1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
43   }
44 }
45 
46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
51 ABIArgInfo
52 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
53                                  llvm::Type *Padding) const {
54   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
55                                  ByRef, Realign, Padding);
56 }
57 
58 ABIArgInfo
59 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
60   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
61                                       /*ByRef*/ false, Realign);
62 }
63 
64 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
65                              QualType Ty) const {
66   return Address::invalid();
67 }
68 
69 ABIInfo::~ABIInfo() {}
70 
71 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
72                                               CGCXXABI &CXXABI) {
73   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
74   if (!RD)
75     return CGCXXABI::RAA_Default;
76   return CXXABI.getRecordArgABI(RD);
77 }
78 
79 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
80                                               CGCXXABI &CXXABI) {
81   const RecordType *RT = T->getAs<RecordType>();
82   if (!RT)
83     return CGCXXABI::RAA_Default;
84   return getRecordArgABI(RT, CXXABI);
85 }
86 
87 /// Pass transparent unions as if they were the type of the first element. Sema
88 /// should ensure that all elements of the union have the same "machine type".
89 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
90   if (const RecordType *UT = Ty->getAsUnionType()) {
91     const RecordDecl *UD = UT->getDecl();
92     if (UD->hasAttr<TransparentUnionAttr>()) {
93       assert(!UD->field_empty() && "sema created an empty transparent union");
94       return UD->field_begin()->getType();
95     }
96   }
97   return Ty;
98 }
99 
100 CGCXXABI &ABIInfo::getCXXABI() const {
101   return CGT.getCXXABI();
102 }
103 
104 ASTContext &ABIInfo::getContext() const {
105   return CGT.getContext();
106 }
107 
108 llvm::LLVMContext &ABIInfo::getVMContext() const {
109   return CGT.getLLVMContext();
110 }
111 
112 const llvm::DataLayout &ABIInfo::getDataLayout() const {
113   return CGT.getDataLayout();
114 }
115 
116 const TargetInfo &ABIInfo::getTarget() const {
117   return CGT.getTarget();
118 }
119 
120 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
121   return false;
122 }
123 
124 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
125                                                 uint64_t Members) const {
126   return false;
127 }
128 
129 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
130   return false;
131 }
132 
133 void ABIArgInfo::dump() const {
134   raw_ostream &OS = llvm::errs();
135   OS << "(ABIArgInfo Kind=";
136   switch (TheKind) {
137   case Direct:
138     OS << "Direct Type=";
139     if (llvm::Type *Ty = getCoerceToType())
140       Ty->print(OS);
141     else
142       OS << "null";
143     break;
144   case Extend:
145     OS << "Extend";
146     break;
147   case Ignore:
148     OS << "Ignore";
149     break;
150   case InAlloca:
151     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
152     break;
153   case Indirect:
154     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
155        << " ByVal=" << getIndirectByVal()
156        << " Realign=" << getIndirectRealign();
157     break;
158   case Expand:
159     OS << "Expand";
160     break;
161   }
162   OS << ")\n";
163 }
164 
165 /// Emit va_arg for a platform using the common void* representation,
166 /// where arguments are simply emitted in an array of slots on the stack.
167 ///
168 /// This version implements the core direct-value passing rules.
169 ///
170 /// \param SlotSize - The size and alignment of a stack slot.
171 ///   Each argument will be allocated to a multiple of this number of
172 ///   slots, and all the slots will be aligned to this value.
173 /// \param AllowHigherAlign - The slot alignment is not a cap;
174 ///   an argument type with an alignment greater than the slot size
175 ///   will be emitted on a higher-alignment address, potentially
176 ///   leaving one or more empty slots behind as padding.  If this
177 ///   is false, the returned address might be less-aligned than
178 ///   DirectAlign.
179 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
180                                       Address VAListAddr,
181                                       llvm::Type *DirectTy,
182                                       CharUnits DirectSize,
183                                       CharUnits DirectAlign,
184                                       CharUnits SlotSize,
185                                       bool AllowHigherAlign) {
186   // Cast the element type to i8* if necessary.  Some platforms define
187   // va_list as a struct containing an i8* instead of just an i8*.
188   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
189     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
190 
191   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
192 
193   // If the CC aligns values higher than the slot size, do so if needed.
194   Address Addr = Address::invalid();
195   if (AllowHigherAlign && DirectAlign > SlotSize) {
196     llvm::Value *PtrAsInt = Ptr;
197     PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
198     PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
199           llvm::ConstantInt::get(CGF.IntPtrTy, DirectAlign.getQuantity() - 1));
200     PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
201              llvm::ConstantInt::get(CGF.IntPtrTy, -DirectAlign.getQuantity()));
202     Addr = Address(CGF.Builder.CreateIntToPtr(PtrAsInt, Ptr->getType(),
203                                               "argp.cur.aligned"),
204                    DirectAlign);
205   } else {
206     Addr = Address(Ptr, SlotSize);
207   }
208 
209   // Advance the pointer past the argument, then store that back.
210   CharUnits FullDirectSize = DirectSize.RoundUpToAlignment(SlotSize);
211   llvm::Value *NextPtr =
212     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
213                                            "argp.next");
214   CGF.Builder.CreateStore(NextPtr, VAListAddr);
215 
216   // If the argument is smaller than a slot, and this is a big-endian
217   // target, the argument will be right-adjusted in its slot.
218   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
219     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
220   }
221 
222   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
223   return Addr;
224 }
225 
226 /// Emit va_arg for a platform using the common void* representation,
227 /// where arguments are simply emitted in an array of slots on the stack.
228 ///
229 /// \param IsIndirect - Values of this type are passed indirectly.
230 /// \param ValueInfo - The size and alignment of this type, generally
231 ///   computed with getContext().getTypeInfoInChars(ValueTy).
232 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
233 ///   Each argument will be allocated to a multiple of this number of
234 ///   slots, and all the slots will be aligned to this value.
235 /// \param AllowHigherAlign - The slot alignment is not a cap;
236 ///   an argument type with an alignment greater than the slot size
237 ///   will be emitted on a higher-alignment address, potentially
238 ///   leaving one or more empty slots behind as padding.
239 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
240                                 QualType ValueTy, bool IsIndirect,
241                                 std::pair<CharUnits, CharUnits> ValueInfo,
242                                 CharUnits SlotSizeAndAlign,
243                                 bool AllowHigherAlign) {
244   // The size and alignment of the value that was passed directly.
245   CharUnits DirectSize, DirectAlign;
246   if (IsIndirect) {
247     DirectSize = CGF.getPointerSize();
248     DirectAlign = CGF.getPointerAlign();
249   } else {
250     DirectSize = ValueInfo.first;
251     DirectAlign = ValueInfo.second;
252   }
253 
254   // Cast the address we've calculated to the right type.
255   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
256   if (IsIndirect)
257     DirectTy = DirectTy->getPointerTo(0);
258 
259   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
260                                         DirectSize, DirectAlign,
261                                         SlotSizeAndAlign,
262                                         AllowHigherAlign);
263 
264   if (IsIndirect) {
265     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
266   }
267 
268   return Addr;
269 
270 }
271 
272 static Address emitMergePHI(CodeGenFunction &CGF,
273                             Address Addr1, llvm::BasicBlock *Block1,
274                             Address Addr2, llvm::BasicBlock *Block2,
275                             const llvm::Twine &Name = "") {
276   assert(Addr1.getType() == Addr2.getType());
277   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
278   PHI->addIncoming(Addr1.getPointer(), Block1);
279   PHI->addIncoming(Addr2.getPointer(), Block2);
280   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
281   return Address(PHI, Align);
282 }
283 
284 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
285 
286 // If someone can figure out a general rule for this, that would be great.
287 // It's probably just doomed to be platform-dependent, though.
288 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
289   // Verified for:
290   //   x86-64     FreeBSD, Linux, Darwin
291   //   x86-32     FreeBSD, Linux, Darwin
292   //   PowerPC    Linux, Darwin
293   //   ARM        Darwin (*not* EABI)
294   //   AArch64    Linux
295   return 32;
296 }
297 
298 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
299                                      const FunctionNoProtoType *fnType) const {
300   // The following conventions are known to require this to be false:
301   //   x86_stdcall
302   //   MIPS
303   // For everything else, we just prefer false unless we opt out.
304   return false;
305 }
306 
307 void
308 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
309                                              llvm::SmallString<24> &Opt) const {
310   // This assumes the user is passing a library name like "rt" instead of a
311   // filename like "librt.a/so", and that they don't care whether it's static or
312   // dynamic.
313   Opt = "-l";
314   Opt += Lib;
315 }
316 
317 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
318 
319 /// isEmptyField - Return true iff a the field is "empty", that is it
320 /// is an unnamed bit-field or an (array of) empty record(s).
321 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
322                          bool AllowArrays) {
323   if (FD->isUnnamedBitfield())
324     return true;
325 
326   QualType FT = FD->getType();
327 
328   // Constant arrays of empty records count as empty, strip them off.
329   // Constant arrays of zero length always count as empty.
330   if (AllowArrays)
331     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
332       if (AT->getSize() == 0)
333         return true;
334       FT = AT->getElementType();
335     }
336 
337   const RecordType *RT = FT->getAs<RecordType>();
338   if (!RT)
339     return false;
340 
341   // C++ record fields are never empty, at least in the Itanium ABI.
342   //
343   // FIXME: We should use a predicate for whether this behavior is true in the
344   // current ABI.
345   if (isa<CXXRecordDecl>(RT->getDecl()))
346     return false;
347 
348   return isEmptyRecord(Context, FT, AllowArrays);
349 }
350 
351 /// isEmptyRecord - Return true iff a structure contains only empty
352 /// fields. Note that a structure with a flexible array member is not
353 /// considered empty.
354 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
355   const RecordType *RT = T->getAs<RecordType>();
356   if (!RT)
357     return 0;
358   const RecordDecl *RD = RT->getDecl();
359   if (RD->hasFlexibleArrayMember())
360     return false;
361 
362   // If this is a C++ record, check the bases first.
363   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
364     for (const auto &I : CXXRD->bases())
365       if (!isEmptyRecord(Context, I.getType(), true))
366         return false;
367 
368   for (const auto *I : RD->fields())
369     if (!isEmptyField(Context, I, AllowArrays))
370       return false;
371   return true;
372 }
373 
374 /// isSingleElementStruct - Determine if a structure is a "single
375 /// element struct", i.e. it has exactly one non-empty field or
376 /// exactly one field which is itself a single element
377 /// struct. Structures with flexible array members are never
378 /// considered single element structs.
379 ///
380 /// \return The field declaration for the single non-empty field, if
381 /// it exists.
382 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
383   const RecordType *RT = T->getAs<RecordType>();
384   if (!RT)
385     return nullptr;
386 
387   const RecordDecl *RD = RT->getDecl();
388   if (RD->hasFlexibleArrayMember())
389     return nullptr;
390 
391   const Type *Found = nullptr;
392 
393   // If this is a C++ record, check the bases first.
394   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
395     for (const auto &I : CXXRD->bases()) {
396       // Ignore empty records.
397       if (isEmptyRecord(Context, I.getType(), true))
398         continue;
399 
400       // If we already found an element then this isn't a single-element struct.
401       if (Found)
402         return nullptr;
403 
404       // If this is non-empty and not a single element struct, the composite
405       // cannot be a single element struct.
406       Found = isSingleElementStruct(I.getType(), Context);
407       if (!Found)
408         return nullptr;
409     }
410   }
411 
412   // Check for single element.
413   for (const auto *FD : RD->fields()) {
414     QualType FT = FD->getType();
415 
416     // Ignore empty fields.
417     if (isEmptyField(Context, FD, true))
418       continue;
419 
420     // If we already found an element then this isn't a single-element
421     // struct.
422     if (Found)
423       return nullptr;
424 
425     // Treat single element arrays as the element.
426     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
427       if (AT->getSize().getZExtValue() != 1)
428         break;
429       FT = AT->getElementType();
430     }
431 
432     if (!isAggregateTypeForABI(FT)) {
433       Found = FT.getTypePtr();
434     } else {
435       Found = isSingleElementStruct(FT, Context);
436       if (!Found)
437         return nullptr;
438     }
439   }
440 
441   // We don't consider a struct a single-element struct if it has
442   // padding beyond the element type.
443   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
444     return nullptr;
445 
446   return Found;
447 }
448 
449 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
450   // Treat complex types as the element type.
451   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
452     Ty = CTy->getElementType();
453 
454   // Check for a type which we know has a simple scalar argument-passing
455   // convention without any padding.  (We're specifically looking for 32
456   // and 64-bit integer and integer-equivalents, float, and double.)
457   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
458       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
459     return false;
460 
461   uint64_t Size = Context.getTypeSize(Ty);
462   return Size == 32 || Size == 64;
463 }
464 
465 /// canExpandIndirectArgument - Test whether an argument type which is to be
466 /// passed indirectly (on the stack) would have the equivalent layout if it was
467 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
468 /// inhibiting optimizations.
469 ///
470 // FIXME: This predicate is missing many cases, currently it just follows
471 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
472 // should probably make this smarter, or better yet make the LLVM backend
473 // capable of handling it.
474 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
475   // We can only expand structure types.
476   const RecordType *RT = Ty->getAs<RecordType>();
477   if (!RT)
478     return false;
479 
480   // We can only expand (C) structures.
481   //
482   // FIXME: This needs to be generalized to handle classes as well.
483   const RecordDecl *RD = RT->getDecl();
484   if (!RD->isStruct())
485     return false;
486 
487   // We try to expand CLike CXXRecordDecl.
488   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
489     if (!CXXRD->isCLike())
490       return false;
491   }
492 
493   uint64_t Size = 0;
494 
495   for (const auto *FD : RD->fields()) {
496     if (!is32Or64BitBasicType(FD->getType(), Context))
497       return false;
498 
499     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
500     // how to expand them yet, and the predicate for telling if a bitfield still
501     // counts as "basic" is more complicated than what we were doing previously.
502     if (FD->isBitField())
503       return false;
504 
505     Size += Context.getTypeSize(FD->getType());
506   }
507 
508   // Make sure there are not any holes in the struct.
509   if (Size != Context.getTypeSize(Ty))
510     return false;
511 
512   return true;
513 }
514 
515 namespace {
516 /// DefaultABIInfo - The default implementation for ABI specific
517 /// details. This implementation provides information which results in
518 /// self-consistent and sensible LLVM IR generation, but does not
519 /// conform to any particular ABI.
520 class DefaultABIInfo : public ABIInfo {
521 public:
522   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
523 
524   ABIArgInfo classifyReturnType(QualType RetTy) const;
525   ABIArgInfo classifyArgumentType(QualType RetTy) const;
526 
527   void computeInfo(CGFunctionInfo &FI) const override {
528     if (!getCXXABI().classifyReturnType(FI))
529       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
530     for (auto &I : FI.arguments())
531       I.info = classifyArgumentType(I.type);
532   }
533 
534   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
535                     QualType Ty) const override;
536 };
537 
538 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
539 public:
540   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
541     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
542 };
543 
544 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
545                                   QualType Ty) const {
546   return Address::invalid();
547 }
548 
549 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
550   Ty = useFirstFieldIfTransparentUnion(Ty);
551 
552   if (isAggregateTypeForABI(Ty)) {
553     // Records with non-trivial destructors/copy-constructors should not be
554     // passed by value.
555     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
556       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
557 
558     return getNaturalAlignIndirect(Ty);
559   }
560 
561   // Treat an enum type as its underlying type.
562   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
563     Ty = EnumTy->getDecl()->getIntegerType();
564 
565   return (Ty->isPromotableIntegerType() ?
566           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
567 }
568 
569 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
570   if (RetTy->isVoidType())
571     return ABIArgInfo::getIgnore();
572 
573   if (isAggregateTypeForABI(RetTy))
574     return getNaturalAlignIndirect(RetTy);
575 
576   // Treat an enum type as its underlying type.
577   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
578     RetTy = EnumTy->getDecl()->getIntegerType();
579 
580   return (RetTy->isPromotableIntegerType() ?
581           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
582 }
583 
584 //===----------------------------------------------------------------------===//
585 // WebAssembly ABI Implementation
586 //
587 // This is a very simple ABI that relies a lot on DefaultABIInfo.
588 //===----------------------------------------------------------------------===//
589 
590 class WebAssemblyABIInfo final : public DefaultABIInfo {
591 public:
592   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
593       : DefaultABIInfo(CGT) {}
594 
595 private:
596   ABIArgInfo classifyReturnType(QualType RetTy) const;
597   ABIArgInfo classifyArgumentType(QualType Ty) const;
598 
599   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
600   // non-virtual, but computeInfo is virtual, so we overload that.
601   void computeInfo(CGFunctionInfo &FI) const override {
602     if (!getCXXABI().classifyReturnType(FI))
603       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
604     for (auto &Arg : FI.arguments())
605       Arg.info = classifyArgumentType(Arg.type);
606   }
607 };
608 
609 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
610 public:
611   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
612       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
613 };
614 
615 /// \brief Classify argument of given type \p Ty.
616 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
617   Ty = useFirstFieldIfTransparentUnion(Ty);
618 
619   if (isAggregateTypeForABI(Ty)) {
620     // Records with non-trivial destructors/copy-constructors should not be
621     // passed by value.
622     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
623       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
624     // Ignore empty structs/unions.
625     if (isEmptyRecord(getContext(), Ty, true))
626       return ABIArgInfo::getIgnore();
627     // Lower single-element structs to just pass a regular value. TODO: We
628     // could do reasonable-size multiple-element structs too, using getExpand(),
629     // though watch out for things like bitfields.
630     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
631       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
632   }
633 
634   // Otherwise just do the default thing.
635   return DefaultABIInfo::classifyArgumentType(Ty);
636 }
637 
638 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
639   if (isAggregateTypeForABI(RetTy)) {
640     // Records with non-trivial destructors/copy-constructors should not be
641     // returned by value.
642     if (!getRecordArgABI(RetTy, getCXXABI())) {
643       // Ignore empty structs/unions.
644       if (isEmptyRecord(getContext(), RetTy, true))
645         return ABIArgInfo::getIgnore();
646       // Lower single-element structs to just return a regular value. TODO: We
647       // could do reasonable-size multiple-element structs too, using
648       // ABIArgInfo::getDirect().
649       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
650         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
651     }
652   }
653 
654   // Otherwise just do the default thing.
655   return DefaultABIInfo::classifyReturnType(RetTy);
656 }
657 
658 //===----------------------------------------------------------------------===//
659 // le32/PNaCl bitcode ABI Implementation
660 //
661 // This is a simplified version of the x86_32 ABI.  Arguments and return values
662 // are always passed on the stack.
663 //===----------------------------------------------------------------------===//
664 
665 class PNaClABIInfo : public ABIInfo {
666  public:
667   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
668 
669   ABIArgInfo classifyReturnType(QualType RetTy) const;
670   ABIArgInfo classifyArgumentType(QualType RetTy) const;
671 
672   void computeInfo(CGFunctionInfo &FI) const override;
673   Address EmitVAArg(CodeGenFunction &CGF,
674                     Address VAListAddr, QualType Ty) const override;
675 };
676 
677 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
678  public:
679   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
680     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
681 };
682 
683 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
684   if (!getCXXABI().classifyReturnType(FI))
685     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
686 
687   for (auto &I : FI.arguments())
688     I.info = classifyArgumentType(I.type);
689 }
690 
691 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
692                                 QualType Ty) const {
693   return Address::invalid();
694 }
695 
696 /// \brief Classify argument of given type \p Ty.
697 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
698   if (isAggregateTypeForABI(Ty)) {
699     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
700       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
701     return getNaturalAlignIndirect(Ty);
702   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
703     // Treat an enum type as its underlying type.
704     Ty = EnumTy->getDecl()->getIntegerType();
705   } else if (Ty->isFloatingType()) {
706     // Floating-point types don't go inreg.
707     return ABIArgInfo::getDirect();
708   }
709 
710   return (Ty->isPromotableIntegerType() ?
711           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
712 }
713 
714 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
715   if (RetTy->isVoidType())
716     return ABIArgInfo::getIgnore();
717 
718   // In the PNaCl ABI we always return records/structures on the stack.
719   if (isAggregateTypeForABI(RetTy))
720     return getNaturalAlignIndirect(RetTy);
721 
722   // Treat an enum type as its underlying type.
723   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
724     RetTy = EnumTy->getDecl()->getIntegerType();
725 
726   return (RetTy->isPromotableIntegerType() ?
727           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
728 }
729 
730 /// IsX86_MMXType - Return true if this is an MMX type.
731 bool IsX86_MMXType(llvm::Type *IRType) {
732   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
733   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
734     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
735     IRType->getScalarSizeInBits() != 64;
736 }
737 
738 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
739                                           StringRef Constraint,
740                                           llvm::Type* Ty) {
741   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
742     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
743       // Invalid MMX constraint
744       return nullptr;
745     }
746 
747     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
748   }
749 
750   // No operation needed
751   return Ty;
752 }
753 
754 /// Returns true if this type can be passed in SSE registers with the
755 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
756 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
757   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
758     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
759       return true;
760   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
761     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
762     // registers specially.
763     unsigned VecSize = Context.getTypeSize(VT);
764     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
765       return true;
766   }
767   return false;
768 }
769 
770 /// Returns true if this aggregate is small enough to be passed in SSE registers
771 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
772 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
773   return NumMembers <= 4;
774 }
775 
776 //===----------------------------------------------------------------------===//
777 // X86-32 ABI Implementation
778 //===----------------------------------------------------------------------===//
779 
780 /// \brief Similar to llvm::CCState, but for Clang.
781 struct CCState {
782   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
783 
784   unsigned CC;
785   unsigned FreeRegs;
786   unsigned FreeSSERegs;
787 };
788 
789 /// X86_32ABIInfo - The X86-32 ABI information.
790 class X86_32ABIInfo : public ABIInfo {
791   enum Class {
792     Integer,
793     Float
794   };
795 
796   static const unsigned MinABIStackAlignInBytes = 4;
797 
798   bool IsDarwinVectorABI;
799   bool IsRetSmallStructInRegABI;
800   bool IsWin32StructABI;
801   bool IsSoftFloatABI;
802   bool IsMCUABI;
803   unsigned DefaultNumRegisterParameters;
804 
805   static bool isRegisterSize(unsigned Size) {
806     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
807   }
808 
809   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
810     // FIXME: Assumes vectorcall is in use.
811     return isX86VectorTypeForVectorCall(getContext(), Ty);
812   }
813 
814   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
815                                          uint64_t NumMembers) const override {
816     // FIXME: Assumes vectorcall is in use.
817     return isX86VectorCallAggregateSmallEnough(NumMembers);
818   }
819 
820   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
821 
822   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
823   /// such that the argument will be passed in memory.
824   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
825 
826   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
827 
828   /// \brief Return the alignment to use for the given type on the stack.
829   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
830 
831   Class classify(QualType Ty) const;
832   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
833   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
834   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
835 
836   /// \brief Rewrite the function info so that all memory arguments use
837   /// inalloca.
838   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
839 
840   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
841                            CharUnits &StackOffset, ABIArgInfo &Info,
842                            QualType Type) const;
843 
844 public:
845 
846   void computeInfo(CGFunctionInfo &FI) const override;
847   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
848                     QualType Ty) const override;
849 
850   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
851                 bool RetSmallStructInRegABI, bool Win32StructABI,
852                 unsigned NumRegisterParameters, bool SoftFloatABI)
853     : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
854       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
855       IsWin32StructABI(Win32StructABI),
856       IsSoftFloatABI(SoftFloatABI),
857       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
858       DefaultNumRegisterParameters(NumRegisterParameters) {}
859 };
860 
861 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
862 public:
863   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
864                           bool RetSmallStructInRegABI, bool Win32StructABI,
865                           unsigned NumRegisterParameters, bool SoftFloatABI)
866       : TargetCodeGenInfo(new X86_32ABIInfo(
867             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
868             NumRegisterParameters, SoftFloatABI)) {}
869 
870   static bool isStructReturnInRegABI(
871       const llvm::Triple &Triple, const CodeGenOptions &Opts);
872 
873   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
874                            CodeGen::CodeGenModule &CGM) const override;
875 
876   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
877     // Darwin uses different dwarf register numbers for EH.
878     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
879     return 4;
880   }
881 
882   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
883                                llvm::Value *Address) const override;
884 
885   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
886                                   StringRef Constraint,
887                                   llvm::Type* Ty) const override {
888     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
889   }
890 
891   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
892                                 std::string &Constraints,
893                                 std::vector<llvm::Type *> &ResultRegTypes,
894                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
895                                 std::vector<LValue> &ResultRegDests,
896                                 std::string &AsmString,
897                                 unsigned NumOutputs) const override;
898 
899   llvm::Constant *
900   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
901     unsigned Sig = (0xeb << 0) |  // jmp rel8
902                    (0x06 << 8) |  //           .+0x08
903                    ('F' << 16) |
904                    ('T' << 24);
905     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
906   }
907 };
908 
909 }
910 
911 /// Rewrite input constraint references after adding some output constraints.
912 /// In the case where there is one output and one input and we add one output,
913 /// we need to replace all operand references greater than or equal to 1:
914 ///     mov $0, $1
915 ///     mov eax, $1
916 /// The result will be:
917 ///     mov $0, $2
918 ///     mov eax, $2
919 static void rewriteInputConstraintReferences(unsigned FirstIn,
920                                              unsigned NumNewOuts,
921                                              std::string &AsmString) {
922   std::string Buf;
923   llvm::raw_string_ostream OS(Buf);
924   size_t Pos = 0;
925   while (Pos < AsmString.size()) {
926     size_t DollarStart = AsmString.find('$', Pos);
927     if (DollarStart == std::string::npos)
928       DollarStart = AsmString.size();
929     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
930     if (DollarEnd == std::string::npos)
931       DollarEnd = AsmString.size();
932     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
933     Pos = DollarEnd;
934     size_t NumDollars = DollarEnd - DollarStart;
935     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
936       // We have an operand reference.
937       size_t DigitStart = Pos;
938       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
939       if (DigitEnd == std::string::npos)
940         DigitEnd = AsmString.size();
941       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
942       unsigned OperandIndex;
943       if (!OperandStr.getAsInteger(10, OperandIndex)) {
944         if (OperandIndex >= FirstIn)
945           OperandIndex += NumNewOuts;
946         OS << OperandIndex;
947       } else {
948         OS << OperandStr;
949       }
950       Pos = DigitEnd;
951     }
952   }
953   AsmString = std::move(OS.str());
954 }
955 
956 /// Add output constraints for EAX:EDX because they are return registers.
957 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
958     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
959     std::vector<llvm::Type *> &ResultRegTypes,
960     std::vector<llvm::Type *> &ResultTruncRegTypes,
961     std::vector<LValue> &ResultRegDests, std::string &AsmString,
962     unsigned NumOutputs) const {
963   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
964 
965   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
966   // larger.
967   if (!Constraints.empty())
968     Constraints += ',';
969   if (RetWidth <= 32) {
970     Constraints += "={eax}";
971     ResultRegTypes.push_back(CGF.Int32Ty);
972   } else {
973     // Use the 'A' constraint for EAX:EDX.
