1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/Basic/CodeGenOptions.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> // std::sort 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 // Helper for coercing an aggregate argument or return value into an integer 37 // array of the same size (including padding) and alignment. This alternate 38 // coercion happens only for the RenderScript ABI and can be removed after 39 // runtimes that rely on it are no longer supported. 40 // 41 // RenderScript assumes that the size of the argument / return value in the IR 42 // is the same as the size of the corresponding qualified type. This helper 43 // coerces the aggregate type into an array of the same size (including 44 // padding). This coercion is used in lieu of expansion of struct members or 45 // other canonical coercions that return a coerced-type of larger size. 46 // 47 // Ty - The argument / return value type 48 // Context - The associated ASTContext 49 // LLVMContext - The associated LLVMContext 50 static ABIArgInfo coerceToIntArray(QualType Ty, 51 ASTContext &Context, 52 llvm::LLVMContext &LLVMContext) { 53 // Alignment and Size are measured in bits. 54 const uint64_t Size = Context.getTypeSize(Ty); 55 const uint64_t Alignment = Context.getTypeAlign(Ty); 56 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 57 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 58 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 59 } 60 61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 62 llvm::Value *Array, 63 llvm::Value *Value, 64 unsigned FirstIndex, 65 unsigned LastIndex) { 66 // Alternatively, we could emit this as a loop in the source. 67 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 68 llvm::Value *Cell = 69 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 70 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 71 } 72 } 73 74 static bool isAggregateTypeForABI(QualType T) { 75 return !CodeGenFunction::hasScalarEvaluationKind(T) || 76 T->isMemberFunctionPointerType(); 77 } 78 79 ABIArgInfo 80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 81 llvm::Type *Padding) const { 82 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 83 ByRef, Realign, Padding); 84 } 85 86 ABIArgInfo 87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 88 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 89 /*ByRef*/ false, Realign); 90 } 91 92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 93 QualType Ty) const { 94 return Address::invalid(); 95 } 96 97 ABIInfo::~ABIInfo() {} 98 99 /// Does the given lowering require more than the given number of 100 /// registers when expanded? 101 /// 102 /// This is intended to be the basis of a reasonable basic implementation 103 /// of should{Pass,Return}IndirectlyForSwift. 104 /// 105 /// For most targets, a limit of four total registers is reasonable; this 106 /// limits the amount of code required in order to move around the value 107 /// in case it wasn't produced immediately prior to the call by the caller 108 /// (or wasn't produced in exactly the right registers) or isn't used 109 /// immediately within the callee. But some targets may need to further 110 /// limit the register count due to an inability to support that many 111 /// return registers. 112 static bool occupiesMoreThan(CodeGenTypes &cgt, 113 ArrayRef<llvm::Type*> scalarTypes, 114 unsigned maxAllRegisters) { 115 unsigned intCount = 0, fpCount = 0; 116 for (llvm::Type *type : scalarTypes) { 117 if (type->isPointerTy()) { 118 intCount++; 119 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 120 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 121 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 122 } else { 123 assert(type->isVectorTy() || type->isFloatingPointTy()); 124 fpCount++; 125 } 126 } 127 128 return (intCount + fpCount > maxAllRegisters); 129 } 130 131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 132 llvm::Type *eltTy, 133 unsigned numElts) const { 134 // The default implementation of this assumes that the target guarantees 135 // 128-bit SIMD support but nothing more. 136 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 137 } 138 139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 140 CGCXXABI &CXXABI) { 141 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 142 if (!RD) { 143 if (!RT->getDecl()->canPassInRegisters()) 144 return CGCXXABI::RAA_Indirect; 145 return CGCXXABI::RAA_Default; 146 } 147 return CXXABI.getRecordArgABI(RD); 148 } 149 150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 151 CGCXXABI &CXXABI) { 152 const RecordType *RT = T->getAs<RecordType>(); 153 if (!RT) 154 return CGCXXABI::RAA_Default; 155 return getRecordArgABI(RT, CXXABI); 156 } 157 158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 159 const ABIInfo &Info) { 160 QualType Ty = FI.getReturnType(); 161 162 if (const auto *RT = Ty->getAs<RecordType>()) 163 if (!isa<CXXRecordDecl>(RT->getDecl()) && 164 !RT->getDecl()->canPassInRegisters()) { 165 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 166 return true; 167 } 168 169 return CXXABI.classifyReturnType(FI); 170 } 171 172 /// Pass transparent unions as if they were the type of the first element. Sema 173 /// should ensure that all elements of the union have the same "machine type". 174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 175 if (const RecordType *UT = Ty->getAsUnionType()) { 176 const RecordDecl *UD = UT->getDecl(); 177 if (UD->hasAttr<TransparentUnionAttr>()) { 178 assert(!UD->field_empty() && "sema created an empty transparent union"); 179 return UD->field_begin()->getType(); 180 } 181 } 182 return Ty; 183 } 184 185 CGCXXABI &ABIInfo::getCXXABI() const { 186 return CGT.getCXXABI(); 187 } 188 189 ASTContext &ABIInfo::getContext() const { 190 return CGT.getContext(); 191 } 192 193 llvm::LLVMContext &ABIInfo::getVMContext() const { 194 return CGT.getLLVMContext(); 195 } 196 197 const llvm::DataLayout &ABIInfo::getDataLayout() const { 198 return CGT.getDataLayout(); 199 } 200 201 const TargetInfo &ABIInfo::getTarget() const { 202 return CGT.getTarget(); 203 } 204 205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 206 return CGT.getCodeGenOpts(); 207 } 208 209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 210 211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 212 return false; 213 } 214 215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 216 uint64_t Members) const { 217 return false; 218 } 219 220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 221 raw_ostream &OS = llvm::errs(); 222 OS << "(ABIArgInfo Kind="; 223 switch (TheKind) { 224 case Direct: 225 OS << "Direct Type="; 226 if (llvm::Type *Ty = getCoerceToType()) 227 Ty->print(OS); 228 else 229 OS << "null"; 230 break; 231 case Extend: 232 OS << "Extend"; 233 break; 234 case Ignore: 235 OS << "Ignore"; 236 break; 237 case InAlloca: 238 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 239 break; 240 case Indirect: 241 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 242 << " ByVal=" << getIndirectByVal() 243 << " Realign=" << getIndirectRealign(); 244 break; 245 case Expand: 246 OS << "Expand"; 247 break; 248 case CoerceAndExpand: 249 OS << "CoerceAndExpand Type="; 250 getCoerceAndExpandType()->print(OS); 251 break; 252 } 253 OS << ")\n"; 254 } 255 256 // Dynamically round a pointer up to a multiple of the given alignment. 257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 258 llvm::Value *Ptr, 259 CharUnits Align) { 260 llvm::Value *PtrAsInt = Ptr; 261 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 262 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 263 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 264 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 265 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 267 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 268 Ptr->getType(), 269 Ptr->getName() + ".aligned"); 270 return PtrAsInt; 271 } 272 273 /// Emit va_arg for a platform using the common void* representation, 274 /// where arguments are simply emitted in an array of slots on the stack. 275 /// 276 /// This version implements the core direct-value passing rules. 277 /// 278 /// \param SlotSize - The size and alignment of a stack slot. 279 /// Each argument will be allocated to a multiple of this number of 280 /// slots, and all the slots will be aligned to this value. 281 /// \param AllowHigherAlign - The slot alignment is not a cap; 282 /// an argument type with an alignment greater than the slot size 283 /// will be emitted on a higher-alignment address, potentially 284 /// leaving one or more empty slots behind as padding. If this 285 /// is false, the returned address might be less-aligned than 286 /// DirectAlign. 287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 288 Address VAListAddr, 289 llvm::Type *DirectTy, 290 CharUnits DirectSize, 291 CharUnits DirectAlign, 292 CharUnits SlotSize, 293 bool AllowHigherAlign) { 294 // Cast the element type to i8* if necessary. Some platforms define 295 // va_list as a struct containing an i8* instead of just an i8*. 296 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 297 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 298 299 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 300 301 // If the CC aligns values higher than the slot size, do so if needed. 302 Address Addr = Address::invalid(); 303 if (AllowHigherAlign && DirectAlign > SlotSize) { 304 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 305 DirectAlign); 306 } else { 307 Addr = Address(Ptr, SlotSize); 308 } 309 310 // Advance the pointer past the argument, then store that back. 311 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 312 Address NextPtr = 313 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 314 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 315 316 // If the argument is smaller than a slot, and this is a big-endian 317 // target, the argument will be right-adjusted in its slot. 318 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 319 !DirectTy->isStructTy()) { 320 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 321 } 322 323 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 324 return Addr; 325 } 326 327 /// Emit va_arg for a platform using the common void* representation, 328 /// where arguments are simply emitted in an array of slots on the stack. 329 /// 330 /// \param IsIndirect - Values of this type are passed indirectly. 331 /// \param ValueInfo - The size and alignment of this type, generally 332 /// computed with getContext().getTypeInfoInChars(ValueTy). 333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 334 /// Each argument will be allocated to a multiple of this number of 335 /// slots, and all the slots will be aligned to this value. 336 /// \param AllowHigherAlign - The slot alignment is not a cap; 337 /// an argument type with an alignment greater than the slot size 338 /// will be emitted on a higher-alignment address, potentially 339 /// leaving one or more empty slots behind as padding. 340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 341 QualType ValueTy, bool IsIndirect, 342 std::pair<CharUnits, CharUnits> ValueInfo, 343 CharUnits SlotSizeAndAlign, 344 bool AllowHigherAlign) { 345 // The size and alignment of the value that was passed directly. 346 CharUnits DirectSize, DirectAlign; 347 if (IsIndirect) { 348 DirectSize = CGF.getPointerSize(); 349 DirectAlign = CGF.getPointerAlign(); 350 } else { 351 DirectSize = ValueInfo.first; 352 DirectAlign = ValueInfo.second; 353 } 354 355 // Cast the address we've calculated to the right type. 356 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 357 if (IsIndirect) 358 DirectTy = DirectTy->getPointerTo(0); 359 360 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 361 DirectSize, DirectAlign, 362 SlotSizeAndAlign, 363 AllowHigherAlign); 364 365 if (IsIndirect) { 366 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 367 } 368 369 return Addr; 370 371 } 372 373 static Address emitMergePHI(CodeGenFunction &CGF, 374 Address Addr1, llvm::BasicBlock *Block1, 375 Address Addr2, llvm::BasicBlock *Block2, 376 const llvm::Twine &Name = "") { 377 assert(Addr1.getType() == Addr2.getType()); 378 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 379 PHI->addIncoming(Addr1.getPointer(), Block1); 380 PHI->addIncoming(Addr2.getPointer(), Block2); 381 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 382 return Address(PHI, Align); 383 } 384 385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 386 387 // If someone can figure out a general rule for this, that would be great. 388 // It's probably just doomed to be platform-dependent, though. 389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 390 // Verified for: 391 // x86-64 FreeBSD, Linux, Darwin 392 // x86-32 FreeBSD, Linux, Darwin 393 // PowerPC Linux, Darwin 394 // ARM Darwin (*not* EABI) 395 // AArch64 Linux 396 return 32; 397 } 398 399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 400 const FunctionNoProtoType *fnType) const { 401 // The following conventions are known to require this to be false: 402 // x86_stdcall 403 // MIPS 404 // For everything else, we just prefer false unless we opt out. 405 return false; 406 } 407 408 void 409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 410 llvm::SmallString<24> &Opt) const { 411 // This assumes the user is passing a library name like "rt" instead of a 412 // filename like "librt.a/so", and that they don't care whether it's static or 413 // dynamic. 414 Opt = "-l"; 415 Opt += Lib; 416 } 417 418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 419 // OpenCL kernels are called via an explicit runtime API with arguments 420 // set with clSetKernelArg(), not as normal sub-functions. 421 // Return SPIR_KERNEL by default as the kernel calling convention to 422 // ensure the fingerprint is fixed such way that each OpenCL argument 423 // gets one matching argument in the produced kernel function argument 424 // list to enable feasible implementation of clSetKernelArg() with 425 // aggregates etc. In case we would use the default C calling conv here, 426 // clSetKernelArg() might break depending on the target-specific 427 // conventions; different targets might split structs passed as values 428 // to multiple function arguments etc. 429 return llvm::CallingConv::SPIR_KERNEL; 430 } 431 432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 433 llvm::PointerType *T, QualType QT) const { 434 return llvm::ConstantPointerNull::get(T); 435 } 436 437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 438 const VarDecl *D) const { 439 assert(!CGM.getLangOpts().OpenCL && 440 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 441 "Address space agnostic languages only"); 442 return D ? D->getType().getAddressSpace() : LangAS::Default; 443 } 444 445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 446 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 447 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 448 // Since target may map different address spaces in AST to the same address 449 // space, an address space conversion may end up as a bitcast. 450 if (auto *C = dyn_cast<llvm::Constant>(Src)) 451 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 452 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 453 } 454 455 llvm::Constant * 456 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 457 LangAS SrcAddr, LangAS DestAddr, 458 llvm::Type *DestTy) const { 459 // Since target may map different address spaces in AST to the same address 460 // space, an address space conversion may end up as a bitcast. 461 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 462 } 463 464 llvm::SyncScope::ID 465 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 466 SyncScope Scope, 467 llvm::AtomicOrdering Ordering, 468 llvm::LLVMContext &Ctx) const { 469 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 470 } 471 472 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 473 474 /// isEmptyField - Return true iff a the field is "empty", that is it 475 /// is an unnamed bit-field or an (array of) empty record(s). 476 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 477 bool AllowArrays) { 478 if (FD->isUnnamedBitfield()) 479 return true; 480 481 QualType FT = FD->getType(); 482 483 // Constant arrays of empty records count as empty, strip them off. 484 // Constant arrays of zero length always count as empty. 485 if (AllowArrays) 486 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 487 if (AT->getSize() == 0) 488 return true; 489 FT = AT->getElementType(); 490 } 491 492 const RecordType *RT = FT->getAs<RecordType>(); 493 if (!RT) 494 return false; 495 496 // C++ record fields are never empty, at least in the Itanium ABI. 497 // 498 // FIXME: We should use a predicate for whether this behavior is true in the 499 // current ABI. 500 if (isa<CXXRecordDecl>(RT->getDecl())) 501 return false; 502 503 return isEmptyRecord(Context, FT, AllowArrays); 504 } 505 506 /// isEmptyRecord - Return true iff a structure contains only empty 507 /// fields. Note that a structure with a flexible array member is not 508 /// considered empty. 509 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 510 const RecordType *RT = T->getAs<RecordType>(); 511 if (!RT) 512 return false; 513 const RecordDecl *RD = RT->getDecl(); 514 if (RD->hasFlexibleArrayMember()) 515 return false; 516 517 // If this is a C++ record, check the bases first. 518 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 519 for (const auto &I : CXXRD->bases()) 520 if (!isEmptyRecord(Context, I.getType(), true)) 521 return false; 522 523 for (const auto *I : RD->fields()) 524 if (!isEmptyField(Context, I, AllowArrays)) 525 return false; 526 return true; 527 } 528 529 /// isSingleElementStruct - Determine if a structure is a "single 530 /// element struct", i.e. it has exactly one non-empty field or 531 /// exactly one field which is itself a single element 532 /// struct. Structures with flexible array members are never 533 /// considered single element structs. 534 /// 535 /// \return The field declaration for the single non-empty field, if 536 /// it exists. 537 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 538 const RecordType *RT = T->getAs<RecordType>(); 539 if (!RT) 540 return nullptr; 541 542 const RecordDecl *RD = RT->getDecl(); 543 if (RD->hasFlexibleArrayMember()) 544 return nullptr; 545 546 const Type *Found = nullptr; 547 548 // If this is a C++ record, check the bases first. 549 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 550 for (const auto &I : CXXRD->bases()) { 551 // Ignore empty records. 552 if (isEmptyRecord(Context, I.getType(), true)) 553 continue; 554 555 // If we already found an element then this isn't a single-element struct. 556 if (Found) 557 return nullptr; 558 559 // If this is non-empty and not a single element struct, the composite 560 // cannot be a single element struct. 561 Found = isSingleElementStruct(I.getType(), Context); 562 if (!Found) 563 return nullptr; 564 } 565 } 566 567 // Check for single element. 568 for (const auto *FD : RD->fields()) { 569 QualType FT = FD->getType(); 570 571 // Ignore empty fields. 572 if (isEmptyField(Context, FD, true)) 573 continue; 574 575 // If we already found an element then this isn't a single-element 576 // struct. 577 if (Found) 578 return nullptr; 579 580 // Treat single element arrays as the element. 581 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 582 if (AT->getSize().getZExtValue() != 1) 583 break; 584 FT = AT->getElementType(); 585 } 586 587 if (!isAggregateTypeForABI(FT)) { 588 Found = FT.getTypePtr(); 589 } else { 590 Found = isSingleElementStruct(FT, Context); 591 if (!Found) 592 return nullptr; 593 } 594 } 595 596 // We don't consider a struct a single-element struct if it has 597 // padding beyond the element type. 598 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 599 return nullptr; 600 601 return Found; 602 } 603 604 namespace { 605 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 606 const ABIArgInfo &AI) { 607 // This default implementation defers to the llvm backend's va_arg 608 // instruction. It can handle only passing arguments directly 609 // (typically only handled in the backend for primitive types), or 610 // aggregates passed indirectly by pointer (NOTE: if the "byval" 611 // flag has ABI impact in the callee, this implementation cannot 612 // work.) 613 614 // Only a few cases are covered here at the moment -- those needed 615 // by the default abi. 616 llvm::Value *Val; 617 618 if (AI.isIndirect()) { 619 assert(!AI.getPaddingType() && 620 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 621 assert( 622 !AI.getIndirectRealign() && 623 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 624 625 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 626 CharUnits TyAlignForABI = TyInfo.second; 627 628 llvm::Type *BaseTy = 629 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 630 llvm::Value *Addr = 631 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 632 return Address(Addr, TyAlignForABI); 633 } else { 634 assert((AI.isDirect() || AI.isExtend()) && 635 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 636 637 assert(!AI.getInReg() && 638 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 639 assert(!AI.getPaddingType() && 640 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 641 assert(!AI.getDirectOffset() && 642 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 643 assert(!AI.getCoerceToType() && 644 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 645 646 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 647 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 648 CGF.Builder.CreateStore(Val, Temp); 649 return Temp; 650 } 651 } 652 653 /// DefaultABIInfo - The default implementation for ABI specific 654 /// details. This implementation provides information which results in 655 /// self-consistent and sensible LLVM IR generation, but does not 656 /// conform to any particular ABI. 657 class DefaultABIInfo : public ABIInfo { 658 public: 659 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 660 661 ABIArgInfo classifyReturnType(QualType RetTy) const; 662 ABIArgInfo classifyArgumentType(QualType RetTy) const; 663 664 void computeInfo(CGFunctionInfo &FI) const override { 665 if (!getCXXABI().classifyReturnType(FI)) 666 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 667 for (auto &I : FI.arguments()) 668 I.info = classifyArgumentType(I.type); 669 } 670 671 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 672 QualType Ty) const override { 673 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 674 } 675 }; 676 677 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 678 public: 679 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 680 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 681 }; 682 683 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 684 Ty = useFirstFieldIfTransparentUnion(Ty); 685 686 if (isAggregateTypeForABI(Ty)) { 687 // Records with non-trivial destructors/copy-constructors should not be 688 // passed by value. 689 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 690 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 691 692 return getNaturalAlignIndirect(Ty); 693 } 694 695 // Treat an enum type as its underlying type. 696 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 697 Ty = EnumTy->getDecl()->getIntegerType(); 698 699 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 700 : ABIArgInfo::getDirect()); 701 } 702 703 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 704 if (RetTy->isVoidType()) 705 return ABIArgInfo::getIgnore(); 706 707 if (isAggregateTypeForABI(RetTy)) 708 return getNaturalAlignIndirect(RetTy); 709 710 // Treat an enum type as its underlying type. 711 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 712 RetTy = EnumTy->getDecl()->getIntegerType(); 713 714 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 715 : ABIArgInfo::getDirect()); 716 } 717 718 //===----------------------------------------------------------------------===// 719 // WebAssembly ABI Implementation 720 // 721 // This is a very simple ABI that relies a lot on DefaultABIInfo. 722 //===----------------------------------------------------------------------===// 723 724 class WebAssemblyABIInfo final : public SwiftABIInfo { 725 DefaultABIInfo defaultInfo; 726 727 public: 728 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 729 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 730 731 private: 732 ABIArgInfo classifyReturnType(QualType RetTy) const; 733 ABIArgInfo classifyArgumentType(QualType Ty) const; 734 735 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 736 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 737 // overload them. 738 void computeInfo(CGFunctionInfo &FI) const override { 739 if (!getCXXABI().classifyReturnType(FI)) 740 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 741 for (auto &Arg : FI.arguments()) 742 Arg.info = classifyArgumentType(Arg.type); 743 } 744 745 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 746 QualType Ty) const override; 747 748 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 749 bool asReturnValue) const override { 750 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 751 } 752 753 bool isSwiftErrorInRegister() const override { 754 return false; 755 } 756 }; 757 758 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 759 public: 760 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 761 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 762 763 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 764 CodeGen::CodeGenModule &CGM) const override { 765 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 766 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 767 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 768 llvm::Function *Fn = cast<llvm::Function>(GV); 769 llvm::AttrBuilder B; 770 B.addAttribute("wasm-import-module", Attr->getImportModule()); 771 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 772 } 773 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 774 llvm::Function *Fn = cast<llvm::Function>(GV); 775 llvm::AttrBuilder B; 776 B.addAttribute("wasm-import-name", Attr->getImportName()); 777 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 778 } 779 } 780 781 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 782 llvm::Function *Fn = cast<llvm::Function>(GV); 783 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 784 Fn->addFnAttr("no-prototype"); 785 } 786 } 787 }; 788 789 /// Classify argument of given type \p Ty. 790 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 791 Ty = useFirstFieldIfTransparentUnion(Ty); 792 793 if (isAggregateTypeForABI(Ty)) { 794 // Records with non-trivial destructors/copy-constructors should not be 795 // passed by value. 796 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 797 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 798 // Ignore empty structs/unions. 799 if (isEmptyRecord(getContext(), Ty, true)) 800 return ABIArgInfo::getIgnore(); 801 // Lower single-element structs to just pass a regular value. TODO: We 802 // could do reasonable-size multiple-element structs too, using getExpand(), 803 // though watch out for things like bitfields. 804 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 805 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 806 } 807 808 // Otherwise just do the default thing. 809 return defaultInfo.classifyArgumentType(Ty); 810 } 811 812 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 813 if (isAggregateTypeForABI(RetTy)) { 814 // Records with non-trivial destructors/copy-constructors should not be 815 // returned by value. 816 if (!getRecordArgABI(RetTy, getCXXABI())) { 817 // Ignore empty structs/unions. 818 if (isEmptyRecord(getContext(), RetTy, true)) 819 return ABIArgInfo::getIgnore(); 820 // Lower single-element structs to just return a regular value. TODO: We 821 // could do reasonable-size multiple-element structs too, using 822 // ABIArgInfo::getDirect(). 823 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 824 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 825 } 826 } 827 828 // Otherwise just do the default thing. 829 return defaultInfo.classifyReturnType(RetTy); 830 } 831 832 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 833 QualType Ty) const { 834 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 835 getContext().getTypeInfoInChars(Ty), 836 CharUnits::fromQuantity(4), 837 /*AllowHigherAlign=*/ true); 838 } 839 840 //===----------------------------------------------------------------------===// 841 // le32/PNaCl bitcode ABI Implementation 842 // 843 // This is a simplified version of the x86_32 ABI. Arguments and return values 844 // are always passed on the stack. 845 //===----------------------------------------------------------------------===// 846 847 class PNaClABIInfo : public ABIInfo { 848 public: 849 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 850 851 ABIArgInfo classifyReturnType(QualType RetTy) const; 852 ABIArgInfo classifyArgumentType(QualType RetTy) const; 853 854 void computeInfo(CGFunctionInfo &FI) const override; 855 Address EmitVAArg(CodeGenFunction &CGF, 856 Address VAListAddr, QualType Ty) const override; 857 }; 858 859 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 860 public: 861 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 862 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 863 }; 864 865 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 866 if (!getCXXABI().classifyReturnType(FI)) 867 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 868 869 for (auto &I : FI.arguments()) 870 I.info = classifyArgumentType(I.type); 871 } 872 873 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 874 QualType Ty) const { 875 // The PNaCL ABI is a bit odd, in that varargs don't use normal 876 // function classification. Structs get passed directly for varargs 877 // functions, through a rewriting transform in 878 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 879 // this target to actually support a va_arg instructions with an 880 // aggregate type, unlike other targets. 881 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 882 } 883 884 /// Classify argument of given type \p Ty. 885 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 886 if (isAggregateTypeForABI(Ty)) { 887 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 888 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 889 return getNaturalAlignIndirect(Ty); 890 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 891 // Treat an enum type as its underlying type. 892 Ty = EnumTy->getDecl()->getIntegerType(); 893 } else if (Ty->isFloatingType()) { 894 // Floating-point types don't go inreg. 895 return ABIArgInfo::getDirect(); 896 } 897 898 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 899 : ABIArgInfo::getDirect()); 900 } 901 902 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 903 if (RetTy->isVoidType()) 904 return ABIArgInfo::getIgnore(); 905 906 // In the PNaCl ABI we always return records/structures on the stack. 907 if (isAggregateTypeForABI(RetTy)) 908 return getNaturalAlignIndirect(RetTy); 909 910 // Treat an enum type as its underlying type. 911 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 912 RetTy = EnumTy->getDecl()->getIntegerType(); 913 914 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 915 : ABIArgInfo::getDirect()); 916 } 917 918 /// IsX86_MMXType - Return true if this is an MMX type. 919 bool IsX86_MMXType(llvm::Type *IRType) { 920 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 921 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 922 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 923 IRType->getScalarSizeInBits() != 64; 924 } 925 926 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 927 StringRef Constraint, 928 llvm::Type* Ty) { 929 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 930 .Cases("y", "&y", "^Ym", true) 931 .Default(false); 932 if (IsMMXCons && Ty->isVectorTy()) { 933 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 934 // Invalid MMX constraint 935 return nullptr; 936 } 937 938 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 939 } 940 941 // No operation needed 942 return Ty; 943 } 944 945 /// Returns true if this type can be passed in SSE registers with the 946 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 947 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 948 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 949 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 950 if (BT->getKind() == BuiltinType::LongDouble) { 951 if (&Context.getTargetInfo().getLongDoubleFormat() == 952 &llvm::APFloat::x87DoubleExtended()) 953 return false; 954 } 955 return true; 956 } 957 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 958 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 959 // registers specially. 960 unsigned VecSize = Context.getTypeSize(VT); 961 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 962 return true; 963 } 964 return false; 965 } 966 967 /// Returns true if this aggregate is small enough to be passed in SSE registers 968 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 969 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 970 return NumMembers <= 4; 971 } 972 973 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 974 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 975 auto AI = ABIArgInfo::getDirect(T); 976 AI.setInReg(true); 977 AI.setCanBeFlattened(false); 978 return AI; 979 } 980 981 //===----------------------------------------------------------------------===// 982 // X86-32 ABI Implementation 983 //===----------------------------------------------------------------------===// 984 985 /// Similar to llvm::CCState, but for Clang. 986 struct CCState { 987 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 988 989 unsigned CC; 990 unsigned FreeRegs; 991 unsigned FreeSSERegs; 992 }; 993 994 enum { 995 // Vectorcall only allows the first 6 parameters to be passed in registers. 996 VectorcallMaxParamNumAsReg = 6 997 }; 998 999 /// X86_32ABIInfo - The X86-32 ABI information. 1000 class X86_32ABIInfo : public SwiftABIInfo { 1001 enum Class { 1002 Integer, 1003 Float 1004 }; 1005 1006 static const unsigned MinABIStackAlignInBytes = 4; 1007 1008 bool IsDarwinVectorABI; 1009 bool IsRetSmallStructInRegABI; 1010 bool IsWin32StructABI; 1011 bool IsSoftFloatABI; 1012 bool IsMCUABI; 1013 unsigned DefaultNumRegisterParameters; 1014 1015 static bool isRegisterSize(unsigned Size) { 1016 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1017 } 1018 1019 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1020 // FIXME: Assumes vectorcall is in use. 1021 return isX86VectorTypeForVectorCall(getContext(), Ty); 1022 } 1023 1024 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1025 uint64_t NumMembers) const override { 1026 // FIXME: Assumes vectorcall is in use. 1027 return isX86VectorCallAggregateSmallEnough(NumMembers); 1028 } 1029 1030 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1031 1032 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1033 /// such that the argument will be passed in memory. 1034 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1035 1036 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1037 1038 /// Return the alignment to use for the given type on the stack. 1039 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1040 1041 Class classify(QualType Ty) const; 1042 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1043 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1044 1045 /// Updates the number of available free registers, returns 1046 /// true if any registers were allocated. 1047 bool updateFreeRegs(QualType Ty, CCState &State) const; 1048 1049 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1050 bool &NeedsPadding) const; 1051 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1052 1053 bool canExpandIndirectArgument(QualType Ty) const; 1054 1055 /// Rewrite the function info so that all memory arguments use 1056 /// inalloca. 1057 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1058 1059 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1060 CharUnits &StackOffset, ABIArgInfo &Info, 1061 QualType Type) const; 1062 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1063 bool &UsedInAlloca) const; 1064 1065 public: 1066 1067 void computeInfo(CGFunctionInfo &FI) const override; 1068 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1069 QualType Ty) const override; 1070 1071 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1072 bool RetSmallStructInRegABI, bool Win32StructABI, 1073 unsigned NumRegisterParameters, bool SoftFloatABI) 1074 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1075 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1076 IsWin32StructABI(Win32StructABI), 1077 IsSoftFloatABI(SoftFloatABI), 1078 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1079 DefaultNumRegisterParameters(NumRegisterParameters) {} 1080 1081 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1082 bool asReturnValue) const override { 1083 // LLVM's x86-32 lowering currently only assigns up to three 1084 // integer registers and three fp registers. Oddly, it'll use up to 1085 // four vector registers for vectors, but those can overlap with the 1086 // scalar registers. 1087 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1088 } 1089 1090 bool isSwiftErrorInRegister() const override { 1091 // x86-32 lowering does not support passing swifterror in a register. 1092 return false; 1093 } 1094 }; 1095 1096 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1097 public: 1098 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1099 bool RetSmallStructInRegABI, bool Win32StructABI, 1100 unsigned NumRegisterParameters, bool SoftFloatABI) 1101 : TargetCodeGenInfo(new X86_32ABIInfo( 1102 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1103 NumRegisterParameters, SoftFloatABI)) {} 1104 1105 static bool isStructReturnInRegABI( 1106 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1107 1108 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1109 CodeGen::CodeGenModule &CGM) const override; 1110 1111 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1112 // Darwin uses different dwarf register numbers for EH. 1113 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1114 return 4; 1115 } 1116 1117 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1118 llvm::Value *Address) const override; 1119 1120 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1121 StringRef Constraint, 1122 llvm::Type* Ty) const override { 1123 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1124 } 1125 1126 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1127 std::string &Constraints, 1128 std::vector<llvm::Type *> &ResultRegTypes, 1129 std::vector<llvm::Type *> &ResultTruncRegTypes, 1130 std::vector<LValue> &ResultRegDests, 1131 std::string &AsmString, 1132 unsigned NumOutputs) const override; 1133 1134 llvm::Constant * 1135 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1136 unsigned Sig = (0xeb << 0) | // jmp rel8 1137 (0x06 << 8) | // .+0x08 1138 ('v' << 16) | 1139 ('2' << 24); 1140 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1141 } 1142 1143 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1144 return "movl\t%ebp, %ebp" 1145 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1146 } 1147 }; 1148 1149 } 1150 1151 /// Rewrite input constraint references after adding some output constraints. 1152 /// In the case where there is one output and one input and we add one output, 1153 /// we need to replace all operand references greater than or equal to 1: 1154 /// mov $0, $1 1155 /// mov eax, $1 1156 /// The result will be: 1157 /// mov $0, $2 1158 /// mov eax, $2 1159 static void rewriteInputConstraintReferences(unsigned FirstIn, 1160 unsigned NumNewOuts, 1161 std::string &AsmString) { 1162 std::string Buf; 1163 llvm::raw_string_ostream OS(Buf); 1164 size_t Pos = 0; 1165 while (Pos < AsmString.size()) { 1166 size_t DollarStart = AsmString.find('$', Pos); 1167 if (DollarStart == std::string::npos) 1168 DollarStart = AsmString.size(); 1169 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1170 if (DollarEnd == std::string::npos) 1171 DollarEnd = AsmString.size(); 1172 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1173 Pos = DollarEnd; 1174 size_t NumDollars = DollarEnd - DollarStart; 1175 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1176 // We have an operand reference. 1177 size_t DigitStart = Pos; 1178 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1179 if (DigitEnd == std::string::npos) 1180 DigitEnd = AsmString.size(); 1181 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1182 unsigned OperandIndex; 1183 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1184 if (OperandIndex >= FirstIn) 1185 OperandIndex += NumNewOuts; 1186 OS << OperandIndex; 1187 } else { 1188 OS << OperandStr; 1189 } 1190 Pos = DigitEnd; 1191 } 1192 } 1193 AsmString = std::move(OS.str()); 1194 } 1195 1196 /// Add output constraints for EAX:EDX because they are return registers. 1197 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1198 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1199 std::vector<llvm::Type *> &ResultRegTypes, 1200 std::vector<llvm::Type *> &ResultTruncRegTypes, 1201 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1202 unsigned NumOutputs) const { 1203 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1204 1205 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1206 // larger. 1207 if (!Constraints.empty()) 1208 Constraints += ','; 1209 if (RetWidth <= 32) { 1210 Constraints += "={eax}"; 1211 ResultRegTypes.push_back(CGF.Int32Ty); 1212 } else { 1213 // Use the 'A' constraint for EAX:EDX. 1214 Constraints += "=A"; 1215 ResultRegTypes.push_back(CGF.Int64Ty); 1216 } 1217 1218 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1219 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1220 ResultTruncRegTypes.push_back(CoerceTy); 1221 1222 // Coerce the integer by bitcasting the return slot pointer. 