isAggregateTypeForABI(Ty)) && 5850 TySize < SlotSize) { 5851 CharUnits Offset = SlotSize - TySize; 5852 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5853 } 5854 5855 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5856 } 5857 5858 CGF.EmitBranch(ContBlock); 5859 5860 //======================================= 5861 // Argument was on the stack 5862 //======================================= 5863 CGF.EmitBlock(OnStackBlock); 5864 5865 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5866 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5867 5868 // Again, stack arguments may need realignment. In this case both integer and 5869 // floating-point ones might be affected. 5870 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5871 int Align = TyAlign.getQuantity(); 5872 5873 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5874 5875 OnStackPtr = CGF.Builder.CreateAdd( 5876 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5877 "align_stack"); 5878 OnStackPtr = CGF.Builder.CreateAnd( 5879 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5880 "align_stack"); 5881 5882 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5883 } 5884 Address OnStackAddr(OnStackPtr, 5885 std::max(CharUnits::fromQuantity(8), TyAlign)); 5886 5887 // All stack slots are multiples of 8 bytes. 5888 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5889 CharUnits StackSize; 5890 if (IsIndirect) 5891 StackSize = StackSlotSize; 5892 else 5893 StackSize = TySize.alignTo(StackSlotSize); 5894 5895 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5896 llvm::Value *NewStack = 5897 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5898 5899 // Write the new value of __stack for the next call to va_arg 5900 CGF.Builder.CreateStore(NewStack, stack_p); 5901 5902 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5903 TySize < StackSlotSize) { 5904 CharUnits Offset = StackSlotSize - TySize; 5905 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5906 } 5907 5908 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5909 5910 CGF.EmitBranch(ContBlock); 5911 5912 //======================================= 5913 // Tidy up 5914 //======================================= 5915 CGF.EmitBlock(ContBlock); 5916 5917 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5918 OnStackAddr, OnStackBlock, "vaargs.addr"); 5919 5920 if (IsIndirect) 5921 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5922 TyAlign); 5923 5924 return ResAddr; 5925 } 5926 5927 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5928 CodeGenFunction &CGF) const { 5929 // The backend's lowering doesn't support va_arg for aggregates or 5930 // illegal vector types. Lower VAArg here for these cases and use 5931 // the LLVM va_arg instruction for everything else. 5932 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5933 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5934 5935 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5936 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5937 5938 // Empty records are ignored for parameter passing purposes. 5939 if (isEmptyRecord(getContext(), Ty, true)) { 5940 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5941 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5942 return Addr; 5943 } 5944 5945 // The size of the actual thing passed, which might end up just 5946 // being a pointer for indirect types. 5947 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5948 5949 // Arguments bigger than 16 bytes which aren't homogeneous 5950 // aggregates should be passed indirectly. 5951 bool IsIndirect = false; 5952 if (TyInfo.first.getQuantity() > 16) { 5953 const Type *Base = nullptr; 5954 uint64_t Members = 0; 5955 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5956 } 5957 5958 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5959 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5960 } 5961 5962 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5963 QualType Ty) const { 5964 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5965 CGF.getContext().getTypeInfoInChars(Ty), 5966 CharUnits::fromQuantity(8), 5967 /*allowHigherAlign*/ false); 5968 } 5969 5970 //===----------------------------------------------------------------------===// 5971 // ARM ABI Implementation 5972 //===----------------------------------------------------------------------===// 5973 5974 namespace { 5975 5976 class ARMABIInfo : public SwiftABIInfo { 5977 public: 5978 enum ABIKind { 5979 APCS = 0, 5980 AAPCS = 1, 5981 AAPCS_VFP = 2, 5982 AAPCS16_VFP = 3, 5983 }; 5984 5985 private: 5986 ABIKind Kind; 5987 bool IsFloatABISoftFP; 5988 5989 public: 5990 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5991 : SwiftABIInfo(CGT), Kind(_Kind) { 5992 setCCs(); 5993 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 5994 CGT.getCodeGenOpts().FloatABI == ""; // default 5995 } 5996 5997 bool isEABI() const { 5998 switch (getTarget().getTriple().getEnvironment()) { 5999 case llvm::Triple::Android: 6000 case llvm::Triple::EABI: 6001 case llvm::Triple::EABIHF: 6002 case llvm::Triple::GNUEABI: 6003 case llvm::Triple::GNUEABIHF: 6004 case llvm::Triple::MuslEABI: 6005 case llvm::Triple::MuslEABIHF: 6006 return true; 6007 default: 6008 return false; 6009 } 6010 } 6011 6012 bool isEABIHF() const { 6013 switch (getTarget().getTriple().getEnvironment()) { 6014 case llvm::Triple::EABIHF: 6015 case llvm::Triple::GNUEABIHF: 6016 case llvm::Triple::MuslEABIHF: 6017 return true; 6018 default: 6019 return false; 6020 } 6021 } 6022 6023 ABIKind getABIKind() const { return Kind; } 6024 6025 bool allowBFloatArgsAndRet() const override { 6026 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6027 } 6028 6029 private: 6030 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6031 unsigned functionCallConv) const; 6032 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6033 unsigned functionCallConv) const; 6034 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6035 uint64_t Members) const; 6036 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6037 bool isIllegalVectorType(QualType Ty) const; 6038 bool containsAnyFP16Vectors(QualType Ty) const; 6039 6040 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6041 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6042 uint64_t Members) const override; 6043 6044 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6045 6046 void computeInfo(CGFunctionInfo &FI) const override; 6047 6048 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6049 QualType Ty) const override; 6050 6051 llvm::CallingConv::ID getLLVMDefaultCC() const; 6052 llvm::CallingConv::ID getABIDefaultCC() const; 6053 void setCCs(); 6054 6055 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6056 bool asReturnValue) const override { 6057 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6058 } 6059 bool isSwiftErrorInRegister() const override { 6060 return true; 6061 } 6062 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6063 unsigned elts) const override; 6064 }; 6065 6066 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6067 public: 6068 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6069 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6070 6071 const ARMABIInfo &getABIInfo() const { 6072 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6073 } 6074 6075 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6076 return 13; 6077 } 6078 6079 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6080 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6081 } 6082 6083 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6084 llvm::Value *Address) const override { 6085 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6086 6087 // 0-15 are the 16 integer registers. 6088 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6089 return false; 6090 } 6091 6092 unsigned getSizeOfUnwindException() const override { 6093 if (getABIInfo().isEABI()) return 88; 6094 return TargetCodeGenInfo::getSizeOfUnwindException(); 6095 } 6096 6097 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6098 CodeGen::CodeGenModule &CGM) const override { 6099 if (GV->isDeclaration()) 6100 return; 6101 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6102 if (!FD) 6103 return; 6104 6105 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6106 if (!Attr) 6107 return; 6108 6109 const char *Kind; 6110 switch (Attr->getInterrupt()) { 6111 case ARMInterruptAttr::Generic: Kind = ""; break; 6112 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6113 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6114 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6115 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6116 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6117 } 6118 6119 llvm::Function *Fn = cast<llvm::Function>(GV); 6120 6121 Fn->addFnAttr("interrupt", Kind); 6122 6123 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6124 if (ABI == ARMABIInfo::APCS) 6125 return; 6126 6127 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6128 // however this is not necessarily true on taking any interrupt. Instruct 6129 // the backend to perform a realignment as part of the function prologue. 6130 llvm::AttrBuilder B; 6131 B.addStackAlignmentAttr(8); 6132 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6133 } 6134 }; 6135 6136 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6137 public: 6138 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6139 : ARMTargetCodeGenInfo(CGT, K) {} 6140 6141 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6142 CodeGen::CodeGenModule &CGM) const override; 6143 6144 void getDependentLibraryOption(llvm::StringRef Lib, 6145 llvm::SmallString<24> &Opt) const override { 6146 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6147 } 6148 6149 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6150 llvm::SmallString<32> &Opt) const override { 6151 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6152 } 6153 }; 6154 6155 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6156 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6157 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6158 if (GV->isDeclaration()) 6159 return; 6160 addStackProbeTargetAttributes(D, GV, CGM); 6161 } 6162 } 6163 6164 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6165 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6166 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6167 FI.getCallingConvention()); 6168 6169 for (auto &I : FI.arguments()) 6170 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6171 FI.getCallingConvention()); 6172 6173 6174 // Always honor user-specified calling convention. 6175 if (FI.getCallingConvention() != llvm::CallingConv::C) 6176 return; 6177 6178 llvm::CallingConv::ID cc = getRuntimeCC(); 6179 if (cc != llvm::CallingConv::C) 6180 FI.setEffectiveCallingConvention(cc); 6181 } 6182 6183 /// Return the default calling convention that LLVM will use. 6184 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6185 // The default calling convention that LLVM will infer. 6186 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6187 return llvm::CallingConv::ARM_AAPCS_VFP; 6188 else if (isEABI()) 6189 return llvm::CallingConv::ARM_AAPCS; 6190 else 6191 return llvm::CallingConv::ARM_APCS; 6192 } 6193 6194 /// Return the calling convention that our ABI would like us to use 6195 /// as the C calling convention. 6196 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6197 switch (getABIKind()) { 6198 case APCS: return llvm::CallingConv::ARM_APCS; 6199 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6200 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6201 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6202 } 6203 llvm_unreachable("bad ABI kind"); 6204 } 6205 6206 void ARMABIInfo::setCCs() { 6207 assert(getRuntimeCC() == llvm::CallingConv::C); 6208 6209 // Don't muddy up the IR with a ton of explicit annotations if 6210 // they'd just match what LLVM will infer from the triple. 6211 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6212 if (abiCC != getLLVMDefaultCC()) 6213 RuntimeCC = abiCC; 6214 } 6215 6216 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6217 uint64_t Size = getContext().getTypeSize(Ty); 6218 if (Size <= 32) { 6219 llvm::Type *ResType = 6220 llvm::Type::getInt32Ty(getVMContext()); 6221 return ABIArgInfo::getDirect(ResType); 6222 } 6223 if (Size == 64 || Size == 128) { 6224 auto *ResType = llvm::FixedVectorType::get( 6225 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6226 return ABIArgInfo::getDirect(ResType); 6227 } 6228 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6229 } 6230 6231 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6232 const Type *Base, 6233 uint64_t Members) const { 6234 assert(Base && "Base class should be set for homogeneous aggregate"); 6235 // Base can be a floating-point or a vector. 6236 if (const VectorType *VT = Base->getAs<VectorType>()) { 6237 // FP16 vectors should be converted to integer vectors 6238 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6239 uint64_t Size = getContext().getTypeSize(VT); 6240 auto *NewVecTy = llvm::FixedVectorType::get( 6241 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6242 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6243 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6244 } 6245 } 6246 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6247 } 6248 6249 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6250 unsigned functionCallConv) const { 6251 // 6.1.2.1 The following argument types are VFP CPRCs: 6252 // A single-precision floating-point type (including promoted 6253 // half-precision types); A double-precision floating-point type; 6254 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6255 // with a Base Type of a single- or double-precision floating-point type, 6256 // 64-bit containerized vectors or 128-bit containerized vectors with one 6257 // to four Elements. 6258 // Variadic functions should always marshal to the base standard. 6259 bool IsAAPCS_VFP = 6260 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6261 6262 Ty = useFirstFieldIfTransparentUnion(Ty); 6263 6264 // Handle illegal vector types here. 6265 if (isIllegalVectorType(Ty)) 6266 return coerceIllegalVector(Ty); 6267 6268 if (!isAggregateTypeForABI(Ty)) { 6269 // Treat an enum type as its underlying type. 6270 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6271 Ty = EnumTy->getDecl()->getIntegerType(); 6272 } 6273 6274 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6275 if (EIT->getNumBits() > 64) 6276 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6277 6278 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6279 : ABIArgInfo::getDirect()); 6280 } 6281 6282 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6283 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6284 } 6285 6286 // Ignore empty records. 6287 if (isEmptyRecord(getContext(), Ty, true)) 6288 return ABIArgInfo::getIgnore(); 6289 6290 if (IsAAPCS_VFP) { 6291 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6292 // into VFP registers. 6293 const Type *Base = nullptr; 6294 uint64_t Members = 0; 6295 if (isHomogeneousAggregate(Ty, Base, Members)) 6296 return classifyHomogeneousAggregate(Ty, Base, Members); 6297 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6298 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6299 // this convention even for a variadic function: the backend will use GPRs 6300 // if needed. 6301 const Type *Base = nullptr; 6302 uint64_t Members = 0; 6303 if (isHomogeneousAggregate(Ty, Base, Members)) { 6304 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6305 llvm::Type *Ty = 6306 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6307 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6308 } 6309 } 6310 6311 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6312 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6313 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6314 // bigger than 128-bits, they get placed in space allocated by the caller, 6315 // and a pointer is passed. 6316 return ABIArgInfo::getIndirect( 6317 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6318 } 6319 6320 // Support byval for ARM. 6321 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6322 // most 8-byte. We realign the indirect argument if type alignment is bigger 6323 // than ABI alignment. 6324 uint64_t ABIAlign = 4; 6325 uint64_t TyAlign; 6326 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6327 getABIKind() == ARMABIInfo::AAPCS) { 6328 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6329 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6330 } else { 6331 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6332 } 6333 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6334 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6335 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6336 /*ByVal=*/true, 6337 /*Realign=*/TyAlign > ABIAlign); 6338 } 6339 6340 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6341 // same size and alignment. 6342 if (getTarget().isRenderScriptTarget()) { 6343 return coerceToIntArray(Ty, getContext(), getVMContext()); 6344 } 6345 6346 // Otherwise, pass by coercing to a structure of the appropriate size. 6347 llvm::Type* ElemTy; 6348 unsigned SizeRegs; 6349 // FIXME: Try to match the types of the arguments more accurately where 6350 // we can. 6351 if (TyAlign <= 4) { 6352 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6353 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6354 } else { 6355 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6356 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6357 } 6358 6359 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6360 } 6361 6362 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6363 llvm::LLVMContext &VMContext) { 6364 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6365 // is called integer-like if its size is less than or equal to one word, and 6366 // the offset of each of its addressable sub-fields is zero. 6367 6368 uint64_t Size = Context.getTypeSize(Ty); 6369 6370 // Check that the type fits in a word. 6371 if (Size > 32) 6372 return false; 6373 6374 // FIXME: Handle vector types! 6375 if (Ty->isVectorType()) 6376 return false; 6377 6378 // Float types are never treated as "integer like". 6379 if (Ty->isRealFloatingType()) 6380 return false; 6381 6382 // If this is a builtin or pointer type then it is ok. 6383 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6384 return true; 6385 6386 // Small complex integer types are "integer like". 6387 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6388 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6389 6390 // Single element and zero sized arrays should be allowed, by the definition 6391 // above, but they are not. 6392 6393 // Otherwise, it must be a record type. 6394 const RecordType *RT = Ty->getAs<RecordType>(); 6395 if (!RT) return false; 6396 6397 // Ignore records with flexible arrays. 6398 const RecordDecl *RD = RT->getDecl(); 6399 if (RD->hasFlexibleArrayMember()) 6400 return false; 6401 6402 // Check that all sub-fields are at offset 0, and are themselves "integer 6403 // like". 6404 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6405 6406 bool HadField = false; 6407 unsigned idx = 0; 6408 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6409 i != e; ++i, ++idx) { 6410 const FieldDecl *FD = *i; 6411 6412 // Bit-fields are not addressable, we only need to verify they are "integer 6413 // like". We still have to disallow a subsequent non-bitfield, for example: 6414 // struct { int : 0; int x } 6415 // is non-integer like according to gcc. 6416 if (FD->isBitField()) { 6417 if (!RD->isUnion()) 6418 HadField = true; 6419 6420 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6421 return false; 6422 6423 continue; 6424 } 6425 6426 // Check if this field is at offset 0. 6427 if (Layout.getFieldOffset(idx) != 0) 6428 return false; 6429 6430 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6431 return false; 6432 6433 // Only allow at most one field in a structure. This doesn't match the 6434 // wording above, but follows gcc in situations with a field following an 6435 // empty structure. 6436 if (!RD->isUnion()) { 6437 if (HadField) 6438 return false; 6439 6440 HadField = true; 6441 } 6442 } 6443 6444 return true; 6445 } 6446 6447 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6448 unsigned functionCallConv) const { 6449 6450 // Variadic functions should always marshal to the base standard. 6451 bool IsAAPCS_VFP = 6452 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6453 6454 if (RetTy->isVoidType()) 6455 return ABIArgInfo::getIgnore(); 6456 6457 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6458 // Large vector types should be returned via memory. 6459 if (getContext().getTypeSize(RetTy) > 128) 6460 return getNaturalAlignIndirect(RetTy); 6461 // TODO: FP16/BF16 vectors should be converted to integer vectors 6462 // This check is similar to isIllegalVectorType - refactor? 6463 if ((!getTarget().hasLegalHalfType() && 6464 (VT->getElementType()->isFloat16Type() || 6465 VT->getElementType()->isHalfType())) || 6466 (IsFloatABISoftFP && 6467 VT->getElementType()->isBFloat16Type())) 6468 return coerceIllegalVector(RetTy); 6469 } 6470 6471 if (!isAggregateTypeForABI(RetTy)) { 6472 // Treat an enum type as its underlying type. 6473 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6474 RetTy = EnumTy->getDecl()->getIntegerType(); 6475 6476 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6477 if (EIT->getNumBits() > 64) 6478 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6479 6480 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6481 : ABIArgInfo::getDirect(); 6482 } 6483 6484 // Are we following APCS? 6485 if (getABIKind() == APCS) { 6486 if (isEmptyRecord(getContext(), RetTy, false)) 6487 return ABIArgInfo::getIgnore(); 6488 6489 // Complex types are all returned as packed integers. 6490 // 6491 // FIXME: Consider using 2 x vector types if the back end handles them 6492 // correctly. 6493 if (RetTy->isAnyComplexType()) 6494 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6495 getVMContext(), getContext().getTypeSize(RetTy))); 6496 6497 // Integer like structures are returned in r0. 