974     Constraints += "=A";
975     ResultRegTypes.push_back(CGF.Int64Ty);
976   }
977 
978   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
979   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
980   ResultTruncRegTypes.push_back(CoerceTy);
981 
982   // Coerce the integer by bitcasting the return slot pointer.
983   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
984                                                   CoerceTy->getPointerTo()));
985   ResultRegDests.push_back(ReturnSlot);
986 
987   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
988 }
989 
990 /// shouldReturnTypeInRegister - Determine if the given type should be
991 /// returned in a register (for the Darwin and MCU ABI).
992 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
993                                                ASTContext &Context) const {
994   uint64_t Size = Context.getTypeSize(Ty);
995 
996   // Type must be register sized.
997   if (!isRegisterSize(Size))
998     return false;
999 
1000   if (Ty->isVectorType()) {
1001     // 64- and 128- bit vectors inside structures are not returned in
1002     // registers.
1003     if (Size == 64 || Size == 128)
1004       return false;
1005 
1006     return true;
1007   }
1008 
1009   // If this is a builtin, pointer, enum, complex type, member pointer, or
1010   // member function pointer it is ok.
1011   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1012       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1013       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1014     return true;
1015 
1016   // Arrays are treated like records.
1017   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1018     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1019 
1020   // Otherwise, it must be a record type.
1021   const RecordType *RT = Ty->getAs<RecordType>();
1022   if (!RT) return false;
1023 
1024   // FIXME: Traverse bases here too.
1025 
1026   // Structure types are passed in register if all fields would be
1027   // passed in a register.
1028   for (const auto *FD : RT->getDecl()->fields()) {
1029     // Empty fields are ignored.
1030     if (isEmptyField(Context, FD, true))
1031       continue;
1032 
1033     // Check fields recursively.
1034     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1035       return false;
1036   }
1037   return true;
1038 }
1039 
1040 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1041   // If the return value is indirect, then the hidden argument is consuming one
1042   // integer register.
1043   if (State.FreeRegs) {
1044     --State.FreeRegs;
1045     return getNaturalAlignIndirectInReg(RetTy);
1046   }
1047   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1048 }
1049 
1050 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1051                                              CCState &State) const {
1052   if (RetTy->isVoidType())
1053     return ABIArgInfo::getIgnore();
1054 
1055   const Type *Base = nullptr;
1056   uint64_t NumElts = 0;
1057   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1058       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1059     // The LLVM struct type for such an aggregate should lower properly.
1060     return ABIArgInfo::getDirect();
1061   }
1062 
1063   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1064     // On Darwin, some vectors are returned in registers.
1065     if (IsDarwinVectorABI) {
1066       uint64_t Size = getContext().getTypeSize(RetTy);
1067 
1068       // 128-bit vectors are a special case; they are returned in
1069       // registers and we need to make sure to pick a type the LLVM
1070       // backend will like.
1071       if (Size == 128)
1072         return ABIArgInfo::getDirect(llvm::VectorType::get(
1073                   llvm::Type::getInt64Ty(getVMContext()), 2));
1074 
1075       // Always return in register if it fits in a general purpose
1076       // register, or if it is 64 bits and has a single element.
1077       if ((Size == 8 || Size == 16 || Size == 32) ||
1078           (Size == 64 && VT->getNumElements() == 1))
1079         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1080                                                             Size));
1081 
1082       return getIndirectReturnResult(RetTy, State);
1083     }
1084 
1085     return ABIArgInfo::getDirect();
1086   }
1087 
1088   if (isAggregateTypeForABI(RetTy)) {
1089     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1090       // Structures with flexible arrays are always indirect.
1091       if (RT->getDecl()->hasFlexibleArrayMember())
1092         return getIndirectReturnResult(RetTy, State);
1093     }
1094 
1095     // If specified, structs and unions are always indirect.
1096     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1097       return getIndirectReturnResult(RetTy, State);
1098 
1099     // Small structures which are register sized are generally returned
1100     // in a register.
1101     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1102       uint64_t Size = getContext().getTypeSize(RetTy);
1103 
1104       // As a special-case, if the struct is a "single-element" struct, and
1105       // the field is of type "float" or "double", return it in a
1106       // floating-point register. (MSVC does not apply this special case.)
1107       // We apply a similar transformation for pointer types to improve the
1108       // quality of the generated IR.
1109       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1110         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1111             || SeltTy->hasPointerRepresentation())
1112           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1113 
1114       // FIXME: We should be able to narrow this integer in cases with dead
1115       // padding.
1116       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1117     }
1118 
1119     return getIndirectReturnResult(RetTy, State);
1120   }
1121 
1122   // Treat an enum type as its underlying type.
1123   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1124     RetTy = EnumTy->getDecl()->getIntegerType();
1125 
1126   return (RetTy->isPromotableIntegerType() ?
1127           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1128 }
1129 
1130 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1131   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1132 }
1133 
1134 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1135   const RecordType *RT = Ty->getAs<RecordType>();
1136   if (!RT)
1137     return 0;
1138   const RecordDecl *RD = RT->getDecl();
1139 
1140   // If this is a C++ record, check the bases first.
1141   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1142     for (const auto &I : CXXRD->bases())
1143       if (!isRecordWithSSEVectorType(Context, I.getType()))
1144         return false;
1145 
1146   for (const auto *i : RD->fields()) {
1147     QualType FT = i->getType();
1148 
1149     if (isSSEVectorType(Context, FT))
1150       return true;
1151 
1152     if (isRecordWithSSEVectorType(Context, FT))
1153       return true;
1154   }
1155 
1156   return false;
1157 }
1158 
1159 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1160                                                  unsigned Align) const {
1161   // Otherwise, if the alignment is less than or equal to the minimum ABI
1162   // alignment, just use the default; the backend will handle this.
1163   if (Align <= MinABIStackAlignInBytes)
1164     return 0; // Use default alignment.
1165 
1166   // On non-Darwin, the stack type alignment is always 4.
1167   if (!IsDarwinVectorABI) {
1168     // Set explicit alignment, since we may need to realign the top.
1169     return MinABIStackAlignInBytes;
1170   }
1171 
1172   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1173   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1174                       isRecordWithSSEVectorType(getContext(), Ty)))
1175     return 16;
1176 
1177   return MinABIStackAlignInBytes;
1178 }
1179 
1180 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1181                                             CCState &State) const {
1182   if (!ByVal) {
1183     if (State.FreeRegs) {
1184       --State.FreeRegs; // Non-byval indirects just use one pointer.
1185       return getNaturalAlignIndirectInReg(Ty);
1186     }
1187     return getNaturalAlignIndirect(Ty, false);
1188   }
1189 
1190   // Compute the byval alignment.
1191   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1192   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1193   if (StackAlign == 0)
1194     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1195 
1196   // If the stack alignment is less than the type alignment, realign the
1197   // argument.
1198   bool Realign = TypeAlign > StackAlign;
1199   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1200                                  /*ByVal=*/true, Realign);
1201 }
1202 
1203 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1204   const Type *T = isSingleElementStruct(Ty, getContext());
1205   if (!T)
1206     T = Ty.getTypePtr();
1207 
1208   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1209     BuiltinType::Kind K = BT->getKind();
1210     if (K == BuiltinType::Float || K == BuiltinType::Double)
1211       return Float;
1212   }
1213   return Integer;
1214 }
1215 
1216 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
1217                                    bool &NeedsPadding) const {
1218   NeedsPadding = false;
1219   if (!IsSoftFloatABI) {
1220     Class C = classify(Ty);
1221     if (C == Float)
1222       return false;
1223   }
1224 
1225   unsigned Size = getContext().getTypeSize(Ty);
1226   unsigned SizeInRegs = (Size + 31) / 32;
1227 
1228   if (SizeInRegs == 0)
1229     return false;
1230 
1231   if (!IsMCUABI) {
1232     if (SizeInRegs > State.FreeRegs) {
1233       State.FreeRegs = 0;
1234       return false;
1235     }
1236   } else {
1237     // The MCU psABI allows passing parameters in-reg even if there are
1238     // earlier parameters that are passed on the stack. Also,
1239     // it does not allow passing >8-byte structs in-register,
1240     // even if there are 3 free registers available.
1241     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1242       return false;
1243   }
1244 
1245   State.FreeRegs -= SizeInRegs;
1246 
1247   if (State.CC == llvm::CallingConv::X86_FastCall ||
1248       State.CC == llvm::CallingConv::X86_VectorCall) {
1249     if (Size > 32)
1250       return false;
1251 
1252     if (Ty->isIntegralOrEnumerationType())
1253       return true;
1254 
1255     if (Ty->isPointerType())
1256       return true;
1257 
1258     if (Ty->isReferenceType())
1259       return true;
1260 
1261     if (State.FreeRegs)
1262       NeedsPadding = true;
1263 
1264     return false;
1265   }
1266 
1267   return true;
1268 }
1269 
1270 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1271                                                CCState &State) const {
1272   // FIXME: Set alignment on indirect arguments.
1273 
1274   Ty = useFirstFieldIfTransparentUnion(Ty);
1275 
1276   // Check with the C++ ABI first.
1277   const RecordType *RT = Ty->getAs<RecordType>();
1278   if (RT) {
1279     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1280     if (RAA == CGCXXABI::RAA_Indirect) {
1281       return getIndirectResult(Ty, false, State);
1282     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1283       // The field index doesn't matter, we'll fix it up later.
1284       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1285     }
1286   }
1287 
1288   // vectorcall adds the concept of a homogenous vector aggregate, similar
1289   // to other targets.
1290   const Type *Base = nullptr;
1291   uint64_t NumElts = 0;
1292   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1293       isHomogeneousAggregate(Ty, Base, NumElts)) {
1294     if (State.FreeSSERegs >= NumElts) {
1295       State.FreeSSERegs -= NumElts;
1296       if (Ty->isBuiltinType() || Ty->isVectorType())
1297         return ABIArgInfo::getDirect();
1298       return ABIArgInfo::getExpand();
1299     }
1300     return getIndirectResult(Ty, /*ByVal=*/false, State);
1301   }
1302 
1303   if (isAggregateTypeForABI(Ty)) {
1304     if (RT) {
1305       // Structs are always byval on win32, regardless of what they contain.
1306       if (IsWin32StructABI)
1307         return getIndirectResult(Ty, true, State);
1308 
1309       // Structures with flexible arrays are always indirect.
1310       if (RT->getDecl()->hasFlexibleArrayMember())
1311         return getIndirectResult(Ty, true, State);
1312     }
1313 
1314     // Ignore empty structs/unions.
1315     if (isEmptyRecord(getContext(), Ty, true))
1316       return ABIArgInfo::getIgnore();
1317 
1318     llvm::LLVMContext &LLVMContext = getVMContext();
1319     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1320     bool NeedsPadding;
1321     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1322       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1323       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1324       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1325       return ABIArgInfo::getDirectInReg(Result);
1326     }
1327     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1328 
1329     // Expand small (<= 128-bit) record types when we know that the stack layout
1330     // of those arguments will match the struct. This is important because the
1331     // LLVM backend isn't smart enough to remove byval, which inhibits many
1332     // optimizations.
1333     if (getContext().getTypeSize(Ty) <= 4*32 &&
1334         canExpandIndirectArgument(Ty, getContext()))
1335       return ABIArgInfo::getExpandWithPadding(
1336           State.CC == llvm::CallingConv::X86_FastCall ||
1337               State.CC == llvm::CallingConv::X86_VectorCall,
1338           PaddingType);
1339 
1340     return getIndirectResult(Ty, true, State);
1341   }
1342 
1343   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1344     // On Darwin, some vectors are passed in memory, we handle this by passing
1345     // it as an i8/i16/i32/i64.
1346     if (IsDarwinVectorABI) {
1347       uint64_t Size = getContext().getTypeSize(Ty);
1348       if ((Size == 8 || Size == 16 || Size == 32) ||
1349           (Size == 64 && VT->getNumElements() == 1))
1350         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1351                                                             Size));
1352     }
1353 
1354     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1355       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1356 
1357     return ABIArgInfo::getDirect();
1358   }
1359 
1360 
1361   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1362     Ty = EnumTy->getDecl()->getIntegerType();
1363 
1364   bool NeedsPadding;
1365   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1366 
1367   if (Ty->isPromotableIntegerType()) {
1368     if (InReg)
1369       return ABIArgInfo::getExtendInReg();
1370     return ABIArgInfo::getExtend();
1371   }
1372   if (InReg)
1373     return ABIArgInfo::getDirectInReg();
1374   return ABIArgInfo::getDirect();
1375 }
1376 
1377 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1378   CCState State(FI.getCallingConvention());
1379   if (State.CC == llvm::CallingConv::X86_FastCall)
1380     State.FreeRegs = 2;
1381   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1382     State.FreeRegs = 2;
1383     State.FreeSSERegs = 6;
1384   } else if (FI.getHasRegParm())
1385     State.FreeRegs = FI.getRegParm();
1386   else if (IsMCUABI)
1387     State.FreeRegs = 3;
1388   else
1389     State.FreeRegs = DefaultNumRegisterParameters;
1390 
1391   if (!getCXXABI().classifyReturnType(FI)) {
1392     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1393   } else if (FI.getReturnInfo().isIndirect()) {
1394     // The C++ ABI is not aware of register usage, so we have to check if the
1395     // return value was sret and put it in a register ourselves if appropriate.
1396     if (State.FreeRegs) {
1397       --State.FreeRegs;  // The sret parameter consumes a register.
1398       FI.getReturnInfo().setInReg(true);
1399     }
1400   }
1401 
1402   // The chain argument effectively gives us another free register.
1403   if (FI.isChainCall())
1404     ++State.FreeRegs;
1405 
1406   bool UsedInAlloca = false;
1407   for (auto &I : FI.arguments()) {
1408     I.info = classifyArgumentType(I.type, State);
1409     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1410   }
1411 
1412   // If we needed to use inalloca for any argument, do a second pass and rewrite
1413   // all the memory arguments to use inalloca.
1414   if (UsedInAlloca)
1415     rewriteWithInAlloca(FI);
1416 }
1417 
1418 void
1419 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1420                                    CharUnits &StackOffset, ABIArgInfo &Info,
1421                                    QualType Type) const {
1422   // Arguments are always 4-byte-aligned.
1423   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1424 
1425   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1426   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1427   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1428   StackOffset += getContext().getTypeSizeInChars(Type);
1429 
1430   // Insert padding bytes to respect alignment.
1431   CharUnits FieldEnd = StackOffset;
1432   StackOffset = FieldEnd.RoundUpToAlignment(FieldAlign);
1433   if (StackOffset != FieldEnd) {
1434     CharUnits NumBytes = StackOffset - FieldEnd;
1435     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1436     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1437     FrameFields.push_back(Ty);
1438   }
1439 }
1440 
1441 static bool isArgInAlloca(const ABIArgInfo &Info) {
1442   // Leave ignored and inreg arguments alone.
1443   switch (Info.getKind()) {
1444   case ABIArgInfo::InAlloca:
1445     return true;
1446   case ABIArgInfo::Indirect:
1447     assert(Info.getIndirectByVal());
1448     return true;
1449   case ABIArgInfo::Ignore:
1450     return false;
1451   case ABIArgInfo::Direct:
1452   case ABIArgInfo::Extend:
1453   case ABIArgInfo::Expand:
1454     if (Info.getInReg())
1455       return false;
1456     return true;
1457   }
1458   llvm_unreachable("invalid enum");
1459 }
1460 
1461 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1462   assert(IsWin32StructABI && "inalloca only supported on win32");
1463 
1464   // Build a packed struct type for all of the arguments in memory.
1465   SmallVector<llvm::Type *, 6> FrameFields;
1466 
1467   // The stack alignment is always 4.
1468   CharUnits StackAlign = CharUnits::fromQuantity(4);
1469 
1470   CharUnits StackOffset;
1471   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1472 
1473   // Put 'this' into the struct before 'sret', if necessary.
1474   bool IsThisCall =
1475       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1476   ABIArgInfo &Ret = FI.getReturnInfo();
1477   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1478       isArgInAlloca(I->info)) {
1479     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1480     ++I;
1481   }
1482 
1483   // Put the sret parameter into the inalloca struct if it's in memory.
1484   if (Ret.isIndirect() && !Ret.getInReg()) {
1485     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1486     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1487     // On Windows, the hidden sret parameter is always returned in eax.
1488     Ret.setInAllocaSRet(IsWin32StructABI);
1489   }
1490 
1491   // Skip the 'this' parameter in ecx.
1492   if (IsThisCall)
1493     ++I;
1494 
1495   // Put arguments passed in memory into the struct.
1496   for (; I != E; ++I) {
1497     if (isArgInAlloca(I->info))
1498       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1499   }
1500 
1501   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1502                                         /*isPacked=*/true),
1503                   StackAlign);
1504 }
1505 
1506 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1507                                  Address VAListAddr, QualType Ty) const {
1508 
1509   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1510 
1511   // x86-32 changes the alignment of certain arguments on the stack.
1512   //
1513   // Just messing with TypeInfo like this works because we never pass
1514   // anything indirectly.
1515   TypeInfo.second = CharUnits::fromQuantity(
1516                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1517 
1518   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1519                           TypeInfo, CharUnits::fromQuantity(4),
1520                           /*AllowHigherAlign*/ true);
1521 }
1522 
1523 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1524     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1525   assert(Triple.getArch() == llvm::Triple::x86);
1526 
1527   switch (Opts.getStructReturnConvention()) {
1528   case CodeGenOptions::SRCK_Default:
1529     break;
1530   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1531     return false;
1532   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1533     return true;
1534   }
1535 
1536   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1537     return true;
1538 
1539   switch (Triple.getOS()) {
1540   case llvm::Triple::DragonFly:
1541   case llvm::Triple::FreeBSD:
1542   case llvm::Triple::OpenBSD:
1543   case llvm::Triple::Bitrig:
1544   case llvm::Triple::Win32:
1545     return true;
1546   default:
1547     return false;
1548   }
1549 }
1550 
1551 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1552                                                   llvm::GlobalValue *GV,
1553                                             CodeGen::CodeGenModule &CGM) const {
1554   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1555     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1556       // Get the LLVM function.
1557       llvm::Function *Fn = cast<llvm::Function>(GV);
1558 
1559       // Now add the 'alignstack' attribute with a value of 16.
1560       llvm::AttrBuilder B;
1561       B.addStackAlignmentAttr(16);
1562       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1563                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1564                                               llvm::AttributeSet::FunctionIndex,
1565                                               B));
1566     }
1567   }
1568 }
1569 
1570 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1571                                                CodeGen::CodeGenFunction &CGF,
1572                                                llvm::Value *Address) const {
1573   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1574 
1575   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1576 
1577   // 0-7 are the eight integer registers;  the order is different
1578   //   on Darwin (for EH), but the range is the same.
1579   // 8 is %eip.
1580   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1581 
1582   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1583     // 12-16 are st(0..4).  Not sure why we stop at 4.
1584     // These have size 16, which is sizeof(long double) on
1585     // platforms with 8-byte alignment for that type.
1586     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1587     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1588 
1589   } else {
1590     // 9 is %eflags, which doesn't get a size on Darwin for some
1591     // reason.
1592     Builder.CreateAlignedStore(
1593         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1594                                CharUnits::One());
1595 
1596     // 11-16 are st(0..5).  Not sure why we stop at 5.
1597     // These have size 12, which is sizeof(long double) on
1598     // platforms with 4-byte alignment for that type.
1599     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1600     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1601   }
1602 
1603   return false;
1604 }
1605 
1606 //===----------------------------------------------------------------------===//
1607 // X86-64 ABI Implementation
1608 //===----------------------------------------------------------------------===//
1609 
1610 
1611 namespace {
1612 /// The AVX ABI level for X86 targets.
1613 enum class X86AVXABILevel {
1614   None,
1615   AVX,
1616   AVX512
1617 };
1618 
1619 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1620 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1621   switch (AVXLevel) {
1622   case X86AVXABILevel::AVX512:
1623     return 512;
1624   case X86AVXABILevel::AVX:
1625     return 256;
1626   case X86AVXABILevel::None:
1627     return 128;
1628   }
1629   llvm_unreachable("Unknown AVXLevel");
1630 }
1631 
1632 /// X86_64ABIInfo - The X86_64 ABI information.
1633 class X86_64ABIInfo : public ABIInfo {
1634   enum Class {
1635     Integer = 0,
1636     SSE,
1637     SSEUp,
1638     X87,
1639     X87Up,
1640     ComplexX87,
1641     NoClass,
1642     Memory
1643   };
1644 
1645   /// merge - Implement the X86_64 ABI merging algorithm.
1646   ///
1647   /// Merge an accumulating classification \arg Accum with a field
1648   /// classification \arg Field.
1649   ///
1650   /// \param Accum - The accumulating classification. This should
1651   /// always be either NoClass or the result of a previous merge
1652   /// call. In addition, this should never be Memory (the caller
1653   /// should just return Memory for the aggregate).
1654   static Class merge(Class Accum, Class Field);
1655 
1656   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1657   ///
1658   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1659   /// final MEMORY or SSE classes when necessary.
1660   ///
1661   /// \param AggregateSize - The size of the current aggregate in
1662   /// the classification process.
1663   ///
1664   /// \param Lo - The classification for the parts of the type
1665   /// residing in the low word of the containing object.
1666   ///
1667   /// \param Hi - The classification for the parts of the type
1668   /// residing in the higher words of the containing object.
1669   ///
1670   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1671 
1672   /// classify - Determine the x86_64 register classes in which the
1673   /// given type T should be passed.
1674   ///
1675   /// \param Lo - The classification for the parts of the type
1676   /// residing in the low word of the containing object.
1677   ///
1678   /// \param Hi - The classification for the parts of the type
1679   /// residing in the high word of the containing object.
1680   ///
1681   /// \param OffsetBase - The bit offset of this type in the
1682   /// containing object.  Some parameters are classified different
1683   /// depending on whether they straddle an eightbyte boundary.
1684   ///
1685   /// \param isNamedArg - Whether the argument in question is a "named"
1686   /// argument, as used in AMD64-ABI 3.5.7.
1687   ///
1688   /// If a word is unused its result will be NoClass; if a type should
1689   /// be passed in Memory then at least the classification of \arg Lo
1690   /// will be Memory.
1691   ///
1692   /// The \arg Lo class will be NoClass iff the argument is ignored.
1693   ///
1694   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1695   /// also be ComplexX87.
1696   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1697                 bool isNamedArg) const;
1698 
1699   llvm::Type *GetByteVectorType(QualType Ty) const;
1700   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1701                                  unsigned IROffset, QualType SourceTy,
1702                                  unsigned SourceOffset) const;
1703   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1704                                      unsigned IROffset, QualType SourceTy,
1705                                      unsigned SourceOffset) const;
1706 
1707   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1708   /// such that the argument will be returned in memory.
1709   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1710 
1711   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1712   /// such that the argument will be passed in memory.
1713   ///
1714   /// \param freeIntRegs - The number of free integer registers remaining
1715   /// available.
1716   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1717 
1718   ABIArgInfo classifyReturnType(QualType RetTy) const;
1719 
1720   ABIArgInfo classifyArgumentType(QualType Ty,
1721                                   unsigned freeIntRegs,
1722                                   unsigned &neededInt,
1723                                   unsigned &neededSSE,
1724                                   bool isNamedArg) const;
1725 
1726   bool IsIllegalVectorType(QualType Ty) const;
1727 
1728   /// The 0.98 ABI revision clarified a lot of ambiguities,
1729   /// unfortunately in ways that were not always consistent with
1730   /// certain previous compilers.  In particular, platforms which
1731   /// required strict binary compatibility with older versions of GCC
1732   /// may need to exempt themselves.
1733   bool honorsRevision0_98() const {
1734     return !getTarget().getTriple().isOSDarwin();
1735   }
1736 
1737   X86AVXABILevel AVXLevel;
1738   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1739   // 64-bit hardware.
1740   bool Has64BitPointers;
1741 
1742 public:
1743   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1744       ABIInfo(CGT), AVXLevel(AVXLevel),
1745       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1746   }
1747 
1748   bool isPassedUsingAVXType(QualType type) const {
1749     unsigned neededInt, neededSSE;
1750     // The freeIntRegs argument doesn't matter here.
1751     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1752                                            /*isNamedArg*/true);
1753     if (info.isDirect()) {
1754       llvm::Type *ty = info.getCoerceToType();
1755       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1756         return (vectorTy->getBitWidth() > 128);
1757     }
1758     return false;
1759   }
1760 
1761   void computeInfo(CGFunctionInfo &FI) const override;
1762 
1763   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1764                     QualType Ty) const override;
1765   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1766                       QualType Ty) const override;
1767 
1768   bool has64BitPointers() const {
1769     return Has64BitPointers;
1770   }
1771 };
1772 
1773 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1774 class WinX86_64ABIInfo : public ABIInfo {
1775 
1776   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1777                       bool IsReturnType) const;
1778 
1779 public:
1780   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1781 
1782   void computeInfo(CGFunctionInfo &FI) const override;
1783 
1784   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1785                     QualType Ty) const override;
1786 
1787   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1788     // FIXME: Assumes vectorcall is in use.
1789     return isX86VectorTypeForVectorCall(getContext(), Ty);
1790   }
1791 
1792   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1793                                          uint64_t NumMembers) const override {
1794     // FIXME: Assumes vectorcall is in use.
1795     return isX86VectorCallAggregateSmallEnough(NumMembers);
1796   }
1797 };
1798 
1799 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1800 public:
1801   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1802       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1803 
1804   const X86_64ABIInfo &getABIInfo() const {
1805     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1806   }
1807 
1808   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1809     return 7;
1810   }
1811 
1812   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1813                                llvm::Value *Address) const override {
1814     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1815 
1816     // 0-15 are the 16 integer registers.
1817     // 16 is %rip.
1818     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1819     return false;
1820   }
1821 
1822   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1823                                   StringRef Constraint,
1824                                   llvm::Type* Ty) const override {
1825     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1826   }
1827 
1828   bool isNoProtoCallVariadic(const CallArgList &args,
1829                              const FunctionNoProtoType *fnType) const override {
1830     // The default CC on x86-64 sets %al to the number of SSA
1831     // registers used, and GCC sets this when calling an unprototyped
1832     // function, so we override the default behavior.  However, don't do
1833     // that when AVX types are involved: the ABI explicitly states it is
1834     // undefined, and it doesn't work in practice because of how the ABI
1835     // defines varargs anyway.
1836     if (fnType->getCallConv() == CC_C) {
1837       bool HasAVXType = false;
1838       for (CallArgList::const_iterator
1839              it = args.begin(), ie = args.end(); it != ie; ++it) {
1840         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1841           HasAVXType = true;
1842           break;
1843         }
1844       }
1845 
1846       if (!HasAVXType)
1847         return true;
1848     }
1849 
1850     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1851   }
1852 
1853   llvm::Constant *
1854   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1855     unsigned Sig;
1856     if (getABIInfo().has64BitPointers())
1857       Sig = (0xeb << 0) |  // jmp rel8
1858             (0x0a << 8) |  //           .+0x0c
1859             ('F' << 16) |
1860             ('T' << 24);
1861     else
1862       Sig = (0xeb << 0) |  // jmp rel8
1863             (0x06 << 8) |  //           .+0x08
1864             ('F' << 16) |
1865             ('T' << 24);
1866     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1867   }
1868 };
1869 
1870 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1871 public:
1872   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1873     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1874 
1875   void getDependentLibraryOption(llvm::StringRef Lib,
1876                                  llvm::SmallString<24> &Opt) const override {
1877     Opt = "\01";
1878     // If the argument contains a space, enclose it in quotes.