1223 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1224 CoerceTy->getPointerTo())); 1225 ResultRegDests.push_back(ReturnSlot); 1226 1227 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1228 } 1229 1230 /// shouldReturnTypeInRegister - Determine if the given type should be 1231 /// returned in a register (for the Darwin and MCU ABI). 1232 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1233 ASTContext &Context) const { 1234 uint64_t Size = Context.getTypeSize(Ty); 1235 1236 // For i386, type must be register sized. 1237 // For the MCU ABI, it only needs to be <= 8-byte 1238 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1239 return false; 1240 1241 if (Ty->isVectorType()) { 1242 // 64- and 128- bit vectors inside structures are not returned in 1243 // registers. 1244 if (Size == 64 || Size == 128) 1245 return false; 1246 1247 return true; 1248 } 1249 1250 // If this is a builtin, pointer, enum, complex type, member pointer, or 1251 // member function pointer it is ok. 1252 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1253 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1254 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1255 return true; 1256 1257 // Arrays are treated like records. 1258 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1259 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1260 1261 // Otherwise, it must be a record type. 1262 const RecordType *RT = Ty->getAs<RecordType>(); 1263 if (!RT) return false; 1264 1265 // FIXME: Traverse bases here too. 1266 1267 // Structure types are passed in register if all fields would be 1268 // passed in a register. 1269 for (const auto *FD : RT->getDecl()->fields()) { 1270 // Empty fields are ignored. 1271 if (isEmptyField(Context, FD, true)) 1272 continue; 1273 1274 // Check fields recursively. 1275 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1276 return false; 1277 } 1278 return true; 1279 } 1280 1281 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1282 // Treat complex types as the element type. 1283 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1284 Ty = CTy->getElementType(); 1285 1286 // Check for a type which we know has a simple scalar argument-passing 1287 // convention without any padding. (We're specifically looking for 32 1288 // and 64-bit integer and integer-equivalents, float, and double.) 1289 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1290 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1291 return false; 1292 1293 uint64_t Size = Context.getTypeSize(Ty); 1294 return Size == 32 || Size == 64; 1295 } 1296 1297 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1298 uint64_t &Size) { 1299 for (const auto *FD : RD->fields()) { 1300 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1301 // argument is smaller than 32-bits, expanding the struct will create 1302 // alignment padding. 1303 if (!is32Or64BitBasicType(FD->getType(), Context)) 1304 return false; 1305 1306 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1307 // how to expand them yet, and the predicate for telling if a bitfield still 1308 // counts as "basic" is more complicated than what we were doing previously. 1309 if (FD->isBitField()) 1310 return false; 1311 1312 Size += Context.getTypeSize(FD->getType()); 1313 } 1314 return true; 1315 } 1316 1317 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1318 uint64_t &Size) { 1319 // Don't do this if there are any non-empty bases. 1320 for (const CXXBaseSpecifier &Base : RD->bases()) { 1321 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1322 Size)) 1323 return false; 1324 } 1325 if (!addFieldSizes(Context, RD, Size)) 1326 return false; 1327 return true; 1328 } 1329 1330 /// Test whether an argument type which is to be passed indirectly (on the 1331 /// stack) would have the equivalent layout if it was expanded into separate 1332 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1333 /// optimizations. 1334 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1335 // We can only expand structure types. 1336 const RecordType *RT = Ty->getAs<RecordType>(); 1337 if (!RT) 1338 return false; 1339 const RecordDecl *RD = RT->getDecl(); 1340 uint64_t Size = 0; 1341 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1342 if (!IsWin32StructABI) { 1343 // On non-Windows, we have to conservatively match our old bitcode 1344 // prototypes in order to be ABI-compatible at the bitcode level. 1345 if (!CXXRD->isCLike()) 1346 return false; 1347 } else { 1348 // Don't do this for dynamic classes. 1349 if (CXXRD->isDynamicClass()) 1350 return false; 1351 } 1352 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1353 return false; 1354 } else { 1355 if (!addFieldSizes(getContext(), RD, Size)) 1356 return false; 1357 } 1358 1359 // We can do this if there was no alignment padding. 1360 return Size == getContext().getTypeSize(Ty); 1361 } 1362 1363 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1364 // If the return value is indirect, then the hidden argument is consuming one 1365 // integer register. 1366 if (State.FreeRegs) { 1367 --State.FreeRegs; 1368 if (!IsMCUABI) 1369 return getNaturalAlignIndirectInReg(RetTy); 1370 } 1371 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1372 } 1373 1374 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1375 CCState &State) const { 1376 if (RetTy->isVoidType()) 1377 return ABIArgInfo::getIgnore(); 1378 1379 const Type *Base = nullptr; 1380 uint64_t NumElts = 0; 1381 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1382 State.CC == llvm::CallingConv::X86_RegCall) && 1383 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1384 // The LLVM struct type for such an aggregate should lower properly. 1385 return ABIArgInfo::getDirect(); 1386 } 1387 1388 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1389 // On Darwin, some vectors are returned in registers. 1390 if (IsDarwinVectorABI) { 1391 uint64_t Size = getContext().getTypeSize(RetTy); 1392 1393 // 128-bit vectors are a special case; they are returned in 1394 // registers and we need to make sure to pick a type the LLVM 1395 // backend will like. 1396 if (Size == 128) 1397 return ABIArgInfo::getDirect(llvm::VectorType::get( 1398 llvm::Type::getInt64Ty(getVMContext()), 2)); 1399 1400 // Always return in register if it fits in a general purpose 1401 // register, or if it is 64 bits and has a single element. 1402 if ((Size == 8 || Size == 16 || Size == 32) || 1403 (Size == 64 && VT->getNumElements() == 1)) 1404 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1405 Size)); 1406 1407 return getIndirectReturnResult(RetTy, State); 1408 } 1409 1410 return ABIArgInfo::getDirect(); 1411 } 1412 1413 if (isAggregateTypeForABI(RetTy)) { 1414 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1415 // Structures with flexible arrays are always indirect. 1416 if (RT->getDecl()->hasFlexibleArrayMember()) 1417 return getIndirectReturnResult(RetTy, State); 1418 } 1419 1420 // If specified, structs and unions are always indirect. 1421 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1422 return getIndirectReturnResult(RetTy, State); 1423 1424 // Ignore empty structs/unions. 1425 if (isEmptyRecord(getContext(), RetTy, true)) 1426 return ABIArgInfo::getIgnore(); 1427 1428 // Small structures which are register sized are generally returned 1429 // in a register. 1430 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1431 uint64_t Size = getContext().getTypeSize(RetTy); 1432 1433 // As a special-case, if the struct is a "single-element" struct, and 1434 // the field is of type "float" or "double", return it in a 1435 // floating-point register. (MSVC does not apply this special case.) 1436 // We apply a similar transformation for pointer types to improve the 1437 // quality of the generated IR. 1438 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1439 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1440 || SeltTy->hasPointerRepresentation()) 1441 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1442 1443 // FIXME: We should be able to narrow this integer in cases with dead 1444 // padding. 1445 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1446 } 1447 1448 return getIndirectReturnResult(RetTy, State); 1449 } 1450 1451 // Treat an enum type as its underlying type. 1452 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1453 RetTy = EnumTy->getDecl()->getIntegerType(); 1454 1455 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1456 : ABIArgInfo::getDirect()); 1457 } 1458 1459 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1460 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1461 } 1462 1463 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1464 const RecordType *RT = Ty->getAs<RecordType>(); 1465 if (!RT) 1466 return 0; 1467 const RecordDecl *RD = RT->getDecl(); 1468 1469 // If this is a C++ record, check the bases first. 1470 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1471 for (const auto &I : CXXRD->bases()) 1472 if (!isRecordWithSSEVectorType(Context, I.getType())) 1473 return false; 1474 1475 for (const auto *i : RD->fields()) { 1476 QualType FT = i->getType(); 1477 1478 if (isSSEVectorType(Context, FT)) 1479 return true; 1480 1481 if (isRecordWithSSEVectorType(Context, FT)) 1482 return true; 1483 } 1484 1485 return false; 1486 } 1487 1488 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1489 unsigned Align) const { 1490 // Otherwise, if the alignment is less than or equal to the minimum ABI 1491 // alignment, just use the default; the backend will handle this. 1492 if (Align <= MinABIStackAlignInBytes) 1493 return 0; // Use default alignment. 1494 1495 // On non-Darwin, the stack type alignment is always 4. 1496 if (!IsDarwinVectorABI) { 1497 // Set explicit alignment, since we may need to realign the top. 1498 return MinABIStackAlignInBytes; 1499 } 1500 1501 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1502 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1503 isRecordWithSSEVectorType(getContext(), Ty))) 1504 return 16; 1505 1506 return MinABIStackAlignInBytes; 1507 } 1508 1509 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1510 CCState &State) const { 1511 if (!ByVal) { 1512 if (State.FreeRegs) { 1513 --State.FreeRegs; // Non-byval indirects just use one pointer. 1514 if (!IsMCUABI) 1515 return getNaturalAlignIndirectInReg(Ty); 1516 } 1517 return getNaturalAlignIndirect(Ty, false); 1518 } 1519 1520 // Compute the byval alignment. 1521 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1522 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1523 if (StackAlign == 0) 1524 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1525 1526 // If the stack alignment is less than the type alignment, realign the 1527 // argument. 1528 bool Realign = TypeAlign > StackAlign; 1529 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1530 /*ByVal=*/true, Realign); 1531 } 1532 1533 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1534 const Type *T = isSingleElementStruct(Ty, getContext()); 1535 if (!T) 1536 T = Ty.getTypePtr(); 1537 1538 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1539 BuiltinType::Kind K = BT->getKind(); 1540 if (K == BuiltinType::Float || K == BuiltinType::Double) 1541 return Float; 1542 } 1543 return Integer; 1544 } 1545 1546 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1547 if (!IsSoftFloatABI) { 1548 Class C = classify(Ty); 1549 if (C == Float) 1550 return false; 1551 } 1552 1553 unsigned Size = getContext().getTypeSize(Ty); 1554 unsigned SizeInRegs = (Size + 31) / 32; 1555 1556 if (SizeInRegs == 0) 1557 return false; 1558 1559 if (!IsMCUABI) { 1560 if (SizeInRegs > State.FreeRegs) { 1561 State.FreeRegs = 0; 1562 return false; 1563 } 1564 } else { 1565 // The MCU psABI allows passing parameters in-reg even if there are 1566 // earlier parameters that are passed on the stack. Also, 1567 // it does not allow passing >8-byte structs in-register, 1568 // even if there are 3 free registers available. 1569 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1570 return false; 1571 } 1572 1573 State.FreeRegs -= SizeInRegs; 1574 return true; 1575 } 1576 1577 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1578 bool &InReg, 1579 bool &NeedsPadding) const { 1580 // On Windows, aggregates other than HFAs are never passed in registers, and 1581 // they do not consume register slots. Homogenous floating-point aggregates 1582 // (HFAs) have already been dealt with at this point. 1583 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1584 return false; 1585 1586 NeedsPadding = false; 1587 InReg = !IsMCUABI; 1588 1589 if (!updateFreeRegs(Ty, State)) 1590 return false; 1591 1592 if (IsMCUABI) 1593 return true; 1594 1595 if (State.CC == llvm::CallingConv::X86_FastCall || 1596 State.CC == llvm::CallingConv::X86_VectorCall || 1597 State.CC == llvm::CallingConv::X86_RegCall) { 1598 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1599 NeedsPadding = true; 1600 1601 return false; 1602 } 1603 1604 return true; 1605 } 1606 1607 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1608 if (!updateFreeRegs(Ty, State)) 1609 return false; 1610 1611 if (IsMCUABI) 1612 return false; 1613 1614 if (State.CC == llvm::CallingConv::X86_FastCall || 1615 State.CC == llvm::CallingConv::X86_VectorCall || 1616 State.CC == llvm::CallingConv::X86_RegCall) { 1617 if (getContext().getTypeSize(Ty) > 32) 1618 return false; 1619 1620 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1621 Ty->isReferenceType()); 1622 } 1623 1624 return true; 1625 } 1626 1627 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1628 CCState &State) const { 1629 // FIXME: Set alignment on indirect arguments. 1630 1631 Ty = useFirstFieldIfTransparentUnion(Ty); 1632 1633 // Check with the C++ ABI first. 1634 const RecordType *RT = Ty->getAs<RecordType>(); 1635 if (RT) { 1636 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1637 if (RAA == CGCXXABI::RAA_Indirect) { 1638 return getIndirectResult(Ty, false, State); 1639 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1640 // The field index doesn't matter, we'll fix it up later. 1641 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1642 } 1643 } 1644 1645 // Regcall uses the concept of a homogenous vector aggregate, similar 1646 // to other targets. 1647 const Type *Base = nullptr; 1648 uint64_t NumElts = 0; 1649 if (State.CC == llvm::CallingConv::X86_RegCall && 1650 isHomogeneousAggregate(Ty, Base, NumElts)) { 1651 1652 if (State.FreeSSERegs >= NumElts) { 1653 State.FreeSSERegs -= NumElts; 1654 if (Ty->isBuiltinType() || Ty->isVectorType()) 1655 return ABIArgInfo::getDirect(); 1656 return ABIArgInfo::getExpand(); 1657 } 1658 return getIndirectResult(Ty, /*ByVal=*/false, State); 1659 } 1660 1661 if (isAggregateTypeForABI(Ty)) { 1662 // Structures with flexible arrays are always indirect. 1663 // FIXME: This should not be byval! 1664 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1665 return getIndirectResult(Ty, true, State); 1666 1667 // Ignore empty structs/unions on non-Windows. 1668 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1669 return ABIArgInfo::getIgnore(); 1670 1671 llvm::LLVMContext &LLVMContext = getVMContext(); 1672 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1673 bool NeedsPadding = false; 1674 bool InReg; 1675 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1676 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1677 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1678 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1679 if (InReg) 1680 return ABIArgInfo::getDirectInReg(Result); 1681 else 1682 return ABIArgInfo::getDirect(Result); 1683 } 1684 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1685 1686 // Expand small (<= 128-bit) record types when we know that the stack layout 1687 // of those arguments will match the struct. This is important because the 1688 // LLVM backend isn't smart enough to remove byval, which inhibits many 1689 // optimizations. 1690 // Don't do this for the MCU if there are still free integer registers 1691 // (see X86_64 ABI for full explanation). 1692 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1693 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1694 return ABIArgInfo::getExpandWithPadding( 1695 State.CC == llvm::CallingConv::X86_FastCall || 1696 State.CC == llvm::CallingConv::X86_VectorCall || 1697 State.CC == llvm::CallingConv::X86_RegCall, 1698 PaddingType); 1699 1700 return getIndirectResult(Ty, true, State); 1701 } 1702 1703 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1704 // On Darwin, some vectors are passed in memory, we handle this by passing 1705 // it as an i8/i16/i32/i64. 1706 if (IsDarwinVectorABI) { 1707 uint64_t Size = getContext().getTypeSize(Ty); 1708 if ((Size == 8 || Size == 16 || Size == 32) || 1709 (Size == 64 && VT->getNumElements() == 1)) 1710 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1711 Size)); 1712 } 1713 1714 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1715 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1716 1717 return ABIArgInfo::getDirect(); 1718 } 1719 1720 1721 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1722 Ty = EnumTy->getDecl()->getIntegerType(); 1723 1724 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1725 1726 if (Ty->isPromotableIntegerType()) { 1727 if (InReg) 1728 return ABIArgInfo::getExtendInReg(Ty); 1729 return ABIArgInfo::getExtend(Ty); 1730 } 1731 1732 if (InReg) 1733 return ABIArgInfo::getDirectInReg(); 1734 return ABIArgInfo::getDirect(); 1735 } 1736 1737 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1738 bool &UsedInAlloca) const { 1739 // Vectorcall x86 works subtly different than in x64, so the format is 1740 // a bit different than the x64 version. First, all vector types (not HVAs) 1741 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1742 // This differs from the x64 implementation, where the first 6 by INDEX get 1743 // registers. 1744 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1745 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1746 // first take up the remaining YMM/XMM registers. If insufficient registers 1747 // remain but an integer register (ECX/EDX) is available, it will be passed 1748 // in that, else, on the stack. 1749 for (auto &I : FI.arguments()) { 1750 // First pass do all the vector types. 1751 const Type *Base = nullptr; 1752 uint64_t NumElts = 0; 1753 const QualType& Ty = I.type; 1754 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1755 isHomogeneousAggregate(Ty, Base, NumElts)) { 1756 if (State.FreeSSERegs >= NumElts) { 1757 State.FreeSSERegs -= NumElts; 1758 I.info = ABIArgInfo::getDirect(); 1759 } else { 1760 I.info = classifyArgumentType(Ty, State); 1761 } 1762 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1763 } 1764 } 1765 1766 for (auto &I : FI.arguments()) { 1767 // Second pass, do the rest! 1768 const Type *Base = nullptr; 1769 uint64_t NumElts = 0; 1770 const QualType& Ty = I.type; 1771 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1772 1773 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1774 // Assign true HVAs (non vector/native FP types). 1775 if (State.FreeSSERegs >= NumElts) { 1776 State.FreeSSERegs -= NumElts; 1777 I.info = getDirectX86Hva(); 1778 } else { 1779 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1780 } 1781 } else if (!IsHva) { 1782 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1783 I.info = classifyArgumentType(Ty, State); 1784 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1785 } 1786 } 1787 } 1788 1789 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1790 CCState State(FI.getCallingConvention()); 1791 if (IsMCUABI) 1792 State.FreeRegs = 3; 1793 else if (State.CC == llvm::CallingConv::X86_FastCall) 1794 State.FreeRegs = 2; 1795 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1796 State.FreeRegs = 2; 1797 State.FreeSSERegs = 6; 1798 } else if (FI.getHasRegParm()) 1799 State.FreeRegs = FI.getRegParm(); 1800 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1801 State.FreeRegs = 5; 1802 State.FreeSSERegs = 8; 1803 } else 1804 State.FreeRegs = DefaultNumRegisterParameters; 1805 1806 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1807 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1808 } else if (FI.getReturnInfo().isIndirect()) { 1809 // The C++ ABI is not aware of register usage, so we have to check if the 1810 // return value was sret and put it in a register ourselves if appropriate. 1811 if (State.FreeRegs) { 1812 --State.FreeRegs; // The sret parameter consumes a register. 1813 if (!IsMCUABI) 1814 FI.getReturnInfo().setInReg(true); 1815 } 1816 } 1817 1818 // The chain argument effectively gives us another free register. 1819 if (FI.isChainCall()) 1820 ++State.FreeRegs; 1821 1822 bool UsedInAlloca = false; 1823 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1824 computeVectorCallArgs(FI, State, UsedInAlloca); 1825 } else { 1826 // If not vectorcall, revert to normal behavior. 1827 for (auto &I : FI.arguments()) { 1828 I.info = classifyArgumentType(I.type, State); 1829 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1830 } 1831 } 1832 1833 // If we needed to use inalloca for any argument, do a second pass and rewrite 1834 // all the memory arguments to use inalloca. 1835 if (UsedInAlloca) 1836 rewriteWithInAlloca(FI); 1837 } 1838 1839 void 1840 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1841 CharUnits &StackOffset, ABIArgInfo &Info, 1842 QualType Type) const { 1843 // Arguments are always 4-byte-aligned. 1844 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1845 1846 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1847 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1848 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1849 StackOffset += getContext().getTypeSizeInChars(Type); 1850 1851 // Insert padding bytes to respect alignment. 1852 CharUnits FieldEnd = StackOffset; 1853 StackOffset = FieldEnd.alignTo(FieldAlign); 1854 if (StackOffset != FieldEnd) { 1855 CharUnits NumBytes = StackOffset - FieldEnd; 1856 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1857 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1858 FrameFields.push_back(Ty); 1859 } 1860 } 1861 1862 static bool isArgInAlloca(const ABIArgInfo &Info) { 1863 // Leave ignored and inreg arguments alone. 1864 switch (Info.getKind()) { 1865 case ABIArgInfo::InAlloca: 1866 return true; 1867 case ABIArgInfo::Indirect: 1868 assert(Info.getIndirectByVal()); 1869 return true; 1870 case ABIArgInfo::Ignore: 1871 return false; 1872 case ABIArgInfo::Direct: 1873 case ABIArgInfo::Extend: 1874 if (Info.getInReg()) 1875 return false; 1876 return true; 1877 case ABIArgInfo::Expand: 1878 case ABIArgInfo::CoerceAndExpand: 1879 // These are aggregate types which are never passed in registers when 1880 // inalloca is involved. 1881 return true; 1882 } 1883 llvm_unreachable("invalid enum"); 1884 } 1885 1886 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1887 assert(IsWin32StructABI && "inalloca only supported on win32"); 1888 1889 // Build a packed struct type for all of the arguments in memory. 1890 SmallVector<llvm::Type *, 6> FrameFields; 1891 1892 // The stack alignment is always 4. 1893 CharUnits StackAlign = CharUnits::fromQuantity(4); 1894 1895 CharUnits StackOffset; 1896 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1897 1898 // Put 'this' into the struct before 'sret', if necessary. 1899 bool IsThisCall = 1900 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1901 ABIArgInfo &Ret = FI.getReturnInfo(); 1902 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1903 isArgInAlloca(I->info)) { 1904 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1905 ++I; 1906 } 1907 1908 // Put the sret parameter into the inalloca struct if it's in memory. 1909 if (Ret.isIndirect() && !Ret.getInReg()) { 1910 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1911 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1912 // On Windows, the hidden sret parameter is always returned in eax. 1913 Ret.setInAllocaSRet(IsWin32StructABI); 1914 } 1915 1916 // Skip the 'this' parameter in ecx. 1917 if (IsThisCall) 1918 ++I; 1919 1920 // Put arguments passed in memory into the struct. 1921 for (; I != E; ++I) { 1922 if (isArgInAlloca(I->info)) 1923 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1924 } 1925 1926 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1927 /*isPacked=*/true), 1928 StackAlign); 1929 } 1930 1931 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1932 Address VAListAddr, QualType Ty) const { 1933 1934 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1935 1936 // x86-32 changes the alignment of certain arguments on the stack. 1937 // 1938 // Just messing with TypeInfo like this works because we never pass 1939 // anything indirectly. 1940 TypeInfo.second = CharUnits::fromQuantity( 1941 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1942 1943 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1944 TypeInfo, CharUnits::fromQuantity(4), 1945 /*AllowHigherAlign*/ true); 1946 } 1947 1948 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1949 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1950 assert(Triple.getArch() == llvm::Triple::x86); 1951 1952 switch (Opts.getStructReturnConvention()) { 1953 case CodeGenOptions::SRCK_Default: 1954 break; 1955 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1956 return false; 1957 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1958 return true; 1959 } 1960 1961 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1962 return true; 1963 1964 switch (Triple.getOS()) { 1965 case llvm::Triple::DragonFly: 1966 case llvm::Triple::FreeBSD: 1967 case llvm::Triple::OpenBSD: 1968 case llvm::Triple::Win32: 1969 return true; 1970 default: 1971 return false; 1972 } 1973 } 1974 1975 void X86_32TargetCodeGenInfo::setTargetAttributes( 1976 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1977 if (GV->isDeclaration()) 1978 return; 1979 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1980 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1981 llvm::Function *Fn = cast<llvm::Function>(GV); 1982 Fn->addFnAttr("stackrealign"); 1983 } 1984 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1985 llvm::Function *Fn = cast<llvm::Function>(GV); 1986 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1987 } 1988 } 1989 } 1990 1991 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1992 CodeGen::CodeGenFunction &CGF, 1993 llvm::Value *Address) const { 1994 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1995 1996 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1997 1998 // 0-7 are the eight integer registers; the order is different 1999 // on Darwin (for EH), but the range is the same. 2000 // 8 is %eip. 2001 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2002 2003 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2004 // 12-16 are st(0..4). Not sure why we stop at 4. 2005 // These have size 16, which is sizeof(long double) on 2006 // platforms with 8-byte alignment for that type. 2007 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2008 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2009 2010 } else { 2011 // 9 is %eflags, which doesn't get a size on Darwin for some 2012 // reason. 2013 Builder.CreateAlignedStore( 2014 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2015 CharUnits::One()); 2016 2017 // 11-16 are st(0..5). Not sure why we stop at 5. 2018 // These have size 12, which is sizeof(long double) on 2019 // platforms with 4-byte alignment for that type. 2020 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2021 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2022 } 2023 2024 return false; 2025 } 2026 2027 //===----------------------------------------------------------------------===// 2028 // X86-64 ABI Implementation 2029 //===----------------------------------------------------------------------===// 2030 2031 2032 namespace { 2033 /// The AVX ABI level for X86 targets. 2034 enum class X86AVXABILevel { 2035 None, 2036 AVX, 2037 AVX512 2038 }; 2039 2040 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2041 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2042 switch (AVXLevel) { 2043 case X86AVXABILevel::AVX512: 2044 return 512; 2045 case X86AVXABILevel::AVX: 2046 return 256; 2047 case X86AVXABILevel::None: 2048 return 128; 2049 } 2050 llvm_unreachable("Unknown AVXLevel"); 2051 } 2052 2053 /// X86_64ABIInfo - The X86_64 ABI information. 2054 class X86_64ABIInfo : public SwiftABIInfo { 2055 enum Class { 2056 Integer = 0, 2057 SSE, 2058 SSEUp, 2059 X87, 2060 X87Up, 2061 ComplexX87, 2062 NoClass, 2063 Memory 2064 }; 2065 2066 /// merge - Implement the X86_64 ABI merging algorithm. 2067 /// 2068 /// Merge an accumulating classification \arg Accum with a field 2069 /// classification \arg Field. 2070 /// 2071 /// \param Accum - The accumulating classification. This should 2072 /// always be either NoClass or the result of a previous merge 2073 /// call. In addition, this should never be Memory (the caller 2074 /// should just return Memory for the aggregate). 2075 static Class merge(Class Accum, Class Field); 2076 2077 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2078 /// 2079 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2080 /// final MEMORY or SSE classes when necessary. 2081 /// 2082 /// \param AggregateSize - The size of the current aggregate in 2083 /// the classification process. 2084 /// 2085 /// \param Lo - The classification for the parts of the type 2086 /// residing in the low word of the containing object. 2087 /// 2088 /// \param Hi - The classification for the parts of the type 2089 /// residing in the higher words of the containing object. 2090 /// 2091 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2092 2093 /// classify - Determine the x86_64 register classes in which the 2094 /// given type T should be passed. 2095 /// 2096 /// \param Lo - The classification for the parts of the type 2097 /// residing in the low word of the containing object. 2098 /// 2099 /// \param Hi - The classification for the parts of the type 2100 /// residing in the high word of the containing object. 2101 /// 2102 /// \param OffsetBase - The bit offset of this type in the 2103 /// containing object. Some parameters are classified different 2104 /// depending on whether they straddle an eightbyte boundary. 2105 /// 2106 /// \param isNamedArg - Whether the argument in question is a "named" 2107 /// argument, as used in AMD64-ABI 3.5.7. 2108 /// 2109 /// If a word is unused its result will be NoClass; if a type should 2110 /// be passed in Memory then at least the classification of \arg Lo 2111 /// will be Memory. 2112 /// 2113 /// The \arg Lo class will be NoClass iff the argument is ignored. 2114 /// 2115 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2116 /// also be ComplexX87. 2117 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2118 bool isNamedArg) const; 2119 2120 llvm::Type *GetByteVectorType(QualType Ty) const; 2121 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2122 unsigned IROffset, QualType SourceTy, 2123 unsigned SourceOffset) const; 2124 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2125 unsigned IROffset, QualType SourceTy, 2126 unsigned SourceOffset) const; 2127 2128 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2129 /// such that the argument will be returned in memory. 2130 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2131 2132 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2133 /// such that the argument will be passed in memory. 2134 /// 2135 /// \param freeIntRegs - The number of free integer registers remaining 2136 /// available. 2137 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2138 2139 ABIArgInfo classifyReturnType(QualType RetTy) const; 2140 2141 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2142 unsigned &neededInt, unsigned &neededSSE, 2143 bool isNamedArg) const; 2144 2145 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2146 unsigned &NeededSSE) const; 2147 2148 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2149 unsigned &NeededSSE) const; 2150 2151 bool IsIllegalVectorType(QualType Ty) const; 2152 2153 /// The 0.98 ABI revision clarified a lot of ambiguities, 2154 /// unfortunately in ways that were not always consistent with 2155 /// certain previous compilers. In particular, platforms which 2156 /// required strict binary compatibility with older versions of GCC 2157 /// may need to exempt themselves. 2158 bool honorsRevision0_98() const { 2159 return !getTarget().getTriple().isOSDarwin(); 2160 } 2161 2162 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2163 /// classify it as INTEGER (for compatibility with older clang compilers). 2164 bool classifyIntegerMMXAsSSE() const { 2165 // Clang <= 3.8 did not do this. 2166 if (getContext().getLangOpts().getClangABICompat() <= 2167 LangOptions::ClangABI::Ver3_8) 2168 return false; 2169 2170 const llvm::Triple &Triple = getTarget().getTriple(); 2171 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2172 return false; 2173 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2174 return false; 2175 return true; 2176 } 2177 2178 X86AVXABILevel AVXLevel; 2179 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2180 // 64-bit hardware. 2181 bool Has64BitPointers; 2182 2183 public: 2184 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2185 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2186 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2187 } 2188 2189 bool isPassedUsingAVXType(QualType type) const { 2190 unsigned neededInt, neededSSE; 2191 // The freeIntRegs argument doesn't matter here. 2192 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2193 /*isNamedArg*/true); 2194 if (info.isDirect()) { 2195 llvm::Type *ty = info.getCoerceToType(); 2196 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2197 return (vectorTy->getBitWidth() > 128); 2198 } 2199 return false; 2200 } 2201 2202 void computeInfo(CGFunctionInfo &FI) const override; 2203 2204 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2205 QualType Ty) const override; 2206 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2207 QualType Ty) const override; 2208 2209 bool has64BitPointers() const { 2210 return Has64BitPointers; 2211 } 2212 2213 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2214 bool asReturnValue) const override { 2215 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2216 } 2217 bool isSwiftErrorInRegister() const override { 2218 return true; 2219 } 2220 }; 2221 2222 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2223 class WinX86_64ABIInfo : public SwiftABIInfo { 2224 public: 2225 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2226 : SwiftABIInfo(CGT), 2227 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2228 2229 void computeInfo(CGFunctionInfo &FI) const override; 2230 2231 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2232 QualType Ty) const override; 2233 2234 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2235 // FIXME: Assumes vectorcall is in use. 2236 return isX86VectorTypeForVectorCall(getContext(), Ty); 2237 } 2238 2239 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2240 uint64_t NumMembers) const override { 2241 // FIXME: Assumes vectorcall is in use. 2242 return isX86VectorCallAggregateSmallEnough(NumMembers); 2243 } 2244 2245 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2246 bool asReturnValue) const override { 2247 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2248 } 2249 2250 bool isSwiftErrorInRegister() const override { 2251 return true; 2252 } 2253 2254 private: 2255 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2256 bool IsVectorCall, bool IsRegCall) const; 2257 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2258 const ABIArgInfo ¤t) const; 2259 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2260 bool IsVectorCall, bool IsRegCall) const; 2261 2262 bool IsMingw64; 2263 }; 2264 2265 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2266 public: 2267 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2268 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2269 2270 const X86_64ABIInfo &getABIInfo() const { 2271 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2272 } 2273 2274 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2275 /// the autoreleaseRV/retainRV optimization. 2276 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2277 return true; 2278 } 2279 2280 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2281 return 7; 2282 } 2283 2284 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2285 llvm::Value *Address) const override { 2286 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2287 2288 // 0-15 are the 16 integer registers. 2289 // 16 is %rip. 2290 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2291 return false; 2292 } 2293 2294 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2295 StringRef Constraint, 2296 llvm::Type* Ty) const override { 2297 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2298 } 2299 2300 bool isNoProtoCallVariadic(const CallArgList &args, 2301 const FunctionNoProtoType *fnType) const override { 2302 // The default CC on x86-64 sets %al to the number of SSA 2303 // registers used, and GCC sets this when calling an unprototyped 2304 // function, so we override the default behavior. However, don't do 2305 // that when AVX types are involved: the ABI explicitly states it is 2306 // undefined, and it doesn't work in practice because of how the ABI 2307 // defines varargs anyway. 2308 if (fnType->getCallConv() == CC_C) { 2309 bool HasAVXType = false; 2310 for (CallArgList::const_iterator 2311 it = args.begin(), ie = args.end(); it != ie; ++it) { 2312 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2313 HasAVXType = true; 2314 break; 2315 } 2316 } 2317 2318 if (!HasAVXType) 2319 return true; 2320 } 2321 2322 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2323 } 2324 2325 llvm::Constant * 2326 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2327 unsigned Sig = (0xeb << 0) | // jmp rel8 2328 (0x06 << 8) | // .+0x08 2329 ('v' << 16) | 2330 ('2' << 24); 2331 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2332 } 2333 2334 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2335 CodeGen::CodeGenModule &CGM) const override { 2336 if (GV->isDeclaration()) 2337 return; 2338 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2339 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2340 llvm::Function *Fn = cast<llvm::Function>(GV); 2341 Fn->addFnAttr("stackrealign"); 2342 } 2343 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2344 llvm::Function *Fn = cast<llvm::Function>(GV); 2345 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2346 } 2347 } 2348 } 2349 }; 2350 2351 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2352 public: 2353 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2354 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2355 2356 void getDependentLibraryOption(llvm::StringRef Lib, 2357 llvm::SmallString<24> &Opt) const override { 2358 Opt = "\01"; 2359 // If the argument contains a space, enclose it in quotes. 2360 if (Lib.find(" ") != StringRef::npos) 2361 Opt += "\"" + Lib.str() + "\""; 2362 else 2363 Opt += Lib; 2364 } 2365 }; 2366 2367 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2368 // If the argument does not end in .lib, automatically add the suffix. 2369 // If the argument contains a space, enclose it in quotes. 2370 // This matches the behavior of MSVC. 2371 bool Quote = (Lib.find(" ") != StringRef::npos); 2372 std::string ArgStr = Quote ? "\"" : ""; 2373 ArgStr += Lib; 2374 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2375 ArgStr += ".lib"; 2376 ArgStr += Quote ? "\"" : ""; 2377 return ArgStr; 2378 } 2379 2380 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2381 public: 2382 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2383 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2384 unsigned NumRegisterParameters) 2385 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2386 Win32StructABI, NumRegisterParameters, false) {} 2387 2388 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2389 CodeGen::CodeGenModule &CGM) const override; 2390 2391 void getDependentLibraryOption(llvm::StringRef Lib, 2392 llvm::SmallString<24> &Opt) const override { 2393 Opt = "/DEFAULTLIB:"; 2394 Opt += qualifyWindowsLibrary(Lib); 2395 } 2396 2397 void getDetectMismatchOption(llvm::StringRef Name, 2398 llvm::StringRef Value, 2399 llvm::SmallString<32> &Opt) const override { 2400 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2401 } 2402 }; 2403 2404 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2405 CodeGen::CodeGenModule &CGM) { 2406 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2407 2408 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2409 Fn->addFnAttr("stack-probe-size", 2410 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2411 if (CGM.getCodeGenOpts().NoStackArgProbe) 2412 Fn->addFnAttr("no-stack-arg-probe"); 2413 } 2414 } 2415 2416 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2417 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2418 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2419 if (GV->isDeclaration()) 2420 return; 2421 addStackProbeTargetAttributes(D, GV, CGM); 2422 } 2423 2424 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2425 public: 2426 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2427 X86AVXABILevel AVXLevel) 2428 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2429 2430 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2431 CodeGen::CodeGenModule &CGM) const override; 2432 2433 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2434 return 7; 2435 } 2436 2437 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2438 llvm::Value *Address) const override { 2439 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2440 2441 // 0-15 are the 16 integer registers. 