6498 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6499 // Return in the smallest viable integer type. 6500 uint64_t Size = getContext().getTypeSize(RetTy); 6501 if (Size <= 8) 6502 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6503 if (Size <= 16) 6504 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6505 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6506 } 6507 6508 // Otherwise return in memory. 6509 return getNaturalAlignIndirect(RetTy); 6510 } 6511 6512 // Otherwise this is an AAPCS variant. 6513 6514 if (isEmptyRecord(getContext(), RetTy, true)) 6515 return ABIArgInfo::getIgnore(); 6516 6517 // Check for homogeneous aggregates with AAPCS-VFP. 6518 if (IsAAPCS_VFP) { 6519 const Type *Base = nullptr; 6520 uint64_t Members = 0; 6521 if (isHomogeneousAggregate(RetTy, Base, Members)) 6522 return classifyHomogeneousAggregate(RetTy, Base, Members); 6523 } 6524 6525 // Aggregates <= 4 bytes are returned in r0; other aggregates 6526 // are returned indirectly. 6527 uint64_t Size = getContext().getTypeSize(RetTy); 6528 if (Size <= 32) { 6529 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6530 // same size and alignment. 6531 if (getTarget().isRenderScriptTarget()) { 6532 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6533 } 6534 if (getDataLayout().isBigEndian()) 6535 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6536 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6537 6538 // Return in the smallest viable integer type. 6539 if (Size <= 8) 6540 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6541 if (Size <= 16) 6542 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6543 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6544 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6545 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6546 llvm::Type *CoerceTy = 6547 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6548 return ABIArgInfo::getDirect(CoerceTy); 6549 } 6550 6551 return getNaturalAlignIndirect(RetTy); 6552 } 6553 6554 /// isIllegalVector - check whether Ty is an illegal vector type. 6555 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6556 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6557 // On targets that don't support half, fp16 or bfloat, they are expanded 6558 // into float, and we don't want the ABI to depend on whether or not they 6559 // are supported in hardware. Thus return false to coerce vectors of these 6560 // types into integer vectors. 6561 // We do not depend on hasLegalHalfType for bfloat as it is a 6562 // separate IR type. 6563 if ((!getTarget().hasLegalHalfType() && 6564 (VT->getElementType()->isFloat16Type() || 6565 VT->getElementType()->isHalfType())) || 6566 (IsFloatABISoftFP && 6567 VT->getElementType()->isBFloat16Type())) 6568 return true; 6569 if (isAndroid()) { 6570 // Android shipped using Clang 3.1, which supported a slightly different 6571 // vector ABI. The primary differences were that 3-element vector types 6572 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6573 // accepts that legacy behavior for Android only. 6574 // Check whether VT is legal. 6575 unsigned NumElements = VT->getNumElements(); 6576 // NumElements should be power of 2 or equal to 3. 6577 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6578 return true; 6579 } else { 6580 // Check whether VT is legal. 6581 unsigned NumElements = VT->getNumElements(); 6582 uint64_t Size = getContext().getTypeSize(VT); 6583 // NumElements should be power of 2. 6584 if (!llvm::isPowerOf2_32(NumElements)) 6585 return true; 6586 // Size should be greater than 32 bits. 6587 return Size <= 32; 6588 } 6589 } 6590 return false; 6591 } 6592 6593 /// Return true if a type contains any 16-bit floating point vectors 6594 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6595 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6596 uint64_t NElements = AT->getSize().getZExtValue(); 6597 if (NElements == 0) 6598 return false; 6599 return containsAnyFP16Vectors(AT->getElementType()); 6600 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6601 const RecordDecl *RD = RT->getDecl(); 6602 6603 // If this is a C++ record, check the bases first. 6604 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6605 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6606 return containsAnyFP16Vectors(B.getType()); 6607 })) 6608 return true; 6609 6610 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6611 return FD && containsAnyFP16Vectors(FD->getType()); 6612 })) 6613 return true; 6614 6615 return false; 6616 } else { 6617 if (const VectorType *VT = Ty->getAs<VectorType>()) 6618 return (VT->getElementType()->isFloat16Type() || 6619 VT->getElementType()->isBFloat16Type() || 6620 VT->getElementType()->isHalfType()); 6621 return false; 6622 } 6623 } 6624 6625 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6626 llvm::Type *eltTy, 6627 unsigned numElts) const { 6628 if (!llvm::isPowerOf2_32(numElts)) 6629 return false; 6630 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6631 if (size > 64) 6632 return false; 6633 if (vectorSize.getQuantity() != 8 && 6634 (vectorSize.getQuantity() != 16 || numElts == 1)) 6635 return false; 6636 return true; 6637 } 6638 6639 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6640 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6641 // double, or 64-bit or 128-bit vectors. 6642 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6643 if (BT->getKind() == BuiltinType::Float || 6644 BT->getKind() == BuiltinType::Double || 6645 BT->getKind() == BuiltinType::LongDouble) 6646 return true; 6647 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6648 unsigned VecSize = getContext().getTypeSize(VT); 6649 if (VecSize == 64 || VecSize == 128) 6650 return true; 6651 } 6652 return false; 6653 } 6654 6655 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6656 uint64_t Members) const { 6657 return Members <= 4; 6658 } 6659 6660 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6661 bool acceptHalf) const { 6662 // Give precedence to user-specified calling conventions. 6663 if (callConvention != llvm::CallingConv::C) 6664 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6665 else 6666 return (getABIKind() == AAPCS_VFP) || 6667 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6668 } 6669 6670 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6671 QualType Ty) const { 6672 CharUnits SlotSize = CharUnits::fromQuantity(4); 6673 6674 // Empty records are ignored for parameter passing purposes. 6675 if (isEmptyRecord(getContext(), Ty, true)) { 6676 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6677 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6678 return Addr; 6679 } 6680 6681 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6682 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6683 6684 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6685 bool IsIndirect = false; 6686 const Type *Base = nullptr; 6687 uint64_t Members = 0; 6688 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6689 IsIndirect = true; 6690 6691 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6692 // allocated by the caller. 6693 } else if (TySize > CharUnits::fromQuantity(16) && 6694 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6695 !isHomogeneousAggregate(Ty, Base, Members)) { 6696 IsIndirect = true; 6697 6698 // Otherwise, bound the type's ABI alignment. 6699 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6700 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6701 // Our callers should be prepared to handle an under-aligned address. 6702 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6703 getABIKind() == ARMABIInfo::AAPCS) { 6704 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6705 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6706 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6707 // ARMv7k allows type alignment up to 16 bytes. 6708 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6709 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6710 } else { 6711 TyAlignForABI = CharUnits::fromQuantity(4); 6712 } 6713 6714 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6715 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6716 SlotSize, /*AllowHigherAlign*/ true); 6717 } 6718 6719 //===----------------------------------------------------------------------===// 6720 // NVPTX ABI Implementation 6721 //===----------------------------------------------------------------------===// 6722 6723 namespace { 6724 6725 class NVPTXTargetCodeGenInfo; 6726 6727 class NVPTXABIInfo : public ABIInfo { 6728 NVPTXTargetCodeGenInfo &CGInfo; 6729 6730 public: 6731 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6732 : ABIInfo(CGT), CGInfo(Info) {} 6733 6734 ABIArgInfo classifyReturnType(QualType RetTy) const; 6735 ABIArgInfo classifyArgumentType(QualType Ty) const; 6736 6737 void computeInfo(CGFunctionInfo &FI) const override; 6738 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6739 QualType Ty) const override; 6740 bool isUnsupportedType(QualType T) const; 6741 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6742 }; 6743 6744 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6745 public: 6746 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6747 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6748 6749 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6750 CodeGen::CodeGenModule &M) const override; 6751 bool shouldEmitStaticExternCAliases() const override; 6752 6753 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6754 // On the device side, surface reference is represented as an object handle 6755 // in 64-bit integer. 6756 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6757 } 6758 6759 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6760 // On the device side, texture reference is represented as an object handle 6761 // in 64-bit integer. 6762 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6763 } 6764 6765 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6766 LValue Src) const override { 6767 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6768 return true; 6769 } 6770 6771 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6772 LValue Src) const override { 6773 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6774 return true; 6775 } 6776 6777 private: 6778 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6779 // resulting MDNode to the nvvm.annotations MDNode. 6780 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6781 int Operand); 6782 6783 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6784 LValue Src) { 6785 llvm::Value *Handle = nullptr; 6786 llvm::Constant *C = 6787 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6788 // Lookup `addrspacecast` through the constant pointer if any. 6789 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6790 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6791 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6792 // Load the handle from the specific global variable using 6793 // `nvvm.texsurf.handle.internal` intrinsic. 6794 Handle = CGF.EmitRuntimeCall( 6795 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6796 {GV->getType()}), 6797 {GV}, "texsurf_handle"); 6798 } else 6799 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6800 CGF.EmitStoreOfScalar(Handle, Dst); 6801 } 6802 }; 6803 6804 /// Checks if the type is unsupported directly by the current target. 6805 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6806 ASTContext &Context = getContext(); 6807 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6808 return true; 6809 if (!Context.getTargetInfo().hasFloat128Type() && 6810 (T->isFloat128Type() || 6811 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6812 return true; 6813 if (const auto *EIT = T->getAs<ExtIntType>()) 6814 return EIT->getNumBits() > 6815 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6816 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6817 Context.getTypeSize(T) > 64U) 6818 return true; 6819 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6820 return isUnsupportedType(AT->getElementType()); 6821 const auto *RT = T->getAs<RecordType>(); 6822 if (!RT) 6823 return false; 6824 const RecordDecl *RD = RT->getDecl(); 6825 6826 // If this is a C++ record, check the bases first. 6827 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6828 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6829 if (isUnsupportedType(I.getType())) 6830 return true; 6831 6832 for (const FieldDecl *I : RD->fields()) 6833 if (isUnsupportedType(I->getType())) 6834 return true; 6835 return false; 6836 } 6837 6838 /// Coerce the given type into an array with maximum allowed size of elements. 6839 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 6840 unsigned MaxSize) const { 6841 // Alignment and Size are measured in bits. 6842 const uint64_t Size = getContext().getTypeSize(Ty); 6843 const uint64_t Alignment = getContext().getTypeAlign(Ty); 6844 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6845 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 6846 const uint64_t NumElements = (Size + Div - 1) / Div; 6847 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6848 } 6849 6850 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6851 if (RetTy->isVoidType()) 6852 return ABIArgInfo::getIgnore(); 6853 6854 if (getContext().getLangOpts().OpenMP && 6855 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 6856 return coerceToIntArrayWithLimit(RetTy, 64); 6857 6858 // note: this is different from default ABI 6859 if (!RetTy->isScalarType()) 6860 return ABIArgInfo::getDirect(); 6861 6862 // Treat an enum type as its underlying type. 6863 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6864 RetTy = EnumTy->getDecl()->getIntegerType(); 6865 6866 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6867 : ABIArgInfo::getDirect()); 6868 } 6869 6870 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6871 // Treat an enum type as its underlying type. 6872 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6873 Ty = EnumTy->getDecl()->getIntegerType(); 6874 6875 // Return aggregates type as indirect by value 6876 if (isAggregateTypeForABI(Ty)) { 6877 // Under CUDA device compilation, tex/surf builtin types are replaced with 6878 // object types and passed directly. 6879 if (getContext().getLangOpts().CUDAIsDevice) { 6880 if (Ty->isCUDADeviceBuiltinSurfaceType()) 6881 return ABIArgInfo::getDirect( 6882 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 6883 if (Ty->isCUDADeviceBuiltinTextureType()) 6884 return ABIArgInfo::getDirect( 6885 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 6886 } 6887 return getNaturalAlignIndirect(Ty, /* byval */ true); 6888 } 6889 6890 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 6891 if ((EIT->getNumBits() > 128) || 6892 (!getContext().getTargetInfo().hasInt128Type() && 6893 EIT->getNumBits() > 64)) 6894 return getNaturalAlignIndirect(Ty, /* byval */ true); 6895 } 6896 6897 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6898 : ABIArgInfo::getDirect()); 6899 } 6900 6901 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6902 if (!getCXXABI().classifyReturnType(FI)) 6903 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6904 for (auto &I : FI.arguments()) 6905 I.info = classifyArgumentType(I.type); 6906 6907 // Always honor user-specified calling convention. 6908 if (FI.getCallingConvention() != llvm::CallingConv::C) 6909 return; 6910 6911 FI.setEffectiveCallingConvention(getRuntimeCC()); 6912 } 6913 6914 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6915 QualType Ty) const { 6916 llvm_unreachable("NVPTX does not support varargs"); 6917 } 6918 6919 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6920 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6921 if (GV->isDeclaration()) 6922 return; 6923 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 6924 if (VD) { 6925 if (M.getLangOpts().CUDA) { 6926 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 6927 addNVVMMetadata(GV, "surface", 1); 6928 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 6929 addNVVMMetadata(GV, "texture", 1); 6930 return; 6931 } 6932 } 6933 6934 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6935 if (!FD) return; 6936 6937 llvm::Function *F = cast<llvm::Function>(GV); 6938 6939 // Perform special handling in OpenCL mode 6940 if (M.getLangOpts().OpenCL) { 6941 // Use OpenCL function attributes to check for kernel functions 6942 // By default, all functions are device functions 6943 if (FD->hasAttr<OpenCLKernelAttr>()) { 6944 // OpenCL __kernel functions get kernel metadata 6945 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6946 addNVVMMetadata(F, "kernel", 1); 6947 // And kernel functions are not subject to inlining 6948 F->addFnAttr(llvm::Attribute::NoInline); 6949 } 6950 } 6951 6952 // Perform special handling in CUDA mode. 6953 if (M.getLangOpts().CUDA) { 6954 // CUDA __global__ functions get a kernel metadata entry. Since 6955 // __global__ functions cannot be called from the device, we do not 6956 // need to set the noinline attribute. 6957 if (FD->hasAttr<CUDAGlobalAttr>()) { 6958 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6959 addNVVMMetadata(F, "kernel", 1); 6960 } 6961 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6962 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6963 llvm::APSInt MaxThreads(32); 6964 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6965 if (MaxThreads > 0) 6966 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6967 6968 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6969 // not specified in __launch_bounds__ or if the user specified a 0 value, 6970 // we don't have to add a PTX directive. 6971 if (Attr->getMinBlocks()) { 6972 llvm::APSInt MinBlocks(32); 6973 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6974 if (MinBlocks > 0) 6975 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6976 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6977 } 6978 } 6979 } 6980 } 6981 6982 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 6983 StringRef Name, int Operand) { 6984 llvm::Module *M = GV->getParent(); 6985 llvm::LLVMContext &Ctx = M->getContext(); 6986 6987 // Get "nvvm.annotations" metadata node 6988 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6989 6990 llvm::Metadata *MDVals[] = { 6991 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 6992 llvm::ConstantAsMetadata::get( 6993 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6994 // Append metadata to nvvm.annotations 6995 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6996 } 6997 6998 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6999 return false; 7000 } 7001 } 7002 7003 //===----------------------------------------------------------------------===// 7004 // SystemZ ABI Implementation 7005 //===----------------------------------------------------------------------===// 7006 7007 namespace { 7008 7009 class SystemZABIInfo : public SwiftABIInfo { 7010 bool HasVector; 7011 bool IsSoftFloatABI; 7012 7013 public: 7014 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7015 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7016 7017 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7018 bool isCompoundType(QualType Ty) const; 7019 bool isVectorArgumentType(QualType Ty) const; 7020 bool isFPArgumentType(QualType Ty) const; 7021 QualType GetSingleElementType(QualType Ty) const; 7022 7023 ABIArgInfo classifyReturnType(QualType RetTy) const; 7024 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7025 7026 void computeInfo(CGFunctionInfo &FI) const override { 7027 if (!getCXXABI().classifyReturnType(FI)) 7028 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7029 for (auto &I : FI.arguments()) 7030 I.info = classifyArgumentType(I.type); 7031 } 7032 7033 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7034 QualType Ty) const override; 7035 7036 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7037 bool asReturnValue) const override { 7038 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7039 } 7040 bool isSwiftErrorInRegister() const override { 7041 return false; 7042 } 7043 }; 7044 7045 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7046 public: 7047 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7048 : TargetCodeGenInfo( 7049 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7050 }; 7051 7052 } 7053 7054 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7055 // Treat an enum type as its underlying type. 7056 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7057 Ty = EnumTy->getDecl()->getIntegerType(); 7058 7059 // Promotable integer types are required to be promoted by the ABI. 7060 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7061 return true; 7062 7063 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7064 if (EIT->getNumBits() < 64) 7065 return true; 7066 7067 // 32-bit values must also be promoted. 7068 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7069 switch (BT->getKind()) { 7070 case BuiltinType::Int: 7071 case BuiltinType::UInt: 7072 return true; 7073 default: 7074 return false; 7075 } 7076 return false; 7077 } 7078 7079 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7080 return (Ty->isAnyComplexType() || 7081 Ty->isVectorType() || 7082 isAggregateTypeForABI(Ty)); 7083 } 7084 7085 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7086 return (HasVector && 7087 Ty->isVectorType() && 7088 getContext().getTypeSize(Ty) <= 128); 7089 } 7090 7091 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7092 if (IsSoftFloatABI) 7093 return false; 7094 7095 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7096 switch (BT->getKind()) { 7097 case BuiltinType::Float: 7098 case BuiltinType::Double: 7099 return true; 7100 default: 7101 return false; 7102 } 7103 7104 return false; 7105 } 7106 7107 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7108 if (const RecordType *RT = Ty->getAsStructureType()) { 7109 const RecordDecl *RD = RT->getDecl(); 7110 QualType Found; 7111 7112 // If this is a C++ record, check the bases first. 7113 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7114 for (const auto &I : CXXRD->bases()) { 7115 QualType Base = I.getType(); 7116 7117 // Empty bases don't affect things either way. 7118 if (isEmptyRecord(getContext(), Base, true)) 7119 continue; 7120 7121 if (!Found.isNull()) 7122 return Ty; 7123 Found = GetSingleElementType(Base); 7124 } 7125 7126 // Check the fields. 7127 for (const auto *FD : RD->fields()) { 7128 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7129 // Unlike isSingleElementStruct(), empty structure and array fields 7130 // do count. So do anonymous bitfields that aren't zero-sized. 