1879     if (Lib.find(" ") != StringRef::npos)
1880       Opt += "\"" + Lib.str() + "\"";
1881     else
1882       Opt += Lib;
1883   }
1884 };
1885 
1886 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1887   // If the argument does not end in .lib, automatically add the suffix.
1888   // If the argument contains a space, enclose it in quotes.
1889   // This matches the behavior of MSVC.
1890   bool Quote = (Lib.find(" ") != StringRef::npos);
1891   std::string ArgStr = Quote ? "\"" : "";
1892   ArgStr += Lib;
1893   if (!Lib.endswith_lower(".lib"))
1894     ArgStr += ".lib";
1895   ArgStr += Quote ? "\"" : "";
1896   return ArgStr;
1897 }
1898 
1899 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1900 public:
1901   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1902         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1903         unsigned NumRegisterParameters)
1904     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1905         Win32StructABI, NumRegisterParameters, false) {}
1906 
1907   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1908                            CodeGen::CodeGenModule &CGM) const override;
1909 
1910   void getDependentLibraryOption(llvm::StringRef Lib,
1911                                  llvm::SmallString<24> &Opt) const override {
1912     Opt = "/DEFAULTLIB:";
1913     Opt += qualifyWindowsLibrary(Lib);
1914   }
1915 
1916   void getDetectMismatchOption(llvm::StringRef Name,
1917                                llvm::StringRef Value,
1918                                llvm::SmallString<32> &Opt) const override {
1919     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1920   }
1921 };
1922 
1923 static void addStackProbeSizeTargetAttribute(const Decl *D,
1924                                              llvm::GlobalValue *GV,
1925                                              CodeGen::CodeGenModule &CGM) {
1926   if (D && isa<FunctionDecl>(D)) {
1927     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1928       llvm::Function *Fn = cast<llvm::Function>(GV);
1929 
1930       Fn->addFnAttr("stack-probe-size",
1931                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1932     }
1933   }
1934 }
1935 
1936 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1937                                                      llvm::GlobalValue *GV,
1938                                             CodeGen::CodeGenModule &CGM) const {
1939   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1940 
1941   addStackProbeSizeTargetAttribute(D, GV, CGM);
1942 }
1943 
1944 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1945 public:
1946   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1947                              X86AVXABILevel AVXLevel)
1948       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1949 
1950   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1951                            CodeGen::CodeGenModule &CGM) const override;
1952 
1953   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1954     return 7;
1955   }
1956 
1957   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1958                                llvm::Value *Address) const override {
1959     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1960 
1961     // 0-15 are the 16 integer registers.
1962     // 16 is %rip.
1963     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1964     return false;
1965   }
1966 
1967   void getDependentLibraryOption(llvm::StringRef Lib,
1968                                  llvm::SmallString<24> &Opt) const override {
1969     Opt = "/DEFAULTLIB:";
1970     Opt += qualifyWindowsLibrary(Lib);
1971   }
1972 
1973   void getDetectMismatchOption(llvm::StringRef Name,
1974                                llvm::StringRef Value,
1975                                llvm::SmallString<32> &Opt) const override {
1976     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1977   }
1978 };
1979 
1980 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1981                                                      llvm::GlobalValue *GV,
1982                                             CodeGen::CodeGenModule &CGM) const {
1983   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1984 
1985   addStackProbeSizeTargetAttribute(D, GV, CGM);
1986 }
1987 }
1988 
1989 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1990                               Class &Hi) const {
1991   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1992   //
1993   // (a) If one of the classes is Memory, the whole argument is passed in
1994   //     memory.
1995   //
1996   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1997   //     memory.
1998   //
1999   // (c) If the size of the aggregate exceeds two eightbytes and the first
2000   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2001   //     argument is passed in memory. NOTE: This is necessary to keep the
2002   //     ABI working for processors that don't support the __m256 type.
2003   //
2004   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2005   //
2006   // Some of these are enforced by the merging logic.  Others can arise
2007   // only with unions; for example:
2008   //   union { _Complex double; unsigned; }
2009   //
2010   // Note that clauses (b) and (c) were added in 0.98.
2011   //
2012   if (Hi == Memory)
2013     Lo = Memory;
2014   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2015     Lo = Memory;
2016   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2017     Lo = Memory;
2018   if (Hi == SSEUp && Lo != SSE)
2019     Hi = SSE;
2020 }
2021 
2022 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2023   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2024   // classified recursively so that always two fields are
2025   // considered. The resulting class is calculated according to
2026   // the classes of the fields in the eightbyte:
2027   //
2028   // (a) If both classes are equal, this is the resulting class.
2029   //
2030   // (b) If one of the classes is NO_CLASS, the resulting class is
2031   // the other class.
2032   //
2033   // (c) If one of the classes is MEMORY, the result is the MEMORY
2034   // class.
2035   //
2036   // (d) If one of the classes is INTEGER, the result is the
2037   // INTEGER.
2038   //
2039   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2040   // MEMORY is used as class.
2041   //
2042   // (f) Otherwise class SSE is used.
2043 
2044   // Accum should never be memory (we should have returned) or
2045   // ComplexX87 (because this cannot be passed in a structure).
2046   assert((Accum != Memory && Accum != ComplexX87) &&
2047          "Invalid accumulated classification during merge.");
2048   if (Accum == Field || Field == NoClass)
2049     return Accum;
2050   if (Field == Memory)
2051     return Memory;
2052   if (Accum == NoClass)
2053     return Field;
2054   if (Accum == Integer || Field == Integer)
2055     return Integer;
2056   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2057       Accum == X87 || Accum == X87Up)
2058     return Memory;
2059   return SSE;
2060 }
2061 
2062 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2063                              Class &Lo, Class &Hi, bool isNamedArg) const {
2064   // FIXME: This code can be simplified by introducing a simple value class for
2065   // Class pairs with appropriate constructor methods for the various
2066   // situations.
2067 
2068   // FIXME: Some of the split computations are wrong; unaligned vectors
2069   // shouldn't be passed in registers for example, so there is no chance they
2070   // can straddle an eightbyte. Verify & simplify.
2071 
2072   Lo = Hi = NoClass;
2073 
2074   Class &Current = OffsetBase < 64 ? Lo : Hi;
2075   Current = Memory;
2076 
2077   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2078     BuiltinType::Kind k = BT->getKind();
2079 
2080     if (k == BuiltinType::Void) {
2081       Current = NoClass;
2082     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2083       Lo = Integer;
2084       Hi = Integer;
2085     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2086       Current = Integer;
2087     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2088       Current = SSE;
2089     } else if (k == BuiltinType::LongDouble) {
2090       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2091       if (LDF == &llvm::APFloat::IEEEquad) {
2092         Lo = SSE;
2093         Hi = SSEUp;
2094       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2095         Lo = X87;
2096         Hi = X87Up;
2097       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2098         Current = SSE;
2099       } else
2100         llvm_unreachable("unexpected long double representation!");
2101     }
2102     // FIXME: _Decimal32 and _Decimal64 are SSE.
2103     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2104     return;
2105   }
2106 
2107   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2108     // Classify the underlying integer type.
2109     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2110     return;
2111   }
2112 
2113   if (Ty->hasPointerRepresentation()) {
2114     Current = Integer;
2115     return;
2116   }
2117 
2118   if (Ty->isMemberPointerType()) {
2119     if (Ty->isMemberFunctionPointerType()) {
2120       if (Has64BitPointers) {
2121         // If Has64BitPointers, this is an {i64, i64}, so classify both
2122         // Lo and Hi now.
2123         Lo = Hi = Integer;
2124       } else {
2125         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2126         // straddles an eightbyte boundary, Hi should be classified as well.
2127         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2128         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2129         if (EB_FuncPtr != EB_ThisAdj) {
2130           Lo = Hi = Integer;
2131         } else {
2132           Current = Integer;
2133         }
2134       }
2135     } else {
2136       Current = Integer;
2137     }
2138     return;
2139   }
2140 
2141   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2142     uint64_t Size = getContext().getTypeSize(VT);
2143     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2144       // gcc passes the following as integer:
2145       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2146       // 2 bytes - <2 x char>, <1 x short>
2147       // 1 byte  - <1 x char>
2148       Current = Integer;
2149 
2150       // If this type crosses an eightbyte boundary, it should be
2151       // split.
2152       uint64_t EB_Lo = (OffsetBase) / 64;
2153       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2154       if (EB_Lo != EB_Hi)
2155         Hi = Lo;
2156     } else if (Size == 64) {
2157       // gcc passes <1 x double> in memory. :(
2158       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
2159         return;
2160 
2161       // gcc passes <1 x long long> as INTEGER.
2162       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
2163           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2164           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
2165           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
2166         Current = Integer;
2167       else
2168         Current = SSE;
2169 
2170       // If this type crosses an eightbyte boundary, it should be
2171       // split.
2172       if (OffsetBase && OffsetBase != 64)
2173         Hi = Lo;
2174     } else if (Size == 128 ||
2175                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2176       // Arguments of 256-bits are split into four eightbyte chunks. The
2177       // least significant one belongs to class SSE and all the others to class
2178       // SSEUP. The original Lo and Hi design considers that types can't be
2179       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2180       // This design isn't correct for 256-bits, but since there're no cases
2181       // where the upper parts would need to be inspected, avoid adding
2182       // complexity and just consider Hi to match the 64-256 part.
2183       //
2184       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2185       // registers if they are "named", i.e. not part of the "..." of a
2186       // variadic function.
2187       //
2188       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2189       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2190       Lo = SSE;
2191       Hi = SSEUp;
2192     }
2193     return;
2194   }
2195 
2196   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2197     QualType ET = getContext().getCanonicalType(CT->getElementType());
2198 
2199     uint64_t Size = getContext().getTypeSize(Ty);
2200     if (ET->isIntegralOrEnumerationType()) {
2201       if (Size <= 64)
2202         Current = Integer;
2203       else if (Size <= 128)
2204         Lo = Hi = Integer;
2205     } else if (ET == getContext().FloatTy) {
2206       Current = SSE;
2207     } else if (ET == getContext().DoubleTy) {
2208       Lo = Hi = SSE;
2209     } else if (ET == getContext().LongDoubleTy) {
2210       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2211       if (LDF == &llvm::APFloat::IEEEquad)
2212         Current = Memory;
2213       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2214         Current = ComplexX87;
2215       else if (LDF == &llvm::APFloat::IEEEdouble)
2216         Lo = Hi = SSE;
2217       else
2218         llvm_unreachable("unexpected long double representation!");
2219     }
2220 
2221     // If this complex type crosses an eightbyte boundary then it
2222     // should be split.
2223     uint64_t EB_Real = (OffsetBase) / 64;
2224     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2225     if (Hi == NoClass && EB_Real != EB_Imag)
2226       Hi = Lo;
2227 
2228     return;
2229   }
2230 
2231   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2232     // Arrays are treated like structures.
2233 
2234     uint64_t Size = getContext().getTypeSize(Ty);
2235 
2236     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2237     // than four eightbytes, ..., it has class MEMORY.
2238     if (Size > 256)
2239       return;
2240 
2241     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2242     // fields, it has class MEMORY.
2243     //
2244     // Only need to check alignment of array base.
2245     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2246       return;
2247 
2248     // Otherwise implement simplified merge. We could be smarter about
2249     // this, but it isn't worth it and would be harder to verify.
2250     Current = NoClass;
2251     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2252     uint64_t ArraySize = AT->getSize().getZExtValue();
2253 
2254     // The only case a 256-bit wide vector could be used is when the array
2255     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2256     // to work for sizes wider than 128, early check and fallback to memory.
2257     if (Size > 128 && EltSize != 256)
2258       return;
2259 
2260     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2261       Class FieldLo, FieldHi;
2262       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2263       Lo = merge(Lo, FieldLo);
2264       Hi = merge(Hi, FieldHi);
2265       if (Lo == Memory || Hi == Memory)
2266         break;
2267     }
2268 
2269     postMerge(Size, Lo, Hi);
2270     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2271     return;
2272   }
2273 
2274   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2275     uint64_t Size = getContext().getTypeSize(Ty);
2276 
2277     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2278     // than four eightbytes, ..., it has class MEMORY.
2279     if (Size > 256)
2280       return;
2281 
2282     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2283     // copy constructor or a non-trivial destructor, it is passed by invisible
2284     // reference.
2285     if (getRecordArgABI(RT, getCXXABI()))
2286       return;
2287 
2288     const RecordDecl *RD = RT->getDecl();
2289 
2290     // Assume variable sized types are passed in memory.
2291     if (RD->hasFlexibleArrayMember())
2292       return;
2293 
2294     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2295 
2296     // Reset Lo class, this will be recomputed.
2297     Current = NoClass;
2298 
2299     // If this is a C++ record, classify the bases first.
2300     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2301       for (const auto &I : CXXRD->bases()) {
2302         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2303                "Unexpected base class!");
2304         const CXXRecordDecl *Base =
2305           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2306 
2307         // Classify this field.
2308         //
2309         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2310         // single eightbyte, each is classified separately. Each eightbyte gets
2311         // initialized to class NO_CLASS.
2312         Class FieldLo, FieldHi;
2313         uint64_t Offset =
2314           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2315         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2316         Lo = merge(Lo, FieldLo);
2317         Hi = merge(Hi, FieldHi);
2318         if (Lo == Memory || Hi == Memory) {
2319           postMerge(Size, Lo, Hi);
2320           return;
2321         }
2322       }
2323     }
2324 
2325     // Classify the fields one at a time, merging the results.
2326     unsigned idx = 0;
2327     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2328            i != e; ++i, ++idx) {
2329       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2330       bool BitField = i->isBitField();
2331 
2332       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2333       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2334       //
2335       // The only case a 256-bit wide vector could be used is when the struct
2336       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2337       // to work for sizes wider than 128, early check and fallback to memory.
2338       //
2339       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2340         Lo = Memory;
2341         postMerge(Size, Lo, Hi);
2342         return;
2343       }
2344       // Note, skip this test for bit-fields, see below.
2345       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2346         Lo = Memory;
2347         postMerge(Size, Lo, Hi);
2348         return;
2349       }
2350 
2351       // Classify this field.
2352       //
2353       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2354       // exceeds a single eightbyte, each is classified
2355       // separately. Each eightbyte gets initialized to class
2356       // NO_CLASS.
2357       Class FieldLo, FieldHi;
2358 
2359       // Bit-fields require special handling, they do not force the
2360       // structure to be passed in memory even if unaligned, and
2361       // therefore they can straddle an eightbyte.
2362       if (BitField) {
2363         // Ignore padding bit-fields.
2364         if (i->isUnnamedBitfield())
2365           continue;
2366 
2367         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2368         uint64_t Size = i->getBitWidthValue(getContext());
2369 
2370         uint64_t EB_Lo = Offset / 64;
2371         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2372 
2373         if (EB_Lo) {
2374           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2375           FieldLo = NoClass;
2376           FieldHi = Integer;
2377         } else {
2378           FieldLo = Integer;
2379           FieldHi = EB_Hi ? Integer : NoClass;
2380         }
2381       } else
2382         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2383       Lo = merge(Lo, FieldLo);
2384       Hi = merge(Hi, FieldHi);
2385       if (Lo == Memory || Hi == Memory)
2386         break;
2387     }
2388 
2389     postMerge(Size, Lo, Hi);
2390   }
2391 }
2392 
2393 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2394   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2395   // place naturally.
2396   if (!isAggregateTypeForABI(Ty)) {
2397     // Treat an enum type as its underlying type.
2398     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2399       Ty = EnumTy->getDecl()->getIntegerType();
2400 
2401     return (Ty->isPromotableIntegerType() ?
2402             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2403   }
2404 
2405   return getNaturalAlignIndirect(Ty);
2406 }
2407 
2408 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2409   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2410     uint64_t Size = getContext().getTypeSize(VecTy);
2411     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2412     if (Size <= 64 || Size > LargestVector)
2413       return true;
2414   }
2415 
2416   return false;
2417 }
2418 
2419 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2420                                             unsigned freeIntRegs) const {
2421   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2422   // place naturally.
2423   //
2424   // This assumption is optimistic, as there could be free registers available
2425   // when we need to pass this argument in memory, and LLVM could try to pass
2426   // the argument in the free register. This does not seem to happen currently,
2427   // but this code would be much safer if we could mark the argument with
2428   // 'onstack'. See PR12193.
2429   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2430     // Treat an enum type as its underlying type.
2431     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2432       Ty = EnumTy->getDecl()->getIntegerType();
2433 
2434     return (Ty->isPromotableIntegerType() ?
2435             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2436   }
2437 
2438   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2439     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2440 
2441   // Compute the byval alignment. We specify the alignment of the byval in all
2442   // cases so that the mid-level optimizer knows the alignment of the byval.
2443   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2444 
2445   // Attempt to avoid passing indirect results using byval when possible. This
2446   // is important for good codegen.
2447   //
2448   // We do this by coercing the value into a scalar type which the backend can
2449   // handle naturally (i.e., without using byval).
2450   //
2451   // For simplicity, we currently only do this when we have exhausted all of the
2452   // free integer registers. Doing this when there are free integer registers
2453   // would require more care, as we would have to ensure that the coerced value
2454   // did not claim the unused register. That would require either reording the
2455   // arguments to the function (so that any subsequent inreg values came first),
2456   // or only doing this optimization when there were no following arguments that
2457   // might be inreg.
2458   //
2459   // We currently expect it to be rare (particularly in well written code) for
2460   // arguments to be passed on the stack when there are still free integer
2461   // registers available (this would typically imply large structs being passed
2462   // by value), so this seems like a fair tradeoff for now.
2463   //
2464   // We can revisit this if the backend grows support for 'onstack' parameter
2465   // attributes. See PR12193.
2466   if (freeIntRegs == 0) {
2467     uint64_t Size = getContext().getTypeSize(Ty);
2468 
2469     // If this type fits in an eightbyte, coerce it into the matching integral
2470     // type, which will end up on the stack (with alignment 8).
2471     if (Align == 8 && Size <= 64)
2472       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2473                                                           Size));
2474   }
2475 
2476   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2477 }
2478 
2479 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2480 /// register. Pick an LLVM IR type that will be passed as a vector register.
2481 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2482   // Wrapper structs/arrays that only contain vectors are passed just like
2483   // vectors; strip them off if present.
2484   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2485     Ty = QualType(InnerTy, 0);
2486 
2487   llvm::Type *IRType = CGT.ConvertType(Ty);
2488   if (isa<llvm::VectorType>(IRType) ||
2489       IRType->getTypeID() == llvm::Type::FP128TyID)
2490     return IRType;
2491 
2492   // We couldn't find the preferred IR vector type for 'Ty'.
2493   uint64_t Size = getContext().getTypeSize(Ty);
2494   assert((Size == 128 || Size == 256) && "Invalid type found!");
2495 
2496   // Return a LLVM IR vector type based on the size of 'Ty'.
2497   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2498                                Size / 64);
2499 }
2500 
2501 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2502 /// is known to either be off the end of the specified type or being in
2503 /// alignment padding.  The user type specified is known to be at most 128 bits
2504 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2505 /// classification that put one of the two halves in the INTEGER class.
2506 ///
2507 /// It is conservatively correct to return false.
2508 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2509                                   unsigned EndBit, ASTContext &Context) {
2510   // If the bytes being queried are off the end of the type, there is no user
2511   // data hiding here.  This handles analysis of builtins, vectors and other
2512   // types that don't contain interesting padding.
2513   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2514   if (TySize <= StartBit)
2515     return true;
2516 
2517   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2518     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2519     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2520 
2521     // Check each element to see if the element overlaps with the queried range.
2522     for (unsigned i = 0; i != NumElts; ++i) {
2523       // If the element is after the span we care about, then we're done..
2524       unsigned EltOffset = i*EltSize;
2525       if (EltOffset >= EndBit) break;
2526 
2527       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2528       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2529                                  EndBit-EltOffset, Context))
2530         return false;
2531     }
2532     // If it overlaps no elements, then it is safe to process as padding.
2533     return true;
2534   }
2535 
2536   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2537     const RecordDecl *RD = RT->getDecl();
2538     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2539 
2540     // If this is a C++ record, check the bases first.
2541     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2542       for (const auto &I : CXXRD->bases()) {
2543         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2544                "Unexpected base class!");
2545         const CXXRecordDecl *Base =
2546           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2547 
2548         // If the base is after the span we care about, ignore it.
2549         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2550         if (BaseOffset >= EndBit) continue;
2551 
2552         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2553         if (!BitsContainNoUserData(I.getType(), BaseStart,
2554                                    EndBit-BaseOffset, Context))
2555           return false;
2556       }
2557     }
2558 
2559     // Verify that no field has data that overlaps the region of interest.  Yes
2560     // this could be sped up a lot by being smarter about queried fields,
2561     // however we're only looking at structs up to 16 bytes, so we don't care
2562     // much.
2563     unsigned idx = 0;
2564     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2565          i != e; ++i, ++idx) {
2566       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2567 
2568       // If we found a field after the region we care about, then we're done.
2569       if (FieldOffset >= EndBit) break;
2570 
2571       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2572       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2573                                  Context))
2574         return false;
2575     }
2576 
2577     // If nothing in this record overlapped the area of interest, then we're
2578     // clean.
2579     return true;
2580   }
2581 
2582   return false;
2583 }
2584 
2585 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2586 /// float member at the specified offset.  For example, {int,{float}} has a
2587 /// float at offset 4.  It is conservatively correct for this routine to return
2588 /// false.
2589 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2590                                   const llvm::DataLayout &TD) {
2591   // Base case if we find a float.
2592   if (IROffset == 0 && IRType->isFloatTy())
2593     return true;
2594 
2595   // If this is a struct, recurse into the field at the specified offset.
2596   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2597     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2598     unsigned Elt = SL->getElementContainingOffset(IROffset);
2599     IROffset -= SL->getElementOffset(Elt);
2600     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2601   }
2602 
2603   // If this is an array, recurse into the field at the specified offset.
2604   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2605     llvm::Type *EltTy = ATy->getElementType();
2606     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2607     IROffset -= IROffset/EltSize*EltSize;
2608     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2609   }
2610 
2611   return false;
2612 }
2613 
2614 
2615 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2616 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2617 llvm::Type *X86_64ABIInfo::
2618 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2619                    QualType SourceTy, unsigned SourceOffset) const {
2620   // The only three choices we have are either double, <2 x float>, or float. We
2621   // pass as float if the last 4 bytes is just padding.  This happens for
2622   // structs that contain 3 floats.
2623   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2624                             SourceOffset*8+64, getContext()))
2625     return llvm::Type::getFloatTy(getVMContext());
2626 
2627   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2628   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2629   // case.
2630   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2631       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2632     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2633 
2634   return llvm::Type::getDoubleTy(getVMContext());
2635 }
2636 
2637 
2638 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2639 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2640 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2641 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2642 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2643 /// etc).
2644 ///
2645 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2646 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2647 /// the 8-byte value references.  PrefType may be null.
2648 ///
2649 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2650 /// an offset into this that we're processing (which is always either 0 or 8).
2651 ///
2652 llvm::Type *X86_64ABIInfo::
2653 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2654                        QualType SourceTy, unsigned SourceOffset) const {
2655   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2656   // returning an 8-byte unit starting with it.  See if we can safely use it.
2657   if (IROffset == 0) {
2658     // Pointers and int64's always fill the 8-byte unit.
2659     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2660         IRType->isIntegerTy(64))
2661       return IRType;
2662 
2663     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2664     // goodness in the source type is just tail padding.  This is allowed to
2665     // kick in for struct {double,int} on the int, but not on
2666     // struct{double,int,int} because we wouldn't return the second int.  We
2667     // have to do this analysis on the source type because we can't depend on
2668     // unions being lowered a specific way etc.
2669     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2670         IRType->isIntegerTy(32) ||
2671         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2672       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2673           cast<llvm::IntegerType>(IRType)->getBitWidth();
2674 
2675       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2676                                 SourceOffset*8+64, getContext()))
2677         return IRType;
2678     }
2679   }
2680 
2681   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2682     // If this is a struct, recurse into the field at the specified offset.
2683     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2684     if (IROffset < SL->getSizeInBytes()) {
2685       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2686       IROffset -= SL->getElementOffset(FieldIdx);
2687 
2688       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2689                                     SourceTy, SourceOffset);
2690     }
2691   }
2692 
2693   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2694     llvm::Type *EltTy = ATy->getElementType();
2695     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2696     unsigned EltOffset = IROffset/EltSize*EltSize;
2697     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2698                                   SourceOffset);
2699   }
2700 
2701   // Okay, we don't have any better idea of what to pass, so we pass this in an
2702   // integer register that isn't too big to fit the rest of the struct.
2703   unsigned TySizeInBytes =
2704     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2705 
2706   assert(TySizeInBytes != SourceOffset && "Empty field?");
2707 
2708   // It is always safe to classify this as an integer type up to i64 that
2709   // isn't larger than the structure.
2710   return llvm::IntegerType::get(getVMContext(),
2711                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2712 }
2713 
2714 
2715 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2716 /// be used as elements of a two register pair to pass or return, return a
2717 /// first class aggregate to represent them.  For example, if the low part of
2718 /// a by-value argument should be passed as i32* and the high part as float,
2719 /// return {i32*, float}.
2720 static llvm::Type *
2721 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2722                            const llvm::DataLayout &TD) {
2723   // In order to correctly satisfy the ABI, we need to the high part to start
2724   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2725   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2726   // the second element at offset 8.  Check for this:
2727   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2728   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2729   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2730   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2731 
2732   // To handle this, we have to increase the size of the low part so that the
2733   // second element will start at an 8 byte offset.  We can't increase the size
2734   // of the second element because it might make us access off the end of the
2735   // struct.
2736   if (HiStart != 8) {
2737     // There are usually two sorts of types the ABI generation code can produce
2738     // for the low part of a pair that aren't 8 bytes in size: float or
2739     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2740     // NaCl).
2741     // Promote these to a larger type.
2742     if (Lo->isFloatTy())
2743       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2744     else {
2745       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2746              && "Invalid/unknown lo type");
2747       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2748     }
2749   }
2750 
2751   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2752 
2753 
2754   // Verify that the second element is at an 8-byte offset.
2755   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2756          "Invalid x86-64 argument pair!");
2757   return Result;
2758 }
2759 
2760 ABIArgInfo X86_64ABIInfo::
2761 classifyReturnType(QualType RetTy) const {
2762   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2763   // classification algorithm.
2764   X86_64ABIInfo::Class Lo, Hi;
2765   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2766 
2767   // Check some invariants.