2442 // 16 is %rip. 2443 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2444 return false; 2445 } 2446 2447 void getDependentLibraryOption(llvm::StringRef Lib, 2448 llvm::SmallString<24> &Opt) const override { 2449 Opt = "/DEFAULTLIB:"; 2450 Opt += qualifyWindowsLibrary(Lib); 2451 } 2452 2453 void getDetectMismatchOption(llvm::StringRef Name, 2454 llvm::StringRef Value, 2455 llvm::SmallString<32> &Opt) const override { 2456 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2457 } 2458 }; 2459 2460 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2461 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2462 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2463 if (GV->isDeclaration()) 2464 return; 2465 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2466 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2467 llvm::Function *Fn = cast<llvm::Function>(GV); 2468 Fn->addFnAttr("stackrealign"); 2469 } 2470 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2471 llvm::Function *Fn = cast<llvm::Function>(GV); 2472 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2473 } 2474 } 2475 2476 addStackProbeTargetAttributes(D, GV, CGM); 2477 } 2478 } 2479 2480 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2481 Class &Hi) const { 2482 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2483 // 2484 // (a) If one of the classes is Memory, the whole argument is passed in 2485 // memory. 2486 // 2487 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2488 // memory. 2489 // 2490 // (c) If the size of the aggregate exceeds two eightbytes and the first 2491 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2492 // argument is passed in memory. NOTE: This is necessary to keep the 2493 // ABI working for processors that don't support the __m256 type. 2494 // 2495 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2496 // 2497 // Some of these are enforced by the merging logic. Others can arise 2498 // only with unions; for example: 2499 // union { _Complex double; unsigned; } 2500 // 2501 // Note that clauses (b) and (c) were added in 0.98. 2502 // 2503 if (Hi == Memory) 2504 Lo = Memory; 2505 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2506 Lo = Memory; 2507 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2508 Lo = Memory; 2509 if (Hi == SSEUp && Lo != SSE) 2510 Hi = SSE; 2511 } 2512 2513 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2514 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2515 // classified recursively so that always two fields are 2516 // considered. The resulting class is calculated according to 2517 // the classes of the fields in the eightbyte: 2518 // 2519 // (a) If both classes are equal, this is the resulting class. 2520 // 2521 // (b) If one of the classes is NO_CLASS, the resulting class is 2522 // the other class. 2523 // 2524 // (c) If one of the classes is MEMORY, the result is the MEMORY 2525 // class. 2526 // 2527 // (d) If one of the classes is INTEGER, the result is the 2528 // INTEGER. 2529 // 2530 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2531 // MEMORY is used as class. 2532 // 2533 // (f) Otherwise class SSE is used. 2534 2535 // Accum should never be memory (we should have returned) or 2536 // ComplexX87 (because this cannot be passed in a structure). 2537 assert((Accum != Memory && Accum != ComplexX87) && 2538 "Invalid accumulated classification during merge."); 2539 if (Accum == Field || Field == NoClass) 2540 return Accum; 2541 if (Field == Memory) 2542 return Memory; 2543 if (Accum == NoClass) 2544 return Field; 2545 if (Accum == Integer || Field == Integer) 2546 return Integer; 2547 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2548 Accum == X87 || Accum == X87Up) 2549 return Memory; 2550 return SSE; 2551 } 2552 2553 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2554 Class &Lo, Class &Hi, bool isNamedArg) const { 2555 // FIXME: This code can be simplified by introducing a simple value class for 2556 // Class pairs with appropriate constructor methods for the various 2557 // situations. 2558 2559 // FIXME: Some of the split computations are wrong; unaligned vectors 2560 // shouldn't be passed in registers for example, so there is no chance they 2561 // can straddle an eightbyte. Verify & simplify. 2562 2563 Lo = Hi = NoClass; 2564 2565 Class &Current = OffsetBase < 64 ? Lo : Hi; 2566 Current = Memory; 2567 2568 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2569 BuiltinType::Kind k = BT->getKind(); 2570 2571 if (k == BuiltinType::Void) { 2572 Current = NoClass; 2573 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2574 Lo = Integer; 2575 Hi = Integer; 2576 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2577 Current = Integer; 2578 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2579 Current = SSE; 2580 } else if (k == BuiltinType::LongDouble) { 2581 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2582 if (LDF == &llvm::APFloat::IEEEquad()) { 2583 Lo = SSE; 2584 Hi = SSEUp; 2585 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2586 Lo = X87; 2587 Hi = X87Up; 2588 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2589 Current = SSE; 2590 } else 2591 llvm_unreachable("unexpected long double representation!"); 2592 } 2593 // FIXME: _Decimal32 and _Decimal64 are SSE. 2594 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2595 return; 2596 } 2597 2598 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2599 // Classify the underlying integer type. 2600 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2601 return; 2602 } 2603 2604 if (Ty->hasPointerRepresentation()) { 2605 Current = Integer; 2606 return; 2607 } 2608 2609 if (Ty->isMemberPointerType()) { 2610 if (Ty->isMemberFunctionPointerType()) { 2611 if (Has64BitPointers) { 2612 // If Has64BitPointers, this is an {i64, i64}, so classify both 2613 // Lo and Hi now. 2614 Lo = Hi = Integer; 2615 } else { 2616 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2617 // straddles an eightbyte boundary, Hi should be classified as well. 2618 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2619 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2620 if (EB_FuncPtr != EB_ThisAdj) { 2621 Lo = Hi = Integer; 2622 } else { 2623 Current = Integer; 2624 } 2625 } 2626 } else { 2627 Current = Integer; 2628 } 2629 return; 2630 } 2631 2632 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2633 uint64_t Size = getContext().getTypeSize(VT); 2634 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2635 // gcc passes the following as integer: 2636 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2637 // 2 bytes - <2 x char>, <1 x short> 2638 // 1 byte - <1 x char> 2639 Current = Integer; 2640 2641 // If this type crosses an eightbyte boundary, it should be 2642 // split. 2643 uint64_t EB_Lo = (OffsetBase) / 64; 2644 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2645 if (EB_Lo != EB_Hi) 2646 Hi = Lo; 2647 } else if (Size == 64) { 2648 QualType ElementType = VT->getElementType(); 2649 2650 // gcc passes <1 x double> in memory. :( 2651 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2652 return; 2653 2654 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2655 // pass them as integer. For platforms where clang is the de facto 2656 // platform compiler, we must continue to use integer. 2657 if (!classifyIntegerMMXAsSSE() && 2658 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2659 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2660 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2661 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2662 Current = Integer; 2663 else 2664 Current = SSE; 2665 2666 // If this type crosses an eightbyte boundary, it should be 2667 // split. 2668 if (OffsetBase && OffsetBase != 64) 2669 Hi = Lo; 2670 } else if (Size == 128 || 2671 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2672 // Arguments of 256-bits are split into four eightbyte chunks. The 2673 // least significant one belongs to class SSE and all the others to class 2674 // SSEUP. The original Lo and Hi design considers that types can't be 2675 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2676 // This design isn't correct for 256-bits, but since there're no cases 2677 // where the upper parts would need to be inspected, avoid adding 2678 // complexity and just consider Hi to match the 64-256 part. 2679 // 2680 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2681 // registers if they are "named", i.e. not part of the "..." of a 2682 // variadic function. 2683 // 2684 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2685 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2686 Lo = SSE; 2687 Hi = SSEUp; 2688 } 2689 return; 2690 } 2691 2692 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2693 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2694 2695 uint64_t Size = getContext().getTypeSize(Ty); 2696 if (ET->isIntegralOrEnumerationType()) { 2697 if (Size <= 64) 2698 Current = Integer; 2699 else if (Size <= 128) 2700 Lo = Hi = Integer; 2701 } else if (ET == getContext().FloatTy) { 2702 Current = SSE; 2703 } else if (ET == getContext().DoubleTy) { 2704 Lo = Hi = SSE; 2705 } else if (ET == getContext().LongDoubleTy) { 2706 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2707 if (LDF == &llvm::APFloat::IEEEquad()) 2708 Current = Memory; 2709 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2710 Current = ComplexX87; 2711 else if (LDF == &llvm::APFloat::IEEEdouble()) 2712 Lo = Hi = SSE; 2713 else 2714 llvm_unreachable("unexpected long double representation!"); 2715 } 2716 2717 // If this complex type crosses an eightbyte boundary then it 2718 // should be split. 2719 uint64_t EB_Real = (OffsetBase) / 64; 2720 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2721 if (Hi == NoClass && EB_Real != EB_Imag) 2722 Hi = Lo; 2723 2724 return; 2725 } 2726 2727 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2728 // Arrays are treated like structures. 2729 2730 uint64_t Size = getContext().getTypeSize(Ty); 2731 2732 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2733 // than eight eightbytes, ..., it has class MEMORY. 2734 if (Size > 512) 2735 return; 2736 2737 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2738 // fields, it has class MEMORY. 2739 // 2740 // Only need to check alignment of array base. 2741 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2742 return; 2743 2744 // Otherwise implement simplified merge. We could be smarter about 2745 // this, but it isn't worth it and would be harder to verify. 2746 Current = NoClass; 2747 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2748 uint64_t ArraySize = AT->getSize().getZExtValue(); 2749 2750 // The only case a 256-bit wide vector could be used is when the array 2751 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2752 // to work for sizes wider than 128, early check and fallback to memory. 2753 // 2754 if (Size > 128 && 2755 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2756 return; 2757 2758 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2759 Class FieldLo, FieldHi; 2760 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2761 Lo = merge(Lo, FieldLo); 2762 Hi = merge(Hi, FieldHi); 2763 if (Lo == Memory || Hi == Memory) 2764 break; 2765 } 2766 2767 postMerge(Size, Lo, Hi); 2768 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2769 return; 2770 } 2771 2772 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2773 uint64_t Size = getContext().getTypeSize(Ty); 2774 2775 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2776 // than eight eightbytes, ..., it has class MEMORY. 2777 if (Size > 512) 2778 return; 2779 2780 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2781 // copy constructor or a non-trivial destructor, it is passed by invisible 2782 // reference. 2783 if (getRecordArgABI(RT, getCXXABI())) 2784 return; 2785 2786 const RecordDecl *RD = RT->getDecl(); 2787 2788 // Assume variable sized types are passed in memory. 2789 if (RD->hasFlexibleArrayMember()) 2790 return; 2791 2792 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2793 2794 // Reset Lo class, this will be recomputed. 2795 Current = NoClass; 2796 2797 // If this is a C++ record, classify the bases first. 2798 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2799 for (const auto &I : CXXRD->bases()) { 2800 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2801 "Unexpected base class!"); 2802 const CXXRecordDecl *Base = 2803 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2804 2805 // Classify this field. 2806 // 2807 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2808 // single eightbyte, each is classified separately. Each eightbyte gets 2809 // initialized to class NO_CLASS. 2810 Class FieldLo, FieldHi; 2811 uint64_t Offset = 2812 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2813 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2814 Lo = merge(Lo, FieldLo); 2815 Hi = merge(Hi, FieldHi); 2816 if (Lo == Memory || Hi == Memory) { 2817 postMerge(Size, Lo, Hi); 2818 return; 2819 } 2820 } 2821 } 2822 2823 // Classify the fields one at a time, merging the results. 2824 unsigned idx = 0; 2825 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2826 i != e; ++i, ++idx) { 2827 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2828 bool BitField = i->isBitField(); 2829 2830 // Ignore padding bit-fields. 2831 if (BitField && i->isUnnamedBitfield()) 2832 continue; 2833 2834 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2835 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2836 // 2837 // The only case a 256-bit wide vector could be used is when the struct 2838 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2839 // to work for sizes wider than 128, early check and fallback to memory. 2840 // 2841 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2842 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2843 Lo = Memory; 2844 postMerge(Size, Lo, Hi); 2845 return; 2846 } 2847 // Note, skip this test for bit-fields, see below. 2848 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2849 Lo = Memory; 2850 postMerge(Size, Lo, Hi); 2851 return; 2852 } 2853 2854 // Classify this field. 2855 // 2856 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2857 // exceeds a single eightbyte, each is classified 2858 // separately. Each eightbyte gets initialized to class 2859 // NO_CLASS. 2860 Class FieldLo, FieldHi; 2861 2862 // Bit-fields require special handling, they do not force the 2863 // structure to be passed in memory even if unaligned, and 2864 // therefore they can straddle an eightbyte. 2865 if (BitField) { 2866 assert(!i->isUnnamedBitfield()); 2867 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2868 uint64_t Size = i->getBitWidthValue(getContext()); 2869 2870 uint64_t EB_Lo = Offset / 64; 2871 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2872 2873 if (EB_Lo) { 2874 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2875 FieldLo = NoClass; 2876 FieldHi = Integer; 2877 } else { 2878 FieldLo = Integer; 2879 FieldHi = EB_Hi ? Integer : NoClass; 2880 } 2881 } else 2882 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2883 Lo = merge(Lo, FieldLo); 2884 Hi = merge(Hi, FieldHi); 2885 if (Lo == Memory || Hi == Memory) 2886 break; 2887 } 2888 2889 postMerge(Size, Lo, Hi); 2890 } 2891 } 2892 2893 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2894 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2895 // place naturally. 2896 if (!isAggregateTypeForABI(Ty)) { 2897 // Treat an enum type as its underlying type. 2898 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2899 Ty = EnumTy->getDecl()->getIntegerType(); 2900 2901 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2902 : ABIArgInfo::getDirect()); 2903 } 2904 2905 return getNaturalAlignIndirect(Ty); 2906 } 2907 2908 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2909 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2910 uint64_t Size = getContext().getTypeSize(VecTy); 2911 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2912 if (Size <= 64 || Size > LargestVector) 2913 return true; 2914 } 2915 2916 return false; 2917 } 2918 2919 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2920 unsigned freeIntRegs) const { 2921 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2922 // place naturally. 2923 // 2924 // This assumption is optimistic, as there could be free registers available 2925 // when we need to pass this argument in memory, and LLVM could try to pass 2926 // the argument in the free register. This does not seem to happen currently, 2927 // but this code would be much safer if we could mark the argument with 2928 // 'onstack'. See PR12193. 2929 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2930 // Treat an enum type as its underlying type. 2931 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2932 Ty = EnumTy->getDecl()->getIntegerType(); 2933 2934 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2935 : ABIArgInfo::getDirect()); 2936 } 2937 2938 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2939 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2940 2941 // Compute the byval alignment. We specify the alignment of the byval in all 2942 // cases so that the mid-level optimizer knows the alignment of the byval. 2943 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2944 2945 // Attempt to avoid passing indirect results using byval when possible. This 2946 // is important for good codegen. 2947 // 2948 // We do this by coercing the value into a scalar type which the backend can 2949 // handle naturally (i.e., without using byval). 2950 // 2951 // For simplicity, we currently only do this when we have exhausted all of the 2952 // free integer registers. Doing this when there are free integer registers 2953 // would require more care, as we would have to ensure that the coerced value 2954 // did not claim the unused register. That would require either reording the 2955 // arguments to the function (so that any subsequent inreg values came first), 2956 // or only doing this optimization when there were no following arguments that 2957 // might be inreg. 2958 // 2959 // We currently expect it to be rare (particularly in well written code) for 2960 // arguments to be passed on the stack when there are still free integer 2961 // registers available (this would typically imply large structs being passed 2962 // by value), so this seems like a fair tradeoff for now. 2963 // 2964 // We can revisit this if the backend grows support for 'onstack' parameter 2965 // attributes. See PR12193. 2966 if (freeIntRegs == 0) { 2967 uint64_t Size = getContext().getTypeSize(Ty); 2968 2969 // If this type fits in an eightbyte, coerce it into the matching integral 2970 // type, which will end up on the stack (with alignment 8). 2971 if (Align == 8 && Size <= 64) 2972 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2973 Size)); 2974 } 2975 2976 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2977 } 2978 2979 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2980 /// register. Pick an LLVM IR type that will be passed as a vector register. 2981 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2982 // Wrapper structs/arrays that only contain vectors are passed just like 2983 // vectors; strip them off if present. 2984 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2985 Ty = QualType(InnerTy, 0); 2986 2987 llvm::Type *IRType = CGT.ConvertType(Ty); 2988 if (isa<llvm::VectorType>(IRType) || 2989 IRType->getTypeID() == llvm::Type::FP128TyID) 2990 return IRType; 2991 2992 // We couldn't find the preferred IR vector type for 'Ty'. 2993 uint64_t Size = getContext().getTypeSize(Ty); 2994 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2995 2996 // Return a LLVM IR vector type based on the size of 'Ty'. 2997 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2998 Size / 64); 2999 } 3000 3001 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3002 /// is known to either be off the end of the specified type or being in 3003 /// alignment padding. The user type specified is known to be at most 128 bits 3004 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3005 /// classification that put one of the two halves in the INTEGER class. 3006 /// 3007 /// It is conservatively correct to return false. 3008 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3009 unsigned EndBit, ASTContext &Context) { 3010 // If the bytes being queried are off the end of the type, there is no user 3011 // data hiding here. This handles analysis of builtins, vectors and other 3012 // types that don't contain interesting padding. 3013 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3014 if (TySize <= StartBit) 3015 return true; 3016 3017 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3018 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3019 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3020 3021 // Check each element to see if the element overlaps with the queried range. 3022 for (unsigned i = 0; i != NumElts; ++i) { 3023 // If the element is after the span we care about, then we're done.. 3024 unsigned EltOffset = i*EltSize; 3025 if (EltOffset >= EndBit) break; 3026 3027 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3028 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3029 EndBit-EltOffset, Context)) 3030 return false; 3031 } 3032 // If it overlaps no elements, then it is safe to process as padding. 3033 return true; 3034 } 3035 3036 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3037 const RecordDecl *RD = RT->getDecl(); 3038 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3039 3040 // If this is a C++ record, check the bases first. 3041 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3042 for (const auto &I : CXXRD->bases()) { 3043 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3044 "Unexpected base class!"); 3045 const CXXRecordDecl *Base = 3046 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3047 3048 // If the base is after the span we care about, ignore it. 3049 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3050 if (BaseOffset >= EndBit) continue; 3051 3052 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3053 if (!BitsContainNoUserData(I.getType(), BaseStart, 3054 EndBit-BaseOffset, Context)) 3055 return false; 3056 } 3057 } 3058 3059 // Verify that no field has data that overlaps the region of interest. Yes 3060 // this could be sped up a lot by being smarter about queried fields, 3061 // however we're only looking at structs up to 16 bytes, so we don't care 3062 // much. 3063 unsigned idx = 0; 3064 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3065 i != e; ++i, ++idx) { 3066 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3067 3068 // If we found a field after the region we care about, then we're done. 3069 if (FieldOffset >= EndBit) break; 3070 3071 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3072 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3073 Context)) 3074 return false; 3075 } 3076 3077 // If nothing in this record overlapped the area of interest, then we're 3078 // clean. 3079 return true; 3080 } 3081 3082 return false; 3083 } 3084 3085 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3086 /// float member at the specified offset. For example, {int,{float}} has a 3087 /// float at offset 4. It is conservatively correct for this routine to return 3088 /// false. 3089 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3090 const llvm::DataLayout &TD) { 3091 // Base case if we find a float. 3092 if (IROffset == 0 && IRType->isFloatTy()) 3093 return true; 3094 3095 // If this is a struct, recurse into the field at the specified offset. 3096 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3097 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3098 unsigned Elt = SL->getElementContainingOffset(IROffset); 3099 IROffset -= SL->getElementOffset(Elt); 3100 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3101 } 3102 3103 // If this is an array, recurse into the field at the specified offset. 3104 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3105 llvm::Type *EltTy = ATy->getElementType(); 3106 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3107 IROffset -= IROffset/EltSize*EltSize; 3108 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3109 } 3110 3111 return false; 3112 } 3113 3114 3115 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3116 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3117 llvm::Type *X86_64ABIInfo:: 3118 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3119 QualType SourceTy, unsigned SourceOffset) const { 3120 // The only three choices we have are either double, <2 x float>, or float. We 3121 // pass as float if the last 4 bytes is just padding. This happens for 3122 // structs that contain 3 floats. 3123 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3124 SourceOffset*8+64, getContext())) 3125 return llvm::Type::getFloatTy(getVMContext()); 3126 3127 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3128 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3129 // case. 3130 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3131 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3132 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3133 3134 return llvm::Type::getDoubleTy(getVMContext()); 3135 } 3136 3137 3138 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3139 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3140 /// about the high or low part of an up-to-16-byte struct. This routine picks 3141 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3142 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3143 /// etc). 3144 /// 3145 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3146 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3147 /// the 8-byte value references. PrefType may be null. 3148 /// 3149 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3150 /// an offset into this that we're processing (which is always either 0 or 8). 3151 /// 3152 llvm::Type *X86_64ABIInfo:: 3153 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3154 QualType SourceTy, unsigned SourceOffset) const { 3155 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3156 // returning an 8-byte unit starting with it. See if we can safely use it. 3157 if (IROffset == 0) { 3158 // Pointers and int64's always fill the 8-byte unit. 3159 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3160 IRType->isIntegerTy(64)) 3161 return IRType; 3162 3163 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3164 // goodness in the source type is just tail padding. This is allowed to 3165 // kick in for struct {double,int} on the int, but not on 3166 // struct{double,int,int} because we wouldn't return the second int. We 3167 // have to do this analysis on the source type because we can't depend on 3168 // unions being lowered a specific way etc. 3169 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3170 IRType->isIntegerTy(32) || 3171 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3172 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3173 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3174 3175 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3176 SourceOffset*8+64, getContext())) 3177 return IRType; 3178 } 3179 } 3180 3181 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3182 // If this is a struct, recurse into the field at the specified offset. 3183 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3184 if (IROffset < SL->getSizeInBytes()) { 3185 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3186 IROffset -= SL->getElementOffset(FieldIdx); 3187 3188 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3189 SourceTy, SourceOffset); 3190 } 3191 } 3192 3193 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3194 llvm::Type *EltTy = ATy->getElementType(); 3195 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3196 unsigned EltOffset = IROffset/EltSize*EltSize; 3197 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3198 SourceOffset); 3199 } 3200 3201 // Okay, we don't have any better idea of what to pass, so we pass this in an 3202 // integer register that isn't too big to fit the rest of the struct. 3203 unsigned TySizeInBytes = 3204 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3205 3206 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3207 3208 // It is always safe to classify this as an integer type up to i64 that 3209 // isn't larger than the structure. 3210 return llvm::IntegerType::get(getVMContext(), 3211 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3212 } 3213 3214 3215 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3216 /// be used as elements of a two register pair to pass or return, return a 3217 /// first class aggregate to represent them. For example, if the low part of 3218 /// a by-value argument should be passed as i32* and the high part as float, 3219 /// return {i32*, float}. 3220 static llvm::Type * 3221 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3222 const llvm::DataLayout &TD) { 3223 // In order to correctly satisfy the ABI, we need to the high part to start 3224 // at offset 8. If the high and low parts we inferred are both 4-byte types 3225 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3226 // the second element at offset 8. Check for this: 3227 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3228 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3229 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3230 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3231 3232 // To handle this, we have to increase the size of the low part so that the 3233 // second element will start at an 8 byte offset. We can't increase the size 3234 // of the second element because it might make us access off the end of the 3235 // struct. 3236 if (HiStart != 8) { 3237 // There are usually two sorts of types the ABI generation code can produce 3238 // for the low part of a pair that aren't 8 bytes in size: float or 3239 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3240 // NaCl). 3241 // Promote these to a larger type. 3242 if (Lo->isFloatTy()) 3243 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3244 else { 3245 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3246 && "Invalid/unknown lo type"); 3247 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3248 } 3249 } 3250 3251 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3252 3253 // Verify that the second element is at an 8-byte offset. 3254 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3255 "Invalid x86-64 argument pair!"); 3256 return Result; 3257 } 3258 3259 ABIArgInfo X86_64ABIInfo:: 3260 classifyReturnType(QualType RetTy) const { 3261 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3262 // classification algorithm. 3263 X86_64ABIInfo::Class Lo, Hi; 3264 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3265 3266 // Check some invariants. 3267 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3268 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3269 3270 llvm::Type *ResType = nullptr; 3271 switch (Lo) { 3272 case NoClass: 3273 if (Hi == NoClass) 3274 return ABIArgInfo::getIgnore(); 3275 // If the low part is just padding, it takes no register, leave ResType 3276 // null. 3277 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3278 "Unknown missing lo part"); 3279 break; 3280 3281 case SSEUp: 3282 case X87Up: 3283 llvm_unreachable("Invalid classification for lo word."); 3284 3285 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3286 // hidden argument. 3287 case Memory: 3288 return getIndirectReturnResult(RetTy); 3289 3290 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3291 // available register of the sequence %rax, %rdx is used. 3292 case Integer: 3293 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3294 3295 // If we have a sign or zero extended integer, make sure to return Extend 3296 // so that the parameter gets the right LLVM IR attributes. 3297 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3298 // Treat an enum type as its underlying type. 3299 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3300 RetTy = EnumTy->getDecl()->getIntegerType(); 3301 3302 if (RetTy->isIntegralOrEnumerationType() && 3303 RetTy->isPromotableIntegerType()) 3304 return ABIArgInfo::getExtend(RetTy); 3305 } 3306 break; 3307 3308 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3309 // available SSE register of the sequence %xmm0, %xmm1 is used. 3310 case SSE: 3311 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3312 break; 3313 3314 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3315 // returned on the X87 stack in %st0 as 80-bit x87 number. 3316 case X87: 3317 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3318 break; 3319 3320 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3321 // part of the value is returned in %st0 and the imaginary part in 3322 // %st1. 3323 case ComplexX87: 3324 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3325 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3326 llvm::Type::getX86_FP80Ty(getVMContext())); 3327 break; 3328 } 3329 3330 llvm::Type *HighPart = nullptr; 3331 switch (Hi) { 3332 // Memory was handled previously and X87 should 3333 // never occur as a hi class. 3334 case Memory: 3335 case X87: 3336 llvm_unreachable("Invalid classification for hi word."); 3337 3338 case ComplexX87: // Previously handled. 3339 case NoClass: 3340 break; 3341 3342 case Integer: 3343 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3344 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3345 return ABIArgInfo::getDirect(HighPart, 8); 3346 break; 3347 case SSE: 3348 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3349 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3350 return ABIArgInfo::getDirect(HighPart, 8); 3351 break; 3352 3353 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3354 // is passed in the next available eightbyte chunk if the last used 3355 // vector register. 3356 // 3357 // SSEUP should always be preceded by SSE, just widen. 3358 case SSEUp: 3359 assert(Lo == SSE && "Unexpected SSEUp classification."); 3360 ResType = GetByteVectorType(RetTy); 3361 break; 3362 3363 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3364 // returned together with the previous X87 value in %st0. 3365 case X87Up: 3366 // If X87Up is preceded by X87, we don't need to do 3367 // anything. However, in some cases with unions it may not be 3368 // preceded by X87. In such situations we follow gcc and pass the 3369 // extra bits in an SSE reg. 3370 if (Lo != X87) { 3371 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3372 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3373 return ABIArgInfo::getDirect(HighPart, 8); 3374 } 3375 break; 3376 } 3377 3378 // If a high part was specified, merge it together with the low part. It is 3379 // known to pass in the high eightbyte of the result. We do this by forming a 3380 // first class struct aggregate with the high and low part: {low, high} 3381 if (HighPart) 3382 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3383 3384 return ABIArgInfo::getDirect(ResType); 3385 } 3386 3387 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3388 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3389 bool isNamedArg) 3390 const 3391 { 3392 Ty = useFirstFieldIfTransparentUnion(Ty); 3393 3394 X86_64ABIInfo::Class Lo, Hi; 3395 classify(Ty, 0, Lo, Hi, isNamedArg); 3396 3397 // Check some invariants. 3398 // FIXME: Enforce these by construction. 3399 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3400 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3401 3402 neededInt = 0; 3403 neededSSE = 0; 3404 llvm::Type *ResType = nullptr; 3405 switch (Lo) { 3406 case NoClass: 3407 if (Hi == NoClass) 3408 return ABIArgInfo::getIgnore(); 3409 // If the low part is just padding, it takes no register, leave ResType 3410 // null. 3411 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3412 "Unknown missing lo part"); 3413 break; 3414 3415 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3416 // on the stack. 3417 case Memory: 3418 3419 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3420 // COMPLEX_X87, it is passed in memory. 3421 case X87: 3422 case ComplexX87: 3423 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3424 ++neededInt; 3425 return getIndirectResult(Ty, freeIntRegs); 3426 3427 case SSEUp: 3428 case X87Up: 3429 llvm_unreachable("Invalid classification for lo word."); 3430 3431 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3432 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3433 // and %r9 is used. 3434 case Integer: 3435 ++neededInt; 3436 3437 // Pick an 8-byte type based on the preferred type. 3438 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3439 3440 // If we have a sign or zero extended integer, make sure to return Extend 3441 // so that the parameter gets the right LLVM IR attributes. 3442 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3443 // Treat an enum type as its underlying type. 3444 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3445 Ty = EnumTy->getDecl()->getIntegerType(); 3446 3447 if (Ty->isIntegralOrEnumerationType() && 3448 Ty->isPromotableIntegerType()) 3449 return ABIArgInfo::getExtend(Ty); 3450 } 3451 3452 break; 3453 3454 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3455 // available SSE register is used, the registers are taken in the 3456 // order from %xmm0 to %xmm7. 3457 case SSE: { 3458 llvm::Type *IRType = CGT.ConvertType(Ty); 3459 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3460 ++neededSSE; 3461 break; 3462 } 3463 } 3464 3465 llvm::Type *HighPart = nullptr; 3466 switch (Hi) { 3467 // Memory was handled previously, ComplexX87 and X87 should 3468 // never occur as hi classes, and X87Up must be preceded by X87, 3469 // which is passed in memory. 3470 case Memory: 3471 case X87: 3472 case ComplexX87: 3473 llvm_unreachable("Invalid classification for hi word."); 3474 3475 case NoClass: break; 3476 3477 case Integer: 3478 ++neededInt; 3479 // Pick an 8-byte type based on the preferred type. 3480 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3481 3482 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3483 return ABIArgInfo::getDirect(HighPart, 8); 3484 break; 3485 3486 // X87Up generally doesn't occur here (long double is passed in 3487 // memory), except in situations involving unions. 3488 case X87Up: 3489 case SSE: 3490 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3491 3492 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3493 return ABIArgInfo::getDirect(HighPart, 8); 3494 3495 ++neededSSE; 3496 break; 3497 3498 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3499 // eightbyte is passed in the upper half of the last used SSE 3500 // register. This only happens when 128-bit vectors are passed. 3501 case SSEUp: 3502 assert(Lo == SSE && "Unexpected SSEUp classification"); 3503 ResType = GetByteVectorType(Ty); 3504 break; 3505 } 3506 3507 // If a high part was specified, merge it together with the low part. It is 3508 // known to pass in the high eightbyte of the result. We do this by forming a 3509 // first class struct aggregate with the high and low part: {low, high} 3510 if (HighPart) 3511 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3512 3513 return ABIArgInfo::getDirect(ResType); 3514 } 3515 3516 ABIArgInfo 3517 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3518 unsigned &NeededSSE) const { 3519 auto RT = Ty->getAs<RecordType>(); 3520 assert(RT && "classifyRegCallStructType only valid with struct types"); 3521 3522 if (RT->getDecl()->hasFlexibleArrayMember()) 3523 return getIndirectReturnResult(Ty); 3524 3525 // Sum up bases 3526 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3527 if (CXXRD->isDynamicClass()) { 3528 NeededInt = NeededSSE = 0; 3529 return getIndirectReturnResult(Ty); 3530 } 3531 3532 for (const auto &I : CXXRD->bases()) 3533 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3534 .isIndirect()) { 3535 NeededInt = NeededSSE = 0; 3536 return getIndirectReturnResult(Ty); 3537 } 3538 } 3539 3540 // Sum up members 3541 for (const auto *FD : RT->getDecl()->fields()) { 3542 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3543 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3544 .isIndirect()) { 3545 NeededInt = NeededSSE = 0; 3546 return getIndirectReturnResult(Ty); 3547 } 3548 } else { 3549 unsigned LocalNeededInt, LocalNeededSSE; 3550 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3551 LocalNeededSSE, true) 3552 .isIndirect()) { 3553 NeededInt = NeededSSE = 0; 3554 return getIndirectReturnResult(Ty); 3555 } 3556 NeededInt += LocalNeededInt; 3557 NeededSSE += LocalNeededSSE; 3558 } 3559 } 3560 3561 return ABIArgInfo::getDirect(); 3562 } 3563 3564 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3565 unsigned &NeededInt, 3566 unsigned &NeededSSE) const { 3567 3568 NeededInt = 0; 3569 NeededSSE = 0; 3570 3571 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3572 } 3573 3574 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3575 3576 const unsigned CallingConv = FI.getCallingConvention(); 3577 // It is possible to force Win64 calling convention on any x86_64 target by 3578 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3579 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3580 if (CallingConv == llvm::CallingConv::Win64) { 3581 WinX86_64ABIInfo Win64ABIInfo(CGT); 3582 Win64ABIInfo.computeInfo(FI); 3583 return; 3584 } 3585 3586 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3587 3588 // Keep track of the number of assigned registers. 3589 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3590 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3591 unsigned NeededInt, NeededSSE; 3592 3593 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3594 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3595 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3596 FI.getReturnInfo() = 3597 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3598 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3599 FreeIntRegs -= NeededInt; 3600 FreeSSERegs -= NeededSSE; 3601 } else { 3602 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3603 } 3604 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3605 // Complex Long Double Type is passed in Memory when Regcall 3606 // calling convention is used. 3607 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3608 if (getContext().getCanonicalType(CT->getElementType()) == 3609 getContext().LongDoubleTy) 3610 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3611 } else 3612 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3613 } 3614 3615 // If the return value is indirect, then the hidden argument is consuming one 3616 // integer register. 