7131 if (getContext().getLangOpts().CPlusPlus && 7132 FD->isZeroLengthBitField(getContext())) 7133 continue; 7134 7135 // Unlike isSingleElementStruct(), arrays do not count. 7136 // Nested structures still do though. 7137 if (!Found.isNull()) 7138 return Ty; 7139 Found = GetSingleElementType(FD->getType()); 7140 } 7141 7142 // Unlike isSingleElementStruct(), trailing padding is allowed. 7143 // An 8-byte aligned struct s { float f; } is passed as a double. 7144 if (!Found.isNull()) 7145 return Found; 7146 } 7147 7148 return Ty; 7149 } 7150 7151 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7152 QualType Ty) const { 7153 // Assume that va_list type is correct; should be pointer to LLVM type: 7154 // struct { 7155 // i64 __gpr; 7156 // i64 __fpr; 7157 // i8 *__overflow_arg_area; 7158 // i8 *__reg_save_area; 7159 // }; 7160 7161 // Every non-vector argument occupies 8 bytes and is passed by preference 7162 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7163 // always passed on the stack. 7164 Ty = getContext().getCanonicalType(Ty); 7165 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7166 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7167 llvm::Type *DirectTy = ArgTy; 7168 ABIArgInfo AI = classifyArgumentType(Ty); 7169 bool IsIndirect = AI.isIndirect(); 7170 bool InFPRs = false; 7171 bool IsVector = false; 7172 CharUnits UnpaddedSize; 7173 CharUnits DirectAlign; 7174 if (IsIndirect) { 7175 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7176 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7177 } else { 7178 if (AI.getCoerceToType()) 7179 ArgTy = AI.getCoerceToType(); 7180 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7181 IsVector = ArgTy->isVectorTy(); 7182 UnpaddedSize = TyInfo.first; 7183 DirectAlign = TyInfo.second; 7184 } 7185 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7186 if (IsVector && UnpaddedSize > PaddedSize) 7187 PaddedSize = CharUnits::fromQuantity(16); 7188 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7189 7190 CharUnits Padding = (PaddedSize - UnpaddedSize); 7191 7192 llvm::Type *IndexTy = CGF.Int64Ty; 7193 llvm::Value *PaddedSizeV = 7194 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7195 7196 if (IsVector) { 7197 // Work out the address of a vector argument on the stack. 7198 // Vector arguments are always passed in the high bits of a 7199 // single (8 byte) or double (16 byte) stack slot. 7200 Address OverflowArgAreaPtr = 7201 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7202 Address OverflowArgArea = 7203 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7204 TyInfo.second); 7205 Address MemAddr = 7206 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7207 7208 // Update overflow_arg_area_ptr pointer 7209 llvm::Value *NewOverflowArgArea = 7210 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7211 "overflow_arg_area"); 7212 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7213 7214 return MemAddr; 7215 } 7216 7217 assert(PaddedSize.getQuantity() == 8); 7218 7219 unsigned MaxRegs, RegCountField, RegSaveIndex; 7220 CharUnits RegPadding; 7221 if (InFPRs) { 7222 MaxRegs = 4; // Maximum of 4 FPR arguments 7223 RegCountField = 1; // __fpr 7224 RegSaveIndex = 16; // save offset for f0 7225 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7226 } else { 7227 MaxRegs = 5; // Maximum of 5 GPR arguments 7228 RegCountField = 0; // __gpr 7229 RegSaveIndex = 2; // save offset for r2 7230 RegPadding = Padding; // values are passed in the low bits of a GPR 7231 } 7232 7233 Address RegCountPtr = 7234 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7235 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7236 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7237 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7238 "fits_in_regs"); 7239 7240 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7241 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7242 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7243 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7244 7245 // Emit code to load the value if it was passed in registers. 7246 CGF.EmitBlock(InRegBlock); 7247 7248 // Work out the address of an argument register. 7249 llvm::Value *ScaledRegCount = 7250 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7251 llvm::Value *RegBase = 7252 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7253 + RegPadding.getQuantity()); 7254 llvm::Value *RegOffset = 7255 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7256 Address RegSaveAreaPtr = 7257 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7258 llvm::Value *RegSaveArea = 7259 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7260 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7261 "raw_reg_addr"), 7262 PaddedSize); 7263 Address RegAddr = 7264 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7265 7266 // Update the register count 7267 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7268 llvm::Value *NewRegCount = 7269 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7270 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7271 CGF.EmitBranch(ContBlock); 7272 7273 // Emit code to load the value if it was passed in memory. 7274 CGF.EmitBlock(InMemBlock); 7275 7276 // Work out the address of a stack argument. 7277 Address OverflowArgAreaPtr = 7278 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7279 Address OverflowArgArea = 7280 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7281 PaddedSize); 7282 Address RawMemAddr = 7283 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7284 Address MemAddr = 7285 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7286 7287 // Update overflow_arg_area_ptr pointer 7288 llvm::Value *NewOverflowArgArea = 7289 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7290 "overflow_arg_area"); 7291 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7292 CGF.EmitBranch(ContBlock); 7293 7294 // Return the appropriate result. 7295 CGF.EmitBlock(ContBlock); 7296 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7297 MemAddr, InMemBlock, "va_arg.addr"); 7298 7299 if (IsIndirect) 7300 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7301 TyInfo.second); 7302 7303 return ResAddr; 7304 } 7305 7306 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7307 if (RetTy->isVoidType()) 7308 return ABIArgInfo::getIgnore(); 7309 if (isVectorArgumentType(RetTy)) 7310 return ABIArgInfo::getDirect(); 7311 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7312 return getNaturalAlignIndirect(RetTy); 7313 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7314 : ABIArgInfo::getDirect()); 7315 } 7316 7317 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7318 // Handle the generic C++ ABI. 7319 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7320 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7321 7322 // Integers and enums are extended to full register width. 7323 if (isPromotableIntegerTypeForABI(Ty)) 7324 return ABIArgInfo::getExtend(Ty); 7325 7326 // Handle vector types and vector-like structure types. Note that 7327 // as opposed to float-like structure types, we do not allow any 7328 // padding for vector-like structures, so verify the sizes match. 7329 uint64_t Size = getContext().getTypeSize(Ty); 7330 QualType SingleElementTy = GetSingleElementType(Ty); 7331 if (isVectorArgumentType(SingleElementTy) && 7332 getContext().getTypeSize(SingleElementTy) == Size) 7333 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7334 7335 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7336 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7337 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7338 7339 // Handle small structures. 7340 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7341 // Structures with flexible arrays have variable length, so really 7342 // fail the size test above. 7343 const RecordDecl *RD = RT->getDecl(); 7344 if (RD->hasFlexibleArrayMember()) 7345 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7346 7347 // The structure is passed as an unextended integer, a float, or a double. 7348 llvm::Type *PassTy; 7349 if (isFPArgumentType(SingleElementTy)) { 7350 assert(Size == 32 || Size == 64); 7351 if (Size == 32) 7352 PassTy = llvm::Type::getFloatTy(getVMContext()); 7353 else 7354 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7355 } else 7356 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7357 return ABIArgInfo::getDirect(PassTy); 7358 } 7359 7360 // Non-structure compounds are passed indirectly. 7361 if (isCompoundType(Ty)) 7362 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7363 7364 return ABIArgInfo::getDirect(nullptr); 7365 } 7366 7367 //===----------------------------------------------------------------------===// 7368 // MSP430 ABI Implementation 7369 //===----------------------------------------------------------------------===// 7370 7371 namespace { 7372 7373 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7374 public: 7375 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7376 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 7377 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7378 CodeGen::CodeGenModule &M) const override; 7379 }; 7380 7381 } 7382 7383 void MSP430TargetCodeGenInfo::setTargetAttributes( 7384 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7385 if (GV->isDeclaration()) 7386 return; 7387 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7388 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7389 if (!InterruptAttr) 7390 return; 7391 7392 // Handle 'interrupt' attribute: 7393 llvm::Function *F = cast<llvm::Function>(GV); 7394 7395 // Step 1: Set ISR calling convention. 7396 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7397 7398 // Step 2: Add attributes goodness. 7399 F->addFnAttr(llvm::Attribute::NoInline); 7400 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7401 } 7402 } 7403 7404 //===----------------------------------------------------------------------===// 7405 // MIPS ABI Implementation. This works for both little-endian and 7406 // big-endian variants. 7407 //===----------------------------------------------------------------------===// 7408 7409 namespace { 7410 class MipsABIInfo : public ABIInfo { 7411 bool IsO32; 7412 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7413 void CoerceToIntArgs(uint64_t TySize, 7414 SmallVectorImpl<llvm::Type *> &ArgList) const; 7415 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7416 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7417 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7418 public: 7419 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7420 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7421 StackAlignInBytes(IsO32 ? 8 : 16) {} 7422 7423 ABIArgInfo classifyReturnType(QualType RetTy) const; 7424 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7425 void computeInfo(CGFunctionInfo &FI) const override; 7426 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7427 QualType Ty) const override; 7428 ABIArgInfo extendType(QualType Ty) const; 7429 }; 7430 7431 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7432 unsigned SizeOfUnwindException; 7433 public: 7434 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7435 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7436 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7437 7438 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7439 return 29; 7440 } 7441 7442 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7443 CodeGen::CodeGenModule &CGM) const override { 7444 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7445 if (!FD) return; 7446 llvm::Function *Fn = cast<llvm::Function>(GV); 7447 7448 if (FD->hasAttr<MipsLongCallAttr>()) 7449 Fn->addFnAttr("long-call"); 7450 else if (FD->hasAttr<MipsShortCallAttr>()) 7451 Fn->addFnAttr("short-call"); 7452 7453 // Other attributes do not have a meaning for declarations. 7454 if (GV->isDeclaration()) 7455 return; 7456 7457 if (FD->hasAttr<Mips16Attr>()) { 7458 Fn->addFnAttr("mips16"); 7459 } 7460 else if (FD->hasAttr<NoMips16Attr>()) { 7461 Fn->addFnAttr("nomips16"); 7462 } 7463 7464 if (FD->hasAttr<MicroMipsAttr>()) 7465 Fn->addFnAttr("micromips"); 7466 else if (FD->hasAttr<NoMicroMipsAttr>()) 7467 Fn->addFnAttr("nomicromips"); 7468 7469 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7470 if (!Attr) 7471 return; 7472 7473 const char *Kind; 7474 switch (Attr->getInterrupt()) { 7475 case MipsInterruptAttr::eic: Kind = "eic"; break; 7476 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7477 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7478 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7479 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7480 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7481 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7482 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7483 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7484 } 7485 7486 Fn->addFnAttr("interrupt", Kind); 7487 7488 } 7489 7490 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7491 llvm::Value *Address) const override; 7492 7493 unsigned getSizeOfUnwindException() const override { 7494 return SizeOfUnwindException; 7495 } 7496 }; 7497 } 7498 7499 void MipsABIInfo::CoerceToIntArgs( 7500 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7501 llvm::IntegerType *IntTy = 7502 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7503 7504 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7505 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7506 ArgList.push_back(IntTy); 7507 7508 // If necessary, add one more integer type to ArgList. 7509 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7510 7511 if (R) 7512 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7513 } 7514 7515 // In N32/64, an aligned double precision floating point field is passed in 7516 // a register. 7517 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7518 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7519 7520 if (IsO32) { 7521 CoerceToIntArgs(TySize, ArgList); 7522 return llvm::StructType::get(getVMContext(), ArgList); 7523 } 7524 7525 if (Ty->isComplexType()) 7526 return CGT.ConvertType(Ty); 7527 7528 const RecordType *RT = Ty->getAs<RecordType>(); 7529 7530 // Unions/vectors are passed in integer registers. 7531 if (!RT || !RT->isStructureOrClassType()) { 7532 CoerceToIntArgs(TySize, ArgList); 7533 return llvm::StructType::get(getVMContext(), ArgList); 7534 } 7535 7536 const RecordDecl *RD = RT->getDecl(); 7537 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7538 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7539 7540 uint64_t LastOffset = 0; 7541 unsigned idx = 0; 7542 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7543 7544 // Iterate over fields in the struct/class and check if there are any aligned 7545 // double fields. 7546 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7547 i != e; ++i, ++idx) { 7548 const QualType Ty = i->getType(); 7549 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7550 7551 if (!BT || BT->getKind() != BuiltinType::Double) 7552 continue; 7553 7554 uint64_t Offset = Layout.getFieldOffset(idx); 7555 if (Offset % 64) // Ignore doubles that are not aligned. 7556 continue; 7557 7558 // Add ((Offset - LastOffset) / 64) args of type i64. 7559 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7560 ArgList.push_back(I64); 7561 7562 // Add double type. 7563 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7564 LastOffset = Offset + 64; 7565 } 7566 7567 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7568 ArgList.append(IntArgList.begin(), IntArgList.end()); 7569 7570 return llvm::StructType::get(getVMContext(), ArgList); 7571 } 7572 7573 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7574 uint64_t Offset) const { 7575 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7576 return nullptr; 7577 7578 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7579 } 7580 7581 ABIArgInfo 7582 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7583 Ty = useFirstFieldIfTransparentUnion(Ty); 7584 7585 uint64_t OrigOffset = Offset; 7586 uint64_t TySize = getContext().getTypeSize(Ty); 7587 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7588 7589 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7590 (uint64_t)StackAlignInBytes); 7591 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7592 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7593 7594 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7595 // Ignore empty aggregates. 7596 if (TySize == 0) 7597 return ABIArgInfo::getIgnore(); 7598 7599 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7600 Offset = OrigOffset + MinABIStackAlignInBytes; 7601 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7602 } 7603 7604 // If we have reached here, aggregates are passed directly by coercing to 7605 // another structure type. Padding is inserted if the offset of the 7606 // aggregate is unaligned. 7607 ABIArgInfo ArgInfo = 7608 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7609 getPaddingType(OrigOffset, CurrOffset)); 7610 ArgInfo.setInReg(true); 7611 return ArgInfo; 7612 } 7613 7614 // Treat an enum type as its underlying type. 7615 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7616 Ty = EnumTy->getDecl()->getIntegerType(); 7617 7618 // Make sure we pass indirectly things that are too large. 7619 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7620 if (EIT->getNumBits() > 128 || 7621 (EIT->getNumBits() > 64 && 7622 !getContext().getTargetInfo().hasInt128Type())) 7623 return getNaturalAlignIndirect(Ty); 7624 7625 // All integral types are promoted to the GPR width. 7626 if (Ty->isIntegralOrEnumerationType()) 7627 return extendType(Ty); 7628 7629 return ABIArgInfo::getDirect( 7630 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7631 } 7632 7633 llvm::Type* 7634 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7635 const RecordType *RT = RetTy->getAs<RecordType>(); 7636 SmallVector<llvm::Type*, 8> RTList; 7637 7638 if (RT && RT->isStructureOrClassType()) { 7639 const RecordDecl *RD = RT->getDecl(); 7640 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7641 unsigned FieldCnt = Layout.getFieldCount(); 7642 7643 // N32/64 returns struct/classes in floating point registers if the 7644 // following conditions are met: 7645 // 1. The size of the struct/class is no larger than 128-bit. 7646 // 2. The struct/class has one or two fields all of which are floating 7647 // point types. 7648 // 3. The offset of the first field is zero (this follows what gcc does). 7649 // 7650 // Any other composite results are returned in integer registers. 7651 // 7652 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7653 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7654 for (; b != e; ++b) { 7655 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7656 7657 if (!BT || !BT->isFloatingPoint()) 7658 break; 7659 7660 RTList.push_back(CGT.ConvertType(b->getType())); 7661 } 7662 7663 if (b == e) 7664 return llvm::StructType::get(getVMContext(), RTList, 7665 RD->hasAttr<PackedAttr>()); 7666 7667 RTList.clear(); 7668 } 7669 } 7670 7671 CoerceToIntArgs(Size, RTList); 7672 return llvm::StructType::get(getVMContext(), RTList); 7673 } 7674 7675 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7676 uint64_t Size = getContext().getTypeSize(RetTy); 7677 7678 if (RetTy->isVoidType()) 7679 return ABIArgInfo::getIgnore(); 7680 7681 // O32 doesn't treat zero-sized structs differently from other structs. 7682 // However, N32/N64 ignores zero sized return values. 7683 if (!IsO32 && Size == 0) 7684 return ABIArgInfo::getIgnore(); 7685 7686 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7687 if (Size <= 128) { 7688 if (RetTy->isAnyComplexType()) 7689 return ABIArgInfo::getDirect(); 7690 7691 // O32 returns integer vectors in registers and N32/N64 returns all small 7692 // aggregates in registers. 7693 if (!IsO32 || 7694 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7695 ABIArgInfo ArgInfo = 7696 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7697 ArgInfo.setInReg(true); 7698 return ArgInfo; 7699 } 7700 } 7701 7702 return getNaturalAlignIndirect(RetTy); 7703 } 7704 7705 // Treat an enum type as its underlying type. 7706 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7707 RetTy = EnumTy->getDecl()->getIntegerType(); 7708 7709 // Make sure we pass indirectly things that are too large. 7710 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7711 if (EIT->getNumBits() > 128 || 7712 (EIT->getNumBits() > 64 && 7713 !getContext().getTargetInfo().hasInt128Type())) 7714 return getNaturalAlignIndirect(RetTy); 7715 7716 if (isPromotableIntegerTypeForABI(RetTy)) 7717 return ABIArgInfo::getExtend(RetTy); 7718 7719 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7720 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7721 return ABIArgInfo::getSignExtend(RetTy); 7722 7723 return ABIArgInfo::getDirect(); 7724 } 7725 7726 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7727 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7728 if (!getCXXABI().classifyReturnType(FI)) 7729 RetInfo = classifyReturnType(FI.getReturnType()); 7730 7731 // Check if a pointer to an aggregate is passed as a hidden argument. 7732 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7733 7734 for (auto &I : FI.arguments()) 7735 I.info = classifyArgumentType(I.type, Offset); 7736 } 7737 7738 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7739 QualType OrigTy) const { 7740 QualType Ty = OrigTy; 7741 7742 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7743 // Pointers are also promoted in the same way but this only matters for N32. 7744 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7745 unsigned PtrWidth = getTarget().getPointerWidth(0); 7746 bool DidPromote = false; 7747 if ((Ty->isIntegerType() && 7748 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7749 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7750 DidPromote = true; 7751 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7752 Ty->isSignedIntegerType()); 7753 } 7754 7755 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7756 7757 // The alignment of things in the argument area is never larger than 7758 // StackAlignInBytes. 7759 TyInfo.second = 7760 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7761 7762 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7763 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7764 7765 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7766 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7767 7768 7769 // If there was a promotion, "unpromote" into a temporary. 