2768   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2769   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2770 
2771   llvm::Type *ResType = nullptr;
2772   switch (Lo) {
2773   case NoClass:
2774     if (Hi == NoClass)
2775       return ABIArgInfo::getIgnore();
2776     // If the low part is just padding, it takes no register, leave ResType
2777     // null.
2778     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2779            "Unknown missing lo part");
2780     break;
2781 
2782   case SSEUp:
2783   case X87Up:
2784     llvm_unreachable("Invalid classification for lo word.");
2785 
2786     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2787     // hidden argument.
2788   case Memory:
2789     return getIndirectReturnResult(RetTy);
2790 
2791     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2792     // available register of the sequence %rax, %rdx is used.
2793   case Integer:
2794     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2795 
2796     // If we have a sign or zero extended integer, make sure to return Extend
2797     // so that the parameter gets the right LLVM IR attributes.
2798     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2799       // Treat an enum type as its underlying type.
2800       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2801         RetTy = EnumTy->getDecl()->getIntegerType();
2802 
2803       if (RetTy->isIntegralOrEnumerationType() &&
2804           RetTy->isPromotableIntegerType())
2805         return ABIArgInfo::getExtend();
2806     }
2807     break;
2808 
2809     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2810     // available SSE register of the sequence %xmm0, %xmm1 is used.
2811   case SSE:
2812     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2813     break;
2814 
2815     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2816     // returned on the X87 stack in %st0 as 80-bit x87 number.
2817   case X87:
2818     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2819     break;
2820 
2821     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2822     // part of the value is returned in %st0 and the imaginary part in
2823     // %st1.
2824   case ComplexX87:
2825     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2826     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2827                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2828                                     nullptr);
2829     break;
2830   }
2831 
2832   llvm::Type *HighPart = nullptr;
2833   switch (Hi) {
2834     // Memory was handled previously and X87 should
2835     // never occur as a hi class.
2836   case Memory:
2837   case X87:
2838     llvm_unreachable("Invalid classification for hi word.");
2839 
2840   case ComplexX87: // Previously handled.
2841   case NoClass:
2842     break;
2843 
2844   case Integer:
2845     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2846     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2847       return ABIArgInfo::getDirect(HighPart, 8);
2848     break;
2849   case SSE:
2850     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2851     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2852       return ABIArgInfo::getDirect(HighPart, 8);
2853     break;
2854 
2855     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2856     // is passed in the next available eightbyte chunk if the last used
2857     // vector register.
2858     //
2859     // SSEUP should always be preceded by SSE, just widen.
2860   case SSEUp:
2861     assert(Lo == SSE && "Unexpected SSEUp classification.");
2862     ResType = GetByteVectorType(RetTy);
2863     break;
2864 
2865     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2866     // returned together with the previous X87 value in %st0.
2867   case X87Up:
2868     // If X87Up is preceded by X87, we don't need to do
2869     // anything. However, in some cases with unions it may not be
2870     // preceded by X87. In such situations we follow gcc and pass the
2871     // extra bits in an SSE reg.
2872     if (Lo != X87) {
2873       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2874       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2875         return ABIArgInfo::getDirect(HighPart, 8);
2876     }
2877     break;
2878   }
2879 
2880   // If a high part was specified, merge it together with the low part.  It is
2881   // known to pass in the high eightbyte of the result.  We do this by forming a
2882   // first class struct aggregate with the high and low part: {low, high}
2883   if (HighPart)
2884     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2885 
2886   return ABIArgInfo::getDirect(ResType);
2887 }
2888 
2889 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2890   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2891   bool isNamedArg)
2892   const
2893 {
2894   Ty = useFirstFieldIfTransparentUnion(Ty);
2895 
2896   X86_64ABIInfo::Class Lo, Hi;
2897   classify(Ty, 0, Lo, Hi, isNamedArg);
2898 
2899   // Check some invariants.
2900   // FIXME: Enforce these by construction.
2901   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2902   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2903 
2904   neededInt = 0;
2905   neededSSE = 0;
2906   llvm::Type *ResType = nullptr;
2907   switch (Lo) {
2908   case NoClass:
2909     if (Hi == NoClass)
2910       return ABIArgInfo::getIgnore();
2911     // If the low part is just padding, it takes no register, leave ResType
2912     // null.
2913     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2914            "Unknown missing lo part");
2915     break;
2916 
2917     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2918     // on the stack.
2919   case Memory:
2920 
2921     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2922     // COMPLEX_X87, it is passed in memory.
2923   case X87:
2924   case ComplexX87:
2925     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2926       ++neededInt;
2927     return getIndirectResult(Ty, freeIntRegs);
2928 
2929   case SSEUp:
2930   case X87Up:
2931     llvm_unreachable("Invalid classification for lo word.");
2932 
2933     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2934     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2935     // and %r9 is used.
2936   case Integer:
2937     ++neededInt;
2938 
2939     // Pick an 8-byte type based on the preferred type.
2940     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2941 
2942     // If we have a sign or zero extended integer, make sure to return Extend
2943     // so that the parameter gets the right LLVM IR attributes.
2944     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2945       // Treat an enum type as its underlying type.
2946       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2947         Ty = EnumTy->getDecl()->getIntegerType();
2948 
2949       if (Ty->isIntegralOrEnumerationType() &&
2950           Ty->isPromotableIntegerType())
2951         return ABIArgInfo::getExtend();
2952     }
2953 
2954     break;
2955 
2956     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2957     // available SSE register is used, the registers are taken in the
2958     // order from %xmm0 to %xmm7.
2959   case SSE: {
2960     llvm::Type *IRType = CGT.ConvertType(Ty);
2961     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2962     ++neededSSE;
2963     break;
2964   }
2965   }
2966 
2967   llvm::Type *HighPart = nullptr;
2968   switch (Hi) {
2969     // Memory was handled previously, ComplexX87 and X87 should
2970     // never occur as hi classes, and X87Up must be preceded by X87,
2971     // which is passed in memory.
2972   case Memory:
2973   case X87:
2974   case ComplexX87:
2975     llvm_unreachable("Invalid classification for hi word.");
2976 
2977   case NoClass: break;
2978 
2979   case Integer:
2980     ++neededInt;
2981     // Pick an 8-byte type based on the preferred type.
2982     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2983 
2984     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2985       return ABIArgInfo::getDirect(HighPart, 8);
2986     break;
2987 
2988     // X87Up generally doesn't occur here (long double is passed in
2989     // memory), except in situations involving unions.
2990   case X87Up:
2991   case SSE:
2992     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2993 
2994     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2995       return ABIArgInfo::getDirect(HighPart, 8);
2996 
2997     ++neededSSE;
2998     break;
2999 
3000     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3001     // eightbyte is passed in the upper half of the last used SSE
3002     // register.  This only happens when 128-bit vectors are passed.
3003   case SSEUp:
3004     assert(Lo == SSE && "Unexpected SSEUp classification");
3005     ResType = GetByteVectorType(Ty);
3006     break;
3007   }
3008 
3009   // If a high part was specified, merge it together with the low part.  It is
3010   // known to pass in the high eightbyte of the result.  We do this by forming a
3011   // first class struct aggregate with the high and low part: {low, high}
3012   if (HighPart)
3013     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3014 
3015   return ABIArgInfo::getDirect(ResType);
3016 }
3017 
3018 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3019 
3020   if (!getCXXABI().classifyReturnType(FI))
3021     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3022 
3023   // Keep track of the number of assigned registers.
3024   unsigned freeIntRegs = 6, freeSSERegs = 8;
3025 
3026   // If the return value is indirect, then the hidden argument is consuming one
3027   // integer register.
3028   if (FI.getReturnInfo().isIndirect())
3029     --freeIntRegs;
3030 
3031   // The chain argument effectively gives us another free register.
3032   if (FI.isChainCall())
3033     ++freeIntRegs;
3034 
3035   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3036   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3037   // get assigned (in left-to-right order) for passing as follows...
3038   unsigned ArgNo = 0;
3039   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3040        it != ie; ++it, ++ArgNo) {
3041     bool IsNamedArg = ArgNo < NumRequiredArgs;
3042 
3043     unsigned neededInt, neededSSE;
3044     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3045                                     neededSSE, IsNamedArg);
3046 
3047     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3048     // eightbyte of an argument, the whole argument is passed on the
3049     // stack. If registers have already been assigned for some
3050     // eightbytes of such an argument, the assignments get reverted.
3051     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3052       freeIntRegs -= neededInt;
3053       freeSSERegs -= neededSSE;
3054     } else {
3055       it->info = getIndirectResult(it->type, freeIntRegs);
3056     }
3057   }
3058 }
3059 
3060 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3061                                          Address VAListAddr, QualType Ty) {
3062   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3063       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3064   llvm::Value *overflow_arg_area =
3065     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3066 
3067   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3068   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3069   // It isn't stated explicitly in the standard, but in practice we use
3070   // alignment greater than 16 where necessary.
3071   uint64_t Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
3072   if (Align > 8) {
3073     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
3074     llvm::Value *Offset =
3075       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
3076     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
3077     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
3078                                                     CGF.Int64Ty);
3079     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
3080     overflow_arg_area =
3081       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
3082                                  overflow_arg_area->getType(),
3083                                  "overflow_arg_area.align");
3084   }
3085 
3086   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3087   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3088   llvm::Value *Res =
3089     CGF.Builder.CreateBitCast(overflow_arg_area,
3090                               llvm::PointerType::getUnqual(LTy));
3091 
3092   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3093   // l->overflow_arg_area + sizeof(type).
3094   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3095   // an 8 byte boundary.
3096 
3097   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3098   llvm::Value *Offset =
3099       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3100   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3101                                             "overflow_arg_area.next");
3102   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3103 
3104   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3105   return Address(Res, CharUnits::fromQuantity(Align));
3106 }
3107 
3108 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3109                                  QualType Ty) const {
3110   // Assume that va_list type is correct; should be pointer to LLVM type:
3111   // struct {
3112   //   i32 gp_offset;
3113   //   i32 fp_offset;
3114   //   i8* overflow_arg_area;
3115   //   i8* reg_save_area;
3116   // };
3117   unsigned neededInt, neededSSE;
3118 
3119   Ty = getContext().getCanonicalType(Ty);
3120   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3121                                        /*isNamedArg*/false);
3122 
3123   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3124   // in the registers. If not go to step 7.
3125   if (!neededInt && !neededSSE)
3126     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3127 
3128   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3129   // general purpose registers needed to pass type and num_fp to hold
3130   // the number of floating point registers needed.
3131 
3132   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3133   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3134   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3135   //
3136   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3137   // register save space).
3138 
3139   llvm::Value *InRegs = nullptr;
3140   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3141   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3142   if (neededInt) {
3143     gp_offset_p =
3144         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3145                                     "gp_offset_p");
3146     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3147     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3148     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3149   }
3150 
3151   if (neededSSE) {
3152     fp_offset_p =
3153         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3154                                     "fp_offset_p");
3155     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3156     llvm::Value *FitsInFP =
3157       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3158     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3159     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3160   }
3161 
3162   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3163   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3164   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3165   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3166 
3167   // Emit code to load the value if it was passed in registers.
3168 
3169   CGF.EmitBlock(InRegBlock);
3170 
3171   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3172   // an offset of l->gp_offset and/or l->fp_offset. This may require
3173   // copying to a temporary location in case the parameter is passed
3174   // in different register classes or requires an alignment greater
3175   // than 8 for general purpose registers and 16 for XMM registers.
3176   //
3177   // FIXME: This really results in shameful code when we end up needing to
3178   // collect arguments from different places; often what should result in a
3179   // simple assembling of a structure from scattered addresses has many more
3180   // loads than necessary. Can we clean this up?
3181   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3182   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3183       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3184                                   "reg_save_area");
3185 
3186   Address RegAddr = Address::invalid();
3187   if (neededInt && neededSSE) {
3188     // FIXME: Cleanup.
3189     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3190     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3191     Address Tmp = CGF.CreateMemTemp(Ty);
3192     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3193     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3194     llvm::Type *TyLo = ST->getElementType(0);
3195     llvm::Type *TyHi = ST->getElementType(1);
3196     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3197            "Unexpected ABI info for mixed regs");
3198     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3199     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3200     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3201     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3202     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3203     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3204 
3205     // Copy the first element.
3206     llvm::Value *V =
3207       CGF.Builder.CreateDefaultAlignedLoad(
3208                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3209     CGF.Builder.CreateStore(V,
3210                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3211 
3212     // Copy the second element.
3213     V = CGF.Builder.CreateDefaultAlignedLoad(
3214                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3215     CharUnits Offset = CharUnits::fromQuantity(
3216                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3217     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3218 
3219     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3220   } else if (neededInt) {
3221     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3222                       CharUnits::fromQuantity(8));
3223     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3224 
3225     // Copy to a temporary if necessary to ensure the appropriate alignment.
3226     std::pair<CharUnits, CharUnits> SizeAlign =
3227         getContext().getTypeInfoInChars(Ty);
3228     uint64_t TySize = SizeAlign.first.getQuantity();
3229     CharUnits TyAlign = SizeAlign.second;
3230 
3231     // Copy into a temporary if the type is more aligned than the
3232     // register save area.
3233     if (TyAlign.getQuantity() > 8) {
3234       Address Tmp = CGF.CreateMemTemp(Ty);
3235       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3236       RegAddr = Tmp;
3237     }
3238 
3239   } else if (neededSSE == 1) {
3240     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3241                       CharUnits::fromQuantity(16));
3242     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3243   } else {
3244     assert(neededSSE == 2 && "Invalid number of needed registers!");
3245     // SSE registers are spaced 16 bytes apart in the register save
3246     // area, we need to collect the two eightbytes together.
3247     // The ABI isn't explicit about this, but it seems reasonable
3248     // to assume that the slots are 16-byte aligned, since the stack is
3249     // naturally 16-byte aligned and the prologue is expected to store
3250     // all the SSE registers to the RSA.
3251     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3252                                 CharUnits::fromQuantity(16));
3253     Address RegAddrHi =
3254       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3255                                              CharUnits::fromQuantity(16));
3256     llvm::Type *DoubleTy = CGF.DoubleTy;
3257     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3258     llvm::Value *V;
3259     Address Tmp = CGF.CreateMemTemp(Ty);
3260     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3261     V = CGF.Builder.CreateLoad(
3262                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3263     CGF.Builder.CreateStore(V,
3264                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3265     V = CGF.Builder.CreateLoad(
3266                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3267     CGF.Builder.CreateStore(V,
3268           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3269 
3270     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3271   }
3272 
3273   // AMD64-ABI 3.5.7p5: Step 5. Set:
3274   // l->gp_offset = l->gp_offset + num_gp * 8
3275   // l->fp_offset = l->fp_offset + num_fp * 16.
3276   if (neededInt) {
3277     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3278     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3279                             gp_offset_p);
3280   }
3281   if (neededSSE) {
3282     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3283     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3284                             fp_offset_p);
3285   }
3286   CGF.EmitBranch(ContBlock);
3287 
3288   // Emit code to load the value if it was passed in memory.
3289 
3290   CGF.EmitBlock(InMemBlock);
3291   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3292 
3293   // Return the appropriate result.
3294 
3295   CGF.EmitBlock(ContBlock);
3296   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3297                                  "vaarg.addr");
3298   return ResAddr;
3299 }
3300 
3301 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3302                                    QualType Ty) const {
3303   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3304                           CGF.getContext().getTypeInfoInChars(Ty),
3305                           CharUnits::fromQuantity(8),
3306                           /*allowHigherAlign*/ false);
3307 }
3308 
3309 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3310                                       bool IsReturnType) const {
3311 
3312   if (Ty->isVoidType())
3313     return ABIArgInfo::getIgnore();
3314 
3315   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3316     Ty = EnumTy->getDecl()->getIntegerType();
3317 
3318   TypeInfo Info = getContext().getTypeInfo(Ty);
3319   uint64_t Width = Info.Width;
3320   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3321 
3322   const RecordType *RT = Ty->getAs<RecordType>();
3323   if (RT) {
3324     if (!IsReturnType) {
3325       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3326         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3327     }
3328 
3329     if (RT->getDecl()->hasFlexibleArrayMember())
3330       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3331 
3332     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3333     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3334       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3335                                                           Width));
3336   }
3337 
3338   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3339   // other targets.
3340   const Type *Base = nullptr;
3341   uint64_t NumElts = 0;
3342   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3343     if (FreeSSERegs >= NumElts) {
3344       FreeSSERegs -= NumElts;
3345       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3346         return ABIArgInfo::getDirect();
3347       return ABIArgInfo::getExpand();
3348     }
3349     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align),
3350                                    /*ByVal=*/false);
3351   }
3352 
3353 
3354   if (Ty->isMemberPointerType()) {
3355     // If the member pointer is represented by an LLVM int or ptr, pass it
3356     // directly.
3357     llvm::Type *LLTy = CGT.ConvertType(Ty);
3358     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3359       return ABIArgInfo::getDirect();
3360   }
3361 
3362   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3363     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3364     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3365     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3366       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3367 
3368     // Otherwise, coerce it to a small integer.
3369     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3370   }
3371 
3372   // Bool type is always extended to the ABI, other builtin types are not
3373   // extended.
3374   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3375   if (BT && BT->getKind() == BuiltinType::Bool)
3376     return ABIArgInfo::getExtend();
3377 
3378   return ABIArgInfo::getDirect();
3379 }
3380 
3381 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3382   bool IsVectorCall =
3383       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3384 
3385   // We can use up to 4 SSE return registers with vectorcall.
3386   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3387   if (!getCXXABI().classifyReturnType(FI))
3388     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3389 
3390   // We can use up to 6 SSE register parameters with vectorcall.
3391   FreeSSERegs = IsVectorCall ? 6 : 0;
3392   for (auto &I : FI.arguments())
3393     I.info = classify(I.type, FreeSSERegs, false);
3394 }
3395 
3396 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3397                                     QualType Ty) const {
3398   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3399                           CGF.getContext().getTypeInfoInChars(Ty),
3400                           CharUnits::fromQuantity(8),
3401                           /*allowHigherAlign*/ false);
3402 }
3403 
3404 // PowerPC-32
3405 namespace {
3406 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3407 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3408 public:
3409   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3410 
3411   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3412                     QualType Ty) const override;
3413 };
3414 
3415 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3416 public:
3417   PPC32TargetCodeGenInfo(CodeGenTypes &CGT)
3418       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3419 
3420   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3421     // This is recovered from gcc output.
3422     return 1; // r1 is the dedicated stack pointer
3423   }
3424 
3425   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3426                                llvm::Value *Address) const override;
3427 };
3428 
3429 }
3430 
3431 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3432                                       QualType Ty) const {
3433   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3434     // TODO: Implement this. For now ignore.
3435     (void)CTy;
3436     return Address::invalid();
3437   }
3438 
3439   // struct __va_list_tag {
3440   //   unsigned char gpr;
3441   //   unsigned char fpr;
3442   //   unsigned short reserved;
3443   //   void *overflow_arg_area;
3444   //   void *reg_save_area;
3445   // };
3446 
3447   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3448   bool isInt =
3449       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3450 
3451   // All aggregates are passed indirectly?  That doesn't seem consistent
3452   // with the argument-lowering code.
3453   bool isIndirect = Ty->isAggregateType();
3454 
3455   CGBuilderTy &Builder = CGF.Builder;
3456 
3457   // The calling convention either uses 1-2 GPRs or 1 FPR.
3458   Address NumRegsAddr = Address::invalid();
3459   if (isInt) {
3460     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3461   } else {
3462     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3463   }
3464 
3465   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3466 
3467   // "Align" the register count when TY is i64.
3468   if (isI64) {
3469     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3470     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3471   }
3472 
3473   llvm::Value *CC =
3474       Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond");
3475 
3476   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3477   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3478   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3479 
3480   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3481 
3482   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3483   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3484 
3485   // Case 1: consume registers.
3486   Address RegAddr = Address::invalid();
3487   {
3488     CGF.EmitBlock(UsingRegs);
3489 
3490     Address RegSaveAreaPtr =
3491       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3492     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3493                       CharUnits::fromQuantity(8));
3494     assert(RegAddr.getElementType() == CGF.Int8Ty);
3495 
3496     // Floating-point registers start after the general-purpose registers.
3497     if (!isInt) {
3498       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3499                                                    CharUnits::fromQuantity(32));
3500     }
3501 
3502     // Get the address of the saved value by scaling the number of
3503     // registers we've used by the number of
3504     CharUnits RegSize = CharUnits::fromQuantity(isInt ? 4 : 8);
3505     llvm::Value *RegOffset =
3506       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3507     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3508                                             RegAddr.getPointer(), RegOffset),
3509                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3510     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3511 
3512     // Increase the used-register count.
3513     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(isI64 ? 2 : 1));
3514     Builder.CreateStore(NumRegs, NumRegsAddr);
3515 
3516     CGF.EmitBranch(Cont);
3517   }
3518 
3519   // Case 2: consume space in the overflow area.
3520   Address MemAddr = Address::invalid();
3521   {
3522     CGF.EmitBlock(UsingOverflow);
3523 
3524     // Everything in the overflow area is rounded up to a size of at least 4.
3525     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3526 
3527     CharUnits Size;
3528     if (!isIndirect) {
3529       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3530       Size = TypeInfo.first.RoundUpToAlignment(OverflowAreaAlign);
3531     } else {
3532       Size = CGF.getPointerSize();
3533     }
3534 
3535     Address OverflowAreaAddr =
3536       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3537     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr),
3538                          OverflowAreaAlign);
3539 
3540     // The current address is the address of the varargs element.
3541     // FIXME: do we not need to round up to alignment?
3542     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3543 
3544     // Increase the overflow area.
3545     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3546     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3547     CGF.EmitBranch(Cont);
3548   }
3549 
3550   CGF.EmitBlock(Cont);
3551 
3552   // Merge the cases with a phi.
3553   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3554                                 "vaarg.addr");
3555 
3556   // Load the pointer if the argument was passed indirectly.
3557   if (isIndirect) {
3558     Result = Address(Builder.CreateLoad(Result, "aggr"),
3559                      getContext().getTypeAlignInChars(Ty));
3560   }
3561 
3562   return Result;
3563 }
3564 
3565 bool
3566 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3567                                                 llvm::Value *Address) const {
3568   // This is calculated from the LLVM and GCC tables and verified
3569   // against gcc output.  AFAIK all ABIs use the same encoding.
3570 
3571   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3572 
3573   llvm::IntegerType *i8 = CGF.Int8Ty;
3574   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3575   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3576   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3577 
3578   // 0-31: r0-31, the 4-byte general-purpose registers
3579   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3580 
3581   // 32-63: fp0-31, the 8-byte floating-point registers
3582   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3583 
3584   // 64-76 are various 4-byte special-purpose registers:
3585   // 64: mq
3586   // 65: lr
3587   // 66: ctr
3588   // 67: ap
3589   // 68-75 cr0-7
3590   // 76: xer
3591   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3592 
3593   // 77-108: v0-31, the 16-byte vector registers
3594   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3595 
3596   // 109: vrsave
3597   // 110: vscr
3598   // 111: spe_acc
3599   // 112: spefscr
3600   // 113: sfp
3601   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3602 
3603   return false;
3604 }
3605 
3606 // PowerPC-64
3607 
3608 namespace {
3609 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3610 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3611 public:
3612   enum ABIKind {
3613     ELFv1 = 0,
3614     ELFv2
3615   };
3616 
3617 private:
3618   static const unsigned GPRBits = 64;
3619   ABIKind Kind;
3620   bool HasQPX;
3621 
3622   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3623   // will be passed in a QPX register.
3624   bool IsQPXVectorTy(const Type *Ty) const {
3625     if (!HasQPX)
3626       return false;
3627 
3628     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3629       unsigned NumElements = VT->getNumElements();
3630       if (NumElements == 1)
3631         return false;
3632 
3633       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3634         if (getContext().getTypeSize(Ty) <= 256)
3635           return true;
3636       } else if (VT->getElementType()->
3637                    isSpecificBuiltinType(BuiltinType::Float)) {
3638         if (getContext().getTypeSize(Ty) <= 128)
3639           return true;
3640       }
3641     }
3642 
3643     return false;
3644   }
3645 
3646   bool IsQPXVectorTy(QualType Ty) const {
3647     return IsQPXVectorTy(Ty.getTypePtr());
3648   }
3649 
3650 public:
3651   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3652     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3653 
3654   bool isPromotableTypeForABI(QualType Ty) const;
3655   CharUnits getParamTypeAlignment(QualType Ty) const;
3656 
3657   ABIArgInfo classifyReturnType(QualType RetTy) const;
3658   ABIArgInfo classifyArgumentType(QualType Ty) const;
3659 
3660   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3661   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3662                                          uint64_t Members) const override;
3663 
3664   // TODO: We can add more logic to computeInfo to improve performance.
3665   // Example: For aggregate arguments that fit in a register, we could
3666   // use getDirectInReg (as is done below for structs containing a single
3667   // floating-point value) to avoid pushing them to memory on function
3668   // entry.  This would require changing the logic in PPCISelLowering
3669   // when lowering the parameters in the caller and args in the callee.
3670   void computeInfo(CGFunctionInfo &FI) const override {
3671     if (!getCXXABI().classifyReturnType(FI))
3672       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3673     for (auto &I : FI.arguments()) {
3674       // We rely on the default argument classification for the most part.
3675       // One exception:  An aggregate containing a single floating-point
3676       // or vector item must be passed in a register if one is available.
3677       const Type *T = isSingleElementStruct(I.type, getContext());
3678       if (T) {
3679         const BuiltinType *BT = T->getAs<BuiltinType>();
3680         if (IsQPXVectorTy(T) ||
3681             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3682             (BT && BT->isFloatingPoint())) {
3683           QualType QT(T, 0);
3684           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3685           continue;
3686         }
3687       }
3688       I.info = classifyArgumentType(I.type);
3689     }
3690   }
3691 
3692   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3693                     QualType Ty) const override;
3694 };
3695 
3696 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3697 
3698 public:
3699   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3700                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3701       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3702 
3703   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3704     // This is recovered from gcc output.
3705     return 1; // r1 is the dedicated stack pointer
3706   }
3707 
3708   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3709                                llvm::Value *Address) const override;
3710 };
3711 
3712 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3713 public:
3714   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3715 
3716   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3717     // This is recovered from gcc output.
3718     return 1; // r1 is the dedicated stack pointer
3719   }
3720 
3721   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3722                                llvm::Value *Address) const override;
3723 };
3724 
3725 }
3726 
3727 // Return true if the ABI requires Ty to be passed sign- or zero-
3728 // extended to 64 bits.
3729 bool
3730 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3731   // Treat an enum type as its underlying type.
3732   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3733     Ty = EnumTy->getDecl()->getIntegerType();
3734 
3735   // Promotable integer types are required to be promoted by the ABI.
3736   if (Ty->isPromotableIntegerType())
3737     return true;
3738 
3739   // In addition to the usual promotable integer types, we also need to
3740   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3741   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3742     switch (BT->getKind()) {
3743     case BuiltinType::Int:
3744     case BuiltinType::UInt:
3745       return true;
3746     default:
3747       break;
3748     }
3749 
3750   return false;
3751 }
3752 
3753 /// isAlignedParamType - Determine whether a type requires 16-byte or
3754 /// higher alignment in the parameter area.  Always returns at least 8.