3617 if (FI.getReturnInfo().isIndirect()) 3618 --FreeIntRegs; 3619 3620 // The chain argument effectively gives us another free register. 3621 if (FI.isChainCall()) 3622 ++FreeIntRegs; 3623 3624 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3625 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3626 // get assigned (in left-to-right order) for passing as follows... 3627 unsigned ArgNo = 0; 3628 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3629 it != ie; ++it, ++ArgNo) { 3630 bool IsNamedArg = ArgNo < NumRequiredArgs; 3631 3632 if (IsRegCall && it->type->isStructureOrClassType()) 3633 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3634 else 3635 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3636 NeededSSE, IsNamedArg); 3637 3638 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3639 // eightbyte of an argument, the whole argument is passed on the 3640 // stack. If registers have already been assigned for some 3641 // eightbytes of such an argument, the assignments get reverted. 3642 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3643 FreeIntRegs -= NeededInt; 3644 FreeSSERegs -= NeededSSE; 3645 } else { 3646 it->info = getIndirectResult(it->type, FreeIntRegs); 3647 } 3648 } 3649 } 3650 3651 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3652 Address VAListAddr, QualType Ty) { 3653 Address overflow_arg_area_p = 3654 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3655 llvm::Value *overflow_arg_area = 3656 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3657 3658 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3659 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3660 // It isn't stated explicitly in the standard, but in practice we use 3661 // alignment greater than 16 where necessary. 3662 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3663 if (Align > CharUnits::fromQuantity(8)) { 3664 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3665 Align); 3666 } 3667 3668 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3669 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3670 llvm::Value *Res = 3671 CGF.Builder.CreateBitCast(overflow_arg_area, 3672 llvm::PointerType::getUnqual(LTy)); 3673 3674 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3675 // l->overflow_arg_area + sizeof(type). 3676 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3677 // an 8 byte boundary. 3678 3679 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3680 llvm::Value *Offset = 3681 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3682 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3683 "overflow_arg_area.next"); 3684 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3685 3686 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3687 return Address(Res, Align); 3688 } 3689 3690 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3691 QualType Ty) const { 3692 // Assume that va_list type is correct; should be pointer to LLVM type: 3693 // struct { 3694 // i32 gp_offset; 3695 // i32 fp_offset; 3696 // i8* overflow_arg_area; 3697 // i8* reg_save_area; 3698 // }; 3699 unsigned neededInt, neededSSE; 3700 3701 Ty = getContext().getCanonicalType(Ty); 3702 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3703 /*isNamedArg*/false); 3704 3705 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3706 // in the registers. If not go to step 7. 3707 if (!neededInt && !neededSSE) 3708 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3709 3710 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3711 // general purpose registers needed to pass type and num_fp to hold 3712 // the number of floating point registers needed. 3713 3714 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3715 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3716 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3717 // 3718 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3719 // register save space). 3720 3721 llvm::Value *InRegs = nullptr; 3722 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3723 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3724 if (neededInt) { 3725 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3726 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3727 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3728 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3729 } 3730 3731 if (neededSSE) { 3732 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3733 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3734 llvm::Value *FitsInFP = 3735 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3736 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3737 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3738 } 3739 3740 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3741 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3742 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3743 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3744 3745 // Emit code to load the value if it was passed in registers. 3746 3747 CGF.EmitBlock(InRegBlock); 3748 3749 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3750 // an offset of l->gp_offset and/or l->fp_offset. This may require 3751 // copying to a temporary location in case the parameter is passed 3752 // in different register classes or requires an alignment greater 3753 // than 8 for general purpose registers and 16 for XMM registers. 3754 // 3755 // FIXME: This really results in shameful code when we end up needing to 3756 // collect arguments from different places; often what should result in a 3757 // simple assembling of a structure from scattered addresses has many more 3758 // loads than necessary. Can we clean this up? 3759 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3760 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3761 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3762 3763 Address RegAddr = Address::invalid(); 3764 if (neededInt && neededSSE) { 3765 // FIXME: Cleanup. 3766 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3767 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3768 Address Tmp = CGF.CreateMemTemp(Ty); 3769 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3770 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3771 llvm::Type *TyLo = ST->getElementType(0); 3772 llvm::Type *TyHi = ST->getElementType(1); 3773 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3774 "Unexpected ABI info for mixed regs"); 3775 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3776 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3777 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3778 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3779 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3780 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3781 3782 // Copy the first element. 3783 // FIXME: Our choice of alignment here and below is probably pessimistic. 3784 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3785 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3786 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3787 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3788 3789 // Copy the second element. 3790 V = CGF.Builder.CreateAlignedLoad( 3791 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3792 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3793 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3794 3795 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3796 } else if (neededInt) { 3797 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3798 CharUnits::fromQuantity(8)); 3799 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3800 3801 // Copy to a temporary if necessary to ensure the appropriate alignment. 3802 std::pair<CharUnits, CharUnits> SizeAlign = 3803 getContext().getTypeInfoInChars(Ty); 3804 uint64_t TySize = SizeAlign.first.getQuantity(); 3805 CharUnits TyAlign = SizeAlign.second; 3806 3807 // Copy into a temporary if the type is more aligned than the 3808 // register save area. 3809 if (TyAlign.getQuantity() > 8) { 3810 Address Tmp = CGF.CreateMemTemp(Ty); 3811 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3812 RegAddr = Tmp; 3813 } 3814 3815 } else if (neededSSE == 1) { 3816 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3817 CharUnits::fromQuantity(16)); 3818 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3819 } else { 3820 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3821 // SSE registers are spaced 16 bytes apart in the register save 3822 // area, we need to collect the two eightbytes together. 3823 // The ABI isn't explicit about this, but it seems reasonable 3824 // to assume that the slots are 16-byte aligned, since the stack is 3825 // naturally 16-byte aligned and the prologue is expected to store 3826 // all the SSE registers to the RSA. 3827 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3828 CharUnits::fromQuantity(16)); 3829 Address RegAddrHi = 3830 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3831 CharUnits::fromQuantity(16)); 3832 llvm::Type *ST = AI.canHaveCoerceToType() 3833 ? AI.getCoerceToType() 3834 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3835 llvm::Value *V; 3836 Address Tmp = CGF.CreateMemTemp(Ty); 3837 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3838 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3839 RegAddrLo, ST->getStructElementType(0))); 3840 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3841 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3842 RegAddrHi, ST->getStructElementType(1))); 3843 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3844 3845 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3846 } 3847 3848 // AMD64-ABI 3.5.7p5: Step 5. Set: 3849 // l->gp_offset = l->gp_offset + num_gp * 8 3850 // l->fp_offset = l->fp_offset + num_fp * 16. 3851 if (neededInt) { 3852 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3853 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3854 gp_offset_p); 3855 } 3856 if (neededSSE) { 3857 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3858 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3859 fp_offset_p); 3860 } 3861 CGF.EmitBranch(ContBlock); 3862 3863 // Emit code to load the value if it was passed in memory. 3864 3865 CGF.EmitBlock(InMemBlock); 3866 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3867 3868 // Return the appropriate result. 3869 3870 CGF.EmitBlock(ContBlock); 3871 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3872 "vaarg.addr"); 3873 return ResAddr; 3874 } 3875 3876 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3877 QualType Ty) const { 3878 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3879 CGF.getContext().getTypeInfoInChars(Ty), 3880 CharUnits::fromQuantity(8), 3881 /*allowHigherAlign*/ false); 3882 } 3883 3884 ABIArgInfo 3885 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3886 const ABIArgInfo ¤t) const { 3887 // Assumes vectorCall calling convention. 3888 const Type *Base = nullptr; 3889 uint64_t NumElts = 0; 3890 3891 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3892 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3893 FreeSSERegs -= NumElts; 3894 return getDirectX86Hva(); 3895 } 3896 return current; 3897 } 3898 3899 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3900 bool IsReturnType, bool IsVectorCall, 3901 bool IsRegCall) const { 3902 3903 if (Ty->isVoidType()) 3904 return ABIArgInfo::getIgnore(); 3905 3906 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3907 Ty = EnumTy->getDecl()->getIntegerType(); 3908 3909 TypeInfo Info = getContext().getTypeInfo(Ty); 3910 uint64_t Width = Info.Width; 3911 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3912 3913 const RecordType *RT = Ty->getAs<RecordType>(); 3914 if (RT) { 3915 if (!IsReturnType) { 3916 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3917 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3918 } 3919 3920 if (RT->getDecl()->hasFlexibleArrayMember()) 3921 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3922 3923 } 3924 3925 const Type *Base = nullptr; 3926 uint64_t NumElts = 0; 3927 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3928 // other targets. 3929 if ((IsVectorCall || IsRegCall) && 3930 isHomogeneousAggregate(Ty, Base, NumElts)) { 3931 if (IsRegCall) { 3932 if (FreeSSERegs >= NumElts) { 3933 FreeSSERegs -= NumElts; 3934 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3935 return ABIArgInfo::getDirect(); 3936 return ABIArgInfo::getExpand(); 3937 } 3938 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3939 } else if (IsVectorCall) { 3940 if (FreeSSERegs >= NumElts && 3941 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3942 FreeSSERegs -= NumElts; 3943 return ABIArgInfo::getDirect(); 3944 } else if (IsReturnType) { 3945 return ABIArgInfo::getExpand(); 3946 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3947 // HVAs are delayed and reclassified in the 2nd step. 3948 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3949 } 3950 } 3951 } 3952 3953 if (Ty->isMemberPointerType()) { 3954 // If the member pointer is represented by an LLVM int or ptr, pass it 3955 // directly. 3956 llvm::Type *LLTy = CGT.ConvertType(Ty); 3957 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3958 return ABIArgInfo::getDirect(); 3959 } 3960 3961 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3962 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3963 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3964 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3965 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3966 3967 // Otherwise, coerce it to a small integer. 3968 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3969 } 3970 3971 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3972 switch (BT->getKind()) { 3973 case BuiltinType::Bool: 3974 // Bool type is always extended to the ABI, other builtin types are not 3975 // extended. 3976 return ABIArgInfo::getExtend(Ty); 3977 3978 case BuiltinType::LongDouble: 3979 // Mingw64 GCC uses the old 80 bit extended precision floating point 3980 // unit. It passes them indirectly through memory. 3981 if (IsMingw64) { 3982 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3983 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3984 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3985 } 3986 break; 3987 3988 case BuiltinType::Int128: 3989 case BuiltinType::UInt128: 3990 // If it's a parameter type, the normal ABI rule is that arguments larger 3991 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3992 // even though it isn't particularly efficient. 3993 if (!IsReturnType) 3994 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3995 3996 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3997 // Clang matches them for compatibility. 3998 return ABIArgInfo::getDirect( 3999 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4000 4001 default: 4002 break; 4003 } 4004 } 4005 4006 return ABIArgInfo::getDirect(); 4007 } 4008 4009 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4010 unsigned FreeSSERegs, 4011 bool IsVectorCall, 4012 bool IsRegCall) const { 4013 unsigned Count = 0; 4014 for (auto &I : FI.arguments()) { 4015 // Vectorcall in x64 only permits the first 6 arguments to be passed 4016 // as XMM/YMM registers. 4017 if (Count < VectorcallMaxParamNumAsReg) 4018 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4019 else { 4020 // Since these cannot be passed in registers, pretend no registers 4021 // are left. 4022 unsigned ZeroSSERegsAvail = 0; 4023 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4024 IsVectorCall, IsRegCall); 4025 } 4026 ++Count; 4027 } 4028 4029 for (auto &I : FI.arguments()) { 4030 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4031 } 4032 } 4033 4034 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4035 bool IsVectorCall = 4036 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 4037 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 4038 4039 unsigned FreeSSERegs = 0; 4040 if (IsVectorCall) { 4041 // We can use up to 4 SSE return registers with vectorcall. 4042 FreeSSERegs = 4; 4043 } else if (IsRegCall) { 4044 // RegCall gives us 16 SSE registers. 4045 FreeSSERegs = 16; 4046 } 4047 4048 if (!getCXXABI().classifyReturnType(FI)) 4049 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4050 IsVectorCall, IsRegCall); 4051 4052 if (IsVectorCall) { 4053 // We can use up to 6 SSE register parameters with vectorcall. 4054 FreeSSERegs = 6; 4055 } else if (IsRegCall) { 4056 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4057 FreeSSERegs = 16; 4058 } 4059 4060 if (IsVectorCall) { 4061 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4062 } else { 4063 for (auto &I : FI.arguments()) 4064 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4065 } 4066 4067 } 4068 4069 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4070 QualType Ty) const { 4071 4072 bool IsIndirect = false; 4073 4074 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4075 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4076 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4077 uint64_t Width = getContext().getTypeSize(Ty); 4078 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4079 } 4080 4081 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4082 CGF.getContext().getTypeInfoInChars(Ty), 4083 CharUnits::fromQuantity(8), 4084 /*allowHigherAlign*/ false); 4085 } 4086 4087 // PowerPC-32 4088 namespace { 4089 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4090 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4091 bool IsSoftFloatABI; 4092 4093 CharUnits getParamTypeAlignment(QualType Ty) const; 4094 4095 public: 4096 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4097 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4098 4099 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4100 QualType Ty) const override; 4101 }; 4102 4103 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4104 public: 4105 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4106 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4107 4108 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4109 // This is recovered from gcc output. 4110 return 1; // r1 is the dedicated stack pointer 4111 } 4112 4113 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4114 llvm::Value *Address) const override; 4115 }; 4116 } 4117 4118 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4119 // Complex types are passed just like their elements 4120 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4121 Ty = CTy->getElementType(); 4122 4123 if (Ty->isVectorType()) 4124 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4125 : 4); 4126 4127 // For single-element float/vector structs, we consider the whole type 4128 // to have the same alignment requirements as its single element. 4129 const Type *AlignTy = nullptr; 4130 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4131 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4132 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4133 (BT && BT->isFloatingPoint())) 4134 AlignTy = EltType; 4135 } 4136 4137 if (AlignTy) 4138 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4139 return CharUnits::fromQuantity(4); 4140 } 4141 4142 // TODO: this implementation is now likely redundant with 4143 // DefaultABIInfo::EmitVAArg. 4144 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4145 QualType Ty) const { 4146 if (getTarget().getTriple().isOSDarwin()) { 4147 auto TI = getContext().getTypeInfoInChars(Ty); 4148 TI.second = getParamTypeAlignment(Ty); 4149 4150 CharUnits SlotSize = CharUnits::fromQuantity(4); 4151 return emitVoidPtrVAArg(CGF, VAList, Ty, 4152 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4153 /*AllowHigherAlign=*/true); 4154 } 4155 4156 const unsigned OverflowLimit = 8; 4157 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4158 // TODO: Implement this. For now ignore. 4159 (void)CTy; 4160 return Address::invalid(); // FIXME? 4161 } 4162 4163 // struct __va_list_tag { 4164 // unsigned char gpr; 4165 // unsigned char fpr; 4166 // unsigned short reserved; 4167 // void *overflow_arg_area; 4168 // void *reg_save_area; 4169 // }; 4170 4171 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4172 bool isInt = 4173 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4174 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4175 4176 // All aggregates are passed indirectly? That doesn't seem consistent 4177 // with the argument-lowering code. 4178 bool isIndirect = Ty->isAggregateType(); 4179 4180 CGBuilderTy &Builder = CGF.Builder; 4181 4182 // The calling convention either uses 1-2 GPRs or 1 FPR. 4183 Address NumRegsAddr = Address::invalid(); 4184 if (isInt || IsSoftFloatABI) { 4185 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4186 } else { 4187 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4188 } 4189 4190 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4191 4192 // "Align" the register count when TY is i64. 4193 if (isI64 || (isF64 && IsSoftFloatABI)) { 4194 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4195 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4196 } 4197 4198 llvm::Value *CC = 4199 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4200 4201 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4202 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4203 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4204 4205 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4206 4207 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4208 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4209 4210 // Case 1: consume registers. 4211 Address RegAddr = Address::invalid(); 4212 { 4213 CGF.EmitBlock(UsingRegs); 4214 4215 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4216 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4217 CharUnits::fromQuantity(8)); 4218 assert(RegAddr.getElementType() == CGF.Int8Ty); 4219 4220 // Floating-point registers start after the general-purpose registers. 4221 if (!(isInt || IsSoftFloatABI)) { 4222 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4223 CharUnits::fromQuantity(32)); 4224 } 4225 4226 // Get the address of the saved value by scaling the number of 4227 // registers we've used by the number of 4228 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4229 llvm::Value *RegOffset = 4230 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4231 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4232 RegAddr.getPointer(), RegOffset), 4233 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4234 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4235 4236 // Increase the used-register count. 4237 NumRegs = 4238 Builder.CreateAdd(NumRegs, 4239 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4240 Builder.CreateStore(NumRegs, NumRegsAddr); 4241 4242 CGF.EmitBranch(Cont); 4243 } 4244 4245 // Case 2: consume space in the overflow area. 4246 Address MemAddr = Address::invalid(); 4247 { 4248 CGF.EmitBlock(UsingOverflow); 4249 4250 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4251 4252 // Everything in the overflow area is rounded up to a size of at least 4. 4253 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4254 4255 CharUnits Size; 4256 if (!isIndirect) { 4257 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4258 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4259 } else { 4260 Size = CGF.getPointerSize(); 4261 } 4262 4263 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4264 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4265 OverflowAreaAlign); 4266 // Round up address of argument to alignment 4267 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4268 if (Align > OverflowAreaAlign) { 4269 llvm::Value *Ptr = OverflowArea.getPointer(); 4270 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4271 Align); 4272 } 4273 4274 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4275 4276 // Increase the overflow area. 4277 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4278 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4279 CGF.EmitBranch(Cont); 4280 } 4281 4282 CGF.EmitBlock(Cont); 4283 4284 // Merge the cases with a phi. 4285 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4286 "vaarg.addr"); 4287 4288 // Load the pointer if the argument was passed indirectly. 4289 if (isIndirect) { 4290 Result = Address(Builder.CreateLoad(Result, "aggr"), 4291 getContext().getTypeAlignInChars(Ty)); 4292 } 4293 4294 return Result; 4295 } 4296 4297 bool 4298 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4299 llvm::Value *Address) const { 4300 // This is calculated from the LLVM and GCC tables and verified 4301 // against gcc output. AFAIK all ABIs use the same encoding. 4302 4303 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4304 4305 llvm::IntegerType *i8 = CGF.Int8Ty; 4306 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4307 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4308 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4309 4310 // 0-31: r0-31, the 4-byte general-purpose registers 4311 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4312 4313 // 32-63: fp0-31, the 8-byte floating-point registers 4314 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4315 4316 // 64-76 are various 4-byte special-purpose registers: 4317 // 64: mq 4318 // 65: lr 4319 // 66: ctr 4320 // 67: ap 4321 // 68-75 cr0-7 4322 // 76: xer 4323 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4324 4325 // 77-108: v0-31, the 16-byte vector registers 4326 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4327 4328 // 109: vrsave 4329 // 110: vscr 4330 // 111: spe_acc 4331 // 112: spefscr 4332 // 113: sfp 4333 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4334 4335 return false; 4336 } 4337 4338 // PowerPC-64 4339 4340 namespace { 4341 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4342 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4343 public: 4344 enum ABIKind { 4345 ELFv1 = 0, 4346 ELFv2 4347 }; 4348 4349 private: 4350 static const unsigned GPRBits = 64; 4351 ABIKind Kind; 4352 bool HasQPX; 4353 bool IsSoftFloatABI; 4354 4355 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4356 // will be passed in a QPX register. 4357 bool IsQPXVectorTy(const Type *Ty) const { 4358 if (!HasQPX) 4359 return false; 4360 4361 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4362 unsigned NumElements = VT->getNumElements(); 4363 if (NumElements == 1) 4364 return false; 4365 4366 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4367 if (getContext().getTypeSize(Ty) <= 256) 4368 return true; 4369 } else if (VT->getElementType()-> 4370 isSpecificBuiltinType(BuiltinType::Float)) { 4371 if (getContext().getTypeSize(Ty) <= 128) 4372 return true; 4373 } 4374 } 4375 4376 return false; 4377 } 4378 4379 bool IsQPXVectorTy(QualType Ty) const { 4380 return IsQPXVectorTy(Ty.getTypePtr()); 4381 } 4382 4383 public: 4384 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4385 bool SoftFloatABI) 4386 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4387 IsSoftFloatABI(SoftFloatABI) {} 4388 4389 bool isPromotableTypeForABI(QualType Ty) const; 4390 CharUnits getParamTypeAlignment(QualType Ty) const; 4391 4392 ABIArgInfo classifyReturnType(QualType RetTy) const; 4393 ABIArgInfo classifyArgumentType(QualType Ty) const; 4394 4395 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4396 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4397 uint64_t Members) const override; 4398 4399 // TODO: We can add more logic to computeInfo to improve performance. 4400 // Example: For aggregate arguments that fit in a register, we could 4401 // use getDirectInReg (as is done below for structs containing a single 4402 // floating-point value) to avoid pushing them to memory on function 4403 // entry. This would require changing the logic in PPCISelLowering 4404 // when lowering the parameters in the caller and args in the callee. 4405 void computeInfo(CGFunctionInfo &FI) const override { 4406 if (!getCXXABI().classifyReturnType(FI)) 4407 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4408 for (auto &I : FI.arguments()) { 4409 // We rely on the default argument classification for the most part. 4410 // One exception: An aggregate containing a single floating-point 4411 // or vector item must be passed in a register if one is available. 4412 const Type *T = isSingleElementStruct(I.type, getContext()); 4413 if (T) { 4414 const BuiltinType *BT = T->getAs<BuiltinType>(); 4415 if (IsQPXVectorTy(T) || 4416 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4417 (BT && BT->isFloatingPoint())) { 4418 QualType QT(T, 0); 4419 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4420 continue; 4421 } 4422 } 4423 I.info = classifyArgumentType(I.type); 4424 } 4425 } 4426 4427 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4428 QualType Ty) const override; 4429 4430 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4431 bool asReturnValue) const override { 4432 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4433 } 4434 4435 bool isSwiftErrorInRegister() const override { 4436 return false; 4437 } 4438 }; 4439 4440 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4441 4442 public: 4443 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4444 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4445 bool SoftFloatABI) 4446 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4447 SoftFloatABI)) {} 4448 4449 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4450 // This is recovered from gcc output. 4451 return 1; // r1 is the dedicated stack pointer 4452 } 4453 4454 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4455 llvm::Value *Address) const override; 4456 }; 4457 4458 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4459 public: 4460 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4461 4462 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4463 // This is recovered from gcc output. 4464 return 1; // r1 is the dedicated stack pointer 4465 } 4466 4467 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4468 llvm::Value *Address) const override; 4469 }; 4470 4471 } 4472 4473 // Return true if the ABI requires Ty to be passed sign- or zero- 4474 // extended to 64 bits. 4475 bool 4476 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4477 // Treat an enum type as its underlying type. 4478 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4479 Ty = EnumTy->getDecl()->getIntegerType(); 4480 4481 // Promotable integer types are required to be promoted by the ABI. 4482 if (Ty->isPromotableIntegerType()) 4483 return true; 4484 4485 // In addition to the usual promotable integer types, we also need to 4486 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4487 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4488 switch (BT->getKind()) { 4489 case BuiltinType::Int: 4490 case BuiltinType::UInt: 4491 return true; 4492 default: 4493 break; 4494 } 4495 4496 return false; 4497 } 4498 4499 /// isAlignedParamType - Determine whether a type requires 16-byte or 4500 /// higher alignment in the parameter area. Always returns at least 8. 4501 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4502 // Complex types are passed just like their elements. 4503 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4504 Ty = CTy->getElementType(); 4505 4506 // Only vector types of size 16 bytes need alignment (larger types are 4507 // passed via reference, smaller types are not aligned). 4508 if (IsQPXVectorTy(Ty)) { 4509 if (getContext().getTypeSize(Ty) > 128) 4510 return CharUnits::fromQuantity(32); 4511 4512 return CharUnits::fromQuantity(16); 4513 } else if (Ty->isVectorType()) { 4514 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4515 } 4516 4517 // For single-element float/vector structs, we consider the whole type 4518 // to have the same alignment requirements as its single element. 4519 const Type *AlignAsType = nullptr; 4520 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4521 if (EltType) { 4522 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4523 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4524 getContext().getTypeSize(EltType) == 128) || 4525 (BT && BT->isFloatingPoint())) 4526 AlignAsType = EltType; 4527 } 4528 4529 // Likewise for ELFv2 homogeneous aggregates. 4530 const Type *Base = nullptr; 4531 uint64_t Members = 0; 4532 if (!AlignAsType && Kind == ELFv2 && 4533 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4534 AlignAsType = Base; 4535 4536 // With special case aggregates, only vector base types need alignment. 4537 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4538 if (getContext().getTypeSize(AlignAsType) > 128) 4539 return CharUnits::fromQuantity(32); 4540 4541 return CharUnits::fromQuantity(16); 4542 } else if (AlignAsType) { 4543 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4544 } 4545 4546 // Otherwise, we only need alignment for any aggregate type that 4547 // has an alignment requirement of >= 16 bytes. 4548 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4549 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4550 return CharUnits::fromQuantity(32); 4551 return CharUnits::fromQuantity(16); 4552 } 4553 4554 return CharUnits::fromQuantity(8); 4555 } 4556 4557 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4558 /// aggregate. Base is set to the base element type, and Members is set 4559 /// to the number of base elements. 4560 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4561 uint64_t &Members) const { 4562 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4563 uint64_t NElements = AT->getSize().getZExtValue(); 4564 if (NElements == 0) 4565 return false; 4566 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4567 return false; 4568 Members *= NElements; 4569 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4570 const RecordDecl *RD = RT->getDecl(); 4571 if (RD->hasFlexibleArrayMember()) 4572 return false; 4573 4574 Members = 0; 4575 4576 // If this is a C++ record, check the bases first. 4577 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4578 for (const auto &I : CXXRD->bases()) { 4579 // Ignore empty records. 4580 if (isEmptyRecord(getContext(), I.getType(), true)) 4581 continue; 4582 4583 uint64_t FldMembers; 4584 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4585 return false; 4586 4587 Members += FldMembers; 4588 } 4589 } 4590 4591 for (const auto *FD : RD->fields()) { 4592 // Ignore (non-zero arrays of) empty records. 4593 QualType FT = FD->getType(); 4594 while (const ConstantArrayType *AT = 4595 getContext().getAsConstantArrayType(FT)) { 4596 if (AT->getSize().getZExtValue() == 0) 4597 return false; 4598 FT = AT->getElementType(); 4599 } 4600 if (isEmptyRecord(getContext(), FT, true)) 4601 continue; 4602 4603 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4604 if (getContext().getLangOpts().CPlusPlus && 4605 FD->isZeroLengthBitField(getContext())) 4606 continue; 4607 4608 uint64_t FldMembers; 4609 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4610 return false; 4611 4612 Members = (RD->isUnion() ? 4613 std::max(Members, FldMembers) : Members + FldMembers); 4614 } 4615 4616 if (!Base) 4617 return false; 4618 4619 // Ensure there is no padding. 4620 if (getContext().getTypeSize(Base) * Members != 4621 getContext().getTypeSize(Ty)) 4622 return false; 4623 } else { 4624 Members = 1; 4625 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4626 Members = 2; 4627 Ty = CT->getElementType(); 4628 } 4629 4630 // Most ABIs only support float, double, and some vector type widths. 4631 if (!isHomogeneousAggregateBaseType(Ty)) 4632 return false; 4633 4634 // The base type must be the same for all members. Types that 4635 // agree in both total size and mode (float vs. vector) are 4636 // treated as being equivalent here. 4637 const Type *TyPtr = Ty.getTypePtr(); 4638 if (!Base) { 4639 Base = TyPtr; 4640 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4641 // so make sure to widen it explicitly. 4642 if (const VectorType *VT = Base->getAs<VectorType>()) { 4643 QualType EltTy = VT->getElementType(); 4644 unsigned NumElements = 4645 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4646 Base = getContext() 4647 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4648 .getTypePtr(); 4649 } 4650 } 4651 4652 if (Base->isVectorType() != TyPtr->isVectorType() || 4653 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4654 return false; 4655 } 4656 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4657 } 4658 4659 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4660 // Homogeneous aggregates for ELFv2 must have base types of float, 4661 // double, long double, or 128-bit vectors. 4662 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4663 if (BT->getKind() == BuiltinType::Float || 4664 BT->getKind() == BuiltinType::Double || 4665 BT->getKind() == BuiltinType::LongDouble || 4666 (getContext().getTargetInfo().hasFloat128Type() && 4667 (BT->getKind() == BuiltinType::Float128))) { 4668 if (IsSoftFloatABI) 4669 return false; 4670 return true; 4671 } 4672 } 4673 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4674 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4675 return true; 4676 } 4677 return false; 4678 } 4679 4680 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4681 const Type *Base, uint64_t Members) const { 4682 // Vector and fp128 types require one register, other floating point types 4683 // require one or two registers depending on their size. 4684 uint32_t NumRegs = 4685 ((getContext().getTargetInfo().hasFloat128Type() && 4686 Base->isFloat128Type()) || 4687 Base->isVectorType()) ? 1 4688 : (getContext().getTypeSize(Base) + 63) / 64; 4689 4690 // Homogeneous Aggregates may occupy at most 8 registers. 4691 return Members * NumRegs <= 8; 4692 } 4693 4694 ABIArgInfo 4695 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4696 Ty = useFirstFieldIfTransparentUnion(Ty); 4697 4698 if (Ty->isAnyComplexType()) 4699 return ABIArgInfo::getDirect(); 4700 4701 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4702 // or via reference (larger than 16 bytes). 4703 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4704 uint64_t Size = getContext().getTypeSize(Ty); 4705 if (Size > 128) 4706 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4707 else if (Size < 128) { 4708 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4709 return ABIArgInfo::getDirect(CoerceTy); 4710 } 4711 } 4712 4713 if (isAggregateTypeForABI(Ty)) { 4714 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4715 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4716 4717 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4718 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4719 4720 // ELFv2 homogeneous aggregates are passed as array types. 4721 const Type *Base = nullptr; 4722 uint64_t Members = 0; 4723 if (Kind == ELFv2 && 4724 isHomogeneousAggregate(Ty, Base, Members)) { 4725 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4726 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4727 return ABIArgInfo::getDirect(CoerceTy); 4728 } 4729 4730 // If an aggregate may end up fully in registers, we do not 4731 // use the ByVal method, but pass the aggregate as array. 4732 // This is usually beneficial since we avoid forcing the 4733 // back-end to store the argument to memory. 4734 uint64_t Bits = getContext().getTypeSize(Ty); 4735 if (Bits > 0 && Bits <= 8 * GPRBits) { 4736 llvm::Type *CoerceTy; 4737 4738 // Types up to 8 bytes are passed as integer type (which will be 4739 // properly aligned in the argument save area doubleword). 4740 if (Bits <= GPRBits) 4741 CoerceTy = 4742 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4743 // Larger types are passed as arrays, with the base type selected 4744 // according to the required alignment in the save area. 4745 else { 4746 uint64_t RegBits = ABIAlign * 8; 4747 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4748 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4749 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4750 } 4751 4752 return ABIArgInfo::getDirect(CoerceTy); 4753 } 4754 4755 // All other aggregates are passed ByVal. 4756 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4757 /*ByVal=*/true, 4758 /*Realign=*/TyAlign > ABIAlign); 4759 } 4760 4761 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4762 : ABIArgInfo::getDirect()); 4763 } 4764 4765 ABIArgInfo 4766 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4767 if (RetTy->isVoidType()) 4768 return ABIArgInfo::getIgnore(); 4769 4770 if (RetTy->isAnyComplexType()) 4771 return ABIArgInfo::getDirect(); 4772 4773 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4774 // or via reference (larger than 16 bytes). 4775 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4776 uint64_t Size = getContext().getTypeSize(RetTy); 4777 if (Size > 128) 4778 return getNaturalAlignIndirect(RetTy); 4779 else if (Size < 128) { 4780 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4781 return ABIArgInfo::getDirect(CoerceTy); 4782 } 4783 } 4784 4785 if (isAggregateTypeForABI(RetTy)) { 4786 // ELFv2 homogeneous aggregates are returned as array types. 4787 const Type *Base = nullptr; 4788 uint64_t Members = 0; 4789 if (Kind == ELFv2 && 4790 isHomogeneousAggregate(RetTy, Base, Members)) { 4791 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4792 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4793 return ABIArgInfo::getDirect(CoerceTy); 4794 } 4795 4796 // ELFv2 small aggregates are returned in up to two registers. 4797 uint64_t Bits = getContext().getTypeSize(RetTy); 4798 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4799 if (Bits == 0) 4800 return ABIArgInfo::getIgnore(); 4801 4802 llvm::Type *CoerceTy; 4803 if (Bits > GPRBits) { 4804 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4805 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4806 } else 4807 CoerceTy = 4808 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4809 return ABIArgInfo::getDirect(CoerceTy); 4810 } 4811 4812 // All other aggregates are returned indirectly. 