7770 // TODO: can we just use a pointer into a subset of the original slot? 7771 if (DidPromote) { 7772 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7773 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7774 7775 // Truncate down to the right width. 7776 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7777 : CGF.IntPtrTy); 7778 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7779 if (OrigTy->isPointerType()) 7780 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7781 7782 CGF.Builder.CreateStore(V, Temp); 7783 Addr = Temp; 7784 } 7785 7786 return Addr; 7787 } 7788 7789 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7790 int TySize = getContext().getTypeSize(Ty); 7791 7792 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7793 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7794 return ABIArgInfo::getSignExtend(Ty); 7795 7796 return ABIArgInfo::getExtend(Ty); 7797 } 7798 7799 bool 7800 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7801 llvm::Value *Address) const { 7802 // This information comes from gcc's implementation, which seems to 7803 // as canonical as it gets. 7804 7805 // Everything on MIPS is 4 bytes. Double-precision FP registers 7806 // are aliased to pairs of single-precision FP registers. 7807 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7808 7809 // 0-31 are the general purpose registers, $0 - $31. 7810 // 32-63 are the floating-point registers, $f0 - $f31. 7811 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7812 // 66 is the (notional, I think) register for signal-handler return. 7813 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7814 7815 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7816 // They are one bit wide and ignored here. 7817 7818 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7819 // (coprocessor 1 is the FP unit) 7820 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7821 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7822 // 176-181 are the DSP accumulator registers. 7823 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7824 return false; 7825 } 7826 7827 //===----------------------------------------------------------------------===// 7828 // AVR ABI Implementation. 7829 //===----------------------------------------------------------------------===// 7830 7831 namespace { 7832 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7833 public: 7834 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7835 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 7836 7837 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7838 CodeGen::CodeGenModule &CGM) const override { 7839 if (GV->isDeclaration()) 7840 return; 7841 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7842 if (!FD) return; 7843 auto *Fn = cast<llvm::Function>(GV); 7844 7845 if (FD->getAttr<AVRInterruptAttr>()) 7846 Fn->addFnAttr("interrupt"); 7847 7848 if (FD->getAttr<AVRSignalAttr>()) 7849 Fn->addFnAttr("signal"); 7850 } 7851 }; 7852 } 7853 7854 //===----------------------------------------------------------------------===// 7855 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7856 // Currently subclassed only to implement custom OpenCL C function attribute 7857 // handling. 7858 //===----------------------------------------------------------------------===// 7859 7860 namespace { 7861 7862 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7863 public: 7864 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7865 : DefaultTargetCodeGenInfo(CGT) {} 7866 7867 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7868 CodeGen::CodeGenModule &M) const override; 7869 }; 7870 7871 void TCETargetCodeGenInfo::setTargetAttributes( 7872 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7873 if (GV->isDeclaration()) 7874 return; 7875 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7876 if (!FD) return; 7877 7878 llvm::Function *F = cast<llvm::Function>(GV); 7879 7880 if (M.getLangOpts().OpenCL) { 7881 if (FD->hasAttr<OpenCLKernelAttr>()) { 7882 // OpenCL C Kernel functions are not subject to inlining 7883 F->addFnAttr(llvm::Attribute::NoInline); 7884 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7885 if (Attr) { 7886 // Convert the reqd_work_group_size() attributes to metadata. 7887 llvm::LLVMContext &Context = F->getContext(); 7888 llvm::NamedMDNode *OpenCLMetadata = 7889 M.getModule().getOrInsertNamedMetadata( 7890 "opencl.kernel_wg_size_info"); 7891 7892 SmallVector<llvm::Metadata *, 5> Operands; 7893 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7894 7895 Operands.push_back( 7896 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7897 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7898 Operands.push_back( 7899 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7900 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7901 Operands.push_back( 7902 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7903 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7904 7905 // Add a boolean constant operand for "required" (true) or "hint" 7906 // (false) for implementing the work_group_size_hint attr later. 7907 // Currently always true as the hint is not yet implemented. 7908 Operands.push_back( 7909 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7910 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7911 } 7912 } 7913 } 7914 } 7915 7916 } 7917 7918 //===----------------------------------------------------------------------===// 7919 // Hexagon ABI Implementation 7920 //===----------------------------------------------------------------------===// 7921 7922 namespace { 7923 7924 class HexagonABIInfo : public DefaultABIInfo { 7925 public: 7926 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7927 7928 private: 7929 ABIArgInfo classifyReturnType(QualType RetTy) const; 7930 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7931 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 7932 7933 void computeInfo(CGFunctionInfo &FI) const override; 7934 7935 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7936 QualType Ty) const override; 7937 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 7938 QualType Ty) const; 7939 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 7940 QualType Ty) const; 7941 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 7942 QualType Ty) const; 7943 }; 7944 7945 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7946 public: 7947 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7948 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 7949 7950 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7951 return 29; 7952 } 7953 7954 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7955 CodeGen::CodeGenModule &GCM) const override { 7956 if (GV->isDeclaration()) 7957 return; 7958 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7959 if (!FD) 7960 return; 7961 } 7962 }; 7963 7964 } // namespace 7965 7966 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7967 unsigned RegsLeft = 6; 7968 if (!getCXXABI().classifyReturnType(FI)) 7969 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7970 for (auto &I : FI.arguments()) 7971 I.info = classifyArgumentType(I.type, &RegsLeft); 7972 } 7973 7974 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 7975 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 7976 " through registers"); 7977 7978 if (*RegsLeft == 0) 7979 return false; 7980 7981 if (Size <= 32) { 7982 (*RegsLeft)--; 7983 return true; 7984 } 7985 7986 if (2 <= (*RegsLeft & (~1U))) { 7987 *RegsLeft = (*RegsLeft & (~1U)) - 2; 7988 return true; 7989 } 7990 7991 // Next available register was r5 but candidate was greater than 32-bits so it 7992 // has to go on the stack. However we still consume r5 7993 if (*RegsLeft == 1) 7994 *RegsLeft = 0; 7995 7996 return false; 7997 } 7998 7999 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8000 unsigned *RegsLeft) const { 8001 if (!isAggregateTypeForABI(Ty)) { 8002 // Treat an enum type as its underlying type. 8003 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8004 Ty = EnumTy->getDecl()->getIntegerType(); 8005 8006 uint64_t Size = getContext().getTypeSize(Ty); 8007 if (Size <= 64) 8008 HexagonAdjustRegsLeft(Size, RegsLeft); 8009 8010 if (Size > 64 && Ty->isExtIntType()) 8011 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8012 8013 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8014 : ABIArgInfo::getDirect(); 8015 } 8016 8017 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8018 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8019 8020 // Ignore empty records. 8021 if (isEmptyRecord(getContext(), Ty, true)) 8022 return ABIArgInfo::getIgnore(); 8023 8024 uint64_t Size = getContext().getTypeSize(Ty); 8025 unsigned Align = getContext().getTypeAlign(Ty); 8026 8027 if (Size > 64) 8028 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8029 8030 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8031 Align = Size <= 32 ? 32 : 64; 8032 if (Size <= Align) { 8033 // Pass in the smallest viable integer type. 8034 if (!llvm::isPowerOf2_64(Size)) 8035 Size = llvm::NextPowerOf2(Size); 8036 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8037 } 8038 return DefaultABIInfo::classifyArgumentType(Ty); 8039 } 8040 8041 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8042 if (RetTy->isVoidType()) 8043 return ABIArgInfo::getIgnore(); 8044 8045 const TargetInfo &T = CGT.getTarget(); 8046 uint64_t Size = getContext().getTypeSize(RetTy); 8047 8048 if (RetTy->getAs<VectorType>()) { 8049 // HVX vectors are returned in vector registers or register pairs. 8050 if (T.hasFeature("hvx")) { 8051 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8052 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8053 if (Size == VecSize || Size == 2*VecSize) 8054 return ABIArgInfo::getDirectInReg(); 8055 } 8056 // Large vector types should be returned via memory. 8057 if (Size > 64) 8058 return getNaturalAlignIndirect(RetTy); 8059 } 8060 8061 if (!isAggregateTypeForABI(RetTy)) { 8062 // Treat an enum type as its underlying type. 8063 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8064 RetTy = EnumTy->getDecl()->getIntegerType(); 8065 8066 if (Size > 64 && RetTy->isExtIntType()) 8067 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8068 8069 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8070 : ABIArgInfo::getDirect(); 8071 } 8072 8073 if (isEmptyRecord(getContext(), RetTy, true)) 8074 return ABIArgInfo::getIgnore(); 8075 8076 // Aggregates <= 8 bytes are returned in registers, other aggregates 8077 // are returned indirectly. 8078 if (Size <= 64) { 8079 // Return in the smallest viable integer type. 8080 if (!llvm::isPowerOf2_64(Size)) 8081 Size = llvm::NextPowerOf2(Size); 8082 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8083 } 8084 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8085 } 8086 8087 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8088 Address VAListAddr, 8089 QualType Ty) const { 8090 // Load the overflow area pointer. 8091 Address __overflow_area_pointer_p = 8092 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8093 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8094 __overflow_area_pointer_p, "__overflow_area_pointer"); 8095 8096 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8097 if (Align > 4) { 8098 // Alignment should be a power of 2. 8099 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8100 8101 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8102 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8103 8104 // Add offset to the current pointer to access the argument. 8105 __overflow_area_pointer = 8106 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8107 llvm::Value *AsInt = 8108 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8109 8110 // Create a mask which should be "AND"ed 8111 // with (overflow_arg_area + align - 1) 8112 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8113 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8114 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8115 "__overflow_area_pointer.align"); 8116 } 8117 8118 // Get the type of the argument from memory and bitcast 8119 // overflow area pointer to the argument type. 8120 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8121 Address AddrTyped = CGF.Builder.CreateBitCast( 8122 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8123 llvm::PointerType::getUnqual(PTy)); 8124 8125 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8126 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8127 8128 __overflow_area_pointer = CGF.Builder.CreateGEP( 8129 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8130 "__overflow_area_pointer.next"); 8131 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8132 8133 return AddrTyped; 8134 } 8135 8136 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8137 Address VAListAddr, 8138 QualType Ty) const { 8139 // FIXME: Need to handle alignment 8140 llvm::Type *BP = CGF.Int8PtrTy; 8141 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8142 CGBuilderTy &Builder = CGF.Builder; 8143 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8144 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8145 // Handle address alignment for type alignment > 32 bits 8146 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8147 if (TyAlign > 4) { 8148 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8149 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8150 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8151 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8152 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8153 } 8154 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8155 Address AddrTyped = Builder.CreateBitCast( 8156 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8157 8158 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8159 llvm::Value *NextAddr = Builder.CreateGEP( 8160 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8161 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8162 8163 return AddrTyped; 8164 } 8165 8166 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8167 Address VAListAddr, 8168 QualType Ty) const { 8169 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8170 8171 if (ArgSize > 8) 8172 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8173 8174 // Here we have check if the argument is in register area or 8175 // in overflow area. 8176 // If the saved register area pointer + argsize rounded up to alignment > 8177 // saved register area end pointer, argument is in overflow area. 8178 unsigned RegsLeft = 6; 8179 Ty = CGF.getContext().getCanonicalType(Ty); 8180 (void)classifyArgumentType(Ty, &RegsLeft); 8181 8182 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8183 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8184 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8185 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8186 8187 // Get rounded size of the argument.GCC does not allow vararg of 8188 // size < 4 bytes. We follow the same logic here. 8189 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8190 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8191 8192 // Argument may be in saved register area 8193 CGF.EmitBlock(MaybeRegBlock); 8194 8195 // Load the current saved register area pointer. 8196 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8197 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8198 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8199 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8200 8201 // Load the saved register area end pointer. 8202 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8203 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8204 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8205 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8206 8207 // If the size of argument is > 4 bytes, check if the stack 8208 // location is aligned to 8 bytes 8209 if (ArgAlign > 4) { 8210 8211 llvm::Value *__current_saved_reg_area_pointer_int = 8212 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8213 CGF.Int32Ty); 8214 8215 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8216 __current_saved_reg_area_pointer_int, 8217 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8218 "align_current_saved_reg_area_pointer"); 8219 8220 __current_saved_reg_area_pointer_int = 8221 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8222 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8223 "align_current_saved_reg_area_pointer"); 8224 8225 __current_saved_reg_area_pointer = 8226 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8227 __current_saved_reg_area_pointer->getType(), 8228 "align_current_saved_reg_area_pointer"); 8229 } 8230 8231 llvm::Value *__new_saved_reg_area_pointer = 8232 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8233 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8234 "__new_saved_reg_area_pointer"); 8235 8236 llvm::Value *UsingStack = 0; 8237 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8238 __saved_reg_area_end_pointer); 8239 8240 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8241 8242 // Argument in saved register area 8243 // Implement the block where argument is in register saved area 8244 CGF.EmitBlock(InRegBlock); 8245 8246 llvm::Type *PTy = CGF.ConvertType(Ty); 8247 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8248 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8249 8250 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8251 __current_saved_reg_area_pointer_p); 8252 8253 CGF.EmitBranch(ContBlock); 8254 8255 // Argument in overflow area 8256 // Implement the block where the argument is in overflow area. 8257 CGF.EmitBlock(OnStackBlock); 8258 8259 // Load the overflow area pointer 8260 Address __overflow_area_pointer_p = 8261 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8262 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8263 __overflow_area_pointer_p, "__overflow_area_pointer"); 8264 8265 // Align the overflow area pointer according to the alignment of the argument 8266 if (ArgAlign > 4) { 8267 llvm::Value *__overflow_area_pointer_int = 8268 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8269 8270 __overflow_area_pointer_int = 8271 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8272 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8273 "align_overflow_area_pointer"); 8274 8275 __overflow_area_pointer_int = 8276 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8277 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8278 "align_overflow_area_pointer"); 8279 8280 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8281 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8282 "align_overflow_area_pointer"); 8283 } 8284 8285 // Get the pointer for next argument in overflow area and store it 8286 // to overflow area pointer. 8287 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8288 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8289 "__overflow_area_pointer.next"); 8290 8291 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8292 __overflow_area_pointer_p); 8293 8294 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8295 __current_saved_reg_area_pointer_p); 8296 8297 // Bitcast the overflow area pointer to the type of argument. 8298 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8299 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8300 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8301 8302 CGF.EmitBranch(ContBlock); 8303 8304 // Get the correct pointer to load the variable argument 8305 // Implement the ContBlock 8306 CGF.EmitBlock(ContBlock); 8307 8308 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8309 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8310 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8311 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8312 8313 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8314 } 8315 8316 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8317 QualType Ty) const { 8318 8319 if (getTarget().getTriple().isMusl()) 8320 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8321 8322 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8323 } 8324 8325 //===----------------------------------------------------------------------===// 8326 // Lanai ABI Implementation 8327 //===----------------------------------------------------------------------===// 8328 8329 namespace { 8330 class LanaiABIInfo : public DefaultABIInfo { 8331 public: 8332 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8333 8334 bool shouldUseInReg(QualType Ty, CCState &State) const; 8335 8336 void computeInfo(CGFunctionInfo &FI) const override { 8337 CCState State(FI); 8338 // Lanai uses 4 registers to pass arguments unless the function has the 8339 // regparm attribute set. 8340 if (FI.getHasRegParm()) { 8341 State.FreeRegs = FI.getRegParm(); 8342 } else { 8343 State.FreeRegs = 4; 8344 } 8345 8346 if (!getCXXABI().classifyReturnType(FI)) 8347 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8348 for (auto &I : FI.arguments()) 8349 I.info = classifyArgumentType(I.type, State); 8350 } 8351 8352 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8353 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8354 }; 8355 } // end anonymous namespace 8356 8357 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8358 unsigned Size = getContext().getTypeSize(Ty); 8359 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8360 8361 if (SizeInRegs == 0) 8362 return false; 8363 8364 if (SizeInRegs > State.FreeRegs) { 8365 State.FreeRegs = 0; 8366 return false; 8367 } 8368 8369 State.FreeRegs -= SizeInRegs; 8370 8371 return true; 8372 } 8373 8374 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8375 CCState &State) const { 8376 if (!ByVal) { 8377 if (State.FreeRegs) { 8378 --State.FreeRegs; // Non-byval indirects just use one pointer. 8379 return getNaturalAlignIndirectInReg(Ty); 8380 } 8381 return getNaturalAlignIndirect(Ty, false); 8382 } 8383 8384 // Compute the byval alignment. 8385 const unsigned MinABIStackAlignInBytes = 4; 8386 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8387 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8388 /*Realign=*/TypeAlign > 8389 MinABIStackAlignInBytes); 8390 } 8391 8392 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8393 CCState &State) const { 8394 // Check with the C++ ABI first. 