3755 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3756   // Complex types are passed just like their elements.
3757   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3758     Ty = CTy->getElementType();
3759 
3760   // Only vector types of size 16 bytes need alignment (larger types are
3761   // passed via reference, smaller types are not aligned).
3762   if (IsQPXVectorTy(Ty)) {
3763     if (getContext().getTypeSize(Ty) > 128)
3764       return CharUnits::fromQuantity(32);
3765 
3766     return CharUnits::fromQuantity(16);
3767   } else if (Ty->isVectorType()) {
3768     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
3769   }
3770 
3771   // For single-element float/vector structs, we consider the whole type
3772   // to have the same alignment requirements as its single element.
3773   const Type *AlignAsType = nullptr;
3774   const Type *EltType = isSingleElementStruct(Ty, getContext());
3775   if (EltType) {
3776     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3777     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3778          getContext().getTypeSize(EltType) == 128) ||
3779         (BT && BT->isFloatingPoint()))
3780       AlignAsType = EltType;
3781   }
3782 
3783   // Likewise for ELFv2 homogeneous aggregates.
3784   const Type *Base = nullptr;
3785   uint64_t Members = 0;
3786   if (!AlignAsType && Kind == ELFv2 &&
3787       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3788     AlignAsType = Base;
3789 
3790   // With special case aggregates, only vector base types need alignment.
3791   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3792     if (getContext().getTypeSize(AlignAsType) > 128)
3793       return CharUnits::fromQuantity(32);
3794 
3795     return CharUnits::fromQuantity(16);
3796   } else if (AlignAsType) {
3797     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
3798   }
3799 
3800   // Otherwise, we only need alignment for any aggregate type that
3801   // has an alignment requirement of >= 16 bytes.
3802   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3803     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3804       return CharUnits::fromQuantity(32);
3805     return CharUnits::fromQuantity(16);
3806   }
3807 
3808   return CharUnits::fromQuantity(8);
3809 }
3810 
3811 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3812 /// aggregate.  Base is set to the base element type, and Members is set
3813 /// to the number of base elements.
3814 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3815                                      uint64_t &Members) const {
3816   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3817     uint64_t NElements = AT->getSize().getZExtValue();
3818     if (NElements == 0)
3819       return false;
3820     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3821       return false;
3822     Members *= NElements;
3823   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3824     const RecordDecl *RD = RT->getDecl();
3825     if (RD->hasFlexibleArrayMember())
3826       return false;
3827 
3828     Members = 0;
3829 
3830     // If this is a C++ record, check the bases first.
3831     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3832       for (const auto &I : CXXRD->bases()) {
3833         // Ignore empty records.
3834         if (isEmptyRecord(getContext(), I.getType(), true))
3835           continue;
3836 
3837         uint64_t FldMembers;
3838         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3839           return false;
3840 
3841         Members += FldMembers;
3842       }
3843     }
3844 
3845     for (const auto *FD : RD->fields()) {
3846       // Ignore (non-zero arrays of) empty records.
3847       QualType FT = FD->getType();
3848       while (const ConstantArrayType *AT =
3849              getContext().getAsConstantArrayType(FT)) {
3850         if (AT->getSize().getZExtValue() == 0)
3851           return false;
3852         FT = AT->getElementType();
3853       }
3854       if (isEmptyRecord(getContext(), FT, true))
3855         continue;
3856 
3857       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3858       if (getContext().getLangOpts().CPlusPlus &&
3859           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3860         continue;
3861 
3862       uint64_t FldMembers;
3863       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3864         return false;
3865 
3866       Members = (RD->isUnion() ?
3867                  std::max(Members, FldMembers) : Members + FldMembers);
3868     }
3869 
3870     if (!Base)
3871       return false;
3872 
3873     // Ensure there is no padding.
3874     if (getContext().getTypeSize(Base) * Members !=
3875         getContext().getTypeSize(Ty))
3876       return false;
3877   } else {
3878     Members = 1;
3879     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3880       Members = 2;
3881       Ty = CT->getElementType();
3882     }
3883 
3884     // Most ABIs only support float, double, and some vector type widths.
3885     if (!isHomogeneousAggregateBaseType(Ty))
3886       return false;
3887 
3888     // The base type must be the same for all members.  Types that
3889     // agree in both total size and mode (float vs. vector) are
3890     // treated as being equivalent here.
3891     const Type *TyPtr = Ty.getTypePtr();
3892     if (!Base)
3893       Base = TyPtr;
3894 
3895     if (Base->isVectorType() != TyPtr->isVectorType() ||
3896         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3897       return false;
3898   }
3899   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3900 }
3901 
3902 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3903   // Homogeneous aggregates for ELFv2 must have base types of float,
3904   // double, long double, or 128-bit vectors.
3905   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3906     if (BT->getKind() == BuiltinType::Float ||
3907         BT->getKind() == BuiltinType::Double ||
3908         BT->getKind() == BuiltinType::LongDouble)
3909       return true;
3910   }
3911   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3912     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3913       return true;
3914   }
3915   return false;
3916 }
3917 
3918 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3919     const Type *Base, uint64_t Members) const {
3920   // Vector types require one register, floating point types require one
3921   // or two registers depending on their size.
3922   uint32_t NumRegs =
3923       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3924 
3925   // Homogeneous Aggregates may occupy at most 8 registers.
3926   return Members * NumRegs <= 8;
3927 }
3928 
3929 ABIArgInfo
3930 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3931   Ty = useFirstFieldIfTransparentUnion(Ty);
3932 
3933   if (Ty->isAnyComplexType())
3934     return ABIArgInfo::getDirect();
3935 
3936   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3937   // or via reference (larger than 16 bytes).
3938   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3939     uint64_t Size = getContext().getTypeSize(Ty);
3940     if (Size > 128)
3941       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3942     else if (Size < 128) {
3943       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3944       return ABIArgInfo::getDirect(CoerceTy);
3945     }
3946   }
3947 
3948   if (isAggregateTypeForABI(Ty)) {
3949     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3950       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3951 
3952     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
3953     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
3954 
3955     // ELFv2 homogeneous aggregates are passed as array types.
3956     const Type *Base = nullptr;
3957     uint64_t Members = 0;
3958     if (Kind == ELFv2 &&
3959         isHomogeneousAggregate(Ty, Base, Members)) {
3960       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3961       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3962       return ABIArgInfo::getDirect(CoerceTy);
3963     }
3964 
3965     // If an aggregate may end up fully in registers, we do not
3966     // use the ByVal method, but pass the aggregate as array.
3967     // This is usually beneficial since we avoid forcing the
3968     // back-end to store the argument to memory.
3969     uint64_t Bits = getContext().getTypeSize(Ty);
3970     if (Bits > 0 && Bits <= 8 * GPRBits) {
3971       llvm::Type *CoerceTy;
3972 
3973       // Types up to 8 bytes are passed as integer type (which will be
3974       // properly aligned in the argument save area doubleword).
3975       if (Bits <= GPRBits)
3976         CoerceTy = llvm::IntegerType::get(getVMContext(),
3977                                           llvm::RoundUpToAlignment(Bits, 8));
3978       // Larger types are passed as arrays, with the base type selected
3979       // according to the required alignment in the save area.
3980       else {
3981         uint64_t RegBits = ABIAlign * 8;
3982         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3983         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3984         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3985       }
3986 
3987       return ABIArgInfo::getDirect(CoerceTy);
3988     }
3989 
3990     // All other aggregates are passed ByVal.
3991     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
3992                                    /*ByVal=*/true,
3993                                    /*Realign=*/TyAlign > ABIAlign);
3994   }
3995 
3996   return (isPromotableTypeForABI(Ty) ?
3997           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3998 }
3999 
4000 ABIArgInfo
4001 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4002   if (RetTy->isVoidType())
4003     return ABIArgInfo::getIgnore();
4004 
4005   if (RetTy->isAnyComplexType())
4006     return ABIArgInfo::getDirect();
4007 
4008   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4009   // or via reference (larger than 16 bytes).
4010   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4011     uint64_t Size = getContext().getTypeSize(RetTy);
4012     if (Size > 128)
4013       return getNaturalAlignIndirect(RetTy);
4014     else if (Size < 128) {
4015       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4016       return ABIArgInfo::getDirect(CoerceTy);
4017     }
4018   }
4019 
4020   if (isAggregateTypeForABI(RetTy)) {
4021     // ELFv2 homogeneous aggregates are returned as array types.
4022     const Type *Base = nullptr;
4023     uint64_t Members = 0;
4024     if (Kind == ELFv2 &&
4025         isHomogeneousAggregate(RetTy, Base, Members)) {
4026       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4027       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4028       return ABIArgInfo::getDirect(CoerceTy);
4029     }
4030 
4031     // ELFv2 small aggregates are returned in up to two registers.
4032     uint64_t Bits = getContext().getTypeSize(RetTy);
4033     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4034       if (Bits == 0)
4035         return ABIArgInfo::getIgnore();
4036 
4037       llvm::Type *CoerceTy;
4038       if (Bits > GPRBits) {
4039         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4040         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4041       } else
4042         CoerceTy = llvm::IntegerType::get(getVMContext(),
4043                                           llvm::RoundUpToAlignment(Bits, 8));
4044       return ABIArgInfo::getDirect(CoerceTy);
4045     }
4046 
4047     // All other aggregates are returned indirectly.
4048     return getNaturalAlignIndirect(RetTy);
4049   }
4050 
4051   return (isPromotableTypeForABI(RetTy) ?
4052           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4053 }
4054 
4055 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4056 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4057                                       QualType Ty) const {
4058   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4059   TypeInfo.second = getParamTypeAlignment(Ty);
4060 
4061   CharUnits SlotSize = CharUnits::fromQuantity(8);
4062 
4063   // If we have a complex type and the base type is smaller than 8 bytes,
4064   // the ABI calls for the real and imaginary parts to be right-adjusted
4065   // in separate doublewords.  However, Clang expects us to produce a
4066   // pointer to a structure with the two parts packed tightly.  So generate
4067   // loads of the real and imaginary parts relative to the va_list pointer,
4068   // and store them to a temporary structure.
4069   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4070     CharUnits EltSize = TypeInfo.first / 2;
4071     if (EltSize < SlotSize) {
4072       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4073                                             SlotSize * 2, SlotSize,
4074                                             SlotSize, /*AllowHigher*/ true);
4075 
4076       Address RealAddr = Addr;
4077       Address ImagAddr = RealAddr;
4078       if (CGF.CGM.getDataLayout().isBigEndian()) {
4079         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4080                                                           SlotSize - EltSize);
4081         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4082                                                       2 * SlotSize - EltSize);
4083       } else {
4084         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4085       }
4086 
4087       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4088       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4089       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4090       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4091       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4092 
4093       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4094       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4095                              /*init*/ true);
4096       return Temp;
4097     }
4098   }
4099 
4100   // Otherwise, just use the general rule.
4101   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4102                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4103 }
4104 
4105 static bool
4106 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4107                               llvm::Value *Address) {
4108   // This is calculated from the LLVM and GCC tables and verified
4109   // against gcc output.  AFAIK all ABIs use the same encoding.
4110 
4111   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4112 
4113   llvm::IntegerType *i8 = CGF.Int8Ty;
4114   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4115   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4116   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4117 
4118   // 0-31: r0-31, the 8-byte general-purpose registers
4119   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4120 
4121   // 32-63: fp0-31, the 8-byte floating-point registers
4122   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4123 
4124   // 64-76 are various 4-byte special-purpose registers:
4125   // 64: mq
4126   // 65: lr
4127   // 66: ctr
4128   // 67: ap
4129   // 68-75 cr0-7
4130   // 76: xer
4131   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4132 
4133   // 77-108: v0-31, the 16-byte vector registers
4134   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4135 
4136   // 109: vrsave
4137   // 110: vscr
4138   // 111: spe_acc
4139   // 112: spefscr
4140   // 113: sfp
4141   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4142 
4143   return false;
4144 }
4145 
4146 bool
4147 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4148   CodeGen::CodeGenFunction &CGF,
4149   llvm::Value *Address) const {
4150 
4151   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4152 }
4153 
4154 bool
4155 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4156                                                 llvm::Value *Address) const {
4157 
4158   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4159 }
4160 
4161 //===----------------------------------------------------------------------===//
4162 // AArch64 ABI Implementation
4163 //===----------------------------------------------------------------------===//
4164 
4165 namespace {
4166 
4167 class AArch64ABIInfo : public ABIInfo {
4168 public:
4169   enum ABIKind {
4170     AAPCS = 0,
4171     DarwinPCS
4172   };
4173 
4174 private:
4175   ABIKind Kind;
4176 
4177 public:
4178   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
4179 
4180 private:
4181   ABIKind getABIKind() const { return Kind; }
4182   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4183 
4184   ABIArgInfo classifyReturnType(QualType RetTy) const;
4185   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4186   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4187   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4188                                          uint64_t Members) const override;
4189 
4190   bool isIllegalVectorType(QualType Ty) const;
4191 
4192   void computeInfo(CGFunctionInfo &FI) const override {
4193     if (!getCXXABI().classifyReturnType(FI))
4194       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4195 
4196     for (auto &it : FI.arguments())
4197       it.info = classifyArgumentType(it.type);
4198   }
4199 
4200   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4201                           CodeGenFunction &CGF) const;
4202 
4203   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4204                          CodeGenFunction &CGF) const;
4205 
4206   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4207                     QualType Ty) const override {
4208     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4209                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4210   }
4211 };
4212 
4213 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4214 public:
4215   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4216       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4217 
4218   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4219     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4220   }
4221 
4222   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4223     return 31;
4224   }
4225 
4226   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4227 };
4228 }
4229 
4230 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4231   Ty = useFirstFieldIfTransparentUnion(Ty);
4232 
4233   // Handle illegal vector types here.
4234   if (isIllegalVectorType(Ty)) {
4235     uint64_t Size = getContext().getTypeSize(Ty);
4236     if (Size <= 32) {
4237       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4238       return ABIArgInfo::getDirect(ResType);
4239     }
4240     if (Size == 64) {
4241       llvm::Type *ResType =
4242           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4243       return ABIArgInfo::getDirect(ResType);
4244     }
4245     if (Size == 128) {
4246       llvm::Type *ResType =
4247           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4248       return ABIArgInfo::getDirect(ResType);
4249     }
4250     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4251   }
4252 
4253   if (!isAggregateTypeForABI(Ty)) {
4254     // Treat an enum type as its underlying type.
4255     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4256       Ty = EnumTy->getDecl()->getIntegerType();
4257 
4258     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4259                 ? ABIArgInfo::getExtend()
4260                 : ABIArgInfo::getDirect());
4261   }
4262 
4263   // Structures with either a non-trivial destructor or a non-trivial
4264   // copy constructor are always indirect.
4265   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4266     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4267                                      CGCXXABI::RAA_DirectInMemory);
4268   }
4269 
4270   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4271   // elsewhere for GNU compatibility.
4272   if (isEmptyRecord(getContext(), Ty, true)) {
4273     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4274       return ABIArgInfo::getIgnore();
4275 
4276     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4277   }
4278 
4279   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4280   const Type *Base = nullptr;
4281   uint64_t Members = 0;
4282   if (isHomogeneousAggregate(Ty, Base, Members)) {
4283     return ABIArgInfo::getDirect(
4284         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4285   }
4286 
4287   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4288   uint64_t Size = getContext().getTypeSize(Ty);
4289   if (Size <= 128) {
4290     unsigned Alignment = getContext().getTypeAlign(Ty);
4291     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4292 
4293     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4294     // For aggregates with 16-byte alignment, we use i128.
4295     if (Alignment < 128 && Size == 128) {
4296       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4297       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4298     }
4299     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4300   }
4301 
4302   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4303 }
4304 
4305 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4306   if (RetTy->isVoidType())
4307     return ABIArgInfo::getIgnore();
4308 
4309   // Large vector types should be returned via memory.
4310   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4311     return getNaturalAlignIndirect(RetTy);
4312 
4313   if (!isAggregateTypeForABI(RetTy)) {
4314     // Treat an enum type as its underlying type.
4315     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4316       RetTy = EnumTy->getDecl()->getIntegerType();
4317 
4318     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4319                 ? ABIArgInfo::getExtend()
4320                 : ABIArgInfo::getDirect());
4321   }
4322 
4323   if (isEmptyRecord(getContext(), RetTy, true))
4324     return ABIArgInfo::getIgnore();
4325 
4326   const Type *Base = nullptr;
4327   uint64_t Members = 0;
4328   if (isHomogeneousAggregate(RetTy, Base, Members))
4329     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4330     return ABIArgInfo::getDirect();
4331 
4332   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4333   uint64_t Size = getContext().getTypeSize(RetTy);
4334   if (Size <= 128) {
4335     unsigned Alignment = getContext().getTypeAlign(RetTy);
4336     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4337 
4338     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4339     // For aggregates with 16-byte alignment, we use i128.
4340     if (Alignment < 128 && Size == 128) {
4341       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4342       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4343     }
4344     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4345   }
4346 
4347   return getNaturalAlignIndirect(RetTy);
4348 }
4349 
4350 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4351 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4352   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4353     // Check whether VT is legal.
4354     unsigned NumElements = VT->getNumElements();
4355     uint64_t Size = getContext().getTypeSize(VT);
4356     // NumElements should be power of 2 between 1 and 16.
4357     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4358       return true;
4359     return Size != 64 && (Size != 128 || NumElements == 1);
4360   }
4361   return false;
4362 }
4363 
4364 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4365   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4366   // point type or a short-vector type. This is the same as the 32-bit ABI,
4367   // but with the difference that any floating-point type is allowed,
4368   // including __fp16.
4369   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4370     if (BT->isFloatingPoint())
4371       return true;
4372   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4373     unsigned VecSize = getContext().getTypeSize(VT);
4374     if (VecSize == 64 || VecSize == 128)
4375       return true;
4376   }
4377   return false;
4378 }
4379 
4380 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4381                                                        uint64_t Members) const {
4382   return Members <= 4;
4383 }
4384 
4385 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4386                                             QualType Ty,
4387                                             CodeGenFunction &CGF) const {
4388   ABIArgInfo AI = classifyArgumentType(Ty);
4389   bool IsIndirect = AI.isIndirect();
4390 
4391   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4392   if (IsIndirect)
4393     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4394   else if (AI.getCoerceToType())
4395     BaseTy = AI.getCoerceToType();
4396 
4397   unsigned NumRegs = 1;
4398   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4399     BaseTy = ArrTy->getElementType();
4400     NumRegs = ArrTy->getNumElements();
4401   }
4402   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4403 
4404   // The AArch64 va_list type and handling is specified in the Procedure Call
4405   // Standard, section B.4:
4406   //
4407   // struct {
4408   //   void *__stack;
4409   //   void *__gr_top;
4410   //   void *__vr_top;
4411   //   int __gr_offs;
4412   //   int __vr_offs;
4413   // };
4414 
4415   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4416   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4417   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4418   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4419 
4420   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4421   CharUnits TyAlign = TyInfo.second;
4422 
4423   Address reg_offs_p = Address::invalid();
4424   llvm::Value *reg_offs = nullptr;
4425   int reg_top_index;
4426   CharUnits reg_top_offset;
4427   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4428   if (!IsFPR) {
4429     // 3 is the field number of __gr_offs
4430     reg_offs_p =
4431         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4432                                     "gr_offs_p");
4433     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4434     reg_top_index = 1; // field number for __gr_top
4435     reg_top_offset = CharUnits::fromQuantity(8);
4436     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4437   } else {
4438     // 4 is the field number of __vr_offs.
4439     reg_offs_p =
4440         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4441                                     "vr_offs_p");
4442     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4443     reg_top_index = 2; // field number for __vr_top
4444     reg_top_offset = CharUnits::fromQuantity(16);
4445     RegSize = 16 * NumRegs;
4446   }
4447 
4448   //=======================================
4449   // Find out where argument was passed
4450   //=======================================
4451 
4452   // If reg_offs >= 0 we're already using the stack for this type of
4453   // argument. We don't want to keep updating reg_offs (in case it overflows,
4454   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4455   // whatever they get).
4456   llvm::Value *UsingStack = nullptr;
4457   UsingStack = CGF.Builder.CreateICmpSGE(
4458       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4459 
4460   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4461 
4462   // Otherwise, at least some kind of argument could go in these registers, the
4463   // question is whether this particular type is too big.
4464   CGF.EmitBlock(MaybeRegBlock);
4465 
4466   // Integer arguments may need to correct register alignment (for example a
4467   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4468   // align __gr_offs to calculate the potential address.
4469   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4470     int Align = TyAlign.getQuantity();
4471 
4472     reg_offs = CGF.Builder.CreateAdd(
4473         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4474         "align_regoffs");
4475     reg_offs = CGF.Builder.CreateAnd(
4476         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4477         "aligned_regoffs");
4478   }
4479 
4480   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4481   // The fact that this is done unconditionally reflects the fact that
4482   // allocating an argument to the stack also uses up all the remaining
4483   // registers of the appropriate kind.
4484   llvm::Value *NewOffset = nullptr;
4485   NewOffset = CGF.Builder.CreateAdd(
4486       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4487   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4488 
4489   // Now we're in a position to decide whether this argument really was in
4490   // registers or not.
4491   llvm::Value *InRegs = nullptr;
4492   InRegs = CGF.Builder.CreateICmpSLE(
4493       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4494 
4495   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4496 
4497   //=======================================
4498   // Argument was in registers
4499   //=======================================
4500 
4501   // Now we emit the code for if the argument was originally passed in
4502   // registers. First start the appropriate block:
4503   CGF.EmitBlock(InRegBlock);
4504 
4505   llvm::Value *reg_top = nullptr;
4506   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4507                                                   reg_top_offset, "reg_top_p");
4508   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4509   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4510                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4511   Address RegAddr = Address::invalid();
4512   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4513 
4514   if (IsIndirect) {
4515     // If it's been passed indirectly (actually a struct), whatever we find from
4516     // stored registers or on the stack will actually be a struct **.
4517     MemTy = llvm::PointerType::getUnqual(MemTy);
4518   }
4519 
4520   const Type *Base = nullptr;
4521   uint64_t NumMembers = 0;
4522   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4523   if (IsHFA && NumMembers > 1) {
4524     // Homogeneous aggregates passed in registers will have their elements split
4525     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4526     // qN+1, ...). We reload and store into a temporary local variable
4527     // contiguously.
4528     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4529     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4530     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4531     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4532     Address Tmp = CGF.CreateTempAlloca(HFATy,
4533                                        std::max(TyAlign, BaseTyInfo.second));
4534 
4535     // On big-endian platforms, the value will be right-aligned in its slot.
4536     int Offset = 0;
4537     if (CGF.CGM.getDataLayout().isBigEndian() &&
4538         BaseTyInfo.first.getQuantity() < 16)
4539       Offset = 16 - BaseTyInfo.first.getQuantity();
4540 
4541     for (unsigned i = 0; i < NumMembers; ++i) {
4542       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4543       Address LoadAddr =
4544         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4545       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4546 
4547       Address StoreAddr =
4548         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4549 
4550       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4551       CGF.Builder.CreateStore(Elem, StoreAddr);
4552     }
4553 
4554     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4555   } else {
4556     // Otherwise the object is contiguous in memory.
4557 
4558     // It might be right-aligned in its slot.
4559     CharUnits SlotSize = BaseAddr.getAlignment();
4560     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4561         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4562         TyInfo.first < SlotSize) {
4563       CharUnits Offset = SlotSize - TyInfo.first;
4564       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4565     }
4566 
4567     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4568   }
4569 
4570   CGF.EmitBranch(ContBlock);
4571 
4572   //=======================================
4573   // Argument was on the stack
4574   //=======================================
4575   CGF.EmitBlock(OnStackBlock);
4576 
4577   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4578                                                 CharUnits::Zero(), "stack_p");
4579   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4580 
4581   // Again, stack arguments may need realignment. In this case both integer and
4582   // floating-point ones might be affected.
4583   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4584     int Align = TyAlign.getQuantity();
4585 
4586     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4587 
4588     OnStackPtr = CGF.Builder.CreateAdd(
4589         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4590         "align_stack");
4591     OnStackPtr = CGF.Builder.CreateAnd(
4592         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4593         "align_stack");
4594 
4595     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4596   }
4597   Address OnStackAddr(OnStackPtr,
4598                       std::max(CharUnits::fromQuantity(8), TyAlign));
4599 
4600   // All stack slots are multiples of 8 bytes.
4601   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4602   CharUnits StackSize;
4603   if (IsIndirect)
4604     StackSize = StackSlotSize;
4605   else
4606     StackSize = TyInfo.first.RoundUpToAlignment(StackSlotSize);
4607 
4608   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4609   llvm::Value *NewStack =
4610       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4611 
4612   // Write the new value of __stack for the next call to va_arg
4613   CGF.Builder.CreateStore(NewStack, stack_p);
4614 
4615   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4616       TyInfo.first < StackSlotSize) {
4617     CharUnits Offset = StackSlotSize - TyInfo.first;
4618     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4619   }
4620 
4621   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4622 
4623   CGF.EmitBranch(ContBlock);
4624 
4625   //=======================================
4626   // Tidy up
4627   //=======================================
4628   CGF.EmitBlock(ContBlock);
4629 
4630   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4631                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4632 
4633   if (IsIndirect)
4634     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4635                    TyInfo.second);
4636 
4637   return ResAddr;
4638 }
4639 
4640 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4641                                         CodeGenFunction &CGF) const {
4642   // The backend's lowering doesn't support va_arg for aggregates or
4643   // illegal vector types.  Lower VAArg here for these cases and use
4644   // the LLVM va_arg instruction for everything else.
4645   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4646     return Address::invalid();
4647 
4648   CharUnits SlotSize = CharUnits::fromQuantity(8);
4649 
4650   // Empty records are ignored for parameter passing purposes.
4651   if (isEmptyRecord(getContext(), Ty, true)) {
4652     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4653     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4654     return Addr;
4655   }
4656 
4657   // The size of the actual thing passed, which might end up just
4658   // being a pointer for indirect types.
4659   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4660 
4661   // Arguments bigger than 16 bytes which aren't homogeneous
4662   // aggregates should be passed indirectly.