4813 return getNaturalAlignIndirect(RetTy); 4814 } 4815 4816 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4817 : ABIArgInfo::getDirect()); 4818 } 4819 4820 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4821 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4822 QualType Ty) const { 4823 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4824 TypeInfo.second = getParamTypeAlignment(Ty); 4825 4826 CharUnits SlotSize = CharUnits::fromQuantity(8); 4827 4828 // If we have a complex type and the base type is smaller than 8 bytes, 4829 // the ABI calls for the real and imaginary parts to be right-adjusted 4830 // in separate doublewords. However, Clang expects us to produce a 4831 // pointer to a structure with the two parts packed tightly. So generate 4832 // loads of the real and imaginary parts relative to the va_list pointer, 4833 // and store them to a temporary structure. 4834 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4835 CharUnits EltSize = TypeInfo.first / 2; 4836 if (EltSize < SlotSize) { 4837 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4838 SlotSize * 2, SlotSize, 4839 SlotSize, /*AllowHigher*/ true); 4840 4841 Address RealAddr = Addr; 4842 Address ImagAddr = RealAddr; 4843 if (CGF.CGM.getDataLayout().isBigEndian()) { 4844 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4845 SlotSize - EltSize); 4846 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4847 2 * SlotSize - EltSize); 4848 } else { 4849 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4850 } 4851 4852 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4853 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4854 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4855 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4856 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4857 4858 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4859 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4860 /*init*/ true); 4861 return Temp; 4862 } 4863 } 4864 4865 // Otherwise, just use the general rule. 4866 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4867 TypeInfo, SlotSize, /*AllowHigher*/ true); 4868 } 4869 4870 static bool 4871 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4872 llvm::Value *Address) { 4873 // This is calculated from the LLVM and GCC tables and verified 4874 // against gcc output. AFAIK all ABIs use the same encoding. 4875 4876 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4877 4878 llvm::IntegerType *i8 = CGF.Int8Ty; 4879 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4880 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4881 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4882 4883 // 0-31: r0-31, the 8-byte general-purpose registers 4884 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4885 4886 // 32-63: fp0-31, the 8-byte floating-point registers 4887 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4888 4889 // 64-67 are various 8-byte special-purpose registers: 4890 // 64: mq 4891 // 65: lr 4892 // 66: ctr 4893 // 67: ap 4894 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4895 4896 // 68-76 are various 4-byte special-purpose registers: 4897 // 68-75 cr0-7 4898 // 76: xer 4899 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4900 4901 // 77-108: v0-31, the 16-byte vector registers 4902 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4903 4904 // 109: vrsave 4905 // 110: vscr 4906 // 111: spe_acc 4907 // 112: spefscr 4908 // 113: sfp 4909 // 114: tfhar 4910 // 115: tfiar 4911 // 116: texasr 4912 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4913 4914 return false; 4915 } 4916 4917 bool 4918 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4919 CodeGen::CodeGenFunction &CGF, 4920 llvm::Value *Address) const { 4921 4922 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4923 } 4924 4925 bool 4926 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4927 llvm::Value *Address) const { 4928 4929 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4930 } 4931 4932 //===----------------------------------------------------------------------===// 4933 // AArch64 ABI Implementation 4934 //===----------------------------------------------------------------------===// 4935 4936 namespace { 4937 4938 class AArch64ABIInfo : public SwiftABIInfo { 4939 public: 4940 enum ABIKind { 4941 AAPCS = 0, 4942 DarwinPCS, 4943 Win64 4944 }; 4945 4946 private: 4947 ABIKind Kind; 4948 4949 public: 4950 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4951 : SwiftABIInfo(CGT), Kind(Kind) {} 4952 4953 private: 4954 ABIKind getABIKind() const { return Kind; } 4955 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4956 4957 ABIArgInfo classifyReturnType(QualType RetTy) const; 4958 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4959 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4960 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4961 uint64_t Members) const override; 4962 4963 bool isIllegalVectorType(QualType Ty) const; 4964 4965 void computeInfo(CGFunctionInfo &FI) const override { 4966 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4967 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4968 4969 for (auto &it : FI.arguments()) 4970 it.info = classifyArgumentType(it.type); 4971 } 4972 4973 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4974 CodeGenFunction &CGF) const; 4975 4976 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4977 CodeGenFunction &CGF) const; 4978 4979 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4980 QualType Ty) const override { 4981 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4982 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4983 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4984 } 4985 4986 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4987 QualType Ty) const override; 4988 4989 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4990 bool asReturnValue) const override { 4991 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4992 } 4993 bool isSwiftErrorInRegister() const override { 4994 return true; 4995 } 4996 4997 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4998 unsigned elts) const override; 4999 }; 5000 5001 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5002 public: 5003 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5004 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5005 5006 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5007 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5008 } 5009 5010 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5011 return 31; 5012 } 5013 5014 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5015 5016 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5017 CodeGen::CodeGenModule &CGM) const override { 5018 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5019 if (!FD) 5020 return; 5021 llvm::Function *Fn = cast<llvm::Function>(GV); 5022 5023 auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); 5024 if (Kind != CodeGenOptions::SignReturnAddressScope::None) { 5025 Fn->addFnAttr("sign-return-address", 5026 Kind == CodeGenOptions::SignReturnAddressScope::All 5027 ? "all" 5028 : "non-leaf"); 5029 5030 auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5031 Fn->addFnAttr("sign-return-address-key", 5032 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5033 ? "a_key" 5034 : "b_key"); 5035 } 5036 5037 if (CGM.getCodeGenOpts().BranchTargetEnforcement) 5038 Fn->addFnAttr("branch-target-enforcement"); 5039 } 5040 }; 5041 5042 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5043 public: 5044 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5045 : AArch64TargetCodeGenInfo(CGT, K) {} 5046 5047 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5048 CodeGen::CodeGenModule &CGM) const override; 5049 5050 void getDependentLibraryOption(llvm::StringRef Lib, 5051 llvm::SmallString<24> &Opt) const override { 5052 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5053 } 5054 5055 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5056 llvm::SmallString<32> &Opt) const override { 5057 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5058 } 5059 }; 5060 5061 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5062 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5063 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5064 if (GV->isDeclaration()) 5065 return; 5066 addStackProbeTargetAttributes(D, GV, CGM); 5067 } 5068 } 5069 5070 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5071 Ty = useFirstFieldIfTransparentUnion(Ty); 5072 5073 // Handle illegal vector types here. 5074 if (isIllegalVectorType(Ty)) { 5075 uint64_t Size = getContext().getTypeSize(Ty); 5076 // Android promotes <2 x i8> to i16, not i32 5077 if (isAndroid() && (Size <= 16)) { 5078 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5079 return ABIArgInfo::getDirect(ResType); 5080 } 5081 if (Size <= 32) { 5082 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5083 return ABIArgInfo::getDirect(ResType); 5084 } 5085 if (Size == 64) { 5086 llvm::Type *ResType = 5087 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5088 return ABIArgInfo::getDirect(ResType); 5089 } 5090 if (Size == 128) { 5091 llvm::Type *ResType = 5092 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5093 return ABIArgInfo::getDirect(ResType); 5094 } 5095 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5096 } 5097 5098 if (!isAggregateTypeForABI(Ty)) { 5099 // Treat an enum type as its underlying type. 5100 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5101 Ty = EnumTy->getDecl()->getIntegerType(); 5102 5103 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5104 ? ABIArgInfo::getExtend(Ty) 5105 : ABIArgInfo::getDirect()); 5106 } 5107 5108 // Structures with either a non-trivial destructor or a non-trivial 5109 // copy constructor are always indirect. 5110 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5111 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5112 CGCXXABI::RAA_DirectInMemory); 5113 } 5114 5115 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5116 // elsewhere for GNU compatibility. 5117 uint64_t Size = getContext().getTypeSize(Ty); 5118 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5119 if (IsEmpty || Size == 0) { 5120 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5121 return ABIArgInfo::getIgnore(); 5122 5123 // GNU C mode. The only argument that gets ignored is an empty one with size 5124 // 0. 5125 if (IsEmpty && Size == 0) 5126 return ABIArgInfo::getIgnore(); 5127 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5128 } 5129 5130 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5131 const Type *Base = nullptr; 5132 uint64_t Members = 0; 5133 if (isHomogeneousAggregate(Ty, Base, Members)) { 5134 return ABIArgInfo::getDirect( 5135 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5136 } 5137 5138 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5139 if (Size <= 128) { 5140 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5141 // same size and alignment. 5142 if (getTarget().isRenderScriptTarget()) { 5143 return coerceToIntArray(Ty, getContext(), getVMContext()); 5144 } 5145 unsigned Alignment; 5146 if (Kind == AArch64ABIInfo::AAPCS) { 5147 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5148 Alignment = Alignment < 128 ? 64 : 128; 5149 } else { 5150 Alignment = getContext().getTypeAlign(Ty); 5151 } 5152 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5153 5154 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5155 // For aggregates with 16-byte alignment, we use i128. 5156 if (Alignment < 128 && Size == 128) { 5157 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5158 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5159 } 5160 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5161 } 5162 5163 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5164 } 5165 5166 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5167 if (RetTy->isVoidType()) 5168 return ABIArgInfo::getIgnore(); 5169 5170 // Large vector types should be returned via memory. 5171 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5172 return getNaturalAlignIndirect(RetTy); 5173 5174 if (!isAggregateTypeForABI(RetTy)) { 5175 // Treat an enum type as its underlying type. 5176 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5177 RetTy = EnumTy->getDecl()->getIntegerType(); 5178 5179 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5180 ? ABIArgInfo::getExtend(RetTy) 5181 : ABIArgInfo::getDirect()); 5182 } 5183 5184 uint64_t Size = getContext().getTypeSize(RetTy); 5185 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5186 return ABIArgInfo::getIgnore(); 5187 5188 const Type *Base = nullptr; 5189 uint64_t Members = 0; 5190 if (isHomogeneousAggregate(RetTy, Base, Members)) 5191 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5192 return ABIArgInfo::getDirect(); 5193 5194 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5195 if (Size <= 128) { 5196 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5197 // same size and alignment. 5198 if (getTarget().isRenderScriptTarget()) { 5199 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5200 } 5201 unsigned Alignment = getContext().getTypeAlign(RetTy); 5202 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5203 5204 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5205 // For aggregates with 16-byte alignment, we use i128. 5206 if (Alignment < 128 && Size == 128) { 5207 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5208 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5209 } 5210 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5211 } 5212 5213 return getNaturalAlignIndirect(RetTy); 5214 } 5215 5216 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5217 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5218 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5219 // Check whether VT is legal. 5220 unsigned NumElements = VT->getNumElements(); 5221 uint64_t Size = getContext().getTypeSize(VT); 5222 // NumElements should be power of 2. 5223 if (!llvm::isPowerOf2_32(NumElements)) 5224 return true; 5225 return Size != 64 && (Size != 128 || NumElements == 1); 5226 } 5227 return false; 5228 } 5229 5230 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5231 llvm::Type *eltTy, 5232 unsigned elts) const { 5233 if (!llvm::isPowerOf2_32(elts)) 5234 return false; 5235 if (totalSize.getQuantity() != 8 && 5236 (totalSize.getQuantity() != 16 || elts == 1)) 5237 return false; 5238 return true; 5239 } 5240 5241 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5242 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5243 // point type or a short-vector type. This is the same as the 32-bit ABI, 5244 // but with the difference that any floating-point type is allowed, 5245 // including __fp16. 5246 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5247 if (BT->isFloatingPoint()) 5248 return true; 5249 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5250 unsigned VecSize = getContext().getTypeSize(VT); 5251 if (VecSize == 64 || VecSize == 128) 5252 return true; 5253 } 5254 return false; 5255 } 5256 5257 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5258 uint64_t Members) const { 5259 return Members <= 4; 5260 } 5261 5262 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5263 QualType Ty, 5264 CodeGenFunction &CGF) const { 5265 ABIArgInfo AI = classifyArgumentType(Ty); 5266 bool IsIndirect = AI.isIndirect(); 5267 5268 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5269 if (IsIndirect) 5270 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5271 else if (AI.getCoerceToType()) 5272 BaseTy = AI.getCoerceToType(); 5273 5274 unsigned NumRegs = 1; 5275 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5276 BaseTy = ArrTy->getElementType(); 5277 NumRegs = ArrTy->getNumElements(); 5278 } 5279 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5280 5281 // The AArch64 va_list type and handling is specified in the Procedure Call 5282 // Standard, section B.4: 5283 // 5284 // struct { 5285 // void *__stack; 5286 // void *__gr_top; 5287 // void *__vr_top; 5288 // int __gr_offs; 5289 // int __vr_offs; 5290 // }; 5291 5292 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5293 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5294 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5295 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5296 5297 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5298 CharUnits TyAlign = TyInfo.second; 5299 5300 Address reg_offs_p = Address::invalid(); 5301 llvm::Value *reg_offs = nullptr; 5302 int reg_top_index; 5303 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5304 if (!IsFPR) { 5305 // 3 is the field number of __gr_offs 5306 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5307 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5308 reg_top_index = 1; // field number for __gr_top 5309 RegSize = llvm::alignTo(RegSize, 8); 5310 } else { 5311 // 4 is the field number of __vr_offs. 5312 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5313 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5314 reg_top_index = 2; // field number for __vr_top 5315 RegSize = 16 * NumRegs; 5316 } 5317 5318 //======================================= 5319 // Find out where argument was passed 5320 //======================================= 5321 5322 // If reg_offs >= 0 we're already using the stack for this type of 5323 // argument. We don't want to keep updating reg_offs (in case it overflows, 5324 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5325 // whatever they get). 5326 llvm::Value *UsingStack = nullptr; 5327 UsingStack = CGF.Builder.CreateICmpSGE( 5328 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5329 5330 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5331 5332 // Otherwise, at least some kind of argument could go in these registers, the 5333 // question is whether this particular type is too big. 5334 CGF.EmitBlock(MaybeRegBlock); 5335 5336 // Integer arguments may need to correct register alignment (for example a 5337 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5338 // align __gr_offs to calculate the potential address. 5339 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5340 int Align = TyAlign.getQuantity(); 5341 5342 reg_offs = CGF.Builder.CreateAdd( 5343 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5344 "align_regoffs"); 5345 reg_offs = CGF.Builder.CreateAnd( 5346 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5347 "aligned_regoffs"); 5348 } 5349 5350 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5351 // The fact that this is done unconditionally reflects the fact that 5352 // allocating an argument to the stack also uses up all the remaining 5353 // registers of the appropriate kind. 5354 llvm::Value *NewOffset = nullptr; 5355 NewOffset = CGF.Builder.CreateAdd( 5356 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5357 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5358 5359 // Now we're in a position to decide whether this argument really was in 5360 // registers or not. 5361 llvm::Value *InRegs = nullptr; 5362 InRegs = CGF.Builder.CreateICmpSLE( 5363 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5364 5365 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5366 5367 //======================================= 5368 // Argument was in registers 5369 //======================================= 5370 5371 // Now we emit the code for if the argument was originally passed in 5372 // registers. First start the appropriate block: 5373 CGF.EmitBlock(InRegBlock); 5374 5375 llvm::Value *reg_top = nullptr; 5376 Address reg_top_p = 5377 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5378 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5379 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5380 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5381 Address RegAddr = Address::invalid(); 5382 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5383 5384 if (IsIndirect) { 5385 // If it's been passed indirectly (actually a struct), whatever we find from 5386 // stored registers or on the stack will actually be a struct **. 5387 MemTy = llvm::PointerType::getUnqual(MemTy); 5388 } 5389 5390 const Type *Base = nullptr; 5391 uint64_t NumMembers = 0; 5392 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5393 if (IsHFA && NumMembers > 1) { 5394 // Homogeneous aggregates passed in registers will have their elements split 5395 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5396 // qN+1, ...). We reload and store into a temporary local variable 5397 // contiguously. 5398 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5399 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5400 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5401 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5402 Address Tmp = CGF.CreateTempAlloca(HFATy, 5403 std::max(TyAlign, BaseTyInfo.second)); 5404 5405 // On big-endian platforms, the value will be right-aligned in its slot. 5406 int Offset = 0; 5407 if (CGF.CGM.getDataLayout().isBigEndian() && 5408 BaseTyInfo.first.getQuantity() < 16) 5409 Offset = 16 - BaseTyInfo.first.getQuantity(); 5410 5411 for (unsigned i = 0; i < NumMembers; ++i) { 5412 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5413 Address LoadAddr = 5414 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5415 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5416 5417 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5418 5419 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5420 CGF.Builder.CreateStore(Elem, StoreAddr); 5421 } 5422 5423 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5424 } else { 5425 // Otherwise the object is contiguous in memory. 5426 5427 // It might be right-aligned in its slot. 5428 CharUnits SlotSize = BaseAddr.getAlignment(); 5429 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5430 (IsHFA || !isAggregateTypeForABI(Ty)) && 5431 TyInfo.first < SlotSize) { 5432 CharUnits Offset = SlotSize - TyInfo.first; 5433 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5434 } 5435 5436 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5437 } 5438 5439 CGF.EmitBranch(ContBlock); 5440 5441 //======================================= 5442 // Argument was on the stack 5443 //======================================= 5444 CGF.EmitBlock(OnStackBlock); 5445 5446 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5447 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5448 5449 // Again, stack arguments may need realignment. In this case both integer and 5450 // floating-point ones might be affected. 5451 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5452 int Align = TyAlign.getQuantity(); 5453 5454 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5455 5456 OnStackPtr = CGF.Builder.CreateAdd( 5457 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5458 "align_stack"); 5459 OnStackPtr = CGF.Builder.CreateAnd( 5460 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5461 "align_stack"); 5462 5463 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5464 } 5465 Address OnStackAddr(OnStackPtr, 5466 std::max(CharUnits::fromQuantity(8), TyAlign)); 5467 5468 // All stack slots are multiples of 8 bytes. 5469 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5470 CharUnits StackSize; 5471 if (IsIndirect) 5472 StackSize = StackSlotSize; 5473 else 5474 StackSize = TyInfo.first.alignTo(StackSlotSize); 5475 5476 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5477 llvm::Value *NewStack = 5478 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5479 5480 // Write the new value of __stack for the next call to va_arg 5481 CGF.Builder.CreateStore(NewStack, stack_p); 5482 5483 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5484 TyInfo.first < StackSlotSize) { 5485 CharUnits Offset = StackSlotSize - TyInfo.first; 5486 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5487 } 5488 5489 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5490 5491 CGF.EmitBranch(ContBlock); 5492 5493 //======================================= 5494 // Tidy up 5495 //======================================= 5496 CGF.EmitBlock(ContBlock); 5497 5498 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5499 OnStackAddr, OnStackBlock, "vaargs.addr"); 5500 5501 if (IsIndirect) 5502 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5503 TyInfo.second); 5504 5505 return ResAddr; 5506 } 5507 5508 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5509 CodeGenFunction &CGF) const { 5510 // The backend's lowering doesn't support va_arg for aggregates or 5511 // illegal vector types. Lower VAArg here for these cases and use 5512 // the LLVM va_arg instruction for everything else. 5513 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5514 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5515 5516 CharUnits SlotSize = CharUnits::fromQuantity(8); 5517 5518 // Empty records are ignored for parameter passing purposes. 5519 if (isEmptyRecord(getContext(), Ty, true)) { 5520 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5521 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5522 return Addr; 5523 } 5524 5525 // The size of the actual thing passed, which might end up just 5526 // being a pointer for indirect types. 5527 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5528 5529 // Arguments bigger than 16 bytes which aren't homogeneous 5530 // aggregates should be passed indirectly. 5531 bool IsIndirect = false; 5532 if (TyInfo.first.getQuantity() > 16) { 5533 const Type *Base = nullptr; 5534 uint64_t Members = 0; 5535 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5536 } 5537 5538 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5539 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5540 } 5541 5542 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5543 QualType Ty) const { 5544 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5545 CGF.getContext().getTypeInfoInChars(Ty), 5546 CharUnits::fromQuantity(8), 5547 /*allowHigherAlign*/ false); 5548 } 5549 5550 //===----------------------------------------------------------------------===// 5551 // ARM ABI Implementation 5552 //===----------------------------------------------------------------------===// 5553 5554 namespace { 5555 5556 class ARMABIInfo : public SwiftABIInfo { 5557 public: 5558 enum ABIKind { 5559 APCS = 0, 5560 AAPCS = 1, 5561 AAPCS_VFP = 2, 5562 AAPCS16_VFP = 3, 5563 }; 5564 5565 private: 5566 ABIKind Kind; 5567 5568 public: 5569 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5570 : SwiftABIInfo(CGT), Kind(_Kind) { 5571 setCCs(); 5572 } 5573 5574 bool isEABI() const { 5575 switch (getTarget().getTriple().getEnvironment()) { 5576 case llvm::Triple::Android: 5577 case llvm::Triple::EABI: 5578 case llvm::Triple::EABIHF: 5579 case llvm::Triple::GNUEABI: 5580 case llvm::Triple::GNUEABIHF: 5581 case llvm::Triple::MuslEABI: 5582 case llvm::Triple::MuslEABIHF: 5583 return true; 5584 default: 5585 return false; 5586 } 5587 } 5588 5589 bool isEABIHF() const { 5590 switch (getTarget().getTriple().getEnvironment()) { 5591 case llvm::Triple::EABIHF: 5592 case llvm::Triple::GNUEABIHF: 5593 case llvm::Triple::MuslEABIHF: 5594 return true; 5595 default: 5596 return false; 5597 } 5598 } 5599 5600 ABIKind getABIKind() const { return Kind; } 5601 5602 private: 5603 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5604 unsigned functionCallConv) const; 5605 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5606 unsigned functionCallConv) const; 5607 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5608 uint64_t Members) const; 5609 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5610 bool isIllegalVectorType(QualType Ty) const; 5611 5612 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5613 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5614 uint64_t Members) const override; 5615 5616 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5617 5618 void computeInfo(CGFunctionInfo &FI) const override; 5619 5620 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5621 QualType Ty) const override; 5622 5623 llvm::CallingConv::ID getLLVMDefaultCC() const; 5624 llvm::CallingConv::ID getABIDefaultCC() const; 5625 void setCCs(); 5626 5627 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5628 bool asReturnValue) const override { 5629 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5630 } 5631 bool isSwiftErrorInRegister() const override { 5632 return true; 5633 } 5634 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5635 unsigned elts) const override; 5636 }; 5637 5638 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5639 public: 5640 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5641 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5642 5643 const ARMABIInfo &getABIInfo() const { 5644 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5645 } 5646 5647 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5648 return 13; 5649 } 5650 5651 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5652 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5653 } 5654 5655 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5656 llvm::Value *Address) const override { 5657 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5658 5659 // 0-15 are the 16 integer registers. 5660 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5661 return false; 5662 } 5663 5664 unsigned getSizeOfUnwindException() const override { 5665 if (getABIInfo().isEABI()) return 88; 5666 return TargetCodeGenInfo::getSizeOfUnwindException(); 5667 } 5668 5669 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5670 CodeGen::CodeGenModule &CGM) const override { 5671 if (GV->isDeclaration()) 5672 return; 5673 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5674 if (!FD) 5675 return; 5676 5677 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5678 if (!Attr) 5679 return; 5680 5681 const char *Kind; 5682 switch (Attr->getInterrupt()) { 5683 case ARMInterruptAttr::Generic: Kind = ""; break; 5684 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5685 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5686 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5687 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5688 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5689 } 5690 5691 llvm::Function *Fn = cast<llvm::Function>(GV); 5692 5693 Fn->addFnAttr("interrupt", Kind); 5694 5695 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5696 if (ABI == ARMABIInfo::APCS) 5697 return; 5698 5699 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5700 // however this is not necessarily true on taking any interrupt. Instruct 5701 // the backend to perform a realignment as part of the function prologue. 5702 llvm::AttrBuilder B; 5703 B.addStackAlignmentAttr(8); 5704 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5705 } 5706 }; 5707 5708 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5709 public: 5710 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5711 : ARMTargetCodeGenInfo(CGT, K) {} 5712 5713 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5714 CodeGen::CodeGenModule &CGM) const override; 5715 5716 void getDependentLibraryOption(llvm::StringRef Lib, 5717 llvm::SmallString<24> &Opt) const override { 5718 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5719 } 5720 5721 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5722 llvm::SmallString<32> &Opt) const override { 5723 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5724 } 5725 }; 5726 5727 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5728 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5729 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5730 if (GV->isDeclaration()) 5731 return; 5732 addStackProbeTargetAttributes(D, GV, CGM); 5733 } 5734 } 5735 5736 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5737 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5738 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5739 FI.getCallingConvention()); 5740 5741 for (auto &I : FI.arguments()) 5742 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5743 FI.getCallingConvention()); 5744 5745 5746 // Always honor user-specified calling convention. 5747 if (FI.getCallingConvention() != llvm::CallingConv::C) 5748 return; 5749 5750 llvm::CallingConv::ID cc = getRuntimeCC(); 5751 if (cc != llvm::CallingConv::C) 5752 FI.setEffectiveCallingConvention(cc); 5753 } 5754 5755 /// Return the default calling convention that LLVM will use. 5756 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5757 // The default calling convention that LLVM will infer. 5758 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5759 return llvm::CallingConv::ARM_AAPCS_VFP; 5760 else if (isEABI()) 5761 return llvm::CallingConv::ARM_AAPCS; 5762 else 5763 return llvm::CallingConv::ARM_APCS; 5764 } 5765 5766 /// Return the calling convention that our ABI would like us to use 5767 /// as the C calling convention. 5768 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5769 switch (getABIKind()) { 5770 case APCS: return llvm::CallingConv::ARM_APCS; 5771 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5772 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5773 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5774 } 5775 llvm_unreachable("bad ABI kind"); 5776 } 5777 5778 void ARMABIInfo::setCCs() { 5779 assert(getRuntimeCC() == llvm::CallingConv::C); 5780 5781 // Don't muddy up the IR with a ton of explicit annotations if 5782 // they'd just match what LLVM will infer from the triple. 5783 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5784 if (abiCC != getLLVMDefaultCC()) 5785 RuntimeCC = abiCC; 5786 } 5787 5788 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5789 uint64_t Size = getContext().getTypeSize(Ty); 5790 if (Size <= 32) { 5791 llvm::Type *ResType = 5792 llvm::Type::getInt32Ty(getVMContext()); 5793 return ABIArgInfo::getDirect(ResType); 5794 } 5795 if (Size == 64 || Size == 128) { 5796 llvm::Type *ResType = llvm::VectorType::get( 5797 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5798 return ABIArgInfo::getDirect(ResType); 5799 } 5800 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5801 } 5802 5803 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5804 const Type *Base, 5805 uint64_t Members) const { 5806 assert(Base && "Base class should be set for homogeneous aggregate"); 5807 // Base can be a floating-point or a vector. 5808 if (const VectorType *VT = Base->getAs<VectorType>()) { 5809 // FP16 vectors should be converted to integer vectors 5810 if (!getTarget().hasLegalHalfType() && 5811 (VT->getElementType()->isFloat16Type() || 5812 VT->getElementType()->isHalfType())) { 5813 uint64_t Size = getContext().getTypeSize(VT); 5814 llvm::Type *NewVecTy = llvm::VectorType::get( 5815 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5816 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5817 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5818 } 5819 } 5820 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5821 } 5822 5823 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5824 unsigned functionCallConv) const { 5825 // 6.1.2.1 The following argument types are VFP CPRCs: 5826 // A single-precision floating-point type (including promoted 5827 // half-precision types); A double-precision floating-point type; 5828 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5829 // with a Base Type of a single- or double-precision floating-point type, 5830 // 64-bit containerized vectors or 128-bit containerized vectors with one 5831 // to four Elements. 5832 // Variadic functions should always marshal to the base standard. 5833 bool IsAAPCS_VFP = 5834 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5835 5836 Ty = useFirstFieldIfTransparentUnion(Ty); 5837 5838 // Handle illegal vector types here. 5839 if (isIllegalVectorType(Ty)) 5840 return coerceIllegalVector(Ty); 5841 5842 // _Float16 and __fp16 get passed as if it were an int or float, but with 5843 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5844 // half type natively, and does not need to interwork with AAPCS code. 5845 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5846 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5847 llvm::Type *ResType = IsAAPCS_VFP ? 5848 llvm::Type::getFloatTy(getVMContext()) : 5849 llvm::Type::getInt32Ty(getVMContext()); 5850 return ABIArgInfo::getDirect(ResType); 5851 } 5852 5853 if (!isAggregateTypeForABI(Ty)) { 5854 // Treat an enum type as its underlying type. 5855 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5856 Ty = EnumTy->getDecl()->getIntegerType(); 5857 } 5858 5859 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5860 : ABIArgInfo::getDirect()); 5861 } 5862 5863 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5864 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5865 } 5866 5867 // Ignore empty records. 5868 if (isEmptyRecord(getContext(), Ty, true)) 5869 return ABIArgInfo::getIgnore(); 5870 5871 if (IsAAPCS_VFP) { 5872 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5873 // into VFP registers. 5874 const Type *Base = nullptr; 5875 uint64_t Members = 0; 5876 if (isHomogeneousAggregate(Ty, Base, Members)) 5877 return classifyHomogeneousAggregate(Ty, Base, Members); 5878 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5879 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5880 // this convention even for a variadic function: the backend will use GPRs 5881 // if needed. 5882 const Type *Base = nullptr; 5883 uint64_t Members = 0; 5884 if (isHomogeneousAggregate(Ty, Base, Members)) { 5885 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5886 llvm::Type *Ty = 5887 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5888 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5889 } 5890 } 5891 5892 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5893 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5894 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5895 // bigger than 128-bits, they get placed in space allocated by the caller, 5896 // and a pointer is passed. 5897 return ABIArgInfo::getIndirect( 5898 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5899 } 5900 5901 // Support byval for ARM. 5902 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5903 // most 8-byte. We realign the indirect argument if type alignment is bigger 5904 // than ABI alignment. 5905 uint64_t ABIAlign = 4; 5906 uint64_t TyAlign; 5907 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5908 getABIKind() == ARMABIInfo::AAPCS) { 5909 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5910 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5911 } else { 5912 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5913 } 5914 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5915 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5916 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5917 /*ByVal=*/true, 5918 /*Realign=*/TyAlign > ABIAlign); 5919 } 5920 5921 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5922 // same size and alignment. 5923 if (getTarget().isRenderScriptTarget()) { 5924 return coerceToIntArray(Ty, getContext(), getVMContext()); 5925 } 5926 5927 // Otherwise, pass by coercing to a structure of the appropriate size. 5928 llvm::Type* ElemTy; 5929 unsigned SizeRegs; 5930 // FIXME: Try to match the types of the arguments more accurately where 5931 // we can. 5932 if (TyAlign <= 4) { 5933 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5934 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5935 } else { 5936 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5937 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5938 } 5939 5940 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5941 } 5942 5943 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5944 llvm::LLVMContext &VMContext) { 5945 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5946 // is called integer-like if its size is less than or equal to one word, and 5947 // the offset of each of its addressable sub-fields is zero. 5948 5949 uint64_t Size = Context.getTypeSize(Ty); 5950 5951 // Check that the type fits in a word. 5952 if (Size > 32) 5953 return false; 5954 5955 // FIXME: Handle vector types! 5956 if (Ty->isVectorType()) 5957 return false; 5958 5959 // Float types are never treated as "integer like". 5960 if (Ty->isRealFloatingType()) 5961 return false; 5962 5963 // If this is a builtin or pointer type then it is ok. 5964 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5965 return true; 5966 5967 // Small complex integer types are "integer like". 5968 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5969 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5970 5971 // Single element and zero sized arrays should be allowed, by the definition 5972 // above, but they are not. 5973 5974 // Otherwise, it must be a record type. 5975 const RecordType *RT = Ty->getAs<RecordType>(); 5976 if (!RT) return false; 5977 5978 // Ignore records with flexible arrays. 5979 const RecordDecl *RD = RT->getDecl(); 5980 if (RD->hasFlexibleArrayMember()) 5981 return false; 5982 5983 // Check that all sub-fields are at offset 0, and are themselves "integer 5984 // like". 5985 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5986 5987 bool HadField = false; 5988 unsigned idx = 0; 5989 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5990 i != e; ++i, ++idx) { 5991 const FieldDecl *FD = *i; 5992 5993 // Bit-fields are not addressable, we only need to verify they are "integer 5994 // like". We still have to disallow a subsequent non-bitfield, for example: 5995 // struct { int : 0; int x } 5996 // is non-integer like according to gcc. 5997 if (FD->isBitField()) { 5998 if (!RD->isUnion()) 5999 HadField = true; 6000 6001 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6002 return false; 6003 6004 continue; 6005 } 6006 6007 // Check if this field is at offset 0. 6008 if (Layout.getFieldOffset(idx) != 0) 6009 return false; 6010 6011 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6012 return false; 6013 6014 // Only allow at most one field in a structure. This doesn't match the 6015 // wording above, but follows gcc in situations with a field following an 6016 // empty structure. 