8395 const RecordType *RT = Ty->getAs<RecordType>(); 8396 if (RT) { 8397 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8398 if (RAA == CGCXXABI::RAA_Indirect) { 8399 return getIndirectResult(Ty, /*ByVal=*/false, State); 8400 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8401 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 8402 } 8403 } 8404 8405 if (isAggregateTypeForABI(Ty)) { 8406 // Structures with flexible arrays are always indirect. 8407 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8408 return getIndirectResult(Ty, /*ByVal=*/true, State); 8409 8410 // Ignore empty structs/unions. 8411 if (isEmptyRecord(getContext(), Ty, true)) 8412 return ABIArgInfo::getIgnore(); 8413 8414 llvm::LLVMContext &LLVMContext = getVMContext(); 8415 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8416 if (SizeInRegs <= State.FreeRegs) { 8417 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8418 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8419 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8420 State.FreeRegs -= SizeInRegs; 8421 return ABIArgInfo::getDirectInReg(Result); 8422 } else { 8423 State.FreeRegs = 0; 8424 } 8425 return getIndirectResult(Ty, true, State); 8426 } 8427 8428 // Treat an enum type as its underlying type. 8429 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8430 Ty = EnumTy->getDecl()->getIntegerType(); 8431 8432 bool InReg = shouldUseInReg(Ty, State); 8433 8434 // Don't pass >64 bit integers in registers. 8435 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8436 if (EIT->getNumBits() > 64) 8437 return getIndirectResult(Ty, /*ByVal=*/true, State); 8438 8439 if (isPromotableIntegerTypeForABI(Ty)) { 8440 if (InReg) 8441 return ABIArgInfo::getDirectInReg(); 8442 return ABIArgInfo::getExtend(Ty); 8443 } 8444 if (InReg) 8445 return ABIArgInfo::getDirectInReg(); 8446 return ABIArgInfo::getDirect(); 8447 } 8448 8449 namespace { 8450 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8451 public: 8452 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8453 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8454 }; 8455 } 8456 8457 //===----------------------------------------------------------------------===// 8458 // AMDGPU ABI Implementation 8459 //===----------------------------------------------------------------------===// 8460 8461 namespace { 8462 8463 class AMDGPUABIInfo final : public DefaultABIInfo { 8464 private: 8465 static const unsigned MaxNumRegsForArgsRet = 16; 8466 8467 unsigned numRegsForType(QualType Ty) const; 8468 8469 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8470 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8471 uint64_t Members) const override; 8472 8473 // Coerce HIP pointer arguments from generic pointers to global ones. 8474 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8475 unsigned ToAS) const { 8476 // Structure types. 8477 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8478 SmallVector<llvm::Type *, 8> EltTys; 8479 bool Changed = false; 8480 for (auto T : STy->elements()) { 8481 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8482 EltTys.push_back(NT); 8483 Changed |= (NT != T); 8484 } 8485 // Skip if there is no change in element types. 8486 if (!Changed) 8487 return STy; 8488 if (STy->hasName()) 8489 return llvm::StructType::create( 8490 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8491 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8492 } 8493 // Array types. 8494 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8495 auto T = ATy->getElementType(); 8496 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8497 // Skip if there is no change in that element type. 8498 if (NT == T) 8499 return ATy; 8500 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8501 } 8502 // Single value types. 8503 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8504 return llvm::PointerType::get( 8505 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8506 return Ty; 8507 } 8508 8509 public: 8510 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8511 DefaultABIInfo(CGT) {} 8512 8513 ABIArgInfo classifyReturnType(QualType RetTy) const; 8514 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8515 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8516 8517 void computeInfo(CGFunctionInfo &FI) const override; 8518 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8519 QualType Ty) const override; 8520 }; 8521 8522 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8523 return true; 8524 } 8525 8526 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8527 const Type *Base, uint64_t Members) const { 8528 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8529 8530 // Homogeneous Aggregates may occupy at most 16 registers. 8531 return Members * NumRegs <= MaxNumRegsForArgsRet; 8532 } 8533 8534 /// Estimate number of registers the type will use when passed in registers. 8535 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8536 unsigned NumRegs = 0; 8537 8538 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8539 // Compute from the number of elements. The reported size is based on the 8540 // in-memory size, which includes the padding 4th element for 3-vectors. 8541 QualType EltTy = VT->getElementType(); 8542 unsigned EltSize = getContext().getTypeSize(EltTy); 8543 8544 // 16-bit element vectors should be passed as packed. 8545 if (EltSize == 16) 8546 return (VT->getNumElements() + 1) / 2; 8547 8548 unsigned EltNumRegs = (EltSize + 31) / 32; 8549 return EltNumRegs * VT->getNumElements(); 8550 } 8551 8552 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8553 const RecordDecl *RD = RT->getDecl(); 8554 assert(!RD->hasFlexibleArrayMember()); 8555 8556 for (const FieldDecl *Field : RD->fields()) { 8557 QualType FieldTy = Field->getType(); 8558 NumRegs += numRegsForType(FieldTy); 8559 } 8560 8561 return NumRegs; 8562 } 8563 8564 return (getContext().getTypeSize(Ty) + 31) / 32; 8565 } 8566 8567 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8568 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8569 8570 if (!getCXXABI().classifyReturnType(FI)) 8571 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8572 8573 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8574 for (auto &Arg : FI.arguments()) { 8575 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8576 Arg.info = classifyKernelArgumentType(Arg.type); 8577 } else { 8578 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8579 } 8580 } 8581 } 8582 8583 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8584 QualType Ty) const { 8585 llvm_unreachable("AMDGPU does not support varargs"); 8586 } 8587 8588 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8589 if (isAggregateTypeForABI(RetTy)) { 8590 // Records with non-trivial destructors/copy-constructors should not be 8591 // returned by value. 8592 if (!getRecordArgABI(RetTy, getCXXABI())) { 8593 // Ignore empty structs/unions. 8594 if (isEmptyRecord(getContext(), RetTy, true)) 8595 return ABIArgInfo::getIgnore(); 8596 8597 // Lower single-element structs to just return a regular value. 8598 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8599 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8600 8601 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8602 const RecordDecl *RD = RT->getDecl(); 8603 if (RD->hasFlexibleArrayMember()) 8604 return DefaultABIInfo::classifyReturnType(RetTy); 8605 } 8606 8607 // Pack aggregates <= 4 bytes into single VGPR or pair. 8608 uint64_t Size = getContext().getTypeSize(RetTy); 8609 if (Size <= 16) 8610 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8611 8612 if (Size <= 32) 8613 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8614 8615 if (Size <= 64) { 8616 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8617 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8618 } 8619 8620 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8621 return ABIArgInfo::getDirect(); 8622 } 8623 } 8624 8625 // Otherwise just do the default thing. 8626 return DefaultABIInfo::classifyReturnType(RetTy); 8627 } 8628 8629 /// For kernels all parameters are really passed in a special buffer. It doesn't 8630 /// make sense to pass anything byval, so everything must be direct. 8631 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8632 Ty = useFirstFieldIfTransparentUnion(Ty); 8633 8634 // TODO: Can we omit empty structs? 8635 8636 llvm::Type *LTy = nullptr; 8637 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8638 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 8639 8640 if (getContext().getLangOpts().HIP) { 8641 if (!LTy) 8642 LTy = CGT.ConvertType(Ty); 8643 LTy = coerceKernelArgumentType( 8644 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8645 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8646 } 8647 8648 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8649 // individual elements, which confuses the Clover OpenCL backend; therefore we 8650 // have to set it to false here. Other args of getDirect() are just defaults. 8651 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8652 } 8653 8654 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8655 unsigned &NumRegsLeft) const { 8656 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8657 8658 Ty = useFirstFieldIfTransparentUnion(Ty); 8659 8660 if (isAggregateTypeForABI(Ty)) { 8661 // Records with non-trivial destructors/copy-constructors should not be 8662 // passed by value. 8663 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8664 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8665 8666 // Ignore empty structs/unions. 8667 if (isEmptyRecord(getContext(), Ty, true)) 8668 return ABIArgInfo::getIgnore(); 8669 8670 // Lower single-element structs to just pass a regular value. TODO: We 8671 // could do reasonable-size multiple-element structs too, using getExpand(), 8672 // though watch out for things like bitfields. 8673 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8674 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8675 8676 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8677 const RecordDecl *RD = RT->getDecl(); 8678 if (RD->hasFlexibleArrayMember()) 8679 return DefaultABIInfo::classifyArgumentType(Ty); 8680 } 8681 8682 // Pack aggregates <= 8 bytes into single VGPR or pair. 8683 uint64_t Size = getContext().getTypeSize(Ty); 8684 if (Size <= 64) { 8685 unsigned NumRegs = (Size + 31) / 32; 8686 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8687 8688 if (Size <= 16) 8689 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8690 8691 if (Size <= 32) 8692 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8693 8694 // XXX: Should this be i64 instead, and should the limit increase? 8695 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8696 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8697 } 8698 8699 if (NumRegsLeft > 0) { 8700 unsigned NumRegs = numRegsForType(Ty); 8701 if (NumRegsLeft >= NumRegs) { 8702 NumRegsLeft -= NumRegs; 8703 return ABIArgInfo::getDirect(); 8704 } 8705 } 8706 } 8707 8708 // Otherwise just do the default thing. 8709 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8710 if (!ArgInfo.isIndirect()) { 8711 unsigned NumRegs = numRegsForType(Ty); 8712 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8713 } 8714 8715 return ArgInfo; 8716 } 8717 8718 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8719 public: 8720 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8721 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8722 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8723 CodeGen::CodeGenModule &M) const override; 8724 unsigned getOpenCLKernelCallingConv() const override; 8725 8726 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8727 llvm::PointerType *T, QualType QT) const override; 8728 8729 LangAS getASTAllocaAddressSpace() const override { 8730 return getLangASFromTargetAS( 8731 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8732 } 8733 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8734 const VarDecl *D) const override; 8735 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8736 SyncScope Scope, 8737 llvm::AtomicOrdering Ordering, 8738 llvm::LLVMContext &Ctx) const override; 8739 llvm::Function * 8740 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8741 llvm::Function *BlockInvokeFunc, 8742 llvm::Value *BlockLiteral) const override; 8743 bool shouldEmitStaticExternCAliases() const override; 8744 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8745 }; 8746 } 8747 8748 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8749 llvm::GlobalValue *GV) { 8750 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8751 return false; 8752 8753 return D->hasAttr<OpenCLKernelAttr>() || 8754 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8755 (isa<VarDecl>(D) && 8756 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8757 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8758 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8759 } 8760 8761 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8762 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8763 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8764 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8765 GV->setDSOLocal(true); 8766 } 8767 8768 if (GV->isDeclaration()) 8769 return; 8770 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8771 if (!FD) 8772 return; 8773 8774 llvm::Function *F = cast<llvm::Function>(GV); 8775 8776 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8777 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8778 8779 8780 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8781 FD->hasAttr<OpenCLKernelAttr>(); 8782 const bool IsHIPKernel = M.getLangOpts().HIP && 8783 FD->hasAttr<CUDAGlobalAttr>(); 8784 if ((IsOpenCLKernel || IsHIPKernel) && 8785 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8786 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8787 8788 if (IsHIPKernel) 8789 F->addFnAttr("uniform-work-group-size", "true"); 8790 8791 8792 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8793 if (ReqdWGS || FlatWGS) { 8794 unsigned Min = 0; 8795 unsigned Max = 0; 8796 if (FlatWGS) { 8797 Min = FlatWGS->getMin() 8798 ->EvaluateKnownConstInt(M.getContext()) 8799 .getExtValue(); 8800 Max = FlatWGS->getMax() 8801 ->EvaluateKnownConstInt(M.getContext()) 8802 .getExtValue(); 8803 } 8804 if (ReqdWGS && Min == 0 && Max == 0) 8805 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8806 8807 if (Min != 0) { 8808 assert(Min <= Max && "Min must be less than or equal Max"); 8809 8810 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8811 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8812 } else 8813 assert(Max == 0 && "Max must be zero"); 8814 } else if (IsOpenCLKernel || IsHIPKernel) { 8815 // By default, restrict the maximum size to a value specified by 8816 // --gpu-max-threads-per-block=n or its default value for HIP. 8817 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 8818 const unsigned DefaultMaxWorkGroupSize = 8819 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 8820 : M.getLangOpts().GPUMaxThreadsPerBlock; 8821 std::string AttrVal = 8822 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 8823 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8824 } 8825 8826 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8827 unsigned Min = 8828 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8829 unsigned Max = Attr->getMax() ? Attr->getMax() 8830 ->EvaluateKnownConstInt(M.getContext()) 8831 .getExtValue() 8832 : 0; 8833 8834 if (Min != 0) { 8835 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8836 8837 std::string AttrVal = llvm::utostr(Min); 8838 if (Max != 0) 8839 AttrVal = AttrVal + "," + llvm::utostr(Max); 8840 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8841 } else 8842 assert(Max == 0 && "Max must be zero"); 8843 } 8844 8845 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8846 unsigned NumSGPR = Attr->getNumSGPR(); 8847 8848 if (NumSGPR != 0) 8849 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8850 } 8851 8852 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8853 uint32_t NumVGPR = Attr->getNumVGPR(); 8854 8855 if (NumVGPR != 0) 8856 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8857 } 8858 } 8859 8860 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8861 return llvm::CallingConv::AMDGPU_KERNEL; 8862 } 8863 8864 // Currently LLVM assumes null pointers always have value 0, 8865 // which results in incorrectly transformed IR. Therefore, instead of 8866 // emitting null pointers in private and local address spaces, a null 8867 // pointer in generic address space is emitted which is casted to a 8868 // pointer in local or private address space. 8869 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8870 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8871 QualType QT) const { 8872 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8873 return llvm::ConstantPointerNull::get(PT); 8874 8875 auto &Ctx = CGM.getContext(); 8876 auto NPT = llvm::PointerType::get(PT->getElementType(), 8877 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8878 return llvm::ConstantExpr::getAddrSpaceCast( 8879 llvm::ConstantPointerNull::get(NPT), PT); 8880 } 8881 8882 LangAS 8883 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8884 const VarDecl *D) const { 8885 assert(!CGM.getLangOpts().OpenCL && 8886 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8887 "Address space agnostic languages only"); 8888 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8889 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8890 if (!D) 8891 return DefaultGlobalAS; 8892 8893 LangAS AddrSpace = D->getType().getAddressSpace(); 8894 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8895 if (AddrSpace != LangAS::Default) 8896 return AddrSpace; 8897 8898 if (CGM.isTypeConstant(D->getType(), false)) { 8899 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8900 return ConstAS.getValue(); 8901 } 8902 return DefaultGlobalAS; 8903 } 8904 8905 llvm::SyncScope::ID 8906 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8907 SyncScope Scope, 8908 llvm::AtomicOrdering Ordering, 8909 llvm::LLVMContext &Ctx) const { 8910 std::string Name; 8911 switch (Scope) { 8912 case SyncScope::OpenCLWorkGroup: 8913 Name = "workgroup"; 8914 break; 8915 case SyncScope::OpenCLDevice: 8916 Name = "agent"; 8917 break; 8918 case SyncScope::OpenCLAllSVMDevices: 8919 Name = ""; 8920 break; 8921 case SyncScope::OpenCLSubGroup: 8922 Name = "wavefront"; 8923 } 8924 8925 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8926 if (!Name.empty()) 8927 Name = Twine(Twine(Name) + Twine("-")).str(); 8928 8929 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8930 } 8931 8932 return Ctx.getOrInsertSyncScopeID(Name); 8933 } 8934 8935 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8936 return false; 8937 } 8938 8939 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8940 const FunctionType *&FT) const { 8941 FT = getABIInfo().getContext().adjustFunctionType( 8942 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8943 } 8944 8945 //===----------------------------------------------------------------------===// 8946 // SPARC v8 ABI Implementation. 8947 // Based on the SPARC Compliance Definition version 2.4.1. 8948 // 8949 // Ensures that complex values are passed in registers. 8950 // 8951 namespace { 8952 class SparcV8ABIInfo : public DefaultABIInfo { 8953 public: 8954 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8955 8956 private: 8957 ABIArgInfo classifyReturnType(QualType RetTy) const; 8958 void computeInfo(CGFunctionInfo &FI) const override; 8959 }; 8960 } // end anonymous namespace 8961 8962 8963 ABIArgInfo 8964 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8965 if (Ty->isAnyComplexType()) { 8966 return ABIArgInfo::getDirect(); 8967 } 8968 else { 8969 return DefaultABIInfo::classifyReturnType(Ty); 8970 } 8971 } 8972 8973 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8974 8975 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8976 for (auto &Arg : FI.arguments()) 8977 Arg.info = classifyArgumentType(Arg.type); 8978 } 8979 8980 namespace { 8981 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8982 public: 8983 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8984 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 8985 }; 8986 } // end anonymous namespace 8987 8988 //===----------------------------------------------------------------------===// 8989 // SPARC v9 ABI Implementation. 8990 // Based on the SPARC Compliance Definition version 2.4.1. 8991 // 8992 // Function arguments a mapped to a nominal "parameter array" and promoted to 8993 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8994 // the array, structs larger than 16 bytes are passed indirectly. 8995 // 8996 // One case requires special care: 8997 // 8998 // struct mixed { 8999 // int i; 9000 // float f; 9001 // }; 9002 // 9003 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9004 // parameter array, but the int is passed in an integer register, and the float 9005 // is passed in a floating point register. This is represented as two arguments 9006 // with the LLVM IR inreg attribute: 9007 // 9008 // declare void f(i32 inreg %i, float inreg %f) 9009 // 9010 // The code generator will only allocate 4 bytes from the parameter array for 9011 // the inreg arguments. All other arguments are allocated a multiple of 8 9012 // bytes. 9013 // 9014 namespace { 9015 class SparcV9ABIInfo : public ABIInfo { 9016 public: 9017 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9018 9019 private: 9020 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9021 void computeInfo(CGFunctionInfo &FI) const override; 9022 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9023 QualType Ty) const override; 9024 9025 // Coercion type builder for structs passed in registers. The coercion type 9026 // serves two purposes: 9027 // 9028 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9029 // in registers. 9030 // 2. Expose aligned floating point elements as first-level elements, so the 9031 // code generator knows to pass them in floating point registers. 9032 // 9033 // We also compute the InReg flag which indicates that the struct contains 9034 // aligned 32-bit floats. 9035 // 9036 struct CoerceBuilder { 9037 llvm::LLVMContext &Context; 9038 const llvm::DataLayout &DL; 9039 SmallVector<llvm::Type*, 8> Elems; 9040 uint64_t Size; 9041 bool InReg; 9042 9043 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9044 : Context(c), DL(dl), Size(0), InReg(false) {} 9045 9046 // Pad Elems with integers until Size is ToSize. 