4663   bool IsIndirect = false;
4664   if (TyInfo.first.getQuantity() > 16) {
4665     const Type *Base = nullptr;
4666     uint64_t Members = 0;
4667     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4668   }
4669 
4670   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4671                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4672 }
4673 
4674 //===----------------------------------------------------------------------===//
4675 // ARM ABI Implementation
4676 //===----------------------------------------------------------------------===//
4677 
4678 namespace {
4679 
4680 class ARMABIInfo : public ABIInfo {
4681 public:
4682   enum ABIKind {
4683     APCS = 0,
4684     AAPCS = 1,
4685     AAPCS_VFP
4686   };
4687 
4688 private:
4689   ABIKind Kind;
4690 
4691 public:
4692   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4693     setCCs();
4694   }
4695 
4696   bool isEABI() const {
4697     switch (getTarget().getTriple().getEnvironment()) {
4698     case llvm::Triple::Android:
4699     case llvm::Triple::EABI:
4700     case llvm::Triple::EABIHF:
4701     case llvm::Triple::GNUEABI:
4702     case llvm::Triple::GNUEABIHF:
4703       return true;
4704     default:
4705       return false;
4706     }
4707   }
4708 
4709   bool isEABIHF() const {
4710     switch (getTarget().getTriple().getEnvironment()) {
4711     case llvm::Triple::EABIHF:
4712     case llvm::Triple::GNUEABIHF:
4713       return true;
4714     default:
4715       return false;
4716     }
4717   }
4718 
4719   ABIKind getABIKind() const { return Kind; }
4720 
4721 private:
4722   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4723   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4724   bool isIllegalVectorType(QualType Ty) const;
4725 
4726   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4727   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4728                                          uint64_t Members) const override;
4729 
4730   void computeInfo(CGFunctionInfo &FI) const override;
4731 
4732   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4733                     QualType Ty) const override;
4734 
4735   llvm::CallingConv::ID getLLVMDefaultCC() const;
4736   llvm::CallingConv::ID getABIDefaultCC() const;
4737   void setCCs();
4738 };
4739 
4740 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4741 public:
4742   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4743     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4744 
4745   const ARMABIInfo &getABIInfo() const {
4746     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4747   }
4748 
4749   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4750     return 13;
4751   }
4752 
4753   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4754     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4755   }
4756 
4757   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4758                                llvm::Value *Address) const override {
4759     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4760 
4761     // 0-15 are the 16 integer registers.
4762     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4763     return false;
4764   }
4765 
4766   unsigned getSizeOfUnwindException() const override {
4767     if (getABIInfo().isEABI()) return 88;
4768     return TargetCodeGenInfo::getSizeOfUnwindException();
4769   }
4770 
4771   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4772                            CodeGen::CodeGenModule &CGM) const override {
4773     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
4774     if (!FD)
4775       return;
4776 
4777     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4778     if (!Attr)
4779       return;
4780 
4781     const char *Kind;
4782     switch (Attr->getInterrupt()) {
4783     case ARMInterruptAttr::Generic: Kind = ""; break;
4784     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4785     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4786     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4787     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4788     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4789     }
4790 
4791     llvm::Function *Fn = cast<llvm::Function>(GV);
4792 
4793     Fn->addFnAttr("interrupt", Kind);
4794 
4795     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4796       return;
4797 
4798     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4799     // however this is not necessarily true on taking any interrupt. Instruct
4800     // the backend to perform a realignment as part of the function prologue.
4801     llvm::AttrBuilder B;
4802     B.addStackAlignmentAttr(8);
4803     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4804                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4805                                               llvm::AttributeSet::FunctionIndex,
4806                                               B));
4807   }
4808 };
4809 
4810 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4811   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4812                                         CodeGen::CodeGenModule &CGM) const;
4813 
4814 public:
4815   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4816       : ARMTargetCodeGenInfo(CGT, K) {}
4817 
4818   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4819                            CodeGen::CodeGenModule &CGM) const override;
4820 };
4821 
4822 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4823     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4824   if (!isa<FunctionDecl>(D))
4825     return;
4826   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4827     return;
4828 
4829   llvm::Function *F = cast<llvm::Function>(GV);
4830   F->addFnAttr("stack-probe-size",
4831                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4832 }
4833 
4834 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4835     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4836   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4837   addStackProbeSizeTargetAttribute(D, GV, CGM);
4838 }
4839 }
4840 
4841 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4842   if (!getCXXABI().classifyReturnType(FI))
4843     FI.getReturnInfo() =
4844         classifyReturnType(FI.getReturnType(), FI.isVariadic());
4845 
4846   for (auto &I : FI.arguments())
4847     I.info = classifyArgumentType(I.type, FI.isVariadic());
4848 
4849   // Always honor user-specified calling convention.
4850   if (FI.getCallingConvention() != llvm::CallingConv::C)
4851     return;
4852 
4853   llvm::CallingConv::ID cc = getRuntimeCC();
4854   if (cc != llvm::CallingConv::C)
4855     FI.setEffectiveCallingConvention(cc);
4856 }
4857 
4858 /// Return the default calling convention that LLVM will use.
4859 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4860   // The default calling convention that LLVM will infer.
4861   if (isEABIHF())
4862     return llvm::CallingConv::ARM_AAPCS_VFP;
4863   else if (isEABI())
4864     return llvm::CallingConv::ARM_AAPCS;
4865   else
4866     return llvm::CallingConv::ARM_APCS;
4867 }
4868 
4869 /// Return the calling convention that our ABI would like us to use
4870 /// as the C calling convention.
4871 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4872   switch (getABIKind()) {
4873   case APCS: return llvm::CallingConv::ARM_APCS;
4874   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4875   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4876   }
4877   llvm_unreachable("bad ABI kind");
4878 }
4879 
4880 void ARMABIInfo::setCCs() {
4881   assert(getRuntimeCC() == llvm::CallingConv::C);
4882 
4883   // Don't muddy up the IR with a ton of explicit annotations if
4884   // they'd just match what LLVM will infer from the triple.
4885   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4886   if (abiCC != getLLVMDefaultCC())
4887     RuntimeCC = abiCC;
4888 
4889   BuiltinCC = (getABIKind() == APCS ?
4890                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4891 }
4892 
4893 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4894                                             bool isVariadic) const {
4895   // 6.1.2.1 The following argument types are VFP CPRCs:
4896   //   A single-precision floating-point type (including promoted
4897   //   half-precision types); A double-precision floating-point type;
4898   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4899   //   with a Base Type of a single- or double-precision floating-point type,
4900   //   64-bit containerized vectors or 128-bit containerized vectors with one
4901   //   to four Elements.
4902   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4903 
4904   Ty = useFirstFieldIfTransparentUnion(Ty);
4905 
4906   // Handle illegal vector types here.
4907   if (isIllegalVectorType(Ty)) {
4908     uint64_t Size = getContext().getTypeSize(Ty);
4909     if (Size <= 32) {
4910       llvm::Type *ResType =
4911           llvm::Type::getInt32Ty(getVMContext());
4912       return ABIArgInfo::getDirect(ResType);
4913     }
4914     if (Size == 64) {
4915       llvm::Type *ResType = llvm::VectorType::get(
4916           llvm::Type::getInt32Ty(getVMContext()), 2);
4917       return ABIArgInfo::getDirect(ResType);
4918     }
4919     if (Size == 128) {
4920       llvm::Type *ResType = llvm::VectorType::get(
4921           llvm::Type::getInt32Ty(getVMContext()), 4);
4922       return ABIArgInfo::getDirect(ResType);
4923     }
4924     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4925   }
4926 
4927   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
4928   // unspecified. This is not done for OpenCL as it handles the half type
4929   // natively, and does not need to interwork with AAPCS code.
4930   if (Ty->isHalfType() && !getContext().getLangOpts().OpenCL) {
4931     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
4932       llvm::Type::getFloatTy(getVMContext()) :
4933       llvm::Type::getInt32Ty(getVMContext());
4934     return ABIArgInfo::getDirect(ResType);
4935   }
4936 
4937   if (!isAggregateTypeForABI(Ty)) {
4938     // Treat an enum type as its underlying type.
4939     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4940       Ty = EnumTy->getDecl()->getIntegerType();
4941     }
4942 
4943     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4944                                           : ABIArgInfo::getDirect());
4945   }
4946 
4947   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4948     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4949   }
4950 
4951   // Ignore empty records.
4952   if (isEmptyRecord(getContext(), Ty, true))
4953     return ABIArgInfo::getIgnore();
4954 
4955   if (IsEffectivelyAAPCS_VFP) {
4956     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4957     // into VFP registers.
4958     const Type *Base = nullptr;
4959     uint64_t Members = 0;
4960     if (isHomogeneousAggregate(Ty, Base, Members)) {
4961       assert(Base && "Base class should be set for homogeneous aggregate");
4962       // Base can be a floating-point or a vector.
4963       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4964     }
4965   }
4966 
4967   // Support byval for ARM.
4968   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4969   // most 8-byte. We realign the indirect argument if type alignment is bigger
4970   // than ABI alignment.
4971   uint64_t ABIAlign = 4;
4972   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4973   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4974        getABIKind() == ARMABIInfo::AAPCS)
4975     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4976 
4977   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4978     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4979                                    /*ByVal=*/true,
4980                                    /*Realign=*/TyAlign > ABIAlign);
4981   }
4982 
4983   // Otherwise, pass by coercing to a structure of the appropriate size.
4984   llvm::Type* ElemTy;
4985   unsigned SizeRegs;
4986   // FIXME: Try to match the types of the arguments more accurately where
4987   // we can.
4988   if (getContext().getTypeAlign(Ty) <= 32) {
4989     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4990     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4991   } else {
4992     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4993     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4994   }
4995 
4996   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4997 }
4998 
4999 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5000                               llvm::LLVMContext &VMContext) {
5001   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5002   // is called integer-like if its size is less than or equal to one word, and
5003   // the offset of each of its addressable sub-fields is zero.
5004 
5005   uint64_t Size = Context.getTypeSize(Ty);
5006 
5007   // Check that the type fits in a word.
5008   if (Size > 32)
5009     return false;
5010 
5011   // FIXME: Handle vector types!
5012   if (Ty->isVectorType())
5013     return false;
5014 
5015   // Float types are never treated as "integer like".
5016   if (Ty->isRealFloatingType())
5017     return false;
5018 
5019   // If this is a builtin or pointer type then it is ok.
5020   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5021     return true;
5022 
5023   // Small complex integer types are "integer like".
5024   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5025     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5026 
5027   // Single element and zero sized arrays should be allowed, by the definition
5028   // above, but they are not.
5029 
5030   // Otherwise, it must be a record type.
5031   const RecordType *RT = Ty->getAs<RecordType>();
5032   if (!RT) return false;
5033 
5034   // Ignore records with flexible arrays.
5035   const RecordDecl *RD = RT->getDecl();
5036   if (RD->hasFlexibleArrayMember())
5037     return false;
5038 
5039   // Check that all sub-fields are at offset 0, and are themselves "integer
5040   // like".
5041   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5042 
5043   bool HadField = false;
5044   unsigned idx = 0;
5045   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5046        i != e; ++i, ++idx) {
5047     const FieldDecl *FD = *i;
5048 
5049     // Bit-fields are not addressable, we only need to verify they are "integer
5050     // like". We still have to disallow a subsequent non-bitfield, for example:
5051     //   struct { int : 0; int x }
5052     // is non-integer like according to gcc.
5053     if (FD->isBitField()) {
5054       if (!RD->isUnion())
5055         HadField = true;
5056 
5057       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5058         return false;
5059 
5060       continue;
5061     }
5062 
5063     // Check if this field is at offset 0.
5064     if (Layout.getFieldOffset(idx) != 0)
5065       return false;
5066 
5067     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5068       return false;
5069 
5070     // Only allow at most one field in a structure. This doesn't match the
5071     // wording above, but follows gcc in situations with a field following an
5072     // empty structure.
5073     if (!RD->isUnion()) {
5074       if (HadField)
5075         return false;
5076 
5077       HadField = true;
5078     }
5079   }
5080 
5081   return true;
5082 }
5083 
5084 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5085                                           bool isVariadic) const {
5086   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5087 
5088   if (RetTy->isVoidType())
5089     return ABIArgInfo::getIgnore();
5090 
5091   // Large vector types should be returned via memory.
5092   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5093     return getNaturalAlignIndirect(RetTy);
5094   }
5095 
5096   // __fp16 gets returned as if it were an int or float, but with the top 16
5097   // bits unspecified. This is not done for OpenCL as it handles the half type
5098   // natively, and does not need to interwork with AAPCS code.
5099   if (RetTy->isHalfType() && !getContext().getLangOpts().OpenCL) {
5100     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5101       llvm::Type::getFloatTy(getVMContext()) :
5102       llvm::Type::getInt32Ty(getVMContext());
5103     return ABIArgInfo::getDirect(ResType);
5104   }
5105 
5106   if (!isAggregateTypeForABI(RetTy)) {
5107     // Treat an enum type as its underlying type.
5108     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5109       RetTy = EnumTy->getDecl()->getIntegerType();
5110 
5111     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5112                                             : ABIArgInfo::getDirect();
5113   }
5114 
5115   // Are we following APCS?
5116   if (getABIKind() == APCS) {
5117     if (isEmptyRecord(getContext(), RetTy, false))
5118       return ABIArgInfo::getIgnore();
5119 
5120     // Complex types are all returned as packed integers.
5121     //
5122     // FIXME: Consider using 2 x vector types if the back end handles them
5123     // correctly.
5124     if (RetTy->isAnyComplexType())
5125       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5126           getVMContext(), getContext().getTypeSize(RetTy)));
5127 
5128     // Integer like structures are returned in r0.
5129     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5130       // Return in the smallest viable integer type.
5131       uint64_t Size = getContext().getTypeSize(RetTy);
5132       if (Size <= 8)
5133         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5134       if (Size <= 16)
5135         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5136       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5137     }
5138 
5139     // Otherwise return in memory.
5140     return getNaturalAlignIndirect(RetTy);
5141   }
5142 
5143   // Otherwise this is an AAPCS variant.
5144 
5145   if (isEmptyRecord(getContext(), RetTy, true))
5146     return ABIArgInfo::getIgnore();
5147 
5148   // Check for homogeneous aggregates with AAPCS-VFP.
5149   if (IsEffectivelyAAPCS_VFP) {
5150     const Type *Base = nullptr;
5151     uint64_t Members;
5152     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5153       assert(Base && "Base class should be set for homogeneous aggregate");
5154       // Homogeneous Aggregates are returned directly.
5155       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5156     }
5157   }
5158 
5159   // Aggregates <= 4 bytes are returned in r0; other aggregates
5160   // are returned indirectly.
5161   uint64_t Size = getContext().getTypeSize(RetTy);
5162   if (Size <= 32) {
5163     if (getDataLayout().isBigEndian())
5164       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5165       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5166 
5167     // Return in the smallest viable integer type.
5168     if (Size <= 8)
5169       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5170     if (Size <= 16)
5171       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5172     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5173   }
5174 
5175   return getNaturalAlignIndirect(RetTy);
5176 }
5177 
5178 /// isIllegalVector - check whether Ty is an illegal vector type.
5179 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5180   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5181     // Check whether VT is legal.
5182     unsigned NumElements = VT->getNumElements();
5183     uint64_t Size = getContext().getTypeSize(VT);
5184     // NumElements should be power of 2.
5185     if ((NumElements & (NumElements - 1)) != 0)
5186       return true;
5187     // Size should be greater than 32 bits.
5188     return Size <= 32;
5189   }
5190   return false;
5191 }
5192 
5193 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5194   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5195   // double, or 64-bit or 128-bit vectors.
5196   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5197     if (BT->getKind() == BuiltinType::Float ||
5198         BT->getKind() == BuiltinType::Double ||
5199         BT->getKind() == BuiltinType::LongDouble)
5200       return true;
5201   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5202     unsigned VecSize = getContext().getTypeSize(VT);
5203     if (VecSize == 64 || VecSize == 128)
5204       return true;
5205   }
5206   return false;
5207 }
5208 
5209 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5210                                                    uint64_t Members) const {
5211   return Members <= 4;
5212 }
5213 
5214 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5215                               QualType Ty) const {
5216   CharUnits SlotSize = CharUnits::fromQuantity(4);
5217 
5218   // Empty records are ignored for parameter passing purposes.
5219   if (isEmptyRecord(getContext(), Ty, true)) {
5220     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5221     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5222     return Addr;
5223   }
5224 
5225   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5226   CharUnits TyAlignForABI = TyInfo.second;
5227 
5228   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5229   bool IsIndirect = false;
5230   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5231     IsIndirect = true;
5232 
5233   // Otherwise, bound the type's ABI alignment.
5234   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5235   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5236   // Our callers should be prepared to handle an under-aligned address.
5237   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5238              getABIKind() == ARMABIInfo::AAPCS) {
5239     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5240     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5241   } else {
5242     TyAlignForABI = CharUnits::fromQuantity(4);
5243   }
5244   TyInfo.second = TyAlignForABI;
5245 
5246   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5247                           SlotSize, /*AllowHigherAlign*/ true);
5248 }
5249 
5250 //===----------------------------------------------------------------------===//
5251 // NVPTX ABI Implementation
5252 //===----------------------------------------------------------------------===//
5253 
5254 namespace {
5255 
5256 class NVPTXABIInfo : public ABIInfo {
5257 public:
5258   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5259 
5260   ABIArgInfo classifyReturnType(QualType RetTy) const;
5261   ABIArgInfo classifyArgumentType(QualType Ty) const;
5262 
5263   void computeInfo(CGFunctionInfo &FI) const override;
5264   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5265                     QualType Ty) const override;
5266 };
5267 
5268 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5269 public:
5270   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5271     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5272 
5273   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5274                            CodeGen::CodeGenModule &M) const override;
5275 private:
5276   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5277   // resulting MDNode to the nvvm.annotations MDNode.
5278   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5279 };
5280 
5281 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5282   if (RetTy->isVoidType())
5283     return ABIArgInfo::getIgnore();
5284 
5285   // note: this is different from default ABI
5286   if (!RetTy->isScalarType())
5287     return ABIArgInfo::getDirect();
5288 
5289   // Treat an enum type as its underlying type.
5290   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5291     RetTy = EnumTy->getDecl()->getIntegerType();
5292 
5293   return (RetTy->isPromotableIntegerType() ?
5294           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5295 }
5296 
5297 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5298   // Treat an enum type as its underlying type.
5299   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5300     Ty = EnumTy->getDecl()->getIntegerType();
5301 
5302   // Return aggregates type as indirect by value
5303   if (isAggregateTypeForABI(Ty))
5304     return getNaturalAlignIndirect(Ty, /* byval */ true);
5305 
5306   return (Ty->isPromotableIntegerType() ?
5307           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5308 }
5309 
5310 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5311   if (!getCXXABI().classifyReturnType(FI))
5312     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5313   for (auto &I : FI.arguments())
5314     I.info = classifyArgumentType(I.type);
5315 
5316   // Always honor user-specified calling convention.
5317   if (FI.getCallingConvention() != llvm::CallingConv::C)
5318     return;
5319 
5320   FI.setEffectiveCallingConvention(getRuntimeCC());
5321 }
5322 
5323 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5324                                 QualType Ty) const {
5325   llvm_unreachable("NVPTX does not support varargs");
5326 }
5327 
5328 void NVPTXTargetCodeGenInfo::
5329 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5330                     CodeGen::CodeGenModule &M) const{
5331   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5332   if (!FD) return;
5333 
5334   llvm::Function *F = cast<llvm::Function>(GV);
5335 
5336   // Perform special handling in OpenCL mode
5337   if (M.getLangOpts().OpenCL) {
5338     // Use OpenCL function attributes to check for kernel functions
5339     // By default, all functions are device functions
5340     if (FD->hasAttr<OpenCLKernelAttr>()) {
5341       // OpenCL __kernel functions get kernel metadata
5342       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5343       addNVVMMetadata(F, "kernel", 1);
5344       // And kernel functions are not subject to inlining
5345       F->addFnAttr(llvm::Attribute::NoInline);
5346     }
5347   }
5348 
5349   // Perform special handling in CUDA mode.
5350   if (M.getLangOpts().CUDA) {
5351     // CUDA __global__ functions get a kernel metadata entry.  Since
5352     // __global__ functions cannot be called from the device, we do not
5353     // need to set the noinline attribute.
5354     if (FD->hasAttr<CUDAGlobalAttr>()) {
5355       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5356       addNVVMMetadata(F, "kernel", 1);
5357     }
5358     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5359       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5360       llvm::APSInt MaxThreads(32);
5361       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5362       if (MaxThreads > 0)
5363         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5364 
5365       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5366       // not specified in __launch_bounds__ or if the user specified a 0 value,
5367       // we don't have to add a PTX directive.
5368       if (Attr->getMinBlocks()) {
5369         llvm::APSInt MinBlocks(32);
5370         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5371         if (MinBlocks > 0)
5372           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5373           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5374       }
5375     }
5376   }
5377 }
5378 
5379 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5380                                              int Operand) {
5381   llvm::Module *M = F->getParent();
5382   llvm::LLVMContext &Ctx = M->getContext();
5383 
5384   // Get "nvvm.annotations" metadata node
5385   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5386 
5387   llvm::Metadata *MDVals[] = {
5388       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5389       llvm::ConstantAsMetadata::get(
5390           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5391   // Append metadata to nvvm.annotations
5392   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5393 }
5394 }
5395 
5396 //===----------------------------------------------------------------------===//
5397 // SystemZ ABI Implementation
5398 //===----------------------------------------------------------------------===//
5399 
5400 namespace {
5401 
5402 class SystemZABIInfo : public ABIInfo {
5403   bool HasVector;
5404 
5405 public:
5406   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5407     : ABIInfo(CGT), HasVector(HV) {}
5408 
5409   bool isPromotableIntegerType(QualType Ty) const;
5410   bool isCompoundType(QualType Ty) const;
5411   bool isVectorArgumentType(QualType Ty) const;
5412   bool isFPArgumentType(QualType Ty) const;
5413   QualType GetSingleElementType(QualType Ty) const;
5414 
5415   ABIArgInfo classifyReturnType(QualType RetTy) const;
5416   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5417 
5418   void computeInfo(CGFunctionInfo &FI) const override {
5419     if (!getCXXABI().classifyReturnType(FI))
5420       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5421     for (auto &I : FI.arguments())
5422       I.info = classifyArgumentType(I.type);
5423   }
5424 
5425   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5426                     QualType Ty) const override;
5427 };
5428 
5429 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5430 public:
5431   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5432     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5433 };
5434 
5435 }
5436 
5437 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5438   // Treat an enum type as its underlying type.
5439   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5440     Ty = EnumTy->getDecl()->getIntegerType();
5441 
5442   // Promotable integer types are required to be promoted by the ABI.
5443   if (Ty->isPromotableIntegerType())
5444     return true;
5445 
5446   // 32-bit values must also be promoted.
5447   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5448     switch (BT->getKind()) {
5449     case BuiltinType::Int:
5450     case BuiltinType::UInt:
5451       return true;
5452     default:
5453       return false;
5454     }
5455   return false;
5456 }
5457 
5458 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5459   return (Ty->isAnyComplexType() ||
5460           Ty->isVectorType() ||
5461           isAggregateTypeForABI(Ty));
5462 }
5463 
5464 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5465   return (HasVector &&
5466           Ty->isVectorType() &&
5467           getContext().getTypeSize(Ty) <= 128);
5468 }
5469 
5470 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5471   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5472     switch (BT->getKind()) {
5473     case BuiltinType::Float:
5474     case BuiltinType::Double:
5475       return true;
5476     default:
5477       return false;
5478     }
5479 
5480   return false;
5481 }
5482 
5483 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5484   if (const RecordType *RT = Ty->getAsStructureType()) {
5485     const RecordDecl *RD = RT->getDecl();
5486     QualType Found;
5487 
5488     // If this is a C++ record, check the bases first.
5489     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5490       for (const auto &I : CXXRD->bases()) {
5491         QualType Base = I.getType();
5492 
5493         // Empty bases don't affect things either way.
5494         if (isEmptyRecord(getContext(), Base, true))
5495           continue;
5496 
5497         if (!Found.isNull())
5498           return Ty;
5499         Found = GetSingleElementType(Base);
5500       }
5501 
5502     // Check the fields.
5503     for (const auto *FD : RD->fields()) {
5504       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5505       // Unlike isSingleElementStruct(), empty structure and array fields
5506       // do count.  So do anonymous bitfields that aren't zero-sized.
5507       if (getContext().getLangOpts().CPlusPlus &&
5508           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5509         continue;
5510 
5511       // Unlike isSingleElementStruct(), arrays do not count.
5512       // Nested structures still do though.
5513       if (!Found.isNull())
5514         return Ty;
5515       Found = GetSingleElementType(FD->getType());
5516     }
5517 
5518     // Unlike isSingleElementStruct(), trailing padding is allowed.
5519     // An 8-byte aligned struct s { float f; } is passed as a double.
5520     if (!Found.isNull())
5521       return Found;
5522   }
5523 
5524   return Ty;
5525 }
5526 
5527 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5528                                   QualType Ty) const {
5529   // Assume that va_list type is correct; should be pointer to LLVM type:
5530   // struct {
5531   //   i64 __gpr;
5532   //   i64 __fpr;
5533   //   i8 *__overflow_arg_area;
5534   //   i8 *__reg_save_area;
5535   // };
5536 
5537   // Every non-vector argument occupies 8 bytes and is passed by preference
5538   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5539   // always passed on the stack.
5540   Ty = getContext().getCanonicalType(Ty);
5541   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5542   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5543   llvm::Type *DirectTy = ArgTy;
5544   ABIArgInfo AI = classifyArgumentType(Ty);
5545   bool IsIndirect = AI.isIndirect();
5546   bool InFPRs = false;
5547   bool IsVector = false;
5548   CharUnits UnpaddedSize;
5549   CharUnits DirectAlign;
5550   if (IsIndirect) {
5551     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5552     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5553   } else {
5554     if (AI.getCoerceToType())
5555       ArgTy = AI.getCoerceToType();
5556     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5557     IsVector = ArgTy->isVectorTy();
5558     UnpaddedSize = TyInfo.first;
5559     DirectAlign = TyInfo.second;
5560   }
5561   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5562   if (IsVector && UnpaddedSize > PaddedSize)
5563     PaddedSize = CharUnits::fromQuantity(16);
5564   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5565 
5566   CharUnits Padding = (PaddedSize - UnpaddedSize);
5567 
5568   llvm::Type *IndexTy = CGF.Int64Ty;
5569   llvm::Value *PaddedSizeV =
5570     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5571 
5572   if (IsVector) {
5573     // Work out the address of a vector argument on the stack.
5574     // Vector arguments are always passed in the high bits of a
5575     // single (8 byte) or double (16 byte) stack slot.
5576     Address OverflowArgAreaPtr =
5577       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5578                                   "overflow_arg_area_ptr");
5579     Address OverflowArgArea =
5580       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5581               TyInfo.second);
5582     Address MemAddr =
5583       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5584 
5585     // Update overflow_arg_area_ptr pointer
5586     llvm::Value *NewOverflowArgArea =
5587       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5588                             "overflow_arg_area");
5589     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5590 
5591     return MemAddr;
5592   }
5593 
5594   assert(PaddedSize.getQuantity() == 8);
5595 
5596   unsigned MaxRegs, RegCountField, RegSaveIndex;
5597   CharUnits RegPadding;
5598   if (InFPRs) {
5599     MaxRegs = 4; // Maximum of 4 FPR arguments
5600     RegCountField = 1; // __fpr
5601     RegSaveIndex = 16; // save offset for f0
5602     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5603   } else {
5604     MaxRegs = 5; // Maximum of 5 GPR arguments
5605     RegCountField = 0; // __gpr
5606     RegSaveIndex = 2; // save offset for r2
5607     RegPadding = Padding; // values are passed in the low bits of a GPR
5608   }
5609 
5610   Address RegCountPtr = CGF.Builder.CreateStructGEP(
5611       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5612       "reg_count_ptr");
5613   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5614   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5615   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5616                                                  "fits_in_regs");
5617 
5618   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5619   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5620   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5621   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5622 
5623   // Emit code to load the value if it was passed in registers.