6017 if (!RD->isUnion()) { 6018 if (HadField) 6019 return false; 6020 6021 HadField = true; 6022 } 6023 } 6024 6025 return true; 6026 } 6027 6028 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6029 unsigned functionCallConv) const { 6030 6031 // Variadic functions should always marshal to the base standard. 6032 bool IsAAPCS_VFP = 6033 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6034 6035 if (RetTy->isVoidType()) 6036 return ABIArgInfo::getIgnore(); 6037 6038 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6039 // Large vector types should be returned via memory. 6040 if (getContext().getTypeSize(RetTy) > 128) 6041 return getNaturalAlignIndirect(RetTy); 6042 // FP16 vectors should be converted to integer vectors 6043 if (!getTarget().hasLegalHalfType() && 6044 (VT->getElementType()->isFloat16Type() || 6045 VT->getElementType()->isHalfType())) 6046 return coerceIllegalVector(RetTy); 6047 } 6048 6049 // _Float16 and __fp16 get returned as if it were an int or float, but with 6050 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6051 // half type natively, and does not need to interwork with AAPCS code. 6052 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6053 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6054 llvm::Type *ResType = IsAAPCS_VFP ? 6055 llvm::Type::getFloatTy(getVMContext()) : 6056 llvm::Type::getInt32Ty(getVMContext()); 6057 return ABIArgInfo::getDirect(ResType); 6058 } 6059 6060 if (!isAggregateTypeForABI(RetTy)) { 6061 // Treat an enum type as its underlying type. 6062 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6063 RetTy = EnumTy->getDecl()->getIntegerType(); 6064 6065 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6066 : ABIArgInfo::getDirect(); 6067 } 6068 6069 // Are we following APCS? 6070 if (getABIKind() == APCS) { 6071 if (isEmptyRecord(getContext(), RetTy, false)) 6072 return ABIArgInfo::getIgnore(); 6073 6074 // Complex types are all returned as packed integers. 6075 // 6076 // FIXME: Consider using 2 x vector types if the back end handles them 6077 // correctly. 6078 if (RetTy->isAnyComplexType()) 6079 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6080 getVMContext(), getContext().getTypeSize(RetTy))); 6081 6082 // Integer like structures are returned in r0. 6083 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6084 // Return in the smallest viable integer type. 6085 uint64_t Size = getContext().getTypeSize(RetTy); 6086 if (Size <= 8) 6087 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6088 if (Size <= 16) 6089 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6090 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6091 } 6092 6093 // Otherwise return in memory. 6094 return getNaturalAlignIndirect(RetTy); 6095 } 6096 6097 // Otherwise this is an AAPCS variant. 6098 6099 if (isEmptyRecord(getContext(), RetTy, true)) 6100 return ABIArgInfo::getIgnore(); 6101 6102 // Check for homogeneous aggregates with AAPCS-VFP. 6103 if (IsAAPCS_VFP) { 6104 const Type *Base = nullptr; 6105 uint64_t Members = 0; 6106 if (isHomogeneousAggregate(RetTy, Base, Members)) 6107 return classifyHomogeneousAggregate(RetTy, Base, Members); 6108 } 6109 6110 // Aggregates <= 4 bytes are returned in r0; other aggregates 6111 // are returned indirectly. 6112 uint64_t Size = getContext().getTypeSize(RetTy); 6113 if (Size <= 32) { 6114 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6115 // same size and alignment. 6116 if (getTarget().isRenderScriptTarget()) { 6117 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6118 } 6119 if (getDataLayout().isBigEndian()) 6120 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6121 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6122 6123 // Return in the smallest viable integer type. 6124 if (Size <= 8) 6125 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6126 if (Size <= 16) 6127 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6128 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6129 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6130 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6131 llvm::Type *CoerceTy = 6132 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6133 return ABIArgInfo::getDirect(CoerceTy); 6134 } 6135 6136 return getNaturalAlignIndirect(RetTy); 6137 } 6138 6139 /// isIllegalVector - check whether Ty is an illegal vector type. 6140 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6141 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6142 // On targets that don't support FP16, FP16 is expanded into float, and we 6143 // don't want the ABI to depend on whether or not FP16 is supported in 6144 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6145 if (!getTarget().hasLegalHalfType() && 6146 (VT->getElementType()->isFloat16Type() || 6147 VT->getElementType()->isHalfType())) 6148 return true; 6149 if (isAndroid()) { 6150 // Android shipped using Clang 3.1, which supported a slightly different 6151 // vector ABI. The primary differences were that 3-element vector types 6152 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6153 // accepts that legacy behavior for Android only. 6154 // Check whether VT is legal. 6155 unsigned NumElements = VT->getNumElements(); 6156 // NumElements should be power of 2 or equal to 3. 6157 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6158 return true; 6159 } else { 6160 // Check whether VT is legal. 6161 unsigned NumElements = VT->getNumElements(); 6162 uint64_t Size = getContext().getTypeSize(VT); 6163 // NumElements should be power of 2. 6164 if (!llvm::isPowerOf2_32(NumElements)) 6165 return true; 6166 // Size should be greater than 32 bits. 6167 return Size <= 32; 6168 } 6169 } 6170 return false; 6171 } 6172 6173 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6174 llvm::Type *eltTy, 6175 unsigned numElts) const { 6176 if (!llvm::isPowerOf2_32(numElts)) 6177 return false; 6178 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6179 if (size > 64) 6180 return false; 6181 if (vectorSize.getQuantity() != 8 && 6182 (vectorSize.getQuantity() != 16 || numElts == 1)) 6183 return false; 6184 return true; 6185 } 6186 6187 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6188 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6189 // double, or 64-bit or 128-bit vectors. 6190 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6191 if (BT->getKind() == BuiltinType::Float || 6192 BT->getKind() == BuiltinType::Double || 6193 BT->getKind() == BuiltinType::LongDouble) 6194 return true; 6195 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6196 unsigned VecSize = getContext().getTypeSize(VT); 6197 if (VecSize == 64 || VecSize == 128) 6198 return true; 6199 } 6200 return false; 6201 } 6202 6203 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6204 uint64_t Members) const { 6205 return Members <= 4; 6206 } 6207 6208 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6209 bool acceptHalf) const { 6210 // Give precedence to user-specified calling conventions. 6211 if (callConvention != llvm::CallingConv::C) 6212 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6213 else 6214 return (getABIKind() == AAPCS_VFP) || 6215 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6216 } 6217 6218 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6219 QualType Ty) const { 6220 CharUnits SlotSize = CharUnits::fromQuantity(4); 6221 6222 // Empty records are ignored for parameter passing purposes. 6223 if (isEmptyRecord(getContext(), Ty, true)) { 6224 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6225 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6226 return Addr; 6227 } 6228 6229 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6230 CharUnits TyAlignForABI = TyInfo.second; 6231 6232 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6233 bool IsIndirect = false; 6234 const Type *Base = nullptr; 6235 uint64_t Members = 0; 6236 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6237 IsIndirect = true; 6238 6239 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6240 // allocated by the caller. 6241 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6242 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6243 !isHomogeneousAggregate(Ty, Base, Members)) { 6244 IsIndirect = true; 6245 6246 // Otherwise, bound the type's ABI alignment. 6247 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6248 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6249 // Our callers should be prepared to handle an under-aligned address. 6250 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6251 getABIKind() == ARMABIInfo::AAPCS) { 6252 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6253 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6254 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6255 // ARMv7k allows type alignment up to 16 bytes. 6256 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6257 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6258 } else { 6259 TyAlignForABI = CharUnits::fromQuantity(4); 6260 } 6261 TyInfo.second = TyAlignForABI; 6262 6263 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6264 SlotSize, /*AllowHigherAlign*/ true); 6265 } 6266 6267 //===----------------------------------------------------------------------===// 6268 // NVPTX ABI Implementation 6269 //===----------------------------------------------------------------------===// 6270 6271 namespace { 6272 6273 class NVPTXABIInfo : public ABIInfo { 6274 public: 6275 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6276 6277 ABIArgInfo classifyReturnType(QualType RetTy) const; 6278 ABIArgInfo classifyArgumentType(QualType Ty) const; 6279 6280 void computeInfo(CGFunctionInfo &FI) const override; 6281 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6282 QualType Ty) const override; 6283 }; 6284 6285 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6286 public: 6287 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6288 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6289 6290 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6291 CodeGen::CodeGenModule &M) const override; 6292 bool shouldEmitStaticExternCAliases() const override; 6293 6294 private: 6295 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6296 // resulting MDNode to the nvvm.annotations MDNode. 6297 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6298 }; 6299 6300 /// Checks if the type is unsupported directly by the current target. 6301 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6302 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6303 return true; 6304 if (!Context.getTargetInfo().hasFloat128Type() && T->isFloat128Type()) 6305 return true; 6306 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6307 Context.getTypeSize(T) > 64) 6308 return true; 6309 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6310 return isUnsupportedType(Context, AT->getElementType()); 6311 const auto *RT = T->getAs<RecordType>(); 6312 if (!RT) 6313 return false; 6314 const RecordDecl *RD = RT->getDecl(); 6315 6316 // If this is a C++ record, check the bases first. 6317 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6318 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6319 if (isUnsupportedType(Context, I.getType())) 6320 return true; 6321 6322 for (const FieldDecl *I : RD->fields()) 6323 if (isUnsupportedType(Context, I->getType())) 6324 return true; 6325 return false; 6326 } 6327 6328 /// Coerce the given type into an array with maximum allowed size of elements. 6329 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6330 llvm::LLVMContext &LLVMContext, 6331 unsigned MaxSize) { 6332 // Alignment and Size are measured in bits. 6333 const uint64_t Size = Context.getTypeSize(Ty); 6334 const uint64_t Alignment = Context.getTypeAlign(Ty); 6335 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6336 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6337 const uint64_t NumElements = (Size + Div - 1) / Div; 6338 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6339 } 6340 6341 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6342 if (RetTy->isVoidType()) 6343 return ABIArgInfo::getIgnore(); 6344 6345 if (getContext().getLangOpts().OpenMP && 6346 getContext().getLangOpts().OpenMPIsDevice && 6347 isUnsupportedType(getContext(), RetTy)) 6348 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6349 6350 // note: this is different from default ABI 6351 if (!RetTy->isScalarType()) 6352 return ABIArgInfo::getDirect(); 6353 6354 // Treat an enum type as its underlying type. 6355 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6356 RetTy = EnumTy->getDecl()->getIntegerType(); 6357 6358 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6359 : ABIArgInfo::getDirect()); 6360 } 6361 6362 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6363 // Treat an enum type as its underlying type. 6364 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6365 Ty = EnumTy->getDecl()->getIntegerType(); 6366 6367 // Return aggregates type as indirect by value 6368 if (isAggregateTypeForABI(Ty)) 6369 return getNaturalAlignIndirect(Ty, /* byval */ true); 6370 6371 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6372 : ABIArgInfo::getDirect()); 6373 } 6374 6375 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6376 if (!getCXXABI().classifyReturnType(FI)) 6377 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6378 for (auto &I : FI.arguments()) 6379 I.info = classifyArgumentType(I.type); 6380 6381 // Always honor user-specified calling convention. 6382 if (FI.getCallingConvention() != llvm::CallingConv::C) 6383 return; 6384 6385 FI.setEffectiveCallingConvention(getRuntimeCC()); 6386 } 6387 6388 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6389 QualType Ty) const { 6390 llvm_unreachable("NVPTX does not support varargs"); 6391 } 6392 6393 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6394 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6395 if (GV->isDeclaration()) 6396 return; 6397 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6398 if (!FD) return; 6399 6400 llvm::Function *F = cast<llvm::Function>(GV); 6401 6402 // Perform special handling in OpenCL mode 6403 if (M.getLangOpts().OpenCL) { 6404 // Use OpenCL function attributes to check for kernel functions 6405 // By default, all functions are device functions 6406 if (FD->hasAttr<OpenCLKernelAttr>()) { 6407 // OpenCL __kernel functions get kernel metadata 6408 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6409 addNVVMMetadata(F, "kernel", 1); 6410 // And kernel functions are not subject to inlining 6411 F->addFnAttr(llvm::Attribute::NoInline); 6412 } 6413 } 6414 6415 // Perform special handling in CUDA mode. 6416 if (M.getLangOpts().CUDA) { 6417 // CUDA __global__ functions get a kernel metadata entry. Since 6418 // __global__ functions cannot be called from the device, we do not 6419 // need to set the noinline attribute. 6420 if (FD->hasAttr<CUDAGlobalAttr>()) { 6421 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6422 addNVVMMetadata(F, "kernel", 1); 6423 } 6424 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6425 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6426 llvm::APSInt MaxThreads(32); 6427 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6428 if (MaxThreads > 0) 6429 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6430 6431 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6432 // not specified in __launch_bounds__ or if the user specified a 0 value, 6433 // we don't have to add a PTX directive. 6434 if (Attr->getMinBlocks()) { 6435 llvm::APSInt MinBlocks(32); 6436 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6437 if (MinBlocks > 0) 6438 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6439 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6440 } 6441 } 6442 } 6443 } 6444 6445 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6446 int Operand) { 6447 llvm::Module *M = F->getParent(); 6448 llvm::LLVMContext &Ctx = M->getContext(); 6449 6450 // Get "nvvm.annotations" metadata node 6451 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6452 6453 llvm::Metadata *MDVals[] = { 6454 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6455 llvm::ConstantAsMetadata::get( 6456 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6457 // Append metadata to nvvm.annotations 6458 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6459 } 6460 6461 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6462 return false; 6463 } 6464 } 6465 6466 //===----------------------------------------------------------------------===// 6467 // SystemZ ABI Implementation 6468 //===----------------------------------------------------------------------===// 6469 6470 namespace { 6471 6472 class SystemZABIInfo : public SwiftABIInfo { 6473 bool HasVector; 6474 6475 public: 6476 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6477 : SwiftABIInfo(CGT), HasVector(HV) {} 6478 6479 bool isPromotableIntegerType(QualType Ty) const; 6480 bool isCompoundType(QualType Ty) const; 6481 bool isVectorArgumentType(QualType Ty) const; 6482 bool isFPArgumentType(QualType Ty) const; 6483 QualType GetSingleElementType(QualType Ty) const; 6484 6485 ABIArgInfo classifyReturnType(QualType RetTy) const; 6486 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6487 6488 void computeInfo(CGFunctionInfo &FI) const override { 6489 if (!getCXXABI().classifyReturnType(FI)) 6490 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6491 for (auto &I : FI.arguments()) 6492 I.info = classifyArgumentType(I.type); 6493 } 6494 6495 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6496 QualType Ty) const override; 6497 6498 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6499 bool asReturnValue) const override { 6500 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6501 } 6502 bool isSwiftErrorInRegister() const override { 6503 return false; 6504 } 6505 }; 6506 6507 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6508 public: 6509 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6510 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6511 }; 6512 6513 } 6514 6515 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6516 // Treat an enum type as its underlying type. 6517 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6518 Ty = EnumTy->getDecl()->getIntegerType(); 6519 6520 // Promotable integer types are required to be promoted by the ABI. 6521 if (Ty->isPromotableIntegerType()) 6522 return true; 6523 6524 // 32-bit values must also be promoted. 6525 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6526 switch (BT->getKind()) { 6527 case BuiltinType::Int: 6528 case BuiltinType::UInt: 6529 return true; 6530 default: 6531 return false; 6532 } 6533 return false; 6534 } 6535 6536 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6537 return (Ty->isAnyComplexType() || 6538 Ty->isVectorType() || 6539 isAggregateTypeForABI(Ty)); 6540 } 6541 6542 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6543 return (HasVector && 6544 Ty->isVectorType() && 6545 getContext().getTypeSize(Ty) <= 128); 6546 } 6547 6548 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6549 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6550 switch (BT->getKind()) { 6551 case BuiltinType::Float: 6552 case BuiltinType::Double: 6553 return true; 6554 default: 6555 return false; 6556 } 6557 6558 return false; 6559 } 6560 6561 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6562 if (const RecordType *RT = Ty->getAsStructureType()) { 6563 const RecordDecl *RD = RT->getDecl(); 6564 QualType Found; 6565 6566 // If this is a C++ record, check the bases first. 6567 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6568 for (const auto &I : CXXRD->bases()) { 6569 QualType Base = I.getType(); 6570 6571 // Empty bases don't affect things either way. 6572 if (isEmptyRecord(getContext(), Base, true)) 6573 continue; 6574 6575 if (!Found.isNull()) 6576 return Ty; 6577 Found = GetSingleElementType(Base); 6578 } 6579 6580 // Check the fields. 6581 for (const auto *FD : RD->fields()) { 6582 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6583 // Unlike isSingleElementStruct(), empty structure and array fields 6584 // do count. So do anonymous bitfields that aren't zero-sized. 6585 if (getContext().getLangOpts().CPlusPlus && 6586 FD->isZeroLengthBitField(getContext())) 6587 continue; 6588 6589 // Unlike isSingleElementStruct(), arrays do not count. 6590 // Nested structures still do though. 6591 if (!Found.isNull()) 6592 return Ty; 6593 Found = GetSingleElementType(FD->getType()); 6594 } 6595 6596 // Unlike isSingleElementStruct(), trailing padding is allowed. 6597 // An 8-byte aligned struct s { float f; } is passed as a double. 6598 if (!Found.isNull()) 6599 return Found; 6600 } 6601 6602 return Ty; 6603 } 6604 6605 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6606 QualType Ty) const { 6607 // Assume that va_list type is correct; should be pointer to LLVM type: 6608 // struct { 6609 // i64 __gpr; 6610 // i64 __fpr; 6611 // i8 *__overflow_arg_area; 6612 // i8 *__reg_save_area; 6613 // }; 6614 6615 // Every non-vector argument occupies 8 bytes and is passed by preference 6616 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6617 // always passed on the stack. 6618 Ty = getContext().getCanonicalType(Ty); 6619 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6620 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6621 llvm::Type *DirectTy = ArgTy; 6622 ABIArgInfo AI = classifyArgumentType(Ty); 6623 bool IsIndirect = AI.isIndirect(); 6624 bool InFPRs = false; 6625 bool IsVector = false; 6626 CharUnits UnpaddedSize; 6627 CharUnits DirectAlign; 6628 if (IsIndirect) { 6629 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6630 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6631 } else { 6632 if (AI.getCoerceToType()) 6633 ArgTy = AI.getCoerceToType(); 6634 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6635 IsVector = ArgTy->isVectorTy(); 6636 UnpaddedSize = TyInfo.first; 6637 DirectAlign = TyInfo.second; 6638 } 6639 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6640 if (IsVector && UnpaddedSize > PaddedSize) 6641 PaddedSize = CharUnits::fromQuantity(16); 6642 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6643 6644 CharUnits Padding = (PaddedSize - UnpaddedSize); 6645 6646 llvm::Type *IndexTy = CGF.Int64Ty; 6647 llvm::Value *PaddedSizeV = 6648 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6649 6650 if (IsVector) { 6651 // Work out the address of a vector argument on the stack. 6652 // Vector arguments are always passed in the high bits of a 6653 // single (8 byte) or double (16 byte) stack slot. 6654 Address OverflowArgAreaPtr = 6655 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6656 Address OverflowArgArea = 6657 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6658 TyInfo.second); 6659 Address MemAddr = 6660 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6661 6662 // Update overflow_arg_area_ptr pointer 6663 llvm::Value *NewOverflowArgArea = 6664 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6665 "overflow_arg_area"); 6666 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6667 6668 return MemAddr; 6669 } 6670 6671 assert(PaddedSize.getQuantity() == 8); 6672 6673 unsigned MaxRegs, RegCountField, RegSaveIndex; 6674 CharUnits RegPadding; 6675 if (InFPRs) { 6676 MaxRegs = 4; // Maximum of 4 FPR arguments 6677 RegCountField = 1; // __fpr 6678 RegSaveIndex = 16; // save offset for f0 6679 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6680 } else { 6681 MaxRegs = 5; // Maximum of 5 GPR arguments 6682 RegCountField = 0; // __gpr 6683 RegSaveIndex = 2; // save offset for r2 6684 RegPadding = Padding; // values are passed in the low bits of a GPR 6685 } 6686 6687 Address RegCountPtr = 6688 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6689 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6690 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6691 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6692 "fits_in_regs"); 6693 6694 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6695 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6696 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6697 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6698 6699 // Emit code to load the value if it was passed in registers. 6700 CGF.EmitBlock(InRegBlock); 6701 6702 // Work out the address of an argument register. 6703 llvm::Value *ScaledRegCount = 6704 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6705 llvm::Value *RegBase = 6706 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6707 + RegPadding.getQuantity()); 6708 llvm::Value *RegOffset = 6709 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6710 Address RegSaveAreaPtr = 6711 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6712 llvm::Value *RegSaveArea = 6713 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6714 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6715 "raw_reg_addr"), 6716 PaddedSize); 6717 Address RegAddr = 6718 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6719 6720 // Update the register count 6721 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6722 llvm::Value *NewRegCount = 6723 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6724 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6725 CGF.EmitBranch(ContBlock); 6726 6727 // Emit code to load the value if it was passed in memory. 6728 CGF.EmitBlock(InMemBlock); 6729 6730 // Work out the address of a stack argument. 6731 Address OverflowArgAreaPtr = 6732 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6733 Address OverflowArgArea = 6734 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6735 PaddedSize); 6736 Address RawMemAddr = 6737 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6738 Address MemAddr = 6739 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6740 6741 // Update overflow_arg_area_ptr pointer 6742 llvm::Value *NewOverflowArgArea = 6743 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6744 "overflow_arg_area"); 6745 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6746 CGF.EmitBranch(ContBlock); 6747 6748 // Return the appropriate result. 6749 CGF.EmitBlock(ContBlock); 6750 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6751 MemAddr, InMemBlock, "va_arg.addr"); 6752 6753 if (IsIndirect) 6754 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6755 TyInfo.second); 6756 6757 return ResAddr; 6758 } 6759 6760 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6761 if (RetTy->isVoidType()) 6762 return ABIArgInfo::getIgnore(); 6763 if (isVectorArgumentType(RetTy)) 6764 return ABIArgInfo::getDirect(); 6765 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6766 return getNaturalAlignIndirect(RetTy); 6767 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6768 : ABIArgInfo::getDirect()); 6769 } 6770 6771 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6772 // Handle the generic C++ ABI. 6773 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6774 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6775 6776 // Integers and enums are extended to full register width. 6777 if (isPromotableIntegerType(Ty)) 6778 return ABIArgInfo::getExtend(Ty); 6779 6780 // Handle vector types and vector-like structure types. Note that 6781 // as opposed to float-like structure types, we do not allow any 6782 // padding for vector-like structures, so verify the sizes match. 6783 uint64_t Size = getContext().getTypeSize(Ty); 6784 QualType SingleElementTy = GetSingleElementType(Ty); 6785 if (isVectorArgumentType(SingleElementTy) && 6786 getContext().getTypeSize(SingleElementTy) == Size) 6787 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6788 6789 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6790 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6791 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6792 6793 // Handle small structures. 6794 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6795 // Structures with flexible arrays have variable length, so really 6796 // fail the size test above. 6797 const RecordDecl *RD = RT->getDecl(); 6798 if (RD->hasFlexibleArrayMember()) 6799 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6800 6801 // The structure is passed as an unextended integer, a float, or a double. 6802 llvm::Type *PassTy; 6803 if (isFPArgumentType(SingleElementTy)) { 6804 assert(Size == 32 || Size == 64); 6805 if (Size == 32) 6806 PassTy = llvm::Type::getFloatTy(getVMContext()); 6807 else 6808 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6809 } else 6810 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6811 return ABIArgInfo::getDirect(PassTy); 6812 } 6813 6814 // Non-structure compounds are passed indirectly. 6815 if (isCompoundType(Ty)) 6816 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6817 6818 return ABIArgInfo::getDirect(nullptr); 6819 } 6820 6821 //===----------------------------------------------------------------------===// 6822 // MSP430 ABI Implementation 6823 //===----------------------------------------------------------------------===// 6824 6825 namespace { 6826 6827 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6828 public: 6829 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6830 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6831 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6832 CodeGen::CodeGenModule &M) const override; 6833 }; 6834 6835 } 6836 6837 void MSP430TargetCodeGenInfo::setTargetAttributes( 6838 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6839 if (GV->isDeclaration()) 6840 return; 6841 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6842 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6843 if (!InterruptAttr) 6844 return; 6845 6846 // Handle 'interrupt' attribute: 6847 llvm::Function *F = cast<llvm::Function>(GV); 6848 6849 // Step 1: Set ISR calling convention. 6850 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6851 6852 // Step 2: Add attributes goodness. 6853 F->addFnAttr(llvm::Attribute::NoInline); 6854 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6855 } 6856 } 6857 6858 //===----------------------------------------------------------------------===// 6859 // MIPS ABI Implementation. This works for both little-endian and 6860 // big-endian variants. 6861 //===----------------------------------------------------------------------===// 6862 6863 namespace { 6864 class MipsABIInfo : public ABIInfo { 6865 bool IsO32; 6866 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6867 void CoerceToIntArgs(uint64_t TySize, 6868 SmallVectorImpl<llvm::Type *> &ArgList) const; 6869 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6870 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6871 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6872 public: 6873 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6874 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6875 StackAlignInBytes(IsO32 ? 8 : 16) {} 6876 6877 ABIArgInfo classifyReturnType(QualType RetTy) const; 6878 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6879 void computeInfo(CGFunctionInfo &FI) const override; 6880 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6881 QualType Ty) const override; 6882 ABIArgInfo extendType(QualType Ty) const; 6883 }; 6884 6885 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6886 unsigned SizeOfUnwindException; 6887 public: 6888 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6889 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6890 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6891 6892 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6893 return 29; 6894 } 6895 6896 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6897 CodeGen::CodeGenModule &CGM) const override { 6898 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6899 if (!FD) return; 6900 llvm::Function *Fn = cast<llvm::Function>(GV); 6901 6902 if (FD->hasAttr<MipsLongCallAttr>()) 6903 Fn->addFnAttr("long-call"); 6904 else if (FD->hasAttr<MipsShortCallAttr>()) 6905 Fn->addFnAttr("short-call"); 6906 6907 // Other attributes do not have a meaning for declarations. 6908 if (GV->isDeclaration()) 6909 return; 6910 6911 if (FD->hasAttr<Mips16Attr>()) { 6912 Fn->addFnAttr("mips16"); 6913 } 6914 else if (FD->hasAttr<NoMips16Attr>()) { 6915 Fn->addFnAttr("nomips16"); 6916 } 6917 6918 if (FD->hasAttr<MicroMipsAttr>()) 6919 Fn->addFnAttr("micromips"); 6920 else if (FD->hasAttr<NoMicroMipsAttr>()) 6921 Fn->addFnAttr("nomicromips"); 6922 6923 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6924 if (!Attr) 6925 return; 6926 6927 const char *Kind; 6928 switch (Attr->getInterrupt()) { 6929 case MipsInterruptAttr::eic: Kind = "eic"; break; 6930 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6931 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6932 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6933 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6934 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6935 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6936 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6937 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6938 } 6939 6940 Fn->addFnAttr("interrupt", Kind); 6941 6942 } 6943 6944 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6945 llvm::Value *Address) const override; 6946 6947 unsigned getSizeOfUnwindException() const override { 6948 return SizeOfUnwindException; 6949 } 6950 }; 6951 } 6952 6953 void MipsABIInfo::CoerceToIntArgs( 6954 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6955 llvm::IntegerType *IntTy = 6956 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6957 6958 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6959 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6960 ArgList.push_back(IntTy); 6961 6962 // If necessary, add one more integer type to ArgList. 6963 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6964 6965 if (R) 6966 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6967 } 6968 6969 // In N32/64, an aligned double precision floating point field is passed in 6970 // a register. 6971 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6972 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6973 6974 if (IsO32) { 6975 CoerceToIntArgs(TySize, ArgList); 6976 return llvm::StructType::get(getVMContext(), ArgList); 6977 } 6978 6979 if (Ty->isComplexType()) 6980 return CGT.ConvertType(Ty); 6981 6982 const RecordType *RT = Ty->getAs<RecordType>(); 6983 6984 // Unions/vectors are passed in integer registers. 6985 if (!RT || !RT->isStructureOrClassType()) { 6986 CoerceToIntArgs(TySize, ArgList); 6987 return llvm::StructType::get(getVMContext(), ArgList); 6988 } 6989 6990 const RecordDecl *RD = RT->getDecl(); 6991 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6992 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6993 6994 uint64_t LastOffset = 0; 6995 unsigned idx = 0; 6996 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6997 6998 // Iterate over fields in the struct/class and check if there are any aligned 6999 // double fields. 7000 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7001 i != e; ++i, ++idx) { 7002 const QualType Ty = i->getType(); 7003 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7004 7005 if (!BT || BT->getKind() != BuiltinType::Double) 7006 continue; 7007 7008 uint64_t Offset = Layout.getFieldOffset(idx); 7009 if (Offset % 64) // Ignore doubles that are not aligned. 7010 continue; 7011 7012 // Add ((Offset - LastOffset) / 64) args of type i64. 7013 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7014 ArgList.push_back(I64); 7015 7016 // Add double type. 7017 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7018 LastOffset = Offset + 64; 7019 } 7020 7021 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7022 ArgList.append(IntArgList.begin(), IntArgList.end()); 7023 7024 return llvm::StructType::get(getVMContext(), ArgList); 7025 } 7026 7027 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7028 uint64_t Offset) const { 7029 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7030 return nullptr; 7031 7032 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7033 } 7034 7035 ABIArgInfo 7036 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7037 Ty = useFirstFieldIfTransparentUnion(Ty); 7038 7039 uint64_t OrigOffset = Offset; 7040 uint64_t TySize = getContext().getTypeSize(Ty); 7041 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7042 7043 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7044 (uint64_t)StackAlignInBytes); 7045 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7046 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7047 7048 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7049 // Ignore empty aggregates. 7050 if (TySize == 0) 7051 return ABIArgInfo::getIgnore(); 7052 7053 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7054 Offset = OrigOffset + MinABIStackAlignInBytes; 7055 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7056 } 7057 7058 // If we have reached here, aggregates are passed directly by coercing to 7059 // another structure type. Padding is inserted if the offset of the 7060 // aggregate is unaligned. 7061 ABIArgInfo ArgInfo = 7062 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7063 getPaddingType(OrigOffset, CurrOffset)); 7064 ArgInfo.setInReg(true); 7065 return ArgInfo; 7066 } 7067 7068 // Treat an enum type as its underlying type. 7069 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7070 Ty = EnumTy->getDecl()->getIntegerType(); 7071 7072 // All integral types are promoted to the GPR width. 7073 if (Ty->isIntegralOrEnumerationType()) 7074 return extendType(Ty); 7075 7076 return ABIArgInfo::getDirect( 7077 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7078 } 7079 7080 llvm::Type* 7081 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7082 const RecordType *RT = RetTy->getAs<RecordType>(); 7083 SmallVector<llvm::Type*, 8> RTList; 7084 7085 if (RT && RT->isStructureOrClassType()) { 7086 const RecordDecl *RD = RT->getDecl(); 7087 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7088 unsigned FieldCnt = Layout.getFieldCount(); 7089 7090 // N32/64 returns struct/classes in floating point registers if the 7091 // following conditions are met: 7092 // 1. The size of the struct/class is no larger than 128-bit. 7093 // 2. The struct/class has one or two fields all of which are floating 7094 // point types. 7095 // 3. The offset of the first field is zero (this follows what gcc does). 7096 // 7097 // Any other composite results are returned in integer registers. 7098 // 7099 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7100 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7101 for (; b != e; ++b) { 7102 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7103 7104 if (!BT || !BT->isFloatingPoint()) 7105 break; 7106 7107 RTList.push_back(CGT.ConvertType(b->getType())); 7108 } 7109 7110 if (b == e) 7111 return llvm::StructType::get(getVMContext(), RTList, 7112 RD->hasAttr<PackedAttr>()); 7113 7114 RTList.clear(); 7115 } 7116 } 7117 7118 CoerceToIntArgs(Size, RTList); 7119 return llvm::StructType::get(getVMContext(), RTList); 7120 } 7121 7122 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7123 uint64_t Size = getContext().getTypeSize(RetTy); 7124 7125 if (RetTy->isVoidType()) 7126 return ABIArgInfo::getIgnore(); 7127 7128 // O32 doesn't treat zero-sized structs differently from other structs. 7129 // However, N32/N64 ignores zero sized return values. 7130 if (!IsO32 && Size == 0) 7131 return ABIArgInfo::getIgnore(); 7132 7133 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7134 if (Size <= 128) { 7135 if (RetTy->isAnyComplexType()) 7136 return ABIArgInfo::getDirect(); 7137 7138 // O32 returns integer vectors in registers and N32/N64 returns all small 7139 // aggregates in registers. 7140 if (!IsO32 || 7141 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7142 ABIArgInfo ArgInfo = 7143 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7144 ArgInfo.setInReg(true); 7145 return ArgInfo; 7146 } 7147 } 7148 7149 return getNaturalAlignIndirect(RetTy); 7150 } 7151 7152 // Treat an enum type as its underlying type. 7153 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7154 RetTy = EnumTy->getDecl()->getIntegerType(); 7155 7156 if (RetTy->isPromotableIntegerType()) 7157 return ABIArgInfo::getExtend(RetTy); 7158 7159 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7160 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7161 return ABIArgInfo::getSignExtend(RetTy); 7162 7163 return ABIArgInfo::getDirect(); 7164 } 7165 7166 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7167 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7168 if (!getCXXABI().classifyReturnType(FI)) 7169 RetInfo = classifyReturnType(FI.getReturnType()); 7170 7171 // Check if a pointer to an aggregate is passed as a hidden argument. 7172 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7173 7174 for (auto &I : FI.arguments()) 7175 I.info = classifyArgumentType(I.type, Offset); 7176 } 7177 7178 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7179 QualType OrigTy) const { 7180 QualType Ty = OrigTy; 7181 7182 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7183 // Pointers are also promoted in the same way but this only matters for N32. 7184 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7185 unsigned PtrWidth = getTarget().getPointerWidth(0); 7186 bool DidPromote = false; 7187 if ((Ty->isIntegerType() && 7188 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7189 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7190 DidPromote = true; 7191 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7192 Ty->isSignedIntegerType()); 7193 } 7194 7195 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7196 7197 // The alignment of things in the argument area is never larger than 7198 // StackAlignInBytes. 7199 TyInfo.second = 7200 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7201 7202 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7203 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7204 7205 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7206 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7207 7208 7209 // If there was a promotion, "unpromote" into a temporary. 