9047 void pad(uint64_t ToSize) { 9048 assert(ToSize >= Size && "Cannot remove elements"); 9049 if (ToSize == Size) 9050 return; 9051 9052 // Finish the current 64-bit word. 9053 uint64_t Aligned = llvm::alignTo(Size, 64); 9054 if (Aligned > Size && Aligned <= ToSize) { 9055 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9056 Size = Aligned; 9057 } 9058 9059 // Add whole 64-bit words. 9060 while (Size + 64 <= ToSize) { 9061 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9062 Size += 64; 9063 } 9064 9065 // Final in-word padding. 9066 if (Size < ToSize) { 9067 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9068 Size = ToSize; 9069 } 9070 } 9071 9072 // Add a floating point element at Offset. 9073 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9074 // Unaligned floats are treated as integers. 9075 if (Offset % Bits) 9076 return; 9077 // The InReg flag is only required if there are any floats < 64 bits. 9078 if (Bits < 64) 9079 InReg = true; 9080 pad(Offset); 9081 Elems.push_back(Ty); 9082 Size = Offset + Bits; 9083 } 9084 9085 // Add a struct type to the coercion type, starting at Offset (in bits). 9086 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9087 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9088 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9089 llvm::Type *ElemTy = StrTy->getElementType(i); 9090 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9091 switch (ElemTy->getTypeID()) { 9092 case llvm::Type::StructTyID: 9093 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9094 break; 9095 case llvm::Type::FloatTyID: 9096 addFloat(ElemOffset, ElemTy, 32); 9097 break; 9098 case llvm::Type::DoubleTyID: 9099 addFloat(ElemOffset, ElemTy, 64); 9100 break; 9101 case llvm::Type::FP128TyID: 9102 addFloat(ElemOffset, ElemTy, 128); 9103 break; 9104 case llvm::Type::PointerTyID: 9105 if (ElemOffset % 64 == 0) { 9106 pad(ElemOffset); 9107 Elems.push_back(ElemTy); 9108 Size += 64; 9109 } 9110 break; 9111 default: 9112 break; 9113 } 9114 } 9115 } 9116 9117 // Check if Ty is a usable substitute for the coercion type. 9118 bool isUsableType(llvm::StructType *Ty) const { 9119 return llvm::makeArrayRef(Elems) == Ty->elements(); 9120 } 9121 9122 // Get the coercion type as a literal struct type. 9123 llvm::Type *getType() const { 9124 if (Elems.size() == 1) 9125 return Elems.front(); 9126 else 9127 return llvm::StructType::get(Context, Elems); 9128 } 9129 }; 9130 }; 9131 } // end anonymous namespace 9132 9133 ABIArgInfo 9134 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9135 if (Ty->isVoidType()) 9136 return ABIArgInfo::getIgnore(); 9137 9138 uint64_t Size = getContext().getTypeSize(Ty); 9139 9140 // Anything too big to fit in registers is passed with an explicit indirect 9141 // pointer / sret pointer. 9142 if (Size > SizeLimit) 9143 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9144 9145 // Treat an enum type as its underlying type. 9146 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9147 Ty = EnumTy->getDecl()->getIntegerType(); 9148 9149 // Integer types smaller than a register are extended. 9150 if (Size < 64 && Ty->isIntegerType()) 9151 return ABIArgInfo::getExtend(Ty); 9152 9153 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9154 if (EIT->getNumBits() < 64) 9155 return ABIArgInfo::getExtend(Ty); 9156 9157 // Other non-aggregates go in registers. 9158 if (!isAggregateTypeForABI(Ty)) 9159 return ABIArgInfo::getDirect(); 9160 9161 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9162 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9163 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9164 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9165 9166 // This is a small aggregate type that should be passed in registers. 9167 // Build a coercion type from the LLVM struct type. 9168 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9169 if (!StrTy) 9170 return ABIArgInfo::getDirect(); 9171 9172 CoerceBuilder CB(getVMContext(), getDataLayout()); 9173 CB.addStruct(0, StrTy); 9174 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9175 9176 // Try to use the original type for coercion. 9177 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9178 9179 if (CB.InReg) 9180 return ABIArgInfo::getDirectInReg(CoerceTy); 9181 else 9182 return ABIArgInfo::getDirect(CoerceTy); 9183 } 9184 9185 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9186 QualType Ty) const { 9187 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9188 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9189 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9190 AI.setCoerceToType(ArgTy); 9191 9192 CharUnits SlotSize = CharUnits::fromQuantity(8); 9193 9194 CGBuilderTy &Builder = CGF.Builder; 9195 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9196 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9197 9198 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9199 9200 Address ArgAddr = Address::invalid(); 9201 CharUnits Stride; 9202 switch (AI.getKind()) { 9203 case ABIArgInfo::Expand: 9204 case ABIArgInfo::CoerceAndExpand: 9205 case ABIArgInfo::InAlloca: 9206 llvm_unreachable("Unsupported ABI kind for va_arg"); 9207 9208 case ABIArgInfo::Extend: { 9209 Stride = SlotSize; 9210 CharUnits Offset = SlotSize - TypeInfo.first; 9211 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9212 break; 9213 } 9214 9215 case ABIArgInfo::Direct: { 9216 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9217 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9218 ArgAddr = Addr; 9219 break; 9220 } 9221 9222 case ABIArgInfo::Indirect: 9223 Stride = SlotSize; 9224 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9225 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9226 TypeInfo.second); 9227 break; 9228 9229 case ABIArgInfo::Ignore: 9230 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 9231 } 9232 9233 // Update VAList. 9234 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9235 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9236 9237 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9238 } 9239 9240 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9241 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9242 for (auto &I : FI.arguments()) 9243 I.info = classifyType(I.type, 16 * 8); 9244 } 9245 9246 namespace { 9247 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9248 public: 9249 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9250 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9251 9252 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9253 return 14; 9254 } 9255 9256 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9257 llvm::Value *Address) const override; 9258 }; 9259 } // end anonymous namespace 9260 9261 bool 9262 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9263 llvm::Value *Address) const { 9264 // This is calculated from the LLVM and GCC tables and verified 9265 // against gcc output. AFAIK all ABIs use the same encoding. 9266 9267 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9268 9269 llvm::IntegerType *i8 = CGF.Int8Ty; 9270 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9271 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9272 9273 // 0-31: the 8-byte general-purpose registers 9274 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9275 9276 // 32-63: f0-31, the 4-byte floating-point registers 9277 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9278 9279 // Y = 64 9280 // PSR = 65 9281 // WIM = 66 9282 // TBR = 67 9283 // PC = 68 9284 // NPC = 69 9285 // FSR = 70 9286 // CSR = 71 9287 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9288 9289 // 72-87: d0-15, the 8-byte floating-point registers 9290 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9291 9292 return false; 9293 } 9294 9295 // ARC ABI implementation. 9296 namespace { 9297 9298 class ARCABIInfo : public DefaultABIInfo { 9299 public: 9300 using DefaultABIInfo::DefaultABIInfo; 9301 9302 private: 9303 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9304 QualType Ty) const override; 9305 9306 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9307 if (!State.FreeRegs) 9308 return; 9309 if (Info.isIndirect() && Info.getInReg()) 9310 State.FreeRegs--; 9311 else if (Info.isDirect() && Info.getInReg()) { 9312 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9313 if (sz < State.FreeRegs) 9314 State.FreeRegs -= sz; 9315 else 9316 State.FreeRegs = 0; 9317 } 9318 } 9319 9320 void computeInfo(CGFunctionInfo &FI) const override { 9321 CCState State(FI); 9322 // ARC uses 8 registers to pass arguments. 9323 State.FreeRegs = 8; 9324 9325 if (!getCXXABI().classifyReturnType(FI)) 9326 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9327 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9328 for (auto &I : FI.arguments()) { 9329 I.info = classifyArgumentType(I.type, State.FreeRegs); 9330 updateState(I.info, I.type, State); 9331 } 9332 } 9333 9334 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9335 ABIArgInfo getIndirectByValue(QualType Ty) const; 9336 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9337 ABIArgInfo classifyReturnType(QualType RetTy) const; 9338 }; 9339 9340 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9341 public: 9342 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9343 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9344 }; 9345 9346 9347 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9348 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9349 getNaturalAlignIndirect(Ty, false); 9350 } 9351 9352 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9353 // Compute the byval alignment. 9354 const unsigned MinABIStackAlignInBytes = 4; 9355 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9356 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9357 TypeAlign > MinABIStackAlignInBytes); 9358 } 9359 9360 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9361 QualType Ty) const { 9362 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9363 getContext().getTypeInfoInChars(Ty), 9364 CharUnits::fromQuantity(4), true); 9365 } 9366 9367 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9368 uint8_t FreeRegs) const { 9369 // Handle the generic C++ ABI. 9370 const RecordType *RT = Ty->getAs<RecordType>(); 9371 if (RT) { 9372 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9373 if (RAA == CGCXXABI::RAA_Indirect) 9374 return getIndirectByRef(Ty, FreeRegs > 0); 9375 9376 if (RAA == CGCXXABI::RAA_DirectInMemory) 9377 return getIndirectByValue(Ty); 9378 } 9379 9380 // Treat an enum type as its underlying type. 9381 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9382 Ty = EnumTy->getDecl()->getIntegerType(); 9383 9384 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9385 9386 if (isAggregateTypeForABI(Ty)) { 9387 // Structures with flexible arrays are always indirect. 9388 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9389 return getIndirectByValue(Ty); 9390 9391 // Ignore empty structs/unions. 9392 if (isEmptyRecord(getContext(), Ty, true)) 9393 return ABIArgInfo::getIgnore(); 9394 9395 llvm::LLVMContext &LLVMContext = getVMContext(); 9396 9397 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9398 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9399 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9400 9401 return FreeRegs >= SizeInRegs ? 9402 ABIArgInfo::getDirectInReg(Result) : 9403 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9404 } 9405 9406 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9407 if (EIT->getNumBits() > 64) 9408 return getIndirectByValue(Ty); 9409 9410 return isPromotableIntegerTypeForABI(Ty) 9411 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9412 : ABIArgInfo::getExtend(Ty)) 9413 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9414 : ABIArgInfo::getDirect()); 9415 } 9416 9417 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9418 if (RetTy->isAnyComplexType()) 9419 return ABIArgInfo::getDirectInReg(); 9420 9421 // Arguments of size > 4 registers are indirect. 9422 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9423 if (RetSize > 4) 9424 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9425 9426 return DefaultABIInfo::classifyReturnType(RetTy); 9427 } 9428 9429 } // End anonymous namespace. 9430 9431 //===----------------------------------------------------------------------===// 9432 // XCore ABI Implementation 9433 //===----------------------------------------------------------------------===// 9434 9435 namespace { 9436 9437 /// A SmallStringEnc instance is used to build up the TypeString by passing 9438 /// it by reference between functions that append to it. 9439 typedef llvm::SmallString<128> SmallStringEnc; 9440 9441 /// TypeStringCache caches the meta encodings of Types. 9442 /// 9443 /// The reason for caching TypeStrings is two fold: 9444 /// 1. To cache a type's encoding for later uses; 9445 /// 2. As a means to break recursive member type inclusion. 9446 /// 9447 /// A cache Entry can have a Status of: 9448 /// NonRecursive: The type encoding is not recursive; 9449 /// Recursive: The type encoding is recursive; 9450 /// Incomplete: An incomplete TypeString; 9451 /// IncompleteUsed: An incomplete TypeString that has been used in a 9452 /// Recursive type encoding. 9453 /// 9454 /// A NonRecursive entry will have all of its sub-members expanded as fully 9455 /// as possible. Whilst it may contain types which are recursive, the type 9456 /// itself is not recursive and thus its encoding may be safely used whenever 9457 /// the type is encountered. 9458 /// 9459 /// A Recursive entry will have all of its sub-members expanded as fully as 9460 /// possible. The type itself is recursive and it may contain other types which 9461 /// are recursive. The Recursive encoding must not be used during the expansion 9462 /// of a recursive type's recursive branch. For simplicity the code uses 9463 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9464 /// 9465 /// An Incomplete entry is always a RecordType and only encodes its 9466 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9467 /// are placed into the cache during type expansion as a means to identify and 9468 /// handle recursive inclusion of types as sub-members. If there is recursion 9469 /// the entry becomes IncompleteUsed. 9470 /// 9471 /// During the expansion of a RecordType's members: 9472 /// 9473 /// If the cache contains a NonRecursive encoding for the member type, the 9474 /// cached encoding is used; 9475 /// 9476 /// If the cache contains a Recursive encoding for the member type, the 9477 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9478 /// 9479 /// If the member is a RecordType, an Incomplete encoding is placed into the 9480 /// cache to break potential recursive inclusion of itself as a sub-member; 9481 /// 9482 /// Once a member RecordType has been expanded, its temporary incomplete 9483 /// entry is removed from the cache. If a Recursive encoding was swapped out 9484 /// it is swapped back in; 9485 /// 9486 /// If an incomplete entry is used to expand a sub-member, the incomplete 9487 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9488 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9489 /// 9490 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9491 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9492 /// Else the member is part of a recursive type and thus the recursion has 9493 /// been exited too soon for the encoding to be correct for the member. 9494 /// 9495 class TypeStringCache { 9496 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9497 struct Entry { 9498 std::string Str; // The encoded TypeString for the type. 9499 enum Status State; // Information about the encoding in 'Str'. 9500 std::string Swapped; // A temporary place holder for a Recursive encoding 9501 // during the expansion of RecordType's members. 9502 }; 9503 std::map<const IdentifierInfo *, struct Entry> Map; 9504 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9505 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9506 public: 9507 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9508 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9509 bool removeIncomplete(const IdentifierInfo *ID); 9510 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9511 bool IsRecursive); 9512 StringRef lookupStr(const IdentifierInfo *ID); 9513 }; 9514 9515 /// TypeString encodings for enum & union fields must be order. 9516 /// FieldEncoding is a helper for this ordering process. 9517 class FieldEncoding { 9518 bool HasName; 9519 std::string Enc; 9520 public: 9521 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9522 StringRef str() { return Enc; } 9523 bool operator<(const FieldEncoding &rhs) const { 9524 if (HasName != rhs.HasName) return HasName; 9525 return Enc < rhs.Enc; 9526 } 9527 }; 9528 9529 class XCoreABIInfo : public DefaultABIInfo { 9530 public: 9531 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9532 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9533 QualType Ty) const override; 9534 }; 9535 9536 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9537 mutable TypeStringCache TSC; 9538 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9539 const CodeGen::CodeGenModule &M) const; 9540 9541 public: 9542 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9543 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9544 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9545 const llvm::MapVector<GlobalDecl, StringRef> 9546 &MangledDeclNames) const override; 9547 }; 9548 9549 } // End anonymous namespace. 9550 9551 // TODO: this implementation is likely now redundant with the default 9552 // EmitVAArg. 9553 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9554 QualType Ty) const { 9555 CGBuilderTy &Builder = CGF.Builder; 9556 9557 // Get the VAList. 9558 CharUnits SlotSize = CharUnits::fromQuantity(4); 9559 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9560 9561 // Handle the argument. 9562 ABIArgInfo AI = classifyArgumentType(Ty); 9563 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9564 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9565 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9566 AI.setCoerceToType(ArgTy); 9567 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9568 9569 Address Val = Address::invalid(); 9570 CharUnits ArgSize = CharUnits::Zero(); 9571 switch (AI.getKind()) { 9572 case ABIArgInfo::Expand: 9573 case ABIArgInfo::CoerceAndExpand: 9574 case ABIArgInfo::InAlloca: 9575 llvm_unreachable("Unsupported ABI kind for va_arg"); 9576 case ABIArgInfo::Ignore: 9577 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9578 ArgSize = CharUnits::Zero(); 9579 break; 9580 case ABIArgInfo::Extend: 9581 case ABIArgInfo::Direct: 9582 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9583 ArgSize = CharUnits::fromQuantity( 9584 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9585 ArgSize = ArgSize.alignTo(SlotSize); 9586 break; 9587 case ABIArgInfo::Indirect: 9588 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9589 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9590 ArgSize = SlotSize; 9591 break; 9592 } 9593 9594 // Increment the VAList. 9595 if (!ArgSize.isZero()) { 9596 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9597 Builder.CreateStore(APN.getPointer(), VAListAddr); 9598 } 9599 9600 return Val; 9601 } 9602 9603 /// During the expansion of a RecordType, an incomplete TypeString is placed 9604 /// into the cache as a means to identify and break recursion. 9605 /// If there is a Recursive encoding in the cache, it is swapped out and will 9606 /// be reinserted by removeIncomplete(). 9607 /// All other types of encoding should have been used rather than arriving here. 9608 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9609 std::string StubEnc) { 9610 if (!ID) 9611 return; 9612 Entry &E = Map[ID]; 9613 assert( (E.Str.empty() || E.State == Recursive) && 9614 "Incorrectly use of addIncomplete"); 9615 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9616 E.Swapped.swap(E.Str); // swap out the Recursive 9617 E.Str.swap(StubEnc); 9618 E.State = Incomplete; 9619 ++IncompleteCount; 9620 } 9621 9622 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9623 /// must be removed from the cache. 9624 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9625 /// Returns true if the RecordType was defined recursively. 9626 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9627 if (!ID) 9628 return false; 9629 auto I = Map.find(ID); 9630 assert(I != Map.end() && "Entry not present"); 9631 Entry &E = I->second; 9632 assert( (E.State == Incomplete || 9633 E.State == IncompleteUsed) && 9634 "Entry must be an incomplete type"); 9635 bool IsRecursive = false; 9636 if (E.State == IncompleteUsed) { 9637 // We made use of our Incomplete encoding, thus we are recursive. 9638 IsRecursive = true; 9639 --IncompleteUsedCount; 9640 } 9641 if (E.Swapped.empty()) 9642 Map.erase(I); 9643 else { 9644 // Swap the Recursive back. 9645 E.Swapped.swap(E.Str); 9646 E.Swapped.clear(); 9647 E.State = Recursive; 9648 } 9649 --IncompleteCount; 9650 return IsRecursive; 9651 } 9652 9653 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9654 /// Recursive (viz: all sub-members were expanded as fully as possible). 9655 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9656 bool IsRecursive) { 9657 if (!ID || IncompleteUsedCount) 9658 return; // No key or it is is an incomplete sub-type so don't add. 9659 Entry &E = Map[ID]; 9660 if (IsRecursive && !E.Str.empty()) { 9661 assert(E.State==Recursive && E.Str.size() == Str.size() && 9662 "This is not the same Recursive entry"); 9663 // The parent container was not recursive after all, so we could have used 9664 // this Recursive sub-member entry after all, but we assumed the worse when 9665 // we started viz: IncompleteCount!=0. 9666 return; 9667 } 9668 assert(E.Str.empty() && "Entry already present"); 9669 E.Str = Str.str(); 9670 E.State = IsRecursive? Recursive : NonRecursive; 9671 } 9672 9673 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9674 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9675 /// encoding is Recursive, return an empty StringRef. 9676 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9677 if (!ID) 9678 return StringRef(); // We have no key. 9679 auto I = Map.find(ID); 9680 if (I == Map.end()) 9681 return StringRef(); // We have no encoding. 