5624   CGF.EmitBlock(InRegBlock);
5625 
5626   // Work out the address of an argument register.
5627   llvm::Value *ScaledRegCount =
5628     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5629   llvm::Value *RegBase =
5630     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5631                                       + RegPadding.getQuantity());
5632   llvm::Value *RegOffset =
5633     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5634   Address RegSaveAreaPtr =
5635       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5636                                   "reg_save_area_ptr");
5637   llvm::Value *RegSaveArea =
5638     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5639   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5640                                            "raw_reg_addr"),
5641                      PaddedSize);
5642   Address RegAddr =
5643     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5644 
5645   // Update the register count
5646   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5647   llvm::Value *NewRegCount =
5648     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5649   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5650   CGF.EmitBranch(ContBlock);
5651 
5652   // Emit code to load the value if it was passed in memory.
5653   CGF.EmitBlock(InMemBlock);
5654 
5655   // Work out the address of a stack argument.
5656   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5657       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5658   Address OverflowArgArea =
5659     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5660             PaddedSize);
5661   Address RawMemAddr =
5662     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
5663   Address MemAddr =
5664     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
5665 
5666   // Update overflow_arg_area_ptr pointer
5667   llvm::Value *NewOverflowArgArea =
5668     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5669                           "overflow_arg_area");
5670   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5671   CGF.EmitBranch(ContBlock);
5672 
5673   // Return the appropriate result.
5674   CGF.EmitBlock(ContBlock);
5675   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5676                                  MemAddr, InMemBlock, "va_arg.addr");
5677 
5678   if (IsIndirect)
5679     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
5680                       TyInfo.second);
5681 
5682   return ResAddr;
5683 }
5684 
5685 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5686   if (RetTy->isVoidType())
5687     return ABIArgInfo::getIgnore();
5688   if (isVectorArgumentType(RetTy))
5689     return ABIArgInfo::getDirect();
5690   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5691     return getNaturalAlignIndirect(RetTy);
5692   return (isPromotableIntegerType(RetTy) ?
5693           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5694 }
5695 
5696 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5697   // Handle the generic C++ ABI.
5698   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5699     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5700 
5701   // Integers and enums are extended to full register width.
5702   if (isPromotableIntegerType(Ty))
5703     return ABIArgInfo::getExtend();
5704 
5705   // Handle vector types and vector-like structure types.  Note that
5706   // as opposed to float-like structure types, we do not allow any
5707   // padding for vector-like structures, so verify the sizes match.
5708   uint64_t Size = getContext().getTypeSize(Ty);
5709   QualType SingleElementTy = GetSingleElementType(Ty);
5710   if (isVectorArgumentType(SingleElementTy) &&
5711       getContext().getTypeSize(SingleElementTy) == Size)
5712     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5713 
5714   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5715   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5716     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5717 
5718   // Handle small structures.
5719   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5720     // Structures with flexible arrays have variable length, so really
5721     // fail the size test above.
5722     const RecordDecl *RD = RT->getDecl();
5723     if (RD->hasFlexibleArrayMember())
5724       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5725 
5726     // The structure is passed as an unextended integer, a float, or a double.
5727     llvm::Type *PassTy;
5728     if (isFPArgumentType(SingleElementTy)) {
5729       assert(Size == 32 || Size == 64);
5730       if (Size == 32)
5731         PassTy = llvm::Type::getFloatTy(getVMContext());
5732       else
5733         PassTy = llvm::Type::getDoubleTy(getVMContext());
5734     } else
5735       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5736     return ABIArgInfo::getDirect(PassTy);
5737   }
5738 
5739   // Non-structure compounds are passed indirectly.
5740   if (isCompoundType(Ty))
5741     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5742 
5743   return ABIArgInfo::getDirect(nullptr);
5744 }
5745 
5746 //===----------------------------------------------------------------------===//
5747 // MSP430 ABI Implementation
5748 //===----------------------------------------------------------------------===//
5749 
5750 namespace {
5751 
5752 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5753 public:
5754   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5755     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5756   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5757                            CodeGen::CodeGenModule &M) const override;
5758 };
5759 
5760 }
5761 
5762 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5763                                                   llvm::GlobalValue *GV,
5764                                              CodeGen::CodeGenModule &M) const {
5765   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
5766     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5767       // Handle 'interrupt' attribute:
5768       llvm::Function *F = cast<llvm::Function>(GV);
5769 
5770       // Step 1: Set ISR calling convention.
5771       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5772 
5773       // Step 2: Add attributes goodness.
5774       F->addFnAttr(llvm::Attribute::NoInline);
5775 
5776       // Step 3: Emit ISR vector alias.
5777       unsigned Num = attr->getNumber() / 2;
5778       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5779                                 "__isr_" + Twine(Num), F);
5780     }
5781   }
5782 }
5783 
5784 //===----------------------------------------------------------------------===//
5785 // MIPS ABI Implementation.  This works for both little-endian and
5786 // big-endian variants.
5787 //===----------------------------------------------------------------------===//
5788 
5789 namespace {
5790 class MipsABIInfo : public ABIInfo {
5791   bool IsO32;
5792   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5793   void CoerceToIntArgs(uint64_t TySize,
5794                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5795   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5796   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5797   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5798 public:
5799   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5800     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5801     StackAlignInBytes(IsO32 ? 8 : 16) {}
5802 
5803   ABIArgInfo classifyReturnType(QualType RetTy) const;
5804   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5805   void computeInfo(CGFunctionInfo &FI) const override;
5806   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5807                     QualType Ty) const override;
5808   bool shouldSignExtUnsignedType(QualType Ty) const override;
5809 };
5810 
5811 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5812   unsigned SizeOfUnwindException;
5813 public:
5814   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5815     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5816       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5817 
5818   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5819     return 29;
5820   }
5821 
5822   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5823                            CodeGen::CodeGenModule &CGM) const override {
5824     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5825     if (!FD) return;
5826     llvm::Function *Fn = cast<llvm::Function>(GV);
5827     if (FD->hasAttr<Mips16Attr>()) {
5828       Fn->addFnAttr("mips16");
5829     }
5830     else if (FD->hasAttr<NoMips16Attr>()) {
5831       Fn->addFnAttr("nomips16");
5832     }
5833   }
5834 
5835   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5836                                llvm::Value *Address) const override;
5837 
5838   unsigned getSizeOfUnwindException() const override {
5839     return SizeOfUnwindException;
5840   }
5841 };
5842 }
5843 
5844 void MipsABIInfo::CoerceToIntArgs(
5845     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
5846   llvm::IntegerType *IntTy =
5847     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5848 
5849   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5850   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5851     ArgList.push_back(IntTy);
5852 
5853   // If necessary, add one more integer type to ArgList.
5854   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5855 
5856   if (R)
5857     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5858 }
5859 
5860 // In N32/64, an aligned double precision floating point field is passed in
5861 // a register.
5862 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5863   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5864 
5865   if (IsO32) {
5866     CoerceToIntArgs(TySize, ArgList);
5867     return llvm::StructType::get(getVMContext(), ArgList);
5868   }
5869 
5870   if (Ty->isComplexType())
5871     return CGT.ConvertType(Ty);
5872 
5873   const RecordType *RT = Ty->getAs<RecordType>();
5874 
5875   // Unions/vectors are passed in integer registers.
5876   if (!RT || !RT->isStructureOrClassType()) {
5877     CoerceToIntArgs(TySize, ArgList);
5878     return llvm::StructType::get(getVMContext(), ArgList);
5879   }
5880 
5881   const RecordDecl *RD = RT->getDecl();
5882   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5883   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5884 
5885   uint64_t LastOffset = 0;
5886   unsigned idx = 0;
5887   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5888 
5889   // Iterate over fields in the struct/class and check if there are any aligned
5890   // double fields.
5891   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5892        i != e; ++i, ++idx) {
5893     const QualType Ty = i->getType();
5894     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5895 
5896     if (!BT || BT->getKind() != BuiltinType::Double)
5897       continue;
5898 
5899     uint64_t Offset = Layout.getFieldOffset(idx);
5900     if (Offset % 64) // Ignore doubles that are not aligned.
5901       continue;
5902 
5903     // Add ((Offset - LastOffset) / 64) args of type i64.
5904     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5905       ArgList.push_back(I64);
5906 
5907     // Add double type.
5908     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5909     LastOffset = Offset + 64;
5910   }
5911 
5912   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5913   ArgList.append(IntArgList.begin(), IntArgList.end());
5914 
5915   return llvm::StructType::get(getVMContext(), ArgList);
5916 }
5917 
5918 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5919                                         uint64_t Offset) const {
5920   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5921     return nullptr;
5922 
5923   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5924 }
5925 
5926 ABIArgInfo
5927 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5928   Ty = useFirstFieldIfTransparentUnion(Ty);
5929 
5930   uint64_t OrigOffset = Offset;
5931   uint64_t TySize = getContext().getTypeSize(Ty);
5932   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5933 
5934   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5935                    (uint64_t)StackAlignInBytes);
5936   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5937   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5938 
5939   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5940     // Ignore empty aggregates.
5941     if (TySize == 0)
5942       return ABIArgInfo::getIgnore();
5943 
5944     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5945       Offset = OrigOffset + MinABIStackAlignInBytes;
5946       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5947     }
5948 
5949     // If we have reached here, aggregates are passed directly by coercing to
5950     // another structure type. Padding is inserted if the offset of the
5951     // aggregate is unaligned.
5952     ABIArgInfo ArgInfo =
5953         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5954                               getPaddingType(OrigOffset, CurrOffset));
5955     ArgInfo.setInReg(true);
5956     return ArgInfo;
5957   }
5958 
5959   // Treat an enum type as its underlying type.
5960   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5961     Ty = EnumTy->getDecl()->getIntegerType();
5962 
5963   // All integral types are promoted to the GPR width.
5964   if (Ty->isIntegralOrEnumerationType())
5965     return ABIArgInfo::getExtend();
5966 
5967   return ABIArgInfo::getDirect(
5968       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5969 }
5970 
5971 llvm::Type*
5972 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5973   const RecordType *RT = RetTy->getAs<RecordType>();
5974   SmallVector<llvm::Type*, 8> RTList;
5975 
5976   if (RT && RT->isStructureOrClassType()) {
5977     const RecordDecl *RD = RT->getDecl();
5978     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5979     unsigned FieldCnt = Layout.getFieldCount();
5980 
5981     // N32/64 returns struct/classes in floating point registers if the
5982     // following conditions are met:
5983     // 1. The size of the struct/class is no larger than 128-bit.
5984     // 2. The struct/class has one or two fields all of which are floating
5985     //    point types.
5986     // 3. The offset of the first field is zero (this follows what gcc does).
5987     //
5988     // Any other composite results are returned in integer registers.
5989     //
5990     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5991       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5992       for (; b != e; ++b) {
5993         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5994 
5995         if (!BT || !BT->isFloatingPoint())
5996           break;
5997 
5998         RTList.push_back(CGT.ConvertType(b->getType()));
5999       }
6000 
6001       if (b == e)
6002         return llvm::StructType::get(getVMContext(), RTList,
6003                                      RD->hasAttr<PackedAttr>());
6004 
6005       RTList.clear();
6006     }
6007   }
6008 
6009   CoerceToIntArgs(Size, RTList);
6010   return llvm::StructType::get(getVMContext(), RTList);
6011 }
6012 
6013 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6014   uint64_t Size = getContext().getTypeSize(RetTy);
6015 
6016   if (RetTy->isVoidType())
6017     return ABIArgInfo::getIgnore();
6018 
6019   // O32 doesn't treat zero-sized structs differently from other structs.
6020   // However, N32/N64 ignores zero sized return values.
6021   if (!IsO32 && Size == 0)
6022     return ABIArgInfo::getIgnore();
6023 
6024   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6025     if (Size <= 128) {
6026       if (RetTy->isAnyComplexType())
6027         return ABIArgInfo::getDirect();
6028 
6029       // O32 returns integer vectors in registers and N32/N64 returns all small
6030       // aggregates in registers.
6031       if (!IsO32 ||
6032           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6033         ABIArgInfo ArgInfo =
6034             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6035         ArgInfo.setInReg(true);
6036         return ArgInfo;
6037       }
6038     }
6039 
6040     return getNaturalAlignIndirect(RetTy);
6041   }
6042 
6043   // Treat an enum type as its underlying type.
6044   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6045     RetTy = EnumTy->getDecl()->getIntegerType();
6046 
6047   return (RetTy->isPromotableIntegerType() ?
6048           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6049 }
6050 
6051 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6052   ABIArgInfo &RetInfo = FI.getReturnInfo();
6053   if (!getCXXABI().classifyReturnType(FI))
6054     RetInfo = classifyReturnType(FI.getReturnType());
6055 
6056   // Check if a pointer to an aggregate is passed as a hidden argument.
6057   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6058 
6059   for (auto &I : FI.arguments())
6060     I.info = classifyArgumentType(I.type, Offset);
6061 }
6062 
6063 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6064                                QualType OrigTy) const {
6065   QualType Ty = OrigTy;
6066 
6067   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6068   // Pointers are also promoted in the same way but this only matters for N32.
6069   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6070   unsigned PtrWidth = getTarget().getPointerWidth(0);
6071   bool DidPromote = false;
6072   if ((Ty->isIntegerType() &&
6073           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6074       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6075     DidPromote = true;
6076     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6077                                             Ty->isSignedIntegerType());
6078   }
6079 
6080   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6081 
6082   // The alignment of things in the argument area is never larger than
6083   // StackAlignInBytes.
6084   TyInfo.second =
6085     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6086 
6087   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6088   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6089 
6090   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6091                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6092 
6093 
6094   // If there was a promotion, "unpromote" into a temporary.
6095   // TODO: can we just use a pointer into a subset of the original slot?
6096   if (DidPromote) {
6097     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6098     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6099 
6100     // Truncate down to the right width.
6101     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6102                                                  : CGF.IntPtrTy);
6103     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6104     if (OrigTy->isPointerType())
6105       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6106 
6107     CGF.Builder.CreateStore(V, Temp);
6108     Addr = Temp;
6109   }
6110 
6111   return Addr;
6112 }
6113 
6114 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6115   int TySize = getContext().getTypeSize(Ty);
6116 
6117   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6118   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6119     return true;
6120 
6121   return false;
6122 }
6123 
6124 bool
6125 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6126                                                llvm::Value *Address) const {
6127   // This information comes from gcc's implementation, which seems to
6128   // as canonical as it gets.
6129 
6130   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6131   // are aliased to pairs of single-precision FP registers.
6132   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6133 
6134   // 0-31 are the general purpose registers, $0 - $31.
6135   // 32-63 are the floating-point registers, $f0 - $f31.
6136   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6137   // 66 is the (notional, I think) register for signal-handler return.
6138   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6139 
6140   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6141   // They are one bit wide and ignored here.
6142 
6143   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6144   // (coprocessor 1 is the FP unit)
6145   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6146   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6147   // 176-181 are the DSP accumulator registers.
6148   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6149   return false;
6150 }
6151 
6152 //===----------------------------------------------------------------------===//
6153 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6154 // Currently subclassed only to implement custom OpenCL C function attribute
6155 // handling.
6156 //===----------------------------------------------------------------------===//
6157 
6158 namespace {
6159 
6160 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6161 public:
6162   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6163     : DefaultTargetCodeGenInfo(CGT) {}
6164 
6165   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6166                            CodeGen::CodeGenModule &M) const override;
6167 };
6168 
6169 void TCETargetCodeGenInfo::setTargetAttributes(
6170     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6171   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6172   if (!FD) return;
6173 
6174   llvm::Function *F = cast<llvm::Function>(GV);
6175 
6176   if (M.getLangOpts().OpenCL) {
6177     if (FD->hasAttr<OpenCLKernelAttr>()) {
6178       // OpenCL C Kernel functions are not subject to inlining
6179       F->addFnAttr(llvm::Attribute::NoInline);
6180       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6181       if (Attr) {
6182         // Convert the reqd_work_group_size() attributes to metadata.
6183         llvm::LLVMContext &Context = F->getContext();
6184         llvm::NamedMDNode *OpenCLMetadata =
6185             M.getModule().getOrInsertNamedMetadata(
6186                 "opencl.kernel_wg_size_info");
6187 
6188         SmallVector<llvm::Metadata *, 5> Operands;
6189         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6190 
6191         Operands.push_back(
6192             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6193                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6194         Operands.push_back(
6195             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6196                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6197         Operands.push_back(
6198             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6199                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6200 
6201         // Add a boolean constant operand for "required" (true) or "hint"
6202         // (false) for implementing the work_group_size_hint attr later.
6203         // Currently always true as the hint is not yet implemented.
6204         Operands.push_back(
6205             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6206         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6207       }
6208     }
6209   }
6210 }
6211 
6212 }
6213 
6214 //===----------------------------------------------------------------------===//
6215 // Hexagon ABI Implementation
6216 //===----------------------------------------------------------------------===//
6217 
6218 namespace {
6219 
6220 class HexagonABIInfo : public ABIInfo {
6221 
6222 
6223 public:
6224   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6225 
6226 private:
6227 
6228   ABIArgInfo classifyReturnType(QualType RetTy) const;
6229   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6230 
6231   void computeInfo(CGFunctionInfo &FI) const override;
6232 
6233   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6234                     QualType Ty) const override;
6235 };
6236 
6237 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6238 public:
6239   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6240     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6241 
6242   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6243     return 29;
6244   }
6245 };
6246 
6247 }
6248 
6249 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6250   if (!getCXXABI().classifyReturnType(FI))
6251     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6252   for (auto &I : FI.arguments())
6253     I.info = classifyArgumentType(I.type);
6254 }
6255 
6256 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6257   if (!isAggregateTypeForABI(Ty)) {
6258     // Treat an enum type as its underlying type.
6259     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6260       Ty = EnumTy->getDecl()->getIntegerType();
6261 
6262     return (Ty->isPromotableIntegerType() ?
6263             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6264   }
6265 
6266   // Ignore empty records.
6267   if (isEmptyRecord(getContext(), Ty, true))
6268     return ABIArgInfo::getIgnore();
6269 
6270   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6271     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6272 
6273   uint64_t Size = getContext().getTypeSize(Ty);
6274   if (Size > 64)
6275     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6276     // Pass in the smallest viable integer type.
6277   else if (Size > 32)
6278       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6279   else if (Size > 16)
6280       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6281   else if (Size > 8)
6282       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6283   else
6284       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6285 }
6286 
6287 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6288   if (RetTy->isVoidType())
6289     return ABIArgInfo::getIgnore();
6290 
6291   // Large vector types should be returned via memory.
6292   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6293     return getNaturalAlignIndirect(RetTy);
6294 
6295   if (!isAggregateTypeForABI(RetTy)) {
6296     // Treat an enum type as its underlying type.
6297     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6298       RetTy = EnumTy->getDecl()->getIntegerType();
6299 
6300     return (RetTy->isPromotableIntegerType() ?
6301             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6302   }
6303 
6304   if (isEmptyRecord(getContext(), RetTy, true))
6305     return ABIArgInfo::getIgnore();
6306 
6307   // Aggregates <= 8 bytes are returned in r0; other aggregates
6308   // are returned indirectly.
6309   uint64_t Size = getContext().getTypeSize(RetTy);
6310   if (Size <= 64) {
6311     // Return in the smallest viable integer type.
6312     if (Size <= 8)
6313       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6314     if (Size <= 16)
6315       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6316     if (Size <= 32)
6317       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6318     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6319   }
6320 
6321   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6322 }
6323 
6324 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6325                                   QualType Ty) const {
6326   // FIXME: Someone needs to audit that this handle alignment correctly.
6327   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6328                           getContext().getTypeInfoInChars(Ty),
6329                           CharUnits::fromQuantity(4),
6330                           /*AllowHigherAlign*/ true);
6331 }
6332 
6333 //===----------------------------------------------------------------------===//
6334 // AMDGPU ABI Implementation
6335 //===----------------------------------------------------------------------===//
6336 
6337 namespace {
6338 
6339 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6340 public:
6341   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6342     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6343   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6344                            CodeGen::CodeGenModule &M) const override;
6345 };
6346 
6347 }
6348 
6349 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6350   const Decl *D,
6351   llvm::GlobalValue *GV,
6352   CodeGen::CodeGenModule &M) const {
6353   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6354   if (!FD)
6355     return;
6356 
6357   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6358     llvm::Function *F = cast<llvm::Function>(GV);
6359     uint32_t NumVGPR = Attr->getNumVGPR();
6360     if (NumVGPR != 0)
6361       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6362   }
6363 
6364   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6365     llvm::Function *F = cast<llvm::Function>(GV);
6366     unsigned NumSGPR = Attr->getNumSGPR();
6367     if (NumSGPR != 0)
6368       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6369   }
6370 }
6371 
6372 
6373 //===----------------------------------------------------------------------===//
6374 // SPARC v9 ABI Implementation.
6375 // Based on the SPARC Compliance Definition version 2.4.1.
6376 //
6377 // Function arguments a mapped to a nominal "parameter array" and promoted to
6378 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6379 // the array, structs larger than 16 bytes are passed indirectly.
6380 //
6381 // One case requires special care:
6382 //
6383 //   struct mixed {
6384 //     int i;
6385 //     float f;
6386 //   };
6387 //
6388 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6389 // parameter array, but the int is passed in an integer register, and the float
6390 // is passed in a floating point register. This is represented as two arguments
6391 // with the LLVM IR inreg attribute:
6392 //
6393 //   declare void f(i32 inreg %i, float inreg %f)
6394 //
6395 // The code generator will only allocate 4 bytes from the parameter array for
6396 // the inreg arguments. All other arguments are allocated a multiple of 8
6397 // bytes.
6398 //
6399 namespace {
6400 class SparcV9ABIInfo : public ABIInfo {
6401 public:
6402   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6403 
6404 private:
6405   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6406   void computeInfo(CGFunctionInfo &FI) const override;
6407   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6408                     QualType Ty) const override;
6409 
6410   // Coercion type builder for structs passed in registers. The coercion type
6411   // serves two purposes:
6412   //
6413   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6414   //    in registers.
6415   // 2. Expose aligned floating point elements as first-level elements, so the
6416   //    code generator knows to pass them in floating point registers.
6417   //
6418   // We also compute the InReg flag which indicates that the struct contains
6419   // aligned 32-bit floats.
6420   //
6421   struct CoerceBuilder {
6422     llvm::LLVMContext &Context;
6423     const llvm::DataLayout &DL;
6424     SmallVector<llvm::Type*, 8> Elems;
6425     uint64_t Size;
6426     bool InReg;
6427 
6428     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6429       : Context(c), DL(dl), Size(0), InReg(false) {}
6430 
6431     // Pad Elems with integers until Size is ToSize.
6432     void pad(uint64_t ToSize) {
6433       assert(ToSize >= Size && "Cannot remove elements");
6434       if (ToSize == Size)
6435         return;
6436 
6437       // Finish the current 64-bit word.
6438       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6439       if (Aligned > Size && Aligned <= ToSize) {
6440         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6441         Size = Aligned;
6442       }
6443 
6444       // Add whole 64-bit words.
6445       while (Size + 64 <= ToSize) {
6446         Elems.push_back(llvm::Type::getInt64Ty(Context));
6447         Size += 64;
6448       }
6449 
6450       // Final in-word padding.
6451       if (Size < ToSize) {
6452         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6453         Size = ToSize;
6454       }
6455     }
6456 
6457     // Add a floating point element at Offset.
6458     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6459       // Unaligned floats are treated as integers.
6460       if (Offset % Bits)
6461         return;
6462       // The InReg flag is only required if there are any floats < 64 bits.
6463       if (Bits < 64)
6464         InReg = true;
6465       pad(Offset);
6466       Elems.push_back(Ty);
6467       Size = Offset + Bits;
6468     }
6469 
6470     // Add a struct type to the coercion type, starting at Offset (in bits).
6471     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6472       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6473       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6474         llvm::Type *ElemTy = StrTy->getElementType(i);
6475         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6476         switch (ElemTy->getTypeID()) {
6477         case llvm::Type::StructTyID:
6478           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6479           break;
6480         case llvm::Type::FloatTyID:
6481           addFloat(ElemOffset, ElemTy, 32);
6482           break;
6483         case llvm::Type::DoubleTyID:
6484           addFloat(ElemOffset, ElemTy, 64);
6485           break;
6486         case llvm::Type::FP128TyID:
6487           addFloat(ElemOffset, ElemTy, 128);
6488           break;
6489         case llvm::Type::PointerTyID:
6490           if (ElemOffset % 64 == 0) {
6491             pad(ElemOffset);
6492             Elems.push_back(ElemTy);
6493             Size += 64;
6494           }
6495           break;
6496         default:
6497           break;
6498         }
6499       }
6500     }
6501 
6502     // Check if Ty is a usable substitute for the coercion type.
6503     bool isUsableType(llvm::StructType *Ty) const {
6504       return llvm::makeArrayRef(Elems) == Ty->elements();
6505     }
6506 
6507     // Get the coercion type as a literal struct type.
6508     llvm::Type *getType() const {
6509       if (Elems.size() == 1)
6510         return Elems.front();
6511       else
6512         return llvm::StructType::get(Context, Elems);
6513     }
6514   };
6515 };
6516 } // end anonymous namespace
6517 
6518 ABIArgInfo
6519 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6520   if (Ty->isVoidType())
6521     return ABIArgInfo::getIgnore();
6522 
6523   uint64_t Size = getContext().getTypeSize(Ty);
6524 
6525   // Anything too big to fit in registers is passed with an explicit indirect
6526   // pointer / sret pointer.
6527   if (Size > SizeLimit)
6528     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6529 
6530   // Treat an enum type as its underlying type.
6531   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6532     Ty = EnumTy->getDecl()->getIntegerType();
6533 
6534   // Integer types smaller than a register are extended.
6535   if (Size < 64 && Ty->isIntegerType())
6536     return ABIArgInfo::getExtend();
6537 
6538   // Other non-aggregates go in registers.
6539   if (!isAggregateTypeForABI(Ty))
6540     return ABIArgInfo::getDirect();
6541 
6542   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6543   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6544   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6545     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6546 
6547   // This is a small aggregate type that should be passed in registers.
6548   // Build a coercion type from the LLVM struct type.
6549   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6550   if (!StrTy)
6551     return ABIArgInfo::getDirect();
6552 
6553   CoerceBuilder CB(getVMContext(), getDataLayout());
6554   CB.addStruct(0, StrTy);
6555   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6556 
6557   // Try to use the original type for coercion.