7210 // TODO: can we just use a pointer into a subset of the original slot? 7211 if (DidPromote) { 7212 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7213 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7214 7215 // Truncate down to the right width. 7216 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7217 : CGF.IntPtrTy); 7218 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7219 if (OrigTy->isPointerType()) 7220 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7221 7222 CGF.Builder.CreateStore(V, Temp); 7223 Addr = Temp; 7224 } 7225 7226 return Addr; 7227 } 7228 7229 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7230 int TySize = getContext().getTypeSize(Ty); 7231 7232 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7233 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7234 return ABIArgInfo::getSignExtend(Ty); 7235 7236 return ABIArgInfo::getExtend(Ty); 7237 } 7238 7239 bool 7240 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7241 llvm::Value *Address) const { 7242 // This information comes from gcc's implementation, which seems to 7243 // as canonical as it gets. 7244 7245 // Everything on MIPS is 4 bytes. Double-precision FP registers 7246 // are aliased to pairs of single-precision FP registers. 7247 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7248 7249 // 0-31 are the general purpose registers, $0 - $31. 7250 // 32-63 are the floating-point registers, $f0 - $f31. 7251 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7252 // 66 is the (notional, I think) register for signal-handler return. 7253 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7254 7255 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7256 // They are one bit wide and ignored here. 7257 7258 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7259 // (coprocessor 1 is the FP unit) 7260 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7261 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7262 // 176-181 are the DSP accumulator registers. 7263 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7264 return false; 7265 } 7266 7267 //===----------------------------------------------------------------------===// 7268 // AVR ABI Implementation. 7269 //===----------------------------------------------------------------------===// 7270 7271 namespace { 7272 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7273 public: 7274 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7275 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7276 7277 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7278 CodeGen::CodeGenModule &CGM) const override { 7279 if (GV->isDeclaration()) 7280 return; 7281 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7282 if (!FD) return; 7283 auto *Fn = cast<llvm::Function>(GV); 7284 7285 if (FD->getAttr<AVRInterruptAttr>()) 7286 Fn->addFnAttr("interrupt"); 7287 7288 if (FD->getAttr<AVRSignalAttr>()) 7289 Fn->addFnAttr("signal"); 7290 } 7291 }; 7292 } 7293 7294 //===----------------------------------------------------------------------===// 7295 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7296 // Currently subclassed only to implement custom OpenCL C function attribute 7297 // handling. 7298 //===----------------------------------------------------------------------===// 7299 7300 namespace { 7301 7302 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7303 public: 7304 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7305 : DefaultTargetCodeGenInfo(CGT) {} 7306 7307 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7308 CodeGen::CodeGenModule &M) const override; 7309 }; 7310 7311 void TCETargetCodeGenInfo::setTargetAttributes( 7312 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7313 if (GV->isDeclaration()) 7314 return; 7315 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7316 if (!FD) return; 7317 7318 llvm::Function *F = cast<llvm::Function>(GV); 7319 7320 if (M.getLangOpts().OpenCL) { 7321 if (FD->hasAttr<OpenCLKernelAttr>()) { 7322 // OpenCL C Kernel functions are not subject to inlining 7323 F->addFnAttr(llvm::Attribute::NoInline); 7324 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7325 if (Attr) { 7326 // Convert the reqd_work_group_size() attributes to metadata. 7327 llvm::LLVMContext &Context = F->getContext(); 7328 llvm::NamedMDNode *OpenCLMetadata = 7329 M.getModule().getOrInsertNamedMetadata( 7330 "opencl.kernel_wg_size_info"); 7331 7332 SmallVector<llvm::Metadata *, 5> Operands; 7333 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7334 7335 Operands.push_back( 7336 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7337 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7338 Operands.push_back( 7339 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7340 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7341 Operands.push_back( 7342 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7343 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7344 7345 // Add a boolean constant operand for "required" (true) or "hint" 7346 // (false) for implementing the work_group_size_hint attr later. 7347 // Currently always true as the hint is not yet implemented. 7348 Operands.push_back( 7349 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7350 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7351 } 7352 } 7353 } 7354 } 7355 7356 } 7357 7358 //===----------------------------------------------------------------------===// 7359 // Hexagon ABI Implementation 7360 //===----------------------------------------------------------------------===// 7361 7362 namespace { 7363 7364 class HexagonABIInfo : public ABIInfo { 7365 7366 7367 public: 7368 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7369 7370 private: 7371 7372 ABIArgInfo classifyReturnType(QualType RetTy) const; 7373 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7374 7375 void computeInfo(CGFunctionInfo &FI) const override; 7376 7377 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7378 QualType Ty) const override; 7379 }; 7380 7381 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7382 public: 7383 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7384 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7385 7386 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7387 return 29; 7388 } 7389 }; 7390 7391 } 7392 7393 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7394 if (!getCXXABI().classifyReturnType(FI)) 7395 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7396 for (auto &I : FI.arguments()) 7397 I.info = classifyArgumentType(I.type); 7398 } 7399 7400 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7401 if (!isAggregateTypeForABI(Ty)) { 7402 // Treat an enum type as its underlying type. 7403 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7404 Ty = EnumTy->getDecl()->getIntegerType(); 7405 7406 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7407 : ABIArgInfo::getDirect()); 7408 } 7409 7410 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7411 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7412 7413 // Ignore empty records. 7414 if (isEmptyRecord(getContext(), Ty, true)) 7415 return ABIArgInfo::getIgnore(); 7416 7417 uint64_t Size = getContext().getTypeSize(Ty); 7418 if (Size > 64) 7419 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7420 // Pass in the smallest viable integer type. 7421 else if (Size > 32) 7422 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7423 else if (Size > 16) 7424 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7425 else if (Size > 8) 7426 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7427 else 7428 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7429 } 7430 7431 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7432 if (RetTy->isVoidType()) 7433 return ABIArgInfo::getIgnore(); 7434 7435 // Large vector types should be returned via memory. 7436 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7437 return getNaturalAlignIndirect(RetTy); 7438 7439 if (!isAggregateTypeForABI(RetTy)) { 7440 // Treat an enum type as its underlying type. 7441 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7442 RetTy = EnumTy->getDecl()->getIntegerType(); 7443 7444 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7445 : ABIArgInfo::getDirect()); 7446 } 7447 7448 if (isEmptyRecord(getContext(), RetTy, true)) 7449 return ABIArgInfo::getIgnore(); 7450 7451 // Aggregates <= 8 bytes are returned in r0; other aggregates 7452 // are returned indirectly. 7453 uint64_t Size = getContext().getTypeSize(RetTy); 7454 if (Size <= 64) { 7455 // Return in the smallest viable integer type. 7456 if (Size <= 8) 7457 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7458 if (Size <= 16) 7459 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7460 if (Size <= 32) 7461 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7462 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7463 } 7464 7465 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7466 } 7467 7468 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7469 QualType Ty) const { 7470 // FIXME: Someone needs to audit that this handle alignment correctly. 7471 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7472 getContext().getTypeInfoInChars(Ty), 7473 CharUnits::fromQuantity(4), 7474 /*AllowHigherAlign*/ true); 7475 } 7476 7477 //===----------------------------------------------------------------------===// 7478 // Lanai ABI Implementation 7479 //===----------------------------------------------------------------------===// 7480 7481 namespace { 7482 class LanaiABIInfo : public DefaultABIInfo { 7483 public: 7484 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7485 7486 bool shouldUseInReg(QualType Ty, CCState &State) const; 7487 7488 void computeInfo(CGFunctionInfo &FI) const override { 7489 CCState State(FI.getCallingConvention()); 7490 // Lanai uses 4 registers to pass arguments unless the function has the 7491 // regparm attribute set. 7492 if (FI.getHasRegParm()) { 7493 State.FreeRegs = FI.getRegParm(); 7494 } else { 7495 State.FreeRegs = 4; 7496 } 7497 7498 if (!getCXXABI().classifyReturnType(FI)) 7499 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7500 for (auto &I : FI.arguments()) 7501 I.info = classifyArgumentType(I.type, State); 7502 } 7503 7504 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7505 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7506 }; 7507 } // end anonymous namespace 7508 7509 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7510 unsigned Size = getContext().getTypeSize(Ty); 7511 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7512 7513 if (SizeInRegs == 0) 7514 return false; 7515 7516 if (SizeInRegs > State.FreeRegs) { 7517 State.FreeRegs = 0; 7518 return false; 7519 } 7520 7521 State.FreeRegs -= SizeInRegs; 7522 7523 return true; 7524 } 7525 7526 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7527 CCState &State) const { 7528 if (!ByVal) { 7529 if (State.FreeRegs) { 7530 --State.FreeRegs; // Non-byval indirects just use one pointer. 7531 return getNaturalAlignIndirectInReg(Ty); 7532 } 7533 return getNaturalAlignIndirect(Ty, false); 7534 } 7535 7536 // Compute the byval alignment. 7537 const unsigned MinABIStackAlignInBytes = 4; 7538 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7539 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7540 /*Realign=*/TypeAlign > 7541 MinABIStackAlignInBytes); 7542 } 7543 7544 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7545 CCState &State) const { 7546 // Check with the C++ ABI first. 7547 const RecordType *RT = Ty->getAs<RecordType>(); 7548 if (RT) { 7549 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7550 if (RAA == CGCXXABI::RAA_Indirect) { 7551 return getIndirectResult(Ty, /*ByVal=*/false, State); 7552 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7553 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7554 } 7555 } 7556 7557 if (isAggregateTypeForABI(Ty)) { 7558 // Structures with flexible arrays are always indirect. 7559 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7560 return getIndirectResult(Ty, /*ByVal=*/true, State); 7561 7562 // Ignore empty structs/unions. 7563 if (isEmptyRecord(getContext(), Ty, true)) 7564 return ABIArgInfo::getIgnore(); 7565 7566 llvm::LLVMContext &LLVMContext = getVMContext(); 7567 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7568 if (SizeInRegs <= State.FreeRegs) { 7569 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7570 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7571 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7572 State.FreeRegs -= SizeInRegs; 7573 return ABIArgInfo::getDirectInReg(Result); 7574 } else { 7575 State.FreeRegs = 0; 7576 } 7577 return getIndirectResult(Ty, true, State); 7578 } 7579 7580 // Treat an enum type as its underlying type. 7581 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7582 Ty = EnumTy->getDecl()->getIntegerType(); 7583 7584 bool InReg = shouldUseInReg(Ty, State); 7585 if (Ty->isPromotableIntegerType()) { 7586 if (InReg) 7587 return ABIArgInfo::getDirectInReg(); 7588 return ABIArgInfo::getExtend(Ty); 7589 } 7590 if (InReg) 7591 return ABIArgInfo::getDirectInReg(); 7592 return ABIArgInfo::getDirect(); 7593 } 7594 7595 namespace { 7596 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7597 public: 7598 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7599 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7600 }; 7601 } 7602 7603 //===----------------------------------------------------------------------===// 7604 // AMDGPU ABI Implementation 7605 //===----------------------------------------------------------------------===// 7606 7607 namespace { 7608 7609 class AMDGPUABIInfo final : public DefaultABIInfo { 7610 private: 7611 static const unsigned MaxNumRegsForArgsRet = 16; 7612 7613 unsigned numRegsForType(QualType Ty) const; 7614 7615 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7616 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7617 uint64_t Members) const override; 7618 7619 public: 7620 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7621 DefaultABIInfo(CGT) {} 7622 7623 ABIArgInfo classifyReturnType(QualType RetTy) const; 7624 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7625 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7626 7627 void computeInfo(CGFunctionInfo &FI) const override; 7628 }; 7629 7630 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7631 return true; 7632 } 7633 7634 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7635 const Type *Base, uint64_t Members) const { 7636 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7637 7638 // Homogeneous Aggregates may occupy at most 16 registers. 7639 return Members * NumRegs <= MaxNumRegsForArgsRet; 7640 } 7641 7642 /// Estimate number of registers the type will use when passed in registers. 7643 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7644 unsigned NumRegs = 0; 7645 7646 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7647 // Compute from the number of elements. The reported size is based on the 7648 // in-memory size, which includes the padding 4th element for 3-vectors. 7649 QualType EltTy = VT->getElementType(); 7650 unsigned EltSize = getContext().getTypeSize(EltTy); 7651 7652 // 16-bit element vectors should be passed as packed. 7653 if (EltSize == 16) 7654 return (VT->getNumElements() + 1) / 2; 7655 7656 unsigned EltNumRegs = (EltSize + 31) / 32; 7657 return EltNumRegs * VT->getNumElements(); 7658 } 7659 7660 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7661 const RecordDecl *RD = RT->getDecl(); 7662 assert(!RD->hasFlexibleArrayMember()); 7663 7664 for (const FieldDecl *Field : RD->fields()) { 7665 QualType FieldTy = Field->getType(); 7666 NumRegs += numRegsForType(FieldTy); 7667 } 7668 7669 return NumRegs; 7670 } 7671 7672 return (getContext().getTypeSize(Ty) + 31) / 32; 7673 } 7674 7675 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7676 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7677 7678 if (!getCXXABI().classifyReturnType(FI)) 7679 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7680 7681 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7682 for (auto &Arg : FI.arguments()) { 7683 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7684 Arg.info = classifyKernelArgumentType(Arg.type); 7685 } else { 7686 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7687 } 7688 } 7689 } 7690 7691 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7692 if (isAggregateTypeForABI(RetTy)) { 7693 // Records with non-trivial destructors/copy-constructors should not be 7694 // returned by value. 7695 if (!getRecordArgABI(RetTy, getCXXABI())) { 7696 // Ignore empty structs/unions. 7697 if (isEmptyRecord(getContext(), RetTy, true)) 7698 return ABIArgInfo::getIgnore(); 7699 7700 // Lower single-element structs to just return a regular value. 7701 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7702 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7703 7704 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7705 const RecordDecl *RD = RT->getDecl(); 7706 if (RD->hasFlexibleArrayMember()) 7707 return DefaultABIInfo::classifyReturnType(RetTy); 7708 } 7709 7710 // Pack aggregates <= 4 bytes into single VGPR or pair. 7711 uint64_t Size = getContext().getTypeSize(RetTy); 7712 if (Size <= 16) 7713 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7714 7715 if (Size <= 32) 7716 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7717 7718 if (Size <= 64) { 7719 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7720 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7721 } 7722 7723 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7724 return ABIArgInfo::getDirect(); 7725 } 7726 } 7727 7728 // Otherwise just do the default thing. 7729 return DefaultABIInfo::classifyReturnType(RetTy); 7730 } 7731 7732 /// For kernels all parameters are really passed in a special buffer. It doesn't 7733 /// make sense to pass anything byval, so everything must be direct. 7734 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7735 Ty = useFirstFieldIfTransparentUnion(Ty); 7736 7737 // TODO: Can we omit empty structs? 7738 7739 // Coerce single element structs to its element. 7740 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7741 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7742 7743 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7744 // individual elements, which confuses the Clover OpenCL backend; therefore we 7745 // have to set it to false here. Other args of getDirect() are just defaults. 7746 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7747 } 7748 7749 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7750 unsigned &NumRegsLeft) const { 7751 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7752 7753 Ty = useFirstFieldIfTransparentUnion(Ty); 7754 7755 if (isAggregateTypeForABI(Ty)) { 7756 // Records with non-trivial destructors/copy-constructors should not be 7757 // passed by value. 7758 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7759 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7760 7761 // Ignore empty structs/unions. 7762 if (isEmptyRecord(getContext(), Ty, true)) 7763 return ABIArgInfo::getIgnore(); 7764 7765 // Lower single-element structs to just pass a regular value. TODO: We 7766 // could do reasonable-size multiple-element structs too, using getExpand(), 7767 // though watch out for things like bitfields. 7768 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7769 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7770 7771 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7772 const RecordDecl *RD = RT->getDecl(); 7773 if (RD->hasFlexibleArrayMember()) 7774 return DefaultABIInfo::classifyArgumentType(Ty); 7775 } 7776 7777 // Pack aggregates <= 8 bytes into single VGPR or pair. 7778 uint64_t Size = getContext().getTypeSize(Ty); 7779 if (Size <= 64) { 7780 unsigned NumRegs = (Size + 31) / 32; 7781 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7782 7783 if (Size <= 16) 7784 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7785 7786 if (Size <= 32) 7787 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7788 7789 // XXX: Should this be i64 instead, and should the limit increase? 7790 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7791 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7792 } 7793 7794 if (NumRegsLeft > 0) { 7795 unsigned NumRegs = numRegsForType(Ty); 7796 if (NumRegsLeft >= NumRegs) { 7797 NumRegsLeft -= NumRegs; 7798 return ABIArgInfo::getDirect(); 7799 } 7800 } 7801 } 7802 7803 // Otherwise just do the default thing. 7804 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7805 if (!ArgInfo.isIndirect()) { 7806 unsigned NumRegs = numRegsForType(Ty); 7807 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7808 } 7809 7810 return ArgInfo; 7811 } 7812 7813 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7814 public: 7815 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7816 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7817 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7818 CodeGen::CodeGenModule &M) const override; 7819 unsigned getOpenCLKernelCallingConv() const override; 7820 7821 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7822 llvm::PointerType *T, QualType QT) const override; 7823 7824 LangAS getASTAllocaAddressSpace() const override { 7825 return getLangASFromTargetAS( 7826 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7827 } 7828 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7829 const VarDecl *D) const override; 7830 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 7831 SyncScope Scope, 7832 llvm::AtomicOrdering Ordering, 7833 llvm::LLVMContext &Ctx) const override; 7834 llvm::Function * 7835 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7836 llvm::Function *BlockInvokeFunc, 7837 llvm::Value *BlockLiteral) const override; 7838 bool shouldEmitStaticExternCAliases() const override; 7839 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7840 }; 7841 } 7842 7843 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 7844 llvm::GlobalValue *GV) { 7845 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 7846 return false; 7847 7848 return D->hasAttr<OpenCLKernelAttr>() || 7849 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 7850 (isa<VarDecl>(D) && D->hasAttr<CUDADeviceAttr>()); 7851 } 7852 7853 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7854 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7855 if (requiresAMDGPUProtectedVisibility(D, GV)) { 7856 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 7857 GV->setDSOLocal(true); 7858 } 7859 7860 if (GV->isDeclaration()) 7861 return; 7862 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7863 if (!FD) 7864 return; 7865 7866 llvm::Function *F = cast<llvm::Function>(GV); 7867 7868 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7869 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7870 7871 if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && 7872 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7873 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7874 7875 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7876 if (ReqdWGS || FlatWGS) { 7877 unsigned Min = 0; 7878 unsigned Max = 0; 7879 if (FlatWGS) { 7880 Min = FlatWGS->getMin() 7881 ->EvaluateKnownConstInt(M.getContext()) 7882 .getExtValue(); 7883 Max = FlatWGS->getMax() 7884 ->EvaluateKnownConstInt(M.getContext()) 7885 .getExtValue(); 7886 } 7887 if (ReqdWGS && Min == 0 && Max == 0) 7888 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7889 7890 if (Min != 0) { 7891 assert(Min <= Max && "Min must be less than or equal Max"); 7892 7893 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7894 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7895 } else 7896 assert(Max == 0 && "Max must be zero"); 7897 } 7898 7899 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7900 unsigned Min = 7901 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 7902 unsigned Max = Attr->getMax() ? Attr->getMax() 7903 ->EvaluateKnownConstInt(M.getContext()) 7904 .getExtValue() 7905 : 0; 7906 7907 if (Min != 0) { 7908 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7909 7910 std::string AttrVal = llvm::utostr(Min); 7911 if (Max != 0) 7912 AttrVal = AttrVal + "," + llvm::utostr(Max); 7913 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7914 } else 7915 assert(Max == 0 && "Max must be zero"); 7916 } 7917 7918 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7919 unsigned NumSGPR = Attr->getNumSGPR(); 7920 7921 if (NumSGPR != 0) 7922 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7923 } 7924 7925 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7926 uint32_t NumVGPR = Attr->getNumVGPR(); 7927 7928 if (NumVGPR != 0) 7929 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7930 } 7931 } 7932 7933 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7934 return llvm::CallingConv::AMDGPU_KERNEL; 7935 } 7936 7937 // Currently LLVM assumes null pointers always have value 0, 7938 // which results in incorrectly transformed IR. Therefore, instead of 7939 // emitting null pointers in private and local address spaces, a null 7940 // pointer in generic address space is emitted which is casted to a 7941 // pointer in local or private address space. 7942 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7943 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7944 QualType QT) const { 7945 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7946 return llvm::ConstantPointerNull::get(PT); 7947 7948 auto &Ctx = CGM.getContext(); 7949 auto NPT = llvm::PointerType::get(PT->getElementType(), 7950 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7951 return llvm::ConstantExpr::getAddrSpaceCast( 7952 llvm::ConstantPointerNull::get(NPT), PT); 7953 } 7954 7955 LangAS 7956 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7957 const VarDecl *D) const { 7958 assert(!CGM.getLangOpts().OpenCL && 7959 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7960 "Address space agnostic languages only"); 7961 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7962 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7963 if (!D) 7964 return DefaultGlobalAS; 7965 7966 LangAS AddrSpace = D->getType().getAddressSpace(); 7967 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7968 if (AddrSpace != LangAS::Default) 7969 return AddrSpace; 7970 7971 if (CGM.isTypeConstant(D->getType(), false)) { 7972 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7973 return ConstAS.getValue(); 7974 } 7975 return DefaultGlobalAS; 7976 } 7977 7978 llvm::SyncScope::ID 7979 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 7980 SyncScope Scope, 7981 llvm::AtomicOrdering Ordering, 7982 llvm::LLVMContext &Ctx) const { 7983 std::string Name; 7984 switch (Scope) { 7985 case SyncScope::OpenCLWorkGroup: 7986 Name = "workgroup"; 7987 break; 7988 case SyncScope::OpenCLDevice: 7989 Name = "agent"; 7990 break; 7991 case SyncScope::OpenCLAllSVMDevices: 7992 Name = ""; 7993 break; 7994 case SyncScope::OpenCLSubGroup: 7995 Name = "wavefront"; 7996 } 7997 7998 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 7999 if (!Name.empty()) 8000 Name = Twine(Twine(Name) + Twine("-")).str(); 8001 8002 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8003 } 8004 8005 return Ctx.getOrInsertSyncScopeID(Name); 8006 } 8007 8008 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8009 return false; 8010 } 8011 8012 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8013 const FunctionType *&FT) const { 8014 FT = getABIInfo().getContext().adjustFunctionType( 8015 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8016 } 8017 8018 //===----------------------------------------------------------------------===// 8019 // SPARC v8 ABI Implementation. 8020 // Based on the SPARC Compliance Definition version 2.4.1. 8021 // 8022 // Ensures that complex values are passed in registers. 8023 // 8024 namespace { 8025 class SparcV8ABIInfo : public DefaultABIInfo { 8026 public: 8027 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8028 8029 private: 8030 ABIArgInfo classifyReturnType(QualType RetTy) const; 8031 void computeInfo(CGFunctionInfo &FI) const override; 8032 }; 8033 } // end anonymous namespace 8034 8035 8036 ABIArgInfo 8037 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8038 if (Ty->isAnyComplexType()) { 8039 return ABIArgInfo::getDirect(); 8040 } 8041 else { 8042 return DefaultABIInfo::classifyReturnType(Ty); 8043 } 8044 } 8045 8046 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8047 8048 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8049 for (auto &Arg : FI.arguments()) 8050 Arg.info = classifyArgumentType(Arg.type); 8051 } 8052 8053 namespace { 8054 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8055 public: 8056 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8057 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8058 }; 8059 } // end anonymous namespace 8060 8061 //===----------------------------------------------------------------------===// 8062 // SPARC v9 ABI Implementation. 8063 // Based on the SPARC Compliance Definition version 2.4.1. 8064 // 8065 // Function arguments a mapped to a nominal "parameter array" and promoted to 8066 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8067 // the array, structs larger than 16 bytes are passed indirectly. 8068 // 8069 // One case requires special care: 8070 // 8071 // struct mixed { 8072 // int i; 8073 // float f; 8074 // }; 8075 // 8076 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8077 // parameter array, but the int is passed in an integer register, and the float 8078 // is passed in a floating point register. This is represented as two arguments 8079 // with the LLVM IR inreg attribute: 8080 // 8081 // declare void f(i32 inreg %i, float inreg %f) 8082 // 8083 // The code generator will only allocate 4 bytes from the parameter array for 8084 // the inreg arguments. All other arguments are allocated a multiple of 8 8085 // bytes. 8086 // 8087 namespace { 8088 class SparcV9ABIInfo : public ABIInfo { 8089 public: 8090 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8091 8092 private: 8093 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8094 void computeInfo(CGFunctionInfo &FI) const override; 8095 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8096 QualType Ty) const override; 8097 8098 // Coercion type builder for structs passed in registers. The coercion type 8099 // serves two purposes: 8100 // 8101 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8102 // in registers. 8103 // 2. Expose aligned floating point elements as first-level elements, so the 8104 // code generator knows to pass them in floating point registers. 8105 // 8106 // We also compute the InReg flag which indicates that the struct contains 8107 // aligned 32-bit floats. 8108 // 8109 struct CoerceBuilder { 8110 llvm::LLVMContext &Context; 8111 const llvm::DataLayout &DL; 8112 SmallVector<llvm::Type*, 8> Elems; 8113 uint64_t Size; 8114 bool InReg; 8115 8116 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8117 : Context(c), DL(dl), Size(0), InReg(false) {} 8118 8119 // Pad Elems with integers until Size is ToSize. 8120 void pad(uint64_t ToSize) { 8121 assert(ToSize >= Size && "Cannot remove elements"); 8122 if (ToSize == Size) 8123 return; 8124 8125 // Finish the current 64-bit word. 8126 uint64_t Aligned = llvm::alignTo(Size, 64); 8127 if (Aligned > Size && Aligned <= ToSize) { 8128 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8129 Size = Aligned; 8130 } 8131 8132 // Add whole 64-bit words. 8133 while (Size + 64 <= ToSize) { 8134 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8135 Size += 64; 8136 } 8137 8138 // Final in-word padding. 8139 if (Size < ToSize) { 8140 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8141 Size = ToSize; 8142 } 8143 } 8144 8145 // Add a floating point element at Offset. 8146 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8147 // Unaligned floats are treated as integers. 8148 if (Offset % Bits) 8149 return; 8150 // The InReg flag is only required if there are any floats < 64 bits. 8151 if (Bits < 64) 8152 InReg = true; 8153 pad(Offset); 8154 Elems.push_back(Ty); 8155 Size = Offset + Bits; 8156 } 8157 8158 // Add a struct type to the coercion type, starting at Offset (in bits). 8159 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8160 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8161 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8162 llvm::Type *ElemTy = StrTy->getElementType(i); 8163 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8164 switch (ElemTy->getTypeID()) { 8165 case llvm::Type::StructTyID: 8166 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8167 break; 8168 case llvm::Type::FloatTyID: 8169 addFloat(ElemOffset, ElemTy, 32); 8170 break; 8171 case llvm::Type::DoubleTyID: 8172 addFloat(ElemOffset, ElemTy, 64); 8173 break; 8174 case llvm::Type::FP128TyID: 8175 addFloat(ElemOffset, ElemTy, 128); 8176 break; 8177 case llvm::Type::PointerTyID: 8178 if (ElemOffset % 64 == 0) { 8179 pad(ElemOffset); 8180 Elems.push_back(ElemTy); 8181 Size += 64; 8182 } 8183 break; 8184 default: 8185 break; 8186 } 8187 } 8188 } 8189 8190 // Check if Ty is a usable substitute for the coercion type. 8191 bool isUsableType(llvm::StructType *Ty) const { 8192 return llvm::makeArrayRef(Elems) == Ty->elements(); 8193 } 8194 8195 // Get the coercion type as a literal struct type. 8196 llvm::Type *getType() const { 8197 if (Elems.size() == 1) 8198 return Elems.front(); 8199 else 8200 return llvm::StructType::get(Context, Elems); 8201 } 8202 }; 8203 }; 8204 } // end anonymous namespace 8205 8206 ABIArgInfo 8207 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8208 if (Ty->isVoidType()) 8209 return ABIArgInfo::getIgnore(); 8210 8211 uint64_t Size = getContext().getTypeSize(Ty); 8212 8213 // Anything too big to fit in registers is passed with an explicit indirect 8214 // pointer / sret pointer. 8215 if (Size > SizeLimit) 8216 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8217 8218 // Treat an enum type as its underlying type. 8219 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8220 Ty = EnumTy->getDecl()->getIntegerType(); 8221 8222 // Integer types smaller than a register are extended. 8223 if (Size < 64 && Ty->isIntegerType()) 8224 return ABIArgInfo::getExtend(Ty); 8225 8226 // Other non-aggregates go in registers. 8227 if (!isAggregateTypeForABI(Ty)) 8228 return ABIArgInfo::getDirect(); 8229 8230 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8231 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8232 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8233 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8234 8235 // This is a small aggregate type that should be passed in registers. 8236 // Build a coercion type from the LLVM struct type. 8237 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8238 if (!StrTy) 8239 return ABIArgInfo::getDirect(); 8240 8241 CoerceBuilder CB(getVMContext(), getDataLayout()); 8242 CB.addStruct(0, StrTy); 8243 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8244 8245 // Try to use the original type for coercion. 8246 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8247 8248 if (CB.InReg) 8249 return ABIArgInfo::getDirectInReg(CoerceTy); 8250 else 8251 return ABIArgInfo::getDirect(CoerceTy); 8252 } 8253 8254 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8255 QualType Ty) const { 8256 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8257 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8258 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8259 AI.setCoerceToType(ArgTy); 8260 8261 CharUnits SlotSize = CharUnits::fromQuantity(8); 8262 8263 CGBuilderTy &Builder = CGF.Builder; 8264 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8265 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8266 8267 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8268 8269 Address ArgAddr = Address::invalid(); 8270 CharUnits Stride; 8271 switch (AI.getKind()) { 8272 case ABIArgInfo::Expand: 8273 case ABIArgInfo::CoerceAndExpand: 8274 case ABIArgInfo::InAlloca: 8275 llvm_unreachable("Unsupported ABI kind for va_arg"); 8276 8277 case ABIArgInfo::Extend: { 8278 Stride = SlotSize; 8279 CharUnits Offset = SlotSize - TypeInfo.first; 8280 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8281 break; 8282 } 8283 8284 case ABIArgInfo::Direct: { 8285 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8286 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8287 ArgAddr = Addr; 8288 break; 8289 } 8290 8291 case ABIArgInfo::Indirect: 8292 Stride = SlotSize; 8293 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8294 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8295 TypeInfo.second); 8296 break; 8297 8298 case ABIArgInfo::Ignore: 8299 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8300 } 8301 8302 // Update VAList. 8303 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8304 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8305 8306 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8307 } 8308 8309 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8310 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8311 for (auto &I : FI.arguments()) 8312 I.info = classifyType(I.type, 16 * 8); 8313 } 8314 8315 namespace { 8316 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8317 public: 8318 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8319 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8320 8321 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8322 return 14; 8323 } 8324 8325 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8326 llvm::Value *Address) const override; 8327 }; 8328 } // end anonymous namespace 8329 8330 bool 8331 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8332 llvm::Value *Address) const { 8333 // This is calculated from the LLVM and GCC tables and verified 8334 // against gcc output. AFAIK all ABIs use the same encoding. 8335 8336 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8337 8338 llvm::IntegerType *i8 = CGF.Int8Ty; 8339 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8340 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8341 8342 // 0-31: the 8-byte general-purpose registers 8343 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8344 8345 // 32-63: f0-31, the 4-byte floating-point registers 8346 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8347 8348 // Y = 64 8349 // PSR = 65 8350 // WIM = 66 8351 // TBR = 67 8352 // PC = 68 8353 // NPC = 69 8354 // FSR = 70 8355 // CSR = 71 8356 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8357 8358 // 72-87: d0-15, the 8-byte floating-point registers 8359 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8360 8361 return false; 8362 } 8363 8364 // ARC ABI implementation. 8365 namespace { 8366 8367 class ARCABIInfo : public DefaultABIInfo { 8368 public: 8369 using DefaultABIInfo::DefaultABIInfo; 8370 8371 private: 8372 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8373 QualType Ty) const override; 8374 8375 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8376 if (!State.FreeRegs) 8377 return; 8378 if (Info.isIndirect() && Info.getInReg()) 8379 State.FreeRegs--; 8380 else if (Info.isDirect() && Info.getInReg()) { 8381 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8382 if (sz < State.FreeRegs) 8383 State.FreeRegs -= sz; 8384 else 8385 State.FreeRegs = 0; 8386 } 8387 } 8388 8389 void computeInfo(CGFunctionInfo &FI) const override { 8390 CCState State(FI.getCallingConvention()); 8391 // ARC uses 8 registers to pass arguments. 8392 State.FreeRegs = 8; 8393 8394 if (!getCXXABI().classifyReturnType(FI)) 8395 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8396 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8397 for (auto &I : FI.arguments()) { 8398 I.info = classifyArgumentType(I.type, State.FreeRegs); 8399 updateState(I.info, I.type, State); 8400 } 8401 } 8402 8403 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8404 ABIArgInfo getIndirectByValue(QualType Ty) const; 8405 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8406 ABIArgInfo classifyReturnType(QualType RetTy) const; 8407 }; 8408 8409 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8410 public: 8411 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8412 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8413 }; 8414 8415 8416 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8417 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8418 getNaturalAlignIndirect(Ty, false); 8419 } 8420 8421 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8422 // Compute the byval alignment. 8423 const unsigned MinABIStackAlignInBytes = 4; 8424 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8425 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8426 TypeAlign > MinABIStackAlignInBytes); 8427 } 8428 8429 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8430 QualType Ty) const { 8431 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8432 getContext().getTypeInfoInChars(Ty), 8433 CharUnits::fromQuantity(4), true); 8434 } 8435 8436 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8437 uint8_t FreeRegs) const { 8438 // Handle the generic C++ ABI. 8439 const RecordType *RT = Ty->getAs<RecordType>(); 8440 if (RT) { 8441 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8442 if (RAA == CGCXXABI::RAA_Indirect) 8443 return getIndirectByRef(Ty, FreeRegs > 0); 8444 8445 if (RAA == CGCXXABI::RAA_DirectInMemory) 8446 return getIndirectByValue(Ty); 8447 } 8448 8449 // Treat an enum type as its underlying type. 8450 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8451 Ty = EnumTy->getDecl()->getIntegerType(); 8452 8453 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8454 8455 if (isAggregateTypeForABI(Ty)) { 8456 // Structures with flexible arrays are always indirect. 8457 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8458 return getIndirectByValue(Ty); 8459 8460 // Ignore empty structs/unions. 