9682 Entry &E = I->second; 9683 if (E.State == Recursive && IncompleteCount) 9684 return StringRef(); // We don't use Recursive encodings for member types. 9685 9686 if (E.State == Incomplete) { 9687 // The incomplete type is being used to break out of recursion. 9688 E.State = IncompleteUsed; 9689 ++IncompleteUsedCount; 9690 } 9691 return E.Str; 9692 } 9693 9694 /// The XCore ABI includes a type information section that communicates symbol 9695 /// type information to the linker. The linker uses this information to verify 9696 /// safety/correctness of things such as array bound and pointers et al. 9697 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9698 /// This type information (TypeString) is emitted into meta data for all global 9699 /// symbols: definitions, declarations, functions & variables. 9700 /// 9701 /// The TypeString carries type, qualifier, name, size & value details. 9702 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9703 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9704 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9705 /// 9706 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9707 const CodeGen::CodeGenModule &CGM, 9708 TypeStringCache &TSC); 9709 9710 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9711 void XCoreTargetCodeGenInfo::emitTargetMD( 9712 const Decl *D, llvm::GlobalValue *GV, 9713 const CodeGen::CodeGenModule &CGM) const { 9714 SmallStringEnc Enc; 9715 if (getTypeString(Enc, D, CGM, TSC)) { 9716 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9717 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9718 llvm::MDString::get(Ctx, Enc.str())}; 9719 llvm::NamedMDNode *MD = 9720 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9721 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9722 } 9723 } 9724 9725 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9726 CodeGen::CodeGenModule &CGM, 9727 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9728 // Warning, new MangledDeclNames may be appended within this loop. 9729 // We rely on MapVector insertions adding new elements to the end 9730 // of the container. 9731 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9732 auto Val = *(MangledDeclNames.begin() + I); 9733 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9734 if (GV) { 9735 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9736 emitTargetMD(D, GV, CGM); 9737 } 9738 } 9739 } 9740 //===----------------------------------------------------------------------===// 9741 // SPIR ABI Implementation 9742 //===----------------------------------------------------------------------===// 9743 9744 namespace { 9745 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9746 public: 9747 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9748 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 9749 unsigned getOpenCLKernelCallingConv() const override; 9750 }; 9751 9752 } // End anonymous namespace. 9753 9754 namespace clang { 9755 namespace CodeGen { 9756 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9757 DefaultABIInfo SPIRABI(CGM.getTypes()); 9758 SPIRABI.computeInfo(FI); 9759 } 9760 } 9761 } 9762 9763 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9764 return llvm::CallingConv::SPIR_KERNEL; 9765 } 9766 9767 static bool appendType(SmallStringEnc &Enc, QualType QType, 9768 const CodeGen::CodeGenModule &CGM, 9769 TypeStringCache &TSC); 9770 9771 /// Helper function for appendRecordType(). 9772 /// Builds a SmallVector containing the encoded field types in declaration 9773 /// order. 9774 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9775 const RecordDecl *RD, 9776 const CodeGen::CodeGenModule &CGM, 9777 TypeStringCache &TSC) { 9778 for (const auto *Field : RD->fields()) { 9779 SmallStringEnc Enc; 9780 Enc += "m("; 9781 Enc += Field->getName(); 9782 Enc += "){"; 9783 if (Field->isBitField()) { 9784 Enc += "b("; 9785 llvm::raw_svector_ostream OS(Enc); 9786 OS << Field->getBitWidthValue(CGM.getContext()); 9787 Enc += ':'; 9788 } 9789 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9790 return false; 9791 if (Field->isBitField()) 9792 Enc += ')'; 9793 Enc += '}'; 9794 FE.emplace_back(!Field->getName().empty(), Enc); 9795 } 9796 return true; 9797 } 9798 9799 /// Appends structure and union types to Enc and adds encoding to cache. 9800 /// Recursively calls appendType (via extractFieldType) for each field. 9801 /// Union types have their fields ordered according to the ABI. 9802 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9803 const CodeGen::CodeGenModule &CGM, 9804 TypeStringCache &TSC, const IdentifierInfo *ID) { 9805 // Append the cached TypeString if we have one. 9806 StringRef TypeString = TSC.lookupStr(ID); 9807 if (!TypeString.empty()) { 9808 Enc += TypeString; 9809 return true; 9810 } 9811 9812 // Start to emit an incomplete TypeString. 9813 size_t Start = Enc.size(); 9814 Enc += (RT->isUnionType()? 'u' : 's'); 9815 Enc += '('; 9816 if (ID) 9817 Enc += ID->getName(); 9818 Enc += "){"; 9819 9820 // We collect all encoded fields and order as necessary. 9821 bool IsRecursive = false; 9822 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9823 if (RD && !RD->field_empty()) { 9824 // An incomplete TypeString stub is placed in the cache for this RecordType 9825 // so that recursive calls to this RecordType will use it whilst building a 9826 // complete TypeString for this RecordType. 9827 SmallVector<FieldEncoding, 16> FE; 9828 std::string StubEnc(Enc.substr(Start).str()); 9829 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9830 TSC.addIncomplete(ID, std::move(StubEnc)); 9831 if (!extractFieldType(FE, RD, CGM, TSC)) { 9832 (void) TSC.removeIncomplete(ID); 9833 return false; 9834 } 9835 IsRecursive = TSC.removeIncomplete(ID); 9836 // The ABI requires unions to be sorted but not structures. 9837 // See FieldEncoding::operator< for sort algorithm. 9838 if (RT->isUnionType()) 9839 llvm::sort(FE); 9840 // We can now complete the TypeString. 9841 unsigned E = FE.size(); 9842 for (unsigned I = 0; I != E; ++I) { 9843 if (I) 9844 Enc += ','; 9845 Enc += FE[I].str(); 9846 } 9847 } 9848 Enc += '}'; 9849 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9850 return true; 9851 } 9852 9853 /// Appends enum types to Enc and adds the encoding to the cache. 9854 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9855 TypeStringCache &TSC, 9856 const IdentifierInfo *ID) { 9857 // Append the cached TypeString if we have one. 9858 StringRef TypeString = TSC.lookupStr(ID); 9859 if (!TypeString.empty()) { 9860 Enc += TypeString; 9861 return true; 9862 } 9863 9864 size_t Start = Enc.size(); 9865 Enc += "e("; 9866 if (ID) 9867 Enc += ID->getName(); 9868 Enc += "){"; 9869 9870 // We collect all encoded enumerations and order them alphanumerically. 9871 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9872 SmallVector<FieldEncoding, 16> FE; 9873 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9874 ++I) { 9875 SmallStringEnc EnumEnc; 9876 EnumEnc += "m("; 9877 EnumEnc += I->getName(); 9878 EnumEnc += "){"; 9879 I->getInitVal().toString(EnumEnc); 9880 EnumEnc += '}'; 9881 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9882 } 9883 llvm::sort(FE); 9884 unsigned E = FE.size(); 9885 for (unsigned I = 0; I != E; ++I) { 9886 if (I) 9887 Enc += ','; 9888 Enc += FE[I].str(); 9889 } 9890 } 9891 Enc += '}'; 9892 TSC.addIfComplete(ID, Enc.substr(Start), false); 9893 return true; 9894 } 9895 9896 /// Appends type's qualifier to Enc. 9897 /// This is done prior to appending the type's encoding. 9898 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9899 // Qualifiers are emitted in alphabetical order. 9900 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9901 int Lookup = 0; 9902 if (QT.isConstQualified()) 9903 Lookup += 1<<0; 9904 if (QT.isRestrictQualified()) 9905 Lookup += 1<<1; 9906 if (QT.isVolatileQualified()) 9907 Lookup += 1<<2; 9908 Enc += Table[Lookup]; 9909 } 9910 9911 /// Appends built-in types to Enc. 9912 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9913 const char *EncType; 9914 switch (BT->getKind()) { 9915 case BuiltinType::Void: 9916 EncType = "0"; 9917 break; 9918 case BuiltinType::Bool: 9919 EncType = "b"; 9920 break; 9921 case BuiltinType::Char_U: 9922 EncType = "uc"; 9923 break; 9924 case BuiltinType::UChar: 9925 EncType = "uc"; 9926 break; 9927 case BuiltinType::SChar: 9928 EncType = "sc"; 9929 break; 9930 case BuiltinType::UShort: 9931 EncType = "us"; 9932 break; 9933 case BuiltinType::Short: 9934 EncType = "ss"; 9935 break; 9936 case BuiltinType::UInt: 9937 EncType = "ui"; 9938 break; 9939 case BuiltinType::Int: 9940 EncType = "si"; 9941 break; 9942 case BuiltinType::ULong: 9943 EncType = "ul"; 9944 break; 9945 case BuiltinType::Long: 9946 EncType = "sl"; 9947 break; 9948 case BuiltinType::ULongLong: 9949 EncType = "ull"; 9950 break; 9951 case BuiltinType::LongLong: 9952 EncType = "sll"; 9953 break; 9954 case BuiltinType::Float: 9955 EncType = "ft"; 9956 break; 9957 case BuiltinType::Double: 9958 EncType = "d"; 9959 break; 9960 case BuiltinType::LongDouble: 9961 EncType = "ld"; 9962 break; 9963 default: 9964 return false; 9965 } 9966 Enc += EncType; 9967 return true; 9968 } 9969 9970 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9971 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9972 const CodeGen::CodeGenModule &CGM, 9973 TypeStringCache &TSC) { 9974 Enc += "p("; 9975 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9976 return false; 9977 Enc += ')'; 9978 return true; 9979 } 9980 9981 /// Appends array encoding to Enc before calling appendType for the element. 9982 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9983 const ArrayType *AT, 9984 const CodeGen::CodeGenModule &CGM, 9985 TypeStringCache &TSC, StringRef NoSizeEnc) { 9986 if (AT->getSizeModifier() != ArrayType::Normal) 9987 return false; 9988 Enc += "a("; 9989 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9990 CAT->getSize().toStringUnsigned(Enc); 9991 else 9992 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9993 Enc += ':'; 9994 // The Qualifiers should be attached to the type rather than the array. 9995 appendQualifier(Enc, QT); 9996 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9997 return false; 9998 Enc += ')'; 9999 return true; 10000 } 10001 10002 /// Appends a function encoding to Enc, calling appendType for the return type 10003 /// and the arguments. 10004 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10005 const CodeGen::CodeGenModule &CGM, 10006 TypeStringCache &TSC) { 10007 Enc += "f{"; 10008 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10009 return false; 10010 Enc += "}("; 10011 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10012 // N.B. we are only interested in the adjusted param types. 10013 auto I = FPT->param_type_begin(); 10014 auto E = FPT->param_type_end(); 10015 if (I != E) { 10016 do { 10017 if (!appendType(Enc, *I, CGM, TSC)) 10018 return false; 10019 ++I; 10020 if (I != E) 10021 Enc += ','; 10022 } while (I != E); 10023 if (FPT->isVariadic()) 10024 Enc += ",va"; 10025 } else { 10026 if (FPT->isVariadic()) 10027 Enc += "va"; 10028 else 10029 Enc += '0'; 10030 } 10031 } 10032 Enc += ')'; 10033 return true; 10034 } 10035 10036 /// Handles the type's qualifier before dispatching a call to handle specific 10037 /// type encodings. 10038 static bool appendType(SmallStringEnc &Enc, QualType QType, 10039 const CodeGen::CodeGenModule &CGM, 10040 TypeStringCache &TSC) { 10041 10042 QualType QT = QType.getCanonicalType(); 10043 10044 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10045 // The Qualifiers should be attached to the type rather than the array. 10046 // Thus we don't call appendQualifier() here. 10047 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10048 10049 appendQualifier(Enc, QT); 10050 10051 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10052 return appendBuiltinType(Enc, BT); 10053 10054 if (const PointerType *PT = QT->getAs<PointerType>()) 10055 return appendPointerType(Enc, PT, CGM, TSC); 10056 10057 if (const EnumType *ET = QT->getAs<EnumType>()) 10058 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10059 10060 if (const RecordType *RT = QT->getAsStructureType()) 10061 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10062 10063 if (const RecordType *RT = QT->getAsUnionType()) 10064 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10065 10066 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10067 return appendFunctionType(Enc, FT, CGM, TSC); 10068 10069 return false; 10070 } 10071 10072 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10073 const CodeGen::CodeGenModule &CGM, 10074 TypeStringCache &TSC) { 10075 if (!D) 10076 return false; 10077 10078 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10079 if (FD->getLanguageLinkage() != CLanguageLinkage) 10080 return false; 10081 return appendType(Enc, FD->getType(), CGM, TSC); 10082 } 10083 10084 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10085 if (VD->getLanguageLinkage() != CLanguageLinkage) 10086 return false; 10087 QualType QT = VD->getType().getCanonicalType(); 10088 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10089 // Global ArrayTypes are given a size of '*' if the size is unknown. 10090 // The Qualifiers should be attached to the type rather than the array. 10091 // Thus we don't call appendQualifier() here. 10092 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10093 } 10094 return appendType(Enc, QT, CGM, TSC); 10095 } 10096 return false; 10097 } 10098 10099 //===----------------------------------------------------------------------===// 10100 // RISCV ABI Implementation 10101 //===----------------------------------------------------------------------===// 10102 10103 namespace { 10104 class RISCVABIInfo : public DefaultABIInfo { 10105 private: 10106 // Size of the integer ('x') registers in bits. 10107 unsigned XLen; 10108 // Size of the floating point ('f') registers in bits. Note that the target 10109 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10110 // with soft float ABI has FLen==0). 10111 unsigned FLen; 10112 static const int NumArgGPRs = 8; 10113 static const int NumArgFPRs = 8; 10114 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10115 llvm::Type *&Field1Ty, 10116 CharUnits &Field1Off, 10117 llvm::Type *&Field2Ty, 10118 CharUnits &Field2Off) const; 10119 10120 public: 10121 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10122 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10123 10124 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10125 // non-virtual, but computeInfo is virtual, so we overload it. 10126 void computeInfo(CGFunctionInfo &FI) const override; 10127 10128 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10129 int &ArgFPRsLeft) const; 10130 ABIArgInfo classifyReturnType(QualType RetTy) const; 10131 10132 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10133 QualType Ty) const override; 10134 10135 ABIArgInfo extendType(QualType Ty) const; 10136 10137 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10138 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10139 CharUnits &Field2Off, int &NeededArgGPRs, 10140 int &NeededArgFPRs) const; 10141 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10142 CharUnits Field1Off, 10143 llvm::Type *Field2Ty, 10144 CharUnits Field2Off) const; 10145 }; 10146 } // end anonymous namespace 10147 10148 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10149 QualType RetTy = FI.getReturnType(); 10150 if (!getCXXABI().classifyReturnType(FI)) 10151 FI.getReturnInfo() = classifyReturnType(RetTy); 10152 10153 // IsRetIndirect is true if classifyArgumentType indicated the value should 10154 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10155 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10156 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10157 // list and pass indirectly on RV32. 10158 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10159 if (!IsRetIndirect && RetTy->isScalarType() && 10160 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10161 if (RetTy->isComplexType() && FLen) { 10162 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 10163 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10164 } else { 10165 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10166 IsRetIndirect = true; 10167 } 10168 } 10169 10170 // We must track the number of GPRs used in order to conform to the RISC-V 10171 // ABI, as integer scalars passed in registers should have signext/zeroext 10172 // when promoted, but are anyext if passed on the stack. As GPR usage is 10173 // different for variadic arguments, we must also track whether we are 10174 // examining a vararg or not. 10175 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10176 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10177 int NumFixedArgs = FI.getNumRequiredArgs(); 10178 10179 int ArgNum = 0; 10180 for (auto &ArgInfo : FI.arguments()) { 10181 bool IsFixed = ArgNum < NumFixedArgs; 10182 ArgInfo.info = 10183 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10184 ArgNum++; 10185 } 10186 } 10187 10188 // Returns true if the struct is a potential candidate for the floating point 10189 // calling convention. If this function returns true, the caller is 10190 // responsible for checking that if there is only a single field then that 10191 // field is a float. 10192 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10193 llvm::Type *&Field1Ty, 10194 CharUnits &Field1Off, 10195 llvm::Type *&Field2Ty, 10196 CharUnits &Field2Off) const { 10197 bool IsInt = Ty->isIntegralOrEnumerationType(); 10198 bool IsFloat = Ty->isRealFloatingType(); 10199 10200 if (IsInt || IsFloat) { 10201 uint64_t Size = getContext().getTypeSize(Ty); 10202 if (IsInt && Size > XLen) 10203 return false; 10204 // Can't be eligible if larger than the FP registers. Half precision isn't 10205 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10206 // default to the integer ABI in that case. 10207 if (IsFloat && (Size > FLen || Size < 32)) 10208 return false; 10209 // Can't be eligible if an integer type was already found (int+int pairs 10210 // are not eligible). 10211 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10212 return false; 10213 if (!Field1Ty) { 10214 Field1Ty = CGT.ConvertType(Ty); 10215 Field1Off = CurOff; 10216 return true; 10217 } 10218 if (!Field2Ty) { 10219 Field2Ty = CGT.ConvertType(Ty); 10220 Field2Off = CurOff; 10221 return true; 10222 } 10223 return false; 10224 } 10225 10226 if (auto CTy = Ty->getAs<ComplexType>()) { 10227 if (Field1Ty) 10228 return false; 10229 QualType EltTy = CTy->getElementType(); 10230 if (getContext().getTypeSize(EltTy) > FLen) 10231 return false; 10232 Field1Ty = CGT.ConvertType(EltTy); 10233 Field1Off = CurOff; 10234 assert(CurOff.isZero() && "Unexpected offset for first field"); 10235 Field2Ty = Field1Ty; 10236 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10237 return true; 10238 } 10239 10240 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10241 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10242 QualType EltTy = ATy->getElementType(); 10243 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10244 for (uint64_t i = 0; i < ArraySize; ++i) { 10245 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10246 Field1Off, Field2Ty, Field2Off); 10247 if (!Ret) 10248 return false; 10249 CurOff += EltSize; 10250 } 10251 return true; 10252 } 10253 10254 if (const auto *RTy = Ty->getAs<RecordType>()) { 10255 // Structures with either a non-trivial destructor or a non-trivial 10256 // copy constructor are not eligible for the FP calling convention. 10257 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10258 return false; 10259 if (isEmptyRecord(getContext(), Ty, true)) 10260 return true; 10261 const RecordDecl *RD = RTy->getDecl(); 10262 // Unions aren't eligible unless they're empty (which is caught above). 10263 if (RD->isUnion()) 10264 return false; 10265 int ZeroWidthBitFieldCount = 0; 10266 for (const FieldDecl *FD : RD->fields()) { 10267 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10268 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10269 QualType QTy = FD->getType(); 10270 if (FD->isBitField()) { 10271 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10272 // Allow a bitfield with a type greater than XLen as long as the 10273 // bitwidth is XLen or less. 10274 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10275 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10276 if (BitWidth == 0) { 10277 ZeroWidthBitFieldCount++; 10278 continue; 10279 } 10280 } 10281 10282 bool Ret = detectFPCCEligibleStructHelper( 10283 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10284 Field1Ty, Field1Off, Field2Ty, Field2Off); 10285 if (!Ret) 10286 return false; 10287 10288 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10289 // or int+fp structs, but are ignored for a struct with an fp field and 10290 // any number of zero-width bitfields. 10291 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10292 return false; 10293 } 10294 return Field1Ty != nullptr; 10295 } 10296 10297 return false; 10298 } 10299 10300 // Determine if a struct is eligible for passing according to the floating 10301 // point calling convention (i.e., when flattened it contains a single fp 10302 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10303 // NeededArgGPRs are incremented appropriately. 10304 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10305 CharUnits &Field1Off, 10306 llvm::Type *&Field2Ty, 10307 CharUnits &Field2Off, 10308 int &NeededArgGPRs, 10309 int &NeededArgFPRs) const { 10310 Field1Ty = nullptr; 10311 Field2Ty = nullptr; 10312 NeededArgGPRs = 0; 10313 NeededArgFPRs = 0; 10314 bool IsCandidate = detectFPCCEligibleStructHelper( 10315 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10316 // Not really a candidate if we have a single int but no float. 10317 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10318 return false; 10319 if (!IsCandidate) 10320 return false; 10321 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10322 NeededArgFPRs++; 10323 else if (Field1Ty) 10324 NeededArgGPRs++; 10325 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10326 NeededArgFPRs++; 10327 else if (Field2Ty) 10328 NeededArgGPRs++; 10329 return IsCandidate; 10330 } 10331 10332 // Call getCoerceAndExpand for the two-element flattened struct described by 10333 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10334 // appropriate coerceToType and unpaddedCoerceToType. 