6558   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6559 
6560   if (CB.InReg)
6561     return ABIArgInfo::getDirectInReg(CoerceTy);
6562   else
6563     return ABIArgInfo::getDirect(CoerceTy);
6564 }
6565 
6566 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6567                                   QualType Ty) const {
6568   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6569   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6570   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6571     AI.setCoerceToType(ArgTy);
6572 
6573   CharUnits SlotSize = CharUnits::fromQuantity(8);
6574 
6575   CGBuilderTy &Builder = CGF.Builder;
6576   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6577   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6578 
6579   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
6580 
6581   Address ArgAddr = Address::invalid();
6582   CharUnits Stride;
6583   switch (AI.getKind()) {
6584   case ABIArgInfo::Expand:
6585   case ABIArgInfo::InAlloca:
6586     llvm_unreachable("Unsupported ABI kind for va_arg");
6587 
6588   case ABIArgInfo::Extend: {
6589     Stride = SlotSize;
6590     CharUnits Offset = SlotSize - TypeInfo.first;
6591     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
6592     break;
6593   }
6594 
6595   case ABIArgInfo::Direct: {
6596     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6597     Stride = CharUnits::fromQuantity(AllocSize).RoundUpToAlignment(SlotSize);
6598     ArgAddr = Addr;
6599     break;
6600   }
6601 
6602   case ABIArgInfo::Indirect:
6603     Stride = SlotSize;
6604     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
6605     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
6606                       TypeInfo.second);
6607     break;
6608 
6609   case ABIArgInfo::Ignore:
6610     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
6611   }
6612 
6613   // Update VAList.
6614   llvm::Value *NextPtr =
6615     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
6616   Builder.CreateStore(NextPtr, VAListAddr);
6617 
6618   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
6619 }
6620 
6621 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6622   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6623   for (auto &I : FI.arguments())
6624     I.info = classifyType(I.type, 16 * 8);
6625 }
6626 
6627 namespace {
6628 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6629 public:
6630   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6631     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6632 
6633   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6634     return 14;
6635   }
6636 
6637   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6638                                llvm::Value *Address) const override;
6639 };
6640 } // end anonymous namespace
6641 
6642 bool
6643 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6644                                                 llvm::Value *Address) const {
6645   // This is calculated from the LLVM and GCC tables and verified
6646   // against gcc output.  AFAIK all ABIs use the same encoding.
6647 
6648   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6649 
6650   llvm::IntegerType *i8 = CGF.Int8Ty;
6651   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6652   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6653 
6654   // 0-31: the 8-byte general-purpose registers
6655   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6656 
6657   // 32-63: f0-31, the 4-byte floating-point registers
6658   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6659 
6660   //   Y   = 64
6661   //   PSR = 65
6662   //   WIM = 66
6663   //   TBR = 67
6664   //   PC  = 68
6665   //   NPC = 69
6666   //   FSR = 70
6667   //   CSR = 71
6668   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6669 
6670   // 72-87: d0-15, the 8-byte floating-point registers
6671   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6672 
6673   return false;
6674 }
6675 
6676 
6677 //===----------------------------------------------------------------------===//
6678 // XCore ABI Implementation
6679 //===----------------------------------------------------------------------===//
6680 
6681 namespace {
6682 
6683 /// A SmallStringEnc instance is used to build up the TypeString by passing
6684 /// it by reference between functions that append to it.
6685 typedef llvm::SmallString<128> SmallStringEnc;
6686 
6687 /// TypeStringCache caches the meta encodings of Types.
6688 ///
6689 /// The reason for caching TypeStrings is two fold:
6690 ///   1. To cache a type's encoding for later uses;
6691 ///   2. As a means to break recursive member type inclusion.
6692 ///
6693 /// A cache Entry can have a Status of:
6694 ///   NonRecursive:   The type encoding is not recursive;
6695 ///   Recursive:      The type encoding is recursive;
6696 ///   Incomplete:     An incomplete TypeString;
6697 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6698 ///                   Recursive type encoding.
6699 ///
6700 /// A NonRecursive entry will have all of its sub-members expanded as fully
6701 /// as possible. Whilst it may contain types which are recursive, the type
6702 /// itself is not recursive and thus its encoding may be safely used whenever
6703 /// the type is encountered.
6704 ///
6705 /// A Recursive entry will have all of its sub-members expanded as fully as
6706 /// possible. The type itself is recursive and it may contain other types which
6707 /// are recursive. The Recursive encoding must not be used during the expansion
6708 /// of a recursive type's recursive branch. For simplicity the code uses
6709 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6710 ///
6711 /// An Incomplete entry is always a RecordType and only encodes its
6712 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6713 /// are placed into the cache during type expansion as a means to identify and
6714 /// handle recursive inclusion of types as sub-members. If there is recursion
6715 /// the entry becomes IncompleteUsed.
6716 ///
6717 /// During the expansion of a RecordType's members:
6718 ///
6719 ///   If the cache contains a NonRecursive encoding for the member type, the
6720 ///   cached encoding is used;
6721 ///
6722 ///   If the cache contains a Recursive encoding for the member type, the
6723 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6724 ///
6725 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6726 ///   cache to break potential recursive inclusion of itself as a sub-member;
6727 ///
6728 ///   Once a member RecordType has been expanded, its temporary incomplete
6729 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6730 ///   it is swapped back in;
6731 ///
6732 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6733 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6734 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6735 ///
6736 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6737 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6738 ///   Else the member is part of a recursive type and thus the recursion has
6739 ///   been exited too soon for the encoding to be correct for the member.
6740 ///
6741 class TypeStringCache {
6742   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6743   struct Entry {
6744     std::string Str;     // The encoded TypeString for the type.
6745     enum Status State;   // Information about the encoding in 'Str'.
6746     std::string Swapped; // A temporary place holder for a Recursive encoding
6747                          // during the expansion of RecordType's members.
6748   };
6749   std::map<const IdentifierInfo *, struct Entry> Map;
6750   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6751   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6752 public:
6753   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
6754   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6755   bool removeIncomplete(const IdentifierInfo *ID);
6756   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6757                      bool IsRecursive);
6758   StringRef lookupStr(const IdentifierInfo *ID);
6759 };
6760 
6761 /// TypeString encodings for enum & union fields must be order.
6762 /// FieldEncoding is a helper for this ordering process.
6763 class FieldEncoding {
6764   bool HasName;
6765   std::string Enc;
6766 public:
6767   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
6768   StringRef str() {return Enc.c_str();}
6769   bool operator<(const FieldEncoding &rhs) const {
6770     if (HasName != rhs.HasName) return HasName;
6771     return Enc < rhs.Enc;
6772   }
6773 };
6774 
6775 class XCoreABIInfo : public DefaultABIInfo {
6776 public:
6777   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6778   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6779                     QualType Ty) const override;
6780 };
6781 
6782 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6783   mutable TypeStringCache TSC;
6784 public:
6785   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6786     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6787   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6788                     CodeGen::CodeGenModule &M) const override;
6789 };
6790 
6791 } // End anonymous namespace.
6792 
6793 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6794                                 QualType Ty) const {
6795   CGBuilderTy &Builder = CGF.Builder;
6796 
6797   // Get the VAList.
6798   CharUnits SlotSize = CharUnits::fromQuantity(4);
6799   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
6800 
6801   // Handle the argument.
6802   ABIArgInfo AI = classifyArgumentType(Ty);
6803   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
6804   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6805   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6806     AI.setCoerceToType(ArgTy);
6807   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6808 
6809   Address Val = Address::invalid();
6810   CharUnits ArgSize = CharUnits::Zero();
6811   switch (AI.getKind()) {
6812   case ABIArgInfo::Expand:
6813   case ABIArgInfo::InAlloca:
6814     llvm_unreachable("Unsupported ABI kind for va_arg");
6815   case ABIArgInfo::Ignore:
6816     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
6817     ArgSize = CharUnits::Zero();
6818     break;
6819   case ABIArgInfo::Extend:
6820   case ABIArgInfo::Direct:
6821     Val = Builder.CreateBitCast(AP, ArgPtrTy);
6822     ArgSize = CharUnits::fromQuantity(
6823                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
6824     ArgSize = ArgSize.RoundUpToAlignment(SlotSize);
6825     break;
6826   case ABIArgInfo::Indirect:
6827     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
6828     Val = Address(Builder.CreateLoad(Val), TypeAlign);
6829     ArgSize = SlotSize;
6830     break;
6831   }
6832 
6833   // Increment the VAList.
6834   if (!ArgSize.isZero()) {
6835     llvm::Value *APN =
6836       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
6837     Builder.CreateStore(APN, VAListAddr);
6838   }
6839 
6840   return Val;
6841 }
6842 
6843 /// During the expansion of a RecordType, an incomplete TypeString is placed
6844 /// into the cache as a means to identify and break recursion.
6845 /// If there is a Recursive encoding in the cache, it is swapped out and will
6846 /// be reinserted by removeIncomplete().
6847 /// All other types of encoding should have been used rather than arriving here.
6848 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6849                                     std::string StubEnc) {
6850   if (!ID)
6851     return;
6852   Entry &E = Map[ID];
6853   assert( (E.Str.empty() || E.State == Recursive) &&
6854          "Incorrectly use of addIncomplete");
6855   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6856   E.Swapped.swap(E.Str); // swap out the Recursive
6857   E.Str.swap(StubEnc);
6858   E.State = Incomplete;
6859   ++IncompleteCount;
6860 }
6861 
6862 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6863 /// must be removed from the cache.
6864 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6865 /// Returns true if the RecordType was defined recursively.
6866 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6867   if (!ID)
6868     return false;
6869   auto I = Map.find(ID);
6870   assert(I != Map.end() && "Entry not present");
6871   Entry &E = I->second;
6872   assert( (E.State == Incomplete ||
6873            E.State == IncompleteUsed) &&
6874          "Entry must be an incomplete type");
6875   bool IsRecursive = false;
6876   if (E.State == IncompleteUsed) {
6877     // We made use of our Incomplete encoding, thus we are recursive.
6878     IsRecursive = true;
6879     --IncompleteUsedCount;
6880   }
6881   if (E.Swapped.empty())
6882     Map.erase(I);
6883   else {
6884     // Swap the Recursive back.
6885     E.Swapped.swap(E.Str);
6886     E.Swapped.clear();
6887     E.State = Recursive;
6888   }
6889   --IncompleteCount;
6890   return IsRecursive;
6891 }
6892 
6893 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6894 /// Recursive (viz: all sub-members were expanded as fully as possible).
6895 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6896                                     bool IsRecursive) {
6897   if (!ID || IncompleteUsedCount)
6898     return; // No key or it is is an incomplete sub-type so don't add.
6899   Entry &E = Map[ID];
6900   if (IsRecursive && !E.Str.empty()) {
6901     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6902            "This is not the same Recursive entry");
6903     // The parent container was not recursive after all, so we could have used
6904     // this Recursive sub-member entry after all, but we assumed the worse when
6905     // we started viz: IncompleteCount!=0.
6906     return;
6907   }
6908   assert(E.Str.empty() && "Entry already present");
6909   E.Str = Str.str();
6910   E.State = IsRecursive? Recursive : NonRecursive;
6911 }
6912 
6913 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6914 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6915 /// encoding is Recursive, return an empty StringRef.
6916 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6917   if (!ID)
6918     return StringRef();   // We have no key.
6919   auto I = Map.find(ID);
6920   if (I == Map.end())
6921     return StringRef();   // We have no encoding.
6922   Entry &E = I->second;
6923   if (E.State == Recursive && IncompleteCount)
6924     return StringRef();   // We don't use Recursive encodings for member types.
6925 
6926   if (E.State == Incomplete) {
6927     // The incomplete type is being used to break out of recursion.
6928     E.State = IncompleteUsed;
6929     ++IncompleteUsedCount;
6930   }
6931   return E.Str.c_str();
6932 }
6933 
6934 /// The XCore ABI includes a type information section that communicates symbol
6935 /// type information to the linker. The linker uses this information to verify
6936 /// safety/correctness of things such as array bound and pointers et al.
6937 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6938 /// This type information (TypeString) is emitted into meta data for all global
6939 /// symbols: definitions, declarations, functions & variables.
6940 ///
6941 /// The TypeString carries type, qualifier, name, size & value details.
6942 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6943 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
6944 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6945 ///
6946 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6947                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6948 
6949 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6950 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6951                                           CodeGen::CodeGenModule &CGM) const {
6952   SmallStringEnc Enc;
6953   if (getTypeString(Enc, D, CGM, TSC)) {
6954     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6955     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6956     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6957     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6958     llvm::NamedMDNode *MD =
6959       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6960     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6961   }
6962 }
6963 
6964 static bool appendType(SmallStringEnc &Enc, QualType QType,
6965                        const CodeGen::CodeGenModule &CGM,
6966                        TypeStringCache &TSC);
6967 
6968 /// Helper function for appendRecordType().
6969 /// Builds a SmallVector containing the encoded field types in declaration
6970 /// order.
6971 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6972                              const RecordDecl *RD,
6973                              const CodeGen::CodeGenModule &CGM,
6974                              TypeStringCache &TSC) {
6975   for (const auto *Field : RD->fields()) {
6976     SmallStringEnc Enc;
6977     Enc += "m(";
6978     Enc += Field->getName();
6979     Enc += "){";
6980     if (Field->isBitField()) {
6981       Enc += "b(";
6982       llvm::raw_svector_ostream OS(Enc);
6983       OS << Field->getBitWidthValue(CGM.getContext());
6984       Enc += ':';
6985     }
6986     if (!appendType(Enc, Field->getType(), CGM, TSC))
6987       return false;
6988     if (Field->isBitField())
6989       Enc += ')';
6990     Enc += '}';
6991     FE.emplace_back(!Field->getName().empty(), Enc);
6992   }
6993   return true;
6994 }
6995 
6996 /// Appends structure and union types to Enc and adds encoding to cache.
6997 /// Recursively calls appendType (via extractFieldType) for each field.
6998 /// Union types have their fields ordered according to the ABI.
6999 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7000                              const CodeGen::CodeGenModule &CGM,
7001                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7002   // Append the cached TypeString if we have one.
7003   StringRef TypeString = TSC.lookupStr(ID);
7004   if (!TypeString.empty()) {
7005     Enc += TypeString;
7006     return true;
7007   }
7008 
7009   // Start to emit an incomplete TypeString.
7010   size_t Start = Enc.size();
7011   Enc += (RT->isUnionType()? 'u' : 's');
7012   Enc += '(';
7013   if (ID)
7014     Enc += ID->getName();
7015   Enc += "){";
7016 
7017   // We collect all encoded fields and order as necessary.
7018   bool IsRecursive = false;
7019   const RecordDecl *RD = RT->getDecl()->getDefinition();
7020   if (RD && !RD->field_empty()) {
7021     // An incomplete TypeString stub is placed in the cache for this RecordType
7022     // so that recursive calls to this RecordType will use it whilst building a
7023     // complete TypeString for this RecordType.
7024     SmallVector<FieldEncoding, 16> FE;
7025     std::string StubEnc(Enc.substr(Start).str());
7026     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7027     TSC.addIncomplete(ID, std::move(StubEnc));
7028     if (!extractFieldType(FE, RD, CGM, TSC)) {
7029       (void) TSC.removeIncomplete(ID);
7030       return false;
7031     }
7032     IsRecursive = TSC.removeIncomplete(ID);
7033     // The ABI requires unions to be sorted but not structures.
7034     // See FieldEncoding::operator< for sort algorithm.
7035     if (RT->isUnionType())
7036       std::sort(FE.begin(), FE.end());
7037     // We can now complete the TypeString.
7038     unsigned E = FE.size();
7039     for (unsigned I = 0; I != E; ++I) {
7040       if (I)
7041         Enc += ',';
7042       Enc += FE[I].str();
7043     }
7044   }
7045   Enc += '}';
7046   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7047   return true;
7048 }
7049 
7050 /// Appends enum types to Enc and adds the encoding to the cache.
7051 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7052                            TypeStringCache &TSC,
7053                            const IdentifierInfo *ID) {
7054   // Append the cached TypeString if we have one.
7055   StringRef TypeString = TSC.lookupStr(ID);
7056   if (!TypeString.empty()) {
7057     Enc += TypeString;
7058     return true;
7059   }
7060 
7061   size_t Start = Enc.size();
7062   Enc += "e(";
7063   if (ID)
7064     Enc += ID->getName();
7065   Enc += "){";
7066 
7067   // We collect all encoded enumerations and order them alphanumerically.
7068   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7069     SmallVector<FieldEncoding, 16> FE;
7070     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7071          ++I) {
7072       SmallStringEnc EnumEnc;
7073       EnumEnc += "m(";
7074       EnumEnc += I->getName();
7075       EnumEnc += "){";
7076       I->getInitVal().toString(EnumEnc);
7077       EnumEnc += '}';
7078       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7079     }
7080     std::sort(FE.begin(), FE.end());
7081     unsigned E = FE.size();
7082     for (unsigned I = 0; I != E; ++I) {
7083       if (I)
7084         Enc += ',';
7085       Enc += FE[I].str();
7086     }
7087   }
7088   Enc += '}';
7089   TSC.addIfComplete(ID, Enc.substr(Start), false);
7090   return true;
7091 }
7092 
7093 /// Appends type's qualifier to Enc.
7094 /// This is done prior to appending the type's encoding.
7095 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7096   // Qualifiers are emitted in alphabetical order.
7097   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7098   int Lookup = 0;
7099   if (QT.isConstQualified())
7100     Lookup += 1<<0;
7101   if (QT.isRestrictQualified())
7102     Lookup += 1<<1;
7103   if (QT.isVolatileQualified())
7104     Lookup += 1<<2;
7105   Enc += Table[Lookup];
7106 }
7107 
7108 /// Appends built-in types to Enc.
7109 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7110   const char *EncType;
7111   switch (BT->getKind()) {
7112     case BuiltinType::Void:
7113       EncType = "0";
7114       break;
7115     case BuiltinType::Bool:
7116       EncType = "b";
7117       break;
7118     case BuiltinType::Char_U:
7119       EncType = "uc";
7120       break;
7121     case BuiltinType::UChar:
7122       EncType = "uc";
7123       break;
7124     case BuiltinType::SChar:
7125       EncType = "sc";
7126       break;
7127     case BuiltinType::UShort:
7128       EncType = "us";
7129       break;
7130     case BuiltinType::Short:
7131       EncType = "ss";
7132       break;
7133     case BuiltinType::UInt:
7134       EncType = "ui";
7135       break;
7136     case BuiltinType::Int:
7137       EncType = "si";
7138       break;
7139     case BuiltinType::ULong:
7140       EncType = "ul";
7141       break;
7142     case BuiltinType::Long:
7143       EncType = "sl";
7144       break;
7145     case BuiltinType::ULongLong:
7146       EncType = "ull";
7147       break;
7148     case BuiltinType::LongLong:
7149       EncType = "sll";
7150       break;
7151     case BuiltinType::Float:
7152       EncType = "ft";
7153       break;
7154     case BuiltinType::Double:
7155       EncType = "d";
7156       break;
7157     case BuiltinType::LongDouble:
7158       EncType = "ld";
7159       break;
7160     default:
7161       return false;
7162   }
7163   Enc += EncType;
7164   return true;
7165 }
7166 
7167 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7168 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7169                               const CodeGen::CodeGenModule &CGM,
7170                               TypeStringCache &TSC) {
7171   Enc += "p(";
7172   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7173     return false;
7174   Enc += ')';
7175   return true;
7176 }
7177 
7178 /// Appends array encoding to Enc before calling appendType for the element.
7179 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7180                             const ArrayType *AT,
7181                             const CodeGen::CodeGenModule &CGM,
7182                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7183   if (AT->getSizeModifier() != ArrayType::Normal)
7184     return false;
7185   Enc += "a(";
7186   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7187     CAT->getSize().toStringUnsigned(Enc);
7188   else
7189     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7190   Enc += ':';
7191   // The Qualifiers should be attached to the type rather than the array.
7192   appendQualifier(Enc, QT);
7193   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7194     return false;
7195   Enc += ')';
7196   return true;
7197 }
7198 
7199 /// Appends a function encoding to Enc, calling appendType for the return type
7200 /// and the arguments.
7201 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7202                              const CodeGen::CodeGenModule &CGM,
7203                              TypeStringCache &TSC) {
7204   Enc += "f{";
7205   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7206     return false;
7207   Enc += "}(";
7208   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7209     // N.B. we are only interested in the adjusted param types.
7210     auto I = FPT->param_type_begin();
7211     auto E = FPT->param_type_end();
7212     if (I != E) {
7213       do {
7214         if (!appendType(Enc, *I, CGM, TSC))
7215           return false;
7216         ++I;
7217         if (I != E)
7218           Enc += ',';
7219       } while (I != E);
7220       if (FPT->isVariadic())
7221         Enc += ",va";
7222     } else {
7223       if (FPT->isVariadic())
7224         Enc += "va";
7225       else
7226         Enc += '0';
7227     }
7228   }
7229   Enc += ')';
7230   return true;
7231 }
7232 
7233 /// Handles the type's qualifier before dispatching a call to handle specific
7234 /// type encodings.
7235 static bool appendType(SmallStringEnc &Enc, QualType QType,
7236                        const CodeGen::CodeGenModule &CGM,
7237                        TypeStringCache &TSC) {
7238 
7239   QualType QT = QType.getCanonicalType();
7240 
7241   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7242     // The Qualifiers should be attached to the type rather than the array.
7243     // Thus we don't call appendQualifier() here.
7244     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7245 
7246   appendQualifier(Enc, QT);
7247 
7248   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7249     return appendBuiltinType(Enc, BT);
7250 
7251   if (const PointerType *PT = QT->getAs<PointerType>())
7252     return appendPointerType(Enc, PT, CGM, TSC);
7253 
7254   if (const EnumType *ET = QT->getAs<EnumType>())
7255     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7256 
7257   if (const RecordType *RT = QT->getAsStructureType())
7258     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7259 
7260   if (const RecordType *RT = QT->getAsUnionType())
7261     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7262 
7263   if (const FunctionType *FT = QT->getAs<FunctionType>())
7264     return appendFunctionType(Enc, FT, CGM, TSC);
7265 
7266   return false;
7267 }
7268 
7269 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7270                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7271   if (!D)
7272     return false;
7273 
7274   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7275     if (FD->getLanguageLinkage() != CLanguageLinkage)
7276       return false;
7277     return appendType(Enc, FD->getType(), CGM, TSC);
7278   }
7279 
7280   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7281     if (VD->getLanguageLinkage() != CLanguageLinkage)
7282       return false;
7283     QualType QT = VD->getType().getCanonicalType();
7284     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7285       // Global ArrayTypes are given a size of '*' if the size is unknown.
7286       // The Qualifiers should be attached to the type rather than the array.
7287       // Thus we don't call appendQualifier() here.
7288       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7289     }
7290     return appendType(Enc, QT, CGM, TSC);
7291   }
7292   return false;
7293 }
7294 
7295 
7296 //===----------------------------------------------------------------------===//
7297 // Driver code
7298 //===----------------------------------------------------------------------===//
7299 
7300 const llvm::Triple &CodeGenModule::getTriple() const {
7301   return getTarget().getTriple();
7302 }
7303 
7304 bool CodeGenModule::supportsCOMDAT() const {
7305   return !getTriple().isOSBinFormatMachO();
7306 }
7307 
7308 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7309   if (TheTargetCodeGenInfo)
7310     return *TheTargetCodeGenInfo;
7311 
7312   const llvm::Triple &Triple = getTarget().getTriple();
7313   switch (Triple.getArch()) {
7314   default:
7315     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7316 
7317   case llvm::Triple::le32:
7318     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7319   case llvm::Triple::mips:
7320   case llvm::Triple::mipsel:
7321     if (Triple.getOS() == llvm::Triple::NaCl)
7322       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7323     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7324 
7325   case llvm::Triple::mips64:
7326   case llvm::Triple::mips64el:
7327     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7328 
7329   case llvm::Triple::aarch64:
7330   case llvm::Triple::aarch64_be: {
7331     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7332     if (getTarget().getABI() == "darwinpcs")
7333       Kind = AArch64ABIInfo::DarwinPCS;
7334 
7335     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7336   }
7337 
7338   case llvm::Triple::wasm32:
7339   case llvm::Triple::wasm64:
7340     return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types));
7341 
7342   case llvm::Triple::arm:
7343   case llvm::Triple::armeb:
7344   case llvm::Triple::thumb:
7345   case llvm::Triple::thumbeb:
7346     {
7347       if (Triple.getOS() == llvm::Triple::Win32) {
7348         TheTargetCodeGenInfo =
7349             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7350         return *TheTargetCodeGenInfo;
7351       }
7352 
7353       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7354       if (getTarget().getABI() == "apcs-gnu")
7355         Kind = ARMABIInfo::APCS;
7356       else if (CodeGenOpts.FloatABI == "hard" ||
7357                (CodeGenOpts.FloatABI != "soft" &&
7358                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7359         Kind = ARMABIInfo::AAPCS_VFP;
7360 
7361       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7362     }
7363 
7364   case llvm::Triple::ppc:
7365     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7366   case llvm::Triple::ppc64:
7367     if (Triple.isOSBinFormatELF()) {
7368       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7369       if (getTarget().getABI() == "elfv2")
7370         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7371       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7372 
7373       return *(TheTargetCodeGenInfo =
7374                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7375     } else
7376       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7377   case llvm::Triple::ppc64le: {
7378     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7379     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7380     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7381       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7382     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7383 
7384     return *(TheTargetCodeGenInfo =
7385              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7386   }
7387 
7388   case llvm::Triple::nvptx:
7389   case llvm::Triple::nvptx64:
7390     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7391 
7392   case llvm::Triple::msp430:
7393     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7394 
7395   case llvm::Triple::systemz: {
7396     bool HasVector = getTarget().getABI() == "vector";
7397     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7398                                                                  HasVector));
7399   }
7400 
7401   case llvm::Triple::tce:
7402     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7403 
7404   case llvm::Triple::x86: {
7405     bool IsDarwinVectorABI = Triple.isOSDarwin();
7406     bool RetSmallStructInRegABI =
7407         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7408     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7409 
7410     if (Triple.getOS() == llvm::Triple::Win32) {
7411       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7412                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7413                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7414     } else {
7415       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7416                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7417                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
7418                    CodeGenOpts.FloatABI == "soft"));
7419     }
7420   }
7421 
7422   case llvm::Triple::x86_64: {
7423     StringRef ABI = getTarget().getABI();
7424     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7425                                ABI == "avx" ? X86AVXABILevel::AVX :
7426                                X86AVXABILevel::None);
7427 
7428     switch (Triple.getOS()) {
7429     case llvm::Triple::Win32:
7430       return *(TheTargetCodeGenInfo =
7431                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7432     case llvm::Triple::PS4:
7433       return *(TheTargetCodeGenInfo =
7434                    new PS4TargetCodeGenInfo(Types, AVXLevel));
7435     default:
7436       return *(TheTargetCodeGenInfo =
7437                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
7438     }
7439   }
7440   case llvm::Triple::hexagon:
7441     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7442   case llvm::Triple::r600:
7443     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7444   case llvm::Triple::amdgcn:
7445     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7446   case llvm::Triple::sparcv9:
7447     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7448   case llvm::Triple::xcore:
7449     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7450   }
7451 }
7452