8461 if (isEmptyRecord(getContext(), Ty, true)) 8462 return ABIArgInfo::getIgnore(); 8463 8464 llvm::LLVMContext &LLVMContext = getVMContext(); 8465 8466 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8467 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8468 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8469 8470 return FreeRegs >= SizeInRegs ? 8471 ABIArgInfo::getDirectInReg(Result) : 8472 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8473 } 8474 8475 return Ty->isPromotableIntegerType() ? 8476 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8477 ABIArgInfo::getExtend(Ty)) : 8478 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8479 ABIArgInfo::getDirect()); 8480 } 8481 8482 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8483 if (RetTy->isAnyComplexType()) 8484 return ABIArgInfo::getDirectInReg(); 8485 8486 // Arguments of size > 4 registers are indirect. 8487 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8488 if (RetSize > 4) 8489 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8490 8491 return DefaultABIInfo::classifyReturnType(RetTy); 8492 } 8493 8494 } // End anonymous namespace. 8495 8496 //===----------------------------------------------------------------------===// 8497 // XCore ABI Implementation 8498 //===----------------------------------------------------------------------===// 8499 8500 namespace { 8501 8502 /// A SmallStringEnc instance is used to build up the TypeString by passing 8503 /// it by reference between functions that append to it. 8504 typedef llvm::SmallString<128> SmallStringEnc; 8505 8506 /// TypeStringCache caches the meta encodings of Types. 8507 /// 8508 /// The reason for caching TypeStrings is two fold: 8509 /// 1. To cache a type's encoding for later uses; 8510 /// 2. As a means to break recursive member type inclusion. 8511 /// 8512 /// A cache Entry can have a Status of: 8513 /// NonRecursive: The type encoding is not recursive; 8514 /// Recursive: The type encoding is recursive; 8515 /// Incomplete: An incomplete TypeString; 8516 /// IncompleteUsed: An incomplete TypeString that has been used in a 8517 /// Recursive type encoding. 8518 /// 8519 /// A NonRecursive entry will have all of its sub-members expanded as fully 8520 /// as possible. Whilst it may contain types which are recursive, the type 8521 /// itself is not recursive and thus its encoding may be safely used whenever 8522 /// the type is encountered. 8523 /// 8524 /// A Recursive entry will have all of its sub-members expanded as fully as 8525 /// possible. The type itself is recursive and it may contain other types which 8526 /// are recursive. The Recursive encoding must not be used during the expansion 8527 /// of a recursive type's recursive branch. For simplicity the code uses 8528 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8529 /// 8530 /// An Incomplete entry is always a RecordType and only encodes its 8531 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8532 /// are placed into the cache during type expansion as a means to identify and 8533 /// handle recursive inclusion of types as sub-members. If there is recursion 8534 /// the entry becomes IncompleteUsed. 8535 /// 8536 /// During the expansion of a RecordType's members: 8537 /// 8538 /// If the cache contains a NonRecursive encoding for the member type, the 8539 /// cached encoding is used; 8540 /// 8541 /// If the cache contains a Recursive encoding for the member type, the 8542 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8543 /// 8544 /// If the member is a RecordType, an Incomplete encoding is placed into the 8545 /// cache to break potential recursive inclusion of itself as a sub-member; 8546 /// 8547 /// Once a member RecordType has been expanded, its temporary incomplete 8548 /// entry is removed from the cache. If a Recursive encoding was swapped out 8549 /// it is swapped back in; 8550 /// 8551 /// If an incomplete entry is used to expand a sub-member, the incomplete 8552 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8553 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8554 /// 8555 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8556 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8557 /// Else the member is part of a recursive type and thus the recursion has 8558 /// been exited too soon for the encoding to be correct for the member. 8559 /// 8560 class TypeStringCache { 8561 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8562 struct Entry { 8563 std::string Str; // The encoded TypeString for the type. 8564 enum Status State; // Information about the encoding in 'Str'. 8565 std::string Swapped; // A temporary place holder for a Recursive encoding 8566 // during the expansion of RecordType's members. 8567 }; 8568 std::map<const IdentifierInfo *, struct Entry> Map; 8569 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8570 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8571 public: 8572 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8573 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8574 bool removeIncomplete(const IdentifierInfo *ID); 8575 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8576 bool IsRecursive); 8577 StringRef lookupStr(const IdentifierInfo *ID); 8578 }; 8579 8580 /// TypeString encodings for enum & union fields must be order. 8581 /// FieldEncoding is a helper for this ordering process. 8582 class FieldEncoding { 8583 bool HasName; 8584 std::string Enc; 8585 public: 8586 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8587 StringRef str() { return Enc; } 8588 bool operator<(const FieldEncoding &rhs) const { 8589 if (HasName != rhs.HasName) return HasName; 8590 return Enc < rhs.Enc; 8591 } 8592 }; 8593 8594 class XCoreABIInfo : public DefaultABIInfo { 8595 public: 8596 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8597 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8598 QualType Ty) const override; 8599 }; 8600 8601 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8602 mutable TypeStringCache TSC; 8603 public: 8604 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8605 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8606 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8607 CodeGen::CodeGenModule &M) const override; 8608 }; 8609 8610 } // End anonymous namespace. 8611 8612 // TODO: this implementation is likely now redundant with the default 8613 // EmitVAArg. 8614 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8615 QualType Ty) const { 8616 CGBuilderTy &Builder = CGF.Builder; 8617 8618 // Get the VAList. 8619 CharUnits SlotSize = CharUnits::fromQuantity(4); 8620 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8621 8622 // Handle the argument. 8623 ABIArgInfo AI = classifyArgumentType(Ty); 8624 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8625 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8626 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8627 AI.setCoerceToType(ArgTy); 8628 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8629 8630 Address Val = Address::invalid(); 8631 CharUnits ArgSize = CharUnits::Zero(); 8632 switch (AI.getKind()) { 8633 case ABIArgInfo::Expand: 8634 case ABIArgInfo::CoerceAndExpand: 8635 case ABIArgInfo::InAlloca: 8636 llvm_unreachable("Unsupported ABI kind for va_arg"); 8637 case ABIArgInfo::Ignore: 8638 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8639 ArgSize = CharUnits::Zero(); 8640 break; 8641 case ABIArgInfo::Extend: 8642 case ABIArgInfo::Direct: 8643 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8644 ArgSize = CharUnits::fromQuantity( 8645 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8646 ArgSize = ArgSize.alignTo(SlotSize); 8647 break; 8648 case ABIArgInfo::Indirect: 8649 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8650 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8651 ArgSize = SlotSize; 8652 break; 8653 } 8654 8655 // Increment the VAList. 8656 if (!ArgSize.isZero()) { 8657 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8658 Builder.CreateStore(APN.getPointer(), VAListAddr); 8659 } 8660 8661 return Val; 8662 } 8663 8664 /// During the expansion of a RecordType, an incomplete TypeString is placed 8665 /// into the cache as a means to identify and break recursion. 8666 /// If there is a Recursive encoding in the cache, it is swapped out and will 8667 /// be reinserted by removeIncomplete(). 8668 /// All other types of encoding should have been used rather than arriving here. 8669 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8670 std::string StubEnc) { 8671 if (!ID) 8672 return; 8673 Entry &E = Map[ID]; 8674 assert( (E.Str.empty() || E.State == Recursive) && 8675 "Incorrectly use of addIncomplete"); 8676 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8677 E.Swapped.swap(E.Str); // swap out the Recursive 8678 E.Str.swap(StubEnc); 8679 E.State = Incomplete; 8680 ++IncompleteCount; 8681 } 8682 8683 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8684 /// must be removed from the cache. 8685 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8686 /// Returns true if the RecordType was defined recursively. 8687 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8688 if (!ID) 8689 return false; 8690 auto I = Map.find(ID); 8691 assert(I != Map.end() && "Entry not present"); 8692 Entry &E = I->second; 8693 assert( (E.State == Incomplete || 8694 E.State == IncompleteUsed) && 8695 "Entry must be an incomplete type"); 8696 bool IsRecursive = false; 8697 if (E.State == IncompleteUsed) { 8698 // We made use of our Incomplete encoding, thus we are recursive. 8699 IsRecursive = true; 8700 --IncompleteUsedCount; 8701 } 8702 if (E.Swapped.empty()) 8703 Map.erase(I); 8704 else { 8705 // Swap the Recursive back. 8706 E.Swapped.swap(E.Str); 8707 E.Swapped.clear(); 8708 E.State = Recursive; 8709 } 8710 --IncompleteCount; 8711 return IsRecursive; 8712 } 8713 8714 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8715 /// Recursive (viz: all sub-members were expanded as fully as possible). 8716 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8717 bool IsRecursive) { 8718 if (!ID || IncompleteUsedCount) 8719 return; // No key or it is is an incomplete sub-type so don't add. 8720 Entry &E = Map[ID]; 8721 if (IsRecursive && !E.Str.empty()) { 8722 assert(E.State==Recursive && E.Str.size() == Str.size() && 8723 "This is not the same Recursive entry"); 8724 // The parent container was not recursive after all, so we could have used 8725 // this Recursive sub-member entry after all, but we assumed the worse when 8726 // we started viz: IncompleteCount!=0. 8727 return; 8728 } 8729 assert(E.Str.empty() && "Entry already present"); 8730 E.Str = Str.str(); 8731 E.State = IsRecursive? Recursive : NonRecursive; 8732 } 8733 8734 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8735 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8736 /// encoding is Recursive, return an empty StringRef. 8737 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8738 if (!ID) 8739 return StringRef(); // We have no key. 8740 auto I = Map.find(ID); 8741 if (I == Map.end()) 8742 return StringRef(); // We have no encoding. 8743 Entry &E = I->second; 8744 if (E.State == Recursive && IncompleteCount) 8745 return StringRef(); // We don't use Recursive encodings for member types. 8746 8747 if (E.State == Incomplete) { 8748 // The incomplete type is being used to break out of recursion. 8749 E.State = IncompleteUsed; 8750 ++IncompleteUsedCount; 8751 } 8752 return E.Str; 8753 } 8754 8755 /// The XCore ABI includes a type information section that communicates symbol 8756 /// type information to the linker. The linker uses this information to verify 8757 /// safety/correctness of things such as array bound and pointers et al. 8758 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8759 /// This type information (TypeString) is emitted into meta data for all global 8760 /// symbols: definitions, declarations, functions & variables. 8761 /// 8762 /// The TypeString carries type, qualifier, name, size & value details. 8763 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8764 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8765 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8766 /// 8767 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8768 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8769 8770 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8771 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8772 CodeGen::CodeGenModule &CGM) const { 8773 SmallStringEnc Enc; 8774 if (getTypeString(Enc, D, CGM, TSC)) { 8775 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8776 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8777 llvm::MDString::get(Ctx, Enc.str())}; 8778 llvm::NamedMDNode *MD = 8779 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8780 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8781 } 8782 } 8783 8784 //===----------------------------------------------------------------------===// 8785 // SPIR ABI Implementation 8786 //===----------------------------------------------------------------------===// 8787 8788 namespace { 8789 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8790 public: 8791 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8792 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8793 unsigned getOpenCLKernelCallingConv() const override; 8794 }; 8795 8796 } // End anonymous namespace. 8797 8798 namespace clang { 8799 namespace CodeGen { 8800 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8801 DefaultABIInfo SPIRABI(CGM.getTypes()); 8802 SPIRABI.computeInfo(FI); 8803 } 8804 } 8805 } 8806 8807 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8808 return llvm::CallingConv::SPIR_KERNEL; 8809 } 8810 8811 static bool appendType(SmallStringEnc &Enc, QualType QType, 8812 const CodeGen::CodeGenModule &CGM, 8813 TypeStringCache &TSC); 8814 8815 /// Helper function for appendRecordType(). 8816 /// Builds a SmallVector containing the encoded field types in declaration 8817 /// order. 8818 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8819 const RecordDecl *RD, 8820 const CodeGen::CodeGenModule &CGM, 8821 TypeStringCache &TSC) { 8822 for (const auto *Field : RD->fields()) { 8823 SmallStringEnc Enc; 8824 Enc += "m("; 8825 Enc += Field->getName(); 8826 Enc += "){"; 8827 if (Field->isBitField()) { 8828 Enc += "b("; 8829 llvm::raw_svector_ostream OS(Enc); 8830 OS << Field->getBitWidthValue(CGM.getContext()); 8831 Enc += ':'; 8832 } 8833 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8834 return false; 8835 if (Field->isBitField()) 8836 Enc += ')'; 8837 Enc += '}'; 8838 FE.emplace_back(!Field->getName().empty(), Enc); 8839 } 8840 return true; 8841 } 8842 8843 /// Appends structure and union types to Enc and adds encoding to cache. 8844 /// Recursively calls appendType (via extractFieldType) for each field. 8845 /// Union types have their fields ordered according to the ABI. 8846 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8847 const CodeGen::CodeGenModule &CGM, 8848 TypeStringCache &TSC, const IdentifierInfo *ID) { 8849 // Append the cached TypeString if we have one. 8850 StringRef TypeString = TSC.lookupStr(ID); 8851 if (!TypeString.empty()) { 8852 Enc += TypeString; 8853 return true; 8854 } 8855 8856 // Start to emit an incomplete TypeString. 8857 size_t Start = Enc.size(); 8858 Enc += (RT->isUnionType()? 'u' : 's'); 8859 Enc += '('; 8860 if (ID) 8861 Enc += ID->getName(); 8862 Enc += "){"; 8863 8864 // We collect all encoded fields and order as necessary. 8865 bool IsRecursive = false; 8866 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8867 if (RD && !RD->field_empty()) { 8868 // An incomplete TypeString stub is placed in the cache for this RecordType 8869 // so that recursive calls to this RecordType will use it whilst building a 8870 // complete TypeString for this RecordType. 8871 SmallVector<FieldEncoding, 16> FE; 8872 std::string StubEnc(Enc.substr(Start).str()); 8873 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8874 TSC.addIncomplete(ID, std::move(StubEnc)); 8875 if (!extractFieldType(FE, RD, CGM, TSC)) { 8876 (void) TSC.removeIncomplete(ID); 8877 return false; 8878 } 8879 IsRecursive = TSC.removeIncomplete(ID); 8880 // The ABI requires unions to be sorted but not structures. 8881 // See FieldEncoding::operator< for sort algorithm. 8882 if (RT->isUnionType()) 8883 llvm::sort(FE); 8884 // We can now complete the TypeString. 8885 unsigned E = FE.size(); 8886 for (unsigned I = 0; I != E; ++I) { 8887 if (I) 8888 Enc += ','; 8889 Enc += FE[I].str(); 8890 } 8891 } 8892 Enc += '}'; 8893 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8894 return true; 8895 } 8896 8897 /// Appends enum types to Enc and adds the encoding to the cache. 8898 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8899 TypeStringCache &TSC, 8900 const IdentifierInfo *ID) { 8901 // Append the cached TypeString if we have one. 8902 StringRef TypeString = TSC.lookupStr(ID); 8903 if (!TypeString.empty()) { 8904 Enc += TypeString; 8905 return true; 8906 } 8907 8908 size_t Start = Enc.size(); 8909 Enc += "e("; 8910 if (ID) 8911 Enc += ID->getName(); 8912 Enc += "){"; 8913 8914 // We collect all encoded enumerations and order them alphanumerically. 8915 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8916 SmallVector<FieldEncoding, 16> FE; 8917 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8918 ++I) { 8919 SmallStringEnc EnumEnc; 8920 EnumEnc += "m("; 8921 EnumEnc += I->getName(); 8922 EnumEnc += "){"; 8923 I->getInitVal().toString(EnumEnc); 8924 EnumEnc += '}'; 8925 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8926 } 8927 llvm::sort(FE); 8928 unsigned E = FE.size(); 8929 for (unsigned I = 0; I != E; ++I) { 8930 if (I) 8931 Enc += ','; 8932 Enc += FE[I].str(); 8933 } 8934 } 8935 Enc += '}'; 8936 TSC.addIfComplete(ID, Enc.substr(Start), false); 8937 return true; 8938 } 8939 8940 /// Appends type's qualifier to Enc. 8941 /// This is done prior to appending the type's encoding. 8942 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8943 // Qualifiers are emitted in alphabetical order. 8944 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8945 int Lookup = 0; 8946 if (QT.isConstQualified()) 8947 Lookup += 1<<0; 8948 if (QT.isRestrictQualified()) 8949 Lookup += 1<<1; 8950 if (QT.isVolatileQualified()) 8951 Lookup += 1<<2; 8952 Enc += Table[Lookup]; 8953 } 8954 8955 /// Appends built-in types to Enc. 8956 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8957 const char *EncType; 8958 switch (BT->getKind()) { 8959 case BuiltinType::Void: 8960 EncType = "0"; 8961 break; 8962 case BuiltinType::Bool: 8963 EncType = "b"; 8964 break; 8965 case BuiltinType::Char_U: 8966 EncType = "uc"; 8967 break; 8968 case BuiltinType::UChar: 8969 EncType = "uc"; 8970 break; 8971 case BuiltinType::SChar: 8972 EncType = "sc"; 8973 break; 8974 case BuiltinType::UShort: 8975 EncType = "us"; 8976 break; 8977 case BuiltinType::Short: 8978 EncType = "ss"; 8979 break; 8980 case BuiltinType::UInt: 8981 EncType = "ui"; 8982 break; 8983 case BuiltinType::Int: 8984 EncType = "si"; 8985 break; 8986 case BuiltinType::ULong: 8987 EncType = "ul"; 8988 break; 8989 case BuiltinType::Long: 8990 EncType = "sl"; 8991 break; 8992 case BuiltinType::ULongLong: 8993 EncType = "ull"; 8994 break; 8995 case BuiltinType::LongLong: 8996 EncType = "sll"; 8997 break; 8998 case BuiltinType::Float: 8999 EncType = "ft"; 9000 break; 9001 case BuiltinType::Double: 9002 EncType = "d"; 9003 break; 9004 case BuiltinType::LongDouble: 9005 EncType = "ld"; 9006 break; 9007 default: 9008 return false; 9009 } 9010 Enc += EncType; 9011 return true; 9012 } 9013 9014 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9015 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9016 const CodeGen::CodeGenModule &CGM, 9017 TypeStringCache &TSC) { 9018 Enc += "p("; 9019 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9020 return false; 9021 Enc += ')'; 9022 return true; 9023 } 9024 9025 /// Appends array encoding to Enc before calling appendType for the element. 9026 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9027 const ArrayType *AT, 9028 const CodeGen::CodeGenModule &CGM, 9029 TypeStringCache &TSC, StringRef NoSizeEnc) { 9030 if (AT->getSizeModifier() != ArrayType::Normal) 9031 return false; 9032 Enc += "a("; 9033 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9034 CAT->getSize().toStringUnsigned(Enc); 9035 else 9036 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9037 Enc += ':'; 9038 // The Qualifiers should be attached to the type rather than the array. 9039 appendQualifier(Enc, QT); 9040 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9041 return false; 9042 Enc += ')'; 9043 return true; 9044 } 9045 9046 /// Appends a function encoding to Enc, calling appendType for the return type 9047 /// and the arguments. 9048 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9049 const CodeGen::CodeGenModule &CGM, 9050 TypeStringCache &TSC) { 9051 Enc += "f{"; 9052 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9053 return false; 9054 Enc += "}("; 9055 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9056 // N.B. we are only interested in the adjusted param types. 9057 auto I = FPT->param_type_begin(); 9058 auto E = FPT->param_type_end(); 9059 if (I != E) { 9060 do { 9061 if (!appendType(Enc, *I, CGM, TSC)) 9062 return false; 9063 ++I; 9064 if (I != E) 9065 Enc += ','; 9066 } while (I != E); 9067 if (FPT->isVariadic()) 9068 Enc += ",va"; 9069 } else { 9070 if (FPT->isVariadic()) 9071 Enc += "va"; 9072 else 9073 Enc += '0'; 9074 } 9075 } 9076 Enc += ')'; 9077 return true; 9078 } 9079 9080 /// Handles the type's qualifier before dispatching a call to handle specific 9081 /// type encodings. 9082 static bool appendType(SmallStringEnc &Enc, QualType QType, 9083 const CodeGen::CodeGenModule &CGM, 9084 TypeStringCache &TSC) { 9085 9086 QualType QT = QType.getCanonicalType(); 9087 9088 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9089 // The Qualifiers should be attached to the type rather than the array. 9090 // Thus we don't call appendQualifier() here. 9091 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9092 9093 appendQualifier(Enc, QT); 9094 9095 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9096 return appendBuiltinType(Enc, BT); 9097 9098 if (const PointerType *PT = QT->getAs<PointerType>()) 9099 return appendPointerType(Enc, PT, CGM, TSC); 9100 9101 if (const EnumType *ET = QT->getAs<EnumType>()) 9102 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9103 9104 if (const RecordType *RT = QT->getAsStructureType()) 9105 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9106 9107 if (const RecordType *RT = QT->getAsUnionType()) 9108 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9109 9110 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9111 return appendFunctionType(Enc, FT, CGM, TSC); 9112 9113 return false; 9114 } 9115 9116 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9117 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9118 if (!D) 9119 return false; 9120 9121 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9122 if (FD->getLanguageLinkage() != CLanguageLinkage) 9123 return false; 9124 return appendType(Enc, FD->getType(), CGM, TSC); 9125 } 9126 9127 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9128 if (VD->getLanguageLinkage() != CLanguageLinkage) 9129 return false; 9130 QualType QT = VD->getType().getCanonicalType(); 9131 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9132 // Global ArrayTypes are given a size of '*' if the size is unknown. 9133 // The Qualifiers should be attached to the type rather than the array. 9134 // Thus we don't call appendQualifier() here. 9135 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9136 } 9137 return appendType(Enc, QT, CGM, TSC); 9138 } 9139 return false; 9140 } 9141 9142 //===----------------------------------------------------------------------===// 9143 // RISCV ABI Implementation 9144 //===----------------------------------------------------------------------===// 9145 9146 namespace { 9147 class RISCVABIInfo : public DefaultABIInfo { 9148 private: 9149 unsigned XLen; // Size of the integer ('x') registers in bits. 9150 static const int NumArgGPRs = 8; 9151 9152 public: 9153 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9154 : DefaultABIInfo(CGT), XLen(XLen) {} 9155 9156 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9157 // non-virtual, but computeInfo is virtual, so we overload it. 9158 void computeInfo(CGFunctionInfo &FI) const override; 9159 9160 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 9161 int &ArgGPRsLeft) const; 9162 ABIArgInfo classifyReturnType(QualType RetTy) const; 9163 9164 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9165 QualType Ty) const override; 9166 9167 ABIArgInfo extendType(QualType Ty) const; 9168 }; 9169 } // end anonymous namespace 9170 9171 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9172 QualType RetTy = FI.getReturnType(); 9173 if (!getCXXABI().classifyReturnType(FI)) 9174 FI.getReturnInfo() = classifyReturnType(RetTy); 9175 9176 // IsRetIndirect is true if classifyArgumentType indicated the value should 9177 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9178 // is passed direct in LLVM IR, relying on the backend lowering code to 9179 // rewrite the argument list and pass indirectly on RV32. 9180 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9181 getContext().getTypeSize(RetTy) > (2 * XLen); 9182 9183 // We must track the number of GPRs used in order to conform to the RISC-V 9184 // ABI, as integer scalars passed in registers should have signext/zeroext 9185 // when promoted, but are anyext if passed on the stack. As GPR usage is 9186 // different for variadic arguments, we must also track whether we are 9187 // examining a vararg or not. 9188 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9189 int NumFixedArgs = FI.getNumRequiredArgs(); 9190 9191 int ArgNum = 0; 9192 for (auto &ArgInfo : FI.arguments()) { 9193 bool IsFixed = ArgNum < NumFixedArgs; 9194 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 9195 ArgNum++; 9196 } 9197 } 9198 9199 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9200 int &ArgGPRsLeft) const { 9201 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9202 Ty = useFirstFieldIfTransparentUnion(Ty); 9203 9204 // Structures with either a non-trivial destructor or a non-trivial 9205 // copy constructor are always passed indirectly. 9206 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9207 if (ArgGPRsLeft) 9208 ArgGPRsLeft -= 1; 9209 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9210 CGCXXABI::RAA_DirectInMemory); 9211 } 9212 9213 // Ignore empty structs/unions. 9214 if (isEmptyRecord(getContext(), Ty, true)) 9215 return ABIArgInfo::getIgnore(); 9216 9217 uint64_t Size = getContext().getTypeSize(Ty); 9218 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9219 bool MustUseStack = false; 9220 // Determine the number of GPRs needed to pass the current argument 9221 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9222 // register pairs, so may consume 3 registers. 9223 int NeededArgGPRs = 1; 9224 if (!IsFixed && NeededAlign == 2 * XLen) 9225 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9226 else if (Size > XLen && Size <= 2 * XLen) 9227 NeededArgGPRs = 2; 9228 9229 if (NeededArgGPRs > ArgGPRsLeft) { 9230 MustUseStack = true; 9231 NeededArgGPRs = ArgGPRsLeft; 9232 } 9233 9234 ArgGPRsLeft -= NeededArgGPRs; 9235 9236 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9237 // Treat an enum type as its underlying type. 9238 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9239 Ty = EnumTy->getDecl()->getIntegerType(); 9240 9241 // All integral types are promoted to XLen width, unless passed on the 9242 // stack. 9243 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9244 return extendType(Ty); 9245 } 9246 9247 return ABIArgInfo::getDirect(); 9248 } 9249 9250 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9251 // so coerce to integers. 9252 if (Size <= 2 * XLen) { 9253 unsigned Alignment = getContext().getTypeAlign(Ty); 9254 9255 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9256 // required, and a 2-element XLen array if only XLen alignment is required. 9257 if (Size <= XLen) { 9258 return ABIArgInfo::getDirect( 9259 llvm::IntegerType::get(getVMContext(), XLen)); 9260 } else if (Alignment == 2 * XLen) { 9261 return ABIArgInfo::getDirect( 9262 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9263 } else { 9264 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9265 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9266 } 9267 } 9268 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9269 } 9270 9271 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9272 if (RetTy->isVoidType()) 9273 return ABIArgInfo::getIgnore(); 9274 9275 int ArgGPRsLeft = 2; 9276 9277 // The rules for return and argument types are the same, so defer to 9278 // classifyArgumentType. 9279 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 9280 } 9281 9282 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9283 QualType Ty) const { 9284 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9285 9286 // Empty records are ignored for parameter passing purposes. 9287 if (isEmptyRecord(getContext(), Ty, true)) { 9288 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9289 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9290 return Addr; 9291 } 9292 9293 std::pair<CharUnits, CharUnits> SizeAndAlign = 9294 getContext().getTypeInfoInChars(Ty); 9295 9296 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9297 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9298 9299 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9300 SlotSize, /*AllowHigherAlign=*/true); 9301 } 9302 9303 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9304 int TySize = getContext().getTypeSize(Ty); 9305 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9306 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9307 return ABIArgInfo::getSignExtend(Ty); 9308 return ABIArgInfo::getExtend(Ty); 9309 } 9310 9311 namespace { 9312 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9313 public: 9314 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9315 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 9316 9317 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9318 CodeGen::CodeGenModule &CGM) const override { 9319 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9320 if (!FD) return; 9321 9322 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9323 if (!Attr) 9324 return; 9325 9326 const char *Kind; 9327 switch (Attr->getInterrupt()) { 9328 case RISCVInterruptAttr::user: Kind = "user"; break; 9329 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9330 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9331 } 9332 9333 auto *Fn = cast<llvm::Function>(GV); 9334 9335 Fn->addFnAttr("interrupt", Kind); 9336 } 9337 }; 9338 } // namespace 9339 9340 //===----------------------------------------------------------------------===// 9341 // Driver code 9342 //===----------------------------------------------------------------------===// 9343 9344 bool CodeGenModule::supportsCOMDAT() const { 9345 return getTriple().supportsCOMDAT(); 9346 } 9347 9348 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9349 if (TheTargetCodeGenInfo) 9350 return *TheTargetCodeGenInfo; 9351 9352 // Helper to set the unique_ptr while still keeping the return value. 9353 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9354 this->TheTargetCodeGenInfo.reset(P); 9355 return *P; 9356 }; 9357 9358 const llvm::Triple &Triple = getTarget().getTriple(); 9359 switch (Triple.getArch()) { 9360 default: 9361 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9362 9363 case llvm::Triple::le32: 9364 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9365 case llvm::Triple::mips: 9366 case llvm::Triple::mipsel: 9367 if (Triple.getOS() == llvm::Triple::NaCl) 9368 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9369 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9370 9371 case llvm::Triple::mips64: 9372 case llvm::Triple::mips64el: 9373 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9374 9375 case llvm::Triple::avr: 9376 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9377 9378 case llvm::Triple::aarch64: 9379 case llvm::Triple::aarch64_be: { 9380 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9381 if (getTarget().getABI() == "darwinpcs") 9382 Kind = AArch64ABIInfo::DarwinPCS; 9383 else if (Triple.isOSWindows()) 9384 return SetCGInfo( 9385 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9386 9387 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9388 } 9389 9390 case llvm::Triple::wasm32: 9391 case llvm::Triple::wasm64: 9392 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9393 9394 case llvm::Triple::arm: 9395 case llvm::Triple::armeb: 9396 case llvm::Triple::thumb: 9397 case llvm::Triple::thumbeb: { 9398 if (Triple.getOS() == llvm::Triple::Win32) { 9399 return SetCGInfo( 9400 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9401 } 9402 9403 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9404 StringRef ABIStr = getTarget().getABI(); 9405 if (ABIStr == "apcs-gnu") 9406 Kind = ARMABIInfo::APCS; 9407 else if (ABIStr == "aapcs16") 9408 Kind = ARMABIInfo::AAPCS16_VFP; 9409 else if (CodeGenOpts.FloatABI == "hard" || 9410 (CodeGenOpts.FloatABI != "soft" && 9411 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9412 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9413 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9414 Kind = ARMABIInfo::AAPCS_VFP; 9415 9416 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9417 } 9418 9419 case llvm::Triple::ppc: 9420 return SetCGInfo( 9421 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9422 case llvm::Triple::ppc64: 9423 if (Triple.isOSBinFormatELF()) { 9424 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9425 if (getTarget().getABI() == "elfv2") 9426 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9427 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9428 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9429 9430 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9431 IsSoftFloat)); 9432 } else 9433 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9434 case llvm::Triple::ppc64le: { 9435 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9436 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9437 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9438 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9439 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9440 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9441 9442 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9443 IsSoftFloat)); 9444 } 9445 9446 case llvm::Triple::nvptx: 9447 case llvm::Triple::nvptx64: 9448 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9449 9450 case llvm::Triple::msp430: 9451 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9452 9453 case llvm::Triple::riscv32: 9454 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9455 case llvm::Triple::riscv64: 9456 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9457 9458 case llvm::Triple::systemz: { 9459 bool HasVector = getTarget().getABI() == "vector"; 9460 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9461 } 9462 9463 case llvm::Triple::tce: 9464 case llvm::Triple::tcele: 9465 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9466 9467 case llvm::Triple::x86: { 9468 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9469 bool RetSmallStructInRegABI = 9470 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9471 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9472 9473 if (Triple.getOS() == llvm::Triple::Win32) { 9474 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9475 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9476 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9477 } else { 9478 return SetCGInfo(new X86_32TargetCodeGenInfo( 9479 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9480 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9481 CodeGenOpts.FloatABI == "soft")); 9482 } 9483 } 9484 9485 case llvm::Triple::x86_64: { 9486 StringRef ABI = getTarget().getABI(); 9487 X86AVXABILevel AVXLevel = 9488 (ABI == "avx512" 9489 ? X86AVXABILevel::AVX512 9490 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9491 9492 switch (Triple.getOS()) { 9493 case llvm::Triple::Win32: 9494 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9495 case llvm::Triple::PS4: 9496 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9497 default: 9498 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9499 } 9500 } 9501 case llvm::Triple::hexagon: 9502 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9503 case llvm::Triple::lanai: 9504 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9505 case llvm::Triple::r600: 9506 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9507 case llvm::Triple::amdgcn: 9508 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9509 case llvm::Triple::sparc: 9510 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9511 case llvm::Triple::sparcv9: 9512 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9513 case llvm::Triple::xcore: 9514 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9515 case llvm::Triple::arc: 9516 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9517 case llvm::Triple::spir: 9518 case llvm::Triple::spir64: 9519 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9520 } 9521 } 9522 9523 /// Create an OpenCL kernel for an enqueued block. 9524 /// 9525 /// The kernel has the same function type as the block invoke function. Its 9526 /// name is the name of the block invoke function postfixed with "_kernel". 9527 /// It simply calls the block invoke function then returns. 9528 llvm::Function * 9529 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9530 llvm::Function *Invoke, 9531 llvm::Value *BlockLiteral) const { 9532 auto *InvokeFT = Invoke->getFunctionType(); 9533 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9534 for (auto &P : InvokeFT->params()) 9535 ArgTys.push_back(P); 9536 auto &C = CGF.getLLVMContext(); 9537 std::string Name = Invoke->getName().str() + "_kernel"; 9538 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9539 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9540 &CGF.CGM.getModule()); 9541 auto IP = CGF.Builder.saveIP(); 9542 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9543 auto &Builder = CGF.Builder; 9544 Builder.SetInsertPoint(BB); 9545 llvm::SmallVector<llvm::Value *, 2> Args; 9546 for (auto &A : F->args()) 9547 Args.push_back(&A); 9548 Builder.CreateCall(Invoke, Args); 9549 Builder.CreateRetVoid(); 9550 Builder.restoreIP(IP); 9551 return F; 9552 } 9553 9554 /// Create an OpenCL kernel for an enqueued block. 9555 /// 9556 /// The type of the first argument (the block literal) is the struct type 9557 /// of the block literal instead of a pointer type. The first argument 9558 /// (block literal) is passed directly by value to the kernel. The kernel 9559 /// allocates the same type of struct on stack and stores the block literal 9560 /// to it and passes its pointer to the block invoke function. The kernel 9561 /// has "enqueued-block" function attribute and kernel argument metadata. 9562 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9563 CodeGenFunction &CGF, llvm::Function *Invoke, 9564 llvm::Value *BlockLiteral) const { 9565 auto &Builder = CGF.Builder; 9566 auto &C = CGF.getLLVMContext(); 9567 9568 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9569 auto *InvokeFT = Invoke->getFunctionType(); 9570 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9571 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9572 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9573 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9574 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9575 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9576 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9577 9578 ArgTys.push_back(BlockTy); 9579 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9580 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9581 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9582 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9583 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9584 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9585 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9586 ArgTys.push_back(InvokeFT->getParamType(I)); 9587 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9588 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9589 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9590 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9591 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9592 ArgNames.push_back( 9593 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9594 } 9595 std::string Name = Invoke->getName().str() + "_kernel"; 9596 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9597 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9598 &CGF.CGM.getModule()); 9599 F->addFnAttr("enqueued-block"); 9600 auto IP = CGF.Builder.saveIP(); 9601 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9602 Builder.SetInsertPoint(BB); 9603 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9604 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9605 BlockPtr->setAlignment(BlockAlign); 9606 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9607 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9608 llvm::SmallVector<llvm::Value *, 2> Args; 9609 Args.push_back(Cast); 9610 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9611 Args.push_back(I); 9612 Builder.CreateCall(Invoke, Args); 9613 Builder.CreateRetVoid(); 9614 Builder.restoreIP(IP); 9615 9616 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9617 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9618 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9619 F->setMetadata("kernel_arg_base_type", 9620 llvm::MDNode::get(C, ArgBaseTypeNames)); 9621 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9622 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9623 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9624 9625 return F; 9626 } 9627