10335 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10336 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10337 CharUnits Field2Off) const { 10338 SmallVector<llvm::Type *, 3> CoerceElts; 10339 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10340 if (!Field1Off.isZero()) 10341 CoerceElts.push_back(llvm::ArrayType::get( 10342 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10343 10344 CoerceElts.push_back(Field1Ty); 10345 UnpaddedCoerceElts.push_back(Field1Ty); 10346 10347 if (!Field2Ty) { 10348 return ABIArgInfo::getCoerceAndExpand( 10349 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10350 UnpaddedCoerceElts[0]); 10351 } 10352 10353 CharUnits Field2Align = 10354 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10355 CharUnits Field1Size = 10356 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10357 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 10358 10359 CharUnits Padding = CharUnits::Zero(); 10360 if (Field2Off > Field2OffNoPadNoPack) 10361 Padding = Field2Off - Field2OffNoPadNoPack; 10362 else if (Field2Off != Field2Align && Field2Off > Field1Size) 10363 Padding = Field2Off - Field1Size; 10364 10365 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10366 10367 if (!Padding.isZero()) 10368 CoerceElts.push_back(llvm::ArrayType::get( 10369 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10370 10371 CoerceElts.push_back(Field2Ty); 10372 UnpaddedCoerceElts.push_back(Field2Ty); 10373 10374 auto CoerceToType = 10375 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10376 auto UnpaddedCoerceToType = 10377 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10378 10379 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10380 } 10381 10382 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10383 int &ArgGPRsLeft, 10384 int &ArgFPRsLeft) const { 10385 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10386 Ty = useFirstFieldIfTransparentUnion(Ty); 10387 10388 // Structures with either a non-trivial destructor or a non-trivial 10389 // copy constructor are always passed indirectly. 10390 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10391 if (ArgGPRsLeft) 10392 ArgGPRsLeft -= 1; 10393 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10394 CGCXXABI::RAA_DirectInMemory); 10395 } 10396 10397 // Ignore empty structs/unions. 10398 if (isEmptyRecord(getContext(), Ty, true)) 10399 return ABIArgInfo::getIgnore(); 10400 10401 uint64_t Size = getContext().getTypeSize(Ty); 10402 10403 // Pass floating point values via FPRs if possible. 10404 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10405 FLen >= Size && ArgFPRsLeft) { 10406 ArgFPRsLeft--; 10407 return ABIArgInfo::getDirect(); 10408 } 10409 10410 // Complex types for the hard float ABI must be passed direct rather than 10411 // using CoerceAndExpand. 10412 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10413 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10414 if (getContext().getTypeSize(EltTy) <= FLen) { 10415 ArgFPRsLeft -= 2; 10416 return ABIArgInfo::getDirect(); 10417 } 10418 } 10419 10420 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10421 llvm::Type *Field1Ty = nullptr; 10422 llvm::Type *Field2Ty = nullptr; 10423 CharUnits Field1Off = CharUnits::Zero(); 10424 CharUnits Field2Off = CharUnits::Zero(); 10425 int NeededArgGPRs; 10426 int NeededArgFPRs; 10427 bool IsCandidate = 10428 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10429 NeededArgGPRs, NeededArgFPRs); 10430 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10431 NeededArgFPRs <= ArgFPRsLeft) { 10432 ArgGPRsLeft -= NeededArgGPRs; 10433 ArgFPRsLeft -= NeededArgFPRs; 10434 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10435 Field2Off); 10436 } 10437 } 10438 10439 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10440 bool MustUseStack = false; 10441 // Determine the number of GPRs needed to pass the current argument 10442 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10443 // register pairs, so may consume 3 registers. 10444 int NeededArgGPRs = 1; 10445 if (!IsFixed && NeededAlign == 2 * XLen) 10446 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10447 else if (Size > XLen && Size <= 2 * XLen) 10448 NeededArgGPRs = 2; 10449 10450 if (NeededArgGPRs > ArgGPRsLeft) { 10451 MustUseStack = true; 10452 NeededArgGPRs = ArgGPRsLeft; 10453 } 10454 10455 ArgGPRsLeft -= NeededArgGPRs; 10456 10457 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10458 // Treat an enum type as its underlying type. 10459 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10460 Ty = EnumTy->getDecl()->getIntegerType(); 10461 10462 // All integral types are promoted to XLen width, unless passed on the 10463 // stack. 10464 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10465 return extendType(Ty); 10466 } 10467 10468 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10469 if (EIT->getNumBits() < XLen && !MustUseStack) 10470 return extendType(Ty); 10471 if (EIT->getNumBits() > 128 || 10472 (!getContext().getTargetInfo().hasInt128Type() && 10473 EIT->getNumBits() > 64)) 10474 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10475 } 10476 10477 return ABIArgInfo::getDirect(); 10478 } 10479 10480 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10481 // so coerce to integers. 10482 if (Size <= 2 * XLen) { 10483 unsigned Alignment = getContext().getTypeAlign(Ty); 10484 10485 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10486 // required, and a 2-element XLen array if only XLen alignment is required. 10487 if (Size <= XLen) { 10488 return ABIArgInfo::getDirect( 10489 llvm::IntegerType::get(getVMContext(), XLen)); 10490 } else if (Alignment == 2 * XLen) { 10491 return ABIArgInfo::getDirect( 10492 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10493 } else { 10494 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10495 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10496 } 10497 } 10498 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10499 } 10500 10501 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10502 if (RetTy->isVoidType()) 10503 return ABIArgInfo::getIgnore(); 10504 10505 int ArgGPRsLeft = 2; 10506 int ArgFPRsLeft = FLen ? 2 : 0; 10507 10508 // The rules for return and argument types are the same, so defer to 10509 // classifyArgumentType. 10510 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10511 ArgFPRsLeft); 10512 } 10513 10514 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10515 QualType Ty) const { 10516 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10517 10518 // Empty records are ignored for parameter passing purposes. 10519 if (isEmptyRecord(getContext(), Ty, true)) { 10520 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10521 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10522 return Addr; 10523 } 10524 10525 std::pair<CharUnits, CharUnits> SizeAndAlign = 10526 getContext().getTypeInfoInChars(Ty); 10527 10528 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10529 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 10530 10531 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 10532 SlotSize, /*AllowHigherAlign=*/true); 10533 } 10534 10535 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10536 int TySize = getContext().getTypeSize(Ty); 10537 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10538 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10539 return ABIArgInfo::getSignExtend(Ty); 10540 return ABIArgInfo::getExtend(Ty); 10541 } 10542 10543 namespace { 10544 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10545 public: 10546 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10547 unsigned FLen) 10548 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10549 10550 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10551 CodeGen::CodeGenModule &CGM) const override { 10552 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10553 if (!FD) return; 10554 10555 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10556 if (!Attr) 10557 return; 10558 10559 const char *Kind; 10560 switch (Attr->getInterrupt()) { 10561 case RISCVInterruptAttr::user: Kind = "user"; break; 10562 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10563 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10564 } 10565 10566 auto *Fn = cast<llvm::Function>(GV); 10567 10568 Fn->addFnAttr("interrupt", Kind); 10569 } 10570 }; 10571 } // namespace 10572 10573 //===----------------------------------------------------------------------===// 10574 // VE ABI Implementation. 10575 // 10576 namespace { 10577 class VEABIInfo : public DefaultABIInfo { 10578 public: 10579 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10580 10581 private: 10582 ABIArgInfo classifyReturnType(QualType RetTy) const; 10583 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10584 void computeInfo(CGFunctionInfo &FI) const override; 10585 }; 10586 } // end anonymous namespace 10587 10588 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10589 if (Ty->isAnyComplexType()) { 10590 return ABIArgInfo::getDirect(); 10591 } 10592 return DefaultABIInfo::classifyReturnType(Ty); 10593 } 10594 10595 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10596 if (Ty->isAnyComplexType()) { 10597 return ABIArgInfo::getDirect(); 10598 } 10599 return DefaultABIInfo::classifyArgumentType(Ty); 10600 } 10601 10602 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10603 10604 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10605 for (auto &Arg : FI.arguments()) 10606 Arg.info = classifyArgumentType(Arg.type); 10607 } 10608 10609 namespace { 10610 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10611 public: 10612 VETargetCodeGenInfo(CodeGenTypes &CGT) 10613 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10614 // VE ABI requires the arguments of variadic and prototype-less functions 10615 // are passed in both registers and memory. 10616 bool isNoProtoCallVariadic(const CallArgList &args, 10617 const FunctionNoProtoType *fnType) const override { 10618 return true; 10619 } 10620 }; 10621 } // end anonymous namespace 10622 10623 //===----------------------------------------------------------------------===// 10624 // Driver code 10625 //===----------------------------------------------------------------------===// 10626 10627 bool CodeGenModule::supportsCOMDAT() const { 10628 return getTriple().supportsCOMDAT(); 10629 } 10630 10631 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10632 if (TheTargetCodeGenInfo) 10633 return *TheTargetCodeGenInfo; 10634 10635 // Helper to set the unique_ptr while still keeping the return value. 10636 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10637 this->TheTargetCodeGenInfo.reset(P); 10638 return *P; 10639 }; 10640 10641 const llvm::Triple &Triple = getTarget().getTriple(); 10642 switch (Triple.getArch()) { 10643 default: 10644 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10645 10646 case llvm::Triple::le32: 10647 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10648 case llvm::Triple::mips: 10649 case llvm::Triple::mipsel: 10650 if (Triple.getOS() == llvm::Triple::NaCl) 10651 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10652 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10653 10654 case llvm::Triple::mips64: 10655 case llvm::Triple::mips64el: 10656 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10657 10658 case llvm::Triple::avr: 10659 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10660 10661 case llvm::Triple::aarch64: 10662 case llvm::Triple::aarch64_32: 10663 case llvm::Triple::aarch64_be: { 10664 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10665 if (getTarget().getABI() == "darwinpcs") 10666 Kind = AArch64ABIInfo::DarwinPCS; 10667 else if (Triple.isOSWindows()) 10668 return SetCGInfo( 10669 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10670 10671 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10672 } 10673 10674 case llvm::Triple::wasm32: 10675 case llvm::Triple::wasm64: { 10676 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10677 if (getTarget().getABI() == "experimental-mv") 10678 Kind = WebAssemblyABIInfo::ExperimentalMV; 10679 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10680 } 10681 10682 case llvm::Triple::arm: 10683 case llvm::Triple::armeb: 10684 case llvm::Triple::thumb: 10685 case llvm::Triple::thumbeb: { 10686 if (Triple.getOS() == llvm::Triple::Win32) { 10687 return SetCGInfo( 10688 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10689 } 10690 10691 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10692 StringRef ABIStr = getTarget().getABI(); 10693 if (ABIStr == "apcs-gnu") 10694 Kind = ARMABIInfo::APCS; 10695 else if (ABIStr == "aapcs16") 10696 Kind = ARMABIInfo::AAPCS16_VFP; 10697 else if (CodeGenOpts.FloatABI == "hard" || 10698 (CodeGenOpts.FloatABI != "soft" && 10699 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10700 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10701 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10702 Kind = ARMABIInfo::AAPCS_VFP; 10703 10704 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10705 } 10706 10707 case llvm::Triple::ppc: { 10708 if (Triple.isOSAIX()) 10709 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10710 10711 bool IsSoftFloat = 10712 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10713 bool RetSmallStructInRegABI = 10714 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10715 return SetCGInfo( 10716 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10717 } 10718 case llvm::Triple::ppc64: 10719 if (Triple.isOSAIX()) 10720 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10721 10722 if (Triple.isOSBinFormatELF()) { 10723 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10724 if (getTarget().getABI() == "elfv2") 10725 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10726 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10727 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10728 10729 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10730 IsSoftFloat)); 10731 } 10732 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10733 case llvm::Triple::ppc64le: { 10734 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10735 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10736 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10737 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10738 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10739 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10740 10741 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10742 IsSoftFloat)); 10743 } 10744 10745 case llvm::Triple::nvptx: 10746 case llvm::Triple::nvptx64: 10747 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10748 10749 case llvm::Triple::msp430: 10750 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10751 10752 case llvm::Triple::riscv32: 10753 case llvm::Triple::riscv64: { 10754 StringRef ABIStr = getTarget().getABI(); 10755 unsigned XLen = getTarget().getPointerWidth(0); 10756 unsigned ABIFLen = 0; 10757 if (ABIStr.endswith("f")) 10758 ABIFLen = 32; 10759 else if (ABIStr.endswith("d")) 10760 ABIFLen = 64; 10761 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10762 } 10763 10764 case llvm::Triple::systemz: { 10765 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10766 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10767 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10768 } 10769 10770 case llvm::Triple::tce: 10771 case llvm::Triple::tcele: 10772 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10773 10774 case llvm::Triple::x86: { 10775 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10776 bool RetSmallStructInRegABI = 10777 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10778 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10779 10780 if (Triple.getOS() == llvm::Triple::Win32) { 10781 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10782 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10783 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 10784 } else { 10785 return SetCGInfo(new X86_32TargetCodeGenInfo( 10786 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10787 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 10788 CodeGenOpts.FloatABI == "soft")); 10789 } 10790 } 10791 10792 case llvm::Triple::x86_64: { 10793 StringRef ABI = getTarget().getABI(); 10794 X86AVXABILevel AVXLevel = 10795 (ABI == "avx512" 10796 ? X86AVXABILevel::AVX512 10797 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 10798 10799 switch (Triple.getOS()) { 10800 case llvm::Triple::Win32: 10801 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 10802 default: 10803 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 10804 } 10805 } 10806 case llvm::Triple::hexagon: 10807 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 10808 case llvm::Triple::lanai: 10809 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 10810 case llvm::Triple::r600: 10811 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10812 case llvm::Triple::amdgcn: 10813 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10814 case llvm::Triple::sparc: 10815 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 10816 case llvm::Triple::sparcv9: 10817 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 10818 case llvm::Triple::xcore: 10819 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 10820 case llvm::Triple::arc: 10821 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 10822 case llvm::Triple::spir: 10823 case llvm::Triple::spir64: 10824 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 10825 case llvm::Triple::ve: 10826 return SetCGInfo(new VETargetCodeGenInfo(Types)); 10827 } 10828 } 10829 10830 /// Create an OpenCL kernel for an enqueued block. 10831 /// 10832 /// The kernel has the same function type as the block invoke function. Its 10833 /// name is the name of the block invoke function postfixed with "_kernel". 10834 /// It simply calls the block invoke function then returns. 10835 llvm::Function * 10836 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 10837 llvm::Function *Invoke, 10838 llvm::Value *BlockLiteral) const { 10839 auto *InvokeFT = Invoke->getFunctionType(); 10840 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10841 for (auto &P : InvokeFT->params()) 10842 ArgTys.push_back(P); 10843 auto &C = CGF.getLLVMContext(); 10844 std::string Name = Invoke->getName().str() + "_kernel"; 10845 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10846 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10847 &CGF.CGM.getModule()); 10848 auto IP = CGF.Builder.saveIP(); 10849 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10850 auto &Builder = CGF.Builder; 10851 Builder.SetInsertPoint(BB); 10852 llvm::SmallVector<llvm::Value *, 2> Args; 10853 for (auto &A : F->args()) 10854 Args.push_back(&A); 10855 Builder.CreateCall(Invoke, Args); 10856 Builder.CreateRetVoid(); 10857 Builder.restoreIP(IP); 10858 return F; 10859 } 10860 10861 /// Create an OpenCL kernel for an enqueued block. 10862 /// 10863 /// The type of the first argument (the block literal) is the struct type 10864 /// of the block literal instead of a pointer type. The first argument 10865 /// (block literal) is passed directly by value to the kernel. The kernel 10866 /// allocates the same type of struct on stack and stores the block literal 10867 /// to it and passes its pointer to the block invoke function. The kernel 10868 /// has "enqueued-block" function attribute and kernel argument metadata. 10869 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 10870 CodeGenFunction &CGF, llvm::Function *Invoke, 10871 llvm::Value *BlockLiteral) const { 10872 auto &Builder = CGF.Builder; 10873 auto &C = CGF.getLLVMContext(); 10874 10875 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10876 auto *InvokeFT = Invoke->getFunctionType(); 10877 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10878 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10879 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10880 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10881 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10882 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10883 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10884 10885 ArgTys.push_back(BlockTy); 10886 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10887 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10888 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10889 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10890 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10891 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10892 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10893 ArgTys.push_back(InvokeFT->getParamType(I)); 10894 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10895 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10896 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10897 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10898 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10899 ArgNames.push_back( 10900 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10901 } 10902 std::string Name = Invoke->getName().str() + "_kernel"; 10903 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10904 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10905 &CGF.CGM.getModule()); 10906 F->addFnAttr("enqueued-block"); 10907 auto IP = CGF.Builder.saveIP(); 10908 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10909 Builder.SetInsertPoint(BB); 10910 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 10911 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10912 BlockPtr->setAlignment(BlockAlign); 10913 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10914 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10915 llvm::SmallVector<llvm::Value *, 2> Args; 10916 Args.push_back(Cast); 10917 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10918 Args.push_back(I); 10919 Builder.CreateCall(Invoke, Args); 10920 Builder.CreateRetVoid(); 10921 Builder.restoreIP(IP); 10922 10923 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10924 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10925 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10926 F->setMetadata("kernel_arg_base_type", 10927 llvm::MDNode::get(C, ArgBaseTypeNames)); 10928 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10929 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10930 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10931 10932 return F; 10933 } 10934